
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Jørgen Haslum Lehne

ICT Architecture for a Key
Performance Indicator (KPI)
Management Application for Zero
Emission Neighborhoods

Master’s thesis in Informatics
Supervisor: Sobah Abbas Petersen
July 2021

M
as

te
r’s

 th
es

is

Jørgen Haslum Lehne

ICT Architecture for a Key Performance
Indicator (KPI) Management
Application for Zero Emission
Neighborhoods

Master’s thesis in Informatics
Supervisor: Sobah Abbas Petersen
July 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

ICT Architecture for a Key Performance Indicator
(KPI) Management Application for Zero Emission

Neighborhoods

Jørgen Haslum Lehne

July 1, 2021

Acknowledgment

This thesis marks the end of my time as a university student. It has been a long
and winding journey, through which I have gained a wealth of knowledge and
experience, both curricular and extra-curricular.

I want to extend my deepest thanks to my supervisor, Sobah Abbas Petersen,
for guiding me through this project and for always being available for help.

I want to thank the people at the ZEN Research Centre for their collabora-
tion and for helping me test the KPI tool, and I especially want to thank Kristin
Fjellheim, whom I’ve had many meetings with to guide in the development of the
tool.

I want to thank my parents, for being great parents and for always being
supportive of my choices in life.

Finally, I want to thank Arja Pedersen, who has supported me during the
writing of this thesis and who has kept me sane through the pandemic, you’re
great.

Jørgen Haslum Lehne
Trondheim, July 1, 2021

iii

Abstract

This thesis sought to develop an ICT architecture for a Key Performance Indica-
tor (KPI) management application for Zero Emission Neighborhoods (ZENs). This
was done by using the pre-existing ZEN KPI tool built in Microsoft Excel which was
developed by the ZEN Research Centre as a starting point and investigating how it
could be improved. The project was conducted using design science methodology,
with iterative evaluation cycles to improve the work. The result was a web applica-
tion which was built using Flask and React and which connects to the Excel-based
KPI tool using Microsoft Graph. This application improves on the previous KPI tool
by providing a more user friendly interface and several additional useful features.

v

Sammendrag

Denne oppgaven hadde som mål å utvikle en IKT-arkitektur for en applikasjon for
administrering av nøkkelindikatorer (KPI) for nullutslippsområder (ZEN). Dette
ble gjort ved å ta utgangspunkt i det eksisterende ZEN KPI-verktøyet bygget i Mi-
crosoft Excel som ble utviklet av ZEN-senteret og undersøke hvordan det kunne
forbedres. Prosjektet ble gjennomført ved hjelp av design science metodikk, med
iterative evalueringssykluser for å forbedre arbeidet. Resultatet var en nettap-
plikasjon som er bygget i Flask og React, og som kobles til det Excel-baserte
KPI-verktøyet ved hjelp av Microsoft Graph. Denne applikasjonen forbedrer KPI-
verktøyet ved å tilby et mer brukervennlig grensesnitt og ytterligere funksjoner.

vii

Contents

Acknowledgment . iii

Abstract . v

Sammendrag . vii

Contents . ix

Figures . xiii

Tables . xv

Code Listings . xvii

Acronyms . xix

1 Introduction . 1

1.1 Motivation . 1

1.2 Goals & Contribution . 2

1.2.1 Research Questions . 2

1.3 Development Project . 3

1.4 Thesis Structure . 3

2 Background . 5

2.1 Project Context . 5

2.1.1 Zero Emission Neighborhoods 5

2.1.2 ZEN Research Centre . 6

2.1.3 Key Performance Indicators . 6

2.1.4 The KPI Tool - Initial Concept 6

2.1.5 Front-End Concept . 8

2.2 Technology Review . 8

2.2.1 Microsoft Excel . 8

2.2.2 Excel-based KPI Tools . 10

2.2.3 Microsoft Graph . 12

ix

x J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

2.2.4 Usability of Excel . 12

2.3 Revisiting the Research Questions . 13

3 Method . 15

3.1 Project Process . 15

3.1.1 Determining Requirements . 16

3.2 Research . 17

3.2.1 Research Method . 17

4 Design . 19

4.1 Requirements . 19

4.1.1 Functional Requirements . 19

4.1.2 Non-Functional Requirements 19

4.2 Architecture . 21

4.2.1 Excel KPI Tool Integration . 21

4.2.2 Overview . 22

4.2.3 Data Flow . 23

5 Implementation . 25

5.1 Excel Integration . 25

5.1.1 Microsoft Azure . 25

5.1.2 Microsoft Graph . 26

5.2 Back-end . 27

5.2.1 Framework . 27

5.2.2 Excel Mapping . 28

5.3 Database . 29

5.4 Front-end . 29

5.4.1 Framework . 29

5.4.2 Structure . 30

5.4.3 Data Flow . 30

5.4.4 Interface . 32

5.4.5 Scenario Editor Construction 42

6 Evaluation & Results . 43

6.1 Continuous Self-Evaluation . 43

6.2 Iterative User Testing . 44

Contents xi

6.3 Scalability . 47

7 Discussion . 49

7.1 Web-Based Implementation of KPI Tool 49

7.2 Excel Integration . 50

7.3 Limitations & Issues . 52

8 Conclusion & Future Work . 53

8.1 Conclusion . 53

8.2 Future Work . 53

Bibliography . 55

A Source Code . 59

Figures

2.1 Microsoft Excel layout . 9

2.2 Excel KPI tool . 11

3.1 The project process. 16

3.2 Deciding upon the area of research. 17

3.3 The three cycle view of design science research. 18

4.1 Overview of the application architecture. 23

4.2 Big picture overview of the application data flow. 23

5.1 Diagram of the components in the React front-end. Components
that have child components are marked in yellow. 31

5.2 State management in the scenario editor. 33

5.3 The login screen for the application. 35

5.4 The front page for a scenario in the scenario editor. 36

5.5 Picture of the scenario editor in the KPI tool. 37

5.6 Picture of a KPI subcategory tab. 38

5.7 The application’s screen for showing results. 39

5.8 Radar chart visualization of a scenario’s calculated results. 40

5.9 Bar chart visualization of a scenario’s calculated results. 40

5.10 The application’s menu for loading saved scenarios. 41

xiii

Tables

2.1 ZEN Key Performance Indicators at time of writing. 7

4.1 The functional requirements for the KPI tool. 20

xv

Code Listings

5.1 Patch request to Microsoft Graph . 26

5.2 KPI dictionary excerpt . 28

xvii

Acronyms

FME Forskningssenter for Miljøvennlig Energi.

GHG greenhouse gas.

ICT information and communications technology.

KPI Key Performance Indicator.

NTNU Norwegian University of Science and Technology.

ZEB Zero Emission Building.

ZEN Zero Emission Neighborhood.

xix

Chapter 1

Introduction

1.1 Motivation

With the threat of climate change becoming ever more apparent, the desire to
make different aspects of modern life more environmentally friendly increases.
One area with a lot of associated greenhouse gas (GHG) emissions is the con-
struction and operation of buildings, which accounted for 39% of energy-related
CO2 emissions in 2017 [1]. The ZEN Research Centre, also known as FME ZEN
[2], is a research center which seeks to address this, by creating solutions which
will aid building projects and neighborhoods in eliminating their GHG emissions.
One of the most important results of their work is the creation of a set of guidelines
and definitions for what constitutes an environmentally friendly building project,
quantified in the form of several Key Performance Indicators (KPIs) which mea-
sure the environmental impact that such a project will have over its lifetime [3].
To go along with these definitions, researchers at the ZEN Research Centre have
also developed a Microsoft Excel-based tool to aid in calculating, organizing, and
rating the KPIs according to the specifications laid out by the report which con-
ceptually defines the tool [4].

Microsoft Excel is a program used by millions of people and countless orga-
nizations around the world. Excel is ubiquitous due to its powerful functionality,
which makes it a good option for a wide range of problems and a myriad of dif-
ferent tools have been developed using it. Such tools can however have certain
issues, as users can find Excel complicated and unwieldy to use [5] [6]. Further-
more, over time it may happen that the needs of the users exceed the functionality
which can be provided by Excel-based tools, as has turned out to be the case with
the ZEN KPI tool. In these cases, one would normally take the knowledge gained
from developing and using the Excel tool and apply it to developing a new stan-
dalone application. However, using Microsoft Graph it is possible to incorporate
the Excel tool as an active part of the new expanded application, thus making it
possible to avoid having to re-implement the work which has already gone into

1

2 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

development, as well as making it possible for personnel who is not skilled in pro-
gramming to continue contributing to the development by working on the Excel
tool.

1.2 Goals & Contribution

This thesis seeks to investigate how to make the current Excel-based KPI tool
more user friendly, and to develop a conceptual information and communications
technology (ICT) architecture and a prototype for an application which can meet
the increased needs of a ZEN KPI tool, and lastly to explore the viability of hav-
ing a pre-existing Excel tool as an active part of such an application. This type
of implementation is only possible due to relatively recent developments made
by Microsoft to their online services. Due to the recency of these developments,
there is limited literature on extending an Excel application into a fuller appli-
cation through the use of Microsoft Graph. The main contributions of this thesis
will therefore be the conceptual ICT architecture, and the research into extending
Excel-implemented solutions.

1.2.1 Research Questions

To aid in accomplishing these goals, the following research questions will be an-
swered:

• RQ1: How can the KPI tool be made more accessible to users?
• RQ2: How can the usability of the current Excel-based ZEN KPI tool be in-

creased?
• RQ3: Is incorporating an Excel workbook as an active component a possible

and viable design choice for a web application?

RQ1 will be answered by reviewing the technology and the literature. RQ2
and RQ3 will be answered through a combination of a literature review, a tech-
nology review, and development and evaluation of a KPI tool prototype. RQ3 is
by nature subjective, but will be answered qualitatively by considering scalability,
maintainability, and performance.

Note that the term "accessability" usually refers to the ability of people with
different capabilities to use a system, for example if color coding in a system pre-
vents a person with color blindness to use it effectively. However, in the case of
RQ1, the term "accessible" is used specifically to refer to the ability of a potential
user to actually gain access to the tool.

Chapter 1: Introduction 3

1.3 Development Project

The design and development of an architecture and a prototype of KPI tool forms
the majority of the work which this thesis is based on. It resulted in a web applica-
tion which seeks to offer the functionality required of the ZEN KPI tool as laid out
by the specifications in [4], but which also includes additional functionality which
has been arrived at through workshops, meetings, and iterative user testing with
researchers from the ZEN Research Centre. This additional functionality includes,
but is not limited to, the ability for a user to input KPI data in a web portal, to
store and retrieve the KPIs for different projects, and to display results from the
KPI tool in charts to make the information more accessible to the user.

1.4 Thesis Structure

This thesis is structured into eight chapters, including this introduction.

Chapter 2 details the background of the thesis, such as the stakeholders and
concepts which motivated this work, as well as the technologies relevant to the
project.

Chapter 3 describes the project process and the research method.

Chapter 4 discusses the design of the application, while chapter 5 documents
the actual implementation and the process surrounding it. Chapter 6 describes the
way in which the work was evaluated and the results from the evaluation.

Chapter 7 discusses the work done and the obtained results, and finally chap-
ter 8 contains the conclusion for this thesis and outlines possible future work.

Chapter 2

Background

2.1 Project Context

This section details the circumstances that led to the existence of this project, such
as the primary stakeholders, the most important related concepts, and previous
work leading up to it.

2.1.1 Zero Emission Neighborhoods

The ZEN Research Centre defines a Zero Emission Neighborhood (ZEN) as a neigh-
borhood which seeks to "reduce its direct and indirect greenhouse gas emissions
towards zero" over a period of 60 years of service life, where a neighborhood is
defined as "a group of interconnected buildings with associated infrastructure"
[3, p. 17]. Here infrastructure refers to all the systems relating to the supply, gen-
eration, and storage of heat and electricty, as well as systems relating to water,
sewage, waste, mobility, and ICT.

The definition of a Zero Emission Neighborhood is based on related ear-
lier work, one example being the concept of a Zero Emission Building (ZEB) [7].
A large portion of the GHG emissions from a building project is from the con-
struction phase, with sources being the transportation of materials, energy use at
the building site, and especially emissions embodied in the building materials. To
compensate for this, a ZEB has to produce enough green energy during its opera-
tional lifetime to replace energy which would otherwise be produced by methods
causing GHG emissions to negate the emissions caused by its construction.

This concept then directly leads to Zero Emission Neighborhoods, which
follow the concept of embodied and released emissions during the construction
phase which are compensated for by green energy production during the opera-
tional phase.

5

6 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

2.1.2 ZEN Research Centre

The ZEN Research Centre is a project dedicated to developing solutions for build-
ing projects to eliminate their GHG emission. It is a research partner to NTNU and
SINTEF, as well as having over 30 other partners in both the public and private
sector [8], and the Centre is set to last for eight years from 2017 to 2024 [3]. In
2019, there were nine demonstration projects spread across Norway connected to
the Centre [9].

2.1.3 Key Performance Indicators

The Key Performance Indicators are a set of assessment criteria developed by the
ZEN Research Centre to enable the measurement of a project’s status with regards
to achieving its goal of reducing greenhouse gas emissions, and are an integral
part of how a Zero Emission Neighborhood is defined [3]. The KPIs are still un-
der development at time of writing, but are currently divided into seven main
categories:

• GHG Emissions
• Energy
• Power/Load
• Mobility
• Economy
• Spatial Qualities
• Innovation

These are further detailed in Table 2.1.

The individual KPIs of a project are found by different methods using a wide
variety of tools, with an internal survey performed in 2018 documenting a total
of 18 different tools with more or less relevance to KPI calculation [4] [10].

2.1.4 The KPI Tool - Initial Concept

The initial concept for the KPI tool was developed by the ZEN Research Centre and
specified a tool which would be able to take as input a building project scenario’s
different KPI values obtained from the other ICT tools and compare them with
reference values and visualize the output to the user [10]. The users in this case
are primarily envisioned to be ZEN researchers, so a baseline of technical expertise
can be expected and the tool does not need to accommodate users unfamiliar with
concepts like KPIs.

An enhanced version of the tool is also proposed. This could include fea-
tures such as the tool having the ability to suggest improvements to a project
which would optimize the project KPIs, the facilitation of users other than ZEN

Chapter 2: Background 7

Category Assessment criteria and KPIs Unit

GHG
emissions

Total GHG emissions tCO2eq
kgCO2eq/m

2 heated floor area
(BRA)/yr
kgCO2eq/m

2 outdoor space
(BAU)/yr
kgCO2eq/capi ta

GHG emission reduction % reduction compared to a base
case

Energy
Energy efficiency in buildings:
- Net energy need
- Gross energy need
- Total energy need

kWh/m2 heated floor area
(BRA)/yr

Per energy carrier:
- Energy use
- Energy generation
- Delivered energy
- Exported energy
- Self consumption
- Self generation
- Color coded carpet plot

kWh/y r
kWh/y r
kWh/y r
kWh/y r
%
%
kWh/y r

Power/Load
Power/load performance:
- Yearly net load profile
- Net load duration curve
- Peak load
- Peak export
- Utilization factor

kW
kW
kW
kW
%

Power/load Flexibility:
- Daily net load profile kW

Mobility
Mode of transport % share
Access to public transport Meters

Frequency
Economy Life cycle cost (LCC) NOK

NOK/m2 heated floor area
(BRA)/yr
NOK/m2 outdoor space
(BAU)/yr
NOK/capi ta

Spatial
Qualities

Demographic needs and consul-
tation plan

qualitative

Delivery and proximity to
amenities

No. of amenities
Meters (distance from build-
ings)

Public space qualitative
Innovation To be determined

Table 2.1: ZEN Key Performance Indicators at time of writing.

8 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

researchers which would help spread awareness of the ZEN definition, or for the
tool to have the ability to dynamically access different types of reference data to
compare to.

2.1.5 Front-End Concept

In 2019, a group of six students produced a report detailing their work on a project
in the subject IT2901 - Informatics Project II [11]. The goal of the project was to
implement a system which received, stored, processed, and visualized KPI data
from several different sensors in a Zero Emission Neighborhood. However, due
to various problems, they were only able to develop the front-end of the project
which mainly dealt with the visualization of the KPIs.

The IT2901 Student Project focuses on the creation of a system which mon-
itors and reports recent usage data, while the focus of this master’s thesis is on
the creation of a tool which is meant to aid in the planning of new construction
projects. Despite this difference, both projects deal with the management and vi-
sualization of KPI data, so there is enough similarity between them to use the
IT2901 Student Project as inspiration.

The project implements the front-end as a website using the popular React li-
brary for JavaScript [12]. The end result was a product which was able to meet the
requirements that were agreed upon with representatives from the ZEN Research
Centre, who were pleased with the outcome. This was taken into consideration
when deciding upon the design for the development project of this master’s thesis.

2.2 Technology Review

Before beginning development, a technology review must first be conducted in
order to obtain an overview of the different technological artifacts which already
exists. This will uncover any currently existing products or systems which may
meet some or all of the requirements of the proposed KPI tool, or which can offer
insight into how to design and develop such a tool from scratch.

The frameworks used to develop the web application stack will not be dis-
cussed in this chapter, as they are not important to the nature of the thesis and
different ones could have been used in their place to achieve the same results.
They will instead be described in detail when discussing the implementation in
Chapter 5.

2.2.1 Microsoft Excel

Microsoft Excel is a spreadsheet application made for storing, organizing, and an-
alyzing data [13]. A part of the Microsoft Office software family, Excel was first

Chapter 2: Background 9

launched in 1987. With the large demand for data analysis solutions among or-
ganizations and individuals, Excel has gained widespread use due to its powerful
data handling capabilities and its relatively low barrier to entry, and also because
of Microsoft’s historical market dominance and Excel being Microsoft’s primary
commercial product addressing this need.

Excel is structured around spreadsheets know as worksheets, which contain
cells spread out in rows and columns. Worksheets are sized automatically depend-
ing on their content but can potentially have over a million rows and over 16 000
columns. An Excel file is known as a workbook, which is a collection of one or
more worksheets. This basic layout can be seen in Figure 2.1.

Figure 2.1: Microsoft Excel layout

Cells have great versatility. They can contain raw data, as well as user de-
fined formulas which can calculate results based on data from other cells, even
referencing cells in different worksheets. There are also formatting options which
make it possible to drastically change the look of the worksheets, which can make
a workbook more intuitive and give a better user experience. Taken together, this
basic functionality allows users to create intricate and sophisticated workbooks
suited for a plethora of different purposes, including accounting, financial analy-
sis, time management, task management, and many more. It has also been used to
develop tools for the management of KPIs, as will be seen in the next two sections.

10 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

2.2.2 Excel-based KPI Tools

PI-SEC Tool

Planning Instruments for Smart Energy Communities (PI-SEC) is a research project
which seeks to deliver planning instruments for the integration of energy issues at
the property level in smart neighborhoods, with focus on areas of CO2-reduction,
increased use of renewable energy, increased energy efficiency, increased use of
local energy sources, and green mobility [14] [15]. These areas of focus make
it apparent that the PI-SEC project has several similarities with the ZEN project,
and was in fact an important source of inspiration and knowledge when the ZEN
definition and the accompanying KPIs were developed [3] [16].

One of the results of the PI-SEC project is the PI-SEC tool which is a KPI tool
that evaluates how different decisions and measures affect different KPIs. The
first version of the tool is based on Microsoft Excel, with the suggestion that later
versions of the tool can be developed in a different format, like being web-based.

The PI-SEC tool is mentioned by the ZEN Research Centre as an example of
a tool which addresses several of the ZEN KPIs [10], however it does not cover all
of the necessary KPIs and as such it is an insufficient solution when it comes to
addressing the needs of the proposed ZEN KPI tool.

ZEB Tool

The ZEB tool [17] is an Excel-based tool developed as a part of the Zero Emission
Building project [7] which can be used to calculate a building’s embodied GHG
emissions. Embodied emissions are an important part of the ZEN definition, but
still only a part, and a ZEN KPI tool will have to be more comprehensive. The de-
sign and development of the ZEB tool has been an important source of inspiration
for the ZEN KPI tool.

ZEN KPI Tool - Excel Implementation

The KPI tool concept described in section 2.1.4 led to the development of a version
of the tool based on Microsoft Excel. This tool is structured by KPI category, and
each category is further divided into subcategories with each subcategory having
its own dedicated sheet in the Excel workbook with related information and in-
structions, as well as input fields for KPI values. Currently, the tool allows a user
to input and store KPI values and provides them with instructions for how to cal-
culate points based on the values. An example of one of the subcategory sheets is
shown in Figure 2.2, though it should be noted that this is a very early version of
the tool and that it is still under continuous development, and as such any features
depicted are subject to change.

Chapter 2: Background 11

Figure 2.2: Excel KPI tool

The point values the user inputs for each KPI subcategory are combined with
a weighting system which results in a final rating for each KPI category which
shows how close the project is to reaching its stated ZEN ambition level, i.e. how
closely the project adheres to the ZEN definition.

However, while this version of the tool serves as a valuable prototype, Excel
also carries with it certain limitations which makes it an unsuitable platform for
fully satisfying the needs of the KPI tool. For example, as the KPI tool would usually
be a file stored locally on a user’s computer, there would be no satisfactory way
to perform version control and keep all the tools spread out among users up to
date. Similarly, saving the KPI data of several different project scenarios would
require a user to create several different files, and then to have to manually move
all this data to new files if an updated version of the tool is ever released. In
addition, using the tool is a complex task. The worksheet displayed in Figure 2.2

12 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

is quite complicated with a lot of elements visible on screen, which can make it
difficult for a user to grasp how they are supposed to interact with it. The current
KPI tool contains 43 of these worksheets, so he complexity can quickly become
overwhelming and navigating the tool can be perceived as difficult. It is this Excel-
based tool and its limitations which the work in this thesis is primarily based on.

Finally, it should be noted that these limitations do not make Excel a bad
tool, but instead merely make it the incorrect tool for the final implementation of
the KPI tool. Indeed, Excel is a good option for quickly and efficiently prototyping
the KPI tool to gain valuable knowledge on what would be required of future
development.

2.2.3 Microsoft Graph

In 2017, Microsoft made several of the products from its Microsoft Office pack-
age available as a subscription-based online service in the form of Microsoft 365.
Microsoft 365 offers users the ability to work in browser-based versions of the
different Office tools instead of having to install dedicated Office software, in ad-
dition to giving them access to cloud-based storage to store and access their data.

To facilitate the flow of data in Microsoft 365, Microsoft has created a devel-
oper platform known as Microsoft Graph [18]. This platform consists of several
components, but of interest to us is the Microsoft Graph API component, a single
endpoint which seeks to serve as a common API for all of Microsoft’s services. Rel-
evant to this project, it has the option to provide software developers with direct
access to Excel workbooks saved in cloud-storage, not only to read data from the
workbook, but also to insert new values, and even have Excel actively perform
calculations based on these new values and the formulas in the workbook.

This gives many new possibilities. Before Microsoft 365 and Microsoft Graph
it was possible to programmatically read and write data to Excel files, but getting
Excel to actually perform calculations on this data could not be done without
considerable difficulty 1. Now, with the ability of linking a program to an active
workbook, many new possibilities appear, with this project aiming to investigate
a few of them.

2.2.4 Usability of Excel

Usability is defined by ISO 9241-11 [19] as the "extent to which a system, product
or service can be used by specified users to achieve specified goals with effective-
ness, efficiency and satisfaction in a specified context of use". Microsoft Excel has

1Doing this involves running an instance of the Excel application on the machine with the server
and then using the Microsoft Component Object Model (COM) to communicate with the instance.
Being only a single instance, it is not scalable beyond a single user and so is not viable for a web
application.

Chapter 2: Background 13

some problems when it comes to usability. A 2010 study found that users often had
troubles navigating Excel’s many complex features, and that they were reluctant
to use Excel when they felt they did not have mastery over it [5].

Another study which was published in 2013 surveyed more than 1,000 users
on the usability of fourteen everyday products [6], using the Systems Usability
Scale (SUS) [20]. One of these products was Microsoft Excel, which got the lowest
rating out of all the products with a SUS score of 56.5 out of 100, which lands it
outside the "acceptable" range which the study uses (and in fact, it was the only
product surveyed not to fall in the "acceptable" range).

It must be noted that the study measures products which are not directly
comparable to Excel, consisting of items such as microwaves, iPhones, and Google
Search, but since the SUS is not a comparative scale the score stands on its own
and the result is clear: people do not rate Excel as having high usability.

As stated by the Techonology Acceptance Model (TAM), usability is of great
importance to get users to actually use new systems [21]. The ZEN Research Cen-
tre focuses heavily on the creation of tools to disseminate their research [10]; if
the tools are not being used then the research will not have the desired impact.
The consequence of all this is that if usability is to be a focus when designing a
KPI tool, then other platforms than Excel should be considered.

2.3 Revisiting the Research Questions

Based on the information in this chapter, it is possible to get a better understanding
of how the research questions should be addressed:

• RQ1: How can the KPI tool be made more accessible to users?

Considering both the issues with trying to distribute an Excel-based tool to
different users as well as the promising front-end concept described in Section
2.1.5, it seems that constructing a web-based version of the tool will be the most
reasonable approach to address RQ1.

• RQ2: How can the usability of the current Excel-based ZEN KPI tool be in-
creased?

Taking into account the usability issues with Excel, it appears that the most
straightforward way to increase usability would be to use a different platform
altogether. Another way to increase usability would be to add more features to
the tool, such as the ability to save and load different user-created KPI scenarios,
and the ability to easily visualize the results in graphs. Again, the front-end con-
cept described in Section 2.1.5 suggests that a constructing web application is an
appropriate way to address RQ2.

14 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

• RQ3: Is incorporating an Excel workbook as an active component a possible
and viable design choice for a web application?

Given that an Excel-based version of the KPI tool already exists, it could be
advantageous to integrate it into the web application instead of having to recreate
all its features. The existence of Microsoft Graph suggests that this should be pos-
sible, and developing an application that implements it will show how it actually
works out in practice.

Chapter 3

Method

3.1 Project Process

As mentioned in the introduction in Section 1.1, this thesis has its origin in the
pursuit of developing a ZEN KPI tool. The following description of a specific de-
velopment project was defined in the early stages of the overall thesis project:

The project will focus on a conceptual ICT architecture for the FME-
ZEN Key Performance Indicator (KPI) application. One of the main
products of the FME-ZEN project is the ZEN Guidelines, which is a
method for determining how well a building or a neighborhood meets
the ZEN criteria, and this is supported by the ZEN KPI tool. The KPI
tool must support a variety of data and data formats from a variety
of sources. This project will focus on an ICT architecture and appli-
cation prototype that will support the KPI tool for collecting, storing,
providing access to the KPIs. As a part of this project, we will exam-
ine the different scenarios of the use of the KPI tool and design and
implement the functionality to support the scenarios. A prototype im-
plementation will be tested using data from at least one ZEN pilot.
This work will be done in collaboration with relevant ZEN partners
from NTNU and SINTEF.

This project description then led to a literature review to understand the con-
text of the problem and the available technologies which could be used to solve it.
The review, in combination with input from stakeholders from the ZEN Research
Centre, led to a preliminary design for the application architecture. A prototype
of the application was developed based on the design, which was then evaluated
through the use of heuristics and user tests. Then the process was iterated upon by
going back to the earlier stages and refining the work done in these stages, based
on needs and issues that were uncovered in these evaluations. An illustration of
this process is shown in Figure 3.1.

15

16 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

Figure 3.1: The project process.

Throughout the process, meetings with the project supervisor and the contact
person from the ZEN Research Centre were conducted every two weeks. In these
meetings, project progress and problems which had appeared were discussed, and
requirements were workshopped and refined. The bi-weekly meetings with the
contact person and the iterative development process are features of agile devel-
opment, and so the process can be said to loosely follow an agile mindset.

The development process faced certain problems. The project got off to a
relatively late start because of difficulties with getting in contact with stakehold-
ers from the ZEN Research Centre, which meant that many things which ideally
should have been implemented were not, due to time constraints. Similarly, there
were issues with getting hold of people from the target user group (researchers
from the Centre) to perform testing due to them having busy schedules.

3.1.1 Determining Requirements

The specific requirements for the application were determined by a variety of
methods. These methods include:

• Consulting previous work, such as the KPI tool concept proposed in the
report by Petersen [10], and the student report [11] mentioned in section
2.1.5 which describes a similar product.
• Workshops and bi-weekly meetings conducted with researchers from the

Chapter 3: Method 17

ZEN Research Centre.
• Feedback from users after conducting user testing with researchers from the

ZEN Research Centre.
• Necessary functionality requirements discovered during development.

The requirements are listed section 4.1 in the chapter on design.

3.2 Research

3.2.1 Research Method

The development process described in the previous section also naturally influ-
ences the way the research method was conducted. The scope of the research was
arrived at by considering the development project to be undertaken and the re-
lated literature, and then envisioning what new solutions could be created and
what new knowledge could be gained. A simplified version of this process can be
seen in Figure 3.2.

Figure 3.2: Deciding upon the area of research.

The research process follows the methodology of design science research
[22], which seeks to gain new knowledge through the development and evalua-
tion of IT artifacts. Design science research specifically focuses on gaining knowl-
edge which will be useful in implementing future solutions, and as such it is of a
very pragmatic nature. It can be thought of as a process consisting of three cycles
[23]:

• The relevance cycle: Design science research seeks to improve some spe-
cific environment, which initially provides the requirements for the artifact
to be developed, and eventually serves as the test arena to assess the use-

18 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

fulness of the artifact.
• The rigor cycle: The work done must be grounded in theory, and an overview

of the existing knowledge base is necessary to ensure that one is performing
original research and not merely implementing traditional solutions. The
knowledge gained from the research will then be added to the knowledge
base.
• The design cycle: The actual development part of the process, a rapid iter-

ative cycle where the artifact is designed, built, and evaluated.

This process is illustrated in Figure 3.3.

Figure 3.3: The three cycle view of design science research.

The three cycle view describes the way in which this thesis’ overall devel-
opment project has been conducted with its aim of researching and developing a
solution for implementing the ZEN KPI tool. The environment consists of, but is
not limited to, the ZEN Research Centre, the ZEN project, the Excel version of the
KPI tool, etc., and enables the relevance cycle as it serves as both the inspiration
for the project as well as providing the assessment criteria. The knowledge base
includes the expertise developed by the ZEN Research Centre, the concept for KPI
tool, established programming best practices, etc. It is part of the rigor cycle, as
the knowledge base provides the theoretical grounding for the project, while the
project provides novel research to the knowledge base. Lastly, the design cycle
is the actual design and development of the product and the evaluation which
includes heuristic evaluation and iterative user tests.

It must be admitted, that initially the project did not set out to follow any
specific predefined methodology but rather grew organically in response to the
needs and requirements which emerged as a result of developing a product as part
of a master’s thesis. It was only later realized that the resulting process ended up
adhering to the paradigm of design science research.

Chapter 4

Design

This chapter discusses the requirements for the application, the design choices
which determined the overall architecture of the application, and a short overview
of this architecture.

4.1 Requirements

4.1.1 Functional Requirements

Table 4.1 shows the functional requirements for the application, as determined by
the process outlined in 3.1.1.

Regrettably, due to time constraints, only FR1 - FR6 were able to be com-
pleted, however this nonetheless served to increase usability compared to the
Excel-based KPI tool.

4.1.2 Non-Functional Requirements

The non-functional requirements are all the requirements of the application that
do not define any required functionality, but which still describe specific needs or
constraints the application has. These consist of the following:

Modifiability

It is expected that the tool being developed by this project is not going to be
put into use as-is, but will rather serve as a prototype and a basis for further
work on developing a KPI tool. As such, it is necessary that the architecture is
designed with modifiability in mind so that future functional requirements can be
easily implemented, and future developers will have an easier time learning and

19

20 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

FR1 It should be possible for a user to create a user account in the appli-
cation.

FR2 It should be possible for a user to input all KPI values relating to a
project scenario.

FR3 It should be possible for a user to save and load different project sce-
narios.

FR4 A user should initially only have access to their own scenarios.
FR5 A user should have the possibility to visualize a scenario’s KPI data in

some different ways.
FR6 Information/instructions should be available to explain all aspects of

the tool.
FR7 The user should be able to change the display language.
FR8 Researchers from ZEN should be able to access all the saved scenarios.
FR9 A user should have the ability to share a scenario with other users.
FR10 It should be possible for a user to create a printable report with a

scenario’s KPI values.

Table 4.1: The functional requirements for the KPI tool.

understanding the code.

Usability

One of the motivations for moving from an Excel-based tool is the fact that Excel
is often unpleasant to use, with examples being that spreadsheets can be difficult
to navigate, or that the Excel application itself can be slow to respond. With this
in mind, a new version of the KPI tool will hopefully be able to provide a more
smooth user experience.

Upgradability

Upgradability is a characteristic which describes a system’s ability to have parts of
it upgraded without having to replace the whole system. In that regard, it is closely
linked to modifiability, but it also has special implications for the KPI tool. As the
KPI tool is currently under development, it is important to be able to upgrade
the tool and have these upgrades be available to the users. A traditional Excel-
based tool has low upgradability, as there is no easy way to upgrade the different
versions of the tool stored locally on different systems, and the entire Excel file
has to be replaced by the new version.

Chapter 4: Design 21

4.2 Architecture

4.2.1 Excel KPI Tool Integration

This section describes the different possible design solutions that were initially
considered for translating the work done on the Excel KPI tool to a more full-
fledged application. Each solution’s advantages and disadvantages will be dis-
cussed, with regards to the previously listed requirements.

Manual Implementation

This is the most traditional approach. It entails taking the knowledge gained from
the Excel KPI tool and manually implementing its model in a web application. In
this case there would be no active connection between an Excel workbook and
the application, the latter would be completely standalone.

• Advantages:

◦ Allows the most amount of flexibility when it comes to adding new
functionality, as all aspects of the application would be customizable.

• Disadvantages:

◦ Requires re-implementing all the work already done in the Excel tool.
◦ Requires researchers to be sufficiently proficient in programming to

continue development of the tool.

Microsoft 365

This solution entails hosting the Excel KPI tool on Microsoft’s cloud and developing
a web application to communicate with it using Microsoft Graph.

• Advantages:

◦ Limits duplication of work by directly connecting to the Excel tool in-
stead of re-implementing it as a web application.
◦ Allows a great deal of flexibility when it comes to adding new func-

tionality.
◦ Allows ZEN researchers without programming knowledge to continue

development on the tool in the form of the Excel workbook.
◦ There is no need to manually keep track of minor changes made to

the Excel workbook to implement these in the web application, these
changes will just be automatically fetched.

• Disadvantages:

◦ The web application must make certain assumptions about the struc-

22 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

ture of the Excel workbook, so major changes to the workbook will
likely necessitate extensive maintenance of the web application.
◦ Introduces additional complexity to the architecture, by virtue of there

being more connected parts.

Dedicated Excel Parser

This solution entails developing a program which would be able to parse an Excel
workbook and create an internal copy of its data model. Developing such a pro-
gram would presumably be very difficult and require a lot of effort, and likely end
with a system that is over-engineered for the specific purpose of enhancing the
KPI tool. It is probable that it would be more time efficient and more relevant to
the task at hand to do the manual implementation. This option was only consid-
ered before the Microsoft 365 solution was fully researched, because it turns out
that that solution also has the capability to fully interact with an Excel workbook’s
data model. Essentially this means there are no specific advantages to choosing
this solution over the Microsoft 365 one, rendering this one obsolete.

Online Excel Dashboard

This solution entails taking the Excel KPI tool and embedding it in a website hosted
by the ZEN Research Centre. This online solution would ensure that the tool is
easily available to users, and the centralized nature of the solution would allow
the developers to update the tool. On the other hand, it would not allow the user
to save KPI data from different building project scenarios, thus it is not a viable
solution.

Of these four possible options, the Microsoft 365 solution was chosen as the
one to implement. The fact that the researchers currently working on the KPI
tool are not proficient in web development was the most important factor, but
also playing a part was the fact that this is an unorthodox solution to this type of
problem, which fueled a desire to research the viability of it.

4.2.2 Overview

As stated in Section 2.3, it was decided that the KPI tool should be implemented as
a browser-based web application. The application architecture follows the pattern
of a traditional full-stack web application, with a front-end component, back-end
component, and database component. This application is then connected to the
Excel KPI tool through Microsoft Graph. An illustration is given in Figure 4.1.

Chapter 4: Design 23

Figure 4.1: Overview of the application architecture.

Figure 4.2: Big picture overview of the application data flow.

4.2.3 Data Flow

The big picture data flow of the application is illustrated in Figure 4.2. The user
inputs KPI data into the front-end, which holds the data during use. When the
user has entered scenario data, they can request results to be calculated which
sends the KPI data from the front-end to the Excel workbook which calculates the
results based on its own internal logic. The results are then sent back to the front-
end and displayed to the user. The user can save and load scenarios in the SQL
database. The transfer of data between components is facilitated by the back-end.

The data flow inside the front-end will be described in detail in Section 5.4.3
where the implementation of the front-end is described.

Chapter 5

Implementation

This chapter goes into detail about the implementation of the specific parts of
the application. These parts are Excel integration part, back-end, front-end, and
database.

5.1 Excel Integration

As stated earlier, the application can be viewed as an extended interface built on
top of the already existing Excel-based KPI tool. This is made possible by Microsoft
Graph as described in Section 2.2.3. This section will go into detail on how this
was implemented.

5.1.1 Microsoft Azure

Before an application can fully access Microsoft Graph, it needs to be registered
with Microsoft Azure, Microsoft’s cloud computing service for developers to create
and manage applications. This is a multi-step process:

1. One must register an organization with Microsoft. This will create an orga-
nization account which has the necessary authorization to register an appli-
cation.

2. The admin of the organization must register a new application in Azure
Active Directory. Different types of applications can be registered, one option
being an application where users log in with an account type recognized by
Microsoft (e.g., Hotmail) to authenticate. The application developed in this
project only has to authenticate on behalf of itself, so it will be a registered
as a daemon-type application. After registering and setting up permissions,
Azure provides a set of credentials which the application can use to connect
and authenticate with Microsoft’s services.

25

26 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

3. The organizations needs to set up an active subscription to Microsoft 365
for Business. This is required for the application to be able to connect to the
Excel KPI tool which is hosted on the cloud.

Once this is done, the application can use the credentials to generate access
tokens which it needs to use Microsoft Graph.

5.1.2 Microsoft Graph

The Excel-version of the KPI tool is hosted on Microsoft’s cloud storage platform
OneDrive by the same admin account which registered the application on Azure.
When users perform actions which require interaction with the Excel KPI tool,
requests are sent from the front-end to the back-end which handles all matters
related to Microsoft Graph, as illustrated in Figure 4.2.

As mentioned, the application handles authentication by using the creden-
tials generated upon app registration to request an access token from Microsoft
Graph, which it then uses in all subsequent requests to certify that the requests are
legitimate. There are some problems with this process, the implementation does
not always properly refresh the access token, which leads to the application not
always being able to access Microsoft Graph. One possible solution is to replace
the current implementation with the Microsoft Authentication Library (MSAL) for
Python, though this has not been done due to time constraints.

Get and patch requests can be made to the Graph API to read or update
values in the Excel KPI tool. Listing 5.1 shows an example of a patch request
which updates the value of a cell in a given row, column, and sheet.

Code listing 5.1: Patch request to Microsoft Graph

WORKBOOK_URL = "https://graph.microsoft.com/v1.0/users/
jorgenhl@jhltestfirm.onmicrosoft.com/drive/
root:/Book.xlsx:/workbook/worksheets"

NON_PERSISTENT_HEADER = {
’authorization’: ga.get_access_token(),
’content-type’: "Application/Json",
’workbook-session-id’: ga.get_nonpersistent_session_id()
}

r = requests.patch(
url = WORKBOOK_URL + "/{}/cell(row={}, column={})".format(sheet,row,column),
headers = NON_PERSISTENT_HEADER,
json = {’values’: value}

)

One issue with the Graph API is that a request can patch a single cell or
a range of cells in the same row and/or column, but not cells spread out over
different rows, columns, and sheets. The relevant cells in the Excel KPI tool are
spread out exactly like that, so patching them requires several patch requests.
Currently there are 30 sheets with 3 relevant cells each, which in theory makes for
a total of 90 simultaneous patch requests each time results need to be calculated

Chapter 5: Implementation 27

(in practice, this number is smaller, but only because not all sections of the Excel
KPI tool have been fully developed yet). Luckily, this is expected to only happen
once per user session, but it does take several seconds to complete and has a
negative impact on user experience.

One of the most important aspects of this implementation is the existence
of the non-persistent session, which makes the whole design possible. Normal
patching of the Excel workbook would permanently change the values stored in
it, which means that if several users were to try to use the web application si-
multaneously, their actions would probably interfere with each other, overwriting
values that others put in. A non-persistent session is a temporary personal copy
of the Excel workbook which is generated upon request and can deal with all the
required calculations, and is then discarded once it is no longer needed and the
session expires. Simultaneous users will in this case get different non-persistent
sessions which means there is no interference.

5.2 Back-end

5.2.1 Framework

The back-end of the application is built using the Python web framework Flask
[24]. Flask is regarded as a "microframework", which means that it seeks to keep
its core module as lightweight as possible, with the option of using its many ex-
tensions to include additional functionality if necessary. This contrasts with for
example Django [25], another Python web framework, which includes an exten-
sive suite of functionality which makes it appropriate for handling the full stack
of a web application.

Flask and Django are two of the most popular Python web frameworks avail-
able. Flask was chosen over Django for this project because it is more lightweight
and the framework only needed to handle the back-end. As the project progressed,
it became clear that more functionality than initially anticipated was required,
mainly related to user login systems and advanced database handling. Django
has this functionality built-in, while Flask has it available as extensions which had
to be set up and configured. This makes Django more of a suitable choice than it
appeared initially, though Flask is also still appropriate. In the final analysis, either
framework would have been able to perform the job to a satisfactory degree.

Another option was to use a JavaScript-based framework. The advantages of
this is that the back-end and front-end (which is made in React) would be written
in the same language which could potentially make it easier for a developer to
switch between them during development, as well as the fact that some research
exists which points to JavaScript web frameworks being more performant than
Python ones [26]. On the other hand, Python is generally regarded as better for
data manipulation and analysis, a factor which was initially considered to be rele-

28 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

vant due to the data-centered nature of the application and that it was speculated
that the back-end would have to handle this data. In the end, this turned out to
not be the case as the final implementation merely stores and passes data along
to the Excel tool through MS Graph.

As with the choice between Flask and Django, both Python frameworks and
JavaScript frameworks are fully able to satisfactorily function as a back-end for
this kind of web application. The thing which nudged it in favor of a Python frame-
work over a JavaScript framework was the fact that I, as the developer, am far
more comfortable working with Python than I am with JavaScript, and in the in-
terest of saving time and effort it was deemed better to choose the programming
language I am more familiar with.

The back-end was developed using Python version 3.9.1 and Flask version
1.1.2. The newest version of Flask is version 2.0, but it was released near the end
of the development process and so this project does not use it.

5.2.2 Excel Mapping

For the web application to be able to interact with the Excel version of the KPI tool,
it needs an accurate map of where the relevant cells in the Excel workbook are
located, which is accomplished by having a large list—more specifically, a Python
dictionary object—in the back-end that contains all the important cells and their
row and column locations. An excerpt from this dictionary is shown in Listing 5.2.

Code listing 5.2: KPI dictionary excerpt

kpi_definitions = {
"categories": {
1: {
"name": "GHG",
"subcategories": {
1: {
"id": "1.1",
"instructions": {
"startLoc": { "row": 8, "column": 1},
"endLoc": { "row": 22, "column": 5}

},
...
"points": {
"pointsAllocatedLoc": { "row": 32, "column": 1 },
"strategicPlanningPhaseLoc": { "row": 32, "column": 2 },
"implementationPhaseLoc": { "row": 32, "column": 3 },
"usePhaseLoc": { "row": 32, "column": 4 }

}
},
...

}
},
...

}
}

Chapter 5: Implementation 29

This is not an ideal solution since the dictionary has to be manually main-
tained. Any changes that are made during development of the Excel workbook
which adds, deletes, or changes the location of any important cells must be care-
fully tracked and corresponding updates must be made to the dictionary. The file
containing the dictionary is 650 lines long, its large size may increase the risk
of errors when updating it. Furthermore, there may be no immediate indication
that something is wrong if one accesses the incorrect cell, since all the cells in
the workbook look largely similar to the application. This means that errors in
the dictionary can lead to bugs which are difficult to detect in practice. A possible
solution to this problem would be to implement automatic testing for the Excel
integration, which would be able to easily detect if a predetermined set of inputs
gave the expected outputs, though this test suite would also have to be maintained
and update in line with the workbook and the dictionary.

5.3 Database

The database is not implemented as any specific database, instead the application
uses the SQLAlchemy toolkit [27] (specifically the Flask-SQLAlchemy extension
[28]), which is an Object-Relational-Mapper that allows the application to be de-
veloped without regard for the database type, and then later connect a suitable
SQL database to it. In development an SQLite database was used for testing pur-
poses.

A lot of the data which is stored in the database exists in the application
in the form of JSON data. Because of this, a NoSQL database might have been a
better choice in hindsight, since these are often specifically designed to deal with
JSON data.

5.4 Front-end

5.4.1 Framework

The front-end of the application is built using the popular JavaScript library React
[12]with support from the Material-UI framework [29], which offers many ready-
made UI components.

React was chosen for several reasons, the most important being that it does
a good job at creating responsive interfaces with a great deal of interactivity, for
example in the form of interactive dynamic data charts, which were deemed to
be of importance for the KPI tool. In addition, React is ubiquitous in web develop-
ment, and is used by companies such as Facebook, Netflix, BBC, Instagram, and
many more. Its widespread use means there is a large online developer community
which can be relied upon for support.

30 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

React was also used for the student project described in Section 2.1.5, which
shows that it is a suitable framework for building an application that deals with KPI
management and visualization. Lastly, React was partly chosen because another
master student who was working concurrently on developing a related web tool
for the ZEN Research Centre had chosen React/Material-UI, and developing them
using the same libraries and frameworks could potentially help give them similar
look and feel if there ever were to be a desire to integrate these two tools more
closely in the future.

A JavaScript framework was chosen because it is the only practical way to
get the sort of user experience that a modern website requires, with the need for
interactive data charts being one clear example of something requiring JavaScript.
It is possible to create a user interface using only the back-end framework Flask,
but it would not have been able to fulfill the necessary requirements of the appli-
cation.

There are many different JavaScript frameworks available for front-end de-
velopment, such as Angular and Vue.js, to name just two others. However, there
are no huge advantages or disadvantages between these frameworks and React,
and based on the reasons already discussed in this section, React ended up being
the eventual choice. There is also the fact that, like with the choice of back-end
framework, React is the front-end framework that I personally am most familiar
with, which means saving time due to not having to learn a new framework.

The front-end was developed using React version 17.0.1.

5.4.2 Structure

React applications are traditionally built up of parts known as components. These
components are code blocks which are largely self-contained and can be inserted
almost anywhere into the code structure. The component structure of the front-
end can be seen in Figure 5.1. Of note is the component "ScenarioEditor" which is
the part of the application where users enter, process, and visualize the KPI data
for different scenarios. In other words, it is the part of the application where the
majority of the functionality lies, and it is therefore unsurprising that the scenario
editor appears to be the most complex part of the front-end.

5.4.3 Data Flow

Many developers will choose to use a state manager like Redux or MobX to store
state data when developing React applications. These state managers can be called
from anywhere in the application to set or read the state. It is, however, not
mandatory to use a state manager, as React is perfectly able to manage state on its
own. The way React does this is by storing state in a component, and then passing
the state up or down the component hierarchy to other components who can then

Chapter 5: Implementation 31

Figure 5.1: Diagram of the components in the React front-end. Components that
have child components are marked in yellow.

32 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

read or update the state.

There are advantages and disadvantages to both approaches. Using a state
manager means that state can easily be accessed from the state manager by any
component which requires it, without having to pass the state through the com-
ponent hierarchy. This means that the components are less interconnected, which
in theory increases modifiability as it should be easier to restructure the code by
moving components around. Conversely, using React’s built-in state management
makes it much easier for a developer to follow the state through the component
hierarchy and gives a clearer overview of where states originate from and where
they are used, which should theoretically also have a positive impact on the mod-
ifiability. Using the built-in system for state management also means that there is
one fewer external dependency to manage.

Prioritizing a clear view of the data flow in the code, it was decided that
the built-in state management system should be used. The state management is
illustrated in Figure 5.2, which shows in which components specific states are
stored, as well as showing in cursive which other components access these states.
This figure only shows state that is directly relevant to the scenario data; other
minor parts of the state which is used to ensure correct behavior of the interface
are not included. As can be seen, the data is stored in the high-level component
"ScenarioEditor". This ensures that state is not reset as the user navigates around
the editor, for example preserving the results that have been calculated, and the
charts. The data will be lost if the user navigates away from the scenario editor
to another part of the application without saving, but this can be changed by
storing the state one level up in the "App" component, at the top of the component
hierarchy.

5.4.4 Interface

This section will go into detail in describing the user interface of the application.
First will be a short introduction, followed by detailed descriptions of the different
parts.

The interface design is inspired by the product developed in the student
project described in Section 2.1.5. The interface contains simple functionality for
registering, logging in, and logging out, and gives access to the scenario editor.
The scenario editor is, as mentioned previously, the main part of the application
and is the part that deals with everything related to KPI data such as entry, storage,
processing, and visualization. A KPI scenario is divided into several KPI categories,
which themselves are divided into several KPI subcategories, for a total of 30 sub-
categories in a scenario. In an effort to make this manageable, the scenario editor
is set up in a nested tab structure, with an outer vertical tab bar along the left side
and an inner horizontal tab bar along the top which manages access to the subcat-
egories. This tab system will be further explained later. The scenario editor also

Chapter 5: Implementation 33

Figure 5.2: State management in the scenario editor.

34 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

contains an option for viewing results relating the KPIs and for saving and loading
scenarios. Following this section is a series of figures describing the different parts
of the interface.

Chapter 5: Implementation 35

Figure 5.3: The login screen for the application.

Registration and Login

Figure 5.3 shows the login screen, with the "log in" button and the "register" button
which takes the user to the registration screen. The registration screen looks very
similar, with the same field for email and password, but with buttons for register-
ing a new account and for going to the login screen. If the user tries to register or
log in with incorrect credentials (log in with wrong password or register an email
that is already registered), their attempt will fail and an error message will appear
telling the user why the action they are trying to perform is failing.

Currently, the user’s email is not used for anything, but Flask does have an
extension for interacting with emails, so in the future it would be possible to in-
clude features that sends the user emails if that is desirable.

36 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

Figure 5.4: The front page for a scenario in the scenario editor.

Scenario Editor - Front Page

Figure 5.4 shows a scenario’s front page. This is the screen which contains the
main information for the scenario, such as the name, the date the scenario was
created, and a short user-created description for the scenario. The front page also
contains the buttons for saving and loading a scenario.

On the left side is outer tab bar of the nested tab structure. This contains
tabs for accessing the scenario front page, the different KPI categories, and the
scenario results. In the figure, the scenario front page tab is currently the tab that
is active.

Chapter 5: Implementation 37

Figure 5.5: Picture of the scenario editor in the KPI tool.

Scenario Editor - KPI Overview

Figure 5.5 shows the overview page of a KPI category, which lists all the KPI subcat-
egories in that category, their names, and how many points the user has achieved
for each phase of each subcategory. Along the top is the inner tab bar of the nested
tab structure, which contains the tab for the KPI overview and the tabs for the KPI
subcategories.

38 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

Figure 5.6: Picture of a KPI subcategory tab.

Scenario Editor - KPI Subcategory

Figure 5.6 shows the screen for a KPI subcategory. Near the top are two accordion
elements which contain a more detailed description of the subcategory, and in-
structions for how to calculate points based on the KPI values the user provides.
In the middle are fields for storing the KPI values. At the bottom are the fields
where the user enters the points they have calculated for the subcategory. The
lack of automation in the calculation of the points is an obvious issue which came
up during user testing and which will be discussed further in Chapter 7.

One notable thing shown on this screen is how the names of the KPIs are in
both Norwegian and English. This is a result of how these names are obtained, as
they are datamined directly from the Excel version of the tool. The Excel workbook
contains both the Norwegian and English name stored in the same cell, and so
both are returned when querying for the name.

Chapter 5: Implementation 39

Figure 5.7: The application’s screen for showing results.

Results - Overview

Figure 5.7 shows the overview screen for a scenario’s calculated results. Near the
top is the button for calculating the results. This takes all the point values that
the user has entered and sends them to the Excel KPI tool, which calculates the
results which are then sent back to the application and displayed to the user.

40 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

Figure 5.8: Radar chart visualization of a scenario’s calculated results.

Figure 5.9: Bar chart visualization of a scenario’s calculated results.

Results - Charts

In addition to an overview of the results, the results section also contains an op-
tion for visualizing the results. Figure 5.8 and Figure 5.9 show two possible chart
visualizations.

Chapter 5: Implementation 41

Figure 5.10: The application’s menu for loading saved scenarios.

Saving and Loading

On the scenario front page are buttons for saving and loading a scenario. Clicking
these buttons will bring up a window with either save or load functionality, Figure
5.10 for example shows the menu for loading a previously stored scenario, with
the scenario front page visible in the background.

42 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

5.4.5 Scenario Editor Construction

The KPI categories and subcategories shown in the scenario editor are not hard-
coded into the application, but are instead dynamically constructed when the ap-
plication loads, based on the Excel mapping described in Section 5.2.2. This makes
it easy for a developer to add or remove categories and subcategories, as it just
requires adding a new reference to the Excel KPI tool in the mapping.

Much of the textual information in the scenario editor comes directly from
the Excel KPI tool. The location of this information is specified in the Excel map-
ping. The application contains an option to initiate a scan of the Excel tool, which
reads the relevant information and stores it in the application database. Read-
ing from the database is much quicker than reading from the Excel tool, so the
caching of the information is an obvious choice for performance reasons. This
scanning feature has the advantage that it is not necessary to keep track of any
changes to the textual information in the Excel tool to implement them in the
web application, instead it is simply a matter of initiating a new scan and the
information will be automatically updated in the database.

One issue with this approach is that automatic scanning of the Excel tool was
not something the developers had in mind when creating it, and so certain prob-
lems appear. One example which was mentioned previously is shown in Figure
5.6 where the names of the KPIs are shown in both Norwegian and English. In the
Excel tool, these names are stored in the same cell so when the tool is scanned,
both language versions are included.

Chapter 6

Evaluation & Results

This chapter describes the different efforts that were made to evaluate the appli-
cation developed in this project, and the results of those evaluations.

6.1 Continuous Self-Evaluation

During development, the different aspects of the application were continuously
evaluated by myself as a way to ensure that the usability would be as high as
possible. The features were evaluated against Nielsen’s Usability Heuristics [30],
which are ten points one should keep in mind that help create user friendly sys-
tems:

1. Visibility of system status
2. Match between system and the real world
3. User control and freedom
4. Consistency and standards
5. Error prevention
6. Recognition rather than recall
7. Flexibility and efficiency of use
8. Aesthetic and minimalist design
9. Help users recognize, diagnose, and recover from errors

10. Help and documentation

This method of evaluation was not intended to be a method of documenting
the quality of the application, but rather served as a way to quickly and easily
detected areas that needed improvement. Self-evaluation by heuristics cannot re-
place evaluation by means of user testing as user testing is vital to cover blind
spots the developer may not be aware that they have, but its simplicity means
that it nicely complements user testing.

43

44 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

6.2 Iterative User Testing

User testing was done with researchers from the ZEN Research Centre, who are
the expected user group for the KPI tool. The tests were done in an iterative man-
ner: first, a user test would be performed which would highlight issues with the
application. These issues were then addressed in the next development cycle, af-
ter which a new user test was performed to help determine if the issues were fixed
and to highlight new issues. This iterative process can be described as a type of
agile alpha testing, as per Sommerville [31, p. 249]. Ideally, alpha testing should
be followed up by more structured testing once the product reaches a more fi-
nalized stage. This was not done, partly due to the time constraints described in
Section 3.1, and partly because the Excel version of the tool is itself not near com-
pletion, which means that performing tests meant for a completed product would
be premature.

Three user tests were done. The first was an informal test session with the
primary contact person from the ZEN Research Centre to gain feedback on the
status and direction, while the two others were more structured tests with re-
searchers who were familiar with the KPI definitions. The latter two tests had the
following format:

1. A think-out-loud session where the user is instructed to use the tool based on
likely usage scenarios and describe their thoughts and actions while doing
so.

2. Initial feedback based on their immediate thoughts after using the tool.
3. A survey for the user to fill out based on the Systems Usability Scale [20].
4. A longer semi-structured interview based on the answers given in the survey.

All three tests were done through digital video calls due to pandemic pre-
cautions. The users’ actions were observed (through screen-sharing) while they
performed different tasks in the tool, and notes were taken whenever a user ran
into an issue, made a valuable suggestion, or anything else that was noteworthy
happened. These tests were a type of expert evaluation, since all the users were
researchers with expertise in areas directly relating to the KPI tool.

It would have been preferable to run tests with more users, but this was
not possible due to scheduling conflicts, as mentioned earlier. It might not be
necessary to test with very many more users though, Nielsen [32] argues that
you will discover the majority of problems with only five users, and after that
you will just keep rediscovering the same problems. Others have argued that five
users is not actually enough [33], though in that case the systems being tested
were relatively complex e-commerce websites. Based on this, it is safe to say that
getting at least a few more users to test the application would have been ideal.

Chapter 6: Evaluation & Results 45

First User Test

This test was an informal test with the contact person from the ZEN Research Cen-
tre, who is also one of the people responsible for developing the Excel KPI tool.
Several issues of varying size were discovered, and different desirable features
were discussed and planned. Initial feedback was positive, with the user express-
ing satisfaction with using a web-based interface, compared to the more complex
and unwieldy Excel interface.

Key issues that were discovered during the test:

• Lack of explanatory text, like names of sections and how to calculate points.
• There should be an option to change the display language.
• It should be possible to share a scenario with other users.
• Visualization of the results in graphs must be implemented.
• There should be some kind of overview page for each KPI category.

After this test, several changes were made. More explanatory text was added,
graph visualization was implemented, an overview page was added to each KPI
category which kept track of how many points the user had awarded to each KPI
subcategory, in addition to other minor changes. A system for language local-
ization has been partially implemented but not completed. A system for sharing
scenarios with other users does not yet exist, though theoretically there should be
no problems with implementing it (other than the time and effort required).

Second User Test

This was the first of the structured tests described previously. The user was another
researcher from the ZEN Research Centre who had also taken part in developing
the Excel KPI tool, which meant that the feedback they gave were rooted in an
understanding in how the KPI tool should function. As with the previous test, sev-
eral issues were discovered and more features were suggested. The user positively
commented on the experience of using the application, noting that the nested tab
structure made it easy to navigate the many sections of the tool and that entering
KPI data in the web application felt more user friendly than in the Excel work-
book. The user also commented on how they felt that few people used the Excel
KPI tool and that having it available as a web application would increase its usage,
which again underlines the possible benefits of this work.

Key issues that were discovered during the test:

• Still more explanatory text is needed. Little things like including names in
addition to numbers on overviews, showing maximum number of points in
addition to current number of points, clarifying what units the KPIs are, etc.
• There is an expectation that the tool should calculate points automatically

for each KPI subcategory after the user has put in the KPI values, instead of

46 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

having to calculate them manually.
• There should be a main overview page for the entire scenario.
• There was confusion on whether you had to save each separate subcategory,

since the save and load buttons for the scenario were constantly visible.

Again, changes were made after the test. Text describing each KPI subcat-
egory was added in expandable accordion elements. A main overview page for
the scenario with the name, time of creation, and user-created description was
added, and the save and load buttons were moved to this main overview page.
By limiting access to the save and load functionality to only this page, the user
should no longer have to worry about whether they have to constantly save.

Nothing was done about the issue of having to manually calculate the points,
as it is an issue deeply connected to the overall design choice of the application.
This will be discussed more in detail in Chapter 7.

Third User Test

This was the second of the structured tests described previously. This time the
user was a researcher who was involved with developing the ZEN definitions, but
not involved with the development of the Excel KPI tool, which gave important
insight into how a user with no pre-existing mental model of the tool perceived
the application.

The lack of mental model was apparent, as this user had more difficulty
navigating the tool and utilizing it successfully than the previous users had had.
Nevertheless, their proficiency increased through the duration of the test, and the
user was confident that they would be able to quickly learn how the application
worked and would have little problem using it in the future. They also professed
approval of having the tool available as a web application instead of as an Excel
workbook.

Key issues that were discovered during the test:

• Again there was an expectation that the tool should automatically calculate
the points awarded for each KPI subcategory on behalf of the user.
• There should exist a tutorial on how to use the tool that user can choose to

go through.
• There should be some export function so the user can export their KPI data

for use in external reports.
• ZEN researchers should have access to the KPI data which users store in the

system, so that they can include it in their research.

The last item on the list raises some privacy concerns, though it should not
be an issue that ZEN researchers have access to the data if those same researchers
are also the only users of the tool, as is currently the intention.

Chapter 6: Evaluation & Results 47

This last test was completed relatively late in the project and as such there
was not enough time to make improvements based on it, but it still provided
valuable feedback which can be used in future work.

6.3 Scalability

Scalability is not one of the main focuses of the application, so it naturally follows
that it has not been a focus during evaluation either. Still, it can be useful to
know what the theoretical prospects for scalability are, for future development
and usage purposes.

Both the Flask back-end and the React front-end are well-established and
widely used web frameworks, their scalability can be assumed to be more than
satisfactory for this application and will not be examined further. Of much greater
interest is the scalability of the system that deals with integrating the Excel KPI
tool. The documentation for Microsoft Graph claims that there is a limit of 1500
requests to an Excel workbook per 10 seconds [34]. As noted in Section 5.1.2,
nearly one hundred requests have to be made when the user wishes to perform the
calculations for their scenario. This means that, in theory, the application can only
handle fifteen users requesting calculations in the same ten seconds. Most likely,
this will not be a problem since users are not expected to calculate the results
often and the application is not expected to get a lot of simultaneous traffic, but
it could prove to be a very real bottleneck if the scope of the application’s use is
ever expanded, and is therefore something which is necessary to be aware of.

Chapter 7

Discussion

This chapter will consider the work done in this project and how it serves to answer
the research questions poised in the beginning of the thesis. It will also discuss the
limitations of the project, and reflect on whether anything should have been done
differently.

7.1 Web-Based Implementation of KPI Tool

Since RQ1 and RQ2 are somewhat similar in theme, this section will address them
both and consider to what extent the work done in the thesis has managed to
answer them.

• RQ1: How can the KPI tool be made more accessible to users?

Answering RQ1 is fairly straightforward, a good way to make the KPI tool
more accessible is to make it into a web application. A web application stands
in stark contrast to an Excel-based application when it comes to ease of access.
The latter has to be distributed (and care must be taken to ensure that it is the
correct version which is being distributed) to the users, who themselves have to
have a system which is capable of running an Excel workbook. On the other hand,
the former is centrally managed and can be accessed by anyone with an internet
connection and a web browser, which makes it far easier to access.

This answer is supported by the previously developed front-end concept de-
scribed in Section 2.1.5, which sufficiently demonstrates that a web application is
a viable way to implement the KPI tool. The actual web application developed in
this project further supports this conclusion, with the fact that the application was
able to deliver all the same features of the Excel tool and the positive feedback
from the ZEN researchers during evaluation being clear points in its favor.

• RQ2: How can the usability of the current Excel-based ZEN KPI tool be in-

49

50 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

creased?

Answering RQ2 is slightly more complicated than RQ1. Based on the issues
with the Excel tool identified in Section 2.2.2 and the usability problems with
Excel as a whole discussed in Section 2.2.4, it was clear that using a different
platform would be one way in which the usability could be increased. Again, the
front-end concept described in Section 2.1.5, as well as the different options for
integrating the pre-existing Excel-based KPI tool considered in Section 4.2.1, led
to the conclusion that a viable alternative was to build a web application using
React.

Another way to increase usability is to increase the functionality of the tool to
cover more of the user’s needs. Table 4.1 shows the proposed new features, though
only the first six were successfully implemented. Most prominent of these are the
options to save and load several different KPI scenarios, and to easily visualize the
data in charts.

There are certain disadvantages to using a web application over an Excel
tool. Developing an Excel tool has a lower barrier to entry than developing a
web application, and likely requires less work. A centralized web application also
requires maintenance and upkeep to keep running, whereas an Excel tool is just a
file that can be passed around to different users. These increases in development
work and maintenance are the prices one pay for the increase in usability.

The evaluation of the system went very well. All three users who participated
in the user testing were positive to the usability improvements that the new appli-
cation offered. This feedback is especially promising given that all the users were
ZEN researchers directly involved with projects relating to the KPIs, and so their
opinions can be expected to be particularly significant regarding this matter.

Based on this, RQ2 can be answered by concluding that an architecture con-
sisting of a full web-stack with a React front-end and a connection to the Excel KPI
tool through Microsoft Graph, with possibilities to develop broader functionality
based on user needs, is a viable way to increase the usability of the KPI tool. There
are some issues with the integration of the Excel KPI tool though, which will be
discussed in the next section.

7.2 Excel Integration

This section focuses on the specific aspect of the project which dealt with integrat-
ing the Excel KPI tool into the web application, and what experience was gained
as a result.

• RQ3: Is incorporating an Excel workbook as an active component a possible
and viable design choice for a web application?

Chapter 7: Discussion 51

First of all, it is clearly possible to incorporate an Excel workbook as an ac-
tive component of a web application, as this work has shown. It can also be said
to be viable due to the successful implementation and the positive feedback dur-
ing evaluation, but there are both advantages and disadvantages that must be
considered.

There are several advantages. Firstly, it enables a developer of a web-application
to start building directly "on top" of the already existing Excel-based tool, instead
of having to re-implement it all from scratch. Secondly, if the people responsible
for developing the Excel-based tool do not have sufficient web-development ex-
perience to change over to developing a web application (as was the case in this
scenario), then this approach can enable them to continue development on the
Excel-based tool. Thirdly, in the case of development of the Excel-based tool con-
tinuing in parallel with the web-based application, the integration means that it
is not necessary to track every little change in the former to manually implement
them in the latter, instead an automatic scan can take care of it.

On the other hand, there are several disadvantages. In order for the web
application to successfully connect to the Excel-based tool, a strict mapping has
to be defined so that the web application knows where all the relevant cells are
located, and this mapping has to be manually kept up to date. If the layout of
the Excel-based tool changes, it has a chance of ruining the connection with the
web application. This can be alleviated by being aware that the Excel-based tool is
going to be connected to a web application from the beginning of the development
process, and thereby adhering to a set of guidelines which determines a uniform
and predictable layout of the Excel-based tool.

Another issue is the matter of scalability as described in Section 6.3. Due to
the request throttling, an application where user actions generate such requests
is simply not scalable. This design can certainly work for applications where user
traffic is expected to remain low, or in cases where the number of requests does
not scale with the number of users, but not otherwise.

Lastly, there is the matter of the web-based tool not automatically calculat-
ing points after the user has entered the KPI values. This was commented on by
two of the three users who tested the application. It is understandable for users
to expect that the tool should be able to handle this, and it would certainly be
possible to implement such a feature. The issue is that the points are calculated
based on different criteria for each KPI subcategory, so automation would have to
be implemented individually for each subcategory, instead of devising a general
approach. At this point, the Excel integration starts losing its advantages and may
start acting as a constraint, and the work needed to work around that constraint
may exceed the amount of work needed to just re-implement the tool as a web
application instead.

Thus, the answer to RQ3 is that yes, it is possible, and it can be viable, de-
pending on the web application in question, but there are certainly disadvantages

52 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

one must be aware of. In many cases, it will not be worth it to bother with the inte-
gration and instead it will be better just to completely re-implement the features
in the web application. In this specific case I would argue that the advantages
outweigh the disadvantages.

7.3 Limitations & Issues

There were several limitations and issues with this project which are worth talking
about. One major issue which affected every other aspect of the project is that it
was relatively slow to get started. This was largely due to difficulties with getting
in touch with the relevant people from the ZEN Research Centre, as the person
I was supposed to meet with was unavailable due to personal reasons. It took
several months for a replacement to be found, at which point the actual work
on the project could start. This delay of course meant that there was less time
available for the project than I would have preferred.

Having more time would also have made it possible to implement more fea-
tures, specifically functional requirement 7 through 10 in Table 4.1. It would have
been interesting to see how these features could have increased the usability and
usefulness of the tool.

As mentioned in Chapter 6, more user tests would have been desirable to
gain a more well-founded understanding of the issues that users may encounter
when using the application. Getting qualified users to test with was a problem
because of the criteria that the users should be ZEN researchers, who all appeared
to be very busy during the time period when the tests were being done. The fact
that the project was already suffering from time issues didn’t help.

One last issue is that I, the author of this work, do not consider myself very
good at front-end design and development. It was not clear at the beginning of the
project that it would have such a large focus on front-end development, but that
is the way it turned out. If nothing else, it has certainly been a valuable learning
experience.

Chapter 8

Conclusion & Future Work

8.1 Conclusion

This thesis has examined how to create an ICT architecture for a Key Performance
Indicator management application. This has been done by developing a concept
and a prototype of such an application, based on the already existing Excel-based
KPI tool developed by the ZEN Research Centre.

It was shown that the usability of the KPI tool could be increased and that
it could be made more accessible to users by developing a full-stack web appli-
cation, built using Flask and React, and connecting this web application and the
Excel-based KPI tool using Microsoft Graph. This approach lets the web applica-
tion function as a user interface for the Excel version of the KPI tool, thus providing
a more user friendly experience. The web application also has the possibility of
including additional features which an Excel tool is unable to provide.

Further, the advantages and disadvantages of connecting a web application
to an Excel tool through Microsoft Graph were investigated. It was found that this
was possible and also viable for certain types of applications, but that there are
issues with scalability and that this type of Excel-integration can also be constrain-
ing.

8.2 Future Work

With regards to the application developed as part of this project, there is certainly
more to be done. There are still more features listed in Table 4.1 which should
be implemented, and there are other issues which need fixing, such as the au-
thentication problems mentioned in Section 5.1.2. More user tests should also
be performed, as these will likely uncover more issues with the application that
need to be improved, and might also lead to new feature suggestions that the

53

54 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

application can benefit from.

With regards to research into Microsoft Graph functionality, it would be in-
teresting to see a project which attempts to build a web application connected to
an Excel tool, but in which the Excel tool was designed with this specific purpose
in mind. This would give a better understanding of the use cases for this type of
architecture.

Bibliography

[1] T. Abergel, B. Dean, J. Dulac, and I. Hamilton, “2018 global status report:
Towards a zero-emission, efficient, and resilient buildings and construc-
tion sector,” Global Alliance for Buildings and Construction. https://www.
worldgbc. org/sites/default/files/2018% 20GlobalABC% 20Global% 20Sta-
tus% 20Report. pdf, 2018.

[2] (2021). FME ZEN, [Online]. Available: https://fmezen.no/. (accessed:
09.05.2021).

[3] M. K. Wiik, S. Fufa, J. Krogstie, D. Ahlers, A. Wyckmans, P. Driscoll, H.
Brattebø, and A. Gustavsen, “Zero emission neighbourhoods in smart cities:
Definition, key performance indicators and assessment criteria,” Tech. rep.,
Research Center on ZEN in Smart Cities, Tech. Rep., 2018.

[4] M. K. Wiik, S. M. Fufa, I. Andresen, H. Brattebø, and A. Gustavsen, “A
norwegian zero emission neighbourhood (ZEN) definition and a ZEN key
performance indicator (KPI) tool,” in IOP Conference Series: Earth and En-
vironmental Science, IOP Publishing, vol. 352, 2019, p. 012 030.

[5] C. Chambers and C. Scaffidi, “Struggling to excel: A field study of chal-
lenges faced by spreadsheet users,” in 2010 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, IEEE, 2010, pp. 187–194.

[6] P. T. Kortum and A. Bangor, “Usability ratings for everyday products mea-
sured with the system usability scale,” International Journal of Human-
Computer Interaction, vol. 29, no. 2, pp. 67–76, 2013.

[7] S. M. Fufa, R. D. Schlanbusch, K. Sørnes, M. R. Inman, and I. Andresen, A
Norwegian ZEB definition guideline. SINTEF Academic Press, 2016.

[8] (2021). Our partners, [Online]. Available: https://fmezen.no/partners/.
(accessed: 06.06.2021).

[9] A. Bremvåg, A. G. Hestnes, and A. Gustavsen, “Annual report 2019,” 2020.

[10] S. A. Petersen and J. Krogstie, “Intermediate ICT coordination and harmo-
nization guidelines,” Research Center on ZEN in Smart Cities, Tech. Rep.,
2019, (Unpublished).

[11] M. Sundnes, J. B. Giske, K. H. Hveding, N. C. Danielsen, A. B. Johnsen, and
B. M. V. Iversen, Zero-Emission Neighborhoods. NTNU, 2019.

55

https://fmezen.no/
https://fmezen.no/partners/

56 J. H. Lehne: ICT Architecture for a KPI Management Application for ZENs

[12] (2021). React, [Online]. Available: https://reactjs.org/. (accessed:
08.06.2021).

[13] Excel, eng, 2018.

[14] B. F. Nielsen, E. Juhasz-Nagy, C. Lindkvist, A. Wyckmans, I. Andresen, and
D. Baer, “Planning instruments for smart energy communities,” PI-SEC Re-
port Nr. XXXX. Trondheim, 2017.

[15] H. T. Walnum, K. Sørnes, M. Mysen, Å. L. Sørensen, and A.-J. Almås, “Pre-
liminary toolkit for goals and kpis,” 2017.

[16] A. A. M. H. Wiberg and D. Baer, “Zen toolbox: First concept for the zen tool-
box for use in the development of zero emission neighbourhoods,” 2019.

[17] M. Wiik, R. Schlanbusch, A. Wiberg, and T. Kristjansdottir, “Zeb tool man-
ual,” User Guide. Version 1. External memo. The Research Centre for Zero
Emission Buildings, 2017.

[18] (2021). Overview of Microsoft Graph, [Online]. Available: https://docs.
microsoft.com/en-us/graph/overview. (accessed: 12.06.2021).

[19] “Ergonomics of human-system interaction — Part 11: Usability: Definitions
and concepts,” International Organization for Standardization, Standard,
Mar. 2018.

[20] J. Brooke, “Sus: A “quick and dirty" usability scale,” Usability evaluation in
industry, vol. 189, 1996.

[21] P. Legris, J. Ingham, and P. Collerette, “Why do people use information tech-
nology? a critical review of the technology acceptance model,” Information
& management, vol. 40, no. 3, pp. 191–204, 2003.

[22] A. Hevner and S. Chatterjee, “Design science research in information sys-
tems,” in Design research in information systems, Springer, 2010, pp. 9–22.

[23] A. R. Hevner, “A three cycle view of design science research,” Scandinavian
journal of information systems, vol. 19, no. 2, p. 4, 2007.

[24] (2021). Flask, [Online]. Available: https://flask.palletsprojects.
com/en/2.0.x/. (accessed: 06.06.2021).

[25] (2021). Django, [Online]. Available: https://www.djangoproject.com/.
(accessed: 07.06.2021).

[26] K. Lei, Y. Ma, and Z. Tan, “Performance comparison and evaluation of web
development technologies in php, python, and node. js,” in 2014 IEEE 17th
international conference on computational science and engineering, IEEE,
2014, pp. 661–668.

[27] (2021). SQLAlchemy, [Online]. Available: https : / / www . sqlalchemy .
org/. (accessed: 07.06.2021).

[28] (2021). Flask-SQLAlchemy, [Online]. Available: https://flask-sqlalchemy.
palletsprojects.com/en/2.x/. (accessed: 07.06.2021).

https://reactjs.org/
https://docs.microsoft.com/en-us/graph/overview
https://docs.microsoft.com/en-us/graph/overview
https://flask.palletsprojects.com/en/2.0.x/
https://flask.palletsprojects.com/en/2.0.x/
https://www.djangoproject.com/
https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/

Bibliography 57

[29] (2021). Material-UI, [Online]. Available: https://material- ui.com/.
(accessed: 08.06.2021).

[30] J. Nielsen. (1994). 10 usability heuristics for user interface design, [On-
line]. Available: https://www.nngroup.com/articles/ten-usability-
heuristics/.

[31] I. Sommerville, Software engineering, 2016.

[32] J. Nielsen. (2000). Why you only need to test with 5 users, [Online]. Avail-
able: https://www.nngroup.com/articles/why-you-only-need-to-
test-with-5-users/. (accessed: 21.06.2021).

[33] J. Spool and W. Schroeder, “Testing web sites: Five users is nowhere near
enough,” in CHI’01 extended abstracts on Human factors in computing sys-
tems, 2001, pp. 285–286.

[34] (2021). Microsoft Graph throttling guidance, [Online]. Available: https:
//docs.microsoft.com/en-us/graph/throttling. (accessed: 09.06.2021).

https://material-ui.com/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://docs.microsoft.com/en-us/graph/throttling
https://docs.microsoft.com/en-us/graph/throttling

Appendix A

Source Code

The source code for the application developed in this project can be found online
at https://github.com/jorgenhlehne/kpi-tool

59

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Jørgen Haslum Lehne

ICT Architecture for a Key
Performance Indicator (KPI)
Management Application for Zero
Emission Neighborhoods

Master’s thesis in Informatics
Supervisor: Sobah Abbas Petersen
July 2021

M
as

te
r’s

 th
es

is

	Acknowledgment
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Introduction
	Motivation
	Goals & Contribution
	Research Questions

	Development Project
	Thesis Structure

	Background
	Project Context
	zens
	ZEN Research Centre
	Key Performance Indicators
	The KPI Tool - Initial Concept
	Front-End Concept

	Technology Review
	Microsoft Excel
	Excel-based KPI Tools
	Microsoft Graph
	Usability of Excel

	Revisiting the Research Questions

	Method
	Project Process
	Determining Requirements

	Research
	Research Method

	Design
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Architecture
	Excel KPI Tool Integration
	Overview
	Data Flow

	Implementation
	Excel Integration
	Microsoft Azure
	Microsoft Graph

	Back-end
	Framework
	Excel Mapping

	Database
	Front-end
	Framework
	Structure
	Data Flow
	Interface
	Scenario Editor Construction

	Evaluation & Results
	Continuous Self-Evaluation
	Iterative User Testing
	Scalability

	Discussion
	Web-Based Implementation of KPI Tool
	Excel Integration
	Limitations & Issues

	Conclusion & Future Work
	Conclusion
	Future Work

	Bibliography
	Source Code

