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a b s t r a c t

Local Electricity Markets (LEM) and peer-to-peer trading are new mechanisms to encourage the uptake
of solar PV and to support the emergence of consumer-centric electricity markets. However, the coor-
dination to trade between consumers and prosumers has different definitions depending on the context
and features of the energy system. This paper introduces a new vision: creating virtual LEMs by coop-
eratively mixing (optimal matching) different load and renewable profiles that complement each other.
Since consumer and prosumer profiles change every day (weather conditions or demand behaviors), the
dynamic formation of virtual LEMs changes daily. To reward flexibility, Electric Vehicles (EV) are also
pooled into forming a virtual LEM. That is, we investigate: What is the value of creating virtual local
markets (via clustering)?, and what is the impact of EV flexibility on the creation of virtual LEMs?
Through implementing a LEM optimization model with a clustering approach, we analyze the formation
of LEMs for a set of end-users in London. Results indicate that a single large LEM (no clustering) is
comparatively similar to multiple LEMs (clustering). EV flexibility obtains more revenue in this new
marketplace. Findings are encouraging as dynamic virtual LEMs can enable, accelerate and bring scal-
ability for a ubiquitous deployment of LEMs.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Sharing or selling power surplus from home solar PV systems
over to neighbors (or fellow consumers) is becoming an attractive
scheme to incentivize the adoption of renewables, and to make the
end-user a more active participant in providing flexibility. In this
regard, the literature and interest in local electricity markets (LEM),
peer-to-peer (P2P) trading schemes, and energy communities has
rise remarkably in the last years [1e4].

However, the wider deployment of LEM, its acceptance, and
integration to the energy system is in its early stages. Market-
regulatory frameworks have yet to be in place to open-up the
possibilities to validate new market designs. For example, extend-
ing the definition of local or ‘communal’ market to notions of vir-
tual consumer-prosumer markets would facilitate: i) the
participation of a larger pool of end-users beyond geographical
limitations, ii) more opportunities to trade or share RES at a better
nado).

r Ltd. This is an open access articl
price, and iii) accelerate the decentralization and democratization
of energy. That is, similar to virtual power plants concepts [5] that
take advantage of cloud-based services, but designed to be
consumer-centric with the support of blockchain related technol-
ogies for example [6e8]. A formation of a virtual LEM would allow
new visions on integrating end-use flexibility and open new busi-
ness model ideas for LEM. Aside from market-regulatory uncer-
tainty, LEM uptake might also face some techno-economical
challenges, for example:

C Scalability: LEM might encompass an immense pool of cus-
tomers that would like to engage in P2P. A huge LEM might
face some computational challenges in calculating the
optimal allocation and the market (P2P) trading settlement.

C LEMs as a marketplace to reward flexibility. Batteries from
Electrical Vehicles could provide flexibility given the right
economic conditions. That is, designing LEMs should
consider rewards and signals to be an attractive marketplace
for flexibility providers.

C Coordinate LEM operations with the local Distribution Sys-
tem Operator (DSO) for power quality problems. Some LEMs
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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operations might incur on not ideal behavior from the grid
operator perspective. For example, in some parts of the dis-
tribution network certain LEM resulting operations might be
beneficial to manage losses while in other parts of the
network is the opposite. Here a join coordination between
virtual LEMs and a DSO would guide P2P decisions based on
the network's topology conditions.

In this paper, we propose a new vision on how to address the
above challenges and to study new opportunities in the formation
of virtual LEMs. Under the hypothesis of large scale adoption of LEM
and P2P schemes, it is fair to assume that there will be a multitude
(e.g., around 1 million homes already have solar panels in the
United Kingdom) of prosumers and consumers ready to tap on LEM
opportunities. This will present scalability issues on how to orga-
nize prosumer and consumers into LEMs. Should a virtual LEMs be
based on geographical boundaries? Could a prosumer with a small
wind turbine in Scotland be able to sell its surplus to a solar PV
prosumer in London who is experiencing a rainy day? A situation
that might change the next day in the opposite direction based on
weather conditions or household energy demand behaviors. That
is, each day there will be different circumstances on demand pro-
files and RES availability. Some days, LEM for a local setting might
not have the best match among its peers, hence combining peers
from other regions in a dynamic fashion might offer a further
business case for the formation of dynamic virtual LEMs. In this
sense, to understand the formation of virtual LEMs, the paper is
centered on these research questions:

C What is the value of creating dynamic virtual local electricity
markets (via clustering)? How does a ‘virtual LEM’ incen-
tivize P2P trade, flexibility, self-sufficiency and integration of
RES?

C What is the impact of Electrical Vehicles' flexibility on the
creation of virtual LEMs? What benefits would this market-
place bring?

To answer these questions, we have developed a P2P-clustering
model that forms dynamic LEMs based on a pool of consumers and
prosumers. It is dynamic in the sense that it creates multiple LEMs
based on the features of the consumer and prosumer profiles. It
matches and allocates participants by clustering them in virtual
LEMs that change every day. That is, we assume a high degree of
automation that smartly matches prosumers and consumers and
creates daily marketplaces. Fig. 1 epitomizes this idea. A commu-
nity of 25 houses with different characteristics might belong to a
neighborhood where a ‘Dynamic-P2P’ market pairs prosumer and
consumers to form virtual LEMs. In this example, for a particular
day in the month of May, five clusters (virtual LEMs) are formed.
Here the value of EV flexibility complements the P2P-cluster for-
mation by charging from surplus RES and by selling it back (dis-
charging) to consumers based on day-night load patterns.

The following section presents related literature and outlines
the contribution of the paper. Next, Section 3 presents the P2P
modelling approach and the clustering concept. A case study of
residential buildings is presented in Section 4 along with data de-
tails. Section 5 discusses results and Section 6 closes the paper with
concluding remarks.

2. Related literature

The intermittency and uncertainty of wind and solar power
production are creating opportunities for consumers to actively
participate in the operation of the power system [9]. Consumers
might change their energy consumption pattern to deal with the
2

renewable resources' uncertainty [10] or support congestion
management in the grid [11]. This and demand side management
schemes have raised a number of business models that could
facilitate the coordination of end-users in providing flexibility [12].
For example, the emergence of local flexibility market promises the
establishment of new marketplaces in which different participants
like DSO, Balance Responsible Party, aggregators, and end-users
trade electricity or provide flexibility services [9]. Here, a central
facilitator is the coordinating role of the aggregator. That is, since
consumers or prosumers are not big enough to participate indi-
vidually in a market, in so-called flexibility market structures,
aggregators coordinate several consumers and provide services for
the other parties [13]. So, the aggregation of these houses and
controlling their assets enable flexibility for the grid or opens their
participation in wholesale markets [14,15]. The aggregators can
control demand response assets to adjust the flexible loads like
smart buildings [16], or electric vehicles [17]. In this regard, parking
lots can also provide the flexibility potential of many EVs to the grid
as an aggregator [18,19]. Brinkel et al. propose a framework in
which an aggregator mitigates the impact of the PV fluctuations
using the grid-connected EVs’ potential [20]. This aggregated
flexibility can eventually act as a balance responsible party and
trade flexibility in balancing markets [21].

In the last years, flexibility in local electricity markets have been
exploring how different prosumers or consumers can trade energy
[4,7] or other services like peak capacity under a P2P market [22].
These interactions have been categorized under different market
structures like P2P trading [4,23], community-based trading [7,24],
and hybrid P2P trading [25]. The fully P2Pmarket structure is based
on bilateral contracts between different market participants. It
enables to model the attributes of participants individually (e.g.
Ref. [26]) but it might face scalability challenges for a large pool of
end-users or agents [27]. In the community-based design (similar
to smart neighborhoods or micro-grids), the community handler
manages the transactions centrally [28]. But the community-based
models do not reflect individual preferences which allows faster
and more robust implementation than fully P2P structures on
larger scales [27]. Here, the results of [29] show that optimizing the
size of PV systems for energy communities increases the potential
of cost-saving compared to doing it for buildings individually.
Lastly, the hybrid approach is a combination of the previous
methods with a hierarchical structure. In hybrid methods, the
trades can happen at different levels. For example, in Ref. [30], the
exchanges are organized in three sets, i.e., between some cells in
the grid, micro-grids in the same cell, and a community market
within each micro-grid.

In general, the motivation of these papers is to define a local
market to a specific context or problem at hand. A relatively under
research area is the idea of creating virtual LEMs (via clustering)
driven by enabling technologies such as the digitization of power
systems and the automatization of transactions via smart contracts
[31,32]. For example [33], proposes the dynamic clustering of pro-
sumers to minimize the imbalance cost resulting from the renew-
able forecast errors. This clustering focuses on the flexibility bids to
gather and manage demand response capability. Pinto et al. orga-
nized buildings in different clusters to increase the flexibility of the
whole collection instead of one single consumer [34]. There and
other papers note the premise that several challengeswill appear in
decentralizing the market when a high number of consumers or
prosumers participate in P2P trading [35]. In this context, setting
boundaries for different sub-markets by neighborhood clustering
can facilitate the cooperation of the houses on bigger scales [36]. In
Ref. [37], the players are assigned to different clusters after sub-
mitting their bids to themarket. Themarket is then cleared for each
segment separately to reduce the data exchange and



Fig. 1. A set of consumer and prosumers engage in the formation of virtual LEMs. The (upper) virtual layer coordinates the formation of dynamic P2P clusters based on a pool of
participants from a community or district (lower layer). LEMs matches EV flexibility with the allocation (best match) of consumers and prosumers profiles. The figure represents the
actual features of the case study implemented in this paper (see Table 1). For some clusters, results illustrate the total daily amount of P2P traded, load, and RES production for a day
in the month of May.
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communication overheads. There a K-means algorithm performs
the clustering based on the energy volume and price announced by
the bids of market participants. However, in the k-means algorithm,
the number of clusters needs to be specified in advance. Other al-
gorithms, such as Hierarchical cluster analysis (HCA) that have
resolved this issue are widely used in energy applications [38].
Similar ideas have been applied to virtual micro-grids where the
approach is to group the physically constrained energy prosumers
[39e41], and the networked micro-grids by operating a bunch of
micro-grids that are physically interconnected [42]. Vergados et al.
3

[43] proposed an approach to organize the energy prosumers in
virtual clusters participating in energymarkets. The objective of the
proposed clustering is to minimize the relative forecasting error for
each collection. A similar study proposes an aggregation framework
by grouping the prosumers to form a target prosumption pattern
requested by a market actor [44].

Overall, the status of the existing literature has not directly
address the creation of daily virtual LEMs. The objective of this
paper is to understand how to form dynamic virtual LEMs so that
each agent is assigned to a cluster with the best match of the
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demand and renewable profiles. So, each agent finds the highest
possibility of energy tradingwith the othermembers in that cluster.
Also, the impact of clustering on the behavior of EVs participating in
P2P transactions is a new contribution to the literature. To sum-
marize, the paper's novelty fills relevant research gaps in the
literature with these key contributions: i) a new notion on defining
virtual LEMs, ii) proposition of a framework of clustering prosumer
and consumers that is comparatively efficient versus a perfect
market case (a large optimal cluster), iii) design a marketplace for
EV-flexibility to understand how virtual LEMs (via clustering)
benefit from EVs, and iv) discussion on the potentials of virtual LEM
in the design of future consumer-centric electricity markets.

3. Modelling framework

To analyze the formation of dynamic local electricity markets,
two main mathematical programming based models were devel-
oped to represent the interactions between local RES, demand
profiles, P2P trading, batteries, and EVs presence. In a nutshell, the
models are as follows:

C LEM and P2P model: The objective of the local market is to
optimally use the RES production by prioritizing a ‘shared’
self-consumption between prosumers and consumers via
P2P. The LEM model minimizes the overall cost for a set of
houses (h 2H). It assumes perfect market competition and
determines the P2P trading. For example, this LEM model in
Refs. [7,15] analyses the role of batteries in P2P trading while
in Ref. [22] it focuses on a set of industrial buildings inter-
ested in joint peak management via P2P.

C P2P-Clustering based model: The clustering approach ap-
plies an optimization model that provides the partitioning
(houses allocation) into various LEMs. This is based on
matching demand profiles, EVs availability, and renewable
generation. Then, the P2Pmodel determines the local market
trading and supply-demand operations of each cluster.

Both modelling features are described in the following.

3.1. Local electricity market and P2P modelling

Consider a set of houses (h 2H) that have diversity on demand
and generation profiles. Each house balances its supply and de-
mand. That is, supply from renewable generation res(t,h), grid con-
sumption G(t,h), battery discharge D(t,h) and direct P2P purchase I(t,h)

should match the sum of demand dem(t,h), battery charge C(t,h) and
P2P sales X(t,h) for each house h 2H in each time step t under a
horizon T (e.g., hourly intervals for a horizon of one day or more). In
short, the supply-demand balance equation1 is:

resðt;hÞ þ Gðt;hÞ þ Dðt;hÞ þ Iðt;hÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{RES þ Grid þ Battery disch: þ P2P buy

� demðt;hÞ þ Cðt;hÞ þ Xðt;hÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Demand þ Battery charge þ P2P sale

(1)

The virtual local market provides prosumers or consumers a
direct trade of electricity with their fellow peers. That is, in the
model, the overall sales quantity X(t,h) for each house h 2H is
1 All equations hold true for all h 2H, t 2 T. Note that the equation can also be
represented as an equality by adding a curtailment variable on the supply side.
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defined as the sum of all electricity flows Xðt;h/pÞ
p from this house h

2H to its peers p 2H. This is equation (2):

Xðt;hÞ ¼
X
psh

Xðt;h/pÞ
p (2)

Given that

Iðt;h)pÞ
p ¼ jP2P,Xðt;p/hÞ

p c psh; (3)

the change of the flow direction indicates a purchase Iðt;h)pÞ
p of one

house h 2H from its peer p 2H. In each P2P transaction, the en-
ergy imported by one house is equal to the export of its peer while
considering some network losses (jP2P). The overall purchased
quantity per house, I(t,h), is then specified by eq. (4).

Iðt;hÞ ¼
X
psh

Iðt;h)pÞ
p (4)

As no grid feed-in is considered, the sold and purchased quantity
stays within the community. The sum of sales over all houses is
equal to the purchases while considering network losses, this is as
follows in eq. (5):

X
h

jP2P,Xðt;hÞ ¼
X
h

Iðt;hÞ c t2 T : (5)

In this model, the main costs arise when a prosumer or consumer
procures electricity from the grid or buys from a fellow peer.
However, in the P2P trade, the selling peer earns money and
thereby reduces the costs of electricity for the overall community.
As the amount someone pays and the other one earns will cancel
out in the objective function, these terms are not included in the
optimization. Thus, the objective function in this model minimizes
the total grid consumption G(t,h) costs, eq. (6).

min

8><
>:
X
h

0
B@X

t

h
pðtÞG ,Gðt;hÞ

izfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Grid consumption 1
CA

9>=
>; (6)

This cost minimisation is subject to the supply-demand balance, eq.
(1), the trade constraints, eqs. (2)e(5), and restrictions for the
private battery.

The private batteries underlie certain physical characteristics. A
lower bound s and an upper bound s limit the storage level S(t,h) per
battery according to eq. (7).

s � Sðt;hÞ � s (7)

The battery's charging and discharging is limited to a specified rate
of a and b, respectively. The rates are mathematically represented
as follows:

0 � Cðt;hÞ � a (8)



Fig. 2. The procedure happening in the virtual layer to determine the optimal clusters.
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0 � Dðt;hÞ � b (9)

The overall storage level2 for the battery in a time step t is deter-
mined by eq. (10) with the charge C(t,h) and discharge D(t,h) in this
period being subject to the efficiency coefficients hc and hd.

Sðt;hÞ ¼ Sðt�1;hÞ þ hc,Cðt;hÞ � ð1
.
hdÞ,Dðt;hÞ (10)

3.2. Clustering approach

Clustering techniques such as k-means [45] and spectral clus-
tering [46] aim to sort specific data points based on a similarity
measure that cluster them in smaller groups. Arranging the energy
consumers in smaller clusters to find the best match of the energy
consumption, energy production, and the available assets like
storage and EVs is the interpretation of clustering in this paper. In
this context, a non-effective or ‘poor’ match of the consumers
would create a higher operational costs to the participants by not
considering the best P2P trading opportunities. Since there are
different flexibility sources such as storage units, EVs, and P2P
trading in the community, the clustering is formulated as an opti-
mization problem taking the impact of the flexibility sources into
account dynamically. Then, an evolutionary algorithm is employed
to solve the formulated problem. Decision variables, constraints,
and objective function as main parts of the optimization-based
clustering are introduced in the following sections.

3.2.1. Decision variables
The purpose (decision variable) of the clustering is to assign n

houses to the Ncl clusters with the lowest cost. An indexing vector
([IV]1�n) with integer elements between 1 and Ncl can model this
set of decisions. The value of ith element in IV expresses the cluster
that i-th house belongs to it.

3.2.2. Objective function
As mentioned, a non-effective or poor match between the

prosumers and consumers induces higher costs to the cluster
(formed virtual LEM). Therefore, the clustering is looking for a
configuration that yields the lowest operational cost. That is,
similarly to Eq. (6), each cluster has the objective to minimize its
cost as represented by Equation (11) (c is the number of clusters):

min

8><
>:
Xjcj
i¼1

0
B@X

h

0
B@X

t

h
pðtÞG ,Gðt;hÞ

izfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Gridconsumption 1
CA
1
CA
9>=
>;ct2T ;h2c (11)

3.2.3. Constraints
In general, each house can be assigned to any cluster. So, each

element of the IV should take a number between 1 to Ncl. So, 1 and
Ncl are the lower and upper bounds of each element, respectively.
Equation (12) shows this constraint.

IV � IV � IV (12)

IV , and IV represent the vectors of lower and upper bound of IV.
2 Note that this is a stylized modelling of storage that does not consider detailed
operational costs or storage cycles. It is based on similar work in Refs. [7,15].
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3.3. Model for P2P clustering and local markets

The clustering splits a large pool of prosumers and consumers
into smaller clusters; So, equations (1)e(10) apply likewise to each
cluster (c) alongwith the objective function in Eq. (12). But, how the
optimal clusters are specified? At the first stage, a central unit
randomly generates different clustering configurations. As there is
no interaction between the participants of different clusters, the
operating cost of each one is calculated separately. Fig. 2 illustrates
this concept. The generated clusters and relevant information are
communicated to decentralized computing units (clusters value
calculation). The calculated operating costs are then sent back to
the central unit. The central unit, equipped with an evolutionary
algorithm, updates the configurations of the previous step. This
procedure is repeated based on the employed algorithm until a
stopping criteria is satisfied. Note that the algorithm only requires
the total cost of the virtual LEM (cluster) corresponding to each
setup to move toward better solutions. In addition, the ideal size of
clusters can be considered as a penalty factor to adjust the priority
of the solutions for the algorithm.

In a virtual LEM, P2P electricity trading is a source of flexibility to
uptake RES generation. Prosumers can export their energy surplus
to avoid curtailment or an unattractive feed-in tariff. This implies
that there is a high tendency for P2P trading between the houses in
high periods of RES production like summer. In this situation, the
clustering tends to put all houses in one single cluster. To overcome
this challenge and ensure a balanced allocation of clusters, the
unwanted configurations with empty or small clusters are penal-
ized by adding the term PF� Np to the objective function in Eq. (11).
Where PF is a penalty factor and Np is the threshold size of small
clusters. Appendix B presents a more detail implementation of the
proposed method based on the Teaching Learning Based Optimi-
zation (TLBO) algorithm [47].

Throughout the paper this is mentioned as the P2P þ Cluster
problem. With the introduced objective function and constraints, a
set of consumers and prosumers are allocated in some clusters (see
Figs. 1 and 10 as examples).

3.4. Adding and modelling EVs

As noted in the introduction, the charging points of electrical
vehicles participate in the LEM. The objective is to allow that a set of



Table 1
Information about the set of 25 houses.

Affluent Comfortable Adversity total

Houses considered 11 6 8 25
2.3 [kW] Wind 3 0 1 4
2 [kW] PV 6 1 1 8
4 [kW] PV 2 1 0 3
4 [kWh] storage 2 1 0 3
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EVs (e 2 E) trade electricity with other EVs or houses during their
availability. The availability patterns of the EVs depend on owner
behaviors. For example, some of the EV owners prefer to charge in
coordination with their working hours. Others charge the EVs at
home, mostly evening until the next day's morning. Regardless of
the behaviors, a minimum state of charge for EVs at their arrival
time-step it is assumed. Also, they must get fully charged at their
departure time. Equations (13)e(17) describe the model of the EV
which follows a similar logic as stationary batteries but subjected to
availability (departure and arrival times).

Sðt;eÞEV ¼ Sðt�1;eÞ
EV þ hcEV,C

ðt;eÞ
EV � ð1

.
hdEV Þ,Dðt;eÞ

EV (13)

Sðt;eÞEV , Cðt;eÞ
EV , Dðt;eÞ

EV , hcEV , and hdEV are state of charge, charging, dis-
charging, charging efficiency, and discharging efficiency, respec-
tively. This equation holds for the second time step (after arrival)
until the last time step of the availability. The EVs are assumed to be
connected to the charging point with a minimum state of charge
and depart with the fully charged battery. Equations (14) and (15)
reflect this:

Sðt;eÞEV ¼ SðeÞEV Arrival
þ hcEV,C

ðt;eÞ
EV �

�
1
.
hdEV

�
,Dðt;eÞ

EV ; ct Arrival time

(14)

Sðt;eÞEV ¼ SðeÞEV Departure
; ct Departure time (15)

Where parameters SðeÞEV Arrival
and SðeÞEV Departure

are the EV arrival and

departure state of charge. With equations (16) and (17), the
charging and discharging rates are limited to the corresponding
upper bounds aEV and bEV.

0 � Cðt;eÞ
EV � aEV (16)

0 � Dðt;eÞ
EV � bEV (17)

In some cases, the arrival and departure times are in two days. As
themodel is based on the day ahead calculations, in such situations,
the model discharges the EV to a specified state of charge on the
arrival day and charge it again the next day. Eq. (18) shows the
energy balance of the EV nodes.

Gðt;eÞ þ Dðt;eÞ
EV þ Iðt;eÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Grid þ EV discharge þ P2P purchase

� Cðt;eÞ
EV þ Xðt;eÞ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{EV charge þ P2P sale

(18)

In the allocation of dynamic P2P clustering, the EVs are also
included on the pool of participants that will be clustered. A more
in depth explanation and examples of the overall clustering
approach is available in Appendix B.

4. Data and implementation

Two main cases are setup to understand the effect of clustering
in forming local electricity markets. The first case, named ‘Dynamic
P2P’, focuses on P2P analysis while the second case (called ‘Match
EV þ P2P’) introduces EVs into the clustering decisions. These cases
use real-life datasets based on a large pool of housing data from
London in the United Kingdom. The consumption profiles are smart
metering data that took part in the low Carbon London project3
3 For further information, please refer to https://data.london.gov.uk/dataset/
smart-meter-energy-use-data-in-London-households.
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between 2011 and 2014. The datasets cover nine months of elec-
tricity consumption (January to September). These have a half-hour
resolution. Hence, the multi-period models solve 275 days in-
stances separately for a time horizon of 48 periods. That is, each
day, a new set of clusters are setup by applying the model and the
cases features. The description of all the specifications of these
datasets, assumptions, and implementation are introduced in the
following subsections. As part of this paper, all the data and the P2P
model are openly available, see Appendix A.

4.1. Prosumer and consumer profiles

Table 1 summarizes the features of the set of 25 different house
profiles that represent a diverse pool of demand patterns. The en-
ergy consumption behaviors of these households are based on
these categories: affluent, adversity, or comfortable. These con-
sumer classes are determined based on demographic data, social
factors, population, and consumer behavior. The average monthly
demand in the affluent category is around 916 kWh while in the
Adversity category is 374 kWh. Hence, affluent resembles large e

well off e households and adversity represents small households.
In between, there is the comfortable category with an average
monthly demand of 745 kWh. For all the houses, it is assumed that
smart metering is available and hence the end-user buys electricity
(PG in Eq. (6)) at wholesale price plus network charges and other
costs. This price had an average prices of 15 pence/kWh and is in
line with previous studies, assumptions, and data (see
Refs. [7,15,22]).

4.2. Solar PV and small wind turbine

The solar power profile has been derived by converting the
London area's solar irradiation and temperature data ([48,49]) to
the generated power of a 4 kW PV panel with an efficiency of 21%
and a tilt angle of 35�. This procedure creates a time-series covering
nine months with a resolution of 30 min. To diversify the genera-
tion profiles, several new profiles mimicking the primary time-se-
ries’ behavior are created. So, ten scenarios for the solar profiles are
developed based on the autoregressive moving average (ARMA)
method to capture solar data's stochasticity [50]. The standard
deviation of the power generated at each time-step of scenarios is
calculated. It leads to covering the solar fluctuations for each time-
step separately. Finally, the lower and upper bounds of the solar
unit's output power are determined based on a confidence level
equal to the calculated standard deviation. Multitude number of
solar profiles can be randomly generated between the upper and
lower bounds. Fig. 3 illustrates the generated PV profiles for nine
months.

As for the features of a small wind turbine in buildings, the
power profile has been calculated based on fitting a curve to the
power-to-wind-speed profile of a small 2.3 kW turbine [51]. The

https://data.london.gov.uk/dataset/smart-meter-energy-use-data-in-London-households
https://data.london.gov.uk/dataset/smart-meter-energy-use-data-in-London-households


Fig. 3. The profiles of solar power generation for nine months (January to September).
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wind speed data belongs to an area near London (data retrieved
from Refs. [7,15]).

The total energy production by renewable sources is approxi-
mately 61,000 kWh/year that covers around 35% of the 25 houses
electricity demand.
4.3. Batteries

Three units of SonnenBatterie battery with a capacity of 4 kWh
and one-way efficiency of 98% [52] are employed as the storage
model in case studies. Also, connecting the batteries to 2.5 kW
inverters with maximum efficiency of 96% leads to a charging/
discharging time of 100 min.
4.4. EV availabilities

EVs have different behavioral patterns based on their arrival and
departure times, see Refs. [53,54]. Some EVs are charged at
charging stations during the day. Others might be charged near
their homes or workplaces between their arrival and departure
times. This paper considers two EV behavioral characteristics:
“Charge Near Home” (CNH) and “Charge Near Work” (CNW). Five
EVs are included in the formation of LEMs. Three of them belong to
CNH behavioral cluster, and the rest behave similar to CNW cluster.
The main difference between these patterns is the arrival and de-
parture times. Cars in the first group connect to the home charging
stations in the evening and disconnect when they leave home in
the morning. The second group models the behavior of the EV
owners that charge their cars during working hours (morning to
afternoon). This behavior is in linewith the people that charge their
vehicles close to their offices. The impact of the seasons, as well as
the difference caused by weekends or weekdays, are taken into
account. For example, the working hours are affected by daytime
which varies seasons and days of the week. Hence, the arrival and
departure times may change a bit in both CNH and CNW patterns
features.
5. Results and analysis

The analysis focuses on two main cases:

C Dynamic P2P case: The prosumers and consumers
(described in Table 1) engage into P2P trading.
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C Match EVþ P2P case: In addition to the 25 houses, this case
includes the participation of five individual EVs (not part of
the house set h 2 H) in forming LEMs.

For each case, the objective is to analyze specific scenarios to
understand and compare the impact of dynamic LEM formation
(clustering). This is as follows: i) a scenario without P2P nor clus-
tering, ii) a scenario with P2P but without clustering, and iii) a
scenario with both P2P and clustering presence. In short, scenario i)
represents the optimal operation from a single house perspective
(i.e., no sharing) while scenarios (ii) and (iii) introduce P2P under a
clustering assumption.
5.1. Dynamic P2P case

In this case, the objective is to observe how a dynamic allocation
of consumer and prosumers affect the value and formation of dy-
namic virtual LEMs. For instance, by forming a single ‘big’ LEM that
considers the participation of all consumers and prosumers, this
would obtain the maximum value of P2P and energy sharing. From
a consumer perspective, this scenario has more options for P2P
trading as it has a large pool of prosumers to choose from. Now,
comparing it to a scenario that partitions (clusters) the ‘big’ LEM
into smaller virtual LEMs will result in a reduced overall welfare
value of P2P. To understand these effects and results, Fig. 4 and
Table 2 provide the following insights:

C P2P trading reduces procuring from the grid (or electricity
retailer). In the scenario P2P-NoClusters, the grid imports and
costs are lower than the NoP2P scenario as Fig. 4 (a) and (b)
illustrate.

C These figures illustrate that the clustering scenario (i.e.,
‘smaller communities’) has a very close performance to the
P2P-No clusters scenario regarding the grid import and the
daily total cost. Note that due to the low RES production and
a hence less opportunity for P2P trading over the winter
period (first 50 days of the year), the cost and grid imports
are similar in all cases.

C In the summer months, clustering configuration is chal-
lenged as there is more RES production. Nonetheless, the
P2P-Cluster scenario provides very close results to the perfect
competition model in P2P - No clusters scenario.

C Table 2 compares the three scenarios. The P2P - No clusters
scenario reduces the community cost by 14.8%, the grid
import by 13.3%, and the RES curtailment (or grid feed-in) by
76.9% compared to the reference scenario (No-P2P). As for
the savings obtained by introducing clustering, there is a
12.7% reduction which is again similar to the 14.8% of the
open P2P scenario. This is mainly because of P2P contribu-
tion to demand slims down from 25.5% to 21.9% as clustering
reduces the optimization and possibility space.

C To understand how these costs savings is shared between the
LEM participants in P2P þ Cluster case, the results of three
houses are analyzed: (i) a consumer, (ii) a prosumer with
solar PV, and (iii) a prosumer with solar-wind combo and
storage. Following a similar ex-post calculation procedure as
in Refs. [15,22], house (i) and (ii) can respectively attain a 7.3%
and 5% cost reduction over nine months. House (iii) experi-
ence a 21.6% reduced expenses.

In short, the P2P þ Cluster scenario creates several smaller
clusters instead of a large one (i.e., all the participants into one). The



Fig. 4. Comparison of the (a) Community cost, (b) Daily grid consumption of the community between the No P2P - No Clusters scenario, P2P - No clusters scenario, and
P2P þ Clusters scenario.

Table 2
Summary of the results to compare three scenarios in the Dynamic P2P case.

No P2P P2P - NoClusters P2P þ Clusters

(Scenario i) (Scenario ii) (Scenario iii)

Total cost [£] 6915 5890 Y 14.8% 6037 Y 12.7%
Total grid consumption [kWh] 49144 42621 Y 13.3% 43497 Y 11.5%
RES curtailment [kWh] 9388 2165 Y 76.9% 3140 Y 66.5%
RES curtailment (or feed-in) [%] 36.5 8.4 12.2
% of P2P contribution to demand e 25.5% 21.9%
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typical number of clusters formed throughout the 9 months is
between 4 and 5. For these 25 houses, the number of participants in
each cluster varies from up to 7 participants in a cluster to down to
3 participants. The details on the number of clusters and sensitivity
on the performance of the cluster algorithm is elaborated in
Appendix B. All in all, these are very positive results that demon-
strate that dynamic LEM via P2P clusters in a daily basis works fairly
well compared to a ‘perfect market’ competition or optimal
centralized large community. In other words, a central implication
of these results is that the scalability of LEM (via clustering) is
feasible as the clustering has an acceptable performance.
Table 3
Results for the ‘Match EV þ P2P’ case.

EV-No P2P

(Scenario i)

Total cost [£] 689
Total grid import [kWh] 5063
Average community Peak [kW] 30.3
Maximum community Peak [kW] 45.4
RES curtailment [kWh] 1173
RES curtailment (or feed-in) [%] 37.9
EV Grid Import [kWh] 732
EV P2P Export [kWh] e

EV P2P Import [kWh] e
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5.2. Match EV þ P2P

This case mainly concentrates on the impact of clustering based
on the EV behavior. The analysis is focused for the month of May
since there is a high level of renewable production this month. The
cases examines how the energy community's operation gets
affected by involving EVs in the P2P transactions. As noted earlier, it
considers five individual EVs to the set of houses introduced in
Table 1. Three of these EVs have arrival and departure times similar
to the CNH pattern. The availability of the next two complies with
CNW. The nominal storage capacity for all EVs is set to 50 kWh to
provide the average size of Nissan Leaf, Volkswagen e-Golf, and
Tesla S models [22]. Also, a round-trip efficiency of 96% is assumed
EV-P2P EV-P2P-Clustering

(Scenario ii) (Scenario iii)

509 Y 26.1% 529 Y 23.2%
4120 Y 18.6% 4175 Y 17.5%
49.3 [ 62.7% 41.5 [ 36.9%
83.3 [ 83.5% 68 [ 49.8%
28 Y 96.8% 142 Y 85.2%
0.9 4.58
1329 [ 81.6% 1033 [ 41.1%
910 618
352 342



Fig. 5. Energy balance of the five EVs: (a) EV-No P2P, (b) EV-P2P, and (c) EV-P2P-Clustering. The first three EV numbers on the x-axis stand for CNH EVs, and the rest express CNW
EVs.

4 To calculate the total operational cost of the EVs, the revenue is based on a
range of that P2P price (11-to-13 pence per kWh).
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for all of them.
Similar to the previous case, the results presented in Table 3

show that EV-P2P-Clustering yields comparable performance to
the EV-P2P scenario. The following points detail some insights on
the examined scenarios:

C The flexibility provided by P2P trading affords a potential of
26.1% in cost savings compared to optimizing each agent
separately. It is the maximum potential of cost reduction for
the whole community. Clustering contributes a considerable
proportion of this potential by reducing the neighborhood's
cost from £689 to £529. Similar achievements are present in
reducing the energy imported from outside of the commu-
nity and the renewable energy curtailment (or feed-in) since
the EVs absorb a high share of the local energy production.

C Due to the high capacity of EVs' battery, the peak energy
consumption increases at periods with a low spot price. This
situation can be intensified when the EVs find the possibility
of P2P trading, as shown in Table 3. However, the clustering
restricts the peak increment since the EVs participate in
smaller energy communities.

C Fig. 5 illustrates the aggregated energy balance of the EVs
over one month (May). There, likewise, the bigger the com-
munity is, the higher possibility of P2P energy export exists
for the EVs. There charging Near Home (CNH) provides more
availability and flexibility than charging Near Work (CNW).

C Although the EVs' engagement in P2P trading increases their
grid import and the overall peak, the dependency of the
virtual LEMs to the outside decreases. Fig. 6 provides more
insights into the total operational costs or benefit of the EVs'
at different P2P prices. The average electricity price from the
grid (or retailer) is 14.3 [Pence/kWh]. It is expected that the
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P2P price is lower than this average. So, the relative benefit of
the EVs at different prices lower than 14.3 [Pence/kWh] is
calculated4 for EV-P2P and EV-P2P-Clustering scenarios. The
relative benefit of the EVs at prices lower than 11.7 [Pence/
kWh] is negative in the EV-P2P scenario. It means that it does
not worth sharing their energy at prices lower than this
threshold. However, this threshold is 11 [Pence/kWh] in EV-
P2P-Clustering scenario.

C It is assumed that vehicule-to-grid (V2G) is possible in this
analysis. However, how would the impact of collaborative
energy consumption from EVs be affectedwithout the option
of discharging (i.e. no V2G)? By performing a sensitivity
analysis that considers no-EV discharging, the total energy
import of the EVs remains the same as the EVs should get
charged to a specified level. Also almost 30% (210 kWh) of the
import comes from P2P transactions. So, it yields the lowest
grid import and peak of energy compared to the other cases
as it cannot engage in energy arbitrage. Regarding the energy
cost, collaborative consumption offers a 21% lower cost
(£545) than the EV-No P2P case.

To understand further the detail results of this case, Fig. 7 shows
the configuration of the formed clusters in one arbitrary day (May
5th in this case, due to high renewable generation, also refer to
Fig. 1). The algorithm creates five clusters with 6, 5, 7, 8, and 4
members on this day. The aggregated electricity demand and pro-
duction of the consumer/prosumer belonging to each cluster are
illustrated in Fig. 7 (a)e(e), respectively. It shows that the first,



Fig. 6. In the ‘Match EV þ P2P case’, EVs achieve a net benefit of 5% savings compared to the no-P2P scenario under the assumption that the P2P price is 13 pence per KWh. Also the
clustering scenario manages better the load peaks.
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Fig. 7. The aggregated consumption & production of the clusters on the 5th of May (a) Cluster 1, (b) Cluster 2, (c) Cluster 3, (d) Cluster 4, (e) Cluster 5.
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second, and fifth clusters do not have a considerable energy sur-
plus. So, it does not assign stationary energy storage (EV) to these
clusters. However, due to the concurrence of peak energy demand
and high spot price between 20:30 and 21:30, an EV is allocated to
cluster 2 during this period (one of the CNH EVs). This EV helps the
cluster to pass this period with a lower price. Besides, it finds a high
chance to export energy to the other cluster members. Since clus-
ters 3 and 4 have an energy surplus, the battery storage, and the
other EVs are distributed between them. Hence, storing energy in a
considerable fraction of the 24 h is possible that maximizes the self-
sufficiency of the virtual LEMs.
6. Conclusion

This paper analyzes the impact of dynamic P2P clusters and the
role of the EVs in the creation of virtual LEMs. Two cases, namely a
case including different prosumers and consumers located in
London and the same case plus EVs participation are assessed to
understand the value of virtual LEM formation.

Results indicate that enabling the P2P energy trading for par-
ticipants in the virtual LEM, on average, reduces both the electricity
10
costs and the dependency on the grid by £114 and 725 kWh per
month. Integration of EVs in the P2P transactions, especially in the
periods with higher renewable production, increases these
numbers to £180 and 943 kWh per month. Although the clustering
breaks the whole set of end-users into smaller virtual LEMs, the
results show that the dynamic clustering (virtual LEM formation)
achieves a similar outcome to the second scenario (no clustering).
Also, results point out that the clustering reduces the peak load
which is mainly caused by EVs. The maximum peak of the grid
import in the EV-P2P-Clustering scenario is around 20% lower than
the EV-P2P scenario. Moreover, a benefit for EVs depends on the
sensitivity of the P2P price. Here, the analysis indicate that EVs
participation in local virtual LEMs is not profitable at prices lower
than around 12 pence/kWh. This threshold is smaller under the
clustering scheme. It means that the EVs in the virtual LEMs have a
competitive advantage over the EVs in participating in the no-
clustering case. This is an important aspect to reward and value
flexibility which encourages a sustainable end-user engagement.

In short, the idea of dynamic virtual LEM holds promising fea-
tures on stimulating the consumer-centric energy transformation.
To further analyze the realization of virtual LEMs, future research



Fig. 8. Flowchart of the P2P clustering.
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should consider:

C Analyzing the impact of the formation of the clusters on the
operations of the distribution grid. So, introduce a coordi-
nation between the formation of the P2P market and power
flow features. This framework would consider the grid situ-
ation and forms friendly clusters in line with the re-
quirements of the grid.

C The clusters can be created based on the requirements
demanded by different market participants, such as flexi-
bility market operator. Investigating the value of orches-
trating the prosumers and consumers based on tailored
flexibility services is another interesting research question.

In addition to these points, a central aspect to implement P2P
and LEM is to have relevant market-regulatory frameworks. For
example, an important step to allow the implementation of these
concepts would be that retail markets enable P2P transactions
among prosumers and consumers. Also, the Renewable Energy
Directive 2018/2001 [55] notes that there should be a clear role
definition on coordinating energy communities and DSOs, a fair
compromise on the network charges, and other potential regula-
tory barriers. In Refs. [56,57] authors analyze the regulatory
frameworks of some countries in Europe, concluding that regula-
tion at the EU level provides an overall progressive framework for
collaborative energy consumption. These studies show that France,
Germany, the Netherlands, and the United Kingdom are
11
forerunners in Europe. Spain and Portugal also changed their
restrictive regulations in 2019. In Italy, Croatia, and Belgium,
despite hosting many active energy cooperatives, there is no legal
definition for renewable energy communities while Austria has
made moves toward updating the regulations (renewable expan-
sion act). All in all, the most critical regulatory challenges are the
complicated process of establishing legally energy communities,
lack of incentives, and the phase out of existing incentives (e.g.
Feed-in tariffs) [57].
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Appendix A. Supplementary data

We provide the full input data containing the solar and wind
profiles, spot prices, as well as the electricity consumption of the 25
houses. Also, we include for download the Matlab code of the
community-based P2P trading under the MIT license. This is pub-
licly available on GitHub: https://github.com/LocalEnergyMarkets/
PCDGModel-LocalCommunities.

Appendix B. Clustering implementation

In the following, we detail the implementation of the clustering
algorithm and provide some examples.

Clustering algorithm

We have employed the Teaching Learning Based Optimization
Fig. 9. Seasonal and global histograms for the number of the clusters for: (a) Winter, (b) Spri
Summer, and (h) nine months with low penalty factor.
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(TLBO) [47] algorithm to solve the P2P-Clustering problem. TLBO
can outperform most of the well-known approaches in terms of
robustness as well as optimality. Also, there is no parameter to be
tuned in this algorithm. Fig. 8 illustrates the process of the P2P
clustering based on the TLBO algorithm. There, the algorithm starts
finding the best configuration after loading the input data. The
whole process can be divided into three parts called initialization,
teacher phase, and student phase. Different colors distinguish
parts. In the initialization part, the algorithm randomly generates N
indexing vectors and calculates the corresponding cost of each one
based on eq. (11). Also, to eliminate the unwanted configurations in
the algorithm's process, it penalizes the corresponding cost of the
structures containing small clusters, similar to adding the term
PF � Np to eq. (11). Among the initial clusters, the indexing vector
obtaining the lowest cost is picked as the teacher and called T. In the
teacher phase, the T tries to improve the status of the other clus-
tering configurations by pushing them toward itself. Finally, each
member's position gets updated if its move toward the T leads to a
lower cost. In the student phase, each indexing vector is considered
as a student. The students, two by two, try to improve their posi-
tions. So, the ith student randomly finds a companion and goes in
its direction if it corresponds to a lower cost and vice versa. Similar
to the teacher phase, the outcome of each movement must get
evaluated. The new position for the ith member gets accepted if it
leads to a better clustering arrangement. At the end of each itera-
tion, the new best indexing vector is assigned to the teacher, and
the same procedure is repeated until fulfilling the stopping criteria.
Illustrative examples on clustering results
ng, (c) Summer, and (a) nine months with high penalty factor, (e) Winter, (f) Spring, (g)

https://github.com/LocalEnergyMarkets/PCDGModel-LocalCommunities
https://github.com/LocalEnergyMarkets/PCDGModel-LocalCommunities
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As discussed in section 3.3, the unwanted configurations can be
penalized in the clustering algorithm. A cluster with lower than Np

members is an example of such unsatisfying configurations. So, to
analyze the impact of the penalty term, we set the Np and PF to 4
and 40, respectively. It means that a punishment equal to £40 per
cluster is imposed on the clustering configurations that contain
clusters with lower than four members. The maximum number of
clusters in each day is set to 5. Since 40 is a relatively large penalty,
the small clusters can barely be seen in the simulation days. In 264
days out of 275 days of the simulation, five full-clusters (clusters
with more than four members) are created with these settlements.
In the rest of the days, the proposed method makes four full-
clusters each day. In other words, the proposed method leads to
an average of 4.96 full-clusters per day in the period of the study
that is nine months. Fig. 9(a)e(d) illustrate the distribution of the
generated clusters in the optimization period in terms of number of
clusters per day. As can be seen, the tendency to form 5 clusters per
day more or less is the same in different seasons. Also, each cluster,
on average, contains five members (in the community with 25
houses). But, if the penalty factor is set to a low value, the oppor-
tunity of P2P trading affects the clusters’ size, as shown in Fig. 9(e)e
9(h).

To give an overview of the virtual clusters in one month, the
dynamic clusters created for the EV-P2P-Clustering are illustrated
in Fig. 10. The combination of the colors in each column shows the
optimal configuration for the corresponding day. The houses with
the same color belong to the same virtual cluster and can trade
energy. The configuration of the clusters changes every day.

Fig. 10. Dynamic clusters for the ‘Match EV-P2P’ case. Participants 1-to-25 are pro-
sumers/consumers while participants 25-to-30 are EVs nodes.
5 For further information, please refer to https://docs.julialang.org/en/v1/
manual/asynchronous-programming/.
Appendix C. Scalability

In P2P trading schemes, each participant can potentially trade
with all othermembers. In other words, n!

2!ðn�2Þ! P2P transactions can

take place in a LEMwith nmembers. So, the number of participants
dramatically affects the feasibility of up-scaling. For instance, 300
P2P interactions per time-step are probable in a community with
25 houses. This value surges up to 1225 in the case of 50 partici-
pants in the LEM. For example, in the case of 1 million end-users,
organizing the participants in 1000 clusters reduces potential
transactions to lower than 1% compared to the full community (no
clustering). So, calculating the optimal configuration of the clusters
yields a considerable achievement. This rises an important ques-
tion, is the clustering algorithm scalable, as well?

In this regard, evolutionary algorithms (such as TLBO) consists of
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“objective evaluation” and “generation update” parts. The genera-
tion update consists of themultiplication or summation of different
vectors. A regular computer can efficiently perform such calcula-
tions in a fraction of a second for thousands or millions of partici-
pants. The challenging part is to calculate the fitness of different
members of the population. If one computer is in charge of per-
formance evaluation for all clusters, it can become time-
consuming. Here, a favourable feature of the proposed framework
is that each cluster is independent of the others and can be eval-
uated by a separate computer. Here, the concept of asynchronous
computing (sometimes also referred to as concurrent program-
ming)5 can play a significant role. In this structure, different
computing units together solve the problem in parallel. Each cluster
is evaluated by a separate computer, and the objective value is
transmitted to a central computer. Then, the central unit updates
the populations only based on the costs received from the other
computers. Different controlling signals can be fed to the central
computer at this stage to organize the clusters to fulfill the opera-
tor's specific requirements.
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