
Ocean Engineering 235 (2021) 109433

A
0

Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Dynamic Positioning using Deep Reinforcement Learning
Simen Sem Øvereng a, Dong Trong Nguyen a,b,∗, Geir Hamre b

a Department of Marine Technology, NTNU, 7491 Trondheim, Norway
b DNV, Veritasveien 1, 1363 Høvik, Norway

A R T I C L E I N F O

Keywords:
Dynamic Positioning
Deep Reinforcement Learning
Proximal policy optimization
Reward shaping

A B S T R A C T

This paper demonstrates the implementation and performance testing of a Deep Reinforcement Learning based
control scheme used for Dynamic Positioning of a marine surface vessel. The control scheme encapsulated
motion control and control allocation by using a neural network, which was trained on a digital twin
without having any prior knowledge of the system dynamics, using the Proximal Policy Optimization learning
algorithm. By using a multivariate Gaussian reward function for rewarding small errors between the vessel and
the various setpoints, while encouraging small actuator outputs, the proposed Deep Reinforcement Learning
based control scheme showed good positioning performance while being energy efficient. Both simulations
and model scale sea trials were carried out to demonstrate performance compared to traditional methods, and
to evaluate the ability of neural networks trained in simulation to perform on real life systems.
1. Introduction

Dynamic Positioning (DP) of marine vessels is concerned with main-
taining a vessel’s position and heading while using a computer program
to control the vessel’s actuators. Due to the nonlinear dynamics of
marine vessels and the stochastic behavior of the environment, the
DP task can become quite complex. Traditional methods for solving
DP consist of a state estimation component, responsible for signal
processing and estimation of the vessel’s states given the various sensor
inputs, a guidance system responsible for calculating set points to the
control system, and a control system which typically consists of a
motion control law and a thrust allocation (TA) method. A simplified
overview of the DP system is shown in Fig. 1, showing the connectivity
between the above-mentioned DP system components, including the
forces acting on the vessel coming from the environmental loads and
the actuators.

A considerable amount of research has gone into the state es-
timation algorithms, as the DP system should only counteract the
low-frequency wave motions which cause the vessel to drift over time,
filtering out the wave-frequency motions which cause the vessel to
oscillate. Early work included the use of notch filters and low-pass
filtering, while today’s methods tend to linearize the dynamics and
use linear quadratic estimation, based on the work by Kalman in the
1960’s with applications like in Balchen et al. (1980) who combined
the Kalman filter (KF) with optimal control. The extended Kalman filter
(EKF) has become a standard, in which the dynamics are linearized
around working points using the Taylor expansion, but it lacks global
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Fig. 1. Flowchart of a traditional DP systems. The blue area marks the focus of this
paper. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

stability proofs since the dynamics are linearized within certain regions
of heading angle. One option to the EKF is the nonlinear passive
observer, derived by Fossen and Strand (1999), providing global sta-
bility proofs while using less tuning parameters, with demonstrated
performance on a supply vessel. Since an EKF was already implemented
on the vessel used for demonstrations in this paper, the focus was on
the control aspect of DP, namely the motion control and the thrust
allocation.

Traditional methods used in a control system divide the control
problem itself into two parts: the motion controller, and the thrust allo-
cation. The motion controller calculates the generalized control forces
𝝉𝑑 to put on the vessel in order to move it towards a setpoint, while
the TA translates these generalized forces into thruster commands,
resulting in the actual forces 𝝉𝑏 on the vessel. A widely used motion
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control law for controlling the horizontal motions of a vessel is to
use three decoupled PID feedback control laws in combination with
a feedforward law that combines the modeled system dynamics with
information such as measured wind speeds or changes in desired states
in order to calculate desired forces up front. However, as the vessel dy-
namics are highly nonlinear, inaccuracies arise due to modeling errors
in addition to time varying environmental and/or operating conditions.
More advanced control methods aiming to combat these issues include
methods that use gain scheduling, exemplified by Tannuri et al. (2006)
using model-reference adaptive control. For time varying environmen-
tal loads, methods using PID with fuzzy logic which adapts controller’s
coefficients has been demonstrated, such as the fuzzy PID controller
by Xu et al. (2019). Other methods aimed at including the nonlinear
dynamics directly in the controller design, such as backstepping con-
trol, a recursive control design methodology introduced by Kokotovic
(1992), and widely exemplified by in the works of Fossen and Grøvlen
(1998) and Skjetne and Fossen (2004), and Du et al. (2018). Katebi
et al. (2001) used the 𝐻∞ controller design method based on the wind
and wave disturbances, providing an option for multivariate systems
with coupling terms. Also sliding mode control has been investigated,
a nonlinear controller design method that consists of a ‘‘sliding surface’’
which is meant to guarantee stable dynamics when the trajectory lies
on it, demonstrated for marine vessels in DP operations by Tannuri
et al. (2010). Nguyen et al. (2007) used hybrid control as a means
of expanding the range of varying environmental conditions, using a
switching logic for selecting between a predetermined set of observers
and controllers according to the estimated sea state spectre’s peak
frequency. The work was later extended to apply for various operating
speeds as well (Nguyen et al., 2008).

The thrust allocation algorithm’s goal is to output actuator forces
that is as close to the ones calculated from the motion controller,
i.e. minimizing ‖𝝉𝑏−𝝉𝑑‖2. For most marine surface vessels, the number
of actuators are larger than the degrees of freedom to be controlled, and
hence there might exist an infinite amount of thruster configurations
that yields the desired forces. Therefore, ‘‘optimal’’ solutions must
be chosen with respect to some objective criteria. As a consequence,
TA methods are typically based on optimization (Johansen and Fos-
sen, 2013) which takes aim at minimizing a cost function subject to
the physical constraints of the thrusters and the relationship between
thruster forces and total force generation. This allows for flexible
constraint handling while optimizing a designable objective function.
For minimizing fuel consumption, a Quadratic Programming (QP) ap-
proach is common in which the cost function includes a quadratic
cost on thruster usage. Optimization based methods could suffer from
complex actuator setups leading to nonlinear optimization constraints
and nonconvex objective functions which can be computationally de-
manding to solve online. Avoiding some of the nonlinearities that
creates computational issues, the application of an extended thrust
formulation for calculating a pseudoinverse of the linear actuator model
has become fairly standard in the industry (Sørdalen, 1997; Jenssen and
Realfsen, 2006), though requiring some iterative logic to ensure that
the commanded thruster signals are feasible. A variety of workarounds
of the nonlinearities has been proposed, see e.g. Johansen et al. (2008)
for allocation with a propeller and rudder interaction, where the pro-
posed method divide the nonconvex problem into several convex QP
problems, with a switching logic to decide on the best solution by
comparing final costs of each separate sub-solution. Other approaches
include multiparametric Quadratic Programs (mpQP) (Gupta et al.,
2011) which pre-computes optimal parametric functions offline, and
as demonstrated by Johansen et al. (2005), offers real-time applica-
tions by searching for the optimal solutions within the pre-computed
functions. The method was further expanded by Leavitt (2008), com-
bining several mpQP formulations with different properties, including
a blending and a switching logic for deciding the best solution from
the sub-problems. Newer methods improve the accuracy of TA methods
2

as shown by Arditti et al. (2018) which used sequential QP with
slack variables, including actual thrust constraints and hydrodynamic
thruster interactions in high detail to increase TA accuracy while
reducing energy consumption. Through the rapid development of com-
puter hardware, Model Predictive Control (MPC) has become a viable
option for the allocation of actuator commands (Vermillion et al.,
2007; Naderi et al., 2019). It has also been shown to be applicable for
encapsulating both the motion controller and the TA into one entity, as
demonstrated by Veksler et al. (2016). They formulated the controller
as an optimization over a given prediction horizon, calculating optimal
thruster commands through minimizing a cost function which included
thruster usage and state deviations, while formulating the vessel and
thruster dynamics, in addition to their limitations, as constraints to the
optimization procedure.

Reinforcement Learning (RL) algorithms have been used with
promising results in a large variety of decision-making tasks, including
control problems. A comprehensive overview of RL can be found in Sut-
ton and Barto (2017). As opposed to the traditional methods which
are based on instructive design based on some sort of modeling of
the vehicle dynamics, RL based controllers is developed in a trial-and-
error fashion, finding (or ‘‘learning’’) a control policy through choosing
actions while receiving feedback from a designed reward function
signal. The behavior is corrected based on a reward mechanism. An
incentive for exploring methods within model-free RL has been that
they have shown to provide frameworks for learning control policies by
using methods that has no a priori knowledge of the system dynamics.
This has allowed for development of controllers for nonlinear systems
without any attention to dynamics modeling. These methods have
especially proven performance when combining RL with deep Artificial
Neural Networks (ANN), giving rise to Deep Reinforcement Learning
(DRL). Widespread attention of DRL-based methods was attained with
the demonstration of Deep Q-Networks (DQN) (Mnih et al., 2013),
which combined Q-learning with Neural Networks to reach super-
human level in Atari computer games. Advancing similar ideas, also
the AlphaZero program gained super-human abilities in very complex
games such as Chess and Go through RL-based self-play (Silver et al.,
2018), considered as state-of-the-art within DRL today.

Recent work using DRL on dynamic systems includes a variety
of path-following and station keeping problems for systems which
often contain hard-to-model nonlinearities, ranging from aerial ve-
hicles (Koch et al., 2018; Bohn et al., 2019) to underwater vehi-
cles (Kjærnli, 2018; Knudsen, 2019). DRL-based methods for control of
marine surface vessels has, similar to traditional methods, divided the
control problem into motion control and TA, in addition to motion plan-
ning (Chen et al., 2019; Guo et al., 2020), and path following through
speed and/or heading control (Martinsen and Lekkas, 2018; Cui et al.,
2019). Martinsen et al. (2020) demonstrated an approach that included
data-driven system identification used in feedforward control with a
RL-based feedback control law to create a motion controller capable
of solving both low-speed DP tasks and high-speed path following.
TA has also been subject to testing of artificial intelligence based
methods. Luman et al. (2015) solved TA by using genetic algorithms,
and Wu et al. (2016) used bee colony based optimization techniques,
both for energy optimal allocation. Skulstad et al. (2018) showed that
a neural network was able to be trained on translating desired forces
from a PID motion controller into thruster commands rather efficiently.

The work in this paper was motivated by some of the key re-
sults coming from Martinsen et al. (2020), where they combined their
motion controller with an existing implementation of a TA algorithm
from Det Norske Veritas (DNV) on the ReVolt platform DNV (2015).
One of their discussions was based on the observed mismatch between
the forces commanded by their motion controller and the commanded
forces from the TA, coming from that the desired forces from their
motion controller was assumed to be instantaneously achievable, while
in reality the TA involves delays in terms of the actual time the
podded thrusters use to rotate or to change the propellers’ speed.

The TA procedure itself was left out of the scope of their work, but
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Table 1
Notations.
Symbol Explanation

𝝉𝑑 Generalized forces calculated by the motion controller, subscript 𝑑 referring to ‘‘desired’’.
𝝉𝑏 Control forces and moments.
𝜼𝑘 = [𝑥, 𝑦, 𝜓]⊤ Low-frequency position and heading, denoted as pose, represented in a certain reference frame 𝑘.
𝜼̃ Deviation between current pose and a desired pose.
𝐺𝑡 Accumulated future reward for an RL agent from time 𝑡 towards episode end.
𝐺(𝜏) Accumulated rewards for an RL agent following trajectory 𝜏.
𝛾 Discount rate 0 ≤ 𝛾 ≤ 1.
𝐽 (𝜋) Objective function for the RL agent to maximize during learning, following policy 𝜋.
𝜋𝜃𝑎 Policy (representing a control law) of an RL agent, parameterized by the weights 𝜃𝑎 in a neural network.
𝑉𝜃𝑐 Value function of an RL agent, parameterized by the weights 𝜃𝑐 in a neural network.
𝑟̄(𝜃𝑎) Probability ratio between taking an action with updated versus old neural network parameters.
𝐴̂𝑡 The advantage of taking a certain action at time 𝑡 compared to the average return of all available actions.
𝑛𝑘,𝑡 Thrust output from thruster 𝑘 at time 𝑡.
𝛼𝑘,𝑡 Thruster angle from thruster 𝑘 at time 𝑡.
𝛴 Non-negative diagonal, square matrix used for reward shaping based on pose.
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was recommended as future work. This motivated the search for a
control scheme that uses the advantages of a precomputed control law
using DRL which can learn the nonlinear dynamics of the vessel and
the thrusters, hence possibly circumventing modeling inaccuracies and
computational complexity at the same time, while directly optimizing
the thruster commands in order to eliminate body frame errors. The
main objective of this paper is therefore to solve the DP control problem
for a marine surface vessel utilizing the well-proven Proximal Policy
Optimization (PPO) algorithm (Schulman et al., 2017) for training a
DRL-based control scheme which encapsulated both the motion con-
troller and the TA into one entity. Access to the TA method from DNV
was available for testing in this paper, so the performance is evaluated
by comparing with previously implemented control systems on board
the ReVolt platform (using a motion control law including PID and
feedforward control, and DNV’s TA, separately), both in simulation and
sea trial demonstrations.

The main contributions of this paper is as follows:

I An end-to-end learning procedure for DRL-based methods, using
neural networks to encapsulate both motion control and thrust
allocation into one entity for solving DP tasks while at the same
time not suffering from computational complexity.

II Introduction of a novel, multi-variable Gaussian reward function
used to train the Reinforcement Learning agent in eliminating
body-frame errors for marine vessels.

III Presentation of performance in both simulations and in a sea
trial, demonstrating the transfer capability of the DRL model
from simulation to physical systems, having only trained the
model in simulations.

The organization of this paper is as follows: Section 2 gives a
description of the DP task, the vessel model, and DRL, while Section 3
explains the development of the DRL framework and the procedure of
training the neural networks. Section 4 demonstrates the performance
from simulations and the sea trial, and discusses the main findings.
Finally, Section 5 concludes the work. The notation used in this paper
is shown in Table 1.

2. System description

2.1. Dynamic positioning and vessel dynamics

To analyze the vessel’s motions, the geographical reference frame
North-East-Down (NED) and the body-fixed reference frame was used.
NED is chosen as a tangent plane fixed to the surface of the earth,
and positions within the frame is denoted (𝑥𝑛, 𝑦𝑛, 𝑧𝑛), where the 𝑥𝑛-
axis points towards true North (N), the 𝑦𝑛-axis points East (E) and the
𝑛-axis points downwards. The body-fixed reference frame is denoted
𝑥𝑏, 𝑦𝑏, 𝑧𝑏), and as defined in this paper, the positive direction was
3

efined for the 𝑥𝑏-axis to point in the forward direction of the vessel,
the 𝑦𝑏-axis towards starboard, the 𝑧𝑏-axis downwards, with the origin
placed in the Center of Gravity (CG) of the vessel. This implies that the
vessel’s heading 𝜓 was defined to be relative to true North, rotating
clockwise. In addition, a hydrodynamic, earth-fixed frame denoted
(𝑥ℎ, 𝑦ℎ, 𝑧ℎ) was used for modeling the vessel motions subject to wave
oads. When used in DP, the origin of the frame is moved to the desired
oordinate (𝑥𝑑 , 𝑦𝑑 ) and aligned with the desired heading angle 𝜓𝑑 . The
essel is assumed to oscillate with small motions about this frame in
rder to utilize linear theory when modeling the wave-induced motions.

The pose 𝜼 was used as the three-dimensional vector of position and
eading the vessel, either as 𝜼𝑛 in the NED-frame or as 𝜼𝑏 describing
osition and heading relative to the vessel’s body-frame. The body-
rame errors 𝜼̃𝑏 represents the deviation between the vessel’s current
ose and the desired pose, and a DP system should work to eliminate
hese deviations, namely ensuring 𝜼̃𝑏 → 0. By first calculating the
rrors in the NED-frame as the deviation between the current pose and
he desired pose in the NED-frame, 𝜼̃𝑛 = 𝜼𝑛 − 𝜼𝑛𝑑 = [𝑁̃, 𝐸̃, 𝜓̃]⊤, the
ody-frame errors are calculated as shown in Eqs. (1a), (1b) and (1c).
[

𝑥̃
𝑦̃

]

=
[

𝑐𝑜𝑠(𝜓) −𝑠𝑖𝑛(𝜓)
𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜓)

]⊤ [𝑁̃
𝐸̃

]

. (1a)

̃ = 𝜓 − 𝜓𝑑 . (1b)

̃𝑏 = [𝑥̃, 𝑦̃, 𝜓̃]⊤. (1c)

Modeling the vessel motions are usually done in one of two ways.
high-fidelity process plant model (PPM) is used where the physics

re modeled as exact as possible to reality for accurate numerical
imulations and various analysis. On the other hand, a control plant
odel (CPM) is based on a simplified mathematical model of the vessel
ynamics. A CPM is usually used for stability analysis and classic
ontroller design, while this paper based the controller design on using
PPM for training neural networks. Thus, the following briefly explains

he PPM used. For further explanation of the terms, the reader is
eferred to Fossen (2011) and Sørensen (2018). The numeric values of
he system matrices were found in Alfheim and Muggerud (2016).

The vessel motions in a PPM could be simplified into two mod-
ls (Sørensen et al., 1996): low-frequency (LF) wave loads and the
ave-frequency (WF) wave loads. The LF wave loads are primarily

oming from second-order mean and slowly varying forces from waves,
urrent and wind. The simulation model for the LF loads used in this
aper was based on Sørensen (2018), in which the formulation of the
-DOF equations of motion is given in Eq. (2) for a nonlinear LF model
f the vessel,

𝑀 𝝂̇ + 𝐶𝑅𝐵(𝝂)𝝂 + 𝐶𝐴(𝝂𝒓)𝝂𝒓 +𝐷(𝝂𝒓) + 𝐺(𝜼) (2)

= 𝝉𝑤𝑎𝑣𝑒2 + 𝝉𝑤𝑖𝑛𝑑 + 𝝉𝑏
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where 𝝂 ∈ R6 is the body-frame velocities; 𝝂𝑟 ∈ R6 is the relative ve-
locities between the vessel and the ocean current; 𝑀 ∈ R6×6 represents
the system inertia and added mass matrix; 𝐶𝑅𝐵 ∈ R6×6 is the rigid body
Coriolis and centripetal matrix; 𝐶𝐴 ∈ R6×6 is the added mass Coriolis
and centripetal matrix;𝐷(𝝂𝒓) ∈ R6×6 represents the linear and nonlinear
damping; 𝐺(𝜼) ∈ R6×6 is the generalized restoring vector coming from
buoyancy and gravitation; 𝝉𝑤𝑎𝑣𝑒2 ∈ R6 is the second-order wave load;
𝝉𝑤𝑖𝑛𝑑 ∈ R6 is the wind load; 𝝉𝑏 ∈ R6 is the control forces and moments
put on the vessel by the actuators.

The second of the two simplified components are linked to the
wave-frequency (WF) components that is primarily due to first-order
wave loads. Here, the coupled equations of the WF motions in surge,
sway, heave, roll, pitch and yaw are assumed to be linear, and can be
formulated as shown in Eq. (3),

𝑀(𝜔𝑖)𝜼̈𝑅𝑤 +𝐷𝑝(𝜔𝑖)𝜼̇𝑅𝑤 + 𝐺𝜼𝑅𝑤 = 𝝉𝑤𝑎𝑣𝑒1 ,

𝜼̇𝑤 = 𝐽 (𝜼2)𝜼̇𝑅𝑤,
(3)

where 𝑀(𝜔𝑖) ∈ R6×6 represents the system inertia matrix containing the
essel’s mass and moment of inertia in addition to added mass coeffi-
ients that are dependent on the wave frequency 𝜔𝑖; 𝜼𝑅𝑤 ∈ R6 is the WF
otion vector in the hydrodynamics frame; 𝐷𝑝(𝜔𝑖) ∈ R6×6 is the wave

adiation damping matrix; 𝐺 ∈ R6×6 represents the linearized restoring
oefficient matrix coming from gravity and buoyancy affecting heave,
oll and pitch only; 𝝉𝑤𝑎𝑣𝑒1 ∈ R6 is the first order wave excitation vector;
𝑤 ∈ R6 is the WF motion vector in the NED-frame; 𝐽 (𝜼2) ∈ R3×3 is the

rotation matrix relating the WF velocities between the NED-frame and
the hydrodynamic frame as defined in Fossen (2011).

2.2. The ReVolt ship model

The ReVolt ship model was used as a demonstration platform. It
is a 3-meter-long ship model, representing a 1:20 scale model of the
60 meter long ReVolt ship concept (DNV, 2015). A digital twin (or a
PPM) based on a 6DOF model has been developed for the model scaled
vessel by using MATLAB and Simulink, then verified through frequency
domain analysis of a 3D model of the hull and through experiments in
a towing tank. The PPM was used for running simulations in DNV’s
CyberSea simulation environment, which is used to simulate the vessel
and the relevant equipment onboard, such as thrusters, power system,
sensors, position reference systems, and possibly other equipment used
in marine operations relevant for DP. This allows for rapid deployment
and testing of the control system in various sea states. See Nguyen et al.
(2013) for further details.

The real life ship model runs a Tank-720 computer with the Linux
Ubuntu LTS 16.04 operating system on board, powered by two 12 V
batteries. The Robot Operating System (ROS) runs as a means of com-
munication between the sensors (Global Navigation Satellite System,
accelerometer, gyroscope, and compass), software, and the various
hardware, having ROS Kinetic as the current version. The propulsion
consists of two fully rotatable podded two-bladed thrusters in the stern
(referred to as port and starboard thrusters), and a retractable, podded
two-bladed bow thruster. The main characteristics of the vessel and
the thrusters are listed in Table 2, while the thruster placements are
displayed in Fig. 3.

2.3. Reinforcement learning

In RL, it is usually assumed that an agent makes actions in a
certain environment (e.g. a simulated environment with vessel dynam-
ics and environmental loads), and the interactions between the agent
and the environment can be described as a Markov Decision Process
(MDP) (Sutton and Barto, 2017). An MDP consists of a set of states
defining the state space, 𝑠 ∈ ; a set of actions defining the action
space, 𝑎 ∈ ; a probability matrix relating the selection of an action 𝑎
in a certain state 𝑠 and ending up in a new state 𝑠′, 𝑃 ∈ (𝑠′|𝑠, 𝑎); and
4

a scalar reward function that weights the reward of taking action 𝑎 in
Table 2
ReVolt vessel main characteristics.

Characteristic Model Full scale

Length Over All (LOA) 3.00 m 60.0 m
Beam 0.72 m 14.5 m
Depth 0.65 m 13.0 m
Draft 0.25 m 5.0 m
Mass 0.257 t 2056 t
Diameter, Thruster 1 and 2 0.15 m 3.0 m
Diameter, Thruster 3 0.06 m 1.3 m
Max Power, Thruster 1 and 2 96.0 W 3435 kW
Max Power, Thruster 3 16.7 W 600 kW

Fig. 2. A basic schematic of Reinforcement Learning.

state 𝑠, 𝑟 ∈ (𝑠, 𝑎). The RL process with such an MDP is illustrated in
Fig. 2, where an agent decides action 𝑎𝑡 given a state 𝑠𝑡, yielding the
next state 𝑠𝑡+1 and a reward signal 𝑟𝑡 from the environment.

The goal of the RL algorithm (or the agent) is to find an optimal
policy 𝜋∗ which maximizes the rewards over time. Letting the return
of a certain time period following time 𝑡 be denoted 𝐺𝑡, a common
ormulation is the infinite-horizon discounted return as shown in Eq. (4),
here 0 ≤ 𝛾 ≤ 1 is the discount rate, a weighting factor between

ewards accumulated immediately, and reward accumulated in future
ime steps.

𝑡 ∶= 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ =
∞
∑

𝑘=0
𝛾𝑘𝑟𝑡+(𝑘+1), (4)

Since the RL agent does not have a perfect model of the world,
he task is to maximize the expected return. An objective function 𝐽 (𝜋)

representing the expected return to be maximized can be formulated
as in Eq. (5). It expresses the expected return over the trajectory 𝜏 of
state–action pairs, following the action-selection of the agent’s policy 𝜋,
interacting with the environment by observing a state, taking an action,
and getting a reward accumulated as 𝐺(𝜏).

(𝜋) = E
𝜏∼𝜋

[

𝐺(𝜏)
]

(5)

ommonly used in RL algorithms is the notion of a value function,
escribing the estimated value of the return by starting in state 𝑠𝑡 and

following the actions taken by the policy 𝜋 into the future,

𝑉 (𝑠𝑡) ∶= E
𝜏∼𝜋

[𝐺(𝜏)|𝑠0 = 𝑠𝑡]. (6)

arious RL algorithms combine the policy and value function in differ-
nt ways in order to approximate the optimal policy. By the inclusion
f ANNs for approximation, RL algorithms’ expressive power has in-
reased when solving MDPs with continuous state- and action spaces.
here actor-only algorithms only approximate the policy by using an
NN, actor critic algorithms use ANNs for approximating both the
olicy, called the actor, and the value function estimator, called the
ritic. In this work, the actor’s output, being an action when given a
tate 𝑠𝑡, is denoted 𝜋𝜃𝑎 (𝑠𝑡), while the value function estimate from the
ritic is denoted 𝑉𝜃𝑐 (𝑠𝑡).

The algorithm used in this paper is called Proximal Policy Opti-
ization (PPO) and uses the actor critic structure to learn the policy
ith the help of a value function. Through PPO, Schulman et al. (2017)
resented an objective function for training the actor’s ANN in a way
hat was data efficient, robust with respect to hyperparameter changes,
nd easy to implement. It was based on maximizing the expected return
hile limiting the magnitude of the updates to the actor’s ANN by using
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𝑟

Fig. 3. Model ship thruster enumeration and placements.
the idea of trust regions. It did so by using the conservative estimate of
the expected return of a state–action pair (𝑠𝑡, 𝑎𝑡) as shown in Eq. (7).

E𝑡
[

𝐺𝑡
]

≈ E𝑡
[

𝑟̄(𝜃𝑎)𝑡𝐴̂𝑡
]

. (7)

Here, 𝑟̄(𝜃𝑎)𝑡 is the probability ratio between taking an action in a current
state with the new network parameters 𝜃𝑎, and the old ones, 𝜃𝑎,𝑜𝑙𝑑 . Note
that 𝑟̄(𝜃𝑎) ≥ 0 ∀ 𝜃 and 𝑟̄(𝜃𝑎,𝑜𝑙𝑑 )𝑡 = 1.0.

̄(𝜃𝑎)𝑡 =
𝜋𝜃𝑎 (𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑎,𝑜𝑙𝑑 (𝑎𝑡|𝑠𝑡)

. (8)

𝐴̂𝑡 denotes the estimate of the advantage function, representing how
much better it was to select action 𝑎𝑡 in state 𝑠𝑡 compared to the average
return of all actions available in state 𝑠𝑡. Generalized Advantage Esti-
mation (Schulman et al., 2015) was used for estimating the advantage
as shown in Eq. (9), where the critic’s value estimates from Eq. (6) was
used.

𝐴̂𝑡 =
∞
∑

𝑖=0
(𝛾𝜆)𝑖

(

𝑟𝑡 + 𝛾𝑉𝜃𝑐 (𝑠𝑡+1) − 𝑉𝜃𝑐 (𝑠𝑡)
)

. (9)

By limiting the magnitude of 𝑟̄(𝜃𝑎)𝑡 per parameter update, we can
perform improvements on the objective function while being careful
of not making too large parameter updates in 𝜃𝑎-space which might
reduce the performance in the policy’s output space, 𝜋𝜃𝑎 . The proposed
objective function from Schulman et al. (2017) included bounding
the size of 𝑟̄(𝜃𝑎)𝑡 on both sides (called clipping) in order to enforce a
limitation of the probability ratio so that 𝑟̄(𝜃𝑎)𝑡 ∈ [1 − 𝜖, 1 + 𝜖]. By
choosing the objective function to be the minimum of the conventional
estimate from Eq. (7) and the estimate using the clipped ratio gave
their clipped surrogate objective function as shown in Eq. (10), where
the conservative objective function estimate is used unless the value of
the ratio 𝑟̄(𝜃𝑎)𝑡 becomes too large or too small.

𝐽 (𝜃𝑎)𝑡 = min
(

𝑟̄(𝜃𝑎)𝑡𝐴̂𝑡, clip
(

𝑟̄(𝜃𝑎)𝑡, 1 − 𝜖, 1 + 𝜖
)

𝐴̂𝑡
)

. (10)

The critic network performed parameter updates by attempting to
minimize the deviations between its value function estimates versus
the experienced values of being in a state by using the Mean Squared
Error function. Thus, the update rule was as showed in Eq. (11) for
the critic’s weights, 𝜃𝑐 . The actor attempted to maximize the clipped
surrogate objective, and therefore used the update rule for its weights,
𝜃𝑎, as in Eq. (12).

𝜃𝑐,𝑘+1 ← argmin
𝜃𝑐

{

1
𝑇

𝑇
∑

𝑡=1

(

𝑉𝜃𝑐,𝑘 (𝑠𝑡) − 𝐺𝑡
)2

}

, (11)

𝜃𝑎,𝑘+1 ← argmax
𝜃𝑎

{

1
𝑇

𝑇
∑

𝑡=1
𝐽 (𝜃𝑎)𝑡

}

. (12)

The training process following these update rules can be illustrated
as shown in Fig. 4, where the reward from the reward function is
propagated to the critic network, which in turn calculates information
for the actor network update rule (as seen used in Eqs. (9) and (10)).
The following section shows how the input and outputs of the networks
were defined, and how the reward function was shaped in order to
allow the neural networks to learn how to solve the DP task specifically.
5

Fig. 4. Architecture of the training process of an DRL agent using an actor critic
structure.

Fig. 5. Flowchart of the proposed method.

3. Controller design and implementation

The characteristic difference between traditional methods and the
one proposed in this paper is shown in Fig. 5.

Fig. 5 shows how the motion controller and TA were encapsulated
into one entity, represented by a trained ANN (the actor network).
Compared to Fig. 1, no information of the vessel dynamics was given to
the controller. The neural network directly translated the body frame
errors into thruster commands, making it a feedback controller. It
should be noted that when training was finished, only the actor ANN
was used as the control policy; the critic ANN and the reward function
was only used during the training process.

3.1. State and action vector

The state vector used as input to the actor and the critic networks
was developed with the goal of DP in mind, thus adding the body-
frame errors as the first components. Additionally, it was beneficial
for the agent to have access to the body-frame velocities (calculated
from the body-frame errors between the two most recent time steps)
𝑢, 𝑣 and 𝜓̇ , which were added next. In addition, the previous time
step’s thruster commands were added to the state vector in order to
increase the agent’s ability to minimize the penalty put on the size
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Fig. 6. Plots of 𝑅𝑔𝑎𝑢𝑠𝑠 + 𝑅𝐴𝑆 using 𝑐𝑔𝑎𝑢𝑠𝑠 = 2.0, 𝜎𝑑 = 1.0, 𝜎𝜓̃ = 5.0, 𝑐𝐴𝑆 = 0.1 and 𝑐𝑐𝑜𝑛𝑠𝑡 = 0.5.
of the output from the network’s thrust-components. The quantities
in the state vector was extracted straight from the simulator during
training, and from the existing observer and reference filter in ROS
during testing. The state vector is shown in Eq. (13), where 𝑥𝑡, 𝑦𝑡
and 𝜓̃𝑡 are the body-frame position and heading error, 𝑢𝑡, 𝑣𝑡 and ̃̇𝜓𝑡,
represents the surge, sway and yaw velocities respectively (estimated
from position differences between time steps), and 𝑛𝑏,𝑡−1, 𝑛𝑝,𝑡−1 and
𝑛𝑠,𝑡−1 represents the previous time step’s thruster commands for the
bow, port and starboard thruster respectively, all normalized to the
region [−1, 1] to represent a fraction of maximum thrust.

𝒔𝑡 = [𝑥𝑡, 𝑦𝑡, 𝜓̃𝑡, 𝑢𝑡, 𝑣𝑡, ̃̇𝜓𝑡, 𝑛𝑏,𝑡−1, 𝑛𝑝,𝑡−1, 𝑛𝑠,𝑡−1]⊤. (13)

Formulating the action vector 𝒂𝑡, it was found to increase the rate of
learning if letting the policy predict the sines (𝑠(⋅)) and cosines (𝑐(⋅))
of the angles of the port (p) and starboard (s) thrusters instead of the
raw angles directly. Previous experience (Alfheim and Muggerud, 2016;
Øvereng, 2020) had shown that the DP ability of the vessel improved
by setting the bow thruster to a fixed angle of 90◦, so the bow thruster’s
angle was not included in the action vector. The resulting action vector
was as shown in Eq. (14).

𝒂𝑡 = [𝑛𝑏,𝑡, 𝑛𝑝,𝑡, 𝑛𝑠,𝑡, 𝑠(𝛼̂𝑝,𝑡), 𝑐(𝛼̂𝑝,𝑡), 𝑠(𝛼̂𝑠,𝑡), 𝑐(𝛼̂𝑠,𝑡)]⊤. (14)

In Eq. (14), 𝑛𝑏,𝑡, 𝑛𝑝,𝑡, and 𝑛𝑠,𝑡 represents the commanded thrust signal
for the bow, port and starboard thruster respectively, in the region
of [−100%, 100%] of maximum thruster RPM. 𝑠(𝛼̂𝑝∕𝑠,𝑡) and 𝑐(𝛼̂𝑝∕𝑠,𝑡)
represent the outputted sines and cosines of the angles og the port and
starboard thruster, while the final command sent to the thrusters where
calculated as shown in Eq. (15), where atan2 is the four-quadrant
inverse tangent function.

𝛼𝑖,𝑡 = atan2
(

𝑠(𝛼̂𝑖,𝑡), 𝑐(𝛼̂𝑖,𝑡)
)

. (15)

3.2. Reward shaping

The shape of the reward function for rewarding small deviations
from the setpoint in terms of Euclidean distance, 𝑑 =

√

𝑥̃2 + 𝑦̃2,
and heading deviation, 𝜓̃ , was inspired by the shape of the output
layer of the policy network itself, using a multivariate Gaussian func-
tion. Hence, small deviations was rewarded by using the shape of the
multivariate Gaussian as shown in Eqs. (16) and (17), spanning the
6

two-dimensional (𝑑, 𝜓̃)-space, by using a diagonal, square matrix 𝛴.1

𝛴 = diag([𝜎2𝑑 , 𝜎
2
𝜓̃ ]). (16)

𝑅𝑔𝑎𝑢𝑠𝑠 = 𝑐𝑔𝑎𝑢𝑠𝑠 exp
(

−1
2
[

𝑑 𝜓̃
]

𝛴−1
[

𝑑
𝜓̃

])

. (17)

To reduce the sparsity of the function (as only a negligible reward was
given when far away from the setpoint), a function was added by using
a distance measurement 𝜙 in the (𝑑, 𝜓̃)-space for guiding the agent’s
learning process, in addition to a constant as shown in Eq. (18). The
resulting reward function for pose was therefore as shown in Fig. 6.

𝑅AS = max
(

0,
(

1 − 𝑐𝐴𝑆 𝜙
))

+ 𝑐𝑐𝑜𝑛𝑠𝑡. (18)

Since actuator penalties were added later, a constant 𝑐𝑐𝑜𝑛𝑠𝑡 was
also added in order to avoid cases were the agent could find it more
profitable to exert no thrust than to reduce the body-frame errors.

To avoid the agent overshooting the setpoints, penalties on the
velocities was added as a small quadratic penalty, using weighting coef-
ficients 𝑐𝑢, 𝑐𝑣 and 𝑐 ̃̇𝜓 for the surge, sway and yaw velocities respectively.

𝑅𝑣𝑒𝑙 = −
√

𝑐𝑢(𝑢̃)2 + 𝑐𝑣(𝑣̃)2 + 𝑐 ̃̇𝜓 ( ̃̇𝜓)2. (19)

In order to achieve energy efficiency in addition to low wear and tear
on the actuators, small penalties were put on the magnitude of the
commanded thrust |𝑛| (weighted with 𝑐

|𝑛|) in addition to the derivatives
of the commanded thrust 𝑛̇ and angles 𝛼̇ (weighted with 𝑐𝑛̇ and 𝑐𝛼̇ ,
respectively). The resulting actuator penalties are shown in Eq. (20),
where contributions from all three thrusters were summed together.

𝑅𝑎𝑐𝑡 = −
3
∑

𝑖

(

𝑐
|𝑛|,𝑖|𝑛𝑖| + 𝑐𝑛̇,𝑖𝑛̇𝑖 + 𝑐𝛼̇,𝑖𝛼̇𝑖

)

, (20)

These contributions result in the total reward function that was used
for rewarding the agent at each time step during training,

𝑅𝑡𝑜𝑡 = 𝑅𝑔𝑎𝑢𝑠𝑠 + 𝑅𝐴𝑆 + 𝑅𝑣𝑒𝑙 + 𝑅𝑎𝑐𝑡. (21)

1 𝛴 is usually denoted as a covariance matrix, but for purposes in this paper
it was only used for tuning, and did not represent any covariances.
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Fig. 7. Resulting training plots using the PPO algorithm.
3.3. Training procedure

The training was done by randomly initializing the pose of the vessel
in various locations around a setpoint within a radius of 2.5 vessel
lengths and within ±45◦ of the setpoint’s heading. The agent collected
experiences as state–action pairs from each time step by interacting
with the environment. It should be noted that during training, the
DRL method was updated on the same Windows computer that ran
the simulator, hence receiving perfect information about the states di-
rectly from the CyberSea simulation environment. The critic and actor
networks were updated according to Eqs. (11) and (12), respectively,
when experience from 1600 time steps was collected. In total, updates
to the networks were performed with state–action pairs from 2.4 × 106

ime steps, using an implementation of the PPO algorithm based on
penAI’s repository2 with a stochastic actor network for which the
aussian action sampling noise was completely reduced at the end of
raining. The actor critic architecture was set up using independent
NNs for the actor and the critic, both using the state vector 𝒔𝑡 ∈ R9

as input. The networks used three fully connected hidden layers with
80 neurons, and the output of the actor at time step 𝑡 was 𝒂𝑡 ∈ R7,
while the output from the critic was 𝑉𝜃𝑐 (𝑠𝑡) ∈ R1. Both networks used
the leaky ReLU activation functions for nonlinearities, and the ADAM
optimizer for parameter updates.

The average return obtained per episode (having an optimal value
of 1400) and the objective function of the critic (optimal value of 0)
are shown in Fig. 7. The average episodal return fluctuated due to
the random initialization of the vessel’s state between each trajectory
within each episode, albeit improving steadily on average.

4. Results and discussion

To evaluate the performance of the controllers, a four-corner test
was used. The four-corner test was performed by changing setpoints to
different corners of a square, illustrated in Fig. 8 and with coordinates
as listed in Table 3.

During testing, only the actor ANN was used as control policy in the
DRL method, disabling the stochastic noise from OpenAI’s implementa-
tion. Differing from the training procedure, the actor ANN was loaded
into the control system in ROS on a Linux computer, receiving the

2 https://spinningup.openai.com/ [last accessed 06. June 2020].
7

Table 3
Four-corner coordinate specifications.

Setpoint Time [s] North [m] East [m] 𝜓 [deg]

0 0–10 0 0 0
1 10–80 5 0 0
2 80–150 5 −5 0
3 150–190 5 −5 −45
4 190–270 0 −5 −45
5 270–350 0 0 0

Fig. 8. Vessel poses in the four-corner test.

estimated states from the EKF state estimator, which estimated the states
from the sensor inputs coming from either the digital twin from the Cy-
berSea environment during simulations, or the actual model ship during
sea trials. In simulation, the controllers’ robustness against external
disturbances was evaluated during the four-corner test while enabling
current forces. The current was irrotational and non-fluctuating with
velocity 𝜈𝑐 = 0.2 m∕s and direction 𝛽𝑐 = 135◦ (from North-West). No
information about the environmental loads were given to the control
system, and the tests were started when the vessel had been standing
still for 30 s. In the sea trial, negligible environmental loads were
present.

https://spinningup.openai.com/
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Fig. 9. Results of four-corner test during simulations.
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In order to evaluate the effect of an integral controller, an integral
ffect was added to the state vector of the DRL method, augmenting the
ody-frame error pose in the state vector according to 𝜼̂𝑡 = 𝜼𝑡 + 𝜼̂𝑠𝑠,𝑡,

where the discrete integration was calculated according to 𝜼̂𝑠𝑠,𝑡 =
𝜼̂𝑠𝑠,𝑡−1 + 𝛥𝑡𝑘𝜼𝑡. 𝛥𝑡 is the time step, and 𝑘 is a coefficient deciding the
speed of the integral accumulation. A windup guard was also added
to prevent overshoots. During the sea trial, the same four-corner test
coordinates were used. The simulation was performed using the DRL
method with and without integral effect. It was also benchmarked
against two other methods, the first being a motion control law consist-
ing of feedforward + a PID feedback controller developed in Alfheim
and Muggerud (2016), combined with a pseudoinverse-based TA, and
a QP based TA developed in Øvereng (2020). The acronyms for the
methods used in the plots going forward were as shown in Table 4.

To evaluate performance, the Integral of Absolute Error (IAE) metric
was used as a measurement of how accurate the DP system was in terms
of reducing the body-frame error between the current pose and the
8

[

Table 4
List of control methods used, with acronym.

Case Control method Acronym

1 DRL without integral effect RL
2 DRL with integral effect RLI
3 PID motion control + pseudoinverse TA IPI
4 PID motion control + QP TA QP

desired pose. The IAE metric was chosen due to its convenience when
testing with several setpoints in the same scenario due to its indepen-
dence of time, compared to other popular metrics such as the Integral
of Time-weighted Absolute Error (ITAE) metric. The lower the IAE
score, the more accurate a method is evaluated as. The measurement ̃̄𝜂

as used, where the body-frame errors was normalized for making the
AE a dimensionless number, dividing the respective deviations with
5 m, 5 m, 25◦], meaning that a 5 degree deviation was weighted
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Fig. 10. Results of four-corner test during sea trial.
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equally as a 1 m deviation (in model scale).

𝐼𝐴𝐸(𝑡) = ∫

𝑡

0

√

̃̄𝜂(𝜎)⊤ ̃̄𝜂(𝜎) 𝑑𝜎. (22)

he energy usage was calculated by integrating the power for each of
he commanded RPS-signals. The power as a function of a propeller’s
evolution per second (RPS), 𝑛, is given as shown under the integral in
q. (23), where 𝜌 is the sea water density, 𝐷 is the propeller diameter,
nd 𝐾𝑄 is the propeller torque coefficient (found through model scale
ests in Alfheim and Muggerud (2016)). Lower 𝑊 means better fuel
fficiency.

(𝑡) = ∫

𝑡

0
2𝜋𝜌𝐾𝑄𝐷5 sgn(𝑛(𝜎))𝑛(𝜎)3 𝑑𝜎. (23)

ote that both the simulations and sea trials were carried out with the
odel scaled vessel. The results have been scaled to full scale by using

roude number scaling, meaning that it shows results comparable to
9

ther 60 meter vessels of similar size and shape. For details on Froude t
umber scaling in hydrodynamic experiments, the reader is referred
o Islam et al. (2016).

.1. Simulation

The simulation results are displayed in Fig. 9. It was observed that
nly the DRL method with integral effect was able to totally remove the
teady state body-frame error in all setpoints, while the classic methods
isplayed a slight steady state deviation in some setpoints (likely due to
ontrol scheme tuning from previous work on ReVolt). The DRL method
ithout integral effect struggled with removing steady-state errors in

way. The classic methods and the DRL method with integral effect
howed some overshoots of the setpoints, but only the classic methods
howed oscillations (particularly in yaw) before settling on a setpoint.
his leads to questioning the quality of the existing implementation
f the motion control law on ReVolt, which both the IPI and the QP
llocation depended on. It was believed that this came from the fact

hat the motion controller was tuned on board the physical model of
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ReVolt in previous work, thus performing poorly in simulation. The
QP allocation resulted in having the highest values of IAE and energy
usage. The DRL method with integral effect resulted in the lowest
values of both metrics, as it resulted in 15% lower IAE and 38% less
energy usage compared to the QP allocation, while also having 8%
lower IAE and 33% less energy usage compared to the IPI allocation.

4.2. Sea trial

The sea trials were performed with the ReVolt in model scale as
presented in Section 2. First, a measurement was taken of the time
the ANN used to perform a calculation on the computer on board the
model ship. The maximum time between two calculations was 0.015 s,
indicating that using ANN based approaches is not likely to suffer from
computation time.

On the model ship, it was found that the bow thruster experienced
high friction between the propeller and the propeller housing, causing
the propeller to get stuck unless being commanded approximately 50%
thrust. This came at the cost of overshoots and/or oscillations in sway
and yaw due to the differences between the digital twin used in training
and the actual model ship. It was also found that the bow thruster’s
propeller was unsymmetrical, yielding a maximum force when exerting
forces towards starboard (when locked to 90◦) of 2.4 times the size of
he maximum when exerting forces towards port. The DRL method had
owever been trained with symmetrical bow thruster parameters. Due
o time constraints following these experiences, the four-corner test was
erformed with only the DRL method without any integral effect on the
tate vector, and the motion controller with the pseudoinverse based
llocation method as a baseline.

The results from the four-corner test in Fig. 10 showed that the
RL method was able to reach all setpoints in approximately the same

ime in the sea trial as in the simulation, and reached the setpoints
ithout much overshoot except when the vessel was traveling with

way motions (at 80 and 270 s), which was also the case for the IPI
ethod. This was presumably due to the bow thruster issue, being
ore severe for the DRL method which had learned to use the bow

hruster more extensively than classic methods in simulation in order to
e energy efficient. The oscillatory movements were both coming from
he bow thruster issue, in addition to that the stern thrusters had to
ompensate in order to follow the reference signal. While both methods
isplayed overshoots of the setpoint changes, the oscillatory behavior,
specially in heading, caused the resulting IAE value to be larger for the
RL method than for the classic IPI method. The increased use of all

hrusters also made the DRL method significantly less energy effective,
ainly due to the compensating stern thrusters, both compared to

esults from simulation, and to the baseline controller in the sea trial. As
he issue with high friction in the bow thruster indicated that the DRL
ethod was less robust to changes in the dynamics between simulation

nd real life, it also suggests that further training of the neural networks
n board the real vessel would improve performance.

. Conclusion

This paper presented the implementation of the PPO algorithm
or developing a DRL control scheme for applications to low speed
ontrol problems such as DP. The learning process benefited greatly
rom including prediction of sines and cosines of the stern thrusters’
ngles, and by using a multivariate, Gaussian reward function with an
dditional element to combat sparsity.

The test scenarios were considered satisfactory when compared to
raditional methods, where simulations proved that the performance
f the DRL method was both accurate and energy efficient, able to
uppress steady state deviations when combined with an integrated
tate vector. The DRL method also showed positional accuracy when
mploying it to a physical model in a sea trial, deemed excellent
onsidering that the DRL method was trained in simulation with perfect
10
Table 5
Final reward function coefficients.
𝑐𝑔𝑎𝑢𝑠𝑠 𝑐AS 𝑐const 𝜎𝑑
2.0 0.1 0.5 1.0

𝜎𝜓 𝑐𝑢 𝑐𝑣 𝑐 ̃̇𝜓
5.0 0.5 0.5 1.0

𝑐
|𝑛|,𝑏𝑜𝑤 𝑐

|𝑛|,𝑝𝑜𝑟𝑡 𝑐
|𝑛|,𝑠𝑡𝑎𝑟 𝑐𝑛̇,𝑏𝑜𝑤

0.2 0.3 0.3 0.05

𝑐𝑛̇,𝑝𝑜𝑟𝑡 𝑐𝑛̇,𝑠𝑡𝑎𝑟 𝑐𝛼̇,𝑝𝑜𝑟𝑡 𝑐𝛼̇,𝑠𝑡𝑎𝑟
0.05 0.05 0.01 0.01

information about the vessel’s state, zero environmental forces, and
no thruster issues, which was not the case during the sea trial. The
proposed method also solves the issue of computational complexity,
as the computational time of the control scheme’s neural network was
negligible.

The work concludes that DRL’s potential for accurate and energy ef-
ficient control is realizable and proposes that the presented DRL method
is a strong contender when looking for new methods for station-keeping
and low speed maneuvering in a way that encapsulates both the motion
control and thrust allocation. For future work, it is suggested to focus on
providing stability guarantees of DRL systems, and to explore continual
learning as a method for tuning a DRL model from simulations to the
real life model by continuing the training process on real life data
in order to adapt to differences in the system dynamics and actuator
characteristics between simulation and real life.
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