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Abstract—This paper presents a three-stage 
approach for the automated analysis of close-range 
optical images containing ice objects. The proposed 
system is based on an ensemble of deep learning 
models and conditional random field postprocessing. 
The following surface ice formations were considered: 
Icebergs, Deformed ice, Level ice, Broken ice, Ice floes, 
Floe bergs, Floe bits, Pancake ice, and Brash ice. 
Additionally, five non-surface ice categories were 
considered: Sky, Open water, Shore, Underwater ice, 
and Melt ponds. To find input parameters for the 
approach, the performance of 12 different neural 
network architectures was explored and evaluated 
using a 5-fold cross-validation scheme. The best 
performance was achieved using an ensemble of 
models having pyramid pooling layers (PSPNet, PSPDenseNet, DeepLabV3+, and UPerNet) and convolutional random 
field postprocessing with a mean intersection over union score of 0.799, and this outperformed the best single-model 
approach. The results of this study show that when per-class performance was considered, the Sky was the easiest 
class to predict, followed by Deformed ice and Open water. Melt pond was the most challenging class to predict. 
Furthermore, we have extensively explored the strengths and weaknesses of our approach and, in the process, 
discovered the types of scenes that pose a more significant challenge to the underlying neural networks. When 
coupled with optical sensors and AIS, the proposed approach can serve as a supplementary source of large-scale 
‘ground truth’ data for validation of satellite-based sea-ice products. We have provided an implementation of the 
approach here. 

 
Index Terms—Convolutional Neural Networks, Deep Learning, Intelligent Systems, Machine learning, Remote 

sensing, Sea ice, Semantic Segmentation 

 

 

I. 1Introduction 

ccurate and reliable information about sea ice is required 

to promote safe and efficient maritime operations in polar 

regions. Many applications and scientific tasks (e.g., shipping, 

tourism, fishing, ocean-atmospheric heat exchange assessment, 

offshore activities) depend on accurate detection, monitoring, 

and logging of sea ice and icebergs at different spatial and 

temporal scales. Systematic ship-based observations of ice 

conditions and ice data collections are rare, and hence, a 

considerable amount of attention has been devoted to remote 

sensing of sea-ice features and icebergs from satellites and 

airborne platforms. The remote sensing information (e.g., ice 
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thickness, presence of icebergs) is validated against in situ 

observations or similar information products. In the past few 

years, the number of ships equipped with optical, infrared, and 

thermal cameras has increased, and with that, the amount of ice 

information collected from ships has also increased. Optical 

close-range image data from ships provide ice information at 

very fine resolution (10 m - 1000 m); thus, they could be used 

to validate and supplement algorithms utilizing data from other 

remote sensing platforms (satellites and airborne platforms). 

However, optical imagery collected from ships needs to be 

processed before it is useful for scientific studies or maritime 

operations. Currently, this processing requires extensive 

manual intervention, limiting our ability to analyze a large 
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number of ice images. 

This paper aims to develop and validate a fast online, 

shipborne system that can detect ice objects and estimate their 

position from an optical image containing highly complex ice 

scenes to provide ‘ground-truth’ information to support satellite 

observations. 

II. RELEVANT WORKS 

Remote sensing of sea-ice features from satellites has been a 

focus for a long time. Many algorithms have been developed 

for sea-ice classification over the years using remote sensing 

data [1]. Synthetic aperture radar (SAR) data have been used 

for estimation of the degree of sea ice ridging, thickness 

mapping of pancake ice, automatic discrimination of sea ice, 

determination of risk index outcome (RIO) based on 

International Maritime Organization’s (IMO) polar code and 

operational sea ice charting; see, for example, [2]–[6]. 

Algorithms for retrieval of sea ice concentration (SIC) from 

remote sensing data have also been developed [7]. Microwave 

satellite data have been compared with many other types of 

satellite information of higher resolution, such as radar, visible, 

and infrared [8]–[10]. Comparisons of various algorithms used 

to calculate sea-ice parameters are presented in [11]–[14]. 

Considering that each data source has its strengths and 

sources of uncertainties, a complete examination of ice qualities 

can be accomplished by comparing and coordinating data from 

multiple data sources. Many of the aforementioned studies 

validate their outcomes against other forms of data. Prominent 

forms of data used for evaluation include direct in situ 

observations and manual sea-ice charts from other data sources. 

For example, the results from the automated algorithm 

proposed in [2] were compared to digitized ice charts provided 

by the Finnish ice service (FIS). Sea ice charts from the Arctic 

and Antarctic Research Institute (AARI) were used for the 

evaluation of sea ice types, and the corresponding operational 

limits were calculated in [5], [6]. Other examples of 

comparisons between satellite data and sea ice charts can be 

found in [15]–[18]. 

Ship-based observations also play an essential role in the 

validation of various remote sensing-based algorithms. A 

comparison of various algorithms allows for the analysis of 

differences between the result estimates, whereas comparison 

with ship data allows for the analysis of differences between the 

field data and results from the algorithms. It is also worth noting 

that the sea ice charts themselves are prepared based on 

conglomerations of various data sources (e.g., remote sensing 

data, ship-based observations, and direct in situ records). 

Therefore, the comparisons with sea-ice charts also indirectly 

include ship-based observations. Examples of validation 

against ship-based observations are presented in [8], [19]–[27]. 

Ship-based observations are irregular; however, they include 

ice information at a local scale (~10-1000 m). At present, most 

of the available ship-based observations are based upon 

IceWatch/ASSIST (Arctic Ship-Based Sea Ice Standardization) 

[28] and Antarctic Sea Ice Processes and Climate (ASPeCt) 

[29] protocols; see, for example, [23]–[27]. Visual observations 

are conducted from the ship, and the data are recorded manually 

in a structured form. This happens once per hour (or every three 

hours), and hence, ice conditions are determined at one point 

every 10–20 km, depending on the ship’s speed. These 

protocols require manual interpretation of the ice scenes by a 

trained expert; therefore, they are limited by the rapid changes 

in ice conditions between observations, the subjective nature of 

human observers, availability and the biases of inexperienced 

and experienced observers, and problems associated with the 

visibility of ice conditions (e.g., darkness, fog). The 

requirement of manual interpretation also limits the number of 

observations collected per expedition. As an increasing number 

of ships start to operate in polar regions, more optical image 

data become available. Converting all of these raw data into 

useful information would require substantial manual effort, 

even by a trained ice expert. This motivates the development of 

a robust approach capable of analyzing thousands of images for 

the extraction of useful ice object information from close-range 

observations. 

Previous attempts at automated analysis of ice scenes (close-

range images) are either limited to a few freshwater ice features 

to understand/monitor river ice processes [30]–[33] or use 

traditional image processing techniques that are limited to 

broken ice with inclusions of brash, young gray, and frazil/nilas 

ice and specific lighting conditions [34]–[36]. A few recent 

studies have applied deep learning-based methods for the 

analysis of generalized ice scenes, but their focus is on the 

classification of the ice objects present in the optical image [37], 

[38] or segmentation of first-year ice types rather than on 

differentiation between ice objects (deformed ice, level ice, 

icebergs) [39]. Moreover, the challenges related to 

postprocessing ice object localizations with size-sensitive 

definitions, such as brash ice and ice floes, as well as the 

sensitivity of deep learning models to ice image distortions 

(e.g., grayscale and vignette effects), have never been explored 

before and are a subject of this paper. 

Following up on our preliminary image segmentation study 

[40], we proposed a new approach comprising neural network 

ensembles and ConvCRF postprocessing. Our approach takes 

an optical image of an ice scene as the input and uses an 

ensemble of deep learning models combined with an efficient 

convolutional conditional random field-based postprocessing 

technique to automatically locate ten different ice formations 

(sea ice and icebergs) and four other nonice classes. Essentially, 

the proposed approach comprises several deep learning-based 

image segmentation algorithms combined with a 

postprocessing scheme to eliminate noise in the predictions. 

Deep learning (DL)-based image segmentation is not new, and 

several algorithms exist [41]–[45], but their performance on ice 

sea ice images is uncertain. To the best of our knowledge, no 

available approach uses an ensemble of neural networks 

combined with convolutional condition random field 

postprocessing for ice object segmentation. 

To find input parameters for the approach (which modes to 

use in the assembly, ensemble technique, and whether to use 

noise removal), we have compared the capabilities of sea ice 

detection and ice object identification of 12 different neural 

networks. Fivefold cross-validation was also carried out for a 
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better estimation of the networks’ performances. Four different 

model ensemble techniques were explored, and options with 

and without noise removal were studied. Furthermore, we have 

also explored and, to an extent, addressed the ice object 

imbalance in the training dataset for deep-learning models. 

The image segmentation approach presented in this paper can 

be considered the base of a system that could, in the future, be 

mounted on the bridge of ships operating in or passing through 

the ice area and coupled with AIS. Eventually, we hope to 

reduce the requirement of interpretation of ice scenes by trained 

observers and increase the amount of structured ice data 

available for verification and supplementation of algorithms 

that use remote sensing data. Algorithm-based analysis of ice 

scenes will also ensure a more objective quantification of the 

sea ice parameters that could otherwise be subjective due to the 

difference in human experiences and opinions. 

The paper is structured as follows. Section III introduces the 

dataset that was used to validate and evaluate the approach. 

Section IV presents the approach details and its input 

parameters, and Section V assesses the robustness of the 

approach through experimentation. The final sections present 

implications and conclusions. 

 

III. DATASET 

A new dataset had to be created for this study. The following 

sections briefly describe image collection, preprocessing, and 

the annotation process. 

A. Collection 

Optical images (3 channel RGB, JPEG images) of close-

range ice scenes were manually collected from Google, 

Yandex, and Baidu search engines (338 unique images) to 

ensure that the images were physically plausible. Additionally, 

we obtained 37 unique images from the data gathered during 

the research cruise to the Fram Strait on the RV Lance in March 

2012. Most of the collected scenes were from the Arctic region, 

and the remaining few were from the Antarctic region. The 

collected images represent images taken by different optical 

shipboard cameras from different angles and distances to ice 

objects in different weather and lighting conditions and were 

composed of sea ice, open water, and sky. Only a few images 

contained humans and animals (very small in scale compared 

to other features). 

B. Manual Annotation 

A total of 14 classes were considered for labeling. These 

included nine surface ice formations (Iceberg, Floeberg, 

Floebit, Level ice, Deformed ice, Broken ice, Ice floe, Pancake 

ice, and Brash ice; as defined in WMO’s sea-ice nomenclature 

[46]) and five other nonice classes (Underwater ice, Melt pond, 

Open water, Sky, and Shore). The definitions of these classes 

are presented in TABLE I. Even though a few images contained 

small (in scale) humans and animals, they were ignored, and 

only the classes mentioned above were labeled. We used open-

source image annotation software (label tool [47]) to create 

ground-truth labels by manually outlining the ice features. The 

images and their labels were verified by one ice expert, who 

ensured that the ice scenes were real-life-like and that ice 

objects were labeled correctly. For more details on the 

challenges and rules related to the labeling of images, we refer 

the reader to Table A.1 of our preliminary study [40]. 

C. Preprocessing 

To ensure that all the images have a consistent resolution, we 

resized the image’s shorter dimension (either height or width) 

to 512 pixels while maintaining the aspect ratio. Fig. 1 presents 

the resolutions for the original and resized images. 

Fig. 2 presents the number of images and the percentage of 

total pixels for every class in the original and balanced datasets. 

It is evident from Fig. 2 that the original dataset is very 

imbalanced; e.g., there are 333 images containing Sky, whereas 

there are only 133 images containing Level ice, and only 33 

images containing Melt ponds. The neural network trained 

directly on this dataset was biased towards the classes with a 

higher number of samples in the preliminary study [40]. 

Therefore, we oversampled the images containing minority 

classes (Floeberg, Floebit, Melt pond, and Pancake ice). The 

oversampling consisted of splitting the images into multiple 

parts using a sliding window of 512x512 pixels with a 

maximum overlap of 256 pixels between adjacent splits. This 

oversampled dataset was relatively better balanced than the 

original dataset and contained 458 images (see Fig. 2). 

Before passing the images to the neural networks, we 

cropped the images that were larger than 512x512 pixels (to 

512x512 pixels). We also applied channelwise normalization to 

the RGB values of each of the images. The statistics for 

normalization for each of the red (R), green (G), and blue (B) 

channels are presented in TABLE II. Training set images were 

cropped randomly, whereas the validation set images were 

cropped at the center to ensure that the comparison of validation 

scores between neural networks was fair. Other augmentations, 

such as small rotations, horizontal flips, contrast, and brightness 

adjustments, and perspective warping, were also applied 

randomly to the training set’s images. 

D. Dataset Splits 

Considering the dataset’s small size relative to other 

segmentation datasets [48]–[50], we chose a K-fold cross-

validation scheme to evaluate the model performance. K was 

chosen as five because it achieves a balance between the 

number of images in the validation sets and the number of folds 

for cross-validation. The dataset was divided into six parts 

(folds) of nearly equal size (~77 images each). The first five 

folds were used for 5-fold cross-validation, and the sixth fold 

was set aside as a test set. For each of the validation folds (~77 

images), there were ~300 training images. 

It is essential to ensure that the distribution of images per 

class is consistent across the six folds to correctly estimate the 

model’s performance. To ensure this consistency, we used the 

‘IterativeStratification’ module from the scikit-multilearn 

library (version 0.1.0) [51], which is based upon algorithms 

presented in [52], [53]. Fig. 3 presents the image and pixel 

distributions per class. Here, the consistency in the number of 

images per class across the six folds is noteworthy. 

Three variations of the test set were used to evaluate the 

generalization ability of the deep learning models. Fig. 4 

presents sample images from the test set: 

a) Clear images: Normal daylight condition (Fig. 4 (a)), 
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b) Grayscale images: To test the deep learning model’s 

dependency on ice feature colors (Fig. 4 (b)). 

c) Images with vignette effect: Simulating a searchlight 

effect at night, with only a portion of the image visible 

(Fig. 4 (c)). 

IV. METHODS 

In this section, we first provide an overview of the proposed 

segmentation approach, which aggregates the outputs from four 

neural networks and applies postprocessing to obtain the final 

result. Then, we present the three main parts of the proposed 

approach: the neural network, the ensembling module, and the 

postprocessing module. 

A. Overview 

We designed a novel approach for ice object segmentation, 

as shown in Fig. 5. One branch passes the three-channel 

shipboard optical image to PSPNet, PSPDenseNet, 

DeepLabV3+, and UPerNet to extract preliminary outputs from 

the neural networks and then combines these outputs in an 

ensemble module. Another branch consists of a ConvCRF 

postprocessing module that takes the ensemble module’s output 

and the image as the input to generate a probability map. The 

probability map passes through the ‘argmax’ layer to generate 

the pixel-level segmentation mask. 

B. Neural Networks 

The neural network architectures used for semantic 

segmentations have two main parts: first, the feature extractor 

or the backbone, which takes an image as input and 

progressively reduces the feature space’s dimension, producing 

a highly nonlinear representation of the image; second, the 

upsampling part, also known as a decoder in some networks, 

which utilizes features from the feature extractor and outputs a 

segmentation mask. 

To select models to be used in the proposed approach, we 

evaluated 12 neural network architectures (models), including 

PSPNet, PSPDenseNet, DeepLabV3+, UPerNet, DUC HDC, 

FCN, GCN, ENet, UNet, UResNet (UNet with ResNet 

backbone), SegNet, SegResNet and [45], [54]–[61]. Based on 

the single model performance, we settled on PSPNet, 

PSPDenseNet, DeepLabV3+, and UPerNet for ensembling 

(Fig. 5).  PSPNet [54] uses a pyramid pooling module to 

aggregate multiscale context information in different 

subregions to achieve a superior result compared to simple 

encoder-decoder-based networks such as FCN and UNet. 

PSPDenseNet is based on PSPNet, but the ResNet feature 

extractor was replaced by a DenseNet feature extractor. 

DeepLabV3+ [45] combines an encoder-decoder structure with 

a spatial pyramid pooling module to better capture multiscale 

contextual information and produce sharper object boundaries 

by gradually recovering the spatial information. UPerNet was 

developed for unified perceptual parsing [55], and it integrates 

a feature pyramid network (FPN) [62] with a pyramid pooling 

module [54]. In all models except UNet, ENet, and SegNet, the 

encoder is either a conventional ResNet or DesnseNet 

architecture [43], [63]. Details of the other architectures can be 

found in the relevant literature [45], [54]–[61]. 

The neural network was trained in two stages. In the first 

stage, the pretrained backbone (on the ImageNet dataset [64]) 

was frozen, and only the upsampling part was trained. Next, the 

entire network was unfrozen and fine-tuned. The non-

pretrained backbones (in the case of UNet, ENet, and SegNet) 

also remained unfrozen in the first training stage. We used the 

Adam optimizer [65] and the one-cycle policy [66] for both 

training stages. The training parameters were chosen after some 

preliminary investigations (presented in TABLE III). 

Implementation of the training loop was derived from Fastai 

v1 and PyTorch 1.3.1 [67], [68]. We used the implementations 

of the neural network models from [69], which were 

implemented in PyTorch 1.3.1 [68]. 

C. Ensembling module 

Although the quantitative performances of the four neural 

network architectures mentioned above are close to each other, 

a closer, qualitative look at the predictions revealed that each of 

them has its strengths and weaknesses. For example, in the 

same image, one ice object was predicted well by one of the 

networks, whereas another ice object was predicted well by 

another network. Furthermore, an intercomparison of per-class 

IOU between the models clarifies that none of the four models 

(PSPNet, PSPDenseNet, DeepLabV3+, UPerNet) was best at 

all the classes. This observation led to our hypothesis that for 

ice object segmentation, an ensemble of neural networks could 

perform better than any single neural network. In our 

experiments, we found ample empirical evidence to support the 

above hypothesis. TABLE IV provides the algorithm based on 

which the ensemble module works. 

Although we have used the ‘Mean’ function to combine the 

model outputs, there can be several other ways to combine the 

neural network architectures; we also tried: 

• Product ensemble – Product of the model outputs 

• Max ensemble – Maximum of the model outputs 

Each of these methods was implemented for both non-

postprocessed and postprocessed model outputs. In the case of 

an ensemble of postprocessed output, Output1, Output2, 

Output3, and Output4 would be passed on to a ConvCRF 

module before the combination step (*). The mean, product, 

and max ensemble can be put into one category (Category I). 

Another way of combining the neural network output is 

through: 

• Majority voting – Voting between all the model 

outputs to select one particular class, ties broken by 

the probability of predictions (Category II). 

In this case, the model postprocessed/non-postprocessed 

model outputs would be passed on to the Argmax function to 

arrive at a segmentation mask, and then, these segmentation 

masks would be combined to obtain the final segmentation 

masks. Postprocessing cannot be applied to a majority voted 

result since it returns a segmentation mask of shape 512x512x1, 

and ConvCRF postprocessing requires probabilities as the input 

(shape: 512x512x14). Fig. 6 presents the schematics of the two 

categories of ensemble modules. 

D.  Postprocessing 

Convolutional neural networks are powerful feature 

extractors; however, they do not explicitly account for the 

conditional dependence of pixels on each other. This introduces 

noise in the neural network outputs. Fig. 7 (a) presents the 

model outputs. The model outputs contain small, random 
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patches of misclassified pixels. One way of removing the noise 

in the predictions is by applying fully connected conditional 

random fields (FullCRFs) [70] on top of neural network 

prediction [71], [72]. However, the FullCRFs take a long time 

for inference. Therefore, we used a faster convolutional 

conditional random field (ConvCRF) [73] with default 

parameters as the postprocessing scheme. See Fig. 7 (b) for a 

postprocessed example. A quantitative analysis of 

postprocessed and non-postprocessed results is presented in the 

following section. 

All the calculations in this study were performed on a virtual 

machine equipped with an Nvidia Tesla V100 GPU, Intel(R) 

Xeon(R) Gold 6148 CPU (2.40 GHz), and 32 GB of RAM. The 

programming language was Python (version 3.7.3). 

V. EXPERIMENTS 

In this section, we first describe the details of the training and 

evaluation process for the neural networks, and then a series of 

ablation experiments are described. All the experiments were 

carried out on the dataset created in section III. 

A. Evaluation 

We used a 5-fold cross-validation scheme to evaluate the 

performances of the neural networks. To evaluate the model on 

each of the five validation sets, the neural network was trained 

on the remaining four validation sets. 

An objective comparison of the segmentation models 

requires quantitative performance indicators. To that end, we 

considered Mean Intersection Over Union (Mean IOU), 

Accuracy, and F1 score as the performance metrics. 

Additionally, we explored the per-class performance of the 

models using per-class IOU (IOUc). The metrics are defined as: 

 

𝑀𝑒𝑎𝑛 𝐼𝑂𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (1) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (3) 

 

𝐼𝑂𝑈𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑃𝑐+𝐹𝑁𝑐
 (4) 

 

The symbols (TP, TN, FP, FN, TPc, TNc, FPc, FNc) have 

been defined in TABLE V. 

The accuracy measure is biased towards classes that are more 

frequent and cover a large image area (i.e., have a high overall 

count of samples). Specifically, in sea-ice segmentation, classes 

such as Sky, Ice floe, Deformed ice, Level ice, Brash ice, and 

Open water, which have high overall sample counts, may sway 

the accuracy score, which can be problematic. Mean IOU and 

F1 score account for this class bias to a greater degree, and 

hence, a comparison involving them would provide a better 

picture than a comparison involving only accuracy. However, 

we could treat only one metric as a primary metric for decisions 

requiring strict objectivity (such as which model is the best). 

For this purpose, we have chosen the mean IOU as the primary 

performance metric since it is standard in the image 

segmentation literature [45], [74]–[77]. 

B. Ablation studies and discussions 

1) Baseline 

To establish a baseline, we cross-validated all 12 neural 

networks mentioned in section IV.B (Neural networks under the 

Methods chapter), with and without postprocessing. Fig. 8 

presents the performance metrics for the 5-fold cross-validation 

of the deep learning models. Here, we can see that the PSPNet 

+ postprocessing approach outperforms all other pipelines with 

a mean IOU score of 0.773. If we look at the top 4 single-model 

pipelines (i.e., pipelines with models PSPNet, PSPDenseNet, 

DeepLabV3+, UperNet), two points are noteworthy. First, all 

of them perform very well, with mean IOU and accuracy close 

to 0.8 and F1 scores close to 0.6. Second, their performance is 

consistent across the five validation folds, with a 2-3% 

performance increase due to postprocessing. In contrast, the rest 

of the models’ performances vary too much across validation 

folds, indicating a lack of generalization. 

Fig. 9 (a) presents the per-class IOU for the top four single-

model pipelines. All the pipelines perform well on the classes 

from the left (Sky – Pancake ice, Iceberg), decently on Broken 

ice, Underwater ice, and Shore, and poorly on the last three 

classes on the right (Floeberg, Floebit, and melt pond). The per-

class IOU for these three classes is very low, i.e., in the range 

of 0.3-0.4 for Floebit and Floeberg, whereas it was nearly 0 for 

Melt ponds. When analyzing the variation in performances over 

five validation folds, it is evident that most of the classes on the 

left of the plot (Sky - Underwater Ice) are more consistent, 

whereas others have relatively varied performances. This 

performance disparity is especially prominent for Floebit and 

Floeberg, for which the per-class IOU ranges from 0% to above 

50%, depending upon the validation set. Such behavior could 

result from the combination of limited validation images for 

these two classes and a bias towards images with particular 

cooccurrence of ice features (e.g., images containing only level 

ice and deformed ice, images containing only Pancake ice and 

open water). We found the per-class IOU for other models 

(besides the top four) to be very mediocre. Furthermore, the 

performances of ENet and SegNet were very unusual. These 

two models could predict a few classes, such as sky and 

deformed ice, quite well, but their performances on other 

classes were nonexistent. 

Although a qualitative comparison of the neural network 

architectures was not the primary focus of the study, we did 

look at the specific architectures of the neural networks, based 

on which we found that the networks with pyramid pooling 

modules or some modified versions of it (PSPNet, 

PSPDenseNet, DeepLabV3+, and UperNet) seem to perform 

better than other network architectures. To better understand the 

pyramid pooling module’s effect on the model performance, we 

trained and cross-validated (over 5 folds) a fully convolutional 

neural network with a ResNet 152 (FCResNet) backbone 

without any pyramid pooling modules. A similar FCN with the 

ResNet50 backbone was used as a baseline in paper [1], 

proposing PSPNet. We found that the FCResNet-based 

segmentation approach had nearly the same mean IOU value as 

that of UResNet, which does not have any pyramid pooling 

module (mean IOU values of 0.685 and 0.675, respectively), 

whereas PSPNet (with the pyramid pooling module) 

outperformed both FCResNet and UResNet with a mean IOU 
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value of 0.774. 

Based on the above results, PSPNet, PSPDenseNet, 

DeepLabV3+, and UPerNet were selected for the ensembling 

approach (shown in Fig. 5), and the PSPNet + ConvCRF 

postprocessing approach was selected as the baseline. 
2) Ablation for Ensemble approaches 

To evaluate the performance of the proposed approach, we 

conducted experiments with different output aggregation 

methods. Fig. 10 presents the performance metrics from the 5-

fold cross-validation for eight different ensembles and the top 

four single-model approaches. As expected, most (5/8) of the 

ensembles perform better than the baseline. The mean ensemble 

shows an increase of ~3% in both the mean IOU and accuracy 

scores compared to the baseline. The top 3 ensembles (Product, 

Mean, and ConvCRF-Mean), combined with postprocessing, 

have near-identical performance (mean IOU scores of 0.799, 

0.797, and 0.794, respectively). However, the overall 

performance of the mean ensemble is better than that of the 

product ensemble. Even though the product ensemble has a 

slightly higher (0.2%) mean IOU score, the accuracy and F1 

score of the mean ensemble are higher by over 1% each. 

The case for using the mean ensemble over the product 

ensemble becomes even more convincing if we consider the 

per-class IOU (Fig. 11 (a)). The mean ensemble improves over 

the per-class IOU of the baseline for 12/14 classes, whereas the 

product ensemble improves for 8/14 classes. The most notable 

increase in per-class IOU was for Pancake ice and Shore (~6% 

and ~4%, respectively). Unfortunately, we did not find an 

increase in the IOU of Melt ponds. Keeping in mind the mean 

ensemble’s better per-class performance, we used it for 

evaluation on the test set. 
3) Ablation for input image distortion 

To study the effectiveness of the proposed approach on input 

image types that it has never seen before, we evaluated it using 

the three test sets created in section III.D. Fig. 12 presents the 

performance of the proposed approach (mean ensemble of four 

models + ConvCRF) on various test sets and the average values 

for the 5-fold cross-validation. Our approach yields equally 

good results on the clear test set compared to the 5-fold cross-

validation (mean IOU 0.793, F1 score 0.59, and mean IOU 

0.797, F1 score 0.57, respectively). When comparing the effect 

of distortions of the input images, grayscale images seem to 

have only a minor effect on the performance. In contrast, 

images with a vignette effect led to a more significant decline 

in performance, especially when considering accuracy and F1 

scores. Few qualitative results from the test set are presented in 

Fig. 15 in the appendix. 

Fig. 13 presents the per-class performance of the proposed 

approach on various test sets and the average values for the 5-

fold cross-validation. The performance on the clear test set 

matches the performance from the cross-validation. The only 

exception to this is Floeberg, for which the per-class IOU is zero 

for all the test sets. A look at the test set’s qualitative results 

revealed that the model predicted Floeberg as Deformed ice. 

We suspect that this is due to the similarity in the appearances 

of Floeberg and Deformed ice. 

Based on the empirical evidence from the experiment 

discussed above, we found the proposed approach to be resilient 

to distortions (grayscale and vignette) in the input images. 

Grayscale image distortion only significantly affects 

underwater ice (decline in per-class IOU by over 50%). This 

response indicates that the differentiating feature for 

underwater ice was its specific color. In the case of images with 

a vignette effect, the per-class IOUs are very low for three 

classes: Broken Ice, Shore, and Floebit. However, this is 

expected, as the visibility of pixels belonging to these classes is 

severely affected since they tend to lie farther away from the 

point of image capture, making them barely visible. 

Even though we did not train our models on distorted input 

images (grayscale images and images with vignette effects, 

Section III.D), there was only a minor performance 

deterioration for the test sets with image distortion. This shows 

that neural networks can generalize incredibly well. 

Specifically, the grayscale test set’s performance indicates that 

when barring underwater ice, the proposed approach was 

indifferent to the colors of ice objects. Furthermore, the 

performance on the test set with the vignette effect, which 

realistically mimics observational conditions during night time, 

suggests that our approach could be extended to the 

segmentation of optical imagery captured during polar nights, 

provided that ISO does not change. 
4) Difficult classes 

All considered approaches struggled for the minority classes 

Floeberg, Floebit, and Melt pond. Floebit and Floeberg have a 

per-class IOU of ~40%, whereas Melt ponds were never 

predicted right. The proposed ensemble approach also did not 

improve the per-class IOU of these classes. One of the reasons 

for the poor performance for these classes could be their lack of 

representation in the dataset compared to other classes (refer to 

Fig. 9 (c), Fig. 11 (c), and Fig. 13 (c) for details). 

TABLE VI presents the confusion statistics for the 

challenging classes. It is evident that in most cases (7/8), a large 

number of false negatives of Floeberg were false positives of 

Deformed ice. This is understandable, as floebergs have 

elements of deformed ice, making them both similar in 

appearance. Floebits have a better overall performance but a 

more inconsistent pattern in regard to confusion. Floebits are 

predicted to be icebergs, brash ice, and, most prominently, ice 

floes, based on whichever feature is closest in appearance. 

We argue that melt ponds are inherently difficult for a deep 

learning model, given our setup. Investigation of the qualitative 

results revealed that in cases where melt ponds’ appearance is 

bluish, it is mistaken as underwater ice; in other cases, it is 

either classified as open water or as a part of the ice floe. One 

reason for this could be that the melt ponds were too small for 

the neural network to be considered important, and it ended up 

considering it as a noisy artifact in the image. However, an 

investigation into the trend of per-class IOU vs. the fraction of 

images taken by the corresponding class revealed that classes 

such as Shore, Brash ice, and Broken ice have decent 

performance even for images in which they take up only a small 

portion of the image. These findings cast doubt upon the 

hypothesis that performance on melt ponds suffers only due to 

the lower percentage of images it captures. Another reason for 

the lower performance on melt ponds could be that since melt 

ponds are underrepresented in the dataset (accounting for 

approximately 0.2% of the total pixels), the deep-learning 

model does not learn enough to be able to detect and segment 

melt ponds accurately. We looked at two other commonly used 

image segmentation datasets, Cityscapes [78] and CamVid 
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[48], [79]. In both datasets, the category ‘human’ was the lowest 

represented category (only amounting to 1.3% and 1.2% of the 

total pixels, respectively). However, this is still five times 

higher than the percentage of pixels belonging to melt ponds in 

our dataset (0.2%). 

Based on the findings described above, we think that there 

are two feasible solutions that future research can look at: first, 

increasing the number of images containing melt ponds in the 

dataset and using a specialized attention-based module in the 

neural network architectures [80]–[82]. 
5) Ablation for ConvCRF postprocessing 

The effect of using ConvCRF postprocessing in the 

conducted experiments was studied, and the results showed that 

ConvCRF postprocessing similarly affected all our 

experiments. It is clear from the results that the effect of 

postprocessing on per-class IOU is low (but positive) for most 

of the classes, except for Shore, Floeberg, and Floebit. There is 

a loss of ~5-6% in per-class IOU for Shore and a gain of ~2-3% 

for Floeberg and Floebit (Refer to Fig. 9 (b), Fig. 11 (b), and 

Fig. 13 (b)). A qualitative examination of the model results 

showed that postprocessing serves its intended purpose of 

removing the unwanted noise from the predictions. 

Notwithstanding, it negatively affects classes that are present as 

small blobs in the image; specifically, brash ice present between 

two bordering ice floes, which ends up being classified as a part 

of one of the ice floes. Another such case involves the shore 

visible near the horizon; the postprocessing leads to its 

classification as a part of sky or level ice. However, neither of 

these cases is hugely concerning. The shore near the horizon is 

too far from the inspection point to be relevant, and the 

classification of a small blob of brash ice as a part of ice floe 

gives us a conservative estimate of the floe size. 
6) Ablation for ice and nonice objects 

All 14 classes that were considered in this study could be 

divided into two major categories: ice objects (icebergs, 

deformed ice, level ice, broken ice, ice floes, floe bergs, floe 

bits, pancake ice, underwater ice, and brash ice) and additional 

nonice objects (sky, open water, shore, and melt ponds). The 

category wise mean IOU values of the proposed approach are 

presented in TABLE VII. The results showed that the difference 

between the average performance on ice objects and nonice 

objects ranged between 4% and 10%. The highest difference in 

performance was for the grayscale test set, for which the 

proposed approach performed ~10% better on nonice objects 

than on ice objects. 

Although classes from both ice and nonice categories are part 

of an ice scene, they might have different meanings from an 

application point of view (i.e., evaluation of a satellite product 

that differentiates between ice and no ice, ships traveling in the 

Norwegian and the Barents Sea, which generally try to avoid all 

types of ice objects). Therefore, to evaluate the model’s 

capability to differentiate between ice vs. nonice classes, we 

calculated the accuracy, mean IOU, and F1 scores while 

assuming that the proposed approach only needed to segment 

ice and nonice objects. These values are presented in TABLE 

VIII. The proposed approach was good at differentiating 

between ice and nonice objects in all test cases except for test 

images with the Vignette effect, for which the performance was 

relatively ~10 – 20% lower. Overall, the proposed approach 

performed even better on ice object vs. nonice object 

segmentation compared to segmentation of 14 classes by 

(~13% higher mean IOU for ice object vs. nonice object 

segmentation). 
7) Time complexity analysis 

The segmentation approach needs to be scalable, i.e., it 

should handle a large number of images efficiently. To that end, 

we analyzed the time required for our ensemble-based approach 

compared to the single neural network approach that we used 

as our baseline. In our experimental setup, the proposed 

ensemble approach takes 0.10 seconds to process an image end-

to-end, whereas our baseline, PSPNet + ConvCRF 

postprocessing, takes 0.03 seconds to process the same image. 
8) Dataset and Labeling consistency 

To roughly evaluate human bias in labeling, we conducted a 

small experiment in which we asked five human labellers 

without prior ice experience to label one image. They were all 

provided with the same labeling software and the same set of 

guidelines. We then compared their labels to an expert verified 

label from the dataset. Fig. 14 presents all six labels (1 from the 

dataset + 5 from five different inexperienced labelers). We 

found a high overlap (avg. ~93%) between the label from the 

dataset and the labels from other labellers. From Fig. 14, it can 

be seen that the highest disagreement among the labellers was 

related to the boundaries of open water, underwater ice, and 

brash ice. Such disagreement is expected because (a) 

distinguishing between open water and brash ice is difficult, 

especially in areas with relatively low brash ice concentrations. 

(b) Sometimes, it is also not easy to differentiate the ice object’s 

reflection (in this case, a floeberg) from underwater ice. 

Moreover, in this particular image, since the water is not very 

clear, it was hard to demarcate the reflection of the Floeberg 

and its underwater part. 

The comparison between labels was limited to only one 

image due to its resource intensiveness. We do expect a greater 

disagreement among human labellers for a different ice scene. 

The bias in human labeling of ice objects (on close-range 

images) exists in the ice classification problem and has been 

explored in [83], [84]. The authors [83] discovered that human 

labellers suffer from bias towards classes that occur more 

frequently. Humans appear to also be biased when estimating 

ice concentrations in satellite images [85]. In the future, we plan 

to conduct visual cognition experiments with closer-range ice 

images to obtain a deeper understanding of human bias in the 

visual cognition of ice objects for comparison with computer 

algorithms. 

Although we ensured that the image collection conditions 

were not extremely different across all the images in the dataset, 

there may be some noise because of the different cameras, 

angles, distances to the ice objects, etc. However, it could be 

argued that this noise made the training dataset more difficult 

than that expected in the real life, where the model will 

encounter images captured from a single camera at a fixed 

camera angle. Future direction of work should include measures 

to understand the impact of collection conditions on the model 

performance, as well as the recalibration of the models from this 

study for an application with a fixed camera.  

VI. CONCLUSION 

This paper’s primary objective has been to develop a deep 
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learning-based approach that can successfully segment close-

range optical ice scenes containing 14 classes (10 ice features + 

4 additional classes) in view of its applicability as a source of 

validation data for satellite or airborne platforms. Optical 

images acquired during the research cruise to the Fram Strait on 

the RV Lance in 2012 and from various other online sources 

were subjected to state-of-the-art computer vision techniques. 

The segmentation results were extensively evaluated with 

respect to hand-labeled ‘ground truths,’ considering both 

overall and per-class performance. From the results of this 

study, we draw the following conclusions: 

• The proposed approach performed very well on a 

significant number of the classes (Sky, Ice floe, 

Deformed ice, Level ice, Brash ice, Open water, and 

Pancake ice) in our dataset, decently on others (Broken 

ice, Underwater ice, Iceberg, and Shore), and poorly on 

three classes (Floeberg, Floebit, and Melt pond). 

• The proposed ensemble approach consisting of PSPNet, 

PSPDenseNet, DeepLabV3+, and UPerNet + ConvCRF 

postprocessing significantly outperforms the PSPNet + 

ConvCRF baseline with gains (~2-3%, on average) in 

the per-class IOU compared to the best model for most 

of the classes (12 out of 14 classes). 

• Postprocessed results using ConvCRF are quantitatively 

better than non-postprocessed results (~3% gain in mean 

IOU, on average), and overall, the mean ensemble + 

postprocessing emerges as the best approach with a 

mean IOU score of 0.799. 

VII. IMPLICATIONS 

The approach developed in this paper aims to supplement ice 

experts in the analysis of collected images from ships by 

providing segmentations of optical ice scenes. More work needs 

to be done to make this automated image segmentation and 

analysis fully operational for remote sensing applications—

especially the collection and labeling of more images 

containing Floeberg, Floebit, and Melt ponds and introducing 

different labels (first-year ice, second-year ice, multiyear ice). 

In situ verification, validation, and possible corrections to ice 

segmentation would go a long way in providing more training 

data and improving the proposed approach. 

The proposed system can provide continuous ice 

observations at a high temporal resolution, which can further 

validate/supplement satellite-derived sea ice products. Other 

example applications of the presented system include ice-type 

classification, calculation of partial and total concentrations, 

ice-feature size assessment using a pre-calibrated mesh as 

presented in Fig. 16 (Appendix), and automated conversion 

between optical ice scene and egg code for maritime 

applications. In conclusion, deep learning-based ice scene 

segmentation and analysis techniques applied to imagery 

acquired from ships operating in ice-infested waters represent 

an additional data source to support satellite-derived sea ice 

products. 
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TABLE I 
CLASSES AND THEIR DESCRIPTIONS 

No. Class Description 

1 Broken ice Predominantly flat ice cover broken by gravity 

waves or due to melting decay. 
2 Brash ice Accumulations of floating ice made up of 

fragments not more than 2 m across, the 

wreckage of other forms of ice. 

3 Deformed ice A general term for ice that has been squeezed 

together and, in places, forced upwards and 

downwards). Subdivisions are rafted ice, 
ridged ice, and hummocked ice. 

4 Floeberg A large piece of sea ice composed of a 

hummock, or a group of hummocks frozen 
together and separated from any ice 

surroundings. It typically protrudes up to 5 m 

above sea level. 
5 Floebit A relatively small piece of sea ice, typically not 

more than 10 m across, composed of a 

hummock (or more than one hummock) or part 
of a ridge (or more than one ridge) frozen 

together and separated from any surroundings. 

It typically protrudes up to 2 m above sea level. 
5 Iceberg A piece of glacier origin floating at sea. 

6 Ice floe Any contiguous piece of sea ice. 

7 Level ice Sea ice that has not been affected by 

deformation. 

8 Pancake ice Predominantly circular pieces of ice from 30 

cm - 3 m in diameter, and up to approximately 
10 cm in thickness, with raised rims due to the 

pieces striking against one another. 

9 Open water A large area of freely navigable water in which 
sea-ice is present in concentrations less than 

1/10. 

10 Melt ponds Pools of water that formed on top of the sea-ice 
in the warmer months of spring and summer. 

11 Underwater ice The submerged but visible part of any sea-ice 

object. 
12 Broken ice Predominantly flat ice cover broken by gravity 

waves or due to melting decay. 

Classes from 1-10 are taken or adapted from the WMO’s sea-ice 
nomenclature [46]. Classes Sky and Shore are self-explanatory. 

 
TABLE II 

STATISTICS FOR CHANNEL WISE NORMALIZATION OF IMAGES 

Channel Mean Standard deviation 

Red (R) 0.485 0.229 

Green (G) 0.456 0.224 
Blue (B) 0.406 0.225 

Each of the RGB values was normalized using the mean and 
standard deviation of the corresponding channel. These values were 
derived from the ImageNet dataset [64]. 

 
TABLE III 

HYPERPARAMETERS FOR TRAINING NEURAL NETWORKS 

Parameter Stage 1 Stage 2 
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𝛼max 5 x 10-4 for the 
unfrozen part of the 

network (decoder) 

0.125 x 10-4 for the 
decoder, 1.25 x 10-4 

for the encoder 

% of iterations till 

which 𝛼 increases 

90% 90% 

Epochs 20 60 

𝛽1 0.9 0.9 

𝛽2 0.99 0.99 

Weight decay 10-2 10-2 

𝛼 is the learning rate, and 𝛽1, 𝛽2, and weight decay are parameters of 
the Adam optimizer [65]. 

 
TABLE IV 

ALGORITHM FOR THE ‘MEAN’ ENSEMBLE 

Input: 3 channeled RGB image (img) [512 × 512 × 3] 

• Pass the image through the neural networks: 

Output1 [512 × 512 × 14] = PSPNet(img)  
Output2 [512 × 512 × 14] = PSPNet(img)  

Output3 [512 × 512 × 14] = DeepLabV3+(img) 

Output4 [512 × 512 × 14] = UPerNet(img) 

• Combine the outputs: 

Combined output [512 × 512 × 14] = Mean(Output1, 
Output2, Output3, Output4)*  

• Postprocessing:  

Postprocessed output [512 × 512 × 14] = ConvCRF(img, 
Combined output) 

• Take the index of the max. value along the 3rd dim: 

Segmentation mask [512 × 512 × 1] = Argmax(Postprocessed 

output) 

Output: 1 channeled segmentation mask [512 × 512 × 3] 

*There can be several other ways to combine the neural network outputs 
 

TABLE V 
DEFINITIONS FOR THE PERFORMANCE METRICS 

  Predicted 

  True False 

Ground Truth 
True TP FN 

False FP TN 

True Positives (TP), False Positives (FP), True Negatives (TN), and 
False Negatives (FN), determined over the whole data set (i.e., 
validation set or test set). Here, one pixel is considered as a sample. In 
the case of a particular class (c), the TPc, TNc, FPc, and FNc are 
calculated for that particular class. 

 
TABLE VI 

AVERAGE PER-CLASS CONFUSION FOR THE PROPOSED APPROACH 

  True class 

  Floeberg Floebit Melt pond 

T
es

t 

Grayscale 84% predicted 

as Deformed 

ice 

37% predicted 

as Ice floe 

40% predicted 

as Ice floe 

Vignette 66% predicted 

as Deformed 
ice 

89% predicted 

as Sky 

37% predicted 

as Level ice 

Clear 85% predicted 

as Deformed 
ice 

30% predicted 

as Iceberg 

51% predicted 

as Ice floe 

V
al

id
at

io
n
 

Val-1 64% predicted 

as Deformed 

ice 

39% predicted 

as Ice floe 

64% predicted 

as Underwater 

ice 
Val-2 21% predicted 

as Deformed 

ice 

73% predicted 

as Ice floe 

84% predicted 

as Ice floe 

Val-3 93% predicted 

as Iceberg 

71% predicted 

as Ice floe 

76% predicted 

as Ice floe 

Val-4 35% predicted 
as Deformed 

ice 

21% predicted 
as Iceberg 

82% predicted 
as Underwater 

ice 

Val-5 7% predicted 
as Deformed 

ice 

27% predicted 
as Brash ice 

27% predicted 
as Deformed 

ice 

Values are for the proposed segmentation approach (Mean 
ensemble + ConvCRF postprocessing) for each of the five validation 
sets and three variations of the test set. Each cell presents how much 
percentage of the true class was falsely predicted as something else. 

 
TABLE VII 

MEAN IOU VALUES FOR ICE OBJECTS AND NONICE OBJECTS 

Dataset Ice objects Nonice objects 

Avg. of 5-fold cross 
validation 

0.642 0.573 

Clear Test 0.502 0.544 

Grayscale Test 0.422 0.512 
Vignette Test 0.339 0.297 

Values are for the proposed approach (Mean Ensemble + ConvCRF 
postprocessing) 

 
TABLE VIII 

PERFORMANCE METRICS FOR ICE OBJECT VS. NONICE OBJECT 

SEGMENTATION (BINARY SEGMENTATION PROBLEM) 

Dataset Mean IOU Accuracy F1 score 

Avg. of 5-fold 

cross validation 
0.933 0.957 0.965 

Clear Test 0.948 0.963 0.973 

Grayscale Test 0.946 0.961 0.972 

Vignette Test 0.758 0.829 0.862 

Values are for the proposed approach (Mean Ensemble + ConvCRF 
postprocessing) 

 
 

 
Fig. 1.  Resolutions of images before and after resizing. 
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Fig. 2. (a) No. of images and (b) The percentage of total pixels per class 
for both original and balanced dataset. The balanced dataset was 
obtained through preprocessing, i.e., resizing and oversampling. 

 
Fig. 3.  Per-class distribution of images for the six parts of the dataset (5 
validation, i.e., Val-1, …, Val-5 + 1 Test).  

 
(a) Clear 

 
(b) Grayscale 

 
(c) Vignette effect 

Fig. 4. Samples from the three variations of the test set. 

 
Fig. 5 Schematic diagram of the proposed approach 

 

 
(a) Category 1: Combination method of Mean/Product/Max to combine each of 

the values from the Output 1,2,3,4. The blue pixels in the Outputs are combined 

to give the value of the blue pixel in the Combined output. This holds true for 
all such pixels in the Combined output tensor.  The top 4 outputs and the 

combined output have a dimension of 512x512x14, i.e., a grid size of 512x512 

(equal to the dimension of the input image) and 14 channels for 14 classes. 

 
(b) Category 2: Combination method of Majority voting to vote between the 

values from label 1,2,3,4. The argmax of the blue pixels in the output-i gives 

the blue pixel in the label-i, and the blue pixels in label 1,2,3,4 combine to give 
the blue pixel in the combined label. This holds true for all such pixels in the 

Combined label tensor. The top 4 outputs have a dimension of 512x512x14, 

while the top 4 labels and combined label have a dimension of 512x512x1. 
Here, 512x512 is the grid size (equal to the dimension of input image), 14 is the 

number of channels for 14 classes and 1 is the number of channels for labels 

since labels are a single value from 1 to 14. 
Fig. 6. Ensemble Modules. 
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(a) Model output 

 
(b) Postprocessed output 

Ice floe Level ice Brash ice 
Open 
water 

Sky 

 

(c) Legend 
Fig. 7. Effect of postprocessing on the model output 

 

 
Fig. 8. Performance metrics for the 5-fold cross-validation of single 
model pipelines. For every model on the X-axis, we plot two boxes for 
each of the three metrics (three plots). The first box (purple) presents 
the spread (over five validation folds) of the metric for the model outputs 
without any postprocessing, and the second box (green) presents the 
spread of the metric for the postprocessed outputs (using ConvCRF 
postprocessing). The X-axis is sorted based on the averaged (over five 
validation folds) mean IOU value of the postprocessed results. 

 
 
Fig. 9. (a) Per-class IOU (after postprocessing) for the top four single 
model pipelines (b) Change in per-class IOU due to ConvCRF 
postprocessing. Δ(IOUc) = IOUc of the postprocessed results – IOUc of 
the non-postprocessed results. (c) The percentage of total pixels for the 
validation sets (1 pixel = 1 sample, from the point of view of calculation 
of metrics). The boxes represent the range of values over five validation 
folds. The background colors in the top 2 plots represent the model with 
average (over five validation folds) highest and average lowest values 
in the top half and bottom half, respectively. The average highest and 
average lowest values are also mentioned at the top and bottom, 
respectively. The X-axis is sorted based on the average values (over 
five validation folds) of the percentage of total pixels per class. 
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Fig. 10. Performance metrics from the 5-fold cross-validation for eight 
different ensemble pipelines and the top four single-model pipelines. For 
every model on the X-axis, we plot two boxes for each of the three 
metrics. The first box (purple) presents the spread (over five validation 
folds) of the metric for the model outputs without any postprocessing, 
and the second box (green) presents the spread of the metric for the 
postprocessed outputs (using ConvCRF postprocessing). The X-axis is 
sorted based on the averaged (over five validation folds) mean IOU 
value of the postprocessed results. 

 

 
Fig. 11. (a) Per-class IOU (after postprocessing) for the top three 
ensembles (Product, Mean, ConvCRF-Mean) and the best model 
(PSPNet). (b) Change in per-class IOU due to ConvCRF 
postprocessing. Δ(IOUc) = IOUc of the postprocessed results – IOUc of 
the non-postprocessed results. (c) The percentage of total pixels for the 
validation sets (1 pixel = 1 sample, from the point of view of calculation 
of metrics). The boxes represent the range of values over five validation 
folds. The background colors in the top half of the top 2 plots represent 
which among the mean ensemble (green) and single-model pipeline 
(purple) achieved a higher value. Similarly, the background colors in the 
bottom half of the top 2 plots represent which one of the above two 
pipelines achieved a lower value. The values for these two segmentation 
pipelines have also been mentioned on the respective background color. 
The X-axis is sorted based on the average values (over five validation 
folds) of the total pixels per class. 

 

Fig. 12. Performance metrics from the three variations of the test set 
(test set with clear images (clear test), test set with vignette effect 
(vignette test), and test set with grayscale images (grayscale test)) and 
5-fold cross-validation for the proposed ensemble approach (mean). For 
every dataset on the X-axis, we plot two bars for each of the three 
metrics. The first bar (purple) presents the metric score for the ensemble 
outputs without any postprocessing, and the second bar (green) 
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presents the metric score for the postprocessed outputs (using 
ConvCRF postprocessing). 

 

 
Fig. 13. Per-class performance on the three test variations of the test set 
(Test set with clear images (Clear Test), test set with vignette effect 
(Vignette Test), and test set with grayscale images (Grayscale Test)) 
and 5-fold cross-validation of the proposed ensemble approach (Mean). 
(a) Per-class IOU (after postprocessing) from the test and validation sets 
for the proposed ensemble approach (Mean ensemble + 
postprocessing). (b) Change in per-class IOU due to ConvCRF 
postprocessing. Δ(IOUc) = IOUc of the postprocessed results – IOUc of 
the nonprocessed results. (c) The percentage of total pixels per class 
for the test and validation sets. 

  
(a) Dataset 

 
(b) Labeler 1: 95% match 

  
(c) Labeler 2: 94% match 

 
(d) Labeler 3: 93% match 

  
(e) Labeler 4: 91% match 

 
(f) Labeler 5: 95% match 

Ice floe Broken ice Brash ice Sky 

Floeberg Open water Underwater ice 

(g) Legend 

Fig. 14. Labels used for comparison. The top-left label is from the 
dataset, while the rest were labeled by different labellers and were only 
for comparison. The % match is with respect to the label from the 
dataset. 

Figures for appendix: 

 
(a) 
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(b) 

 
(c) 

Ice floe Broken ice Brash ice Sky 

Floeberg Open water Underwater ice 

Iceberg Floebit Shore Level ice 

Pancake ice Melt pond Deformed ice 

(e) Legend 

Fig. 15. Qualitative results from the proposed ensemble approach (i.e., 
Mean ensemble + ConvCRF postprocessing). 

 

Fig. 16. Sample labeled image with a mesh for ice concentration and 
floe size measurement (Demo only). 

 

 

 

 

 

 
 


