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a b s t r a c t 

This paper provides an analytical proof and the theoretical development of the idea of us- 

ing the torsional vibration measurements for a system-level condition monitoring of the 

drivetrain system. The method relies on modal parameter estimation of the drivetrain sys- 

tem by using the torsional measurements and subsequent monitoring of the variations in 

the system eigenfrequencies and normal modes. Angular velocity error function extracted 

from encoder outputs at both input and output of drivetrain is used to estimate modal 

parameters including natural frequencies and damping coefficients. In the proposed con- 

dition monitoring approach, it is shown that any abnormal deviation from the reference 

values of the drivetrain system dynamic properties can be translated into the progression 

of a specific fault in the system. In order to extract the condition monitoring features, lo- 

cal sensitivity analysis is engaged to establish a relationship between different categories 

of drivetrain faults with the system dynamic properties and the amplitude of torsional re- 

sponse, which helps with both to identify the state of the progressive faults and to localize 

them. Local sensitive analysis shows that abnormal deviations in stiffness and moment of 

inertia due to the presence of faults result in considerable changes in natural frequencies 

and modal responses which can be measured and used as fault detecting features by us- 

ing the proposed analytical approach. Sensitivity analysis is also employed along with the 

estimated modal frequency for estimation of modal damping from the amplitude of re- 

sponse at the natural frequencies and their subsequent use for estimation of undamped 

natural frequencies which are later used in the proposed condition monitoring approach. 

The proposed approach is computationally inexpensive and can be implemented without 

additional instrumentation. Two test cases, using 10 MW simulated and 1.75 MW opera- 

tional drivetrains have been demonstrated. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

1. Introduction 

Both predictive and condition-based maintenances are proposed in the literature as potential game changers and mea- 

sures which could be taken to flatten the gap between OPEX in offshore and land-based wind turbines aimed at realizing
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the EU 2050 plan by reduction of downtime and subsequently levelized cost of energy (LCOE) of offshore wind [1] . The

motivation of this research is reducing the costly operation and maintenance of offshore turbines - more specifically the 

drivetrain system of floating offshore wind turbines - and improving the risk of investment by using condition-based main- 

tenance and a subsequent reduction in downtime as one of the most influential consequences of drivetrain failures. The 

latter is investigated based on developing the methods which can use only the existing sensors, database, communication 

network and can be implemented for both fault diagnosis (as a key component of turbine operations management automa- 

tion system) and offline condition monitoring (CM) purposes. The CM system is in addition to the performance monitoring, 

and the concept behind is monitoring of the conditions of the turbine systems with the highest risk of loss of turbine avail-

ability considering both likelihood and consequence of failures, because monitoring the condition of all systems may be 

economically and technologically infeasible. According to the study by Pfaffel et al. [2] which provides a cautious compar- 

ison on reliability characteristics of both onshore and offshore wind turbines, drivetrain system which in general includes 

all rotating components in power conversion system i.e. hub, rotor, main bearings, gearbox, generator and power converter 

accounts for 57% of turbine total failures and 65% of turbine total downtime. These numbers are expected to be higher

in floating offshore turbines. The latter is due to more costly marine operations specially in deep waters, the larger and

more expensive components, and a wider range of excitation sources due to the synergistic impacts of waves, currents and 

wind turbulences which call for innovative approaches to achieve a better understanding about the system dynamics and 

excitation sources. The focus of this research is proposing a system-level CM solution by the drivetrain modal estimation 

and a subsequent monitoring of abnormal variations of system modes. This goal is performed by developing a numerical 

model of the drivetrain as a dynamic system based on its measured torsional response and the subsequent estimation of 

the drivetrain torsional modes. In contrast with the other systems ( e.g. bridges and buildings), the dynamic properties of 

the drivetrain do not experience a significant change over normal operations. The latter can be used to monitor any ab-

normality caused by faults. Therefore, variations in the drivetrain can be monitored by tracking the changes in the three 

modal parameters (modal frequency, modal damping and mode shape (amplitude and phase)) of the dominant modes of 

this system [3] . Estimation of mechanical systems dynamical characteristics is mainly based on operational modal analysis 

(OMA) which is challenging for drivetrain as a complex dynamical system. The latter is mainly based on translational vi- 

bration measurements [4] , and the reported results in the literature show the high possibility of harmonics to be mistaken

with the eigenfrequencies [3,5] . Drivetrain is a complex rotational system with different sources of external excitation and 

components defect frequencies. The uncertainties in the estimated modes have made available OMA techniques less-efficient 

for condition-based maintenance. 

The current CM approaches of the wind turbine drivetrain are based on one or a combination of five categories of tech-

niques, namely vibration analysis [6] , electrical signature (current and power signals) [7] , acoustic emissions analysis [8] ,

thermography [9] and temperature analysis [10] , and analysis of oil particles [11] . Today, vibration analysis is mainly based

on system translational responses obtained by accelerometers ( e.g. see [12] ) with a minor attention to torsional measure-

ments. The only commercially available drivetrain CM based on torsional measurements, is associated with the measurement 

of torque as the system applied load [13] . The latter is not widely used due to the matter of cost, technological limitations

related to operating speed and torque ranges and shafts dimensions, intrusive nature of the torque measurement tech- 

niques, and also a lack of a standardized approach and the immature and insufficient knowledge to analyze and extract 

features from the torsional measurements. 

Frequency response function (FRF) is a common tool which is used for modal estimation by the estimation of a system

transfer function. However, the complexity of the drivetrain system and inadequacy of models in considering the internal 

dynamics and interactions between systems, nonlinear and synergistic impacts of different excitation sources, uncertainties 

in estimation of loads are some reasons which cause inexplicable harmonics and limit the application of FRF for the esti-

mation of drivetrain dynamic properties. In this work, the operational modal analysis and fault diagnosis are based on the 

system torsional responses. An anterior estimation of the drivetrain loads can provide more options to the proposed algo- 

rithm. The possibility of observing drivetrain torsional natural frequencies in the torsional response is reported in [14] for 

different applications such as jet engine high-pressure disk, a hydro station turbine and a coal-fired power plant. The possi- 

bility of observing blade natural frequencies in drivetrain shaft torsional response and the potentials for CM of the blades is

also reported in [14,15] . Suominen et al. [16] has reported the visibility of ship propulsion system natural frequencies in the

torque measurements of the propulsion shaft due to the propeller blade contact with ice. However, these reports are based 

on observations on experimental studies and are not reliant on an analytical torsional model of the drivetrain systems. 

The drivetrain system torsional response and the natural frequencies are proposed in the literature for detecting faults 

initiated by torsional sources. Patel et al. [17] proposes the use of angular displacement to support the lateral response to

recognise the rubbing faults in the drivetrain, so that the excited torsional frequency and the amplitude of response in the

natural frequency and the side bands are utilized to characterize the fault. Feng et al. [18] proposes the use of the mea-

surements of torque instead of transverse vibration signals to diagnose planetary gearbox local/distributed faults, because 

they are free from the amplitude modulation effect caused by time variant vibration transfer paths, thus they have simpler 

spectral content than transverse signals. Lebold et al. [19] suggests monitoring the characteristic changes in torsional natural 

frequencies, and claims that those changes are associated with the shaft crack propagation. Kia et al. [20] proposes the esti-

mated electromagnetic torque of the electrical machine as a noninvasive torsional measurement in the drivetrain to monitor 

the torsional stress on the components including shaft, bearings, and gearbox, and the method is used to detect a gear

failure. The electromagnetic torque estimation is commonly used in electrical drives to control the electrical machine, and 
2 



F.K. Moghadam and A.R. Nejad Journal of Sound and Vibration 509 (2021) 116223 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

implementation of the method does not need any additional sensor. Not only the drivetrain faults, but also rotor and tower

excited modes may result in frequency components in the drivetrain torsional response [21] . The amplitude of response 

at blade edgewise and tower bending natural frequencies can provide insights about resonances in these components. The 

monitoring of the variations of these components frequencies is also useful for some other purposes such as ice detection 

in blades, and health monitoring of blades (detect root cracks within turbine blades) and tower. The idea of using angu-

lar velocity measurements for the wind turbine drivetrain fault detection was originally proposed by Nejad et al. [22] . The

input data is provided by the encoders installed on the drivetrain for the turbine control purposes. The latter is normally

accessible in both turbine and farm levels, which helps to realize CM by means of supervisory control and data acquisition

(SCADA) system available measurements. Therefore, any algorithm based on those measurements can be integrated into ei- 

ther turbine or farm control to support the online CM of the drivetrain. Moghadam et al. [15] has experimentally evaluated

the possibility of detecting some categories of faults in early stages by a direct utilization of torsional response, and the re-

sults of the study are compared to a conventional method based on translational vibrations obtained by accelerometers. The 

authors demonstrated how torsional measurements can complement the conventional approaches by providing insights on 

the excitation sources which are significantly influencing on the drivetrain lifetime which is useful as both a design feedback 

and earlier stage fault detection. 

Even though the torsional response cannot directly be used for monitoring of some sort of faults, it contains the drive-

train system-level dynamic properties which can provide a near real-time modal estimation of system. From this perspective, 

torsional measurements are indirectly used for the drivetrain system CM purposes. For this purpose, these measurements 

are first used to estimate the dynamic properties of the drivetrain as a rotational system. These properties are only related to

the system physical parameters and not the loading or specific operational condition, so that they can be used in the second

step to monitor the variations in the drivetrain, which can be translated into a fault in case of passing a prespecified level.

Moghadam et al. [23] has started an analytical approach to turn torsional measurements into meaningful features for fault 

detection purposes by specification of the analytical relationship between the system natural frequency variations and faults, 

and a subsequent potential for detection of system faults. The current work is dedicated to the theoretical development and 

simulation/experimental validation of the idea originally proposed by [23] for the modal estimation of the drivetrain by us- 

ing torsional measurements, and a subsequent use of this idea to develop a method for the drivetrain system-level CM. The

influence of shaft crack propagation on the torsional natural frequency was discovered by [14,24] . However, those studies 

lack an analytical model which describes the variations in order to establish a meaningful feature for monitoring the condi- 

tion of crack. For this feature to be used as a criterion as a shaft cracking monitoring technique, a sufficient model should

be provided to be able to relate the variations to the state of the fault. In addition, there are other categories of system-level

faults which can also influence drivetrain torsional modes which are not considered in earlier studies. 

The CM of the drivetrain at system level by using the estimated torsional natural frequencies, the normal modes, the am-

plitude of response in the natural frequencies and the damping of the system at natural frequencies in different operations 

is discussed in this paper. For this purpose, online operational measurements of the drivetrain different torsional responses 

including the angular velocity residual function and filtered angular velocity are employed. Drivetrain faults at system level 

can influence the drivetrain model parameters, so that they can be categorized into the faults that change the torsional 

stiffness most ( e.g. crack in the shafts and bearing wear specially in gearbox), and faults that change mostly the inertia of

the drivetrain (changes in mass balance/distrinution which can be due to e.g. loss of mass, wear and unbalance; and also

change in the axis of rotation which can be due to e.g. misalignment and looseness). Regarding the relation of inertia with

the square of the center of mass distance from the center of rotation, the faults which variate the center of rotation demon-

strate more significant influence on the inertia and thus are more influential on the torsional dynamic properties. Among 

the faults that influence the inertia of the bodies in drivetrain equivalent model, there are some types which have more

considerable impact on the boundary conditions between rotating and stationary elements and thus influence more drive- 

train lateral responses than the torsional response ( e.g. looseness (pedestal, shaft and bearings, coupling), [25] ). The latter

influences significantly lateral stiffness parameters and the lateral responses of the drivetrain, so that the detection of those 

faults by using the lateral response and monitoring the variations of system lateral properties could be a practical approach. 

Even though these faults can cause a small variation of the torsional parameters, the impact may not be significant enough

for fault detection purposes. For example, a pedestal looseness may cause increased rubbing which leads to a nonlinear 

small increase of torsional stiffness. 

By specification of the parameter in the equivalent reduced order model which will be significantly influenced by a 

fault, it is possible to look for the expected consequences of the associated variations of the parameter as a result of fault

on the system dynamic properties, as the CM indicators. The first category of faults, which are detectable by the proposed

CM approach, influence the torsional stiffness. Cracks in the drivetrain shafts are one of the most influential faults in this

category. The initial cracks occur due to material imperfections and temperature variations in the parts of main shaft with 

severe stress concentration, which can grow worse under large alternating loads due to wind turbulence. To detect the shaft 

cracks of different relative depths, an approach based on nonlinear output FRF is proposed by [26] and experimentally tested 

on a simple double-disk rotor system, where the linear displacements and the bending moments are the under consideration 

responses but the torsional vibrations are neglected. In shaft crack faults, variation in stiffness is influenced by the crack 

depth and the shape of the crack front. The latter makes the detection of different types of cracks quite challenging so that

a detection method suitable for one type of crack cannot be generalized to the other types. This fault does not take place

as frequently as shaft unbalance or misalignment but the consequences are very high, so that the detection in very early 
3 
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stages is of a high importance. If shaft cracks are not detected in early stages, the later stages of this category of faults

may cause severe damage of the shaft and the occurrence of considerable secondary faults with high risk of injuries for

the plant personnel. As discussed by Chatterton et al. [27] , crack detection by using translational/axial vibrations obtained 

from accelerometers is challenging due to the influence of the dynamic effects caused by different com ponents and their 

consequent induced vibrations. The interpretation of the data in these methods is also dependent on a deep understanding 

of the type of crack, its physical properties and the specific operational conditions so that the realization of an online

monitoring may not be possible. The frequency and time domains analysis of accelerometers is the conventional approach 

to detect increased vibrations in the component-level in higher stages of a progressive fault ( e.g. gear tooth and rolling

element bearing fatigue issues). The second category of faults detectable by the proposed approach influence the inertia of 

the components in the equivalent model. In this group, misalignment and unbalance are significantly more common than the 

other faults. Unbalance in the rotor blades is one of the most influential and prevalent faults which can be due to different

reasons e.g. excessive weight following a blade repair, icing, water penetration through cracks and loose material moving 

inside the blades. The latter causes loss in the power production. The reason for placing an emphasis on the rotor unbalance

is that the highest unbalance in the drivetrain arises from the component with the highest moment of inertia which is the

rotor assembly in the wind turbine drivetrain. The mass unbalance also causes additional loads on the entire structure 

and specially the drivetrain components so that it results in a periodic torsional (in earlier stages) and transversal (in later

stages) oscillations in the wind turbine’s drivetrain. It directly increases the wear of the blade on the drivetrain bearings and

gears by generating asymmetrical loads. The rotor mass unbalance can be measured by monitoring its consequent variations 

in the drivetrain dynamic properties. As a prognostic measure, the unbalance mass can be estimated and if the detected 

unbalance exceeds a limit, the rotor blades should be balanced with a balancing device. 

CM is mostly designed in component level, which is helping when the fault is propagated to the individual components 

and causes physical changes in the component level. However, the root cause of a wide range of faults are system-level

issues such as unbalance, misalignment, looseness and shaft cracks. In the proposed drivetrain CM approach of this paper, 

it is assumed that system-level drivetrain faults ( e.g. shaft cracks and unbalance) can reveal themselves by variations in the

system stiffness and moment of inertia. Therefore, by monitoring the consequences of variations of drivetrain parameters 

( i.e. stiffness and moment of inertia matrices) in change of the drivetrain dynamic properties ( i.e. natural frequencies, mode

shapes and damping coefficients), it is possible to monitor the progress of faults. For this purpose, an analytical model of

the drivetrain which represents the relationship between the system parameters and dynamic properties and a subsequent 

sensitivity analysis helps to realize what are the most influential system parameters/faults which can variate the drivetrain 

dynamic properties. In the feature selection algorithm , the torsional dynamical model of the drivetrain and the local sensitivity 

analysis are engaged. The algorithm is designed to an extent that could offer robust, fast and accurate online monitoring. 

The main focus of this work are on geared drivetrain systems used for wind turbines. Based on the theoretical studies

in this research work, a 3-DOF equivalent torsional model of the geared drivetrain is sufficient for detection of the drive-

train faults at a system-level, because system-level faults represent themselves mainly by changing the torsional stiffness 

and the moment of inertia parameters of the 3-DOF equivalent model. In the first step of the work, the proposed modal

estimation approach by using the torsional measurements is presented, which is proved in the general case for a n-DOF 

torsional model of the drivetrain, followed by a detailed parametric proof based on 3-DOF model. As the second step of this

research, the analytical relationship between the 3-DOF equivalent model parameters and drivetrain dynamic properties is 

established, which helps to identify the drivetrain system condition/state-of-operation by monitoring the variations in the 

drivetrain dynamic properties (undamped natural frequencies and normal modes) which can be estimated from the opera- 

tional measurements by using the proposed modal estimation approach or the other approaches proposed by the literature. 

The other reason for sticking to 3-DOF model, is that the closed-form parametric expressions of the drivetrain dynamic 

properties as a function of equivalent model parameters can be obtained for this simplified model. Those expressions are 

the required inputs for the proposed fault detection approach based on monitoring the variations of the drivetrain dynamic 

properties. Those expressions provide quantifiable fault detection features, which are implementable in microcontrollers and 

can be integrated with turbine fully automated control and monitoring systems. By the increase of the order of equivalent 

model, more dynamic properties (higher natural frequencies which are not seen by 3-DOF model) can be employed, which 

can support a more detailed fault detection in the drivetrain. However, it is a little challenging for currently available modal

estimation approaches to observe higher modes which appear with a low amplitude in the frequency-domain response. In 

other words, the real conditions for the modal estimation problem is restrictive, so that the higher eigenfrequencies of the 

drivetrain system, which may be excited by the input torque with a lower energy, may not be observable. 

The proposed method in this paper can detect stiffness or inertia related faults by monitoring the consequences of faults 

on online estimated modes and amplitude of response. The method is computationally inexpensive since it relies on only 

few data samples and a moderate data resolution and sampling frequency. On this basis, the main contributions and novelty 

of this work are: 

1. Analytical proof of a drivetrain modal analysis approach by using torsional measurements, 

2. Introducing an analytical approach for estimation of damping coefficients of the system modes by analyzing the ampli- 

tude of torsional response error function at the natural frequencies, 

3. Theoretical development and simulation/experimental validation of a drivetrain system-level health monitoring approach 
based on estimated modal parameters, and comparison with other methods in the literature. 

4 
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The paper is organized as follows: Modal estimation by using torsional measurements is analytically elaborated in 

Section 2 . An analytical approach for drivetrain condition monitoring by using torsional response and the estimated modes is 

proposed and discussed in details in Section 3 . The proposed drivetrain modal estimation and condition monitoring approach 

are validated and compared with the approaches in the literature through simulation/experimental studies in Section 4 . The 

paper is concluded in Section 6 . 

2. Operational modal analysis by using torsional measurements 

2.1. Torsional natural frequency estimation theory 

Drivetrain is often modelled as one-degree-of-freedom (1-DOF) rotational system in global dynamic response tools. The 

forced torsional vibration response of the equivalent 1-DOF damped rotational model of drivetrain influenced by the random 

excitation τ (t) in frequency domain and non-dimensional form can be expressed by 

| θ (�) | = 

| τ (�) | 
k t √ 

(1 − ( ��n 
) 2 ) 2 + (2 ζω 

t ( 
�
�n 

)) 2 
, (1) 

where θ (�) and τ (�) are the Fourier transforms of angular position and the excitation torque, respectively. �n is the 

undamped torsional natural frequency of the system, k t is the torsional stiffness of the shaft, and ζt is the torsional damping

coefficient of the mode �n at the operating speed ω. As it can be seen, an amplified frequency in the drivetrain torsional

response can be due to a significant excitation amplitude or the vicinity of excitation frequency with natural frequencies. 

Natural frequencies appear in torsional responses e.g. angular velocity measurements due to impulsive behavior of wind 

which excites those frequencies. An initial velocity applied on a system as described by Thomson et al. [28] can play a role

as an impact which is able to excite the system torsional frequencies. In the wind turbine, the ceaseless variations of wind

results in continual variations in angular velocity which is physically similar to an initial velocity applied to the system. Even

though these variations in speed and subsequently torque happen in very low frequency, they can introduce considerable 

energy in different frequencies including the characteristic frequencies of the system. Due to the existence of damping in a 

real system, the measured natural frequencies from the torsional response are the damped frequencies. By filtering the shafts 

revolution frequencies, components defect frequencies and excitations (very low frequency due to wind, low frequency due 

to wave tower shadow effect, and high frequency due to generator), the drivetrain torsional natural frequencies, and some 

torsional induced motions due to excited edgewise rotor blade and tower bending modes are acquired. Based on a primary 

knowledge on the torsional frequencies for each power range, it is possible to separate the observed natural frequencies for 

drivetrain, blades and tower. The variations in the natural frequencies and normal modes can be used as criteria to identify

some sorts of faults in the drivetrain. To estimate the damped natural frequencies, angular velocity residual/error function is 

proposed. The input of this method is provided by two encoders located at the high- and low-speed shafts of drivetrain, and

subsequently the residual function is constructed based on the subtraction of these two signals. Some drivetrain systems are 

only equipped with one angular velocity measurement on the shaft, so that the implementation of the method may require 

an additional moderate resolution encoder to provide the sufficient inputs. The angular velocity residual function e ω tot from 

the high-speed side is expressed by 

e ω tot = ω HS − a 1 a 2 a 3 ω LS , (2) 

where ω HS and ω LS are the rotational speed in 

rad 
s obtained from the high- and low-speed encoders, respectively. a 1 , a 2 

and a 3 are the inverse of gear ratios of the gearbox stages. The error function main feature is cancellation of the impacts

of the excitations which are transferred to the drivetrain from the housing, from the resultant torsional response. Angular 

displacement and acceleration are the other torsional responses of the drivetrain system which could theoretically be used 

similar to angular velocity to obtain the system torsional parameters. For this purpose, similar to e ω tot , the angular position

error function e θtot and the angular acceleration error function e αtot are defined by 

e θtot = θHS − a 1 a 2 a 3 θLS , e αtot = αHS − a 1 a 2 a 3 αLS . (3) 

In particular, angular acceleration is the torsional response which has a direct relation with the applied, and contains 

useful information on how the applied torque interacts with the system. If acceleration or displacement is used for evalua- 

tion, the assessment criteria tends to vary with frequency, because the relation between them and velocity is proportional 

to frequency. The Fourier series of e ω tot , e 
α
tot and e θtot are defined by e ω tot (�) = 

∑ ∞ 

n = −∞ 

C n e 
ik n �, e αtot (�) = 

∑ ∞ 

n = −∞ 

C n (ik n ) e 
ik n �, 

e θtot (�) = 

∑ ∞ 

n = −∞ 

C n (ik n ) −1 e ik n �. Differentiation and integration are linear operations that are distributive over addition. As

it can be seen, in e αtot compared to e ω tot , the amplitude of the frequency components higher than 1 Hz is magnified with the

gain k n , and the frequencies lower than 1 Hz are weakened with the same proportion. In e θtot compared to e ω tot , the ampli-

tude of the frequency components lower than 1 Hz is magnified with the gain k −1 
n , and the frequencies higher than 1 Hz are

weakened with the same proportion. The 1 st natural frequency of the drivetrain systems of the same technology decreases 

as the rated power increases. However, even for 10 MW wind turbine which is the biggest commercially available and 

even for the high-speed technologies which have lower first natural frequencies, the 1 st torsional frequency is higher than 

1 Hz [32] . Therefore, the angular acceleration error function is theoretically slightly better than the other two approaches
5 
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in highlighting the torsional frequencies. The other benefit is weakening the frequencies lower than 1 Hz which appear in 

the drivetrain torsional response mostly due to wind turbulence and structural motions, but do not contain any information 

on the drivetrain natural frequencies. However, an additional derivation operation is required to attain acceleration from the 

velocity measurements which increases the computational cost of this method. 

A limitation with aforedescribed approach is the dependency on two encoders, because in several turbines there is only 

one encoder available located in the low-speed shaft. As discussed earlier, one of the significant features of the error function

is cancellation of the influences of structural motions from the torsional response. The latter results in a clean signal which

is able to highlight the system characteristic frequencies. Those motions are mainly influenced by wind, wave and structural 

resonances, and natural frequencies of structural motions and low frequency interactions between rotor, tower and support 

structure and have a low frequency content. Therefore, the filtered angular velocity of low-speed shaft has some potentials 

in highlighting the drivetrain torsional frequencies. The filtered signal X(�HP ) is extracted by 

X (�) = a 1 a 2 a 3 ω LS (�) , X (�HP ) = X (�) H(�HP ) , (4) 

where H(�HP ) is the transfer function of the high-pass filter applied to the low-speed shaft encoder signal to attenuate the

low frequency noises resulted wind induced low frequency motions. The performance of filtered angular velocity of low- 

speed shaft in highlighting the torsional frequencies compared to the different torsional response error functions is tested 

with both simulation and operational measurements as reported in Section 4 . 

In order to capture better the drivetrain dynamics at system level for the subsequent use for drivetrain fault diagnosis 

at system level while minimizing the computational complexity of the model, 3-DOF torsional model is offered and the 

performance of the model is evaluated throughout the paper. For this purpose, to evaluate the observability of natural 

frequencies on the torsional response error functions and the subsequent application for drivetrain CM, a 3-DOF torsional 

model of the damped drivetrain is engaged. The 1 st and 2 nd undamped natural frequencies (nonrigid modes) based on 3- 

DOF lumped-mass-spring model of a geared drivetrain can be calculated by the equations reported in A.1 . The eigenvectors

of the damped drivetrain model take complex values. By assuming damping equal to zero, the normal modes take real values

which show the relative angular motion of the different inertias in the model. The closed form of two normal modes related

to the two non-rigid modes of the under consideration drivetrain model which are scaled to unity length are reported in

A.1 . 

Both undamped frequencies and normal modes are unique for the system so that any deviation of the parameters can 

indicate variations in the drivetrain system which can be used for fault detection. The continued discussion is dedicated on 

an analytical proof of the idea of observing natural frequencies from the torsional response. The theory is first presented for

the general form of response obtained from the general n-DOF torsional drivetrain model. Then the possibility of observing 

torsional modes in amplitude of angular velocity error function based on a 3-DOF model is mathematically proven to be 

used in the proposed model-based fault detection approach. 

Theorem 1. Torsional natural frequencies belong to the set of extreme points of the torsional response in the frequency domain. 

Proof. The general form of the discrete multi-DOF torsional model of drivetrain with n degrees of freedom in the time

domain is defined by 

J ̈θ + C 

˙ θ + K θ = T (t) , (5) 

where J , C and K are the moment of inertia, damping and stiffness matrices with the size n × n . θ and T are the response

and load vectors with the size n × 1 , where each element of these two vectors represent a time series data. The representa-

tion in frequency domain by using the frequency variable S and Laplace transform will be 

[ J S 2 + C S + K ] n ×n [�(S)] n ×1 = T (S) n ×1 . (6) 

By replacing the characteristic equation J S 2 + C S + K with M , the frequency domain response �(S) will be 

�(S) = 

adj(M ) 

det(M ) 
T (S) , (7) 

where adj(M ) is the adjugate of M which is a polynomial function with the matrix variable M . det(M ) is the determinant

of the system characteristic equation. As it can be seen, the roots of the det(M ) are the extreme points of response �(S) .

However, the roots of the determinant of characteristic equation of a system are the system’s eigenfrequencies. Therefore, the 

torsional natural frequencies of the system belong to the set of extreme points of the response. In the undamped system

( C = 0 ), the roots will be pure imaginary which represent the undamped natural frequencies �i 
n . In the general damped

system, the roots are the damped natural frequencies �i 
d 

with the following relation with the undamped frequencies 

�i 
d = ζ i �i 

n + j�i 
n 

√ 

1 − (ζ i ) 2 i ∈ 1 , .., n . (8) 

where ζi is the damping coefficient related to the mode i . The torsional natural frequencies in both cases of damped or

undamped system based on the provided proof which refers to the general form of damped system are the extreme points

of the response frequency domain function. 

Thus, we complete the proof of Theorem 1. �
6 
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The other extreme points of �(S) are due to the load dynamics, the system unmodelled internal dynamics and the 

interactions between these two. As discussed earlier, in order to pick out the natural frequencies, other harmonics which 

also demonstrate themselves as other extreme points in response must be filtered. For this purpose, the response error 

function is engaged which is able to filter the influences of the loads transferred to the drivetrain through the structure, 

which is very useful specially in offshore wind turbines equipped with floating support structures which can induce a wider 

range of harmonics in the drivetrain response. 

The typical signal for frequency domain fault detection study is the single-sided amplitude spectrum of response. In 

A.2 , the possibility of extending the results of Theorem 1 to the amplitude of torsional response and more specifically the

amplitude of angular velocity error function based on an equivalent 3-DOF model is investigated. For this purpose, the 

general 3-DOF damped torsional model of the geared drivetrain system is selected, and the detailed analytical proof for 

observing the natural frequencies in the amplitude spectrum of angular velocity error function is presented. 

By replacing �n from eq. (A.1) instead of | S| in eq. (A.5) , the amplitude of response at the two natural frequencies in the

general case of a damped system has the relationship with the system parameters and loads as 

| e ω tot (�
tor 
1 ) | = 

√ 

| T g (ω1) | 2 √ 

F A + H + J 2 r J 
2 
gr A 

2 
√ 

A + | T r ( ω1) | 2 √ 

EA + G + J 2 gr J 
2 
gn A 

2 
√ 

A 

4 

√ 

A 

2 I 2 + ( J r 
√ 

E + c L J gr J gn ) 2 A 

3 + D 

2 (J r + J gr + J gn ) 2 A + k 2 
L 
k 2 

H 
(J r + J gr + J gn ) 2 + J 2 r J 

2 
gr J 

2 
gn A 

4 

, (9a) 

| e ω tot (�
tor 
2 ) | = 

√ 

| T g (ω2) | 2 √ 

F B + H + J 2 r J 
2 
gr B 

2 
√ 

B + | T r ( ω2) | 2 √ 

EB + G + J 2 gr J 
2 
gn B 

2 
√ 

B 

4 

√ 

B 

2 I 2 + B 

3 (J r 
√ 

E + c L J gr J gn ) 2 + k 2 
L 
k 2 

H 
(J r + J gr + J gn ) 2 + D 

2 (J r + J gr + J gn ) 2 B + J 2 r J 
2 
gr J 

2 
gn B 

4 

, (9b) 

where T r and T g are the rotor and generator torques, respectively. 

The frequency domain angular velocity error function of a theoretically undamped system under excitation at natural 

frequencies is unbounded. Therefore, performing a sensitivity analysis to find the relation between the variations of the 

amplitude of response at natural frequencies and the variations of system parameters which can represent the system faults 

is not possible. However, a physical system in practice has damping. The response of a damped system at natural frequencies

is bounded due to the influence of damping in the system. Therefore, monitoring the variations of the amplitude of response

in the natural frequencies can be related to variations of the system parameters and faults. In the continued part, the

possibility of using the amplitude of response of a damped system at natural frequencies for monitoring the variations in 

the system is discussed. The results of this study can also be used for estimation of damping in the system. 

As it can be seen from eq. (9) , in difference with the equations for the system natural frequencies and mode shapes,

the amplitude of response at the first and second natural frequencies is proportional to not only the system parameters but

also the loads. The latter limits the application of amplitude of response as a fault precursor. However, it can be used as a

criterion to evaluate the results obtained by the proposed fault detection algorithm, so that it provides inputs for drivetrain 

CM based on monitoring the variations of amplitude of response at the natural frequencies in terms of variations in the

system parameters by sensitivity analysis which is elaborated in Section 3 . The results of analysis of amplitude of response

also provides necessary inputs for the estimation of damping in the system. 

By using the simplified model in eq. (1) , the peak frequency of the amplitude of response has the relation as described

by eq. (10) with the associated undamped natural frequency. This result can be extended to the higher order systems and

higher order natural frequencies. Our analytical study on the extreme points of the amplitude of response in higher order 

models shows that these points are highly nonlinear and complicated functions of system parameters which make the 

utilization of these equations computationally expensive. However, these points can be related to the undamped natural 

frequencies by using the damping coefficients as [29] 

�i 
peak = �i 

n 

√ 

1 − 2 ζ 2 
i 
. (10) 

The two following equations can be used to estimate the damping coefficients of different modes at different operating 

speeds, by using the peak frequencies and the amplitude of response at those frequencies, as follows: 

�i,t 1 
peak 

�i,t 2 
peak 

= 

√ 

1 − 2 ζ 2 
i,t 1 

1 − 2 ζ 2 
i,t 2 

, (11a) 

| e ω tot (�
i,t 1 
peak 

) | 
| e ω tot (�

i,t 2 
peak 

) | = f (T r , T g , c L , c H , k L , k H , J r , J gr , J gn ) , (11b) 

where ζi,t is the damping coefficient related to the mode i and operation t . | e ω tot (�peak ) | is the amplitude of response at the

peak frequency. Both the peak frequency and amplitude of response at peak frequency are estimated from the frequency 

domain response based on the theory elaborated earlier in this Section. The eq. (11b) is long and nonlinear with dependency

to all the system parameters and loads so that relating the variations in the amplitude of response to variations in damping
7 
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coefficient seems to be a challenging task. The theory related to the employment of sensitivity analysis for relating the ratio

of amplitude of response to the ratio of damping coefficients from eq. (11) and the implementation of this approach will

be discussed in the continued Section. From the peak frequency and the approximated damping coefficient, the undamped 

frequency can be estimated by using eq. (10) . 

3. Drivetrain condition monitoring by using torsional measurements 

The estimation of system modes by using the angular velocity error function was elaborated in Section 2 . As discussed

earlier, the estimated modes and the amplitude of response at those frequencies can be related to the system parameters 

and faults. In order to establish this relationship to be used in the proposed fault detection approach, sensitivity analysis is

employed. 

3.1. Sensitivity analysis 

This part is aimed to obtain the closed form mathematical relationships between the drivetrain dynamic properties and 

amplitude of response with the drivetrain reduced-order model parameters through a sensitivity analysis for a subsequent 

use in the proposed fault diagnosis algorithm. Similar to in Section 2 , the general 3-DOF damped torsional model of drive-

train is selected for the analytical studies in this Section. 

As discussed earlier, faults like crack in shafts and rotor, coupling damage, or damage in gearbox are examples of poten-

tial faults which can change the drivetrain stiffness. For example, a shaft crack results in reduction of the torsional stiffness

of the shaft [30] . A change in the stiffness influences the drivetrain system frequency modes. Therefore, by obtaining the

mathematical relationship between the stiffness of different shafts and the system modes, it is possible to monitor their 

conditions by monitoring the variations in the system natural frequencies and normal modes. The other parameter which 

can influence the drivetrain torsional modes is the moment of inertia of the drivetrain components. Variations in the mo- 

ment of inertia matrix represents the other category of faults in the driveline with the unbalance and loss of mass as the

foremost. For example, unbalance faults are characterized by the increase of moment of inertia due to an additional force 

that is generated during those conditions based on the parallel axis theorem. The mathematical relationship between the 

drivetrain torsional natural frequencies and the moment of inertia of components can help to identify these faults. The vari- 

ations in stiffness and inertia can result in similar natural frequency variation patterns. Therefore, to distinguish between 

variations in the natural frequencies because of variations in the shafts’ stiffness with those due to variations in moment 

of inertia matrix (source of fault), determining the correlation between the system parameters and the normalized mode 

shapes can provide a useful direction to find the source of fault. The correlation between the amplitude of response at the

system natural frequencies can also be useful in two ways: first, to estimate the damping coefficients and subsequently the 

undamped natural frequencies from the estimated natural frequencies; second, to confirm or repeal the results obtained 

about the system faults taken based on the analysis of natural frequencies and normal modes. 

In order to achieve the above described purposes, two different sets of sensitivity analyses are performed in this Sec- 

tion. First, a sensitivity analysis on torsional frequencies and normal modes of the equivalent undamped system to extract 

drivetrain system-level CM features. Second, a sensitivity analysis on the amplitude of response at the natural frequencies 

primarily to estimate the damping coefficient and subsequently the undamped natural frequencies which are required for 

the first analysis, and then to support the CM features obtained in the first sensitivity analysis. 

In order to check how the variations in stiffness and moment of inertia influence the system torsional natural frequencies 

and mode shapes, a sensitivity analysis is performed. There are two classes of sensitivity analysis methods, namely local 

and global sensitivity analysis. Morio et al. [31] has reported the same kind of results by using these two method for simple

models. Local sensitivity determines how a small perturbation near an input parameter value influences the value of the 

output. In this Section, in order to find the parameters with the greatest impact on the drivetrain dynamic characteristics, 

local sensitivity analysis is employed due to two main reasons. First, the motivation of this work is detecting faults in early

stages for predictive maintenance purposes so that variations in the drivetrain system parameters happen with a slight 

change around the set point values. Second, local sensitivity analysis derives a closed form expression for the sensitivity 

value which makes the result more reliable and easier to implement. Local sensitivity is defined as the partial derivative of

the output function with respect to the input parameters [33] as 

S Loc 
k,l = 

δy k 
δx l 

, y k ∈ { y 1 , . . . , y p } and x l ∈ { x 1 , . . . , x q } , (12) 

where y k is the k th output and x l is the l th input. To neutralize the impact of large/small inputs and small/large outputs, the

local sensitivity can be normalized by the nominal values of inputs and outputs by 

S Norm 

k,l = 

x re f 

l 

y re f 

k 

δy k 
δx l 

, (13) 

with x 
re f 

l 
and y 

re f 

k 
as the nominal values of x l and y k . For the 3-DOF torsional model described in Section 2.1 , the input and

output vectors for sensitivity analysis are 

x = { k L , k H , J r , J gr , J gn , c L , c H , T r , T g } , (14a) 
8 
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y = { �tor 
1 , �tor 

2 , 
�1 

rot , 

�2 

rot , 

�1 
gear , 


�2 
gear , 


�1 
gen , 


�2 
gen , | e ω tot (�

tor 
1 ) | , | e ω tot (�

tor 
2 ) |} . (14b) 

where | e ω tot (�
tor 
1 

) | and | e ω tot (�
tor 
2 

) | are the amplitude of response at the first and second natural frequencies, respectively.

The closed form of equations after applying normalized local sensitivity theory on eqs. (A.1) and (A.2) are shown in B.1 and

B.2 . A positive value in this analysis stands for a direct relationship between the input parameter and output, whereas a

negative value represents that the parameter and output are inversely correlated. The normalized local sensitivity analysis 

can take different values. If the absolute value is equal to 1, it means that the relative variation in input parameter is equally

transmitted to the output, whereas the absolute value higher than 1 shows that the relative variation is magnified in the

output. However, the absolute value lower than 1 represents that the relative variations of the input is shrunk in the output.

In the second study, in order to find the parameters/variables which have the highest contribution in variations of the 

amplitude of response at the response peak frequencies, a local sensitivity analysis is performed. For this purpose, two 

methods are proposed. First, the peak frequencies are approximated with the associated natural frequency and subsequently 

the eq. (9) is used. The closed form equations which specify the correlation between the angular velocity error function 

amplitude at the natural frequencies with the system parameters and loads are derived by performing local sensitivity 

analysis as shown in B.3 . This approximation can be improved by using the approximated damping coefficients and updating 

the eq. (9) by using the eq. 10 . Another approach which is based on numerical calculations and is also used later in the

simulation studies for comparison purposes is to numerically find the peak frequencies of the response in the eq. (A.5) and

finding the sensitivity of the response equations to the parameters after replacing the numerically calculated frequencies in 

the response function. The precision in estimation of the damping coefficient by the two proposed methods compared to 

the approximation proposed in [23] is presented in simulation studies. In order to attain the accuracy of these methods, the

results are compared to the exact values of the coefficients based on the model parameters. 

The following procedure summarizes the modal estimation approach: 

1. The torsional response error function (or interchangeably the low-pass filtered signal of a single torsional response) is 

generated. The response can be angular velocity/acceleration. 

2. The resultant signal is preprocessed so that the defect frequencies of the components and structural motions-induced 

harmonics are filtered. The result will give the damped torsional natural frequencies of the drivetrain system. 

3. The measured natural frequency is validated by the analysis of variations of amplitude of response in the suspicious 

frequencies at different operating speeds. In simple words, the variation of the amplitude of response in the system 

natural frequency (damped natural frequencies) due to the variation of damping coefficient is more significant compared 

to the variation of the amplitude of response in the harmonics. The variation of damping coefficient is due to the frequent

variations in the operating speed in wind turbine drivetrains. 

4. Damping at the natural frequency depends on the operating speed. The damping coefficient at two ensuing operations 

in two different speeds can be estimated by applying the theory developed in this Section and modeled by eq. 11 , based

on monitoring the variations of the natural frequency and amplitude of response between two sequential operations. 

5. By using the estimated damped natural frequencies from torsional response and the estimated damping coefficient from 

the analysis of amplitude of response, the undamped natural frequencies are obtained, which provide inputs for the 

drivetrain system health monitoring approach based on monitoring the variations of system dynamic properties. 

The algorithm which summarizes the proposed drivetrain modal estimation and the ensuing CM approach is illustrated 

by the flowchart in Fig. 1 . ��1 
m 

and ��2 
m 

are the normal modes related to the 1 st and 2 nd natural frequencies, respectively.

m varies from 1 up to the degree of the model, which accounts for the different bodies in the equivalent reduced order

model. τtor 
�

and τ
m 
are the low-limit threshold natural frequency and normal mode related to normal operations. Close 

modes are more difficult to identify than well-separated modes and their identification often has an uncertainty. For wind 

turbine drivetrain, lower natural frequencies are in general well separated and close modes might happen only for higher 

modes [34] . 

4. Simulation studies 

4.1. Simulation test case 

For the simulation studies, DTU 10 MW reference wind turbine is selected. In order to evaluate if the input torque is able

to excite the drivetrain natural frequencies and subsequently to study the possibility of observing those frequencies in the 

different drivetrain torsional responses, an effective approach is involving decoupled simulation technique. For this purpose, 

the rotor torque T r of a detailed model of 10 MW turbine with a spar floating platform obtained from SIMA global simulation

software [35] is used, and the impacts on the drivetrain is studied by using a decoupled analysis. The generator torque T r 
is also decided to set the speed on the shaft under variable input torque, but the internal dynamics of the generator in

tracking the defined set point is neglected. 

The decoupled simulation approach consists of two separated phases. In the first phase, global simulation analyses are 

performed under different environmental conditions. In the global simulation, the blades and hub assembly, the structural 

module including the flexible multi-body systems for tower and platform and the nacelle are modelled. This model is coping 
9 
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Fig. 1. Proposed algorithm for driveline condition monitoring by using torsional measurements and estimated modes. 

 

 

 

with combined aerodynamic and hydrodynamic loading by using numerical and probabilistic models of wind, waves and 

current in the global simulation software to capture the integrated effect of the loads and the wind turbine control system

on the turbine model. The results of the global analysis in this study are the loads transmitted to the drivetrain by the

rotor specified by the time series of the resultant moment on the rotor. The second phase of decoupled analysis is that the

offline global simulation results will then be applied as inputs on the drivetrain model in Simpack multi-body simulation 
10 
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Table 1 

10 MW medium-speed drivetrain 3-DOF model specification. 

Parameter Value 

Equivalent rotor moment of inertia J r (kg.m 

2 ) 800,000,000 

Equivalent gearbox moment of inertia J gr (kg.m 

2 ) 1,239,300 

Equivalent generator moment of inertia J gn (kg.m 

2 ) 15,716,775 

Equivalent low-speed shaft torsional stiffness k L (N.m/rad) 2 , 452 , 936 , 425 

Equivalent high-speed shaft torsional stiffness k H (N.m/rad) 245 , 293 , 642 , 500 

Table 2 

Sensitivity of natural frequencies and normal modes to variations of model 

parameter (stiffness and inertia). 

Sensitivity / Variable k L k H J r J gr J gn 

�tor 
1 0.50 0.00 −0 . 01 –0.03 –0.45 

�tor 
2 0.00 0.50 0.00 -0.45 –0.04 

φrot 
1 0.00 0.00 –1.00 0.07 0.93 

φgear 
1 

0.00 0.00 0.00 0.00 0.00 

φgen 
1 

0.00 0.00 0.00 0.00 0.00 

φrot 
2 0.99 –0.99 –1.00 0.89 0.08 

φgear 
2 

0.00 0.00 0.00 −0 . 01 0.01 

φgen 
2 

−0 . 01 0.01 0.00 0.96 –1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(MBS) software [36] to calculate and analyse the drivetrain components local dynamic responses for modal estimation and 

fault detection purposes. The drivetrain model in the second phase of decoupled simulation utilizes the components reduced 

order models. As a complementary step, the post processing of local responses provides useful information for the drivetrain 

secondary studies. Without loss of generality, a geared drivetrain technology is selected for the simulation studies. However, 

the 3-DOF reference model can also be used for direct-drive technology fault detection based on the proposed approach, 

where regarding the considerable mass of main shaft, it should be modelled as a separate mass to improve the model

accuracy, and then a similar approach can be engaged. 

The operating condition for the global simulation is close to the rated operation with an average wind speed U w 

= 11 m/s,

significant wave height H s = 3.5 m and peak period T p = 7.5 s. In the under consideration 3-DOF torsional model of the geared

drivetrain, rotor, gearbox and generator are modelled with equivalent moment of inertia, and the low- and high-speed shafts 

are each modelled with constant torsional stiffnesses. The generator and gearbox specifications are used from the optimized 

10 MW medium-speed drivetrain system proposed in [32] . The parameters of this model are listed in the Table 1 . The

undamped natural frequencies of this model calculated by eq. (A.1) , and validated by Simpack are 1.9 Hz and 73.9 Hz.

The actual damping of the low- and high-speed shafts are also assumed to be 5% and 10% of the low-speed shaft stiffness,

respectively. The torsional responses of rotor and generator shafts are obtained from the MBS model to investigate possibility 

of observing the natural frequencies from the angular velocity, acceleration and displacement error functions. The proposed 

methods for estimation of damping coefficients in different operating speeds are tested on the damped model of under 

consideration 10 MW geared drivetrain. The possibility of detecting different stages of system-level inertia and stiffness 

related faults from the torsional response obtained from the 10 MW MBS model are investigated by using the proposed 

algorithm. 

In order to capture the system dynamic properties in the proposed approach and to get statistically comparable results, 

the time interval of each block of data should be large enough to capture the lowest natural frequency. The sampling fre-

quency should be high enough to capture the higher frequency modes which are of significance, and on the other side is

limited to the SCADA sampling frequency in case of implementation in the farm level. Since the realization of the method is

based on the 1 st and 2 nd nonrigid modes, for observing these two modes, the required length of data block is only a fraction

of one second and the required sampling frequency is around 400 Hz for 10 MW medium-speed drivetrain technology. 

4.2. Sensitivity analysis results 

The results of the normalized local sensitivity analyses with natural frequencies (�tor 
1 

, �tor 
2 

) and normal modes (φ1 , φ2 ) 

as the outputs and shaft stiffnesses (k L , k H ) as the inputs with variation of only one model parameter at a time are shown

in the Table 2 . The interpretation of the local sensitivity analysis values is disclosed in Section 3.1 . The reported numbers

show the normalized sensitivity values which are calculated based on 10 MW drivetrain model parameters. The values of 

the table in bold designate the absolute sensitivity values higher than 0.01, which is used as the criterion that the associated

parameter and output are correlated. The values which are not highlighted designate the absolute sensitivity values lower 

than 0.01 representing a negligible sensitivity, so that the associated parameter and output are uncorrelated. As it can be 

seen, there is a direct relationship between the 1 st frequency and k L , and the 2 nd frequency and k H . Therefore, variations

in the natural frequencies can be translated into the variations in the shaft stiffness and subsequently the defects in the

drivetrain shafts. The influence of the shafts defect (stiffness variation) on the normal mode of the 1 st natural frequency is
11 
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Table 3 

Sensitivity of amplitude of response at 1 st and 2 nd modes to system parameters and loads. 

Variable / Sensitivity Method 1 ( 1 st mode) Method 2 ( 1 st mode) Method 1 ( 2 nd mode) 

J r 0.02 0.02 0.01 

J gr –0.02 −0 . 01 0.21 

J gn –0.21 –0.10 –0.47 

k L –0.21 –0.34 0.00 

k H 0.00 0.00 –0.25 

c L –0.08 –0.07 0.00 

c H 0.00 0.00 −0 . 01 

T r −0 . 01 −0 . 01 −0 . 01 

T g 0.51 0.51 0.51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

negligible. However, the stiffness variation results in variations in the normal mode element of the 2 nd natural frequency 

related to rotor. The results of the sensitivity analyses with natural frequencies and normal modes as the outputs and mo-

ment of inertia (J r , J gr , J gn ) as the inputs (variation of only one model parameter at a time) are shown in the Table 2 . As it

can be seen, there is an inverse relationship between the 1 st frequency and J gn , and the 2 nd frequency and J gr , so that the

reduction of natural frequencies can be due to a rise in the moment of inertia. To distinguish between the drop in natural

frequencies due to variation in stiffness and moment of inertia, the results should be interpreted together with monitoring 

the variations of normal modes. The simultaneous drop of the 1 st frequency and the normal mode element of the 2 nd fre-

quency related to rotor represents an abnormality in low-speed shaft. The drop of the 2 nd frequency and the simultaneous 

rise in the normal mode element of the 2 nd frequency related to rotor discloses the problems in high-speed shaft. The drop

of the 1 st frequency, the simultaneous rise in the normal mode element of the 1 st frequency related to rotor and drop in

the normal mode element of the 2 nd frequency related to generator reveal unbalances in generator side. The drop of the

2 nd frequency and a simultaneous rise in the normal mode elements of the 2 nd frequency related to both generator and 

rotor can be used as the criteria to detect an unbalance in gearbox. 

As discussed earlier in Section 3 , another criterion which can be used in parallel to ascertain the validity of the above

guideline is monitoring the variations of the amplitude of response at the natural frequencies based on the sensitivity anal- 

ysis values reported in the Table 3 which will be discussed later in this Section. This criterion in difference with the criteria

established in the above guideline needs an anterior estimation of the system loads. However, a good estimation of both 

the rotor and generator torques is available in wind turbine application. The rotor torque is estimated by using the blade

aerodynamic equations and the input wind. The generator torque is estimated from the generator voltage and current mea- 

surements. 

Sensitivity of the amplitude of frequency spectrum of angular velocity error function at the 1 st mode to system param- 

eters and loads are summarized in the Table 3 . The 2 nd column is related to the first method based on the approximation

of peak frequencies with the associated natural frequencies, calculating the response equation at those frequencies, deriving 

the sensitivity equations of the resulted functions in terms of parameters, then updating the response based on the approx- 

imated damping coefficients and repeating the sequence to improve the accuracy of estimation. The results reported of the 

first method are obtained by only a single iteration. The use of this method based on the approximation of �peak with �n 

which is more accurate if ζ << 1 . However, the accuracy can be improved as explained by the correction which can be

applied on the eq. (9) based on the estimated damping coefficients. The 3 rd column of this table is related to the second

method based on the numerical calculation of peak frequencies, deriving the response equation in those frequencies and 

finding the sensitivity of the resulted equations to the parameters and loads variations. The sensitivity of the amplitude of 

frequency spectrum of angular velocity error function at the 2 nd mode to system parameters and loads are also listed in

the 4 th column of the same table. 

As it can be seen from the Table 3 , variation in amplitude of response at the 1 st mode is mainly dominated by generator

torque, generator inertia, low-speed shaft stiffness and damping. The amplitude ratio at the 1 st mode for two different oper- 

ations is directly influenced by load and inversely influenced by damping. Knowing that the system parameters are constant, 

by a prior knowledge about the load, variations in damping can be estimated. To estimate the damping coefficients from the

amplitude of response based on the sensitivity analysis results, three different cases can be assumed for the simulations. 

All these cases are based on monitoring the variations of the response amplitude at the natural frequencies between two 

different operating points t 1 and t 2 . 

Case 1: The two operating points are close, so that the system parameters and load stay constant. 

In this case, the variation in the amplitude ratio directly reflects the variation in the actual damping ratio which varies

due to the variation of the operating speed. Those variations are correlated proportional with the numbers calculated by the 

sensitivity analysis. From this relationship, the variation in the damping coefficient is estimated. By using this information 

along with eq. (11a) , the two dampings of the two operations are estimated. It is worth noting that in Case 1, since the

system parameters and subsequently the critical dampings are constant, the actual damping ratio is equal to the ratio of 

the damping coefficients between the two operations. The estimated values of damping coefficients at the 1 st mode in two 

different operating speeds which meet the conditions of Case 1, by using the two proposed methods which described in 

Section 3.1 compared to the approximation proposed in [23] are listed in the Table 4 . The comparison of the three methods
12 
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Table 4 

Estimation of damping coefficient at the 1 st mode for Case 1: loads do not change between the two operating points. 

Operation ω ( rad 
s 

) �1 
peak 

( rad 
s 

) | e ω tot (�
1 
peak 

) | ζ (reference model) ζ (method 1) ζ (method 2) ζ (method in [23] ) 

ω 1 0.9 8.67 0.159 0.21 0.20 0.16 0.48 

ω 2 0.7 8.46 0.156 0.26 0.25 0.22 0.49 

Table 5 

Estimation of damping coefficient at the 1 st mode for Case 2: loads change between the two operating points. 

Operation ω ( rad 
s 

) �1 
peak 

( rad 
s 

) | e ω tot (�
1 
peak 

) | ζ (reference model) ζ (method 1) ζ (method 2) ζ (method in [23] ) 

ω 1 0.9 8.67 0.159 0.21 0.21 0.18 0.27 

ω 2 0.7 8.46 0.171 0.26 0.25 0.23 0.31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of estimating damping coefficients shows that the method 1 even based on one iteration outperforms the two other damping 

approximation approaches by demonstrating a much lower relative error. 

Case 2: The load varies between the two operations but the system parameters stay constant. 

In this case, the loads and dampings vary while the other system parameters are constrained to be constant. With an

access to the estimated load it is still possible similar to in Case 1 to measure the variation in damping coefficients by

using the local sensitivity analysis results and by relating the variation in response amplitude to the variation in load and

damping, based on the proportions calculated by the sensitivity analysis. From this relationship, the variation in the damping 

coefficient and subsequently the two dampings of the two operations are estimated similar to in Case 1. The estimated 

values of damping coefficients at the 1 st mode in two different operating speeds which meet the conditions of Case 2, by

using the two methods proposed in Section 3.1 are listed in the Table 5 . It is assumed that during the second operating

speed/condition, both the rotor and generator loads have been increased by 20% so that 
T 
ω 2 
r 

T 
ω 1 
r 

= 

T 
ω 2 
g 

T 
ω 1 
g 

= 1 . 2 . Similar to in Case

1, the comparison of the three methods of estimating damping coefficients shows that the method 1 even with one iteration

outperforms the two other damping approximation approaches. 

Case 3: Both the load and parameters are changing. 

In this case, the estimation of damping variation from the response is challenging because it needs a good estimation 

not only from the load but also the other system parameters. In this case, the amplitude of response may not give enough

information to estimate the damping coefficients based on that, because the updated values for the system parameters may 

be unknown. However, assuming that the load can be estimated, the result of this study can be used to authenticate the

conclusions made about the system faults from the analysis of natural frequencies and normal modes variations. 

A similar set of sensitivity analysis is performed for the second mode which shows the sensitivity of amplitude of re-

sponse at the second natural frequency more significantly to the high-speed shaft stiffness, generator torque, and the mo- 

ment of inertia of gearbox and generator with no considerable sensitivity to the damping at the second mode. Based on this

study,the amplitude of response at the second frequency is not significantly influenced by the value of the dampings so that

the amplitude of response is not recommended as a good criterion for estimation of damping coefficient of the second mode.

Some other functions of the amplitude of response of different operations may offer less sensitivity to parameters variation 

which are more useful when the information on the system is low, which are not discussed in here. Another potential of

monitoring the variations of amplitude of response at the estimated torsional natural frequencies is for estimation of the 

loads. In other words, for the same operational speed and system parameters, the natural frequencies and dampings will 

stay the same and variations of the amplitude of response at system torsional natural frequencies is directly connected to 

variations in generator torque which can be used for monitoring the variations of the torque. The latter is also not discussed

more in this work. 

The extracted features obtained by the sensitivity study for detecting the drivetrain faults are evaluated by both the MBS 

simulation model and the real operational data in the continued parts. 

4.3. Simulation-based validation of proposed modal estimation and condition monitoring approach 

The simulation-based validations relies on the data obtained from the multi-body simulation model of 10 MW medium- 

speed PMSG drivetrain system in Simpack. 

4.3.1. Estimation of natural frequencies from torsional measurements 

The PSD spectrum of angular velocity error function obtained from 10 MW drivetrain model and its capability in high- 

lighting the torsional natural frequencies is shown in Figs. 2 (b)- 2 (d). In these three figures, the performance of angular

velocity error function in extracting the 1 st and 2 nd torsional natural frequencies of the drivetrain is compared with an- 

gular displacement and angular acceleration error functions. As it can be seen, acceleration error function outperforms in 

revealing the higher frequency modes (the 2 nd mode). The higher modes have usually a lower impact on the response, 

which impedes disclosure of those frequencies. The PSD spectrum of the input torque applied on the drivetrain MBS model 
13 
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Fig. 2. Simulation results based on 10 MW floating wind turbine model. (a) PSD of τ rotor . (b) PSD of e v el 
tot . (c) PSD of e acc 

tot . (d) PSD of e dis 
tot . (e) Fault in 

low-speed shaft. (f) Fault in high-speed shaft. (g) Fault in generator. (h) Fault in gearbox. (i) Fault in rotor. 
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Table 6 

Low-speed shaft fault cases. 

Fault case k L 
k n 

L 

�tor 
1 

�tor,n 
1 

�tor 
2 

�tor,n 
2 



�1 
rot 



�1 ,n 

rot 



�2 
rot 



�2 ,n 

rot 



�1 
gear 



�1 ,n 
gear 



�2 
gear 



�2 ,n 
gear 



�1 
gen 



�1 ,n 
gen 



�2 
gen 



�2 ,n 
gen 

LC0 1 1 1 1 1 1 1 1 1 

LC1 0.95 0.975 1.000 1.000 0.950 1.000 1.000 1.000 1.000 

LC2 0.85 0.923 0.999 1.000 0.851 1.001 1.000 1.000 1.001 

LC3 0.7 0.838 0.999 1.000 0.000 1.003 1.000 1.000 1.003 

LC4 0.5 0.709 0.998 1.000 0.000 1.005 1.000 1.000 1.005 

Table 7 

High-speed shaft fault cases. 

Fault case k H 
k n 

H 

�tor 
1 

�tor,n 
1 

�tor 
2 

�tor,n 
2 



�1 
rot 



�1 ,n 

rot 



�2 
rot 



�2 ,n 

rot 



�1 
gear 



�1 ,n 
gear 



�2 
gear 



�2 ,n 
gear 



�1 
gen 



�1 ,n 
gen 



�2 
gen 



�2 ,n 
gen 

LC0 1 1 1 1 1 1 1 1 1 

LC1 0.95 1.000 0.975 1.000 1.052 1.000 1.000 1.000 1.000 

LC2 0.85 0.999 0.923 1.000 1.175 0.998 1.000 1.000 0.998 

LC3 0.7 0.998 0.838 1.000 1.423 0.996 1.000 1.000 0.996 

LC4 0.5 0.996 0.710 0.993 1.983 0.991 1.000 1.000 0.991 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is shown in Fig. 2 (a). This torque which is obtained from the global simulation contains the majority of frequency compo-

nents and can excite the drivetrain natural frequencies. 

4.3.2. Diagnosis of drivetrain faults 

The drivetrain faults at system-level vary the equivalent torsional model parameters, so that by monitoring the conse- 

quences of these variations on the drivetrain dynamic properties and amplitude of response at the natural frequencies these 

faults can be detected. For simulation purposes, the faults are simulated independently so that the correlations between the 

under consideration faults are neglected. 

As discussed earlier, detection of stiffness changing related faults is possible in the proposed approach by monitoring the 

consequences of these faults on the drivetrain torsional modes based on the results of sensitivity analysis. As an example of

stiffness-related faults, the growth of crack in the shaft causes the torsional stiffness of the shaft to decrease and this change

will be reflected in the driveline torsional natural frequencies. The variations of the shafts stiffness from 5% are considered as

the start of fatigue crack in the shaft. The latter is equivalent with variation in the modal parameters as the fault precursors

in the proposed CM algorithm. In order to simulate the shaft crack growth in the low- and high-speed shafts, the torsional

stiffness of these two shafts in the Simpack model is reduced in four steps from 5 to 50% . The subsequent changes in the

undamped natural frequencies and normal modes are listed and shown in the Tables 6 and 7 . As it can be seen from these

tables, the simulation results agree with the results obtained from the analytical sensitivity analysis of natural frequencies 

and normal modes reported in the Table 2 . Since the fault detection features are obtained from the variations of the physical

model, the threshold for these features is accordingly specified based on the sensitivity analysis employed on a specific 

drivetrain. 

The reduction of the 1 st natural frequency due to a crack in low-speed shaft is illustrated in Fig. 2 (e). In addition, as

it can be seen from this figure, for the two operations with the same loading conditions, that one of them is the normal

system and the other one is the system with a crack in the low-speed shaft, the amplitude of response at the 1 st natural

frequency is higher in the system with the cracked shaft compared to the normal system, which agrees with the results of

the analytical sensitivity analysis of the amplitude of response as reported in the Table 3 . The influence of crack in high-

speed shaft and the consequence in drop of the 2 nd natural frequency is shown in Fig. 2 (f). As it can also be seen in this

figure, a crack in the high-speed shaft causes an increase in the amplitude of response at the 2 nd natural frequency, which

agrees with the sensitivity results related to the amplitude of response at the 2 nd mode as mentioned in the Table 3 . For

scaling and demonstration purposes, Figs. 2 (e) and 2 (f) are normalized with the normal system results. 

The detection of inertia changing related faults is also possible by monitoring the consequences of these faults on the 

drivetrain torsional modes based on the performed sensitivity analysis results. As an example of inertia-related faults, un- 

balance in the rotor, gearbox or generator shafts results in an increase in the equivalent inertia of the component in the

model. Dependent on the severity of unbalance the variation in inertia will be different. A slight unbalance can cause a very

slight change in the inertia and subsequently a slight change in the modes which makes the detection challenging by the

proposed approach. In here, in order to simulate the severe unbalance faults, the inertia of the associated component is in-

creased in three steps from 5 to 20% . The subsequent changes in the drivetrain modes are listed and shown in the Tables 8 -

10 . The simulation results agree with the sensitivity analysis results presented in the Table 2 . 

The reduction of 1 st and 2 nd natural frequency due to increase of inertia of generator and gearbox as a result of unbal-

ance faults in generator and gearbox are respectively shown in Figs. 2 (g) and 2 (h). The influence of increase of rotor inertia,

which can model the rotor unbalance fault, on the simultaneous reduction of 1 st and 2 nd normal modes in rotor position

is also shown in Fig. 2 (i). All these three figures are normalized with the normal system results. 
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Table 8 

Inertia related fault cases (rotor). 

Fault case J r 
J n r 

�tor 
1 

�tor,n 
1 

�tor 
2 

�tor,n 
2 



�1 
rot 



�1 ,n 

rot 



�2 
rot 



�2 ,n 

rot 



�1 
gear 



�1 ,n 
gear 



�2 
gear 



�2 ,n 
gear 



�1 
gen 



�1 ,n 
gen 



�2 
gen 



�2 ,n 
gen 

LC0 1 1 1 1 1 1 1 1 1 

LC1 1.05 1.000 1.000 0.952 0.952 1.000 1.000 1.000 1.000 

LC2 1.10 0.999 1.000 0.909 0.909 1.000 1.000 1.000 1.000 

LC3 1.20 0.998 1.000 0.833 0.833 1.000 1.000 1.000 1.000 

Table 9 

Inertia related fault cases (gearbox). 

Fault case 
J gr 

J n gr 

�tor 
1 

�tor,n 
1 

�tor 
2 

�tor,n 
2 



�1 
rot 



�1 ,n 

rot 



�2 
rot 



�2 ,n 

rot 



�1 
gear 



�1 ,n 
gear 



�2 
gear 



�2 ,n 
gear 



�1 
gen 



�1 ,n 
gen 



�2 
gen 



�2 ,n 
gen 

LC0 1 1 1 1 1 1 1 1 1 

LC1 1.05 0.998 0.978 1.004 1.046 1.000 1.000 1.000 1.050 

LC2 1.10 0.997 0.957 1.007 1.092 1.000 1.000 1.000 1.100 

LC3 1.20 0.993 0.919 1.015 1.183 1.000 1.000 1.000 1.200 

Table 10 

Inertia related fault cases (generator). 

Fault case 
J gn 

J n gn 

�tor 
1 

�tor,n 
1 

�tor 
2 

�tor,n 
2 



�1 
rot 



�1 ,n 

rot 



�2 
rot 



�2 ,n 

rot 



�1 
gear 



�1 ,n 
gear 



�2 
gear 



�2 ,n 
gear 



�1 
gen 



�1 ,n 
gen 



�2 
gen 



�2 ,n 
gen 

LC0 1 1 1 1 1 1 1 1 1 

LC1 1.05 0.978 0.998 1.046 1.003 1.000 1.000 1.000 0.952 

LC2 1.10 0.958 0.997 1.093 1.007 1.000 1.000 1.000 0.909 

LC3 1.20 0.920 0.994 1.186 1.012 1.000 1.000 1.000 0.833 

Fig. 3. Vestas V66-1.750 MW drivetrain topology, and vibration sensors placement. 

 

 

 

5. Experimental studies 

5.1. Experimental test case 

The operational data from Vestas V66-1.750 MW turbine is used for the experimental study. To test the method, an 

additional encoder is installed on the low-speed shaft. The topology of the drivetrain is shown in Fig. 3 . As it can be seen, the

two encoders EN1 and EN2 are the torsional measurement sensors placed on the low- and high-speed shafts, respectively. 

AC1 and AC2 are the accelerometers placed on the two main bearings to measure the lateral vibrations for comparison of

the proposed method based on torsional vibrations with conventional approaches in the literature which are mainly based 

on translational vibrations. The data sets include the drivetrain operations under different operating speeds in both normal 

and faulty cases. 

In PSD of the angular velocity error function of the operational data, in addition to the natural frequencies, some other

frequency components are also expected to be observed. However, by a prior knowledge about the defect frequencies and 

the other torsional excitation sources, and by subsequently filtering those frequencies, it is possible to distinguish the natural 

frequencies. The benefits with measuring the natural frequencies by this noninvasive method are the low implementation 

cost, and the possibility of obtaining the precise values of natural frequencies by including the system nonlinearities, and 

translational impacts on the rotation transferred through the bed-plate and torque arm. 

5.2. Experimental validation of proposed modal estimation and condition monitoring approach 

The experimental validations are based on the operational data obtained from the drivetrain system of a 1.75 MW Vestas 

wind turbine. 
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Fig. 4. Experimental results based on 1.75 MW Vestas turbine operational data. (a) PSD of e ω tot . (b) PSD of e αtot . (c) PSD of e θtot . (d) PSD of e ω tot in two different 

operations. (e) Comparison of X(�HP ) and e ω tot (�) performances. (f) Fault in low-speed shaft: influence on 1 st mode. (g) Fault in low-speed shaft: FFT of 

accelerometers. (h) Fault in low-speed shaft: phase difference. 

 

5.2.1. Estimation of natural frequencies 

The PSD spectrum of angular velocity error function of the Vestas drivetrain operational data for a rated operation is 

compared with angular displacement and acceleration error functions as shown in Figs. 4 (a)- 4 (c), which shows the observ-

ability of both the drivetrain and blade natural frequencies. The results are validated by comparing with the 1 st drivetrain 

and 1 st blade edgewise natural frequencies of another turbine with the same drivetrain technology and a similar power 

range reported in [37] . The performance of angular velocity error function is compared with angular displacement and ac- 
17 
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Table 11 

Acceleration r.m.s compared with the warning 

limits brought in standard ISO 10816-21. 

Comparison Sensor AC1 AC2 

Measured r.m.s ( m 
s 2 

) 0.01 0.01 

Standard r.m.s threshold ( m 
s 2 

) 0.3 0.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

celeration error functions. As it can be seen, angular acceleration shows a slightly higher performance in amplification and 

extraction of characteristic frequencies of higher values. A comparison between the angular velocity error function PSD in 

two different operating speeds is shown in Fig. 4 (d). As it can be seen, the higher damping coefficient in lower speeds has

resulted in a lower damped natural frequency. Furthermore, at the drivetrain natural frequency, the amplitude reacts more 

significantly to the variation in damping. In other words, the amplitude of response at the natural frequency reduces more 

compared with other harmonics, for a lower rotor speed which corresponds to a higher damping. The filtered low-speed 

shaft angular velocity measurement is shown in Fig. 4 (e). The chosen filter is a first order high-pass butterworth filter with

the cutoff frequency 1 Hz. As it can be seen, the filtered signal shows some degree of competence with the angular ve-

locity error function in extracting the torsional properties of the system i.e. the drivetrain and the blade in plane natural

frequencies. 

5.2.2. Diagnosis of the drivetrain fault 

Our observation on extensive operational measurements of the drivetrain system of the under consideration turbine 

shows that for the same turbine rotational speed the natural frequencies do not change under normal operations. The 

Fig. 4 (f) shows the deviation of 1 st natural frequency which is apparently due to a low-speed shaft fatigue crack. There-

fore, the method is able to detect the shaft cracks in the early stages of progression. As it can be seen, the reduction of

the natural frequency at the same operational speed is observed due to a reduction in the low-speed shaft stiffness as a

consequence of fault in the low-speed shaft. The frequency spectra presented in literature for detection of shaft crack are 

usually unreliable as other types of faults can also generate a similar frequency pattern. More advanced frequency domain 

approaches call for the coupled analysis of the crack vibrations consequences in all bending, longitudinal and torsion which 

is both expensive to implement and dependent on the load and excitation frequencies. The cracked shaft can represent a pe-

riodic reduction in the shaft stiffness due to nonlinear effects such as breathing of the crack. Dependent on the type of crack

the variation of the stiffness of the different directions of lateral, axial and torsional could be different, because the stiffness

change is dependent on the direction of bending moment at the crack cross-section. Due to the coupling phenomena that 

exists in a cracked rotor, i.e. bending-torsion, longitudinal-torsion, the variations of longitudinal or bending stiffness parame- 

ters, which have relationship with type and depth of crack, also influence the torsional stiffness in later stages. Therefore, the

assumptions for modelling of a crack with constant torsional stiffness asymmetry does not seem to be unrealistic. However, 

the proposed method has a potential to be adjusted based on more complex models of stiffness variation in terms of crack

properties. The performance of the proposed fault detection feature based on monitoring natural frequency variations from 

torsional measurements in detection of low-speed shaft faults is compared with three conventional methods in literature 

based on accelerometers measurements. First , the frequency domain indicator based on observing twice the running fre- 

quency component and the subharmonic resonance [27,38] ; second , the variable phase difference between the time domain 

measurements of the accelerometers placed on the two sides of shaft at the shaft rotational frequency component; third , 

the r.m.s of time domain acceleration based on standard ISO 10816-21. The frequency spectra of the two accelerometers 

placed on the two main bearings which support the main shaft are shown in Fig. 4 (g). In this figure, the under consid-

eration turbine has been working with the nominal rotational speed which is 0.33 Hz in the low-speed side. As it can be

seen, the main revolution frequency, the double frequency and the subharmonics do not show a significant amplitude in 

the response. The insufficiency of frequency domain analysis in different operating speeds in detecting shaft faults in the 

general rotor system is also reported in [26] . The other drawback with frequency domain analysis based on our observations

is that due to the low frequency content of the low-speed shaft faults, they can be mistaken with a wide range of excitation

frequencies due to environmental and structural motions induced vibrations which happen in the low frequency range. The 

latter is the reason that the second method which is the crack detection criterion based on the analysis of phase difference

between the acceleration measurements of the two sides of low-speed shaft is also not helpful. The Fig. 4 (h) shows the

synchronized time domain acceleration measurements of AC1 and AC2 which are band-pass filtered around the low-speed 

shaft rotational frequency. As it can be seen, the figure does not represent any variation in the phase difference between

these two signals. Monitoring of the variations of the phase difference of the frequency component 0.33 Hz is not guaran-

teed due to the influence of the other frequency components which appear in response in this frequency range. As it can

be seen in the Table 11 , the described abnormality cannot also be detected by the third method which is the conventional

time domain approach based on the evaluation of the r.m.s value of the time series data of the translational vibrations. 

It is worth noting that the experimental study is based on monitoring the variations of the natural frequency alone and

not the mode shape. The result shows that the natural frequency has reduced by 3%, which in this specific case has been

due to the main shaft fault. If we apply the results of analytical sensitivity analysis of drivetrain dynamic properties as the

function of equivalent model parameters, which are based on 10 MW drivetrain model, to 1.75 MW model, the 3% reduction
18 
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of first natural frequency in general could happen due to either 6% reduction in the main shaft stiffness or 6% increase in

the gearbox inertia. The other possibility is the combined variation of stiffness and inertia. Therefore, by using the proposed 

approach, for localizing the abnormality, the analysis of the mode shapes will also be required. The estimation of mode 

shapes from torsional response is not discussed in this paper, but it can be attained by the drivetrain equivalent model

estimated by using the drivetrain torsional measurements as discussed in [34] . 

6. Conclusions 

A condition monitoring approach bottomed on the coordination of a data-driven approach for estimation of drivetrain 

dynamic properties based on signal processing of the torsional measurements, and the analytical/physical model of drive- 

train to extract the fault detection features was presented. It was shown that only a reduced order 3-DOF model is enough

to detect different categories of drivetrain faults at system level. 

The drivetrain modal estimation approach by using torsional measurements was analytically explained and then vali- 

dated by using both simulation and experimental studies, so that the observability of modal frequency and the estimation 

of modal damping for the different modes and operating speeds were demonstrated by different investigated case studies. 

The estimated modes were later supporting the proposed drivetrain condition monitoring approach which works based on 

monitoring the variations of the system dynamic properties and amplitude of response at the drivetrain torsional frequen- 

cies. The drivetrain system fault detection features were extracted by sensitivity analysis and were tested by both 10 MW 

drivetrain simulated model in Simpack software and 1.75 MW Vestas operational turbine. The results were showing that the 

progression state of different categories of drivetrain faults at system level are observable in an early stage by the method

developed based on 3-DOF equivalent torsional model of the drivetrain, only by tracking the faults consequent variations in 

the drivetrain dynamic properties. 

The results demonstrate the potentials of torsional measurements for both drivetrain modal estimation and system-level 

fault detection. The future work will be devoted to the application of higher DOF torsional models as more detailed equiv-

alent models of the drivetrain, which can capture real-time variations in mesh stiffness and inertia of individual gears and 

intermediate shafts, which can help to detect faults in those subcomponents by taking into account the components internal 

dynamics. 
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Appendix A. Drivetrain dynamic properties and modal analysis by using 3-DOF equivalent torsional model 

A1. 3-DOF equivalent model dynamic properties as a function of model parameters 

The two undamped natural frequencies (nonrigid modes) based on 3-DOF lumped-mass-spring model of a geared drive- 

train, as functions of model parameters, can be calculated by 

�tor 
1 = 

√ 

k L 
2 J r 

+ 

k L + k H 
2 J gr 

+ 

k H 
2 J gn 

−
√ 

( 
−k L 
2 J r 

− k L − k H 
2 J gr 

+ 

k H 
2 J gn 

) 2 + 

k L k H 

J 2 gr 

, (A.1a) 

�tor 
2 = 

√ 

k L 
2 J r 

+ 

k L + k H 
2 J gr 

+ 

k H 
2 J gn 

+ 

√ 

( 
−k L 
2 J r 

− k L − k H 
2 J gr 

+ 

k H 
2 J gn 

) 2 + 

k L k H 

J 2 gr 

, (A.1b) 

where �tor 
1 

and �tor 
2 

are the 1 st and 2 nd natural frequencies, k L and k H are the torsional stiffness of low- and high-speed

shafts, and J r , J gr and J gn are the moment of inertia of rotor, gearbox and generator, respectively. 
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The two normal modes related to the two non-rigid modes of the under consideration drivetrain model, as functions of 

model parameters, which are scaled to unity length are 


�1 

rot = 

√ 

k 2 
L 

k 2 
H 

(k H −J gn A ) 2 
+ k 2 

L 
(k L −J r A ) 2 

+1) 

k L − J r A 

, (A.2a) 


�2 

rot = 

√ 

k 2 
L 

k 2 
H 

(k H −J gn B ) 2 
+ k 2 

L 
(k L −J r B ) 2 

+1 

k L − J r B 

, (A.2b) 


�1 
gear = 

√ 

1 

k 2 
H 

(k H −J gn A ) 2 
+ 

k 2 
L 

(k L −J r A ) 2 
+ 1 

, (A.2c) 


�2 
gear = 

√ 

1 

k 2 
H 

(k H −J gn B ) 2 
+ 

k 2 
L 

(k L −J r B ) 2 
+ 1 

, (A.2d) 


�1 
gen = 

√ 

k 2 
H 

k 2 
H 

(k H −J gn A ) 2 
+ k 2 

L 
(k L −J r A ) 2 

+1 

k H − J gn A 

, (A.2e) 


�2 
gen = 

√ 

k 2 
H 

k 2 
H 

(k H −J gn B ) 2 
+ k 2 

L 
(k L −J r B ) 2 

+1 

k H − J gn B 

, (A.2f) 

where 

A = −
√ 

( 
k H 

2 J gn 
− k L 

2 J r 
+ 

k H −k L 
2 J gr 

) 2 + 

k H k L 
J 2 gr 

+ 

k H 
2 J gn 

+ 

k L 
2 J r 

+ 

k H + k L 
2 J gr 

, and 

B = 

√ 

( 
k H 

2 J gn 
− k L 

2 J r 
+ 

k H −k L 
2 J gr 

) 2 + 

k H k L 
J 2 gr 

+ 

k H 
2 J gn 

+ 

k L 
2 J r 

+ 

k H + k L 
2 J gr 

. 



�1 
rot , 


�1 
gear and 


�1 
gen are normal modes at rotor, gearbox and generator due to the 1 st mode. 


�2 
rot , 


�2 
gear and 


�2 
gen are 

the same parameters for the 2 nd mode. 

A2. Modal analysis by using the amplitude spectrum of angular velocity error function and 3-DOF equivalent model 

The amplitude of angular positions at the different places of the drivetrain based on the 3-DOF equivalent torsional 

model of drivetrain transferred to the rotor side are as 

| θr (�) | = 

√ √ √ √ √ 

{ 

( −�4 J gr J gn + �2 (c L c H + 

√ 

G ) −k L k H ) 2 + �2 (�2 
√ 

E −D ) 2 
} 

| T r(�) | 2 + 

{ 

( −�2 c L c H + k L k H ) 2 + �2 D 

2 

} 

| T g (�) | 2 

�4 

(
�4 J r J gr J gn −�2 I + k L k H (J r + J gr + J gn ) 

)
2 + �6 

(
�2 (J r 

√ 

E + c L J gr J gn ) −D (J r + J gr + J gn ) 
)

2 

, 

(A.3a) 

| θgr (�) | = 

√ √ √ √ √ 

{ 
( −�2 (c L c H + k L J gn ) + k L k H ) 2 + �2 (�2 c L J gn −D ) 2 

} 
| T r(�) | 2 + 

{ 
(�2 (c L c H + k H J r ) −k H k L ) 2 + �2 (�2 c H J r −D ) 2 

} 
| T g (�) | 2 

�4 

(
�4 J r J gr J gn −�2 I + k L k H (J r + J gr + J gn ) 

)
2 + �6 

(
�2 (J r 

√ 

E + c L J gr J gn ) −D (J r + J gr + J gn ) 
)

2 

, (A.3b) 

| θgn (�) | = 

√ √ √ √ √ 

{ 

( −�2 c L c H + k L k H ) 2 + �2 D 

2 

} 

| T r(�) | 2 + 

{ 

( −�4 J r J gr + �2 (c L c H + 

√ 

H ) −k L k H ) 2 + �2 (�2 
√ 

F −D ) 2 
} 

| T g (�) | 2 

�4 

(
�4 J r J gr J gn −�2 I + k L k H (J r + J gr + J gn ) 

)
2 + �6 

(
�2 (J r 

√ 

E + c L J gr J gn ) −D (J r + J gr + J gn ) 
)

2 

, 

(A.3c) 

where D = c L k H + c H k L , E = (c L J gn + c H J gr + c H J gn ) 2 , F = (c L J r + c L J gr + c H J r ) 
2 , G = (J gr k H + J gn k L + J gn k H ) 

2 , H = (J r k L + J r k H +
J gr k L ) 

2 and I = c L c H J r + c L c H J gr + c L c H J gn + J r J gr k H + J r J gn k L + J r J gn k H + J gr J gn k L . 

θr (�) , θgr (�) and θgn (�) are the angular positions at rotor, gearbox and generator, respectively. c L and c H are the actual

damping of low- and high-speed shafts. 
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The amplitude of angular velocity error function in the general form by using the Laplace operator S can be defined as a

function of angular positions as follows 

| e ω tot (S) | = | S(θr (S) − θgn (S)) | . (A.4) 

By replacing the angular positions in eq. (A.4) , the result will be 

| e ω tot (S) | = 

√ 

(A 

2 
1 
| S| 6 + A 

2 
2 
| S| 4 + A 

2 
3 
| S| 2 ) | T r (S) | 2 + (A 

2 
4 
| S| 6 + A 

2 
5 
| S| 4 + A 

2 
6 
| S| 2 ) | T g (S) | 2 

A 

2 
7 
| S| 8 + A 

2 
8 
| S| 6 + A 

2 
9 
| S| 4 + A 

2 
10 

| S| 2 + A 

2 
11 

, (A.5) 

where A 1 = J gr J gn , A 2 = c L J gn + c H J gr + c H J gn , A 3 = J gr k H + J gn k L + J gn k H , A 4 = J r J gr , A 5 = c L J r + c L J gr + c H J r , A 6 = J r k L +
J r k H + J gr k L , A 7 = J r J gr J gn , A 8 = c L J r J gn + c H J r J gr + c L J gr J gn + c H J r J gn , A 9 = c L c H J r + c L c H J gr + c L c H J gn + J r J gr k H + J r J gn k L + J r J gn k H + 

J gr J gn k L , A 10 = c L J r k H + c H J r k L + c L J gr k H + c H J gr k L + c L J gn k H + c H J gn k L , A 11 = J r k L k H + J gr k L k H + J gn k L k H . 

The denominator of angular velocity error function e ω tot (S) based on the described model finds the form as 

D (e ω tot (S)) = (A 7 S 
4 + A 8 S 

3 + A 9 S 
2 + A 10 S + A 11 ) S 

2 . (A.6)

The roots of the above function are the poles of e ω tot (S) which belong to the set of extreme points of the response. By

replacing S = j� for the equivalent undamped system, D (e ω tot (�)) will find the form of a complex equation. To find the

roots of the resulted complex equation, the absolute value of this equation is set to be zero which turns to the following

polynomial equation 

(A 7 �
6 − A 9 �

4 + A 11 �
2 ) 2 + (A 10 �

3 − A 8 �
5 ) 2 = 0 . (A.7) 

The above equation can be reduced to a polynomial of the order of four by the change of variable γ = �2 and eliminating

the rigid modes ( � = 0 ), which makes it possible to find the closed form solutions of the response poles. The resulted

equation is 

A 

2 
7 γ

4 + (A 

2 
8 − 2 A 7 A 9 ) γ

3 + (A 

2 
9 + 2 A 7 A 11 − 2 A 8 A 10 ) γ

2 + (A 

2 
10 − 2 A 9 A 11 ) γ + A 

2 
11 = 0 . (A.8)

By assuming damping equal to zero, and considering the positiveness of γ , the two acceptable answers are obtained. The 

results give four values for � which belong to the extreme points of response. The results are two pairs of imaginary poles

which the absolute value of each pair coincides with one of the system torsional eigenfrequencies described by eq. (A.1) . 

The results can be extended to the damped system so that also in the damped system the poles of the response coin-

cide with the eigenfrequencies of the system, where the poles take the complex form S = σ + jω d = ζ�n + j�n 

√ 

1 − (ζ ) 2 .

However, the absolute value of the poles will still be | S| = �n . 

Appendix B. Sensitivity of drivetrain system dynamic properties to the equivalent model parameters based on 3-DOF 

model 

B1. Sensitivity of natural frequencies to the system parameters 

The equations describing the sensitivity of natural frequencies to the system parameters are summarized as follows. For 

this case, there are two natural frequencies and five parameters which results in ten different sensitivity functions. 

S norm 
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B2. Sensitivity of normal modes to the system parameters 

The sensitivity of normal modes to parameters variations can be defined for each element of eigenvector associated to 

each eigenfrequency. Therefore, for the under consideration 3-DOF model with two nonrigid modes, and five parameters of 

system, thirty different sensitivity functions are derived. For instance, the sensitivity of the eigenvector element related to 

gearbox, due to the 1 st and 2 nd modes, to variations in system parameters are brought as follows: 
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B3. Sensitivity of amplitude of response at the natural frequencies to the system parameters and loads 

The sensitivity of amplitude of response at the natural frequencies to system parameters and loads can be defined for 

the two natural frequencies with respect to the seven system parameters and the two input/output loads which results in 

eighteen different cases. In the following, the closed form equations of the sensitivity analysis associated to 1 st and 2 nd 

torsional frequencies with respect to both the input and output loads are shown: 
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