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Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous

e�cient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense

subregions due to the complexity of the exact methods. Existing algorithms are generally e�cient for dense subtensor,

subgraph detection and can perform well in many applications. However, most of the existing works utilize the state-or-the-art

greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback

of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on

its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the

density with respect to the input tensor for the �rst estimated subsensor only. We address these drawbacks by providing both

theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound

of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph

and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its

density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive

experiments on several real-world datasets, which demonstrates its e�ciency and feasibility.
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1 INTRODUCTION
In many real-world applications, generated data are commonly represented in complex structures such as graphs

or multidimensional arrays, that can be referred to as tensors [8]. Tensors and graphs have been used in several

important domains, including geometry, physics and biology as well as computer science [16, 29, 37, 47]. As

a result of the growth in the number of applications involving tensors, graphs, combined with the increase

of researchers’ interests, numerous tensor, graph-related approaches have been proposed, including tensor

decomposition [23, 42], tensor factorization [30, 32, 46], and dense subgraph detection [12, 17, 22].
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Dense subregion detection has been extensively studied and has attracted much interest due to a wide-range

of real-life applications [6, 33, 36, 45]. Finding the densest subtensor or the densest subgraph is generally an

NP-complete, or an NP-Hard problem [3, 14, 19], and the hardness of the densest detection problem varies with

the choice of constraint requirements, e.g, the size and the dimension of the data, and the chosen density measure.

Due to the complexity of the exact algorithm, it is infeasible for large data or in dynamic environments such as

streaming. Therefore, the approximation methods are commonly used for detecting the densest subregions [4, 5, 7].

GREEDY is an e�cient approximation algorithm that proposed to �nd the optimal solution in a weighted graph [4].

Charikar [7] introduced a further analysis of the GREEDY, and the analysis showed that the GREEDY method

can be solved by using linear programming technique. The authors proposed a greedy 2-approximation for this

optimization problem with a density guarantee of the dense subgraph greater than a half of the maximum density

in the graph. Several algorithms have adopted the greedy method with a guarantee on the density of dense

subgraphs in speci�c applications such as fraud detection, event detection, and genetics applications [17, 33, 45],

among others. Common for these works is that they use the greedy 2-approximation to �nd a dense subgraph to

optimize an objective of a given interest density measure.

Besides graphs, tensor has gradually attracted much interest of researchers because the data generated by

many sources in real applications can be represented naturally in the form of a tensor. Various algorithms have

been proposed by extending the works on dense (sub)graph detection to tensor data for speci�c applications such

as network attack detection, change detection in communication networks, and fraud detection [10, 18, 26, 40].

M-Zoom [38] and M-Biz [39] are among the current state-of-the-art dense subtensor detection algorithms. They

extend the approaches on dense (sub)graph detection, such as [7, 11], into tensor detection by considering more

dimensions for a speci�c problem to obtain highly accurate algorithms. Further, they utilize a greedy approach to

provide local guarantee for the density of the estimated subtensors. However, the adopted density guarantee is

the same as in the original work without any improvement in the density guarantee. M-Zoom and M-Biz are

able of maintaining : subtensors at a time. Each time a search is performed, a snapshot of the original tensor is

created, and the density of the estimated subtensor in each single search is guaranteed locally on the snapshot.

Hence, M-Zoom and M-Biz only provide a density guarantee with respect to the current intermediate tensor

rather than the original input tensor. A more recent approach, called DenseAlert [41], was developed to detect an

incremental dense subtensor for streaming data. Despite its e�ciency, however, DenseAlert can estimate only

one subtensor at a time, and it can only provide a low density guarantee for the estimated subtensor. Hence, it

might miss a huge number of other interesting subtensors in the stream.

Extensive studies have shown that DenseAlert, M-Zoom, and M-Biz generally outperform most other tensor

decomposition methods, such as [20, 48], in terms of e�ciency and accuracy. Nevertheless, an important drawback

of these methods is that they can only provide a loose theoretical guarantee for density detection, and that

the results and the e�ciency are mostly based on heuristics and empirical observations. More importantly,

these methods do not provide any analysis of the properties of multiple estimated subtensors. We aim at

addressing these drawbacks by proposing a novel technique for estimating several dense subtensors. We provide

a mathematical foundation for giving a higher density guarantee in detecting both dense subgraph and dense

subtensor. Speci�cally, the new boundary is better and does not only depend on the dimension of the data space,

but our novel found density guarantee is also constrained on the size of the densest subtensor/subgraph. First,

we provide a well-founded theoretical solution to prove that there exist multiple dense subtensors such that their

density are guaranteed to be between speci�c lower and upper bounds. Second, to demonstrate applicability,

we introduce a new algorithm, named MUST (MUltiple Estimated SubTensors), which not only supports the

aforementioned proof of providing a better bound of density, but also provides an e�ective method to estimate

these dense subtensors.

To give an overview of the di�erences between our method and the existing approaches, Table 1 compares the

characteristics of MUST against current state-of-the-art algorithms.
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In summary, the main contributions of this work are as follows:

(1) We introduce a foundation to theoretically guarantee a better density of both estimated subgraph and

subtensor in dense subgraph and dense subtensor detection. We provide a new method that is capable of

estimating subtensors with a density guarantee that is higher than those provided by existing methods.

Speci�cally,

• The new density bound for the dense subtensor is
1

#
(1+ #−1

<8= (0,
√
=) ), while the current widely-used bound

is 1/# . Here, = and 0 denote the size of the tensor and the densest subtensor, respectively, and # is the

number of ways of the tensor.

• For the dense subgraph detection, the new density bound is
1

2
(1 + 1

<8= (~,
√
=) ), where = and ~ denote the

size of the graph and the densest subgraph, respectively.

(2) We present a novel theoretical foundation, along with proofs showing that it is possible to maintain multiple

subtensors with a density guarantee.

(3) We prove that there exist at least<8=(1 + =
2#
, 1 + # (# − 1)) subtensors that have a density greater than a

lower bound in the tensor.

(4) We perform an extensive experimental evaluation on real-world datasets to demonstrate the e�ciency of

our solution. The proposed method is up to 6.9 times faster and the resulting subtensors have up to two

million times higher density than state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 gives an overview of related work. Section 3 describes

the preliminaries for the method. Section 4 elaborates on the theoretical foundation for providing a new density

guarantee of dense subtensors. Section 5 provides a new better density guarantee of subgraph in dense subgraph

detection problem. Section 6 presents the solution for detectingmultiple dense subtensors with a density guarantee.

Section 7 discusses the evaluation of our method and explains its applicability. Finally, Section 8 concludes the

paper and outlines the future work.

This paper extends our work in [9], and provides a more thorough study of the problem. In particular, we

provide a theoretical foundation on the density guarantee on graph data. We also present new experimental

results and provide in-depth discussion of the results in the dense subregion detection problem.

Reproducibility: The source code and data used in the paper are publicly available at https://bitbucket.org/

duonghuy/mtensor.

2 BACKGROUND AND RELATED WORK
The problem of �nding the densest subgraphs is generally NP-complete or NP-hard [3, 14]. Due to the complexity

of the exact algorithm with which an exponential number of subgraphs must be considered, it is infeasible for

large datasets or data streams. Therefore, approximation methods are commonly used for detecting the densest

subregions [4, 5, 7]. Ashiro et al. [4] proposed an e�cient greedy approximation algorithm to �nd the optimal

solution for detecting the densest subgraph in a weighted graph. Their idea is to �nd a :-vertex subgraph of an

=-vertex weighted graph with the maximum weight by iteratively removing a vertex with the minimum weighted-

degree in the currently remaining graph, until there are exactly : vertices left. Charikar [7] studied the greedy

approach (GREEDY) further, which showed that the approximation can be solved by using linear programming

technique. Speci�cally, the author proposed a greedy 2-approximation for this optimization problem, with which

a density guarantee of the dense subgraph is greater than a half of the maximum density in the graph. Many

algorithms have later adopted the greedy method with a guarantee on the density of dense subgraphs targeting

speci�c applications, such as fraud detection, event detection, and genetics applications [17, 25, 33, 45]. Common

for these works is their use of the greedy 2-approximation to �nd a dense subgraph.

Inspired by the theoretical solutions in graphs, numerous approaches have been proposed to detect dense

subtensors by using the same min-cut mechanism [39, 41]. As mentioned earlier, mining the densest subtensor in

4
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a tensor is hard, and an exact mining approach has a polynomial time complexity [14], thus making it infeasible

for streaming data or very large datasets. To cope with this, approximate methods/algorithms are commonly

used. Among the proposed algorithms, DenseAlert [41], M-Zoom [38], and M-Biz [39] are – because of their

e�ectiveness, �exibility, and e�ciency – the current state-of-the-art methods. They are far more faster than other

existing algorithms, such as CPD [20], MAF [26], and CrossSpot [18]. DenseAlert, M-Zoom, and M-Biz adapt the

theoretical results from dense (sub)graph detection, i.e., [1, 2, 45], to tensor data by considering more dimensions

than two. The algorithms utilize a greedy approach to guarantee the density of the estimated subtensors, which

has also been shown to yield high accuracy in practice [18]. However, the adopted density guarantee is the same

as in the original work, which also applies for the more recent algorithm, ISG+D-Spot [6]. This means that with

an # -way tensor, the density guarantee is a fraction of the highest density with the number of the tensor’s way

# . ISG+D-Spot converts an input tensor to a form of graph to reduce the number of ways, but it drops all edges

having weight less than a threshold. As a result, ISG+D-Spot only provides a loose density guarantee.

The greedy 2-approximation approach has been utilized in many algorithms with both types of data, graph and

tensor [34–36, 44]. Despite of that, most of current works, including [6, 17, 28, 35, 39] can only roughly provide a

guarantee by
1

2
(with graph), and

1

#
(with tensor) density of the densest subregion. To the best of our knowledge,

none of the existing approximation works provides a better guarantee than the baseline algorithms [4, 7]. They

can only provide a loose theoretical density detection guarantee. As discussed in Section 1, DenseAlert, M-Zoom,

and M-Biz employed the same guarantee as in the original work without any further improvement in the density

guarantee. Thus, these methods can only guarantee low density subtensors. To address the limitations of the

previous approaches, we generalize the problem by maintaining multiple dense subtensors, with which we

provide a concrete proof to guarantee a higher lower bound density and show that they have a higher density

guarantee than the solutions in prior works.

3 PRELIMINARIES
In the following, we present the fundamental preliminaries of the dense subtensor, subgraph detection problem,

based on [39, 41].

Dense Subgraph Detection
Definition 1 (Graph). Let � be an undirected graph that is composed by a pair (+ ;�) of a set vertices + and

edges �. We denote the graph as � (+ ;�). There is a weight 08 at each vertex E8 , and a weight 28 9 on each edge 48 9
between two vertices E8 and E 9 in � .

Definition 2 (Density of Graph). Density of� is denoted by d (�) and is de�ned by: d (�) =
∑
08+

∑
28 9

|+ | =
5 (�)
|+ | ,

where |+ | is number of vertices of � , and 5 (�) = ∑
08 +

∑
28 9 , 5 (�) is called the mass of graph � .

Definition 3 (SubGraph). Let � be an undirected graph that is composed by a pair (+ ;�) of a set vertices +
and edges �. ( is a subgraph of � if ( is induced by a subset vertices of + and edges in �.

Definition 4 (Weight of vertex in Graph). Given a graph � (+ , �) with weight 08 at vertex E8 , and weight
28 9 on edge between 2 vertices E8 , E 9 . Weight of vertex E8 in graph � is denoted byF8 (�), and is de�ned by:F8 (�) =
08 +

∑
E9 ∈�∧48 9 ∈� 28 9 .

Definition 5 (Dense Subgraph Detection Problem). Given an undirected graph � = (+ ;�) and a density
measure df. The problem of dense subgraph detection is to �nd subgraphs ( induced by a subset vertices of + and
edges in � to maximize density of ( .

The processing of the greedy approximation algorithm is as follows [4, 7]. The algorithm iteratively removes a

vertex with the minimum weighted-degree in the currently remaining graph until all vertices are removed. Finally,
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it picks the highest density subgraph among the estimated subgraphs. The algorithm gives a 2-approximation

with a density guarantee of a half of the maximum density in the graph. Note that, in the original work, the

density measure is average of weighted-degree of the graph. In this paper, we consider a general density measure

of both weights at vertices and on edges.

Dense Subtensor Detection
Several dense subtensor detection methods have been proposed by extending the works in dense (sub)graph

detection to tensor data. However, they use the samemin-cut mechanism as in dense subgraph detection [6, 39, 40].

These methods employed the same guarantee as in the original work without any improvement in density

guarantee. In this chapter, we generalize the problem in both dense subtensor and dense subgraph detection and

propose our new theoretically proofs to give a better approximation guarantee of the density. In the rest of this

chapter, we use subregion to indicate both subtensor and subgraph.

Definition 6 (Tensor). A tensor, ), is a multidimensional array data. The order of ) is its number of ways.
Given a # -way tensor, on each way, there are multiple spaces, each of which is called a slice.

Definition 7 (SubTensor). Given an N-way tensor ) , & is a subtensor of ) if it is composed by a subset B of the
set of slices ( of ) , and there is at least one slice on each way of ) . Intuitively, & is the left part of ) after we remove
all slices in ( but not in B .

Definition 8 (Entry of Tensor). � is an entry of an N-way (sub)tensor) if it is a subtensor of) and is composed
by exactly # slices.

Definition 9 (Size of a (sub)Tensor). Given a (sub)Tensor Q, the size of Q is the number of slices that compose
Q.

Definition 10 (Density). Given a (sub)tensor Q, the density of Q, denoted by d (&), is computed as: d (&) =
5 (&)

size of Q , where 5 (&) is mass of the (sub)tensor & , and is computed as the sum of every entry values of & .

Definition 11 (Weight of Slice in Tensor). Given a tensor) . The weight of a slice @ in) is denoted byF@ () ),
and is de�ned as the sum of entry values composing by the intersection of ) and @.

Definition 12 (D-Ordering). An ordering c on a (sub)tensor Q is a D-Ordering, if

∀@ ∈ &,@ = argmin
?∈&∧c−1 (?) ≥c−1 (@)

F? (c@), (1)

where c@ = {G ∈ & |c−1 (G) ≥ c−1 (@)}, c−1 (@) is to indicate the index of the slice @ in c ordering, andF? (c@) is the
weight of ? in c@ . Intuitively, the D-Ordering is the order that we pick and remove the minimum slice sum in each
step.

The principal of D-Ordering in tensor data is the similar to the min-cut mechanism in dense subgraph detection,

like GREEDY [4, 7].

Definition 13 (Mining Dense Subtensor Problem). Given a tensor) . The problem of dense subtensor detection
is to �nd subtensors & ∈ ) that maximize the density of Q.

For readability, the notations used in this paper are summarized in Table 2. In the rest of the paper, when

specifying a (sub)tensor, we use its name or set of its slices interchangeably.

Example 1. Let us consider an example of 3-way tensor ) as in Figure 1a. The value in each cell is the number
of visits that a user (mode User) visits a web page (mode Page) on a date (mode Date). The values of hidden cells
are all zero. The set of slices of tensor ) is {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2)}. A subtensor & formed by

6



Table 2. Table of notations

Symbols Description

) , & Tensor data ) , &

�8 The i-th dimension of tensor �

|�8 | Number of slices on way �8 of a tensor �

) ∗ Densest subtensor ) ∗

� (Sub)Graph data � .

�∗ Densest Subgraph.

E8 , 08 Vertex E8 , and weight 08 at vertex E8 .

28 9 Weight on edge between two vertices E8 and E 9 .

/, I0 Zero subtensor / with zero point I0
� Backward subtensor

� Forward subtensor

=, # Size (with tensor, it is number of slices, with graph, it is number of vertices), and

number of ways of data

d , d∗ Density d , highest density d∗

d (&) Density of &

c An ordering c

& (c, 8) A subtensor of & formed by a set of slices {? ∈ &, c−1 (?) ≥ 8}
dc (8) Density of subtensor & (c, 8)
@ A slice of a tensor

0 Size of densest subtensor

1 Number of slices in Zero subtensor such that not in densest subtensor

~ Size of densest subgraph

< Size of Zero subtensor / ,< = 0 + 1
5 (&) Mass of the (sub)tensor &

F@ (&) Weight of element @ (vertex, or slice) in data & (graph, or tensor).

the following slices {(1,2), (1,3), (2,1), (2,2), (3,1)} is the densest subtensor (the yellow region) and the density of & is
(5+5+7+2)/5 = 3.8.

Meanwhile in Figure 1b, it is an example of 2-way tensor. The tensor in Figure 1b, ) , can be represented as a
matrix. The yellow region in the tensor is the densest subtensor in ) , and its density is 8+5+5

4
= 4.5. The density of the

subtensor & formed by the �rst three columns and the �rst three rows is (8+5+1+5+1+3)
6

= 23

6
.

The problem of mining dense subtensors [39, 41] can be presented and solved as follows. Given a list of =

variables 3c (8) (1 ≤ 8 ≤ =), where 3c (8) is calculated during the construction of D-Ordering. Its value at each

time is picked by the minimum slice sum of the input (sub)tensor. Then, a Find-Slices() function �nds the index

8∗ = argmax

1≤8≤=
dc (8), which is the location to guarantee a subtensor with a density greater than the lower bound.

Find-Slices(), shown in Algorithm 1, is a function that was originally de�ned in [38, 39, 41], which is a principal

function for estimating a subtensor, such that its density is greater than the lower bound. The density of an

estimated subtensor is guaranteed as follows.

Theorem 1 (Density Guarantee) [39, 41]). The density of the subtensor returned by the Algorithm 1 is greater
than or equal to 1

#
d∗, where d∗ is the highest density in the input tensor.

7
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Fig. 1. Examples of tensor

Proof. The proof of this theorem was provided in [39, 41]. For convenience, we recall their proof as follows.

Let @∗ ∈ ) ∗ be the slice such that c−1 (@∗) ≤ c−1 (@),∀@ ∈ ) ∗. This means that @∗ is the slice in the densest

subtensor having the smallest index in c . Therefore dc (8∗) ≥ dc (c−1 (@∗)) ≥ 1

#
d∗. �

4 THE NEW DENSITY GUARANTEE OF SUBTENSOR
As can be inferred from the discussion above, the basic principle underlying DenseAlert, M-Zoom, and M-Biz is

Theorem 1. It is worth noting that this theorem guarantees the lower bound of the density on only one estimated

subtensor from an input tensor. To the best of our knowledge, none of existing approximation approaches provides

a better density guarantee than GREEDY. Based on this, we can raise the following questions: (1) Can this lower

bound be guaranteed higher? (2) Are there many subtensors having density greater than the lower bound? (3)

Can we estimate these subtensors?

In this section, we answer question (1) by providing a proof for a new higher density guarantee. Questions (2)

and (3) will be answered in the next section by providing a novel theoretically sound solution to guarantee the

estimation of multiple dense subtensors that have higher density than the lower bound.

4.1 A New Bound of Density Guarantee
We prove that the estimated subtensors provided by the proposed methods have a higher bound than in the

state-of-the-art solutions.

In [39, 41], the authors showed that the density of the subtensor dc (c−1 (@∗)) ≥ 1

#
d∗, hence satisfying

Theorem 1. A sensible question is: Can we estimate several subtensors with a higher density guarantee than the

state-of-the-art algorithms?

In the following subsections, we introduce our new solution to improve the guarantee in the aforementioned

Find-slices() function and show how a density with higher lower bound than that in [39, 41] can be provided. We

present several theorems and properties to support our solution to estimate multiple dense subtensors.

8



Algorithm 1 Find-Slices

Require: A D-Ordering c on a set of slices Q

Ensure: An estimated subtensor S

1: ( ← ∅,< ← 0

2: d<0G ← −∞, @<0G ← 0

3: for ( 9 ← |& |..1) do
4: @ ← c ( 9), ( ← ( ∪ @
5: < ←< + 3c (@)
6: if </|( | > d<0G then
7: d<0G ←</|( |
8: @<0G ← @

9: end if
10: end for
11: return & (c, c−1 (@<0G ))

Definition 14 (Zero Subtensor). Given a tensor ) , ) ∗ is the densest subtensor in ) with density d∗, c is a
D-ordering on ) , and I0 = min

@∈) ∗
c−1 (@) is the smallest indices in D-Ordering c of all slices in ) ∗. A subtensor called

Zero Subtensor of ) on c , denoted as / = ) (c, I0), and I0 is called zero point.

Theorem 2 (Lower Bound Density of the Estimated Subtensor). Given an N-way tensor ) , and a D-
ordering c on ) . Let / and I0 be a Zero Subtensor and a zero point, respectively. Then, there exists a number 1 ≥ 0

such that the density of the estimated subtensor / is not less than #0+1
# (0+1) d

∗, where 0 and d∗ are the size and density
of the densest subtensor ) ∗.

Proof. We denoteF0 = Fc (I0) (/ ). Further, note that because ) ∗ is the densest subtensor. Then,

∀@ ∈ ) ∗,F@ () ∗) ≥ d∗ ⇒ F0 ≥ d∗.

Due to the characteristic of D-Ordering, we have

F@ (/ ) ≥ Fc (I0) (/ ) = F0,∀@ ∈ / .

Consider a way �8 among the # ways of the tensor ) . Then,

5 (/ ) =
∑

@∈) ∗∧@∈�8
F@ (/ ) +

∑
@∉) ∗∧@∈�8

F@ (/ ).

Furthermore, regarding the way we choose Z, we have

) ∗ ⊆ / ⇒
∑

@∈) ∗∧@∈�8
F@ (/ ) ≥

∑
@∈) ∗∧@∈�8

F@ () ∗) = 5 () ∗).

Therefore,

5 (/ ) ≥ 5 () ∗) +
∑

@∉) ∗∧@∈�8
F@ (/ ) ≥ 5 () ∗) + 1�8F0, (2)

9



where 1�8 is the number of slices in / on dimension �8 that are not in )
∗
. Let 1 =

∑#
8=1 1�8 . Applying Eq. 2 on #

ways, we get

# 5 (/ ) ≥ # 5 () ∗) +F0

∑
1�8

⇒ # (0 + 1)d (/ ) ≥ #0d∗ +F01

⇒ # (0 + 1)d (/ ) ≥ #0d∗ + 1d∗

⇒ d (/ ) ≥ #0 + 1
# (0 + 1) d

∗ .

�

The equality happens when 1 = 0 or in the simple case when # = 1. However, if these conditions hold, the

Zero Subtensor becomes the densest subtensor ) ∗. In the next paragraphs, we consider the higher order problem

of tensor with order # > 1.

Property 1. The lower bound density in Theorem 2 is greater than 1

#
of the highest density and this bound is

within [ 1
#
(1 + 0 (#−1)

=
), 1].

Proof. Let / be the fraction of the density of the estimated subtensor, and ' denote densest subtensor. We

have the following properties about the lower bound fraction:

(1) In the simplest case, when # = 1, the lower bound rate values both in the previous proof and in this proof

are 1. This means that the estimated subtensor / is the densest subtensor, with the highest density value.

Otherwise,

' ≥ #0 + 1
# (0 + 1) =

0 + 1
# (0 + 1) +

(# − 1)0
# (0 + 1) >

1

#
,∀# > 1.

Moreover, since the size of / is not greater than =, we have:

' ≥ 1

#
(1 + (# − 1)0(0 + 1) ) ≥

1

#
(1 + 0(# − 1)

=
).

(2) In conclusion, we have the following boundary of the density of estimated Zero Subtensor, / :

d (/ ) =
{
d∗, if # = 1 ∨ 1 = 0

1

#
(1 + 0 (#−1)

=
)d∗, if 0 + 1 = =.

In an ideal case, when the value of 1 goes to zero, the estimated subtensor becomes the densest subtensor, and its

density can be guaranteed to be the highest. �

4.2 A New Higher Density Guarantee
In this subsection, we provide a new proof to give a new higher density guarantee of dense subtensor.

Theorem 3 (Upper Bound of the Min-Cut Value in Tensor). Given an N-way tensor ) with size =, and a
slice @ is chosen for the minimum cut, such that the weight of @ in ) is minimum. Then, the weight of @ in ) satis�es
the following inequality:

F@ () ) ≤ #d () ) (3)

10



Proof. Because @ is a slice having the minimum cut, we haveF@ () ) ≤ F? () ),∀? ∈ ) . Summing all the slices

in the tensor gives

|) |F@ () ) ≤
∑
?∈)

F? () ) = # 5 () )

⇒F@ () ) ≤
# 5 () )
|) | = #d () ) �

Let )8 (1 ≤ 8 ≤ 0) be the subtensor right before we remove 8-th slice of ) ∗, and @8 be the slice of ) ∗ having the

minimum cutF8 at the step of processing )8 . Since the size of the densest )
∗
is 0, we have 0 indexes from 1 to 0.

Note that )1 is the Zero subtensor / . Further, let"�8 denote the index of the last slice in way �8 of )
∗
that will be

removed. Then, we have following property:

Property 2 (Upper Bound of the Last Removed Index). The minimum index of all"�8 , 1 ≤ 8 ≤ # , denoted
by" , is not greater than (0 − # + 1), i.e.," = min("�8 ) ≤ 0 − # + 1.

Proof. Let"�8 , "� 9 be the indexes of the last removed slices of the two ways �8 and � 9 . Further, assume that

the di�erence between"�8 ,"� 9 is Δ("�8 , "� 9 ) = |"�8 −"� 9 | ≥ 1, and that we have # numbers (# ways) and the

maximum (the last index) is 0. Then, we get

<0G ("�8 ) −<8=("�8 ) ≥ # − 1
⇒" =<8=("�8 ) ≤ 0 − # + 1 �

Theorem 4. The sum of min-cut of all slices from index 1 to" is greater than the mass of the densest subtensor
) ∗:

"∑
8=1

F@8 ()8 ) ≥ 5 () ∗) (4)

Proof. Let � be any entry of the densest subtensor ) ∗ and � is composed by the intersection of # slices,

@�G (1 ≤ G ≤ # ), @�G is on the way �G .

Assume that the �rst removed index of all the slices composing � is at index 8 . Since this index cannot be greater

than" , the entry � is in )8 , and its value is counted inF@G ()G ). Therefore, we have:
∑"
8=1F@8 ()8 ) ≥ 5 () ∗) �

Let d<0G be the maximum density among all subtensors )8 , (8 ≤ 8 ≤ "). According to Theorems 3 and 4, we

have

5 () ∗) ≤
"∑
8=1

F@8 ()8 ) ≤
"∑
8=1

#d ()8 ) ≤ "#d<0G (5)

⇒ 0d∗ ≤ # (0 − # + 1)d<0G (6)

⇒ d<0G ≥
d∗

#

0

0 − # + 1 . (7)

Theorem 5 (Better Density Guarantee of Dense Subtensor). The density guarantee of dense subtensor
mining by min-cut mechanism is greater than 1

#
(1 + #−1

<8= (0,
√
=) )d

∗.

Proof. According to Theorem 2 and Property 1, we have

d<0G ≥ d ()1) ≥
1

#
(1 + 0(# − 1)

=
)d∗ (8)

11



Furthermore, by Inequation 7, we also have

d<0G ≥
d∗

#

0

0 − # + 1 ≥
1

#
(1 + # − 1

0
)d∗ (9)

By combining Eq. 8 and Eq. 9, we get

d<0G ≥
1

#
(1 + 1

2

(0(# − 1)
=

+ # − 1
0
))d∗

⇒d<0G ≥
1

#
(1 + # − 1√

=
)d∗

Note that since d<0G ≥ 1

#
(1 + #−1

0
)d∗, we �nally have

d<0G ≥
1

#
(1 + # − 1

<8=(0,
√
=)
)d∗ �

4.3 Illustrated Example
Let’s consider an example of 3-way tensor) as in Figure 2. The value in each cell is the number of requests that a

user (probably an attacker, in mode Attacker) sends to a server (mode Server) in a period of time (mode Time).

The values in the hidden cells are all zeros. Our task is to analyze the data to detect attackers. The set of slices of

tensor ) is {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2)}. Subtensor & formed by the following slices {(1,2), (1,3),

(2,1), (2,2), (3,1)} is the densest subtensor (the red region), and the density of & is (5+5+7+3)/5 = 4.0.

Here the number of ways of ) is 3, and its size (number of slices that composes ) ) is 8. The existing methods

can only give a guarantee of the estimated subtensor as a fraction of the highest density. The guarantee in this

case is
1

#
d∗ = 4

3
. However, by using our new proof, we proved that the new lower bound of density in this

example is guaranteed to be greater than:

1

#
(1 + # − 1

<8=(0,
√
=)
)d∗ ≥ 4

3

(1 + 3 − 1
√
8

) = 2 +
√
2

2

4

3

≥ 1.7 × 4
3

In comparison between two guarantees, our proposed guarantee on the density is 1.7 (' 1 +
√
2

2
) times greater

than the guarantee by the existing methods. So, our proposed guarantee is more than 70% higher than the current

guarantee.

5 THE NEW DENSITY GUARANTEE OF SUBGRAPH
As aforementioned, tremendous algorithms have adopted the greedy method with a guarantee on the density of

dense subgraphs in speci�c applications such as fraud detection, event detection, and genetics applications [17,

33, 35, 40, 45], among others. The common of these works is that they use the greedy 2-approximation to �nd

a dense subgraph to optimize an objective of a given interest density measure. Numerous methods have been

proposed later using the same min-cut mechanism as in dense subgraph detection [6, 39, 40] for the dense

subtensor detection problem. These methods employed the same guarantee as in the original work without any

improvement in density guarantee. So these methods can only provide a loose theoretical guarantee for density

detection. In this study, we generalize the problem in both dense subtensor and dense subgraph detection. We

propose our new theoretical proofs to give a better approximation guarantee of the density. In Section 4, we

proved and provided a new bound on the density in a tensor data. Now we raise the following questions with the

original problem of detecting dense subgraph: (1) Can we provide a higher guarantee on the density of the dense

estimated subgraph in a graph? (2) Is this bound constrained to any other information rather than the dimension

of the data space? This section answers the question by introducing our proofs to give a better approximation

guarantee on the density of the estimated subgraph in a graph, that is the original foundation for both dense

12
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Fig. 2. An illustrated example of high density guarantee.

subgraph and dense subtensor detection problems. Our novel mathematical proof here is capable of giving a

better guarantee for the current state-of-the-art methods, and shows that the bound is also constrained to the

size of the densest subgraph.

Theorem 6 (Density Guarantee of Dense Subgraph Detection). Given an undirected graph � (+ ;�) with
size = = |+ |. Let �∗ be the densest subgraph in � . There exists a number ? ≥ 0 such that the lower bound density of
estimated subgraph in the GREEDY [7] is 2~+?

2(~+?) d
∗, where d∗ is the density of the densest subgraph �∗, ~ is the size

of �∗, and ~ ≤ (~ + ?) ≤ =.

Proof. Let �1 be the subgraph that is right before we pick the �rst vertex of the densest subgraph �∗ to be
removed, we denote the vertex is EB1. So de�nitely we have: �∗ ⊆ �1, and the size of �1 is =1 ≤ =. We have:

25 (�1) = 2

∑
E8 ∈�1

08 + 2
∑

E8 ,E9 ∈�1

28 9

=
∑
E8 ∈�1

08 +
∑
E8 ∈�1

F8 (�1)

=
∑
E8 ∈�1

08 +
∑

E8 ∈�1∧E8 ∈�∗
F8 (�1) +

∑
E8 ∈�1∧E8∉�∗

F8 (�1)

Let’s denote + (�1\�∗) = {E8 , E8 ∈ �1 ∧ E8 ∉ �∗} and ? = |+ (�1\�∗) |. Because EB1 is chosen for the cut, it means

that EB1 has the minimum cut weight, so we get: F 9 (�1) ≥ FB1 (�1),∀E 9 ∈ �1, and �
∗
is the densest subgraph

thenFB1 (�∗) ≥ d∗. Therefore:∑
E8 ∈�1∧E8∉�∗

F8 (�1) ≥ ? ×FB1 (�1) ≥ ? ×FB1 (�∗) ≥ ? × d∗.
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On the other hand, we have:∑
E8 ∈�1

08 +
∑

E8 ∈�1∧E8 ∈�∗
F8 (�1) ≥

∑
E8 ∈�∗

08 +
∑

E8 ∈�1∧E8 ∈�∗
F8 (�∗)

≥ 2(
∑
E8 ∈�∗

08 +
∑

E8 ,E9 ∈�∗
28 9 )

≥ 25 (�∗)
Note that, size of �1 is =1 = ~ + ? , �nally we have:

25 (�1) ≥ 25 (�∗) + ? × d∗

⇒ 2(~ + ?)d (�1) ≥ 2~d∗ + ? × d∗

⇒ d (�1) ≥
2~ + ?
2~ + 2? × d

∗,

where d∗ is the highest density and ~ ≤ =1 = (~ + ?) ≤ =. The theorem is proved. �

Theorem 7 (Density Guarantee Boundary In Graph). The density of the subgraph �1 as in Theorem 6 is
d (�1), and this density is in [ 1

2
(1 + ~

=
)d∗, d∗], where d∗ is the highest density in � .

Proof. Because d∗ is the highest density so d (�1) ≤ d∗. Moreover, by Theorem 6, we have (because =1 =

~ + ? ≤ =):
d (�1)
d∗

≥ 2~ + ?
2~ + 2? =

1

2

(1 + ~

~ + ? ) (10)

⇒d (�1) ≥
1

2

(1 + ~
=
)d∗ �

According to Theorem 7, the density of the subgraph �1 is in the boundary [ 1
2
(1 + ~

=
)d∗, d∗]. We denote �1,

�2, . . . , �< are subgraphs right before we are going to remove vertex E1, E2, . . . , E~ of �
∗
. Intuitively, �8 is the

subgraph right before we remove i-Cℎ vertex of �∗. The corresponding min-cut at the step of processing �8 is

denoted asF8 . We have a following property about the min-cut value.

Property 3 (Upper Bound Of The Min-Cut Value In Graph). Given an undirected graph� (+ , �) with vertex
E8 having the minimum cut (its weight is minimum). The weight of vertex E8 in graph � satis�es the following
inequality:

F8 (�) ≤ 2d (�) − 0(�), (11)

where 0(�) =
∑
E: ∈� 0:
|+ | is the average weight of all vertices in � .

Proof. Because E8 is a vertex having the minimum cut, so we haveF8 (�) ≤ F: (�),∀E: ∈ � . Sum up of all the

vertices in the graph, we get:

|+ |F8 (�) ≤
∑
E: ∈�

F: (�) =
∑
E: ∈�

0: + 2
∑

E: ,E9 ∈�
2: 9

⇒ |+ |F8 (�) ≤ 2(
∑
E: ∈�

0: +
∑

E: ,E9 ∈�
2: 9 ) −

∑
E: ∈�

0:

⇒ F8 (�) ≤
2(∑E: ∈� 0: +

∑
E: ,E9 ∈� 2: 9 ) −

∑
E: ∈� 0:

|+ |
⇒ F8 (�) ≤ 2d (�) − 0(�).
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�

Let d<0G be the maximum density among subgraphs �8 ,

d<0G =<0G (d (�8 )) (12)

We have:

~−1∑
8=1

F8 (�8 ) + 0~ = F1 (�1) +F2 (�2) + · · · +F~−1 (�~−1) + 0~

≥
∑
E8 ∈�∗

08 +
∑

E8 ,E9 ∈�∗
28 9 = 5 (�∗)

if we assume that 0= = 0 as in the GREEDY algorithm [7], or in many other works in the literature, they assume

that weight at vertices are zero [6, 17], so we have:

~−1∑
8=1

F8 (�8 ) ≥5 (�∗) (13)

⇒2(~ − 1)d<0G ≥~d∗ (14)

⇒d<0G ≥ ~

2(~ − 1) d
∗

(15)

⇒d<0G ≥ 1
2

(1 + 1

~
)d∗ (16)

Theorem 8 (Better Density Guarantee of Dense Subgraph). The density guarantee of dense subgraph
mining by the min-cut mechanism is greater than 1

2
(1 + 1

<8= (~,
√
=) )d

∗, where d∗ is the highest density value in the
graph.

Proof. According to Theorem 6, we have:

d<0G ≥ d (�1) ≥
1

2

(1 + ~
=
)d∗ . (17)

Furthermore, note that we have

d<0G ≥
1

2

(1 + 1

~
)d∗, by Inequation [16]

We combine together two inequations [16-17], we get:

d<0G ≥
1

2

(1 + 1

2

(~
=
+ 1

~
))d∗

⇒d<0G ≥
1

2

(1 + 1

√
=
)d∗

Note that d<0G ≥ 1

2
(1 + 1

~
)d∗, so �nally we have:

d<0G ≥
1

2

(1 + 1

<8=(~,
√
=)
)d∗ �
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6 THE SOLUTION FOR MULTIPLE DENSE SUBTENSORS
As shown in Theorem 2, d (/ ) ≥ #0+1

# (0+1) d
∗
, where / = ) (c, I0) is the Zero subtensor. As discussed before, the

state-of-the-art algorithm, DenseAlert, can estimate only one subtensor at a time, and a density guarantee is low,

i.e.,
1

#
of the highest density. M-Zoom (or M-Biz) is, on the other hand, able of maintaining : subtensors at a

time by repeatedly calling the Find-Slices() function : times, with the input (sub)tensor being a snapshot of the

whole tensor (i.e., the original one). Recall, however, that such processing cannot guarantee any density boundary

of the estimated subtensors with respect to the original input tensor. Therefore, the estimated density of the

subtensors is very low. With this, an important question is: How many subtensors in = subtensors of D-ordering

as in Algorithm 1 having density greater than a lower bound density and what is the guarantee on the lower

bound density with respect to highest density? This section answers this question.

6.1 Forward Subtensor from Zero Point
Again, given a tensor ) , ) ∗ is the densest subtensor in ) with density d∗. c is a D-ordering on ) , and the zero

point I0 = <8=
@∈) ∗

c−1 (@) is the smallest indices in c among all slices in ) ∗ (cf. De�nition 14).

Definition 15 (Forward Subtensor). A subtensor is called 8-Forward subtensor in ) on c , denoted by �8 , if
�8 = ) (c, I0 − 8), 0 ≤ 8 < I0.

Let us consider an 8-forward subtensor �8 = ) (c, 8), 8 < I0. Because 8 < I0,/ ⊆ �8 . Thismeans that 5 (�8 ) ≥ 5 (/ ).
As a result of Theorem 2, we have the following:

# 5 (/ ) ≥ (#0 + 1)d∗

⇒ (#0 + 1)d∗ ≤ # 5 (/ ) ≤ # 5 (�8 )
⇒ (#0 + 1)d∗ ≤ # (0 + 1 + 8)d (�8 )

⇒ d (�8 ) ≥ #0 + 1
# (0 + 1 + 8) d

∗ .

From the above inequality, we get the following theorem.

Theorem 9. The density of every i-Forward subtensor �8 = ) (c, 8), where 8 ≤ # × (# − 1) is greater than or
equal to 1/# of the highest density in ) , d∗.

Proof. From the above inequality, d (�8 ) ≥ #0+1
# (0+1+8) d

∗
.

If we have 8 ≤ # (# − 1), then
⇒ 0 + 1 + 8 ≤ 0 + 1 + # (# − 1)

⇒ #0 + 1
# (0 + 1 + 8) d

∗ ≥ #0 + 1
# (0 + 1 + # (# − 1)) d

∗

⇒ #0 + 1
# (0 + 1 + 8) d

∗ ≥ 0 + 1 + 0(# − 1)
# (0 + 1 + # (# − 1)) d

∗

⇒ #0 + 1
# (0 + 1 + 8) d

∗ ≥ 0 + 1 + # (# − 1)
# (0 + 1 + # (# − 1)) d

∗

⇒ d (�8 ) ≥ #0 + 1
# (0 + 1 + 8) d

∗ ≥ 1

#
d∗ �

Property 4. Among = subtensors ) (c, 8), 1 ≤ 8 ≤ =, there is at least min(I0, 1 + # (# − 1)) subtensors having a
density greater than 1

#
of the densest subtensor in ) .
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Proof. According to Theorem 9, there is at least<8=(I0, 1 + # (# − 1)) forward subtensors that have density

greater than
1

#
of the highest density. �

6.2 Backward Subtensor from Zero Point
We have considered subtensors formed by adding more slices to / . Next, we continue investigating the density

of the subtensors by sequentially removing slices in / .

Definition 16 (Backward Subtensor). A subtensor is called 8-Backward subtensor in ) on c , denoted by �8 , if
�8 = ) (c, I0 + 8), 8 ≥ 0.

Let us consider an 8-backward subtensor �8 . We show that its density is also greater than the lower bound

density.

Property 5. The density of the 1-Backward Subtensor, �1 is greater than or equal to 1

#
d∗.

Proof. Due to the limitation of space, we omit the proof and provide it in an extension supplement upon

request. �

Theorem 10. Let �: denote the :-Backward subtensor, �: = ) (c, I0 + :). Density of �: is greater than or equal
to 1/# of the highest density in ),∀: ≤ 1

#
.

Proof. Note that 5 (�8 ) = 5 (�8+1) +Fc (I0+8) (�8 ). Let �0 = / , and in the following we letF8 (�8 ) =Fc (I0+8) (�8 )
for short. Then, we have

 5 (/ ) =  (5 (�1) +F0 (�0))
=  (5 (�2) +F0 (�0) +F1 (�1))

=  5 (�: ) +  
:−1∑
8=0

F8 (�8 ) .

Because ) ∗ ⊆ / , then:

 5 (/ ) ≥  5 () ∗) +
∑

@∈/∧@∉) ∗
F@ (/ ), (18)

By substitution, we get

 5 (�: ) +  
:−1∑
8=0

F8 (�8 ) ≥  5 () ∗) +
∑

@∈/∧@∉) ∗
F@ (/ )

⇒  5 (�: ) ≥  5 () ∗) +
∑

@∈/∧@∉) ∗
F@ (/ ) −  

:−1∑
8=0

F8 (�8 ).

We denote the set & = {@ | @ ∈ / ∧ @ ∉ ) ∗} by {@1, @2, . . . , @1}. Note that �8 ⊆ / . Thus ∀9, 8,F@ 9 (/ ) ≥ F@ 9 (�8 ) ≥
F8 (�8 ), andFc (I0) (/ ) ≥ Fc (I0) () ∗) ≥ d∗ .
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On the other hand, we have the condition of : : 1−: × ≥ 1−: ×# ≥ 0. In conclusion, this gives the following

inequality:

 5 (�: ) −  5 () ∗) ≥
∑

@∈/∧@∉) ∗
F@ (/ ) −  

:−1∑
8=0

F8 (�8 )

≥
:−1∑
8=0

 ∑
9=1

F@ (8× +9 ) (/ ) −  F8 (�8 ) +
1∑

8=:× +1
F@8 (/ )

≥ (1 − : ×  ) × �c (I0) (/ )
≥ (1 − : ×  )d∗

⇒  d (�: ) (0 + 1 − :) ≥  0d∗ + (1 − : ×  )d∗

⇒ d (�: ) ≥
 0 + 1 − : ×  
 (0 + 1 − :) d

∗

⇒ d (�: ) ≥
 (0 − :) + 1
 (0 + 1 − :) d

∗

⇒ d (�: ) ≥
1

 
d∗ ≥ 1

#
d∗ . �

Theorem 11. Assume that the size of the Zero subtensor / , (0+1), is su�ciently big. Let �: denote the :-Backward
subtensor. The density of �: is greater than or equal to 1/# of the highest density in ),∀: ≤ <8=( 0

#
,
(0+1) (#−1)

# 2
).

Proof. Assume �G is the way that has the smallest number of slices in ) ∗, with a number of slices B . Then,

B ≤ 0/# .

Let& = {@ ∈ / } = {@1, . . . ,@B , . . . , @0 , . . . , @0+1}, denote the set of slices in / , and (0 +1) be the size of the Zero
subtensor.

Let �: be a :-Backward Subtensor of ) , with 1 ≤ : ≤ (0+1)
#

. Then,

# 5 (/ ) =
B∑
8=1

F@8 (/ ) +
0+1∑
8=B+1

F@8 (/ ) ≥ 5 () ∗) +
0+1∑
8=B+1

F@8 (/ ).

Because # 5 (/ ) = # (5 (�: ) +
∑:−1
8=0 F8 (�8 )), the above inequality can be rewritten as

⇒ # (5 (�: ) +
:−1∑
8=0

F8 (�8 )) ≥ 5 () ∗) +
0+1∑
8=B+1

F@8 (/ ) .

The subtensor �8 is a backward subtensor of / by removing 8 slices in / , i.e., �8 ⊆ / and ∀9, 8, �@ 9 (/ ) ≥
�@ 9 (�8 ) ≥ �c (I0+8) (�8 ). Hence,

# 5 (�: ) ≥ 5 () ∗) +
0+1∑
8=B+1

F@8 (/ ) − #
:−1∑
8=0

F8 (�8 )

= 5 () ∗) +
:−1∑
8=0

#∑
9=1

F@ (B+8×# +9 ) (/ ) − #F8 (�8 ) +
0+1∑

8=B+:×#+1
F@8 (/ )

≥ 5 () ∗) + (0 + 1 − :# − B)Fc (I0) (/ ).
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Because

0 + 1 − :# − B ≥ 0 + 1 − :# − 0

#

≥ (0 + 1) (# − 1) + 1
#

− :#

≥ 0,∀: ≤ (0 + 1) (# − 1)
# 2

,

we have

# 5 (�: ) ≥ 0d∗ + (0 + 1 − :# − B)d∗

# 5 (�: ) ≥ (20 + 1 − :# − B)d∗

⇒ d (�: ) ≥
(20 + 1 − :# − B)
# (0 + 1 − :) d∗

⇒ d (�: ) ≥
1

#

20 + 1 − :# − B
0 + 1 − : d∗

⇒ d (�: ) ≥
1

#

(0 + 1 − :) + (0 − : (# − 1) − 0/# )
0 + 1 − : d∗

⇒ d (�: ) ≥
1

#
(1 + (0 − :# ) (# − 1)

# (0 + 1 − :) )d
∗

⇒ d (�: ) ≥
d∗

#
,∀: ≤ 0

#
. �

6.3 Multiple Dense Subtensors with High Density Guarantee
In this subsection, we show that there exist multiple subtensors that have density values greater than a lower

bound in the tensor.

Theorem 12. Given an N-way tensor ) with size = >> # , an order c is a D-Ordering on ) , and Algorithm 1
processes< = (= −# ) subtensors. Then, there are at least<8=(1+ =

2#
, 1+# (# − 1)) subtensors among< subtensors,

such that they have density greater than 1/# of the highest density subtensor in ) .

Proof. Let / denote the Zero subtensor of) on c by Algorithm 1, and the zero index is I0, such that # ≤ =−I0.
Then, we have the following:

(1) By Theorem 9, there are at least<8=(# (# − 1), I0) forward subtensors �1, �2, . . . , having density higher

than
1

#
d∗.

(2) By Theorems 10-11, there are backward subtensors�1, �2, . . . , having density higher than
1

#
d∗. The principle

of the number of backward subtensors having density greater than
1

#
of the highest density is as follows:{

1
#
, by Theorem 10.

<8=( 0
#
,
(0+1) (#−1)

# 2
), by Theorem 11.

(19)

From Eq. 19, there is at least<0G ( 1
#
,<8=( 0

#
,
(0+1) (#−1)

# 2
)) backward subtensors having density greater than the

lower bound.

If
0
#
≤ (0+1) (#−1)

# 2
, then number of backward subtensors having density greater than the lower bound is at

least<0G ( 0
#
, 1
#
) ≥ 0+1

2#
.

Otherwise, we have

<8=( 0
#
,
(0 + 1) (# − 1)

# 2
) = (0 + 1) (# − 1)

# 2
≥ 0 + 1

2#
.
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Hence, the number of backward subtensors is at least
0+1
2#

. Further, if we combine this with the number of forward

subtensors, then there is at least<8=(1 + =
2#
, 1 + # (# − 1)) subtensors in the tensor having density greater than

a lower bound. This can be proved as follows.

According to Theorem 11, we have the number of backward subtensors having density greater than the lower

bound, denoted by 1F , and 1F ≥ (0+1)
2#

. By Theorem 9, we have the number of subtensors having density greater

than the lower bound, we denote this by 5 F , and 5 F ≥ <8=(# (# − 1), I0).
If I0 ≥ # (# − 1), then the number of subtensors that have density values greater than a lower bound is

1 + 5 F + 1F ≥ 1 + # (# − 1), where 1 is used to account for the zero subtensor. Otherwise (i.e., I0 ≤ # (# − 1)),
we have 0 + 1 + I0 = =, and we get

1 + 5 F + 1F ≥ 1 + (0 + 1)
2#

+ I0

⇒1 + 5 F + 1F ≥ 1 + (= − I0)
2#

+ I0

⇒1 + 5 F + 1F ≥ 1 + =

2#
+ I0 (2# − 1)

2#

⇒1 + 5 F + 1F ≥ 1 + =

2#
.

This gives that the number of subtensors having density values greater than the lower bound is 1 + 5 F + 1F ≥
<8=(1 + =

2#
, 1 + # (# − 1)).

If (0 + 1) ≤ = − # (# − 1), then we have at least # (# − 1) forward subtensors having density greater than
1

#

of the highest density.

Otherwise, if = >> # such that

(0 + 1) ≥ = − # (# − 1) ≥ 2# 3

⇒ then we get

(0 + 1)
2#

≥ # (# − 1).

In conclusion, we have at least # (# − 1) backward subtensors, each having density greater than
1

#
of the highest

density. By adding the zero subtensors, we have at least (1 + # (# − 1)) subtensors having density greater than

1

#
of the highest density each. �

Our approach described above can be employed to improve the state-of-the-art algorithms on estimating

multiple dense subtensors using Algorithm 2.

Complexity discussion. In order to estimate : dense subtensors, the complexity of M-Zoom and M-Biz are high.

The worst-case time complexity of M-Zoom and M-Biz is $ (:#=log=) [39]. Its complexity increases linearly

with respect to the number of estimated subtensors, : .

Focusing on the proposed solution, MUST, the complexity includes the cost of D-Ordering, which is$ (#=log=),
and the cost of executing Algorithm 2, which utilizes Google Guava ordering

1
, is $ (=log=), in the worst case. In

total, the complexity MUST is $ (#=log=), which does not depend on the number of estimated subtensors : .

7 EXPERIMENTAL RESULTS
In this section, we present the results from our experimental evaluation, where we evaluate the performance of

our proposed method in terms of both the execution time (i.e., e�ciency) and the accuracy of the density of the

estimated subtensors (i.e., e�ectiveness).

1
https://opensource.google.com/projects/guava
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Algorithm 2 Multiple Estimated Subtensors

Require: A D-Ordering c on a set of slices Q of tensor )

Ensure: Multiple estimated subtensors with guarantee on density

1: Initialization() ⊲ density measure d , build tensor

2: TS← ∅, ( ← ∅
3: Number of estimated subtensors:<D; ← 0

4: <D; ←<8=(1 + =
2#
, 1 + # (# − 1))

5: for ( 9 ← |& |..1) do
6: @ ← c ( 9)
7: ( ← ( ∪ @
8: TS.add ((, d (())
9: end for
10: Sort TS by descending order of density

11: return top-<D; subtensors having highest density in TS

7.1 Experimental Setup
We used four widely-used density measures in our experiments: arithmetic average mass (d0) [7]; geometric

average mass (d6 ) [7]; entry surplus (d4 ) [45], with which the surplus parameter U was set to 1 as default; and

suspiciousness (dB ) [18]. Note that in M-Zoom (M-Biz), Dense-Alert, and in this work, the density measure

used for the proof of guarantee is arithmetic average mass. Nevertheless, the only di�erence among the density

measures is the choice of coe�cients. Hence, we can utilize the same proof for other mass measures to get similar

results.

We implemented our approach based on the implementation used in the previous approaches [38, 39, 41].

We compared the performance of the proposed solution with the state-of-the-art algorithms, M-Zoom and

M-Biz (where M-Zoom was used as the seed-subtensor). To do this, in our experiments, we run the algorithms

using M-Zoom, M-Biz, and MUST to get top 10 subtensors that have the highest density. We carried out all the

experiments on a computer running Windows 10 as operating system, having a 64-bit Intel i7 2.6 GHz processor

and 16GB of RAM. All the algorithms were implemented in Java, including M-Zoom and M-Biz, the source codes

for which were provided by the authors
2
.

7.2 Datasets
In order to evaluate the performance of the proposed solution and compare it with the state-of-the-art algorithms,

we used the following 10 real-world datasets:

• Air Force, which contains TCP dump data for a typical U.S. Air Force LAN. The dataset was modi�ed from the

KDD Cup 1999 Data and was provided by Shin et al. [39].

• Android, which contains product reviews and rating metadata of applications for Android from Amazon [15].

• Darpa, which is a dataset collected by MIT Lincoln Lab to evaluate the performance of intrusion detection

systems (IDSs) in cooperation with DARPA [24].

• Enron Emails, provided by the Federal Energy Regulatory Commission to analyze the social network of

employees during its investigation of fraud detection and counter terrorism.

• Enwiki and Kowiki provided by Wikipedia
3
. Enwiki and Kowiki are metadata representing the number of user

revisions on Wikipedia pages at given times (in hour) in English Wikipedia and Korean Wikipedia, respectively.

2
https://github.com/kijungs/mzoom

3
https://dumps.wikimedia.org/
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• LBNL-Network, which consists of internal network tra�c captured by Lawrence Berkeley National Laboratory

and ICSI [31]. Each instance contains the packet size that a source (ip, port) sends to a destination (ip, port) at a

time.

• NIPS Pubs, which contains papers published in NIPS
4
from 1987 to 2003 [13].

• StackO, which represents data of users and posts on the Stack Over�ow. Each instance contains the information

of a user marked a post as favorite at a timestamp [21].

• YouTube, which consists of the friendship connections between YouTube users [27].

The Air Force dataset was modi�ed from the KDD Cup 1999 Data
5
. We kept �elds (features) such that each

instance has a structure of (?A>C>2>;_C~?4 , B4AE824 , 5 ;06, BA2_1~C4B , 3BC_1~C4B , 2>D=C , BAE_2>D=C ) as described in

Table 3, while other �elds were removed. The Android dataset was obtained from Stanford Network Analysis

Project at this address
6
. The Darpa dataset was provided in the prior work, DenseAlert [41], and we downloaded

the dataset at this address
7
. The Enron Emails, NIPS Pubs, and LBNL-Network were directly downloaded from an

open source project, The Formidable Repository of Open Sparse Tensors and Tools (FROSTT) [43], at this address
8
.

The StackO and YouTube were directly downloaded from The Koblenz Network Collection repository [21], and

we got the datasets at this address
9
. The Kowiki and Enwiki datasets were downloaded from Wikipedia. We

selected these datasets because of their diversity, and because they are widely used as benchmark datasets in the

literature [39, 41]. A more detailed information about the datasets are listed in Table 3.

7.3 Density of the Estimated Subtensors
Figure 3 shows the density of the estimated subtensors obtained with M-Zoom, M-Biz, and MUST. In the �gure,

we plot the average (AVG) and the low boundary (BOUND) density of the top-10 estimated subtensors. As shown,

although the estimated subtensors found by M-Zoom and M-Biz have guarantee locally on the snapshot, the

density of the subtensors drops dramatically with respect to the increasing number of the estimated subtensors, : .

On all the datasets, the average and the bound density of the estimated subtensors with MUST are much higher

than those obtained with M-Zoom and M-Biz in all density measures. MUST also outperforms M-Zoom and

M-Biz on density accuracy of estimated subtensors, focusing on both the average and boundary of density of the

top ten estimated subtensors.

In particular, on the Air Force dataset, the average density with MUST is up to 546% higher than with M-Zoom

and M-Biz, using the arithmetic average mass measure, and more than 891% higher on the Darpa dataset using

entry surplus measure. In terms of lower bound of density of the estimated subtensors, there is a huge gap between

the proposed algorithm and the baseline algorithms. For instance, on the Air Force dataset, the lower bound of

density of the estimated subtensors with MUST are more than 360 times and two million times bigger than with

both baseline algorithms, when applying arithmetic average mass and entry surplus measure, respectively. More

speci�cally, in the top three estimated subtensors by MUST, M-Zoom, and M-Biz in evaluation of network attack

detection on the Air Force dataset (Section 7.5), the density of the second and the third subtensors found by the

compared methods drops signi�cantly and are much lower than in our proposed method. The densities of the

second and the third estimated subtensors found by MUST are 7 times (∼1,930,307/263,295) times and 29 times

(∼1,772,991/60,524) higher than the compared methods. The explanation for this result is that M-Zoom and M-Biz

are not capable of providing a guarantee on the density of these estimated subtensors with respect to the original

input data.

4
https://nips.cc/

5
http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data.gz

6
http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/ratings_ Apps_for_Android.csv

7
http://www.cs.cmu.edu/ kijungs/codes/alert/data/darpa.zip

8
http://frostt.io/tensors/

9
http://konect.uni-koblenz.de/downloads/tsv
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Fig. 3. Average and bound of density on datasets (K: thousand, M: million, B: billion). Best viewed in color and zoom mode.
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Fig. 3. Average and bound of density on datasets (continued)
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Fig. 4. Average runtime for a (sub)tensor on datasets. Best viewed in color.

7.4 Diversity and Overlap Analysis
An important di�erence between MUST and other approaches is its ability to estimate multiple subtensors. Hence,

important aspects worth evaluating and discussing are (1) howmuch di�erence it is between estimated subtensors,

and (2) the fractions of overlap among the detected subtensors. Intuitively, MUST sequentially removes one

slice which has a minimum slice weight at a time. Finally, the algorithm picks the top : highest densities among

estimated subtensors.

In this subsection, we evaluate the diversity of the top three estimated subtensors by MUST, M-Zoom on

the Enwiki, Kowiki and Air Force datasets to analyze the overlap fractions of subtensors. We use arithmetic

average mass (d0) as the density metric and the used diversity measure is the same as in [38]. The diversity of

two subtensors is the average dissimilarity between pairs of them. Here, we chose the Enwiki, Kowiki, and Air

Force datasets because they contain anomaly and fraud events, and that they are commonly used for this type of

benchmark [38, 41].
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Table 4 shows the diversity of the top three estimated subtensors by MUST and M-Zoom. We observe that

the obtained diversities by MUST are 36.2%, 37.2%, and 20.8% on Enwiki, Kowiki, and Air Force, respectively.

The overlap between the subtensors are acceptable and considerable in many contexts, e.g. anomaly and fraud

detection, because groups of fraudulent users might share some common smaller groups or some fraudsters.

Another reason is that fraudulent behaviors of users might happen in just some speci�c periods of time. Compared

to M-Zoom, M-Zoom can �nd more diverse subtensors, which can be explained as follows. M-Zoom is speci�cally

designed to �nd di�erent subtensors by creating a snapshot of the data at each detection process, and it mines a

block in this intermediate tensor. The results of this is, however, that M-Zoom cannot provide guarantee on the

density of the detected subtensors, except on the �rst subtensor. This is one of the drawbacks of M-Zoom, and

as discussed below (Section 7.5), the e�ectiveness of M-Zoom on network attack detection greatly drops with

multiple subtensors.

7.5 E�ectiveness on Network A�ack Detection
Extensive studies have shown that unexpected dense subregion (subgraph, subtensor) is a high sign of anomaly

behaviors [17]. So, dense subregion detection is one of the e�cient approaches and is widely-used in fraudulent

behavior detection. In this section, we evaluate the e�ciency of dense subregion detection in Network Attack

Detection by performing extensive experiment on Air Force dataset. Air Force is speci�cally suitable for evaluating

network attack detection ability. As mentioned earlier, it is a dataset of TCP dump data of a typical U.S. Air Force

LAN. It contains the ground truth labels of connections, including both intrusions (or attacks) connections, and

normal connections. In detail, there are 972,781 connections as normal, while other connections are attacks. This

dataset is widely used for the task of detecting anomaly and network attacks.

Here, we demonstrate the e�ciency, and the e�ectiveness of our proposed method on anomaly and network

attack detection, and compare it with M-Zoom and M-Biz. We analyze the �ve highest subtensors returned

by M-Zoom, M-Biz, and MUST on Air Force, and then we compute how many connections in the estimated
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Table 4. Diversity of estimated subtensors

Algorithm Dataset # Volume* Density Diversity
(Percentage)

MUST

Enwiki

1 4 (1 × 2 × 2) 2397.6

36.2%2 20 (1 × 4 × 5) 2375.7

3 9 (1 × 3 × 3) 2355.9

Kowiki

1 8 (2 × 2 × 2) 273.0

37.2%2 80 (4 × 4 × 5) 258.5

3 64 (4 × 4 × 4) 240.5

Air Force

1 2 (-1 × 2 × 1 × 1 × 1) 1,980,948

20.8%2 1 (-1 × 1 × 1 × 1 × 1) 1,930,307

3 8 (-1 × 2 × 1 × 2 × 2) 1,772,991

M-Zoom

Enwiki

1 4 (1 × 2 × 2) 2397.6

96.7%2 6 (1 × 2 × 3) 1961.5

3 18 (2 × 3 × 3) 908.25

Kowiki

1 8 (2 × 2 × 2) 273.0

99.4%2 12 (2 × 2 × 3) 246.0

3 29,520 (16 × 41 × 45) 181.6

Air Force

1 2 (-1 × 2 × 1 × 1 × 1) 1,980,948

70.8%2 1 (-1 × 1 × 1 × 1 × 1) 263,295

3 4,320 (-2 × 5 × 4 × 3 × 3) 60,524

*
Where -1 = 1 × 1 × 1, and -2 = 3 × 4 × 2.

subtensors are normal activities or attack
10
. Table 5 shows the connections in the top �ve subtensors detected

by MUST, M-Zoom, and M-Biz using arithmetic average mass (d0) as the density metric. We observe that all

connections in the top �ve subtensors found by MUST are attack connections with no false positive. This is

because MUST guarantees the density of all multiple subtensors it �nds. With M-Zoom and M-Biz, they have

the same result as MUST in the top two subtensors. However, in the three remaining subtensors, there are

many normal connections that are wrong estimated by M-Zoom and M-Biz. For example, in the third subtensor

estimated by M-Zoom, only 56,433 connections are attack, and 151,080 other connections are normal among

207,513 connections. So, the ratio of attack is only 27,2% with M-Zoom, and 26.03% with M-Biz. In other words,

M-Zoom and M-Biz produce a high rate of false positive, which in turn means that MUST outperforms M-Zoom,

M-Biz when used in the task of network attack detection, using the Air Force dataset.

7.6 Execution Time
In terms of execution time, to evaluate the performance of the algorithms, we recorded the runtime of the

algorithms on real-world datasets using four measures of the density to return top ten density subtensors.

10
Weprovide theMatlab code to analyze attack connections in the code repository at https://bitbucket.org/duonghuy/mtensor/src/master/data/.
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Table 5. Network a�ack detection on Air Force in the top five subtensors

# Volume Density
(d0)

# Connec-
tions

# Attack
Connections

# Normal
Connections

# Ratio of
Attack

M
U
S
T

1 1 × 1 × 1 × 2 × 1 × 1 × 1 1,980,948 2,263,941 2,263,941 0 100%

2 1 × 1 × 1 × 1 × 1 × 1 × 1 1,930,307 1,930,307 1,930,307 0 100%

3 1 × 1 × 1 × 2 × 1 × 2 × 2 1,772,991 2,532,845 2,532,845 0 100%

4 1 × 1 × 1 × 2 × 1 × 1 × 2 1,764,860 2,269,106 2,269,106 0 100%

5 1 × 1 × 1 × 2 × 1 × 2 × 2 1,612,741 2,534,308 2,534,308 0 100%

M
-
Z
o
o
m

1 1 × 1 × 1 × 2 × 1 × 1 × 1 1,980,948 2,263,941 2,263,941 0 100%

2 1 × 1 × 1 × 1 × 1 × 1 × 1 263,295 263,295 263,295 0 100%

3 3 × 4 × 2 × 5 × 4 × 3 × 3 60,524 207,513 56,433 151,080 27.2%

4 3 × 3 × 4 × 4 × 2 × 154 × 42 33,901 1,026,723 1,007,762 18,961 98.15%

5 2 × 4 × 1 × 7 × 3 × 13 × 12 16,467 98,806 42,961 55,845 43.5%

M
-
B
i
z

1 1 × 1 × 1 × 2 × 1 × 1 × 1 1,980,948 2,263,941 2,263,941 0 100%

2 1 × 1 × 1 × 1 × 1 × 1 × 1 263,295 263,295 263,295 0 100%

3 3 × 4 × 2 × 5 × 5 × 3 × 3 60,699 216,784 56,433 160,351 26.03%

4 2 × 3 × 4 × 3 × 1 × 154 × 42 33,757 1,007,906 1,007,762 144 99.98%

5 2 × 4 × 1 × 7 × 3 × 15 × 12 17,171 107,934 42,968 64,966 39.8%

Then, we calculated the average runtime of the algorithms per each estimated subtensor. The results from this

experiment are shown in Figure 4. We observe that MUST is much faster than M-Zoom and M-Biz on all the

datasets. Speci�cally, it is up to 6.9 times faster than M-Zoom and M-Biz to estimate a subtensor. The obtained

results �t well with our hypothesis and or complexity discussion in Section 6. The explanation for this is that

in MUST the algorithm needs only a single maintaining process to get dense subtensors, while in M-Zoom

and M-Biz, they repeatedly call the search function : times to be able to get : dense subtensors. The proposed

method, MUST, runs nearly in constant time independent of the increase of the number of subtensors; whereas

the execution times of both M-Zoom and M-Biz increase (near)linearly with respect to value of : .

7.7 Scalability
We also evaluate the impact of the number of estimated subtensors (:) to the performance of the algorithms.

Here, we performed experiments on the Enron, YouTube, Air Force, and Enwiki datasets. With arithmetic average

mass, we measured the runtime while varying : within {10, 20, 30, 40, 50}. Figure 5 shows the results of this

experiment. On Enwiki dataset, both M-Zoom and M-Biz run out of memory when the setting value of : ≥ 30.

As shown in the �gure, the execution time of M-Zoom and M-Biz increase linearly with the increasing value of : ,

while the running time of MUST is constant with respect to the value of : . These results conform well with our

complexity analysis in Section 6.

In conclusion, MUST outperforms the current state-of-the-art algorithms for solving the dense subtensor

detection problem, from both a theoretical and experimental perspective.
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8 CONCLUSION
In this paper, we proposed a new technique to improve the task of dense subtensor, dense subgraph detection. As

discussed, the contributions are both theoretical and practical. First, we developed concrete theoretical proofs

for dense subtensors estimation in a tensor problem, as well as theoretical proofs for dense subgraph detection.

An important purpose of this was to provide a guarantee for a higher lower bound density of the estimation

in both dense subtensor and subgraph detection. In addition, we developed a new theoretical foundation to

guarantee a high density of multiple subtensors. Second, extending existing dense subtensor detection methods,

we developed a new algorithm called MUST that has lower complexity and thus more e�cient than existing

methods. Our experimental experiments demonstrated that the proposed method signi�cantly outperformed the

current state-of-the-art algorithms for the dense subtensor detection problem, in terms of both e�ciency as well

as e�ectiveness.

In conclusion, the proposed method is not only theoretically sound, but is also applicable for detecting dense

subgraph and dense subtensors. Nevertheless, when developing the proposed method, we observed that existing

approaches (including ours) treat each tensor slice independently, and that they do not consider the relation

among the slices within a tensor. To address this, in our future work, we will study the connection among slices

when projecting on a way of a tensor. In addition, we will explore applying our method on �nding multiple dense

subgraphs in a graph data, and using it to solve event detection problems, such as change and anomaly detection.
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