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Abstract

In post-combustion CO2 capture, CO2 is absorbed in an amine solvent. The solvent is
regenerated in the desorber column by heat supplied in the reboiler. A large cost when
operating a post-combustion CO2 capture plant is the reboiler duty. In this master’s thesis,
a control configuration based on nonlinear model predictive control (NMPC) was developed
for a multi-absorber CO2 capture plant, the objective function was formulated in a way that
should control the plant towards minimum reboiler duty.

A CO2 capture plant model received from Cybernetica AS was expanded to include multiple
absorber columns. The model was split into two parts, one with the absorber columns
and one with the desorber column and the other process units. Several simple absorber
models were developed and paired with the desorber half of the model in two-NMPC control
configurations. The configurations were tested and developed until a final control structure
was produced.

The developed two-NMPC configurations were tested and compared with a benchmark con-
trol configuration. The benchmark control configuration consisted of one NMPC using the
original model. The original model was used as the plant replacement model in Cybernet-
ica RealSim in all simulations, so the benchmark controller had no model mismatch with the
plant, unlike the two-NMPC configurations. The two-NMPC configurations exhibited varying
performance, but the final configuration offered comparable performance to the benchmark
controller with a 73.6 % reduction in average computational time per sample. There was also
developed another configuration with individual NMPCs for each absorber column, which
reduced the average computational time by 83.1 %.

The results showed that the developed control configurations could deliver acceptable per-
formance while reducing the computational time. The time reduction becomes increasingly
significant the more absorber columns are added to the plant.
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Sammendrag

I et etterforbrenning karbonfangstanlegg blir det brukt en aminløsning for å absorbere CO2.
Aminløsningen blir regenerert i desorberkolonnen gjennom varme tilført i omkokeren. En
stor driftskostnad ved et karbonfangstanlegg er energitilførselen i omkokeren. Det ble i denne
masteroppgaven utviklet en kontrollkonfigurasjon for et karbonfangstanlegg med multiple
absorbere, basert på ulineær modellbasert prediktiv regulering (NMPC). Målfunksjonen ble
formulert på et vis som styrer anlegget mot minimalt energiforbruk samtidig som settpunkt
på fansgtgrad opprettholdes.

En modell av et karbonfangstanlegg mottatt fra Cybernetica AS ble utvidet til å inkludere
multiple absorberkolonner. Modellen ble delt i to deler, en med absorberkolonnene og en
med desorberkolonnen og de andre enhetsoperasjonene. Flere enkle absorbermodeller ble
utviklet og kombinert med desorberhalvdelen av modellen i to-NMPC kontrollkonfigurasjoner.
Konfigurasjonene ble testet og utviklet til en endelig kontrollstruktur ble ferdigstilt.

De utviklede to-NMPC konfigurasjonene ble testet og sammenlignet med en referansekonfig-
urasjon. Referansekonfigurasjonen bestod av én NMPC som bruker den originale modellen.
Den originale modellen ble benyttet som anleggerstatningsmodell i Cybernetica RealSim i
alle simuleringer. I motsetning til to-NMPC konfigurasjonene hadde ikke referansekonfig-
urasjonen modellavvik fra anlegget. To-NMPC konfigurasjonene hadde varierende ytelse,
men den endelige konfigurasjonen hadde sammenlignbar ytelse med referansekonfigurasjonen
med en 73.6 % reduksjon i gjennomsnittlig beregningstid per sampel. Det ble også utviklet
en annen konfigurasjon med en individuell NMPC for hver absorberkolonne som reduserte
den gjennomsnittlige beregningstiden med 83.1 %.

Resultatene viste at de utviklede kontrollkonfigurasjonene kunne levere akseptabel ytelse med
redusert beregningstid. Reduksjonen i beregningstid blir enda viktigere jo flere absorberkolon-
ner som blir lagt til i anlegget.
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Chapter 1
Introduction

CO2 is perceived as the most important greenhouse gas, as it is the greenhouse gas con-
tributing the most to human-induced climate change. A greenhouse gas is a gas that absorbs
infrared radiation emitted from the Earth’s surface and reradiates it back. This contributes
to the greenhouse effect and leads to a warming of the Earth’s surface [1]. Other greenhouse
gases include water vapour, N2O, methane and F-gases.

The CO2 pollution in Norway comes mainly from the combustion of fossil fuels. The primary
sources are transportation, oil and gas production and industry. The trend after 1990 was
a significant increase in CO2 emissions from transportation and oil and gas production until
about 2008. Since then, it has been more stable, and in recent years there has been a decrease
in emissions from transportation. From 1990 to 2019, the CO2 emissions have increased by
19 %. The increase in oil and gas production is an important reason for this [2].

The increase of CO2 in the atmosphere is a global problem. In 2010 CO2 stood for 76 % of
greenhouse gas emissions from human activities on a global scale [3]. A press release from
World Meteorological Organization (WMO) states that CO2 levels continued at record levels
in 2020 after having breached 410 ppm in 2019 [4]. CO2 emissions are a global problem that
humanity has to solve. One method of decreasing CO2 emissions is through Carbon Capture
Utilisation and Storage (CCUS). There are several methods for CO2 capture, including both
pre and post-combustion CO2 capture [5].

This master’s thesis was written in collaboration with Cybernetica AS. Cybernetica AS is
a Trondheim based company specialising in model-based control systems. The topic of this
master’s thesis relates to the control of post-combustion amine-based capture plants, which
Cybernetica AS has been involved in for many years now1. Enaasen Flø laid the foundations
in her PhD thesis, where she developed a dynamic process model of a CO2 capture plant [6].
This model was later implemented in C and further developed by Cybernetica AS during
various projects, such as DOCPCC 1 and 2 [7]. These project resulted in improvements to

1http://cybernetica.no/cybe_case/docpcc/
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1.1. REALISE CCUS

the dynamic process model. For the interested reader, there are published papers detailing
the results of the tests [8;9].

Other attempts have also been made to control CO2 capture plants. Panahi and Skoges-
tad [10;11] proposed control structures for different operational regions using self-optimising
control. There are also studies which have proposed Model Predictive Control (MPC) solu-
tions. He et al. [12] implemented both MPC and nonlinear MPC to a CO2 capture process and
found economic improvements compared to a traditional configuration with PID controllers.
Sultan et al. [13] developed a 2× 2 MPC control strategy of a CO2 capture plant using a 2nd
order continuous-time state-space model.

The objective of this master’s thesis is to develop control configurations for a multi-absorber
CO2 capture plant based on nonlinear model predictive control (NMPC). The control con-
figurations must be able to satisfy capture ratio setpoints while steering the plant towards
minimum reboiler duty.

1.1 REALISE CCUS

The work in this master’s thesis is related to the project REALISE CCUS. REALISE CCUS
is a project which brings together partners from science and industry in Europe, China and
South Korea to demonstrate the full CO2 chain for industrial clusters centred on refineries.
The project is a three-year project which started in May 2020 and has received funding from
the European Union’s Horizon 2020 research and innovation programme. The project con-
sists of seven work packages. These are Optimisation, Capture, Industrial clusters, Society,
Dissemination, Collaboration with Mission Innovation (MI) countries and Project manage-
ment [14]. Cybernetica’s part of the project relates to controlling the plant. The plant, in
this thesis, is a theoretical plant with multiple absorber columns and one common desorber
column.

1.2 Summary of the specialisation project

This master’s thesis is a continuation of the work done in a specialisation project during
the fall of 2020. The purpose of the specialisation project was to compare different control
structures for controlling a CO2 capture plant with an NMPC. First, the original mechanistic
model was split into two parts. One part included the absorber column and absorber sump,
and the other part included the heat exchanger, desorber, condenser and reboiler. It was first
attempted to control the CO2 capture plant by using two NMPCs in tandem, each running
one of the parts of the mechanistic model. This did not work, as the desorber must know
how rich loading and flow are affected by its inputs to determine minimum reboiler duty. In
order to accomplish this, a simplified linear absorber model was developed based on the step
response of the original absorber model. This simplified model was added to the desorber
part of the model. This resulted in three different control configurations. The first one
had the complete mechanistic model in the NMPC and served as a benchmark for the other
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Chapter 1. Introduction

configurations. The second had the desorber part with the simplified absorber model. The
third consisted of two NMPCs, one with the desorber part with the simplified absorber model
and one with the absorber part of the model. All three configurations were tested using the
original mechanistic model of the whole plant as plant replacement in the simulator. The
last control structure delivered acceptable performance while giving a significant reduction
in computational time and laid the foundation for the work in this thesis.

1.3 Structure of the thesis

The main part of this master’s thesis is split into nine chapters. The first chapter is the
introduction, which contextualises the thesis and gives a summary of the specialisation project
which laid the foundation for the work in this thesis. Chapter 2 introduces the NMPC concept
and gives the relevant theory. Chapter 3 gives a description of the CO2 capture plant and
formulates the control objective. Chapter 4 describes the models, both the models received
form Cybernetica and the simple absorber models developed during this thesis. Chapter 5
describes the work process behind developing the control configurations. Chapter 6 gives a
more detailed description of the final control configurations. Chapter 7 shows the simulation
results. Chapter 8 contains discussion of the development process and results, as well as other
considerations. Chapter 9 consists of concluding remarks as well as suggestions for future
work.
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Chapter 2
Nonlinear model predictive control

Model predictive control (MPC) is a form of advanced process control where the current
control action is determined by solving a finite horizon open-loop optimal control problem.
The current state is used as the initial condition, and the optimisation yields an optimal
control sequence for the horizon. The first input is applied to the plant, a new state is
obtained, and the optimisation problem is solved once again. This is done at each sampling
instant. When the process model is nonlinear, it is known as nonlinear model predictive
control (NMPC). The algorithm is given in Algorithm 1. This type of control, where only
the first input is applied, is also known as receding horizon control (RHC).

Algorithm 1: State feedback NMPC procedure [15]

for k = 0, 1, 2, . . . do
Get the current state xk.
Solve a dynamic optimization problem on the prediction horizon from k to k + P

with xk as the initial condition.
Apply the first control move uk from the solution above

end

Cybernetica’s tool for NMPC, CENIT1, has been used in this thesis. Cybernetica CENIT
is a powerful software suite for NMPC which utilises nonlinear mechanistic process models.
The nonlinear in NMPC refers to the process model, not the optimisation problem, although
the optimisation problem is also nonlinear. The formulation of the optimisation problem and
how it is solved will be given later in the chapter. Figure 2.1 shows the different components
of CENIT and how they work together. The estimator uses the measurements estimated
by the model to correct states and parameters in the model, and the NMPC algorithm uses
the model when solving the finite horizon open-loop control problem. Plant can either be
the real physical plant or a model in a process simulator such as Cybernetica RealSim. The
communication between CENIT and RealSim goes through an Open Platform Communica-
tions (OPC) server. More information about CENIT, RealSim and the OPC server is given

1http://cybernetica.no/technology/model-predictive-control/
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2.1. MATHEMATICAL DESCRIPTION OF NMPC
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Figure 2.1: The NMPC system, consisting of nonlinear process model, an online estimator and
the NMPC algorithm [9]

in Appendix B.

The process model can be expressed as a system of ordinary differential equations (ODE),

dx

dt
= f(x,u), x(t0) = x0, (2.1a)

z = h(x,u), (2.1b)

y = g(x,u). (2.1c)

x is a vector of the nx state variables and x0 is the initial state. u is a vector of the nu
inputs or manipulated variables (MV) and disturbance variables (DV). z is a vector of the nz
outputs or controlled variables (CV), while y is a vector of the ny calculated measurements.

2.1 Mathematical description of NMPC

As mentioned above, the current control action is determined by solving a finite horizon
open-loop control problem. The mathematical formulation of this problem can vary, but the
one implemented in CENIT and used in this thesis is given in Equation 2.2. The model
in Equation 2.1 is solved in discrete time steps by the numerical integrator, the CVs and
predicted measurements are calculated at the same discrete time steps.

min
U
J =

1

2
(Z − Zref )TQ(Z − Zref ) +

1

2
∆UTS∆U + rT1 ε+

1

2
εTdiag(r2)ε (2.2a)

subject to
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Chapter 2. Nonlinear model predictive control

xk+j = f(xk+j−1,uk+j−1,νk), (2.2b)

zk+j = h(xk+j ,uk+j), (2.2c)

Zmin − ε ≤ Z ≤ Zmax + ε, (2.2d)

0 ≤ ε ≤ εmax, (2.2e)

Umin ≤ U ≤ Umax, (2.2f)

∆Umin ≤ ∆U ≤ ∆Umax, (2.2g)

where

Q � 0, (2.2h)

S � 0, (2.2i)

r1 ≥ 0, (2.2j)

r2 ≥ 0, (2.2k)

Z =
[
zTk+1 zTk+2 · · · zTk+P

]T
, (2.2l)

U =
[
uTk uTk+1 · · · uTk+M−1

]T
, (2.2m)

∆U =
[
∆uTk ∆uTk+1 · · · ∆uTk+M−1

]T
, (2.2n)

∆uTk = uTk − uTk−1. (2.2o)

The vector zk+j is a column vector of the nz CVs at time step k+j. All the P smaller vectors,
zk+j , j = 1, . . . , P , are contained in the larger vector Z, which is present in the formulation
of the objective function. uk is a column vector of the nu inputs at time step k. xk is a
vector of states at time step k. All the M − 1 smaller input vectors, uk+j , j = 0, . . . ,M − 1,
are contained in U . U is present in the objective function and contains both MVs and DVs.
Equation 2.2a is the objective function that is minimised to determine the optimal input
sequence. In this case, there are quadratic penalties on setpoint deviation and input change
and both linear and quadratic penalties on constraint violations. Other terms can also be
added. In, for example, Equinor’s MPC tool SEPTIC (Statoil Estimation and Prediction
Tool for Identification and Control), there is a term in the objective function which aims to
keep the inputs at ideal values [16]. In Equation 2.2b, f(x,u,ν) is the process model, this
constraint ensures that the solution satisfies the process model. In Equation 2.2c, h(x,u) is a
function for calculating the CVs based on the states and inputs. Equation 2.2d are maximum
and minimum constraints on the CVs. These constraints are soft constraints by the addition
of ε, which means that they can be violated. However, the violation is penalised by the
addition of the last two terms of the objective function. There can be a limit to how much
the constraints can be violated, given by εmax. There are constraints on the values which
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2.2. GRAPHICAL ILLUSTRATION

can be chosen for the inputs. These are hard constraints and cannot be violated. There are
also constraints on how much the inputs can change in one control action. The constraints
on input values and change can come from the physical limitations of the plant or a design
choice.

P is the amount of CV evaluation points and M is the amount of MV blocked intervals.
Q and S are diagonal matrices of weights for setpoint deviation and input change. Q is a
(P ·nz)×(P ·nz) matrix and S is a (M ·nu)×(M ·nu) matrix. Q has a repeating diagonal and
can be thought of as the Kronecker product between a P × P identity matrix and a nz × nz
diagonal matrix of weights for each CV. The same applies for S, except it is the Kronecker
product between a M ×M identity matrix and a nu × nu diagonal matrix of weights. r1
and r2 are vectors of nonzero elements which give the linear and quadratic weights on CV
constraint violations. They are both P ·nz dimensioned vectors with P repeating subvectors
of nz elements.

2.2 Graphical illustration

A graphical illustration of NMPC is given in Figure 2.2. This is a simple example where
the NMPC has one input and one output, also known as a single input single output (SISO)
system. In this example, the task of the NMPC is to keep the CV, z, at its reference value,
zref . This is done by solving the finite horizon open-loop control problem as described above.

Figure 2.2: Graphical illustration of NMPC [17]
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Chapter 2. Nonlinear model predictive control

The upper plot in Figure 2.2 shows the CV. In the left part of the plot, the history is shown.
In the right part of the plot, the future behaviour as predicted by the NMPC is shown. In
the plot, there are several dots that indicate the location of the P number of CV evaluation
points. In this case P = 20 so we have zk+1 to zk+20 as the CV evaluation points. In this
example, the evaluation points are evenly spaced, but that does not necessarily have to be the
case. One could, for example, have more evaluation points at the beginning of the prediction
horizon. The lower plot in Figure 2.2 shows the input history and the predicted optimal input
trajectory. In the right-hand part of the plot, it can be seen that the inputs are grouped in
blocks of increasing size. This is known as input blocking, and it is used to reduce the degrees
of freedom in the optimisation problem, which will reduce the computational time.

2.3 Nonlinear programming

The open-loop finite-horizon optimisation problem is solved by choosing the inputs which
minimise the objective function. In the case where the process model f(x,u,ν) is nonlinear
this becomes a nonlinear programming (NLP) problem. A general constrained optimisation
problem is given in Equation 2.3.

min
x∈Rn

f(x), (2.3a)

subject to

ci(x) = 0, i ∈ E , (2.3b)

ci(x) ≥ 0, i ∈ I, (2.3c)

where the objective function f and the constraints ci are all smooth, real-valued functions on
a subset of Rn. E and I are index sets of equality and inequality constraints, respectively. In
the mathematical description of NMPC given in Section 2.1 the constraints in Equation 2.2b
and Equation 2.2c would be in E , while the constraints from Equation 2.2d to Equation 2.2g
would be in I. The feasible set Ω is the set of all state vectors x that satisfy the constraints,

Ω = {x | ci(x) = 0, i ∈ E ; ci(x) ≥ 0, i ∈ I}. (2.4)

ε is subtracted on the left-hand side and added on the right-hand side of Equation 2.2d to
expand the feasible set to ensure that the NMPC can find a solution.
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2.4. FORMULATION OF THE OPTIMISATION PROBLEM

2.4 Formulation of the optimisation problem

In Cybernetica CENIT, the optimisation problem is formulated using the sequential approach
method. This method is also known as single shooting or reduced space. When the sequential
approach is used, only the inputs in U are decision variables in the optimisation problem.
First, for a given U , the simulation routine computes trajectories of states, xk+j for all k+ j

in the prediction horizon. It also computes the trajectories of the CVs, Z from Equation 2.2c.
Secondly, the optimisation routine updates the values of U to iterate towards the optimal
solution. This sequence of simulation and optimisation is repeated until the optimal solution
is found, hence the name, sequential approach.

The sequential approach method is known as reduced space since only the elements of U are
decision variables. In the simultaneous approach, on the other hand, both U and Z and
the states are decision variables. The simultaneous approach is also known as full space. In
the simultaneous approach, both simulation and optimisation are performed simultaneously,
hence the name. The name single shooting comes from the fact that after determining U ,
the simulator "shoots" the model until the end of the prediction horizon.

Conversely, there is another method known as multiple shooting. In multiple shooting, the
model is "shot" a short interval at a time, so multiple shots are required to reach the end of
the prediction horizon. In multiple shooting, the states at the intervals are kept as decision
variables. Therefore, this method can be seen as a combination of the sequential and the
simultaneous approach. New constraints are added to ensure that the end state of one interval
matches the initial state of the next interval [18].

The optimisation problem is solved using sequential quadratic programming (SQP). SQP
is an iterative method for solving constrained nonlinear programs. SQP methods generate
steps by solving quadratic subproblems and can be used both with line search and trust-region
frameworks.

2.5 Estimation

One function of the estimator block in Figure 2.1 is to update the states and parameters
based on the difference between measurements from the plant and predicted measurements
from the model. There are several forms of estimation algorithms available. Examples of
these include the Kalman filter (KF), extended Kalman filter (EKF) and the moving horizon
estimator (MHE) [19]. The EKF is a built-in component of CENIT [9]. It is not always
possible or necessary to use the EKF, then there are simpler estimation algorithms such as
bias updating.

2.5.1 Model updating

Process models can be updated using bias updating. The values of the bias variables are up-
dated based on the difference between measurements from the plant, ym, and measurements
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Chapter 2. Nonlinear model predictive control

predicted by the model, y. Including bias updating gives integral action and will remove
the offset between the measurements and the predictions. The rule for updating the bias
variables is

βx,k = βx,k−1 +Kβx(ymk − yk), (2.5)

where βx,k is the bias variable vector at time step k, Kβx is a matrix of gains for bias
updating, ymk is the measurement vector and yk is the measurement vector predicted by the
model. Kβx is a nx × ny matrix, the values in Kβx will determine the speed of the updating
and which measurements are used to updated which states. If a value is set to 0, there is no
bias updating. The bias variable can be included in the process model. This gives

xk+1 = f(xk,uk,νk,βx,k), (2.6)

where xk+1 is the new state vector and f(xk,uk,νk,βx,k) is the process model. As the
process model is derivative of the state, adding a bias variable will affect the whole state
vector xk+1. This is closely related to the EKF, where a physical parameter is updated.
The bias variable can represent a physical parameter or a physical deviation, or an empirical
correction.

2.5.2 Updating controlled variables

The most important job of the controller is to keep the CVs at their setpoints. The estimator
can help with this by ensuring offset-free control. Offset-free control means zero deviation
between the CVs and their setpoints. The bias variable is updated in a similar manner as
before:

βz,k = βz,k−1 +Kβz(y
m
k − yk), (2.7)

where βz,k is the bias variable at time step k, Kβz is the gain matrix of the bias updating,
ymk is the measurement vector from the plant and yk is the predicted measurement vector.
The bias term is added directly on the CVs

zk = h(xk,uk) + βz,k, (2.8)

where zk is the CV vector at time step k, h(xk,uk) is a function for calculating the CVs
based on the state vector, xk, and the input vector, uk. This bias update feedback technique
is a common method used by industrial MPC controllers. For stable processes, the constant
output disturbance model provides integral action to the controller [19]. The bias variable
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must also be added to the corresponding measurement prediction

yk = g(xk,uk) + βz,k = zk, (2.9)

to ensure convergence.

2.6 Controller tuning

When tuning a PID controller, there are different tuning rules which can be used, such as
Skogestad Internal Model Control (SIMC) [20] or the Ziegler-Nichols method [21]. When tuning
an NMPC there are no such rules. Instead, one must rely on process knowledge, experience
and experimenting through trial and error. There are several tuning parameters in an NMPC.
The maximum and minimum constraints on Z and U are usually determined from knowledge
of the process. The maximum and minimum constraints on ∆U are there to ensure that the
inputs determined by the controller can be realised. εmax is often set to infinity to avoid
infeasibility, but can also be limited. The values of the weights in Q and S will affect the
optimal solution, as they are in the formulation of the objective function in Equation 2.2a.
The values should be chosen based on the control objective and how much input usage is
desired. Since the control variables and inputs do not necessarily have the same scale, the
weights have to be scaled. In CENIT, this is done by dividing the weights by the square
of a scaling factor. The scaling factor is referred to as span and is the range in which the
variables vary. The weights in Q are then weight = q/zSpan2, where q is a tuning parameter
and zSpan is the span of the relevant CV. r1 and r2 give the penalties for violating the
constraints and can be used to prioritise between the constraints. Other tuning parameters
include the length of the prediction horizon, parameterisation of the CV evaluation points
and the input blocking.
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Chapter 3
Process plant description

A post-combustion CO2 capture plant can consist of several process units. The theoretical
plant in this thesis consists of two/three absorber columns, a heat exchanger, a desorber
column and a buffer tank for lean solvent. In a CO2 capture plant such as this, the solvent
is circulated in the plant. The mole amount of CO2 per mole of amine is known as loading
and varies in the plant. The flow with low CO2 content is referred to as lean flow, and its
loading is known as lean loading (αL). The flow with high CO2 content is referred to as rich
flow, and its loading is known as rich loading (αR). The lean solvent is injected at the top of
the absorber columns, absorbs CO2, and rich solvent leaves the absorber. The rich solvent is
sent back to the desorber column where CO2 is removed, and the lean solvent is regenerated.
Figure 3.1 shows a simple piping and instrumentation diagram (P&ID) of the process. The
valves marked in red are the MVs in the NMPCs.

LC

LC TC

LCLC

Reboiler duty

CO2 out

Desorber

Cooling water in

Cooling water out

Flue gas 1

Lean flow 1
CO2 free gas

Absorber 1

Rich flow

Flue gas 2

CO2 free gas

Absorber 2

Lean flow 2

Lean buffer tank

Figure 3.1: P&ID of the process. The valves marked in red are the MVs
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3.1. ABSORBERS

H2N

OH

Figure 3.2: Skeletal formula of MEA

3.1 Absorbers

There are two/three absorber columns in the theoretical CO2 capture plant. In the absorber
columns, CO2 is removed from the flue gas by chemical absorption. CO2 rich flue gas is
injected at the bottom of the column and contacted counter-currently with the lean solvent
flowing down from the top of the columns. Absorber columns are kept at high pressure and
low temperature, as this is beneficial with regards to the solubility of CO2 in the solvent.
There are several solvents suitable for post-combustion CO2 capture. The most well-known
solvent is monoethanolamine (MEA), which is a primary amine. The net reaction between
CO2 and a primary amine (RNH2) is [22]

CO2 + 2 RNH2 −−⇀↽−− RNHCOO− + RNH3
+. (3.1)

When the amine is MEA, the R refers to the alkanol group OHCH2CH2. The skeletal formula
of MEA is given in Figure 3.2. The solvent used in the theoretical plant in this thesis is called
CESAR 1. CO2 Enhanced Separation and Recovery (CESAR) was a project aimed at making
breakthroughs in the development of low-cost post-combustion CO2 capture technology. As
part of this project, several solvents were tested at different facilities. Of these solvents,
CESAR 1 performed the best. CESAR 1 is a mixture of 2-amino-2-methylpropan-1-ol (AMP)
and piperazine (PZ) [23]. In the models the ratio between AMP and PZ is 2:1. The skeletal
formulas of the two components are given in Figure 3.3.

HN

NH

HO

NH2

Figure 3.3: Skeletal formulas of the components of CESAR 1, AMP to the left and PZ to the
right

Absorption using chemical solvents is the preferred method when the partial pressure of CO2

is low, such as it often is when performing post-combustion CO2 capture. The rich solvent
in the absorber sumps at the bottom of the columns is sent back to the desorber through the
heat exchanger, where it is heated up by the hot lean flow from the reboiler. The purified flue
gas is passed through a water wash section before being emitted at the top of the absorber
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Chapter 3. Process plant description

columns. The capture ratio (CR) in absorber column i is

CRi = 100
FCO2
i,in − F

CO2
i,out

FCO2
i,in

, (3.2)

where FCO2
i,in is the amount of CO2 entering the bottom of absorber column i and FCO2

i,out is the
amount of CO2 leaving the top absorber column i.

3.2 Desorber

In the desorber, the lean solvent is regenerated by removing CO2. The desorber is operated
at low pressure and high temperature, as this favours CO2 stripping. Heat is supplied in the
reboiler where the solvent is boiling. CO2 rises through the column up to the condenser along
with gaseous solvent. In the condenser, the solvent condenses while the CO2 is removed in
gas form. The hot lean solvent in the reboiler is sent from the reboiler to the heat exchanger.
The hot lean solvent is heat integrated with the cold rich solvent from the absorbers in the
heat exchanger. After the heat exchanger, the lean solvent is sent to the lean buffer tank.
The CR in the desorber is

CRdes =
FCO2
des,out

N∑
i=1

FCO2
i,in

, (3.3)

where FCO2
des,out is the amount of CO2 leaving the top of the desorber column, and N is the

number of absorber columns.
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Figure 3.4: U-curve for a plant with one absorber with constant CR at 84 % [17]
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3.3. OPTIMAL OPERATION OF THE PLANT

3.3 Optimal operation of the plant

The NMPCs developed in this thesis have three/four MVs to control the plant, depending on
the number of absorber columns. The control objective of the NMPCs is to keep the CRs at
a given setpoint while using minimum reboiler duty. The CR setpoints can be achieved with
an infinite amount of MV combinations, but only one of the combinations will give minimum
reboiler duty. The objective function in the NMPC is formulated in a way that should result
in the combination that utilises the lowest reboiler duty. An illustration of this problem
is given in Figure 3.4, which shows a U-curve for a plant with only one absorber column.
Lean flow is on the first axis, and reboiler duty is on the second axis. The figure shows the
lean flow and the corresponding reboiler duty needed to achieve a CR of 84 %. In this case,
minimum reboiler duty is achieved when the lean flow is just over 4.6 kg min−1. From the
plot, it can be seen that choosing a lean flow that is lower than the optimum is particularly
disadvantageous due to the steep gradient to the left of the minimum. If a NMPC is to
determine the minimum reboiler duty, both lean flows and reboiler duty need to be part of
the optimisation problem. Hence the NMPC needs to have both the flows and reboiler duty
as MVs.
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Chapter 4
Models

The models used in this master’s thesis are based on a model received from Cybernetica
AS in June 2020. This model is based on work done by Enaasen Flø [6], but has since been
modified and improved by Cybernetica AS, such as in the DOCPCC project [7]. The model
from Cybernetica AS is split into four submodels, one for the absorber, one for the desorber,
one for the heat exchanger and one for the lean and rich buffer tanks.

LC

LC

LC TC

Lean buffer tank

Reboiler duty
Flue gas

CO2 out

Lean flow

Purified gas

Absorber Desorber

αL

Rich flow
αR

Cooling water inlet

Cooling water outlet

Figure 4.1: Simple P&ID showing how the plant was split into two separate applications
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4.1. ABOUT THE MODEL

4.1 About the model

The model supplied from Cybernetica AS consists of models of all the major process units.
The models are mechanistic and developed from first principles conservation laws. This model
will be referred to as the original model in the rest of this thesis. The model was split into
two parts in the project thesis, one with the absorber and one with the desorber, lean buffer
tank and heat exchanger. The split is illustrated in Figure 4.1, where all units with the same
colour are in the same model. The red part will later be referred to as the absorber model
while the blue part will be referred to as the desorber model. The reason behind splitting
the original model into multiple parts is that as the model increases in size by adding more
absorber columns, it becomes infeasible to handle the whole model in one application. This
is due to the increase in model complexity and computational time. Another reason is that
in the case where there are several absorbers at different locations in an industrial park with
different owners and base control systems, it might be a problem to have the whole cluster
in one common application.

A simple absorber model based on the step-response of the absorber model while controlled
was added to the desorber model. Looking at Figure 3.4 it can be seen that in order to
determine minimum reboiler duty, both the reboiler duty and the lean flow must be part of
the optimization problem. A model which includes models of all the process units in the plant
is needed to know how the two inputs affect the whole plant. Because of this, the simple
absorber model was added to the desorber model. In this master’s thesis, the models are
further expanded to include two/three absorber columns, along with their respective absorber
sumps. During the master’s thesis work, several simple absorber models were developed and
tested. All the different models are presented here.

4.2 Step response model

The step response of a process is the time evolution of its outputs for a given initial state
when its inputs are Heaviside step functions. The step response of a process gives insight
into its behaviour. If the process can be approximated as a first-order linear model, then
the model parameters can be determined by inspecting the step response. The step response
of a generic first-order-plus-time-delay model (FOPTD) is given in Figure 4.2. The time
constant, τ , time delay, θ and gain K are indicated in the figure. The FOPTD model itself
in the Laplace domain is

G(s) =
Ke−θs

τs+ 1
. (4.1)

The process is often neither first-order nor linear. The output often has noise in the measure-
ments, there can be disturbances affecting the process in an unknown manner, and it can be
difficult to achieve steps in the input. Due to these reasons, the step response of a process
rarely exhibits exactly first-order behaviour. It was believed that much of the nonlinearity
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Figure 4.2: Step response of a generic FOPTD model [17]

of the plant was related to the desorber and that the absorber columns by themselves were
quite linear when the capture ratio was constant. A step response test was performed on
the absorber model. Figure 4.3 shows the step response of the mechanistic absorber model to
steps in lean mass flow into the top of the absorber when the capture ratio is controlled at a
setpoint. The flue gas flow in is 80 m3 h−1 and the amount of CO2 is 12.3 %. The loading of
the lean mass flow entering the top of the column is used as an MV in an NMPC, with the
CV being the CR, which should be at 84 %. Lean loading is not an actual MV in the plant,
but it makes sense to use it when only the absorber model is run, as it is in a way what is
controlled when manipulating the reboiler duty. The responses of rich flow and rich loading
seems to be quite linear. Hence linear models were fitted to these outputs. The formulation
of the linear models is

ẋ =
1

τ
(K(u− u0)− (x− x0)) . (4.2)

This model gives the state x’s response to changes in the input u. τ is the time constant
of the process, K is the gain of the process, x0 is the nominal value of the state, and u0 is
the nominal value of the input. The model parameters were found by using linear regression.
Figure 4.4 shows a plot of data points for rich loading and rich flow at different lean flow
levels and lines from linear regression. The lines were found using the function fitlm from
Statistics and Machine Learning Toolbox in MATLAB. R2 is 1 for both models. The model
values are given in Table 4.1.

Table 4.1: Model parameters in the two simplified models

Model K [min kg−1/-] τ [min] x0 [-/kg min−1] u0 [kg min−1]

Rich loading -0.046861 25 0.6402 2.2
Rich flow 1.0005 20 2.4411 2.2
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Figure 4.3: Step response of the absorber model when steps are done on lean flow while lean
loading is used to control the CR
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Figure 4.4: Datapoints and linear regression lines for rich loading and rich flow as functions of
lean flow in an absorber column controlled to 84 % CR

20



Chapter 4. Models

0 100 200 300 400 500 600 700

Time [min]

0.6

0.62

0.64

0.66

R
 [

-]

Original model

Step response model

0 100 200 300 400 500 600 700

Time [min]

2.2

2.4

2.6

2.8

3

3.2

R
ic

h
 f

lo
w

 [
k
g

/m
in

]

Original model

Step response model

Figure 4.5: Comparison of the original absorber model with the step response model

The step response models for rich loading and rich flow compared to the original mechanistic
absorber model is given in Figure 4.5. The steady state values seem to correspond well, but
dynamically it is a bit off.

4.3 Absorber model based on mass transfer

The mass flux of CO2 from gas to liquid is given by

J = ky(y − yI) = kx(xI − x), (4.3)

where y is the bulk gas mole fraction and x is the bulk liquid mole fraction. The equilibrium
yI = mxI is assumed at the interface according to Henry’s law, wherem is an equilibrium con-
stant for CO2. The concentrations at the interface are unknown, but they can be eliminated
by rearranging Equation 4.3. This gives

J

ky
= y − yI , (4.4)

J

kx
= xI − x. (4.5)

By multiplying Equation 4.5 by the equilibrium constant m and adding the two equations,
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Figure 4.6: Arbitrary absorber column

we get

J

(
1

ky
+
m

kx

)
= y −mx. (4.6)

The mass flux can be written as a driving force from the equilibrium

J = Ky(y −mx), (4.7)

where

Ky =

(
1

ky
+
m

kx

)−1
. (4.8)

Figure 4.6 shows an arbitrary absorber column. L and G are total molar flows of liquid and
gas in kmol h−1. x and y are mole fractions of CO2 in liquid and gas, respectively. ξ is a
dimensionless length coordinate, ξ = z/H. αL and αR are lean and rich loading, respectively.
Both L and G are assumed to be plug flows, implying no axial dispersion. Further, it is
assumed that the column is isothermal in order to avoid adding a temperature equation.
Using A as the total gas/liquid interfacial area for the column gives a mole balance for CO2

in the gas phase

d(Gy)

dξ
= −JA. (4.9)
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When the liquid is flowing counter currently to the gas phase, the mole balance in the liquid
phase is

d(Lx)

dξ
= −JA. (4.10)

Since the amount of CO2 is low it is assumed that the total molar flows L and G are con-
stant. Inserting Equation 4.7 for J and introducing y∗ = mx gives the system of ODEs in
Equation 4.11.

dy

dξ
= −Ky

G
A(y − y∗) (4.11a)

dx

dξ
= −Ky

L
A(y − y∗) (4.11b)

The equilibrium mole fraction, y∗, is unknown. It can be assumed that the partial pressure
of a gas is equal to its mole fraction times the total pressure, Pi = yi Ptot. Rearranging this
expression gives an expression for the gaseous mole fraction, yi = Pi/Ptot. The total pressure
Ptot is known, and the equilibrium partial pressure can be found using correlations dependent
on the composition and temperature of the liquid [24]. Cybernetica AS provided correlations
for the CESAR 1 solvent. Combining this gives y∗ = P ∗i (x, TL)/Ptot, where x is a vector
containing the compositions of the liquid, and TL is the liquid temperature.

4.3.1 Solving the system of ordinary differential equations

The rich loading is found by solving the system of ODEs in Equation 4.11. The composition,
mass flow and temperature of both the gas entering the bottom of the column and the lean
amine entering the top of the column are known. Since we know states at both ends of
the column, this is a boundary value problem (BVP). There are several methods for solving
BVPs. In this case, a shooting method was used. In the shooting method, the system is
converted to an initial value problem (IVP) and a guess is made for the unknown initial
condition. The system is then "shot" or integrated from one boundary to the other, and the
guess is updated until the correct value is found. We define s as the guess and introduce the
notation x(1; s) which is the value of x at ξ = 1 given s was used as the initial condition.
The boundary condition is x(1) = x1. Can then define a residual function

φ(s) = x(1; s)− x1, (4.12)

which returns the difference between the end state and the boundary condition as a function
of the guessed value for the initial condition. The correct value s = s∗ is found when

φ(s∗) = 0. (4.13)
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The guess can be updated using a root solving algorithm. The IVP was integrated using the
classic Runge-Kutta method, given in Algorithm 2, where

dy

dt
= f(t, y), y(t0) = y0. (4.14)

t0 is the starting value of the independent variable, t. h is the step length, and N is the
number of steps. This is a fourth-order method with local error O(h5) and global error
O(h4).

Algorithm 2: The classic Runge-Kutta method [25]

Input: f(t, y), y0, t0, h, N
for n = 0, 1, 2, . . . , N − 1 do

k1 = f(tn, yn)
k2 = f(tn + h

2 , yn + h
2k1)

k3 = f(tn + h
2 , yn + h

2k2)

k4 = f(tn + h
2 , yn + hk3)

yn+1 = yn + h
6 (k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h
end

For this model ξ is the independent variable, and the system is integrated from ξ = 0 to
ξ = 1.

4.4 Simple absorber model based on mole balances

A model based on steady state mole balances was developed and used in two different ways.
At first, it was used to calculate predictions for rich flow and rich loading, assuming that the
capture ratio is known. It was later used to calculate the capture ratio when both the rich
flow and rich loading were assumed to be known.

4.4.1 Predicting rich flow and rich loading

A figure representing an arbitrary absorber column is given in Figure 4.7. V0 is the amount
of flue gas entering the column, y0,CO2 is the mole fraction of CO2 in the flue gas. At a given
capture ratio c, the amount of CO2 transferred from gas to liquid, F , equals

F = cy0V0. (4.15)

L1 is the amount of amine solution entering the top of the column, and x1 is a vector of the
mole fractions in the amine entering the absorber. The components of x1 are

x1 =
[
x1,CO2 x1,H2O x1,amine

]
. (4.16)
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V0, y0,CO2

V1, y1

L0, x0

L1, x1
ξ = 1

ξ = 0

Figure 4.7: Absorber

x0 is formulated in a similar manner. The amount of CO2 in the bottom of the column is
then x1,CO2L1 + F . The amount of amine solution leaving the bottom of the column, L0,
then equals L0 = L1 + F . The new mole fractions in x0 are

x0,CO2 =
x1,CO2L1 + F

L0
, (4.17)

x0,H2O =
x1,H2OL1

L0
, (4.18)

x0,amine =
x1,amineL1

L0
. (4.19)

From this model there is a prediction of rich flow, L0, and of rich loading, αR = x0,CO2/x0,amine.
The value of c can either be a constant or received as a DV.

4.4.2 Predicting capture ratio

The model can be converted to calculate the CR. Instead of assuming that the CR is known,
we assume that rich flow and rich loading are known. The step response models are used to
predict rich flow and rich loading coming for the absorber columns. The CR in the column
equals the difference in CO2 content between the rich flow and the lean flow, divided by the
amount of CO2 entering the column in the flue gas:

CR =
x0,CO2L0 − x1,CO2L1

y0,CO2V0
. (4.20)
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x1 is known from the model of the lean buffer tank. It is possible to calculate x0,CO2 based
on rich loading and the mole fractions entering at the top of the column, x1. The sum of the
mole fractions equals 1:

x0,amine + x0,CO2 + x0,H2O = 1. (4.21)

The ratio between the mole fraction of CO2 and amine is by definition equal to the rich
loading, αR. Assuming that no water is lost in the column, the ratio between water and
amine is unchanged at the bottom of the column. Inserting these assumptions into the sum
of the mole fractions gives

(
1 + αR +

x1,H2O

x1,amine

)
x0,amine = 1. (4.22)

This equation can be rearranged with regards to x0,amine, and with the two expressions we
have just used it is possible to get expressions for all the mole fractions:

x0,amine =
1

1 + αR +
x1,H2O

x1,amine

, (4.23)

x0,CO2 =
αR

1 + αR +
x1,H2O

x1,amine

, (4.24)

x0,H2O =
x1,H2O/x1,amine

1 + αR +
x1,H2O

x1,amine

. (4.25)

Based on these values the CR can be calculated from Equation 4.20.

4.5 Expanding the models to include multiple absorber columns

The original model was expanded to include multiple absorber column models. The first step
in this process was adding an additional absorber column with all its states, CVs, MVs and
DVs to the model. Additionally, all other parameters, functions and everything else needed
to run the new absorber model was included. After the new absorber model itself had been
successfully included in the code, it was time to connect it to the rest of the plant. There
are two places where the absorber columns connect with the rest of the plant. This is at the
lean buffer tank, from which the absorber columns receive their lean flow, and at the heat
exchanger, where the absorber columns inject their rich flow.

In the lean buffer tank, the change is in what is leaving the buffer tank. From the buffer tanks
point of view, it does not matter where the lean flow goes, 10 kg min−1 into one absorber is
the same as 5 kg min−1 into two absorbers. The change in the lean buffer tank model is then
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from

Loutbtl = Linabs, (4.26)

to

Loutbtl = Linabs,1 + Linabs,2, (4.27)

where Loutbtl is the lean flow out of the buffer tank, Linabs is the lean flow into the absorber in
a one absorber column plant, and Linabs,1 and Linabs,2 are the lean flows into absorber column
1 and 2 in a two absorber column plant respectively. For a plant with N absorber columns
Equation 4.27 can be written as

Loutbtl =
N∑
i=1

Linabs,i. (4.28)

The heat exchanger receives rich flow from the two absorber columns. When there is only
one absorber column, the model is

RCO2
hx,in = xCO2

as Routas , (4.29a)

RH2O
hx,in = xH2O

as Routas , (4.29b)

RAmine
hx,in = xAmine

as Routas , (4.29c)

TRhx,in = Tas. (4.29d)

RCO2
hx,in, R

H2O
hx,in and RAmine

hx,in are the molar flows of CO2, H2O and Amine entering the cold side
of the heat exchanger respectively. Routas is the total molar flow out from the absorber sump.
xCO2
as , xH2O

as and xAmine
as are the mole fractions in the absorber sump. TRhx,in is the temperature

of the liquid entering the cold side of the heat exchanger and Tas is the temperature of the
liquid in the absorber sump. When there are multiple absorber columns, the molar flows
entering the heat exchanger will be the sum of the molar flows out of the absorber sumps. As
temperature is an intensive property, it is not as easy as just adding the temperatures together.
If one assumes that all the flows have the same heat capacity, the mixture’s temperature will
equal the sum of the product of total molar flow and temperature divided by the sum of the
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total molar flows. For a plant with N absorber columns, this becomes

RCO2
hx,in =

N∑
i=1

xCO2
as,i R

out
as,i, (4.30a)

RH2O
hx,in =

N∑
i=1

xH2O
as,i R

out
as,i, (4.30b)

RAmine
hx,in =

N∑
i=1

xAmine
as,i Routas,i, (4.30c)

TRhx,in =

N∑
i=1

Routas,i Tas,i

N∑
i=1

Routas,i

. (4.30d)

Similar changes were made in the models using the desorber model plus one of the simple ab-
sorber models. The difference is in how the values coming from the absorber sumps are found.
Expanding the absorber model to include multiple absorber columns was a straightforward
procedure. As the absorber columns are not connected, no additional modelling was needed.
The only work required was adding the column with all its states, CVs, MVs, parameters,
functions and other bits and pieces.
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Developing the control configurations

During the specialisation project [17] it was found that a two-NMPC configuration performed
well enough when controlling a CO2 capture plant with one absorber and should be further
developed during the master’s thesis work. In the configuration, there were two NMPCs,
which were called NMPC abs and NMPC des. NMPC abs used the absorber model, and
NMPC des used the desorber model with linear step-response models to predict rich flow and
rich loading. NMPC abs’s MV was the lean flow into the absorber column, u2, and the CV
was the CR in the absorber column, z1 = CR. It received the current value and a predicted
trajectory of the lean loading from NMPC des. It also received a trajectory of the lean flow
calculated by NMPC des, which it uses as a soft constraint for its own MV. NMPC des’s MVs
were the reboiler duty, u1 and the lean flow to the absorber column, u2. The reboiler duty is
applied to the plant, but the lean flow was only used locally by NMPC des to allow it to find
the minimum reboiler duty. NMPC des’s CVs were the CR in the desorber, z1 = CRdes, and
an unreachable max constraint on reboiler duty, z2 = u1. The structure of the controller can
be seen in Figure 5.1. u1 is the reboiler duty that is found by NMPC des and applied to the
plant. u2 is the lean flow. u2 is first calculated by NMPC des, and the trajectory is sent as
a reference to NMPC abs. NMPC abs also calculates u2 with soft constraints based on the
reference trajectory received from NMPC des. αrefL is the lean loading reference trajectory,
which is sent from NMPC des to NMPC abs. The idea behind this split is that NMPC
des can optimise the reboiler duty and steer the plant towards minimum reboiler duty while
NMPC abs ensures that the CR in the absorber column is kept at its setpoint. Some code
examples of how the models were implemented are given in Appendix D.

5.1 Expanding to multiple absorber columns

When adapting the control configuration to a plant with multiple absorbers, the first step
was expanding the models to have multiple absorber columns. The absorber model was easily
expanded to have multiple absorber columns as they are all independent, except for the fact
that they have the same incoming lean loading, as there is still only one desorber. An MV and
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NMPC des

NMPC abs

Plant
y

u1

u2

uref2 αrefL

Figure 5.1: Control structure of the two-NMPC control configuration from the specialisation
project [17]

a CV for the new column was added. It also has its own flue gas flow and composition inputs,
which can be viewed as DVs. The CVs in NMPC abs are now z1 = CR1 and z2 = CR2.
The MVs are the lean flows into the two columns, u2 and u3. The desorber model was also
expanded to include linear step-response models for rich flow and rich loading from both
columns. A new MV was added for the lean flow to the second absorber column. This
new MV gives NMPC des one more degree of freedom (DOF). Hence a new CV had to be
added. Without a new CV NMPC des does not have enough information to distribute the
flow between the two absorber columns, as it is the desorber CR which is controlled in NMPC
des. A new CV was added to handle this. This CV was the ratio between the two lean flows:

z3 =
u2
u3
. (5.1)

Its setpoint was the ratio between the amount of CO2 that is supposed to be captured in the
two columns

zsp3 =
CRsp1 F

CO2
1,in

CRsp2 F
CO2
2,in

, (5.2)

where FCO2
1,in is the CO2 flow into absorber column 1 and FCO2

2,in is the CO2 flow into absorber
column 2. CRsp1 is the setpoint in absorber column 1 and CRsp2 is the setpoint in absorber
column 2. The CVs in NMPC des are now z1 = CRdes, z2 = u1 and z3, while the MVs
are u1, u2 and u3. The communication between the two NMPCs was updated such that
NMPC des sends the sum of its lean flows to NMPC abs. NMPC des gave no limitations
on the distribution of the flows in NMPC abs, just the total amount. When there is just
one absorber column, the setpoint for the CR in the desorber column is the same as in the
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absorber column. When there are multiple absorber columns the CR setpoint and the amount
of CO2 entering the different absorber columns are not necessarily the same. The setpoint
for the desorber column CR, CRspdes, can then be calculated based on information from the
absorbers

CRSPdes =
CRsp1 F

CO2
1,in + CRsp2 F

CO2
2,in

FCO2
1,in + FCO2

2,in

. (5.3)

Section 7.1.2 shows the results of a controller test where the setpoint for CR in absorber 1 is
increased from 84 % to 90 % after 60 minutes. The flue gas flow into absorber 2 is increased
after 240 minutes, and the whole test is 720 minutes long. The correlation between the plant
and the NMPCs is quite good initially, but there starts to be more deviation as the simulation
progresses. It was believed that the deviation between controller and plant could be due to
modelling error. Hence a new simple absorber model was implemented.

5.2 Using absorber models based on mass transfer

The step response models for rich loading were replaced with the model in Section 4.3. This
model is based on modelling the mass transfer of CO2 from gas to liquid and integrating a
system of ODEs from the bottom to the top of the column. This becomes a BVP as we know
the properties of the flue gas entering the bottom of the column and the lean amine entering
the top of the column. The BVP is solved using a shooting method where it is converted to a
IVP, and a guess for the unknown initial condition is updated until the boundary condition
is satisfied. In this case, the unknown initial condition is the mole fraction of CO2 in the
liquid.

At first, it was attempted to use the secant method for updating the initial condition guess.
Using si for the i’th guess and φ(si) for the residual function the method is defined by the
recurrence relation [26]

sn = sn−1 − φ(sn−1)
sn−1 − sn−2

φ(sn−1)− φ(sn−2)
. (5.4)

This method was not good enough. It needs two initial guesses, and it is too reliant on those
guesses being close to the root. It was then attempted to use Brent’s method, which is a com-
bination of the bisection method, the secant method and inverse quadratic interpolation [27].
This method was better than the secant method, but would still occasionally fail. Due to
this, it was decided to implement the KINSOL solver from SUNDIALS1. This solver proved
to be more successful. Additionally, it only needs one initial guess. The model performed
worse than the step-response model. The main problem was that the predicted rich loading
was much higher than the actual value. It was attempted to fix this by adding temperature

1https://computing.llnl.gov/projects/sundials/kinsol
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dependence. The mechanistic absorber model was run at typical conditions, and the tempera-
ture profile in the column was found. This profile was then used and interpolated in the mass
transfer model. This did not help much, and there were still significant errors. It was decided
that this model did not give good enough results to warrant any further investigation, as the
point of the model is to be simple, and it was becoming increasingly complex. It is also a
risk running a root solver, as it may fail or give the wrong root.

5.3 Using absorber models based on mole balances

It was attempted to use the model in Subsection 4.4.1 to predict rich flow and rich loading
instead of the step-response models. The CVs and MVs are the same as in the previous con-
figuration, only the models for predicting rich flow and rich loading are different. The results
of the same test as before can be seen in Section 7.1.2. This seems to be an improvement
compared to the step-response models initially, but there is still some deviation between the
NMPCs and the plant at the end of the simulation. As explained in Subsection 4.4.1 the
value of the CR in the model, c, can either be constant or come from somewhere as a DV.
In this case, it is a DV, and the current value and a trajectory are received from NMPC abs.
The communication now goes between the NMPCs in both directions. The control structure
is given in Figure 5.2. θdes is a vector containing current values and trajectories of the sum
of the lean flows (u2 and u3) and lean loading and is sent from NMPC des to NMPC abs.
θabs contains the current CR and a predicted trajectory for both columns.

NMPC des

NMPC abs

Plant
y

u1

u2 u3

θdes

θabs

Figure 5.2: Control structure of the configuration with simple absorber models based on mole
balances. u1 is the reboiler duty while u2 and u3 are the lean flows into absorber column 1
and 2 respectively. θdes is a vector with values and predicted trajectories sent from NMPC des
to NMPC abs. θabs is a vector with values and predicted trajectories sent from NMPC abs to
NMPC des.
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5.4 Step-response plus absorber model based on mole balances

A new solution was proposed where the step response models are used to predict rich flow and
rich loading, and the model in Subsection 4.4.2 is used to calculate the CR in the absorber
columns. These CRs would now be the CVs in NMPC des. The benefits of this are that
NMPC des now has a factual basis for distributing the flows, instead of a CV which does not
necessarily have to be fulfilled at the optimal solution. Another benefit is the fact that we are
no longer controlling the CR in the desorber, but rather the CRs in the absorber columns.
At steady state these should be the same, but dynamically the CRs in the absorber columns
should be controlled, as this is where CO2 is emitted. It also allows for bias estimation of
rich loading and CR, which helps ensure offset-free control.

5.5 Implementing bias updating

From the results in Section 7.1.2 it can be seen that the controllers performed well initially,
but there is some deviation in the CR after some time. Looking at the plots of rich and lean
loading, it can be seen that there is some deviation between the values predicted in NMPC
des and the actual value measured from the plant. It was theorised that this could be the
reason for the deviation in CR. The reboiler duty needed is strongly dependent on the rich
loading, and lean loading strongly affects the amount of lean flow needed to capture a given
amount of CO2. Removing this model error could be the solution to removing the deviation
in CR. It can be assumed that it is possible to measure the loading in the plants. There
are correlations developed by Thor Mejdell at Sintef that can predict the loading based on
density measurements. Hence, the assumption of having a measurement of loading available
is acceptable, even though this is a measurement derived from the density measurement. It
is also assumed that the CR can be derived based on flow and composition measurements
from the plant, so a measurement of the CR is also available.

5.5.1 Updating the step response models

The step response models are used to predict some properties of the flow coming from the
absorbers. There will be some model errors when using step response models. This error can
be removed by using bias updating of the models as shown in Section 2.5. Adding the bias
variable, βx, to Equation 4.2 and using x = αR gives

α̇R =
1

τ
(K(u− u0)− (αR − (αR,0 + βαR))) . (5.5)

αR is rich loading, τ is the time constant, K is the gain of the process, αR,0 is the nominal
value of the rich loading and u0 is the nominal value of the input. The input, in this case,
is the lean flow into the corresponding column. As Equation 5.5 is a linear model, the bias
variable could be placed anywhere in the equation as long as it is not multiplied with u or
αR. The bias variable was placed in the term αR,0 + βαR as this will give it the same unit as
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Figure 5.3: Measured vs predicted rich loading with and without bias updating of the model.
The solid lines are measurements, while the stippled lines are from the model. The upper plot
is without bias updating, while the lower plot is with bias updating. Here the subscripts 1 and
2 denote which absorber column the rich loading is in

αR. The bias variable can be viewed as an update of the parameter αR,0. The bias value is
updated based on the difference between the rich loading measured from the plant, αmR , and
the rich loading predicted by the model, αR. This gives integral action and will remove the
offset between measurements and predictions. The rule for updating the bias is then

βαR,k = βαR,k−1 +KβαR
(αmR,k − αR,k) (5.6)

Where βαR,k is the bias variable at time step k, KβαR
is the gain for bias updating, αmR,k is

the measured rich loading at time step k and αR,k is the rich loading predicted by the model
at time step k. Figure 5.3 shows a comparison between the rich loading with and without
bias updating of the model in a test run of the NMPCs in a two absorber plant. αmR,1 and
αR,1 are measured and predicted rich loading in absorber column 1, and αmR,2 and αR,2 are
measured and predicted rich loading in absorber column 2. It can be seen that the bias helps
remove the deviation in rich loading. However, this was not enough to remove the deviation
in CR completely and the predicted lean loading was also still wrong. Figure 5.4 shows the
values of the bias variables in the same test. βαR,1 is the bias in absorber column 1 and βαR,2
is the bias in absorber column 2.
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Figure 5.4: The values of the bias variables. The subscripts 1 and 2 denote which absorber
column the bias relates to.

5.5.2 Updating the capture ratio

Even though the bias updating of the step-response models was enough to remove the devia-
tion in rich loading, the CRs in the plant and in the controllers were still not the same. CRs
are CVs which can be updated using bias variables as shown in Section 2.5. This was done
to ensure offset free control. The bias was added both in NMPC abs and in NMPC des. The
bias variable is updated similarly to the bias in the rich loading models,

βCR,k = βCR,k−1 +KβCR(CRm − CR), (5.7)

where βCR,k is the bias variable at time step k, KβCR is the gain of the bias updating, CRm

is the measured CR and CR is the CR predicted by the model. The bias is added directly
on the CV which gives

CR = h(xk,uk) + βCR,k. (5.8)

This removed the offset between the CR in the plant and in the controller. The results of
the same test as before using this control configuration can be seen in Section 7.1.2.

5.6 Individual NMPC for each absorber column

The final step in the development of the control configurations was splitting NMPC abs into
an individual NMPC for each absorber column. With NMPC des now having the CRs in
the absorber columns instead of the CR in the desorber column and a the lean flow ratio as
CVs, more trust could be trust in the lean flows found by NMPC des. Instead of NMPC
des sending the sum of u2 and u3 to NMPC abs, now u2 is sent to the NMPC controlling
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absorber column 1 and u3 is sent to the NMPC controlling absorber column 2. The new
NMPCs will be referred to as NMPS abs1 and NMPC abs2 after which absorber column they
control. The control structure can be seen in Figure 5.5. Splitting NMPC abs this way is
beneficial with regards to computational time due to two reasons. Firstly the computational
time of one NMPC for all absorbers is larger than the sum of the computational times with
one NMPC per absorber. Secondly, as the columns are independent, the NMPCs can be run
simultaneously on different processor cores. In addition to this, it might be preferential to
have separate NMPCs in the case where the absorber columns are owned and operated by
different companies. The results of this control configuration to the same test as before is
given in Subsection 7.1.3.

NMPC des

NMPC abs2NMPC abs1

Plant
y

u1u2 u3

θdes1 θdes2

Figure 5.5: Control structure of the configuration with an individual NMPC for each absorber
column. u1 is the reboiler duty while u2 and u3 are the lean flows into absorber column 1 and
2 respectively. θdes1 is a vector with values and predicted trajectories sent from NMPC des to
NMPC abs1. θdes2 is a vector with values and predicted trajectories sent from NMPC des to
NMPC abs2.

36



Chapter 6
Final control configurations

The final control configurations used the step-response models to predict the rich loadings
and flows plus absorber models based on mole balances. It also included bias updating of
the step response models for rich loading and updating of the predicted CRs in the absorber
columns. There were two final configurations, the difference between them is that one had
just one NMPC for all the absorber columns while the other had individual NMPCs for each
absorber column. The configurations were tested and compared with each other. Finally,
the control configurations will be compared with a one-NMPC configuration running the
original model in the NMPC, which will serve as a benchmark. More details on the control
configurations will be given in this chapter.

6.1 Final two-NMPC configuration

6.1.1 NMPC des

NMPC des runs the desorber model with step-response models for predicting rich loading
and rich flow and uses the absorber model based on mole balances to calculate the CRs in
the absorber columns. It also has bias updating of the step-response model for rich loading
and the CRs. The gains for bias updating were set to 0.015 for all the parameters. This
gain gave a quick response while also not causing any oscillations by overshooting, which was
experienced at larger gain values. Its MVs are the reboiler duty, u1 and its own local lean
flows to each absorber column, u2 and u3. The CVs are the CRs in the absorber columns,
z1 = CR1 and z2 = CR2. They both have a setpoint, a maximum constraint and a minimum
constraint. The minimum constraint is equal to the setpoint and will make it more beneficial
for NMPC des to capture a bit more CO2 than required than a bit less. The last CV is
the reboiler duty, z3 = u1. There is no setpoint on this CV, but it has an unreachable max
constraint. The maximum constraint is set to 0, and violating this constraint is penalised.
With the correct tuning, this will cause the controller to satisfy the setpoint for CR while
attempting to minimise the reboiler duty. A summary of the CVs is given in Table 6.1.
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Table 6.1: Controlled variables in NMPC des

Symbol Description Setpoint Min Max q zSpan r1

z1 Capture ratio 1 CRsp1 CRsp1 95 1.0 2.12 2.0
z2 Capture ratio 2 CRsp2 CRsp2 95 1.0 2.12 2.0
z3 Reboiler duty None 0 0 0 3.0 0.05

The code for specifying the parameterisation of the inputs is given in Code box 6.1. All the
inputs have the same parameterisation. There are four blocks for the inputs with increasing
size. The blocks start at 0, 15, 45 and 90 minutes into the prediction horizon. The fourth
block ends at the end of the prediction horizon, which is 300 minutes long.

Code box 6.1: C Code for deciding the MV parameterisation in CENIT

1 /* Standard parameterisation of the inputs. There are four MV blocks,

2 the first from 0 to 15, second from 15 to 45, third from 45 to 90

3 and fourth from 90 to the end of the horizon (300) */

4 for (int i = 1; i <= NU; i++) {

5 Upar->m[i][1] = 15;

6 Upar->m[i][2] = 45;

7 Upar->m[i][3] = 90;

8 // Disable the rest of the blocks by setting them to 0

9 for (int j = (NCOL_UPAR_MPC_MV+1); j <= NCOL_UPAR_MPC; j++)

10 Upar->m[i][j] = 0;

11 }

The code for specifying the parameterisation of the CVs is given in Code box 6.2. The
standard parameterisation of the CVs has the first evaluation point at 100 minutes, and the
next ones are every fifth minute after until the end of the prediction horizon. On the other
hand, the CRs does not have the standard parameterisation. For the CRs, the evaluation
points start at 10 minutes. The next ones come every tenth minute until it catches up with
the standard parameterisation at 190 minutes. It then follows the standard parameterisation
until the end. Thus, in the optimisation problem in NMPC des, deviations from the setpoints
and constraint violations are penalised quite early for the CRs. At the same time, the penalty
for reboiler duty only comes into effect more towards the end of the horizon. Therefore, this
tuning allows NMPC des to increase the reboiler duty initially if it allows for a reduced
reboiler duty towards the end of the prediction horizon.

Code box 6.2: C Code for deciding the CV parameterisation in CENIT

1 /* The standard CV parameterisation. The first evaluation point

2 is 100 minutes in the horizon and the next are every fifth minute

3 after that until the end of the horizon */

4 for (int i = 1; i <= NZ; i++) {

5 for (int j = 1; j <= NCOL_ZPAR_MPC; j++)

6 Zpar->m[i][j] = 95 + 5*j;

7 }
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8 /* The capture ratios have their own parameterisation.

9 First evaluation point is after 10 minutes and the next are every

10 tenth minute after that until it catches up and follows

11 the standard parameterisation */

12 for (int j = 1; j <= 18; j++) {

13 Zpar->m[1 + i_z_CaptureRatio_1][j] = j * 10;

14 Zpar->m[1 + i_z_CaptureRatio_2][j] = j * 10;

15 }

6.1.2 NMPC abs

NMPC abs runs the absorber model with a model for each column in the plant. It has bias
updating on the CRs to ensure offset free control. The gains for the bias updating were 0.01
for both bias variables. The MVs are the lean flows into the two absorber columns, u2 and
u3, which for NMPC abs are applied to the plant. The CVs are the CRs in the absorber
columns, z1 = CR1 and z2 = CR2, and the sum of the lean flows, z3 = u2+u3. The setpoints
and constraints for the CRs are the same as in NMPC des. The third CV does not have a
setpoint, only constraints. It receives the current value and trajectories for the lean flows
from NMPC des, Fdes. These values are used to find the constraints for z3. The minimum is
Fdes − 0.1 kg min−1 and the maximum constraint is Fdes + 0.1 kg min−1. A summary of the
CVs is given in Table 6.2.

Table 6.2: Controlled variables in NMPC abs

Symbol Description Setpoint Min Max q zSpan r1

z1 Capture ratio 1 CRsp1 CRsp1 95 1.0 2.12 0.3
z2 Capture ratio 2 CRsp2 CRsp2 95 1.0 2.12 0.3
z3 Sum of lean flows None Fdes − 0.1 Fdes + 0.1 0 1.0 5.0

Code box 6.3 shows the C code used to parameterise the inputs in CENIT. The standard
input parameterisation is the same as in NMPC des. The prediction horizon is also the
same. All inputs except U_LeanLoading_in, which is the lean loading entering the column,
have the standard parameterisation. For this input, the fourth block goes from 90 to 299
minutes. Then there is a fifth from 299 to the end of the horizon. The reason for this is
that U_LeanLoading_in is a DV which receives its predicted trajectory from NMPC des. If it
has the same parameterisation as the other inputs, the trajectory will cut off at 90 minutes
and keep this value until the prediction horizon’s end. By adding this extra block, the whole
horizon can be used.

Code box 6.3: C Code for deciding the MV parameterisation in CENIT

1 /* Standard parameterisation of the inputs. There are four MV blocks,

2 the first from 0 to 15, second from 15 to 45, third from 45 to 90

3 and fourth from 90 to the end of the horizon (300) */

4 for (int i = 1; i <= NU; i++) {

5 Upar->m[i][1] = 15;
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6 Upar->m[i][2] = 45;

7 Upar->m[i][3] = 90;

8 // Disable the rest of the blocks by setting them to 0

9 for (int j = (NCOL_UPAR_MPC_MV+1); j <= NCOL_UPAR_MPC; j++)

10 Upar->m[i][j] = 0;

11 }

12 /* Add an extra block for the lean loading that goes to the last step

13 before the end of the prediction horizon */

14 Upar->m[1 + i_U_LeanLoading_in][NCOL_UPAR_MPC_MV + 1] = 299;

Code box 6.4 shows the C code for defining the parameterisation of the CVs. The standard
parameterisation starts with an evaluation point at 100 minutes, and the next ones are every
fifth minute after that until the end of the horizon. The capture ratios have their own
parameterisation with the first evaluation point after 10 minutes. The next ones are every
tenth minute after that until it catches up with the standard parameterisation at 190 minutes,
which it then follows until the end. The sum of the lean flows is also a CV which has its own
limits. The first evaluation point is after 70 minutes. The next ones are every tenth minute
after that until 130 minutes, where it catches up with the standard parameterisation and
follows it until the end of the prediction horizon. This allows NMPC abs to choose the values
of the lean flows freely until 70 minutes, where the constraints begin to be enforced. NMPC
abs is allowed to breach the constraint initially but should aim to satisfy them towards the
end of the prediction horizon. The combination of this with the parameterisation of the CRs
means that for the first 70 minutes, the only objective of NMPC abs is to have the CRs at
their setpoint. After 70 minutes, it should try to keep the CRs at their setpoint while also
satisfying the constraints on the sum of the lean flows.

Code box 6.4: C Code for deciding the CV parameterisation in CENIT

1 /* The standard CV parameterisation. The first evaluation point

2 is 100 minutes in the horizon and the next are every fifth minute

3 after that until the end of the horizon */

4 for (int i = 1; i <= NZ; i++) {

5 for (int j = 1; j <= NCOL_ZPAR_MPC; j++)

6 Zpar->m[i][j] = 95 + 5*j;

7 }

8 /* The capture ratios have their own parameterisation. First evaluation

9 point is after 10 minutes and the next are every tenth minute after that

10 until it catches up and follows the standard parameterisation */

11 for (int j = 1; j <= 18; j++) {

12 Zpar->m[1 + i_z_CaptureRatio_1][j] = j * 10;

13 Zpar->m[1 + i_z_CaptureRatio_2][j] = j * 10;

14 }

15 /* The sum of the lean flows has its own parameterisation. The first evaluation

16 point is after 70 minutes, and the next ones are every tenth minute after that

17 until 130 minutes where it catches and follows the standard parameterisation */

18 for (int j = 1; j <= 7; j++) {

19 Zpar->m[1 + i_z_Fl_Lean_Abs_Mass][j] = 60 + j * 10;

20 }
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6.2 Final multi-NMPC configuration

As explained in Section 5.6 NMPC abs was split into an individual NMPC for each absorber
column. The tuning of NMPC des was identical, the only change is that instead of sending
the sum of the lean flows to NMPC abs it sends the trajectory of u2 to NMPC abs1 and
the trajectory of u3 to NMPC abs2. The CVs are now z1 = CR1 and z2 = uabs12 in NMPC
abs1, and z1 = CR2 and z2 = uabs23 in NMPC abs2. The tuning of the two new NMPCs
is also similar to when there was only one, the difference is in the constraints on z2. These
constraints are now udes2 ± 0.05 kg min−1 in NMPC abs1 and udes3 ± 0.05 kg min−1 in NMPC
abs2, where udes2 and udes3 are the values of u2 and u3 calculated by NMPC des.

6.3 The benchmark configuration with one NMPC

The benchmark control configuration had a similar tuning to the two-NMPC control config-
uration. The benchmark control configuration uses the original model, same as the one used
as plant replacement in RealSim. The MVs are the reboiler duty, u1 and the lean flows into
the absorber columns, u2 and u3. Its CVs are the CRs in the absorber columns, z1 = CR1

and z2 = CR2, and the reboiler duty, z3 = u1. z1 and z2 have both setpoints and constraints,
and the minimum constraint is equal to the setpoint. z3 does not have a setpoint, only an
unreachable maximum constraint, same as in NMPC des. A summary is given in Table 6.3.
The parameterisation of the inputs and CVs is identical to the parameterisation in NMPC
des. The C code in Code box 6.1 and Code box 6.2 is also present in the code for the
benchmark configuration.

Table 6.3: Controlled variables in the benchmark configuration

Symbol Description Setpoint Min Max q zSpan r1

z1 Capture ratio 1 CRsp1 CRsp1 100 1.0 2.12 0.3
z2 Capture ratio 2 CRsp2 CRsp2 100 1.0 2.12 0.3
z3 Reboiler duty None 0 0 0 1.0 0.05
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Chapter 7
Results

In this chapter the results for tests of different control configurations are given. One test was
performed on a CO2 capture plant with two absorber columns and one test was performed
on a CO2 capture plant with three absorber columns. In this chapter the configurations are
numbered 1 through 5 and these numbers will be used when referring to them later in the
chapter. Table 7.1 gives an overview of the different NMPC configurations with their number,
a description of the control configuration and which section it is possible to read more about
the configuration.

Table 7.1: Overview of the tested NMPC configurations

Configuration Description Section

1 One NMPC using the same model as the plant Section 6.3
2 Two NMPCs, NMPC des and NMPC abs. NMPC des Section 5.1

has step response models for predicting rich flow
and loading

3 Same as 2 NMPC step, but NMPC des uses mole Section 5.3
balance models for predicting rich flow and loading

4 Same as 2 NMPC step, but mole balance models are Section 6.1
used to calculate absorber CRs in NMPC des. These
CRs are used as CVs instead of the CR in the desorber.
Also uses bias updating of the step response models
for rich loading and of the absorber CRs in NMPC abs
and NMPC des

5 Same as 2 NMPC bias, but NMPC abs is split into Section 6.2
individual NMPCs for each absorber column

7.1 CO2 capture plant with two absorber columns

A test was run to compare the performance between the developed two-NMPC configurations
with the benchmark. In the test the process starts at the optimal point and after 60 minutes
the CR setpoint in absorber column 1, CRsp1 , is increased from 84 % to 90 %. After 240
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Figure 7.1: The CRs when using the control configuration 1. The upper plot shows the CR in
absorber column 1 and the middle plot shows the CRs in absorber column 2. The stippled black
lines are the setpoints, CRsp1 and CRsp2 . The solid black lines are the predicted CRs, CR1 and
CR2. The blue lines are the measured CRs from the plant, CRm1 and CRm2 . The lower plot
shows the CR from the desorber column measured from the plant. It is not a CV in this NMPC
configuration.

minutes the flue gas flow into absorber column 2 is increased from 80 m3 h−1 to 100 m3 h−1.
No additional changes were made and the whole test was 720 minutes long. Some of the
two-NMPC configurations developed in this thesis and the benchmark control configuration
were tested.

7.1.1 Benchmark control configuration

First the benchmark control configuration was tested, number 1 in Table 7.1. The CV setpoint
tracking performance can be seen in Figure 7.1. The upper plot shows the CR in absorber
column 1 while the middle plot shows the CR in absorber column 2. The plots show the
setpoints, measured values from the plant in RealSim and predicted values from the NMPC
in CENIT. The lower plot shows the CR measured in the desorber column. The response to
the setpoint change is fast and the increased flue flow is quickly accounted for.
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Figure 7.2: The MVs when using the control configuration 1. The upper plot shows the reboiler
duty, u1. The lower plot shows the lean flows, u2 and u3.
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Figure 7.3: Lean and rich loading when using control configuration 1. The upper plot shows
the rich loading in the outlet flows from absorber column 1. αR,1 is the value predicted by the
NMPC and αmR,1 is the measurement from the plant. The middle plot shows the rich loading in
the outlet flows from absorber column 2, αR,2 is the value predicted by the NMPC and αmR,2 is
the measurement from the plant. The lower plot shows the lean loading in the lean buffer tank,
αL.
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Figure 7.2 shows the inputs from the benchmark controller. The upper plot shows the reboiler
duty while the lower plot shows the lean flows. The reboiler duty is increased rather slowly and
progressively, while the lean flows are increased fast with only small corrections afterwards.
The loadings in the plant can be seen in Figure 7.3. The upper plot is the rich loading in
the outlet flow from absorber column 1, the middle plot is the rich loading in the outlet from
absorber column 2 while the lower plot shows the lean loading in the lean buffer tank. There
is almost no difference between the measured and predicted values.

7.1.2 Two-NMPC control configurations

In Chapter 5 several iterations of the two-NMPC control configuration were developed. The
test results of some of these are given here.
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Figure 7.4: The CRs when using control configuration 2. The upper plot shows the CR in
absorber column 1 and the middle plot shows the CRs in absorber column 2. These are the
CVs in NMPC abs. The bottom plot shows the CR in the desorber column, which is the CV
in NMPC des. The stippled black lines are the setpoints, CRsp1 , CRsp2 and CRspdes. The solid
black lines are the predicted values, CR1 and CR2 from NMPC abs, and CRdes from NMPC
des. The blue lines are the measured CRs from the plant, CRm1 , CRm2 and CRmdes.
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Two-NMPC control configuration with step response models

The CV setpoint tracking performance when using the two-NMPC configuration with step
response models from Section 5.1, number 2 in Table 7.1, can be seen in Figure 7.4. The upper
plot shows the CR in absorber column 1 while the middle plot shows the CR in absorber
column 2. The bottom plot shows the CR in the desorber column. The response to the
setpoint change is a little slower here and it also uses longer time to account for the flue gas
increase. From around 300 minutes it also catches more CO2 than necessary. There is some
deviation between measurements and predictions, the measured CRs are consistently higher
for all CRs.

The MVs can be seen in Figure 7.5. The upper plot shows the reboiler duty calculated by
NMPC des and the lower plot shows the two lean flows calculated by NMPC abs. The lean
flows look pretty similar here to the previous configuration. The reboiler duty on the other
hand is used much more aggressively in this configuration.

A comparison between the lean flows found by NMPC abs, uabs2 and uabs3 , and the ones found
by NMPC des, udes2 and udes3 , is given in the upper plot in Figure 7.6. They are similar, but
the ones calculated by NMPC des are a lot more up and down than the ones calculated by
NMPC abs and generally a bit larger. The lower plot shows the CV, z3, in NMPC abs and
the limits which it receives from NMPC des. It mostly stays within the limits, but breaches
them right after the disturbances.
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Figure 7.5: The MVs when using control configuration 2. The upper plot shows the reboiler
duty, u1. The lower plot shows the lean flows calculated by NMPC abs, uabs2 and uabs3 .
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Figure 7.6: Comparison between the MVs calculated by NMPC abs and NMPC des when using
control configuration 2. The upper plot shows the MVs, the solid lines are calculated by NMPC
abs and the stippled lines are calculated by NMPC des. The lower plot shows z3 in NMPC abs,
the stippled lines are the limits based on the trajectory from NMPC des.

Figure 7.8 shows the loadings predicted by NMPC des and the ones measured from the plant.
The upper plot shows the rich loading in the outlet flow coming from absorber column 1, the
middle plot shows the rich loading in the outlet flow coming from absorber column 2. The
lower plot shows the lean loading in the lean buffer tank. There is some deviation between
the measured and predicted loading in absorber 1, but it is not that big. In absorber 2 on
the other hand the difference is huge with the predicted rich loading being too small. The
lean loading is pretty close apart from between 400 and 600 minutes where it deviates for a
while.

Figure 7.7 shows the value of z3 and its setpoint. The setpoint is followed closely. There is
some deviation from the setpoint right when the disturbances occur, but not much.
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Figure 7.7: The CV z3 and its setpoint in NMPC des when using control configuration 2
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Figure 7.8: Lean and rich loading when using control configuration 2. The upper plot shows the
rich loading in the outlet flows from absorber column 1. αR,1 is the value predicted by NMPC
des and αmR,1 is the measurement from the plant. The middle plot shows the rich loading in the
outlet flows from absorber column 2, αR,2 is the value predicted by NMPC des and αmR,2 is the
measurement from the plant. The lower plot shows the lean loading in the lean buffer tank. αL
is the value predicted by NMPC des and αmL is the measurement from the plant.

Two-NMPC control configuration with mole balance models

The CV setpoint tracking performance when using the two-NMPC configuration with mole
balance models from Section 5.3, number 3 in Table 7.1, can be seen in Figure 7.9. The upper
plot shows the CR in absorber column 1 while the middle plot shows the CR in absorber
column 2. The bottom plot shows the CR in the desorber column. The setpoints are followed
closely and the disturbances are rejected quickly. After about 500 minutes the measured CRs
begin to drop and deviate from the prediction.
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Figure 7.9: The CRs when using control configuration 3. The upper plot shows the CR in
absorber column 1 and the middle plot shows the CRs in absorber column 2. The stippled black
lines are the setpoints, CRsp1 and CRsp2 . The solid black lines are the predicted values in NMPC
abs, CR1 and CR2. The blue lines are the measured CRs from the plant, CRm1 and CRm2 . These
are the CVs in NMPC abs. The bottom plot shows the CR in the desorber column, which is a
CV in NMPC des.

The MVs can be seen in Figure 7.10. The upper plot shows the reboiler duty, u1, while the
lower plot shows the two lean flows calculated by NMPC abs, uabs2 and uabs3 . Once again the
lean flows are increased fast and remain stable after the initial period with quick change. The
reboiler is used quite aggressively here as well, but it is reduced in the horizon.

A comparison between the lean flows found by NMPC abs, uabs2 and uabs3 , and the ones found
by NMPC des, udes2 and udes3 , is given in the upper plot in Figure 7.11. The lower plot
shows the CV, z3, in NMPC abs and the limits which it receives from NMPC des. In this
configuration NMPC des consistently calculates lower lean flows than NMPC abs. Looking
at the constraints on z3 they seem to be violated almost the entire time.
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Figure 7.10: The MVs when using control configuration 3. The upper plot shows the reboiler
duty, u1. The lower plot shows the lean flows calculated by NMPC abs, uabs2 and uabs3 .
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Figure 7.11: Comparison between the MVs calculated by NMPC abs and NMPC des when using
control configuration 3. The upper plot shows the MVs, the solid lines are calculated by NMPC
abs and the stippled lines are calculated by NMPC des. The lower plot shows z3 in NMPC abs,
the stippled lines are the limits.
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Figure 7.12: Lean and rich loading when using control configuration 3. The upper plot shows the
rich loading in the outlet flows from absorber column 1. αR,1 is the value predicted by NMPC
des and αmR,1 is the measurement from the plant. The middle plot shows the rich loading in the
outlet flows from absorber column 2, αR,2 is the value predicted by NMPC des and αmR,2 is the
measurement from the plant. The lower plot shows the lean loading in the lean buffer tank, αL
is the value predicted by NMPC des and αmL is the measurement from the plant.

Figure 7.12 shows the loadings predicted by NMPC des and the ones measured from the
plant. The upper plot shows the rich loading in the outlet flow coming from absorber column
1, the middle plot shows the rich loading in the outlet flow coming from absorber column 2.
The lower plot shows the lean loading in the lean buffer tank. Here the predicted rich loading
is too high in both absorber columns. The lean loading is close up to around 300 minutes
where it starts to increase until the end of the simulation, where the difference is quite large.
Figure 7.13 shows the CV z3 in NMPC des with its setpoint, which is followed closely.
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Figure 7.13: The CV z3 and its setpoint in NMPC des when using control configuration 3
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Figure 7.14: The CRs in NMPC abs when using control configuration 4. The upper plot shows
the CR in absorber column 1 and the lower plot shows the CRs in absorber column 2. The
stippled black lines are the setpoints, CRsp1 and CRsp2 . The solid black lines are the predicted
values in NMPC abs, CR1 and CR2. The blue lines are the measured CRs from the plant, CRm1
and CRm2 .

Two-NMPC control configuration with bias estimation

The CV setpoint tracking performance when using the two-NMPC configuration from Sec-
tion 6.1, number 4 in Table 7.1, can be seen in Figure 7.14. The upper plot shows the CR
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Figure 7.15: The CRs in NMPC des when using control configuration 4. The upper plot shows
the CR in absorber column 1 and the lower plot shows the CRs in absorber column 2. The
stippled black lines are the setpoints, CRsp1 and CRsp2 . The solid black lines are the predicted
values in NMPC des, CR1 and CR2. The blue lines are the measured CRs from the plant, CRm1
and CRm2 .

53



7.1. CO2 CAPTURE PLANT WITH TWO ABSORBER COLUMNS

0 100 200 300 400 500 600 700

Time [min]

26

28

30

32

34

36

u
1
 [

k
W

]

0 100 200 300 400 500 600 700

Time [min]

2

2.2

2.4

2.6

2.8

L
e

a
n

 f
lo

w
 [

k
g

/m
in

]

u
2
abs

u
3
abs

Figure 7.16: The MVs when using control configuration 4. The upper plot shows the reboiler
duty, u1. The lower plot shows the lean flows calculated by NMPC abs, uabs2 and uabs3 .

in absorber column 1 while the lower plot shows the CR in absorber column 2. The setpoint
is followed closely and the flue gas flow disturbance is accounted for quickly. There is very
little deviation between prediction and measurement. Figure 7.14 is from NMPC abs while
Figure 7.15 is the same plot from NMPC des. The CRs in the absorber columns are now the
CVs in NMPC des instead of the desorber CR and the lean flow ratio. Figure 7.15 also shows
that the setpoint is followed closely, the disturbance is rejected and there is little deviation
between measurement and prediction.

The MVs can be seen in Figure 7.16. The upper plot shows the reboiler duty, u1, while
the lower plot shows the two lean flows calculated by NMPC abs, uabs2 and uabs3 . The lean
flows are similar to the rest of the two-NMPC configurations, but the reboiler duty strongly
resembles the reboiler duty in configuration 1. The reboiler duty use is much less aggressive
here. Instead it is increased slower towards its final value.

A comparison between the lean flows found by NMPC abs, uabs2 and uabs3 , and the ones found
by NMPC des, udes2 and udes3 , is given in the upper plot in Figure 7.17. The lower plot shows
the CV, z3, in NMPC abs and the limits which it receives from NMPC des. The lean flows
found by NMPC des are much more aggressive and make a big jump before being quickly
reduced again. z3 is mostly within its constraints.

Figure 7.18 shows the loadings predicted by NMPC des and the ones measured from the
plant. The upper plot shows the rich loading in the outlet flow coming from absorber column
1, the middle plot shows the rich loading in the outlet flow coming from absorber column 2.
The lower plot shows the lean loading in the lean buffer tank.
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Figure 7.17: Comparison between the MVs calculated by NMPC abs and NMPC des when
control configuration 4. The upper plot shows the MVs, the solid lines are calculated by NMPC
abs and the stippled lines are calculated by NMPC des. The lower plot shows z3 in NMPC abs,
the stippled lines are the limits.
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Figure 7.18: Lean and rich loading when using control configuration 4. The upper plot shows the
rich loading in the outlet flows from absorber column 1. αR,1 is the value predicted by NMPC
des and αmR,1 is the measurement from the plant. The middle plot shows the rich loading in the
outlet flows from absorber column 2, αR,2 is the value predicted by NMPC des and αmR,2 is the
measurement from the plant. The lower plot shows the lean loading in the lean buffer tank, αL
is the value predicted by NMPC des and αmL is the measurement from the plant.
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Figure 7.19: Bias variables from NMPC des and NMPC abs when using control configuration 4.
The upper plot shows the rich loading bias variables from NMPC des for both absorbers, βαR,1

and βαR,2
. The middle plot shows the CR bias variables in NMPC des, βdesCR,1 and βdesCR,2. The

bottom plot shows the CR bias variables in NMPC abs, βabsCR,1 and βabsCR,2

The bias variables in NMPC des and NMPC abs can be seen in Figure 7.19. The upper
plot shows the rich loading bias variables and the middle plot shows the CR bias variables
from NMPC des. The bottom plot shows the CR bias variables from NMPC abs. The CR
bias variables are quite small and pretty much settle at steady values towards the end of the
horizon. The CR bias variables do not seem to settle at steady values.

7.1.3 Three-NMPC control configuration

The CV setpoint tracking performance when using the three-NMPC configuration from Sec-
tion 6.2, number 5 in Table 7.1, can be seen in Figure 7.20. This plot is for NMPC abs. The
upper plot shows the CR in absorber column 1 while the lower plot shows the CR in absorber
column 2. The setpoint is followed closely and the flue gas disturbance is rejected quickly,
there is however some deviation between measurements and prediction. Figure 7.21 shows
the absorber CRs in NMPC des. The deviation between measurements and prediction is here
as well. The CR predictions are a bit more noisy here. The setpoint is followed closely by
the controller and the disturbance is rejected fast.
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Figure 7.20: The CRs in NMPC abs when using control configuration 5. The upper plot shows
the CR in absorber column 1 and the lower plot shows the CR in absorber column 2. The
stippled black lines are the setpoints, CRsp1 and CRsp2 . The solid black lines are the predicted
values in NMPC abs, CR1 and CR2. The blue lines are the measured CRs from the plant, CRm1
and CRm2 .
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Figure 7.21: The CRs in NMPC des when using control configuration 5. The upper plot shows
the CR in absorber column 1 and the lower plot shows the CR in absorber column 2. The
stippled black lines are the setpoints, CRsp1 and CRsp2 . The solid black lines are the predicted
values in NMPC abs, CR1 and CR2. The blue lines are the measured CRs from the plant, CRm1
and CRm2 .
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Figure 7.22: The MVs when using control configuration 5. The upper plot shows the reboiler
duty, u1. The lower plot shows the lean flows calculated by NMPC abs, uabs2 and uabs3 .

The MVs can be seen in Figure 7.22. The upper plot shows the reboiler duty, u1, while the
lower plot shows the two lean flows calculated by NMPC abs, uabs2 and uabs3 . The lean flows
look very similar to before. The reboiler duty is increased a little less after 240 minutes. It
increases until the end of the horizon instead of being kept constant like in configuration 4.
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Figure 7.23: Comparison between the MVs calculated by NMPC abs and NMPC des when using
control configuration 5. The upper plot shows the MVs, the solid lines are calculated by NMPC
abs and the stippled lines are calculated by NMPC des. The middle and lower plots show z2 in
NMPC abs1 and NMPC abs2, respectively. The stippled lines are the limits.
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Figure 7.24: Lean and rich loading when using control configuration 5. The upper plot shows the
rich loading in the outlet flows from absorber column 1. αR,1 is the value predicted by NMPC
des and αmR,1 is the measurement from the plant. The middle plot shows the rich loading in the
outlet flows from absorber column 2, αR,2 is the value predicted by NMPC des and αmR,2 is the
measurement from the plant. The lower plot shows the lean loading in the lean buffer tank, αL
is the value predicted by NMPC des and αmL is the measurement from the plant.

A comparison between the lean flows found by NMPC abs, uabs2 and uabs3 , and the ones found
by NMPC des, udes2 and udes3 , is given in the upper plot in Figure 7.23. The lower plot shows
the CV, z3, in NMPC abs and the limits which it receives from NMPC des. The lean flows
found by NMPC des and NMPC abs1 and NMPC abs2 are pretty similar, but NMPC des
chooses values that are a little lower and does bigger jumps at the setpoint change and the
flue flow increase. The lean flows are mostly within their limits in both NMPC abs1 and
NMPC abs2.

Figure 7.24 shows the loadings predicted by NMPC des and the ones measured from the
plant. The upper plot shows the rich loading in the outlet flow coming from absorber column
1, the middle plot shows the rich loading in the outlet flow coming from absorber column 2.
The lower plot shows the lean loading in the lean buffer tank. The rich loading predictions
are good after the bias has updated them, but dynamically they are off. The lean loading
measurement starts to drift off at 350 minutes, but returns towards the end of the horizon.

Figure 7.25 shows the bias variables. The upper plot shows the rich loading bias variables in
NMPC des. The middle plot shows the CR bias variables in NMPC des and the bottom plot
shows the CR bias variables in NMPC abs1 and NMPC abs2.
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Figure 7.25: Bias variables from NMPC des and NMPC abs when using control configuration 5.
The upper plot shows the rich loading bias variables from NMPC des for both absorbers, βαR,1

and βαR,2
. The middle plot shows the CR bias variables in NMPC des, βdesCR,1 and βdesCR,2. The

bottom plot shows the CR bias variables in NMPC abs1 and NMPC abs2, βabs1CR,1 and βabs2CR,2

A summary of the average computational time per sample for the different control configu-
rations and their controllers is given in Table 7.2. The maximum sample time is also given.
Splitting the optimisation problem into smaller pieces reduces the total computational time.

Table 7.2: Average time per sample and maximum sample time of controllers with a two absorber
plant

Configuration Controller Average time [s] Max time [s]

1 NMPC 22.59 77.67
2 NMPC abs 4.23 7.78

NMPC des 2.09 10.52
3 NMPC abs 4.31 9.58

NMPC des 1.56 6.18
4 NMPC abs 4.06 7.41

NMPC des 1.89 3.12
5 NMPC abs1 0.98 2.46

NMPC abs2 0.97 2.19
NMPC des 1.87 5.55
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7.2 CO2 capture plant with three absorber columns

A test was done on a three absorber CO2 capture plant. The test was just running the plant
with the NMPCs switched on for 30 samples, with one sample being 60 seconds as before. No
setpoint changes or disturbances were introduced. No plots are shown as the simulations are
not interesting apart from the computational times. Control configuration 1, 4 and 5 from
Table 7.1 were tested. The average computational times for different control configurations
are given in Table 7.3. The maximum sample times are also given.

Table 7.3: Average time per sample and maximum sample time of controllers with a three
absorber plant

Configuration Controller Average time [s] Max time [s]

1 NMPC 67.03 94.84
4 NMPC abs 12.11 15.63

NMPC des 1.62 2.02
5 NMPC abs1 0.91 1.15

NMPC abs2 0.92 1.14
NMPC abs3 0.92 1.15
NMPC des 1.5 2.24
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Chapter 8
Discussion

This chapter starts of with a discussion of some key decisions in the model and control
configuration development. Then comes further discussion of the results and an evaluation
of the final control configurations performance.

8.1 Modelling

Several simple absorber models were developed and implemented in the desorber model. In
this section each of the simple absorber models are discussed. Both their performance and
underlying assumptions. The conversion of the model from a one absorber to a multiple
absorber CO2 capture plant is also discussed

8.1.1 Step response models

The step response models in Section 4.2 fit well when the absorber column is at the conditions
the step response models were found in, as can be seen in Figure 4.5. In this case that is with
CR controlled at 84 % and 80 m3 h−1 flue gas flow with 12.3 % CO2. However, the dynamics
of the step response models does not quite match the absorber model. In the step response
model for rich loading there is some time delay which is not included in the step response
model. Instead some more time was added to the time constant. Judging by Figure 4.5 there
is inverse response in rich flow when increasing lean flow in the absorber model which also
not included in the step response model. There is also some time delay which is not there in
the step response model.

These dynamic differences are however not that critical as long as the steady state values
are correct. The dynamics of the desorber column is slow compared to the absorber column
and any NMPC which uses the step response models only controls the reboiler duty, which
acts directly on the desorber column through the reboiler. Due to how the absorber columns
are relatively faster than the desorber column the dynamic error of the step reponse models
should not be a problem.
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On the other hand, what can be a problem is when the conditions of the absorber column
change. For instance a setpoint change will affect both the rich flow and the rich loading
in the column. The values predicted by the models given a specific lean flow can then be
wrong. Due to this it is common to use bias updating of the model when using step response
models [19]. The plot in Figure 5.3 shows a comparison of the rich loading prediction with
and without bias updating of the step response model. It can be seen that the models miss
by quite a bit without bias updating, but with bias updating the error is removed.

8.1.2 Absorber model based on mass transfer

The absorber model based on mass transfer from Section 4.3 was by far the worst of the
simple absorber models. Both in terms of prediction accuracy and general usability. There
are many possible reasons for why the performance was so bad. One reason may be the
fact that the temperature is assumed to be constant throughout the entire column. Looking
at simulations using the absorber model this is certainly not the case. The temperature in
the column varies quite a bit, increasing from the bottom towards the top until a drop in
temperature before the lean solvent inlet at the top of the column. It was attempted to add
a temperature dependence by linear interpolation of a temperature profile, but it was not
successful.

Another assumption which likely caused error is the assumption that the total flows are
constant due to the low CO2 content. The CO2 content in the flue gas in the simulations is
12.3 %, which is a likely too much for this assumption to hold. If the capture ratio is 84 %

just over 10 % of the gas flow is removed. This would lead to changes in the mole fractions
of the other components which are not negligible. The same applies to the liquid flow. The
loading changes quite a bit from top to bottom. From simulating the absorber model a lean
flow of 2.2 kg min−1 into the column gave a rich flow of 2.44 kg min−1 out of the column. This
is a 9 % increase, which is too big to ignore.

Another possible issue with this model is the way it is solved. Shooting methods work well
for linear models, but can fail if the model is too nonlinear. The algorithm for updating
the initial value guess is also important. It was found that both secant method and Brent’s
method were unreliable and often failed. These method would often choose guesses which
either lead to the model diverging towards infinity or returning NaN. The KINSOL solver
was implemented and could solve the problem reliably.

The obvious solutions to these problems is to include temperature in the model, not assume
that the flows are constant and finding a new way to solve the BVP. However, this would
increase the complexity of the model and make it more computationally expensive. Adding
temperature equations and more detailed flow equations would increase the size of the model
and many parameters would have to be identified. Solving the model using either finite
difference or a collocation method would also increase the complexity of the model to the
point where it would be better to just use the original absorber model, which is tried and
tested and known to be accurate.
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8.1.3 Mole balance model

Since the dynamics of the absorber columns are much faster than the dynamics of the desorber
column it was suggested that perhaps a steady state model of the absorber model could be
good enough. The benefit of using a simple steady state mole balance model is that there is
no need for thermodynamic equations, which can get complicated in an absorption process.
The models in Section 4.4 were developed based on the assumption that a steady state model
is good enough. First the model was formulated in a way that gave predictions of rich
flow and rich loading, assuming the composition of the entering flue gas and lean amine are
known. The CR must also be known. The second formulation assumes that rich flow and
rich loading are known, they can then be used to calculate the CR in the column, as shown
in Equation 4.20.

Both of these formulations are dependant on information predicted by other models. The
first formulation needs to know the CR, which it receives from NMPC abs in the control
structure in Section 5.3, test results of which can be seen in Section 7.1.2. A possible issue
with this is that there may be differences between the actual CR in the plant and the one
predicted by NMPC abs. This will lead to errors in the predictions of rich flow and rich
loading by the model, even if the model is perfect. Similarly for the second formulation, the
rich flow and rich loading must come from somewhere else. This formulation is used in the
control configuration in Section 6.1, where rich flow and rich loading are predicted using a
step response model. If the predictions from the step response models are wrong the CR
will also be wrong. This will be discussed further later in the chapter in the sections of the
relevant control configurations.

8.1.4 Assumptions when expanding to multiple absorbers

When the model is expanded to include multiple absorber columns it is assumed that it does
not matter if the flow goes to one or several columns from the absorbers perspective. The
only thing that matters in the lean buffer tank is the total amount of lean solvent leaving the
tank. This should be a reasonable assumption. The lean solvent flows out of the tank and
into the absorber columns, which may have different temperatures and compositions. The
differences between the columns does not matter, as the contents of the lean buffer tank are
not affected by what happens downstream.

In the heat exchanger it is assumed that the molar flows from each absorber column can be
added to total molar flows entering the heat exchanger. Due to the conservation of mass
this assumption holds. Temperature on the other hand is an intensive quantity, hence it
is not possible to add the temperatures together like with the rich flows. To calculate he
temperature as shown in Equation 4.30d, a few assumptions have to be made. It is assumed
that there is no mixing enthalpy and that the flows have the same heat capacity. This
assumption should hold as the rich flow coming from the different columns are similar. The
rich loading varies a bit between the columns, same with the temperature. These properties
affect both the heat capacity and the mixing enthalpy. The differences however are quite
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small so these assumptions should be fine.

8.2 Control configurations

The development of the control configurations happened hand in hand with the model devel-
opment. The first step was expanding the models to multiple absorber columns and adapting
the control structure developed in the project thesis [17] to a multiple absorber plant, as ex-
plained in Section 5.1. This is the first of the two-NMPC configurations developed during
this thesis. As explained in Chapter 7 the configurations were tested using the same test.

8.2.1 Configuration 1

Test results of control configuration 1 in Table 7.1 are given in Section 7.1. This is the bench-
mark control configuration with no model mismatch between plant and NMPC. Figure 7.1
shows the setpoint tracking performance of this control configuration. It performs very well,
which is expected when there is no model mismatch. The desorber capture ratio is not a CV,
it is only added for comparison with other configurations where it is a CV.

Figure 7.2 shows the MVs. It can be seen that the lean flows are changed quickly while the
reboiler duty is changed a bit slower in comparison. This is likely due to how the inputs
affect the plant and the CVs. Dynamically the CRs in the absorber columns are strongly
dependant on the lean flows. An increase in lean flow will cause an immediate increase in
CR, which explains why they are changed so quickly when either the setpoint changes or the
flue flow increases. They are not very dependant on the reboiler duty dynamically, as the
effects of changing it is a change in loading which in turn affects the CRs. The desorber is
slow compared to the absorbers so a sudden increase in reboiler duty would not cause the
same immediate increase in CR. That is not to say that the reboiler duty is not important,
it just uses longer time to affect the plant.

Figure 7.3 shows the loadings in the plant and as expected there is almost no deviation
between the measurements and the values from the NMPC. Overall this control structure
performs very well with regards to how good the control is. It is far from perfect though, as
solving the whole plant in one NMPC is very time consuming. The average computational
time per sample and the maximum sample computational time are given in Table 7.2, for
this control configuration and all the others later in the chapter. This control configuration is
significantly slower than the rest with an average sample time of 22.59 seconds. The maximum
computational time of a sample was 77.67 seconds, and considering that the sampling time
of the controller is 60 seconds that is not good enough.

8.2.2 Configuration 2

The control configuration given in Section 5.1 used step response models to predict rich
flow and rich loading. It is number 2 in Table 7.1. The results of this controller to the
test are shown in Section 7.1.2. Looking at the CRs in Figure 7.4 it can be seen that this
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configuration works quite well. There is some deviation between the measurements and the
values predicted in NMPC abs, but it is a good starting point. The desorber CR is also
controlled nicely, though there is some deviation here as well.

The MVs can be seen in Figure 7.5. Comparing with the MVs from control configuration 1,
shown in Figure 7.2 it can be seen that the lean flows are quite similar. The lean flows in
Figure 7.5 are calculated by NMPC abs and as long as the lean loading prediction received
from NMPC des is close to the actual value in the plant they should be pretty similar, as the
models in the absorber model are the same as in the original model.

The reboiler duty on the other hand is calculated by NMPC des. There is more difference in
reboiler duty than in the lean flows. In control configuration 2 the reboiler duty is used quite
aggressively and is increased much more before being reduced again. In control configuration
1 the reboiler is increased slower and does not have the same pattern of large increase before
a decrease. The main contributing factor to this is likely the difference in CVs between the
NMPCs. In configuration 1 the CVs are the CRs in the absorber columns which are quickly
affected by the lean flows, while the reboiler duty takes a longer time to affect them. In
configuration 2 on the other hand the CVs are the CR in the desorber column and the ratio
between the lean flows. The reboiler duty has a large effect on the desorber CR as an increase
in reboiler duty will lead to an increased amount of CO2 leaving the reboiler and the desorber
CR increasing. When either the CR setpoint is increased or the CO2 flow into the absorbers
increases the only way for NMPC des to respond quickly is by increasing the reboiler duty.
Due to the locations of the evaluation points for z2 = u1 in NMPC des reboiler duty usage is
only penalised after 100 minutes into the horizon, while deviations in CR are penalised after
10 minutes. Due to this NMPC des will choose to quickly increase the reboiler duty if it can
help satisfy the CR setpoint.

A comparison between the lean flows calculated by NMPC abs and NMPC des is given in
Figure 7.6. They are similar, but the ones calculated by NMPC des are a bit more changing
up and down. NMPC abs finds the correct value and pretty much keeps it there. The
lower plot shows z3 from NMPC abs with its limits. The limits are violated momentarily,
but NMPC abs ends up keeping them within the limits most of the time. Figure 7.8 shows
the loadings in the columns and the lean buffer tank. It can be seen that the rich loadings
predicted by NMPC des are lower in absorber 2 and a little larger in absorber 1. As the
flow to absorber 2 is bigger the net result of this is likely that the rich loading entering the
desorber column is smaller in NMPC des than in the plant, which can explain why the lean
flows calculated by NMPC des are larger than the ones calculated by NMPC abs.

There is also some deviation between the reboiler duty in configuration 1 and 2 towards the
end of the simulation. This might be due to the difference in rich loading. Figure 7.8 shows
the loadings in configuration 2. It can be seen that the loading predicted by NMPC des in
absorber column 2 is much lower than the actual loading in the plant. This will lead NMPC
des to have less CO2 in the desorber than is actually the case in the plant. The reboiler
duty needed for NMPC des to fulfill the desorber CR setpoint will then be larger than what
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is needed in the plant. This explains why the measured CRs are higher than the predicted
values. Figure 7.7 shows z3 in NMPC des. The setpoint is followed closely. Judging by the
upper plot in Figure 7.6 the distribution of the flows in NMPC des seem to be correct, as it
matches well with the distribution in NMPC abs.

8.2.3 Configuration 3

The test results for a controller using this simple absorber model is given in Section 7.1.2,
this configuration is number 3 in Table 7.1. Figure 7.9 shows the CRs in the absorbers and
in the desorber. It can be seen that the controller performs very well initially, but it starts
to deviate at about 400-500 minutes into the simulation. This applies to both the absorber
CRs and the desorber CR.

The MVs can be seen in Figure 7.10. NMPC abs is identical in control configuration 2 and
3, so the fact that the lean flows found by NMPC abs resemble the ones found by the NMPC
in control configuration 1 is expected for the same reasons as before. The reboiler duty is
not that similar to the one found buy configuration 1, but it is similar to the one found
by configuration 2. This is because the reboiler duty is found by NMPC des which once
again uses the desorber CR, which is more affected by the reboiler duty than the CRs in the
absorber columns.

Figure 7.11 shows a comparison between the lean flows calculated by NMPC abs and by
NMPC des. In this configuration NMPC des chooses smaller lean flows than NMPC abs.
Looking at the loadings in Figure 7.12 might explain this. The rich loadings predicted in
NMPC des in this configuration are larger than the actual loading in the absorber columns.
This means that less rich flow is needed into the desorber to get the same amount of CO2 and
the lean flows becomes lower than what they should be. This is the opposite of what happens
in configuration 2, where the rich loading is too low and the lean flows become higher than
they should be.

Looking at the bottom plot in Figure 7.11 it can be seen that NMPC abs chooses to violate
the constraints all the time in order to satisfy the CR setpoints. The difference between the
flows calculated by NMPC abs and NMPC des is an issue probably from the errors in rich
loading prediction.

After about 450 minutes the CRs measured from the plant starts to drop. The explanation
for this can once again be found by looking at the loadings in Figure 7.12. At about the same
time as the CRs begin to drop the lean loading measured from the plant starts to increase.
The lean loading predicted in the model on the other hand stays the same place. NMPC
abs uses the lean loading trajectory it receives from NMPC des, and when this is wrong the
capture ratio predicted in NMPC abs will also be wrong. If the lean loading is small there
is need for less lean flow than when the lean loading is high. This means that when NMPC
abs receives lean loading predictions that are lower than the lean loading in the plant it will
choose lean flows which are too small to capture the desired amount of CO2 in the plant.
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The explanation for why the lean loading in the plant starts to increase can be found by
comparing the reboiler duties in Figure 7.10 and Figure 7.2. Towards the end of the horizon
NMPC des in control configuration 3 chooses a lower reboiler duty than configuration 1,
while the lean flows chosen by NMPC abs are almost identical to the ones in configuration 1.
The consequence of this is naturally that the lean loading increases as less CO2 is stripped
away when the reboiler duty is lower. The root cause of the issues is the error in rich loading
predictions. By predicting larger rich loading than what is actually the case it allows NMPC
des to choose lower lean flows and reboiler duty than what is actually needed in the plant
while still achieving its desorber CR setpoint.

Stripping CO2 is easier the higher the CO2 loading is. This explains why NMPC des can
remove enough CO2 while using lower reboiler duty. The reboiler duty required per kg CO2

removed is known as specific reboiler duty (SRD). SRD is lower when the rich loading is
higher, hence less reboiler duty is required to remove the same amount of CO2.

In NMPC des. the value of the CR in the simple model in Subsection 4.4.1, c, is received in
the form of a predicted trajectory from NMPC abs. When there is a difference between the
prediction and the actual value in the plant this will lead to error in the predicted rich flow
and rich loading in NMPC des. These errors affect NMPC des and the inputs and predictions
it produces. The lean loading trajectory sent from NMPC des to NMPC abs will then also
be wrong which leads to a larger error in the CR prediction and the cycle continues. It seems
that sending predicted trajectories both ways is not wise at it can lead to a snowballing effect
where the deviation grows.

8.2.4 Configuration 4

Based on the results of configurations 2 and 3 it was concluded that the predicted rich loading
had to be correct for NMPC des to be able to choose the correct reboiler duty. The way
this was achieved was by combining the two previous control configurations and adding bias
updating based on measurements from the plant. Based on the results of configuration 2 it
seemed that the step response models did a better job of predicting rich flow and loading
than the mole balance model in configuration 3. The mole balance in configuration 3 was
not good for predicting rich loading, but it was decided to change it so that it could be used
to predict CR in the absorbers instead. This allows NMPC des to use the absorber CRs as
CVs instead of the desorber CR and the ratio of the lean flows. This is better because the
absorber CRs is what we actually want to control. We now use the step response models to
predict rich flow and rich loading and the mole balance model to calculate the absorber CRs
based on these predictions.

Besides giving the correct CVs in NMPC des there is also one more advantage with this
configuration. It is now possible to have bias updating on the CVs in NMPC des, which
ensures offset free control through integral action. Bias updating is also done on teh CVs in
NMPC abs. In NMPC des there is also bias updating on the step response models to make
it predict the correct rich loading. This was important to achieve as correct rich loading is
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essential for choosing the correct reboiler duty.

The results of this controller to the test can be seen in Section 7.1.2. Comparing the CRs
in Figure 7.14 with the absorber CRs in Figure 7.1 there is very little difference. Both have
almost no difference between measured and predicted values and the setpoints are followed
fast and closely. Figure 7.15 shows the CRs from NMPC des. There is not much difference
between NMPC abs and NMPC des, but NMPC des’s predictions are perhaps a bit more
noisy.

The MVs in Figure 7.16 and Figure 7.2 are also very similar. Interestingly the jump in
reboiler duty observed in configuration 2 and 3 is now gone, this is because the desorber CR
is no longer a CV, instead the absorber CRs are. The final value towards the end of the
horizon is also similar. Figure 7.17 shows the lean flows calculated by both NMPC abs and
NMPC des. The jump in reboiler duty in NMPC des has instead been replaced by a jump in
the lean flows. See that after the jumps NMPC des settles down at just about the same value
as NMPC abs. Of all the two-NMPC configurations this is the one which most resembles
the inputs from configuration 1, and the one where the lean flows found by NMPC abs and
NMPC des are the most similar.

The rich and lean loading can be seen in Figure 7.18. From the rich loading plots it can be
seen that the bias updating does what it is supposed to do. The deviation between prediction
is completely removed after some time. Dynamically there is some difference though. The
huge drops in the predicted rich loadings, which occur at both 60 and 240 minutes does not
happen in the actual plant. This combined with Equation 4.20 can explain why NMPC des
chooses the large jumps in lean flow. When the rich loading drops x0,CO2 in Equation 4.20
also decreases. This causes the CR to decrease and the easiest way to counteract it is by
increasing the lean flow which makes first L1 then L0 increase. The lean loading prediction is
also better here than in the previous configurations. The improved accuracy of the predicted
loadings also leads to the reboiler duty being closer to the reboiler duty from configuration
1.

The bias variables are shown in Figure 7.19. The rich loading bias variables seem to settle
at steady values, which combined with the rich loading plots in Figure 7.18 shows that the
bias variables manage to update the step response models such that they predict the correct
rich loading. The bias variables for CR does not seem to settle at steady values, neither in
NMPC abs nor in NMPC des. Perhaps the simulations are not long enough and they settle
in the horizon.

Overall this control configuration performed excellently. The differences between the perfor-
mance of this configuration and configuration 1 are small with regards to the how well they
control the plant. Looking at the times in table Table 7.2 however, it is a clear advantage
for configuration 4. The average computational time per sample in configuration 1 is 22.59
seconds, while the average computational time in configuration 4 is 4.06 seconds in NMPC
abs and 1.89 seconds in NMPC des. In total that is 5.95 seconds per sample. This is a
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reduction in computational time of 73.6 %. The maximum sample time was reduced from
77.67 seconds to 10.53 seconds, an 86.4 % reduction.

8.2.5 Configuration 5

As explained in Section 5.6 and Section 6.2, NMPC abs can be split into an individual NMPC
for each absorber column. This resulted in control configuration 5, the test results of which
are given in Subsection 7.1.3. This configuration is identical to configuration 4, except NMPC
abs is split into two NMPCs and NMPC des now sends individual lean flow trajectories to
each absorber instead of the sum.

It was expected that this configuration would behave similarly to configuration 4. The CRs
can be seen in Figure 7.20. This is similar, but there are some key differences. There is
more deviation between the measurements and the predictions, even though the bias updat-
ing works in the same way with the same gain. This applies to the CR in both columns.
Figure 7.21 shows the CRs in NMPC des, the plots look similar to the plots from NMPC abs,
but they are perhaps a bit more noisy here as well. The MVs can be seen in Figure 7.22.
The lean flows look very similar to the ones calculated by configuration 4, but the reboiler
duty is a bit different. In configuration 5 NMPC des for some reason uses less reboiler duty
initially, but has to increase it later, while in configuration 4 NMPC des chooses a higher
value straight away and keeps it quite steady.

The upper plot in Figure 7.23 shows a comparison between the lean flows calculated by
NMPC abs and NMPC des. The flows calculated by NMPC abs are a bit higher than the
ones calculated by NMPC des, but the difference is small. The difference is however a bit
bigger in this configuration than in configuration 4. The middle and bottom plot show z2 in
NMPC abs1 and NMPC abs2, respectively. The variables are kept within their constraints
most of the time, but the constraints are violated when the large jumps in flow occur in
NMPC des.

The loadings are shown in Figure 7.24. The bias updating does it job here as well, but
there seems to be a bit more error here than in configuration 4, seen in Figure 7.18. The
difference in lean loading however is easy to spot. The lean flows seem to be almost identical
in configuration 4 and 5, so the explanation for this deviation in lean loading is probably
the difference in reboiler duty. The reboiler duty is a bit lower in configuration 5 which
explains why the lean loading increases. Towards the end of the simulation the reboiler duty
is increased which leads to the lean loading sinking again.

It is difficult to explain why there are these differences between configuration 4 and 5. There
are only tiny differences between the lean flows found by NMPC abs in configuration 4 and
the lean flows found by NMPC abs1 and NMPC abs2 in configuration 5. There are bigger
differences when looking at the inputs from NMPC des. The lean flows seem to increase a
bit slower here than in configuration 4. The biggest difference is in the reboiler duty, which
is increased less after the second disturbance than in configuration 4, at least until nearer the
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end where NMPC des in configuration 5 increases the reboiler duty a bit more. The reboiler
duty in configuration 5 is also perhaps going a bit more up and down. Why NMPC des does
this is difficult to say. The only difference between NMPC des in configuration 4 and 5 is
that in 4 it sends the total lean flow to NMPC abs, while in 5 it sends lean flow 1 to NMPC
abs1 and lean flow 2 to NMPC abs2. Why this affects NMPC des in this way is unknown.

The performance is perhaps not as good as in configuration 4 with regards to how well the
plant is controlled, but it is an improvement with regards to computational time. As can be
seen in Table 7.2 the average sample computational time in configuration 4 is 1.89, while in
configuration 5 it is 1.87. This reduction is small and likely just a coincidence. When it comes
to NMPC abs however the difference is bigger. The sum of the computational time in NMPC
abs1 and NMPC abs2 is 1.95 seconds, while NMPC abs in 4 used 4.06 seconds. The total
time reduction is 35.8 % compared to configuration 4 and 83.1 % compared to configuration
1.

8.3 Three column CO2 capture plant

The test run with the three absorber CO2 capture plant was very simple. It consisted of just
running the plant at steady state for 30 samples with the controllers switched on. The average
computational times per sample and the maximum sample times are given in Table 7.3. The
advantage in terms of computational time reduction when splitting the problem into smaller
pieces becomes even clearer here. The average time for configuration 1 is 67.03 seconds.
When the sample rate from the plant is 60 seconds it is obvious that this configuration is not
viable without either changing the sample rate or the tuning of the controller in some way.

For configuration 4 the average computational time per sample is 13.73 in total, a 79.5 %

decrease compared to configuration 1. The average computational time in configuration 5
is 4.25 seconds, a 93.7 % decrease compared to configuration 1. This is a huge reduction of
the computational time and really illustrates the effect of splitting the problem into smaller
pieces. Judging by the times for NMPCs running only one absorber column in Table 7.2 and
Table 7.3 it seems that they use just under a seconds on average. If there are individual
NMPCs for each column there is no reason for this number to go up as they are solved
independently.

The maximum times are not that relevant here. In the test of the two absorber plant the
maximum times happen just after the disturbance or setpoint change, but here there are no
disturbances. The maximum times in Table 7.3 are likely from the first sample when the
NMPCs are run for the first time.

8.4 General discussion

Based on just the computational times there is no doubt which configuration is the best.
There are however some differences in how NMPC des behaves in configuration 5 which
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makes its performance worse than in configuration 4. The reason behind these differences is
yet to be identified. A priority in future work with these configurations would be to get to the
bottom of this and remove the problem. Because of the significant reduction in computational
time it is possible to experiment with different aspects of the controller. For instance the
CV or MV parameterisation could be changed to give more accurate control. The prediction
horizon can be expanded and it could be possible to use an EKF instead of just bias updating.
This particularly applies to configuration 5, but also to configuration 4.

Another advantage of splitting NMPC abs into individual NMPCs for each absorber column
is that it is more decentralised. It allows for different companies running their own absorber
column while the desorber column is shared among them. It also allows parallel computing.
The absorber column NMPCs are independent of each other, hence they can be run at the
same time. This means that the total time of configuration 4 could be reduced to the time
for NMPC des plus the time of whatever NMPC abs which used the longest time.

The test run with a three column plant were just meant to test how adding an extra absorber
column affects the computational time, not how well they control the plant. One problem
that appeared when expanding the model is the fact that the columns are designed to be
in a CO2 capture plant with one absorber and one desorber. This means that in a multi-
absorber plant either the desorber must be operated near the limits of its capacity or the
absorbers have to have very low flue flow compared to what they can handle. For a proper
study time should be spent redimensionalising the columns. In this thesis the absorbers are
run with low flue gas amounts to not be too close to the limits of the desorber. This seemed
to work fine, but the results may not be representative for a plant which is run at different
conditions where the dimensions are more balanced. The step response models fit very well
to the column when the flow was low, perhaps they are not as linear closer to their capacity
limit. The CO2 concentration can also change and could affect the validity of a linear model.
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Chapter 9
Conclusion

The foundations of the work in this thesis were laid during a summer internship and a sub-
sequent specialisation project in collaboration in Cybernetica AS [17]. In the specialisation
project it was concluded that splitting the CO2 capture plant into smaller pieces could signif-
icantly reduce the computational times while offering acceptable control performance. Based
on the results in the project it was decided that one of the control configurations developed
there would be further developed during the master’s thesis.

The configuration from the specialisation project was a two-NMPC configuration, one of the
NMPCs controlled the capture ratio in the controller by manipulating the lean flow and the
other controlled the capture ratio in the desorber by manipulating the reboiler duty and a local
lean flow. This configuration was first expanded to two absorber columns. The performance
was quite good, but there were some deviation between measurements and predictions which
were thought to be due to errors introduced by the step-response models in the desorber
NMPC.

Several different simple absorber models were developed and tested during the development
process. Some of the models were implemented in different control configurations and their
performance was tested. The development was an iterative design process where the knowl-
edge gained from one implementation was used to decide the next step. The work culminated
in two final control configurations. The first was a two-NMPC configuration which offered
great control of the plant, comparable with the benchmark controller, while also being a sig-
nificant improvement with regards to computational time. In the two-absorber test it gave a
73.6 % reduction in average computational time per sample. The second was a multi-NMPC
configuration with individual NMPCs for each absorber column. The control was a little
worse than the two-NMPC configuration, but it gave a 83.1 % reduction in average compu-
tational time per sample in the same test. In the three-absorber test the time reduction was
79.5 % for the two-NMPC configuration and 83.1 % for the multi-NMPC configuration. The
control configurations were able to control the CRs at their setpoint while steering the plant
towards minimum reboiler duty.
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9.1 Future work

As mentioned in the introduction, the work in this master’s thesis is related to the EU project
REALISE CCUS, which brings together partners from science and industry to demonstrate
the full CO2 chain for industrial clusters centered on refineries. The aim of REALISE is
to formulate a sustainable, cost-effective CCUS process that can be widely replicated. The
technologies will be demonstrated at Irving Oil’s Whitegate refinery in Ireland. The work in
this thesis could prove useful for Cybernetica and their role in the REALISE project.

Future work could include expanding the models to include even more absorber columns. It
could also be interesting to implement larger buffer tanks for both rich and lean amine, which
can be utilised in a more long term optimisation where the energy price varies, similar to
what Cybernetica have done before [8].

As mentioned in the discussion the absorber and desorber columns in this thesis are designed
to be in a CO2 capture plant with one of each column. Hence either the desorber has to work
close to the limit or the absorbers have to have very low CO2 amounts in a multi-absorber
plant. To get more accurate results either the desorber should be redimensionalised to be able
to handle larger CO2 amounts, or the absorbers should be redimensionalised such that they
are operated at reasonable percentage of their capacity. It is not given that the performance
of the control configurations developed in this thesis will be the same then. Different CO2

sources also have different concentrations of CO2, this should also be experimented with to
see how it affects the control.
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Appendix A
Constant values

Table A.1: Constants in the absorber column

Description Value Unit

Inside diameter 0.2032 m
Cross sectional area 0.032429 m2

Packing height 19.418 m
Gas flow rate reference 0.0617 kmol m−2 s−1

Liquid flow rate reference 0.0308 kmol m−2 s−1

Table A.2: Constants in the desorber column

Description Value Unit

Inside diameter 0.163 m
Cross sectional area 0.020867 m2

Packing height 13.6 m
Gas flow rate reference 0.0376 kmol m−2 s−1

Liquid flow rate reference 0.0537 kmol m−2 s−1
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Table A.3: Constants in the absorber sump

Description Value Unit

Inside diameter 0.2032 m
Tank height 1 m
Cross sectional area 0.032429 m2

Tank volume 0.032429 m2

Valve constant for liquid outflow 0.00015 m3 kPa−1 s−1

Gain, outlet liquid flow 1 -
Pressure drop 1 kPa
Default level setpoint 320 mm
Flow rate reference 0.001 kmol s−1

Mol amount reference 0.7653 kmol

Table A.4: Constants in the heat exchanger

Description Value Unit

Inner diameter, inner tube 0.025 m
Inner diameter, outer tube 0.0396 m
Tube length 74.5 m
Total cross sectional area, outer tube 0.00049 m2

Total cross sectional area, inner tube 0.00074 m2

Nominal rich flow 0.1167 kg s−1

Heat transfer coefficient 0.3788 -
Flow rate reference, hot side 2.0372 kmol s−1

Flow rate reference, cold side 1.35 kmol s−1

Table A.5: Constants in the lean buffer tank

Description Value Unit

Inside diameter 0.3 m
Tank height 2 m
Cross sectional area 0.0707 m2

Tank volume 0.1414 m3

Level setpoint 126.26 mm
Mol amount reference 2.5803 kmol
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Chapter A. Constant values

Table A.6: Constants in the reboiler

Description Value Unit

Gas flow rate reference 0.0007 kmol s−1

Liquid flow rate reference 0.001 kmol s−1

Time constant for inter-phase fluxes 120 s
Total volume 0.43 m3

Base area 0.6 m2

Valve constant for outlet gas flow 0.01 m3 kPa−1 s−1

Valve constant for outlet liquid flow 0.025 m3 kPa−1 s−1

Gain for outlet liquid flow 1 -
Pressure drop 1 kPa
Default level setpoint 450 mm
Liquid amount reference 4.929 kmol
Gas amount reference 0.0165 kmol
Interfacial heat transfer coefficient 0.1 kW kmol−1

Heat transfer coefficient to ambient 0.0 kW kmol−1

Table A.7: Constants in the condenser

Description Value Unit

Condenser volume 0.1 m3

Base area 0.2 m2

Valve constant for outlet gas flow 0.00012 m3 kPa−1 s−1

Valve constant for outlet liquid flow 3.67× 10−5 m3 kPa−1 s−1

Gain for outlet liquid flow 1 -
Pressure drop 1 kPa
Gain, energy 0.2 -
Volume setpoint 0.01 m3

Liquid amount reference 0.5477 kmol
Gas amount reference 0.0069 kmol
Gas flow rate reference 0.0007 kmol s−1

Liquid flow rate reference 0.0007 kmol s−1

Time constant for inter-phase fluxes 40 s
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Appendix B
Simulation tools

An important part of the work in this master’s thesis consisted of implementing nonlinear
model predictive controllers (NMPC) in Cybernetica AS’s software. Software tools developed
by Cybernetica were made available and assistance was given by the co-supervisors from
Cybernetica AS. The software used in this master’s thesis work include Cybernetica RealSim
and Cybernetica CENIT.

Cybernetica RealSim is a process simulator and was used as a plant replacement for testing
of the developed NMPCs. When using RealSim the modules are run consecutively starting
with the process simulator before one or more NMPCs. Figure B.1 shows an example of what

Figure B.1: The RealSim interface which is used to control the simulation
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(a) The CENIT Kernel command line interface. This is the actual NMPC, but is not usually interacted with

(b) CENIT MMI is the interface for interacting with the NMPC

Figure B.2: The two components of CENIT

the RealSim interface looks like when having two NMPCs. In this particular instance there
are two NMPCs, where NMPC des is run before NMPC abs. The simulation is controlled in
the upper left part of the interface. Here the simulation can be started, stopped and run a
given amount of samples. It is also possible to run one sample or one module at a time. The
window in the upper center part of the interface shows an overview of the interfaces. It also
shows the time used in the last sample, the mean time used per sample and the maximum
and minimum time used for a sample. Through the menus on the left it is possible to see
and change parameters and values relevant to the simulation.

Cybernetica CENIT is a software suite for NMPC which consists of two parts, CENIT Ker-
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nel and CENIT MMI. Figure B.2a shows the CENIT kernel command line interface and
Figure B.2b shows CENIT MMI. The CENIT Kernel is the actual NMPC, but is rarely inter-
acted with. CENIT MMI on the other hand is made with the purpose of human interaction.
A lot of information related to the controller is available in CENIT MMI. For instance states,
measurements, controlled variables, manipulated variables and their predicted trajectories
are available. It is also possible to change some settings in the NMPC, for instance the
weights on setpoint violations. Communication between RealSim and CENIT goes through
an open platform communications (OPC) server through tags. The tags were added to the
Matrikon OPC server, shown in Figure B.3. The tags for parameters, inputs and measure-
ments entering the CENIT controllers are in the folder CENIT/in. The tags for the MVs
leaving the controller are in CENIT/out and the tags for telling the controllers to start and
RealSim that they have finished are in RealSim/Manager.

Figure B.3: The tags of the MVs in the Matrikon OPC server
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Appendix C
Exchanging information between NMPCs

C.1 Exporting trajectories from NMPC des

To exchange information between the NMPCs data was stored in .mat files by NMPC des and
the files were read by NMPC abs. First the dimension of the data structure used for exporting
the data had to be defined. This is done by calling the function ModelAppDataExchange_NmpcExportDim(),
shown in Code box C.1. In this function the variables nFloat and nInt are given their values.
pVar is a data structure storing data related to the NMPC. pVar->Z.nc gives the number
of columns in the matrix pVar->Z.re, which is a matrix storing the z-variables trajectories,
where each row corresponds to a z-variable and the columns are predicted values increasingly
far into the prediction horizon.

Code box C.1: C code for creating the exported data structure from NMPC des

1 ADXCH_API int ModelAppDataExchange_NmpcExportDim(

2 int* nFloat, // Out: Number of floats to export

3 int* nInt, // Out: Number of ints to export

4 struct NmpcVar* pVar // In: Nmpc data structure

5 )

6 {

7 int r = 0;

8

9 // Number of floats to export

10 *nFloat = 0;

11 *nFloat += 1; // Current value of z_LeanLoading

12 *nFloat += pVar->Z.nc; // z_LeanLoading trajectory

13 *nFloat += 1; // Current value of z_Fl_Lean_Abs_Mass

14 *nFloat += pVar->Z.nc; // z_Fl_Lean_Abs_Mass trajectory

15

16 // Number of integers to export

17 *nInt = 0;

18 *nInt += 1; // Synchronization of data (ok flag)

19 *nInt += 1; // z_LeanLoading setpoint trajectory

20 *nInt += 1; // z_Fl_Lean_Abs_Mass setpoint trajectory
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21

22 return r;

23 }

After the dimensions of the datastructure had been defined, it had to be filled with data.
This is done using the function ModelAppDataExchange_NmpcExportData() as shown in Code
box C.2. The variable dFloatData is used to store the current value and predictions, nIntData
is used to store the dimensions of the exported data. Both are written to the .mat file.
pVar->z.v is a vector with the current values of the z-variables.
pVar->z.v[1 + i_z_LeanLoading] gives the current value of the z-variable z_LeanLoading,
while pVar->Z.re[1 + i_z_LeanLoading][i] gives the predicted value of z_LeanLoading in
column i. Similar for z_Fl_Lean_Abs_Mass. The for loops fill dFloatData with predicted
values increasingly far into the prediction horizon.

Code box C.2: C code for filling the datastructure with data from NMPC des

1 ADXCH_API int ModelAppDataExchange_NmpcExportData(

2 double* dFloatData, // Out: Float data to export

3 int* nIntData, // Out: Integer data to export

4 int nFloat, // In: Number of floats to export

5 int nInt, // In: Number of ints to export

6 struct NmpcVar* pVar // In: Nmpc data structure

7 )

8 {

9 int i, j, k, r = 0;

10 int DataIsOK = 1;

11

12 // Export setpoint trajectory for z_LeanLoading

13 j = 0;

14 nIntData[1] = 1 + pVar->Z.nc;

15 dFloatData[j] = pVar->z.v[1 + i_z_LeanLoading];

16 for (i = 1; i <= pVar->Z.nc; i++) {

17 k = j + i;

18 dFloatData[k] = pVar->Z.re[1 + i_z_LeanLoading][i];

19 }

20

21 // Export setpoint trajectory for z_Fl_Lean_Abs_Mass

22 j += nIntData[1];

23 nIntData[2] = 1 + pVar->Z.nc;

24 dFloatData[j] = pVar->z.v[1 + i_z_Fl_Lean_Abs_Mass];

25 for (i = 1; i <= pVar->Z.nc; i++) {

26 k = j + i;

27 dFloatData[k] = pVar->Z.re[1 + i_z_Fl_Lean_Abs_Mass][i];

28 }

29

30 // Set ID/sync

31 nIntData[0] = DataIsOK;

32 pVar->ConVar.v[1 + i_cv_RTO_ExportSuccessful] = DataIsOK;

33

34 return r;

35 }
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C.2 Importing data in NMPC abs

NMPC abs has to read the values stored in the .mat file by NMPC des and store them in
a data structure which can be accessed elsewhere in the code. The definition of the data
structure is given in Code box C.3.

Code box C.3: Type definition for data exchange between NMPC des and NMPC abs

1 // TYPES FOR DATA EXCHANGE BETWEEN MPC_ABS AND MPC_DES

2 typedef struct sImportData_MPC {

3 nrVEC LeanLoading; // Vector of predicted lean loading

4 nrVEC Fl_Lean_Abs_Mass; // Vector of predicted lean flow

5 int dataAvailable; // Flag to indicate whether the data

6 // is usable or not [1/0]

7 double timeOffset; // Time offset between point in time

8 // when trajectories were generated

9 // vs. when they were loaded [s]

10 } ImportData_MPC;

11 ImportData_MPC MPCData;

The values of MPCData are filled in using the function ModelAppDataExchange_NmpcImportData()

shown in Code box C.4. First there are some conditions which have to be met to ensure that
the data is fine to use. If the data is acceptable the flag in NMPCData will be set equal to 1
and the variables are filled with the trajectories and time offset.

Code box C.4: C code for filling the datastructure with data in NMPC abs

1 ADXCH_API int ModelAppDataExchange_NmpcImportData(

2 double* dFloatData, // In: Float data from external application

3 int* nIntData, // In: Integer data from external application

4 int nFloat, // In: Number of floats to export

5 int nInt, // In: Number of ints to export

6 double timeImportData, // In: Time stamp of imported data

7 double timeCurrent, // In: Time stamp for current application

8 int nID, // In: Import id

9 struct NmpcVar* pVar // In: Nmpc data structure

10 )

11 {

12 int i, j, r = 0;

13 int DataIsOK;

14

15 // Do not update if current time stamp older than imported data

16 // (happens due to simulated time)

17 if (timeCurrent - timeImportData < 0.0) {

18 MPCData.dataAvailable = 0;

19 EventLog(EvTypeWarning, 0, __FUNCTION__,

20 "MPC ABS data from file has invalid timestamp", pEvLog);

21 return r;

22 }

23

24 // Check if the data is marked as okay

25 DataIsOK = nIntData[0];
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26 if (DataIsOK == 0) { // The loaded data is not ok,

27 // according to the file

28 MPCData.dataAvailable = 0;

29 EventLog(EvTypeWarning, 0, __FUNCTION__,

30 "MPC ABS data from file not marked as ok", pEvLog);

31 return r;

32 }

33

34 // If data is okay, copy it to the NMPC data struct

35 else {

36 MPCData.dataAvailable = 1;

37 pVar->ConVar.v[1 + i_cv_MPC_ImportSuccessful] = 1;

38 // Set time offset

39 MPCData.timeOffset = timeCurrent - timeImportData;

40

41 // Obtain setpoint trajectory for z_btl_nCO2

42 j = 0;

43 for (i = 0; i < nIntData[1]; i++) {

44 MPCData.LeanLoading.v[1 + i] = dFloatData[j + i];

45 }

46

47 // Obtain setpoint trajectory for z_Fl_Lean_Abs_Mass

48 j += nIntData[1];

49 for (i = 0; i < nIntData[2]; i++) {

50 MPCData.Fl_Lean_Abs_Mass.v[1 + i] = dFloatData[j + i];

51 }

52 }

53 return r;

54 }

The code in Code box C.5 shows how the reference trajectory from NMPC des is implemented
as reference trajectory in NMPC abs, in this case it is the trajectory of lean mass flow.
interp_linear() is a function written by Fredrik Gjertsen at Cybernetica AS, which performs
linear interpolation. This is necessary if the two controllers have different parameterisation
of the prediction horizon. Zref is a matrix structure which is used to store the reference
trajectories of all the z-variables.

Code box C.5: C code for defining the reference trajectory of z_Fl_Lean_Abs_Mass with data
imported from NMPC des

1 if (i == i_z_Fl_Lean_Abs_Mass) {

2 // Trajectory for z_Fl_Lean_Abs_Mass

3 for (j = 1; j <= Zref->nc; j++) {

4 Zref->re[1 + i][j] = interp_linear((j*NDT_MPC*DT +

5 MPCData.timeOffset), &(PredHorSamplesTime.v[1]),

6 &(MPCData.Fl_Lean_Abs_Mass.v[1]), PredHorSamplesTime.n);

7 }

8 }

After the reference trajectory was defined the constraints had to be implemented as well.
This was done as shown in Code box C.6. The reference trajectory is used to create the
constraints. The minimum constraint is the reference trajectory minus 0.1 kg min−1 while
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the maximum constraint is the reference trajectory plus 0.1 kg min−1.

Code box C.6: C code for defining the maximum and mimimum constraints of
z_Fl_Lean_Abs_Mass using the reference trajectory from NMPC des

1 if (i == i_z_Fl_Lean_Abs_Mass) {

2 /* Set Zmin */

3 for (j = 1; j <= Zmin->nc; j++)

4 Zmin->re[1 + i][j] = Zref->re[1 + i][j] - 0.1;

5 /* Set Zmax */

6 for (j = 1; j <= Zmax->nc; j++)

7 Zmax->re[1 + i][j] = Zref->re[1 + i][j] + 0.1;

8 }
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Appendix D
Model code

D.1 Step response model

Code box D.1 shows the code for the step response models with bias updating of the rich
loading model. dxs_RichLoading_as_1 is the derivative of the state xs_RichLoading_as_1.
It is similar for the three other states where the derivatives are dxs_RichLoading_as_2,
dxs_RichFlow_as_1 and dxs_RichFlow_as_2, and the states are xs_RichLoading_as_2,
xs_RichFlow_as_1 and xs_RichFlow_as_2.

Code box D.1: C code for the step response models

1 int model_dx_step_response( // Ret: Error code (0 = OK!)

2 double *dxs, // Out: State vector derivative

3 double *xs, // In: State vector

4 double *par, // In: Parameter vector

5 double *con, // In: Constant vector

6 double *U_INT, // In: Internal process input

7 double *au, // In: Vector of additional/calculated inputs

8 double *dcalcvar, // In: Internal variable calculated by model

9 int *icalcvar, // In: Internal variable calculated by model

10 double dti, // In: Integration time step

11 double *v, // In: Process disturbance vector

12 int intf // In: ID of calling interface

13 )

14 {

15 int r = 0;

16 dxs_RichLoading_as_1 = 1.0 / ( 60.0 * 17.5 ) * (-0.0461 *
17 (U_LeanFlow_des_1 * 60 - 2.5) -

18 (xs_RichLoading_as_1 - 0.62719));

19 dxs_RichFlow_as_1 = 1.0 / ( 60.0 * 10 )*((1.0004 + 0.4 *
20 dc_Bias_RichFlow_1) * (U_LeanFlow_des_1 * 60.0 -

21 2.5) - (xs_RichFlow_as_1 - 2.74046));

22 dxs_RichLoading_as_2 = 1.0 / ( 60.0 * 17.5 ) * (-0.0461 *
23 (U_LeanFlow_des_2 * 60 - 2.5) -

24 (xs_RichLoading_as_2 - 0.62719));

25 dxs_RichFlow_as_2 = 1.0 / ( 60.0 * 10 )*((1.0004 + 0.4 *
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26 dc_Bias_RichFlow_2)*(U_LeanFlow_des_2 * 60.0 -

27 2.5) - (xs_RichFlow_as_2 - 2.74046));

28 return r;

29 }

D.2 Mole balance model

The mole balance model was used for predicting rich flow and rich loading and for calculating
the capture ratio. The code for each case is given here.

D.2.1 Predicting rich flow and rich loading

The code for predicting rich flow and rich loading with the mole balance model is given in
Code box D.2.

Code box D.2: C code for calculating rich flow and rich loading based on mole balances

1 void MB_model(

2 double *rl, // Out: Rich loading

3 double *rf, // Out: Rich flow

4 double *xs, // In: State vector

5 double *par, // In: Parameter vector

6 double *con, // In: Constant vector

7 double *U_INT, // In: Internal process input

8 int abs_1 // In: Flag to set wether it is column 1 or 2

9 )

10 {

11 double V0, L0, L1, F, nTotV1, xL[NC_LIQ], L1_vec[NC_LIQ], L0_vec[NC_LIQ];

12

13 double InletFlow_Flue, Fl_Lean_Abs_Mass, CR, yG_CO2;

14 if (abs_1) {

15 InletFlow_Flue = U_InletFlow_Flue;

16 Fl_Lean_Abs_Mass = U_LeanFlow_des_1;

17 CR = U_CR_1/100.0;

18 yG_CO2 = U_yG_CO2_Flue_in;

19 }

20 else {

21 InletFlow_Flue = U_InletFlow_Flue_2;

22 Fl_Lean_Abs_Mass = U_LeanFlow_des_2;

23 CR = U_CR_2/100.0;

24 yG_CO2 = U_yG_CO2_Flue_in_2;

25 }

26

27 // V0 and F

28 V0 = U_InletPress_Flue * InletFlow_Flue /

29 (RGAS * U_InletTemp_Flue); // [kmol/s]

30 F = CR * yG_CO2 * V0; // [kmol CO2/s]

31

32 // L1

33 nTotV1 = (xs_btl_nCO2 + xs_btl_nH2O + xs_btl_nAmine);

34 xL[i_CO2] = xs_btl_nCO2 / nTotV1;

35 xL[i_H2O] = xs_btl_nH2O / nTotV1;
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36 xL[i_AMINE] = xs_btl_nAmine / nTotV1;

37 L1 = Fl_Lean_Abs_Mass / (xL[i_CO2] * MW_CO2 +

38 xL[i_H2O] * MW_H2O + xL[i_AMINE] * MW_AMINE);

39 // [kmol/s]

40 L1_vec[i_CO2] = xL[i_CO2] * L1; // [kmol CO2/s]

41 L1_vec[i_H2O] = xL[i_H2O] * L1; // [kmol H2O/s]

42 L1_vec[i_AMINE] = xL[i_AMINE] * L1; // [kmol Amine/s]

43

44 // L0

45 L0_vec[i_CO2] = L1_vec[i_CO2] + F;

46 L0_vec[i_H2O] = L1_vec[i_H2O];

47 L0_vec[i_AMINE] = L1_vec[i_AMINE];

48

49 double MWs[] = { MW_CO2, MW_H2O, MW_AMINE };

50

51 L0 = 0;

52 for (int i = 0; i < NC_LIQ; i++) L0 += L0_vec[i] * MWs[i];

53

54 *rl = L0_vec[i_CO2] / L0_vec[i_AMINE];

55 *rf = L0;

56 }

The code for calculating the derivatives of the rich flow and rich loading states is given in
Code box D.3.

Code box D.3: C code for the mole balance model

1 int model_dx_MB_model( // Ret: Error code (0 = OK!)

2 double *dxs, // Out: State vector derivative

3 double *xs, // In: State vector

4 double *par, // In: Parameter vector

5 double *con, // In: Constant vector

6 double *U_INT, // In: Internal process input

7 double *au, // In: Vector of additional/calculated inputs

8 double *dcalcvar, // In: Internal variable calculated by model

9 int *icalcvar, // In: Internal variable calculated by model

10 double dti, // In: Integration time step

11 double *v, // In: Process disturbance vector

12 int intf // In: ID of calling interface

13 )

14 {

15 int r = 0;

16 double RichLoading_1, RichFlow_1, RichLoading_2, RichFlow_2, tauRL, tauRF;

17

18 MB_model(&RichLoading_1, &RichFlow_1, xs, par, con, U_INT, 1);

19 MB_model(&RichLoading_2, &RichFlow_2, xs, par, con, U_INT, 0);

20

21 tauRL = 18.0; // Time constant for rich loading

22 tauRF = 10.0; // Time constant for rich flow

23

24 dxs_RichLoading_as_1 = 1 / (60.0 * tauRL) * (RichLoading_1

25 - xs_RichLoading_as_1);

26 dxs_RichFlow_as_1 = 1 / (60.0 * tauRF) * (RichFlow_1 * 60.0 -

27 xs_RichFlow_as_1);
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28

29 dxs_RichLoading_as_2 = 1 / (60.0 * tauRL) * (RichLoading_2

30 - xs_RichLoading_as_2);

31 dxs_RichFlow_as_2 = 1 / (60.0 * tauRF) * (RichFlow_2 * 60.0

32 - xs_RichFlow_as_2);

33 return r;

34 }

D.2.2 Calculating capture ratio

When the mole balance model is used for calculating the capture ratio in absorber column 1
the code is as shown in Code box D.4.

Code box D.4: C code for calculating the capture ratio based on mole balances

1 double R, L, F, nTotV1, xL[NC_LIQ], L1, xCO2, R1, xR[NC_LIQ];

2

3 F = U_yG_CO2_Flue_in * U_InletPress_Flue * U_InletFlow_Flue

4 / (RGAS * U_InletTemp_Flue); // [kmol CO2/s]

5 nTotV1 = (xs_btl_nCO2 + xs_btl_nH2O + xs_btl_nAmine);

6 xL[i_CO2] = xs_btl_nCO2 / nTotV1;

7 xL[i_H2O] = xs_btl_nH2O / nTotV1;

8 xL[i_AMINE] = xs_btl_nAmine / nTotV1;

9 L1 = U_Fl_Lean_Abs_Mass / (xL[i_CO2] * MW_CO2 + xL[i_H2O]

10 * MW_H2O + xL[i_AMINE] * MW_AMINE);

11 L = xL[i_CO2] * L1; // [kmol/s]

12

13 xR[i_CO2] = xs_RichLoading_as_1 / (1.0 + xs_RichLoading_as_1

14 + xs_btl_nH2O / xs_btl_nAmine);

15 xR[i_H2O] = xs_btl_nH2O / xs_btl_nAmine / (1.0 +

16 xs_RichLoading_as_1 + xs_btl_nH2O / xs_btl_nAmine);

17 xR[i_AMINE] = 1.0 / (1.0 + xs_RichLoading_as_1 + xs_btl_nH2O

18 / xs_btl_nAmine);

19

20 R1 = xs_RichFlow_as_1 / 60.0 / (xR[i_CO2] * MW_CO2

21 + xR[i_H2O] * MW_H2O + xR[i_AMINE] * MW_AMINE);

22 R = xR[i_CO2] * R1; // [kmol/s]

23

24 z_CaptureRatio_1 = 100.0 * (R - L) / F;
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