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Abstract

Background: Thermal degradation of Monoethanolamine (MEA) is an unfortunate

aspect of the process of post-combustion capture (PCC) as it leads to loss of solvent

and decreased solvent absorption capacity of CO2. The stripper conditions are limited

to restrain the occurrence of thermal degradation, and a better understanding of the

degradation would enable a more precise optimization of the stripper conditions. This

thesis aimed to increase the knowledge on thermal degradation by making a model

that can predict the loss of solvent and the formation of degradation products as a

function of the stripper conditions.

Method: A model describing thermal degradation as a function of temperature and

CO2 loading was found in literature and successfully recreated. The considered

degradation products were HEIA, HEEDA, Trimer, and TriHEIA. The included data

set was enlarged to evaluate the model at extended ranges of temperatures and CO2

loadings. By the addition of data, the total error of the model predictions was found

to increase significantly. An optimization routine was therefore added to the model

to improve the fit to the complete data set. Particle swarm optimization was used

to minimize the total root mean squared error (RMSE) between the modeled and

experimental values, and a new set of parameters was found for the rate equations in

the kinetic model. The RMSE was preferred as the objective function to accentuate

the fitting of MEA, which is the most critical to predict.

Conclusion: By optimization, the total RMSE decreased by 30% from the original

model, caused by improved descriptions of the three most significant components,

MEA, HEEDA, and HEIA. The final model provided adequate estimations of the

experimental concentration profiles of MEA, as the associated average relative error

was found to be 5%. Contrary, deficiencies in the fittings of the degradation products

were reflected in average relative errors ranging from about 70 to 77%. The significant

deviations are considered a result of the prioritized fitting of MEA, differences in

the provided experimental data at the same experimental conditions, and general

uncertainty related to the applied kinetic model. Despite the inefficiencies in

describing the degradation products, the model is considered a good starting point

for further model development.
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Sammendrag

Bakgrunn: Termisk degradering av monoetanolamin (MEA) er et ugunstig

aspekt ved aminbasert karbonfangst, da det medfører tap av MEA og redusert

absorpsjonskapasitet av CO2. Temperaturen i stripperen justeres for å begrense

forekomsten av termisk degradering, og en bedre forståelse av nedbrytningen

muliggjør en mer presis optimalisering av stripperforholdene. Målet med denne

oppgaven er å øke kunnskapen om termisk nedbrytning ved å lage en modell som

kan forutsi tap av MEA og dannelse av nedbrytningsprodukter, som en funksjon av

forholdene i stripperen.

Metode: En allerede eksisterende modell som beskriver termisk degradering, som en

funksjon av temperatur og startkonsentrasjon av CO2, ble rekonstruert. Datasettet

ble utvidet for å kunne vurdere modellpresisjonen for et økt antall datapunkter,

temperaturer og startkonsentrasjoner av CO2. Den totale prediksjonsfeilen i modellen

økte betydelig ved utvidelse av datasettet. En optimaliseringsrutine ble derfor

tillagt modellen for å forbedre tilpasningen til det fulle datasettet. Optimalisering

ble utført ved hjelp av ’standard particle swarm optimization’, ved å minimere

den totale rot-gjennomsnittlige kvadrerte feilen (RMSE) mellom de predikterte og

de eksperimentelle verdiene. Dermed ble et nytt sett med parametere funnet

for hastighetsligningene i den kinetiske modellen. RMSE ble foretrukket som

objektfunksjon, da den fremmer tilpasningen av MEA, som dessuten er den mest

kritiske komponenten å prediktere.

Konklusjon: Optimaliseringen reduserte den totale RMSE-verdien med 30% fra den

originale modellen, forårsaket av prediksjonsforbedringene av MEA, HEEDA og HEIA.

Den endelige modellen ga en presis beskrivelse av de eksperimentelle verdiene

for MEA, med et gjennomsnittlig relativt avvik på 5%. De tilsvarende avvikene for

nedbrytningsproduktene ble betydelig høyere, og varierte fra ca. 70 til 77 %. Dette

regnes som et resultat av at tilpasningen til MEA prioriteres under optimaliseringen,

forskjeller i de tilgjengelige eksperimentelle dataene, som vanskeliggjør tilpasningene,

og generell usikkerhet knyttet til validiteten av den kinetiske modellen.
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Chapter 1

Introduction

1.1 Climate change and greenhouse gas emissions

Global warming is a fact, and it is one of the worlds most pressing challenges. Human

activities have caused an accumulation of heat-trapping greenhouse gases in the

atmosphere, which have caused a rise of the temperature on earth. According to

NASA[7], the global temperature has increased by about 1°C since the pre-industrial

period, and the current trend indicates a continuous increase of 0.2°C every decade.

Elevation of the average temperature is expected to entail changes of ecosystems,

increased frequency of extreme weathers, rise of sea levels, and melting of ice in the

poles and on glaciers.

A major contributor to global warming is anthropogenic emissions of CO2, mainly

caused by fossil fuel burning. Since the beginning of the industrial revolution, the

atmospheric concentration of CO2 has increased by 47%[8]. A uniform understanding

of the seriousness of the emissions has caused an acceleration in the development

of renewable energy sources. However, the research and implementation of such

technologies are time-consuming, and in the meantime, the world is heavily

dependent on fossil fuels. It is, therefore, crucial to make cuts in the current emissions

from the existing energy plants. Carbon Capture, Utilization, and Storage (CCUS) has

been introduced as an important emissions reduction technology. CCUS involves

capturing CO2 from flue gas in combustion processes, transportation of the CO2, and

either reuse of the CO2 or storage underground in geological formations.

1



CHAPTER 1. INTRODUCTION

1.2 Post Combustion Capture

An effective CO2 capture process is post combustion capture (PCC). This process

involves removing the CO2 by utilizing advanced sorbent, solvent, and membrane

systems, or combinations of the different technologies. However, the most common

technology for PCC is chemical absorption using aqueous alkanolamine solutions. The

most customary amine sorbent is monoethanolamine (MEA) due to its advantageous

properties, such as fast kinetics, high absorption capacity, low price, and high water

solubility[9]. Figure 1.2.1 shows a typical PPC-process, where MEA is used as sorbent.

Figure 1.2.1: Flowsheet of a typical amine based CO2 capture process [1].

Flue gas with around 10% CO2 enters the bottom of the absorber column after being

cleaned from fly ash and sulfur and cooled to about 40°C. The gas flows upwards and

contacts counter-currently with CO2-lean amine solution. The lean amine solution

typically contains 15-40wt% MEA and 0.2-0.4 moles CO2 per mole MEA[5]. The low

absorber temperature of about 40-70°C ensures a high affinity of CO2, and causes most

of the CO2 from the flue gas to be absorbed by MEA. Typically, more than 85% of the

CO2 is removed from the flue gas[10]. The purified flue gas is then released from the

absorption tower. The CO2-rich stream is transported from the bottom of the absorber

column into a heat-exchanger, where it is preheated by the hot lean MEA solution

that exits the reboiler. The heated CO2-rich stream then enters the stripper head and

flows down the column. Steam is generated from the reboiler at the bottom of the

stripper and flows counter currently to the CO2 rich MEA solution. As the CO2 rich

MEA solution contacts with the counter flowing steam, the affinity of CO2 decreases,

and the CO2 desorbs by temperature swing. Released CO2 follows the ascending steam

out of the stripper head and into the condenser. Condensed steam is directed back

into the stripper as reflux, and gas of about 99% clean CO2 gas is released from the

2



CHAPTER 1. INTRODUCTION

system for further sequestration and transport. The regenerated absorption liquid in

the reboiler is then recycled back into the absorber head.

1.3 Degradation

A challenge related to the amine-based CO2 capture process is that the absorption

capacity of CO2 is reduced with time. The reduction is explained by solvent

degradation through irreversible side reactions with CO2, oxygen, SOx, and NOx[11].

Byproducts lead to a significant decrease in the process efficiency due to solvent losses,

corrosion, foaming, fouling, and an increase in viscosity[12]. Additional operating

costs are generated by the demand for solvent replacement and removal of corrosive

and volatile degradation products from the solvent. In fact, the operating costs related

to amine degradation have been estimated to be around 10% of the total CO2 capture

cost[13].

The main degradation pathways in the amine-based absorption system are oxidative

and thermal degradation. Oxidative degradation mainly occurs in the absorber due

to the high relative concentration of oxygen, which is introduced by the flue gas.

Thermal degradation mainly occurs in the desorption of CO2, and is classified into

carbamate polymerization and thermal degradation. Carbamate polymerization is the

reaction pathway catalyzed by CO2, and thermal degradation occurs at temperatures

above 205°C. This thesis mainly focuses on thermal degradation by carbamate

polymerization.

1.4 Impact of Thermal Degradation on Energy

Requirement

Thermal degradation is strongly temperature dependent[14]. According to Rochelle[15],

the occurrence of thermal degradation in the stripper would be insignificant if the

temperature and liquid holdup in the stripper bottom was reduced. However, the

overall energy requirement and costs of the stripper and compressor are reduced at

elevated pressure and temperature[16;17].

The purified CO2 gas that leaves the stripper head is compressed before further

transport. By increasing the temperature in the stripper, CO2 is thermally compressed

before leaving the stripper. The requirement and cost of mechanical compression are

thereby reduced. Additionally, increased temperature streamlines the amine recovery

and increases the CO2-steam ratio, which enhances the efficiency of the reboiler

3



CHAPTER 1. INTRODUCTION

energy. Consequently, the size of the stripper and the related capital costs are reduced.

Rochelle[15] performed a study proving that, for a single heated flash, an increase from

90 to 150°C, reduced the equivalent work by 30%. In other words, there is potential for

increased efficiency and economic savings by elevating the pressure and temperature

in the stripper.

The reduced energy requirement and increased occurrence of thermal degradation

by elevating the stripper temperature results in an optimization problem between

maintenance of the solvent and the energy efficiency.

1.5 Objective

The chemistry of thermal degradation and the pathways of the formations of

degradation products are not yet fully understood and require further research.

Knowledge of the mechanisms and the effect of the process parameters would be

advantageous in developing new stripper configurations, which, according to Davis[5],

is the most significant economic factor in the capture of CO2. In order to find the

optimal stripper conditions, a precise model of thermal degradation needs to be

developed as a function of the stripper conditions.

The objective of this master’s thesis was to obtain a better understanding of thermal

degradation by making a model that can predict the loss of MEA and the formation of

degradation products for varying temperatures and initial CO2 loadings. Therefore, a

full kinetic model describing the degradation pathway was required, with the inclusion

of the dependency of temperature and initial CO2 loading. A suited kinetic model was

developed by Davis[5]. In the work by Davis, the model was fitted to the experimental

data from the experiments performed in the same study. In this work, the model by

Davis was recreated, and its ability to represent other thermal degradation data sets

was evaluated. A self-constructed optimization routine was then implemented in

order to find the optimal model parameters to describe the entire data set.

4
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1.6 Structure

The thesis is divided into four parts. The first part (I) includes the theoretical

background necessary to understand the mechanism of thermal degradation and the

experiments behind the experimental data, which is used as the basis in the modeling.

The second part (II) covers all information relevant to the model development. This

includes the details of Davis’ model, the recreation of the model, and the procedure

behind making the final model. Part three (III) ties the two previous parts together by

providing the results along with a thorough discussion. Finally, part four (IV) sums up

the results and provides recommendations for further work.

5
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Chapter 2

Thermal Degradation

2.1 Thermal Degradation

The rate of thermal degradation of alkanoamines from carbamate polymerization

limits the stripper to operate at 100–130°C, and most strippers in industrial carbon

capture plants are operated with a maximum temperature of 120°C[18]. According to

Rochelle[15], thermal degradation only takes place at temperatures above 205°C. Since

this temperature is above the temperature range used in amine-based CO2 capture

plants, thermal degradation due to high temperatures will not be further discussed in

this thesis.

2.2 Carbamate polymerization

In amine-based CO2 capture plants, absorption of CO2 mainly occurs in the absorber.

CO2 can dissolve into the solvent by physical absorption but is mainly absorbed

through chemical reactions with MEA. MEA is a primary amine that acts as a

weak base and reacts with weak acids such as CO2 at ambient temperatures. The

chemical absorption of CO2 involves many reactions, but there are two fundamental

mechanisms[19], shown in the reactions in Figure 2.2.1 and 2.2.2.

Figure 2.2.1: Absorption of CO2 by formation of carbamate.

9



CHAPTER 2. THERMAL DEGRADATION

Figure 2.2.2: Absorption of CO2 by formation of bicarbonate.

In the reaction in Figure 2.2.1, CO2 and MEA reacts to form stable carbamate molecules.

Some CO2 can also react with water to form bicarbonate, as shown in Figure 2.2.2[19].

However, the absorption of CO2 is mainly caused by the formation of carbamate at

the relevant concentrations of CO2
[20].

The concentration of CO2 is commonly given as CO2 loading, which expresses the

number of moles of CO2 absorbed per mol of MEA. Further, the maximum loading is

referred to as the absorbing capacity of a solvent. As illustrated in Figure 2.2.1, two

moles of MEA molecules are required to absorb one mole of CO2 due to the formation

of the protonated MEA molecule. By stochiometry, the absorption capacity of MEA is

therefore 0.5 moles CO2 per mole of MEA.

At elevated temperatures, the reactions of absorption in Figure 2.2.1 and 2.2.2 are

usually reversed. However, this is not always the case, as the involved components

can participate in further reactions. A major disadvantage of using alkanolamines is

their tendency to react with other components than the acid gas. MEA can participate

in irreversible degradation processes where the product is unable to absorb CO2. In

other words, these reactions cause a loss of MEA and a reduction of the absorption

capacity[21].

2.3 Pathway of Carbamate Polymerization

The main mechanism for thermal degradation of MEA in an absorber/stripper system

is carbamate polymerization[5;14;22]. The pathway of carbamate polymerization

is quite complex, and there are uncertainties related to the exact details of the

mechanism. Polderman[2] was the first to propose a detailed reaction pathway. Since

then, several researchers have suggested pathways that differ from the mechanism

presented by Polderman[2]. Some of these proposals are discussed in the following

sections.

10
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2.3.1 Polderman

According to Polderman et al. [2], MEA carbamate, formed in the reaction in Figure

2.2.1, cyclizes to form oxazolidone (OZD) in a dehydration reaction. Oxazolidone

reacts with MEA to form 1-(2-hydroxyethyl)-2-imidazolidone (HEIA). HEIA is

considered an immediate product, as it reacts further with water to form

N-(2-hydroxyethyl)-ethylenediamine (HEEDA). The complete degradation pathway is

shown in Figure 2.3.1.

Figure 2.3.1: Thermal Degradation Pathway proposed by Polderman et al. [2].

2.3.2 Yazvikova

Yazvikova et al. [3] proposed another pathway of MEA degradation in a study performed

at 200°C, which is significantly higher than applied by the other researchers. The study

was the first to introduce N,N’-di(hydroxyethyl)urea (MEA Urea) as a product from

the reaction between OZD and MEA. This step was not present in the pathway by

Polderman et al. [2]. Further, Yazvikova et al. [3] reports that MEA Urea converts into

HEIA and further hydrolyses to HEEDA, which is proposed as the final degradation

product. The order of HEIA and HEEDA formation agrees to the pathway by Polderman

et al[2]. Figure 2.3.2 illustrates the entire pathway suggested by Yazvikova et al[3].

11
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Figure 2.3.2: Thermal Degradation Pathway proposed by Yazvikova et al [3].

It must be noted that this experiment was performed in the absence of water. Water

dilutes MEA, affects the energy of solvation, and is likely to take part in several

reactions as a proton acceptor or donor. In consequence, water is expected to impact

the occurring degradation reactions.

2.3.3 Lepaumier

Lepaumier et al. [4] reported a third option for the reaction between OZD and MEA,

where HEEDA is formed. HEEDA then reacts with water to form HEIA. This step is

opposite from what was suggested by Polderman et al. [2] and Yazvikova et al. [3],

where HEEDA was formed from HEIA. HEEDA reacts further with OZD to form MEA

Trimer, which reacts with CO2 and forms

1-(2-aminoethyl)-3-(2-hydroxyethyl)imidazolidin-2-one (AEHEIA). Figure 2.3.2

summarizes the reactions.

12
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Figure 2.3.3: Thermal Degradation Pathway proposed by Lepaumier et al [4].

This reaction pathway is in accordance with the pathway suggested by Davis[5], which

is described in Section 3.1, and confirmed by Eide-Haugmo[21]. As opposed to Davis[5],

Lepaumier et al. [4] and Eide-Haugmo[21] detected AEHEIA, and not triHEIA.

To summarize, the discussed studies agree that the mechanism of thermal degradation

is carbamate polymerization. Some of the earliest studies suggested HEIA as the

precursor for HEEDA. More recent studies agree on the contrary. There is also a

consensus that the major degradation products are HEIA and HEEDA, of which HEIA

is the most stable degradation product. The researchers also agree that the first and

critical product causing MEA deactivation is OZD.

2.4 Thermal Degradation Experiments

Thermal degradation in industrial plants occurs at a slow rate. Experiments performed

at the corresponding temperatures will therefore be time-consuming and requires

months or years. Elevated temperatures and pressures are therefore used during the

experiments in order to speed up the process.

2.4.1 A typical Experiment

There are some variations in the experimental procedures, but they all follow the

same general approach. Initially, the solutions are prepared gravimetrically by mixing

MEA and deionized water until the target weight percent of MEA. Next, pressurized

CO2 is bubbled through the solutions, and the loading is determined by weight or

13



CHAPTER 2. THERMAL DEGRADATION

liquid analyses. The solutions are filled in cylinders and placed into sealed convection

ovens that ensure a constant temperature throughout the experiment. By changing

one parameter at a time and keeping the others constant, the impact of the targeted

parameters on the occurring degradation is investigated. Typically, the effect of initial

CO2 loading and temperature are studied. At certain time intervals, samples are taken

out for analysis, revealing the loss of absorbent and the formation of degradation

products. The analyzes indicate how thermal degradation varies as a function of time

and reactor conditions.

2.4.2 Analytical Methods

Several analytical methods are used to analyze the degradation samples. However,

the main methods are variants of gas chromatography (GC)- coupled with

mass spectrometry (MS), and liquid chromatography (LC) coupled with -MS.

High-Performance LC (HPLC) is also commonly used method that uses a higher

pressure to reduce the time of separation but is essentially the same as LC. During

chromatography, the components are carried by a mobile phase, which is a gas for GC

and a liquid in LC, through a column covered by the stationary phase, which enables

separation of the components. Dependent on the choice of stationary phase, the

components are separated based on their physical or chemical properties, such as i.e.,

size and/or polarity. The separated compounds are sent through a mass spectrometer.

By ionizing chemical compounds, the mass spectrometer separates and measures

the mass to charge ratio of a molecule ion or the ionic fragments of the molecule. By

measuring each compound’s time to pass the chromatography column (retention

time) and by studying the mass spectrum, the different components can be identified

and quantified by calibration with known standards.

Some of the degradation products are commercially unavailable, and the lack

of analytical standards complicates the identification and quantification of the

degradation compounds. In such cases, the exact structures of the degradation

products are determined based on educated guesses by the researchers.

2.5 Literature Review

Davis and Rochelle[14] investigated thermal degradation of MEA at stripper conditions

in stainless steel cylinders placed in convection ovens. The initial MEA concentration

was 30wt%, the temperature ranged from 100 to 150°C, the CO2 loading from 0.2-0.5

mol CO2 per mol MEA and the total duration of the experiments was eight weeks.

14
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The degradation compounds were identified using known addition spiking on IC

and HPLC, and mass spectrometry. The result at the lowest investigated CO2 loading

and temperature gave 2% MEA loss, and the highest loading and temperature gave

89% degradation. In another study, Davis[5] performed experiments in the same

temperature and loading ranges but extended the duration of the experiments and

the frequency of sample analyzes. After 16 weeks with loading 0.4 and 120°C, 29%

of the initial MEA had degraded. By using all of the obtained experimental data, a

reaction pathway and a full kinetic model were proposed. Integration of the kinetic

model resulted in a model describing the loss of MEA and CO2, and formation of

HEEDA, Trimer, Polymeric products, HEIA, and TriHEIA. The details of this model will

be presented in Chapter 3.

Leonard et al. [6] quantified the MEA loss and degradation products from a 30wt%

MEA solution at 120 and 140°C with an initial CO2 loading of 0.44. HEEDA, HEIA, and

OZD were found to be the main degradation components, and the MEA loss after

three weeks was about 5% at 120°C and 37% at 140°C. The experimental data was used

to make a simple model, where the irreversible formation of HEIA was considered

to cause degradation. The pre-exponential factor and the activation energy of the

Arrhenius equation were found by minimizing the sum of the squared difference

between modeled and experimental errors. The resulting rate of degradation was

1.19 ·10°7 mol MEA/Ls at 120°C and 1.02 ·10°6 mol MEA/Ls at 140°C.

Lepaumier et al. [4] examined degradation in 30wt% MEA solutions, using thermal

batch cylinders and a CO2 loading of 0.5 at 135°C. After five weeks, 57.6% of the MEA

was degraded. The rate of degradation was approximately constant for the first four

weeks before it started to decrease. LC-MS was used to quantify the remaining amine,

and GC-MS was used to identify and quantify the main degradation compounds. The

identified degradation products were, in accordance with the reaction pathway in

Figure 2.3.3, HEIA, HEEDA, OZD, and the new product, AEHEIA.

Eide-Haugmo[21] performed an experiment with the same experimental conditions

as Lepaumier, and the same degradation compounds were detected in this research.

Eide-Haugmo found the loss of MEA to be 44% after five weeks, which is lower than

seen in the result by Lepaumier.

The experimental apparatus used in the experiment by Zoannou et al. [22] stands out

from the rest of the experiments. Whilst the other experiments were performed in

closed systems, the experiment by Zoannou was performed in what is considered an

open setup. A temperature of 160°C was kept by using high-pressure vessels. After

eight weeks, the solutions of 30wt% MEA and initial loadings of 0.19 and 0.37 proved
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a decrease of respectively 83 and 95% in MEA concentration. GC–MS was used to

detect several degradation products, of which HEEDA, HEIA, and OZD were the main

components. In addition, MEA Urea, which Davis previously found, was also identified

in small amounts.

Fytianos participated in several studies on the effect of the degradation products

on corrosion. As a part of these studies, thermal degradation of 30wt% MEA was

investigated. Fytianos et al. [23] found that 38% of the initial MEA was degraded after

five weeks at 135°C and with a CO2 loading of 0.4. HEEDA, HEIA, and OZD were among

the detected degradation products; however, only HEIA and HEEDA were measured

in significant amounts. These results were consistent in later research by the same

author, at the same experimental conditions.

2.6 Parameters that affects thermal degradation

As a result of the experiments performed for thermal degradation of MEA, the loss of

MEA is found to be primarily dependent on three factors.

MEA is thermally stable at temperatures up to 100°C, and thermal degradation is

insignificant at temperatures below this point[24]. The greatest rate of degradation in

amine-based carbon capture plants occurs at 120–150°C[15], and the rate is proven

to be highly temperature dependent within this interval. As already mentioned, the

increase from 120 to 140°C in the experiment by Leonard[6] increased the degradation

by 32%. This experiment is one of many that proves the strong temperature

dependency of thermal degradation. Essentially, an increase in temperature from

120°C implies a notable acceleration in the kinetics of carbamate polymerization, and

the extent of degradation increase accordingly.

Another factor that is proven to affect the stability of MEA is the presence and

concentration of CO2. In addition to the experiments at stripper conditions, Leonard[6]

compared the extent of degradation with and without the presence of CO2. After

three weeks, the degradation of MEA was 5% in the absence of CO2, and of 38% at

a CO2 loading of 0.44. This observation confirms that the presence of CO2 has a

significant impact on the thermal stability of MEA. Davis and Rochelle[14] also showed

escalated degradation by increasing the loading. At 135°C, the loss of MEA after eight

weeks increased from 21% to 53% by changing the respective loading from 0.2 to

0.5. Principally, increased CO2 loading increases the equilibrium concentration of

oxazolidone and thereby accelerates the carbamate polymerization.

Davis and Rochelle[14] also state that the initial amine concentration affects the degree
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of thermal degradation. In the report by Davis[5], old experiments with varying initial

amine concentration are given. The degradation with initial amine concentrations

of 2.88, 4.9, and 6.58 mol/L increased with the respective values of 25, 37, and 46%.

Subsequently, the rate of degradation was found to increase by the initial amine

concentration. With similar reasoning as for CO2, the observations are explained by

an increased equilibrium concentration of the oxazolidone and following increased

rate of degradation.

Several other parameters may influence the extent of thermal degradation. However,

loading, temperature, and amine concentration are considered the main factors that

impact degradation.
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Chapter 3

The Model by Davis

In the work by Davis[5], degradation experiments were performed to measure the

amount of MEA loss and formed degradation products. Based on the experimental

results, a reaction mechanism was proposed and used as the basis to develop a kinetic

model. The model describes the concentrations of MEA and the detected degradation

products as a function of temperature, initial MEA concentration, and CO2 loading.

The following sections present the reactions, kinetics, and general approach used in

Davis’ model.

3.1 Reactions

The reactions considered in the modeling follow the mechanism proposed by Davis[5],

already shortly presented in Chapter 2. The reaction mechanism is given by the

following steps.

First, CO2 is absorbed by MEA, forming carbamate and a protonated MEA molecule,

shown in Reaction RX1.

2 HO
NH2

+CO2 °°*)°° HO NH
CO°

2
+HO

NH+
3

(RX1)

21



CHAPTER 3. THE MODEL BY DAVIS

Carbamate reacts with protonated MEA, undergoes a hydrolyze reaction, and forms

oxazolidone and MEA, as illustrated in Reaction RX2.

HO NH
CO°

2
+MEAH+ °°*)°°

NH

O

O
+HO

NH2
+CO2 (RX2)

MEA attacks the ketone group of the oxazolidone and forms MEA Urea, which

Zoannou also reported. The formation occurs as shown in Reaction RX3.

HO NH
NH2

+
NH

O

O
°°*)°° HO NH

O

NH
OH

(RX3)

MEA can also attack the oxazolidone molecule from the side, forming

N-(2-hydroxyethyl)-ethylenediamine(HEEDA), as shown in Reaction RX4.

HO
NH2

+
NH

O

O
°°*)°° HO

NH
NH2 +CO2 (RX4)

The HEEDA molecule reacts with CO2 and cyclizes into

hydroxyethyl-imidazolidone(HEIA), as shown in Reaction RX5.

HO
NH

NH2 +CO2 °°*)°°
N

OH

O

HN
+H2O (RX5)

This means that, according to the study by Davis, HEIA is formed from HEEDA. As

already mentioned, this order of formation corresponds to the pathway reported by

Lepaumier[4] and Eide-Haugmo[21] but contradicts the results by Polderman[2] and

Yazvikova[3], where HEIA is a precursor to HEEDA.
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The Oxazolidone molecule can be attacked by HEEDA and form more MEA Urea, or it

can continue the polymerization reaction to form

(N-(2-hydroxyethyl)-diethylenetriamine), which is referred to as the trimer of MEA.

This occurs by the reaction given in Reaction RX6.

HO
NH

NH2 +
NH

O

O
°°*)°° HO

NH
NH

NH2 (RX6)

By further reaction with CO2, MEA Trimer can form cyclic urea of MEA Trimer,

1-[2-[(2-hydroxyethyl)amino]ethyl]-2-imidazolidone, as shown in Reaction RX7.

HO
NH

NH
NH2 +CO2 °°*)°°

N
NH

NH
NH2

O

HN

(RX7)

With evidence in the experiments, this polymerization reaction can continue

indefinitely through the quatramer of MEA, N-(2-hydroxyethyl)triethylenetetramine,

and the corresponding cyclic urea,

1-[2-[[2-[(2-hydroxyethyl)amino]ethyl]amino)ethyl]-2-imidazolidone[5].
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To summarize the above reactions, an overview of the reaction pathway suggested by

Davis is encapsulated in Figure 3.1.1.

Figure 3.1.1: Thermal Degradation Pathway proposed by Davis [5].
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3.2 Kinetic Model

Davis proposed a kinetic model by applying the rate law to the reactions involved in

the degradation pathway. The rate law relates the rate of a chemical reaction and the

concentration of its reactants, as shown in Equation 3.2.1.

dC
d t

= k
NY

i=1
C mi

i °k°
NY

i=1
C mi

i (3.2.1)

Where k and k° are the reaction rate coefficients for the equilibrium’s respective

forward and reverse reaction. N is the number of reactants, Ci is the concentration of

reactant i , and m is the reaction order of the reactants.

Combination of the rate laws for the degradation reactions resulted in a set of ordinary

differential equations (ODEs), listed in Equation 3.2.2-3.2.8.

d [ME A]
d t

=°k12[ME A][CO2]°k2[HEED A][CO2]°k3[Tr i mer ][CO2] (3.2.2)

d [HEED A]
d t

= k1[ME A][CO2]°k2[HEED A][CO2]°k4[HEED A][CO2]+k°4[HE I A]

(3.2.3)

d [Tr i mer ]
d t

= k2[HEED A][CO2]°k3[Tr i mer ][CO2]°k5[Tr i mer ][CO2]+k°5[tr i HE I A]

(3.2.4)

d [Pol y]
d t

= k3[Tr i mer ][CO2] (3.2.5)

d [HE I A]
d t

= k4[HEED A][CO2]°k°4[HE I A] (3.2.6)

d [Tr i HE I A]
d t

= k5[Tr i mer ][CO2]°k°5[Tr i HE I A] (3.2.7)

d [CO2]
d t

= k°4[HE I A]°k4[HEED A][CO2]+k°5[Tr i HE I A]°k5[Tr i mer ][CO2]

(3.2.8)
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Each rate constant, ki , incorporated in the kinetic model above, corresponds to

different reactions from the degradation pathway. The link between the rate constants

and the described reaction is outlined below.

k1 = rate constant for conversion of MEA and Oxazolidone to HEEDA (L·mol°1hr°1)

k2 = rate constant for conversion of HEEDA and Oxazolidone to MEA Trimer

(L·mol°1hr°1)

k3 = rate constant for conversion of MEA Trimer and Oxazolidone to polymeric products

(L·mol°1hr°1)

k4 = rate constant for conversion of HEEDA carbamate to HEIA (L·mol°1hr°1)

k°4 = rate constant for conversion of HEIA to HEEDA carbamate (hr°1)

k5 = rate constant for conversion of MEA Trimer carbamate to TriHEIA (L·mol°1hr°1)

k°5 = rate constant for conversion of TriHEIA to MEA Trimer carbamate (hr°1)

Equation 3.2.3-3.2.8 define the formation of polymeric products of MEA. From the

reaction mechanism in Figure 3.1.1, oxazolidone is seen to act as a reactant in the

vast majority of the reactions. However, its concentration is omitted from the kinetic

model. Davis highlights the difficulty in measuring the concentration of oxazolidone

due to its role as an intermediate product. An alternative approach was therefore

used to include the oxazolidone concentration in the kinetic model. As illustrated

in Reaction RX2, oxazolidone is in equilibrium with carbamate, and carbamate is a

product of the reaction between MEA and CO2. Most of the available CO2 is consumed

in the formation of carbamate, and the concentrations of carbamate CO2 are therefore

closely related. By this argument, Davis used the concentration of CO2, combined

with the rate constant, as a surrogate for the oxazolidone concentration in the kinetic

model.

Davis’ reaction pathway includes the formation of further polymeric products, which

encompass quatramer and larger polymeric. Due to sparse data, the formation of

such polymeric products was lumped together and described by Equation 3.2.5.
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3.3 Modeling

MEA participates in most of the reactions involved in the degradation pathway, and

there is a lack of truly stable products. Consequently, the differential equations in

the kinetic model are linearly dependent and can not be solved analytically. Davis,

therefore, solved the set of differential equations by simple numerical integration.

The preferred method was Euler’s method, and by using small time steps, the ODEs

were solved in Microsoft Excel. The rate constants were modified until the sum of

the squared differences between the modeled and experimental concentrations were

minimized. After determination of the rate constants for all temperatures, the values

of the constants were plotted in an Arrhenius plot. The temperature dependency of

the rate constants was described by using the Arrhenius equation, which is given in

Equation 3.3.1.

k = Ae° Ea
RT (3.3.1)

Where A is the pre-exponential factor, Ea is the activation energy, R is the gas constant,

and T is the temperature.

By taking the slope from the Arrhenius plot, the pre-exponential constants and

activation energies were found. The resulting parameter values are listed in Table 3.3.1.

Table 3.3.1: The optimal pre-exponential constants and activation energies found by Davis [5].

*Parameter values assumed by Davis.

Rate constant Pre Exponential Constant Activation Energy

[L day°1 mol°1] [kcal/mol]

k1 1.05 E16 34.4

k2 2.15 E16 33.3

k3 3.28 E15 31.5

k4 3.58 E16 33.0

k°4 4.47 E15 32.6

k5 3.65 E15 31.3

k°5 4.56* E14 31.3*
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Davis plotted the ratio of the concentrations of HEIA to HEEDA and of TriHEIA to

Trimer at various temperatures, versus the loss of MEA. From the results, the ratio of

HEIA to HEEDA and of TriHEIA to Trimer were seen to track each other, suggesting

similar equilibrium constants for the two pairs. The experimental data did not have

enough TriHEIA in solution for the reverse reaction to be significant in the regression

analysis. Subsequently, Davis assumed the pre-exponential factor to be 4,56·1014 and

the activation energy to be 31,3kcal/mol, which are the values denoted by a star in

Table 3.3.1.

To summarize, Davis[5] solved the ODEs in Equation 3.2.2-3.2.8 by numerical

integration, and by using the parameters in Table 3.3.1 to express the rate constants.

These parameters were reported to minimize the sum of squared differences

between the experimental and modeled values. The resulting model describes the

concentration of MEA and the main degradation products as a function of time, initial

amine concentration, CO2 loading, and temperature.

28



Chapter 4

Model Evaluation

In modeling of chemical experiments, it is essential to evaluate of how close the model

predictions are to the experimental data. General error equations are therefore used

to quantify the accuracy of the models included in this thesis. The applied equations

are presented in the following sections.

4.1 Absolute Error

The absolute error represents the absolute deviation between the modeled and

experimental concentrations. The absolute error was calculated for all of the

experimental points by utilizing Equation 4.1.1.

Eabs =Cmod °Cexp (4.1.1)

Where Cmod defines the modeled concentration in mol/L at a specific time, aimed to

describe the corresponding experimental concentration, Cexp .

According to Equation 4.1.1, model over-prediction is reflected by positive absolute

errors, while negative absolute errors confirm model under-estimation of the

experimental concentrations. The absolute error does not take into account the size

of the measurements and is expected to increase by the value of the measurements.

Therefore, the value of the absolute errors can be misleading when comparing absolute

errors for measurements of varying sizes. It is then advantageous to include the relative

errors.
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4.2 Relative Error

The relative error conveys the magnitude of the absolute error, considering the size

of the actual measurement. The relative error was calculated for all experimental

concentrations by using Equation 4.2.1.

Er el =
Cmod °Cexp

Cexp
(4.2.1)

As opposed to the absolute error, the relative error takes into account the size of the

measurement. Essentially, the magnitude of the relative error stays the same as the

size of the measurement is varied and will not be affected by persistent experimental

differences.

4.3 Average Errors

The average of the absolute and relative errors was calculated for different sets of

concentration approximations. The term expressing the average error for a set of

targeted experimental points is given by Equation 4.3.1.

Eav =
P

E
m

(4.3.1)

Where E represents the error, and m is the number of experimental points included in

calculating the average.

In calculating the average absolute and relative errors, the positive and negative errors

offset each other. Hence, the result of the average errors reveals a majority of over-or

underestimation of data. In order to calculate the average deviation without regard to

the sign of the errors, the average absolute values of the relative and absolute errors

were calculated by 4.3.2.

Eav =
P |E |

m
(4.3.2)

4.4 Root Mean Squared Error

The root mean squared error (RMSE) measures the standard deviation of the

prediction errors in a model and is frequently employed to express the average

performance error in model evaluation studies[25]. It is found by taking the square
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root of the division of the sum of squares of the residual errors into the degrees of

freedom, as given in Equation 4.4.1.

RMSE =

sPn
i=1 E 2

abs

n °p
(4.4.1)

Where n is the number of data points used in the computation of the RMSE and p is

the number of parameters in the model.

An RMSE value of zero would indicate a perfect fit for the data. Values close to the

actual measurements indicate that the predicted values differ substantially from the

experimental responses. In terms of model evaluation, the RMSE was mainly used

to compare the accuracy of the different models. The RMSE was also used in the

parameter fitting routine and will be further discussed in Section 6.3.
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Chapter 5

Recreating Davis’ Model and Extending

the Data Set

5.1 Recreation of the Model

The first step in the model development was to regenerate the model by Davis, which

was described in Chapter 3. Davis’ model will be referred to as the original model.

The kinetic model from the original model, given in Equation 3.2.2-3.2.8, was

implemented in Matlab. The temperature dependency of the rate constants was

described by the Arrhenius equation, with the pre-exponential constants and

activation energies found by Davis, listed in Table 3.3.1. The built-in solver in Matlab,

ode45, solves nonstiff differential equations and was implemented to solve the system

of model equations.

Comparison of the concentration profiles from the recreated and the original model

required evaluation towards the same experimental basis. The experimental data

used in the original model were available for MEA, HEIA, HEEDA, and Trimer. The

corresponding data for TriHEIA was, on the other hand, not included in the report

by Davis. However, some experimental points for TriHEIA were plotted in the

graphs presenting the modeled and experimental values of MEA and the degradation

products. The plots were associated with the full temperature range but limited to the

experiments performed at loading 0.4. All integrated data describing TriHEIA were

obtained from the plots, and the applied values are listed in Table D.0.1 in Appendix D.

As a consequence of the limited experimental basis of TriHEIA, the recreated model

could only be evaluated for TriHEIA at loading 0.4.
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The concentration profiles from the recreated model were plotted for the different

temperatures and CO2 loadings, together with the corresponding experimental data.

Additionally, the recreated model was evaluated utilizing the procedure in Chapter 4.

The results are given in Chapter 7.

5.2 Extending the Data Set

The kinetic model and model parameters from the original model are solely based

on the experiments by Davis. In order to better assess the performance of the model,

degradation experiments from other researchers were included in the model. The

added data enlarged the number of estimated data points and expanded the ranges of

temperatures and CO2 loadings described by the model. This way, the expanded data

set enabled a more thorough evaluation of the model.

The experiments described in the Literature Review, in section 2.5, all provide

experimental data that was used to extend the data set. Table 5.2.1 collects essential

information for all included experiments.

Table 5.2.1: A summary of the number of applied data points from each researcher, the

temperatures, CO2 loadings and time ranges covered in the experiments, as well as the units

of the data and a listing of the main degradation products.

REFERENCE

Data

Points

T

[°C]

CO2

[mol CO2/mol MEA]

Duration

[Weeks]

Concentration

Unit

Degradation

Products

Davis[5] 104 100-150 0.2-0.5 16 mol/L HEIA, HEEDA,TriHEIA, Trimer

Davis & Rochelle[14] 55 100-150 0.2-0.5 8 mol/kg H2O HEIA, HEEDA

Eide-Haugmo[21] 18 135 0.1-0.5 5 mol/L HEIA, HEEDA, AEHEIA

Lepaumier et al. [4] 18 135 0.5 5 % of MEA loss HEIA, HEEDA, AEHEIA

Léonard et al. [6] 22 120-140 0.4 3 mol/100g HEIA, HEEDA

Zoannou et al. [22] 9 160 0.4 8 % of initial Nitrogen HEIA, HEEDA

Fytianos et al. [23] 6 120 0.4 2 mol/L HEIA, HEEDA

Fytianos et al. [26] 6 135 0.4 5 mol/L HEIA, HEEDA

Common for all data given per volume or mass is that the associated reports omit

information on whether the concentrations are given per loaded or per unloaded

volume/mass. However, the most common procedure for the analytical methods is to

subtract a fraction of the solutions for direct analysis. It was, therefore, assumed that

the loadings were included in the volume/mass.

The already implemented data by Davis, and the majority of the experimental data in

Table 5.2.1, are given in mol/L. Consequently, mol/L was the obvious choice of unit

for the data set. All data given by other units was therefore converted to mol/L by the

calculations shown in Appendix B.
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All references use 30wt% MEA solutions, which refers to 300g MEA per kg water.

Eide-Haugmo[21] and Leonard et al. [6] are the only researchers that include the actual

measurement of the initial concentrations of MEA after the addition of CO2. For all

other researchers, the initial MEA concentrations were calculated at the reported CO2

loadings and added to the experimental data. The approach of the calculations is

shown in Appendix A.

The data listed in Table 5.2.1 was added to the model. No additional changes were

made in the model, and the model was still defined by Davis’ parameters. A new

model evaluation was then performed to reveal the ability of the model to describe

the newly added experiments. The results are presented in chapter 7.
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Chapter 6

The final model

Davis found the optimal parameters to describe the results from his own experiments.

New parameter values were found to give the best fit to the complete data set. A

parameter fitting routine was therefore added to the code. Additional modifications

were performed, and the details of the code development are described in the following

sections.

6.1 Program Structure

An overview of the program structure of the final model is given in Figure 6.1.1.

Figure 6.1.1: Flowsheet representing the structure of the code.

The main file includes specifications for the parameter fitting routine, depending on

the chosen method. Both fminsearch and particleswarm were used as optimization

tools, further explained in section 6.4. The parameter fitting routine uses the main

file’s specifications to send a set of parameters to the objective function.
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The objective function forwards the suggested parameters to the ODE function file,

which contain the ODE solver, ode23s, explained in Appendix E. The ODE file acquires

the targeted ODEs from the model file and solves the system of differential equations

by applying the suggested parameters. Consequently, the ODE file provides the

solutions matrix that describes the modeled concentration profiles of the degradation

compounds.

The object function receives both the concentration profile and experimental

values and calculates the mean squared differences between the experimental and

corresponding modeled values. The result is sent back to the parameter searching

routine, and new parameters are found to lower the current error. The same procedure

is repeated until the iteration tolerance is met.

As the minimum error is found, the main file calls the plotting file, which visualizes

the results. The complete Matlab code is included in Appendix G.

6.2 The Model

In the model by Davis, the temperature dependence of the rate constants was

described by the standard Arrhenius equation, given in Equation 3.3.1. The value of

the pre-exponential factor, A, varies by an extensive value range, making it difficult

to allocate a reasonable initial guess to this parameter. Additionally, the large range

of values perplexes the search for the optimal parameter value. By reformulating

the Arrhenius equation, the temperature dependency of the rate constant can be

expressed by a reference rate constant, which is more intuitive to guess and lies

within a smaller range. The result of the reformulation is equivalent to the original

formulation but was used for simplicity and speed. The applied version of the rate

constant is given in Equation 6.2.1.

ki = kr e f ,i exp(°
Ea,i

R
1

Ti
° 1

Tr e f
) (6.2.1)

Where kr e f is the reference rate constant and Tr e f is the reference temperature, set to

400K.

The parameters to be optimized in the final model were the reference rate constants,

kr e f , and the activation energies, Ea . Instead of optimizing the reference rate constants

and activation energies directly, the parameters were defined as ten to the power of an

exponent, as shown in Equation 6.2.2.
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kr e f ,i = 10xi Ea,i = 10xi (6.2.2)

The parameter fitting routine was targeted to find the optimal exponents. By this

definition, the parameter estimates are assured to be of the same order of magnitude,

which simplifies and quickens the optimization. Another advantage is that the

activation energies and reference rate constants are assured positive, independent of

the choice and definition of the solver. In general, the transition state of a reaction

is at a higher level of energy than the reactants or products, which entails positive

activation energies. Additionally, the rate constants have already been defined as the

forward or reversed reactions in the kinetic model, suggesting positive reference rate

constants.

6.3 Choosing the Error Function

As briefly mentioned in Chapter 4, the RMSE was chosen as the objective function. A

common concern related to this error term is its sensitivity to outliers. The residual

errors are squared before averaged, which means that significant errors are given

relatively large weights. In thermal degradation, the largest prediction errors are

expected to be designated MEA, due to relatively high concentrations. MEA will,

therefore, contribute the most to the total RMSE and be weighted the most when

minimizing the total model error. As previously explained, the loss of MEA induces

perceptible costs to the PCC system, and the concentration of the MEA is therefore

considered the most critical to predict. For this reason, the sensitivity of the RMSE to

outlier is used to prioritize the prediction of MEA. By using the RMSE as the objective

function, the parameter fitting emphasizes the most prominent compounds rather

than those of small concentrations.

6.4 Methods of Parameter Fitting

The optimal reference rate constant and activation energies were found to minimize

the objective function. Two different parameter routines were utilized in the progress

of optimization, and the methods are described in the following sections.

6.4.1 Simplex Iteration

The built-in Matlab solver fiminsearch finds the minimum of unconstrained

multivariable functions, by simplex iteration. It uses the following syntax.
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x = fminsearch(fun,x0)

The fminsearch algorithm uses a simplex of n+1 points for n-dimensional vectors x. It

starts by making a simplex around the initial guess, x0, by adding 5% of each parameter

value corresponding to x0. For each iteration, the n vectors as elements of the simplex

and the current point are evaluated. The algorithm modifies the simplex repeatedly to

obtain the lowest function value. The iterations continue until the stopping criterion

is reached. The solution, x, is then returned as a real array or vector of the current

parameter values.

fiminsearch is a reasonably fast and straightforward parameter fitting method.

However, the disadvantage of this method is that the solver locates the nearest

minimum from the initial guess and does not distinguish between local or global

minimums. Hence, finding the global minimum depends substantially on the initial

guess. Numerous different local minimums were found when adjusting the initial

guesses in the model. It was therefore concluded that the objective function possesses

too many local minimums for fiminsearch to be efficient.

6.4.2 Particle Swarm Optimization

Particle Swarm is a population-based algorithm aimed at optimizing nonlinear

functions. The syntax of the particle swarm solver is given below.

x = particleswarm(fun,nvars,lb,ub)

Where fun is the function to be minimized and nvars is the dimension of fun. A

certain amount of particles are spread out in a specified region, which is limited to

the lower boundary, lb, and the upper boundary, ub, of each parameter. The particles

are assigned initial particles, and each represents different values of the objective

function with specific combinations of parameter values. For each new location, the

particles choose new velocities based on the current velocity, the particles’ individual

best locations, and the best locations of their neighbors. This way, the particles

cooperate to find the minimum. The iterations proceed until the algorithm reaches

a stopping criterion. At this stage, the particles have coalesced around one or more

locations, depending on the presence of local minimums. The best value found by

any of the particles in the swarm is tracked, representing the global minimum within

the specified region. The corresponding parameter values are returned as a vector or

matrix, x.
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This method is more time-consuming than simplex iteration, as it searches through a

whole area and requires a large number of iterations. However, the method is more

reliable as it is not dependent on the initial guess. Still, the method requires specified

parameter intervals that contain the values corresponding to the optimal solution.

Due to the large number of local minimums in the objective function, particle swarm

optimization was considered the most suitable to find the global minimum for the

final model.

6.5 Challenges during Optimization

Both parameter fitting methods adjust the values of the reference rate constants and

the activation energies within specific ranges in the search for function minimums.

When the parameter fitting routine combines reference rate constants and activation

energies that both amplify the reaction rate, the value for the reaction rate becomes

unrealistically high, which causes difficulties for the ODE solver. In this work, a manual

value of the objective function was set each time this problem emerged. The value

was assured higher than what was obtained when the result converged.

6.6 Adding AEHEIA data

As explained in Section 2.4.2, the lack of standards complicates the determination of

the exact structures of some of the degradation products. In the degradation pathways

described by Davis[5], Lepaumier et al. [4], and Eide-Haugmo et al. [21], TriHEIA and

AEHEIA are formed at the same stage in the pathway and by the same reactants.

TriHEIA and AEHEIA are very similar in mass and polarity, making them difficult to

distinguish without standards for the retention time. Therefore, it was hypothesized

that Davis and Lepaumier/Eide-Haugmo report the same product but have concluded

with slightly different structures. For this reason, the measurements of AEHEIA from

Lepaumier and Eide-Haugmo were added to the final model, and compared to the

model description of TriHEIA. The results are given in Section 9.5.
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Results and Discussion
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Chapter 7

Recreation of Davis’ Model

The model by Davis[5] was recreated by the procedure described in Chapter 3 and the

model gave a total RMSE of 0.0805 mol/L. Considering the size of the measurements

of MEA, which ranged from around 4.9 to 1.87 mol/L, the average magnitude of the

residuals is relatively low. The RMSE, therefore, indicates a good fit for the model

predictions of MEA. It is more difficult to manifest the fit to the components of less

extensive concentrations based on the value of the RMSE. The average errors of all

components were therefore calculated and tabulated in Table 9.2.1, presented in

Chapter 9. The results revealed relatively good model descriptions of HEEDA, HEIA,

and Trimer, with average relative errors of around 10%. The predictions of TriHEIA

were less precise, with an average relative error of 24%.

The experiments included in Davis’ model were plotted towards the corresponding

prediction given by the recreated model. Figure 7.0.1 illustrates the result from plotting

one of the experiments.

45



CHAPTER 7. RECREATION OF DAVIS’ MODEL

Figure 7.0.1: Example of plotting one of Davis’ [5] experiments by using the recreated model.

The lines represent the modeled concentrations, and the points represent the experimental

concentrations at 393K and initial CO2 loading of 0.4. The right axis is scaled for MEA, and the

left axis is scaled for the degradation products.

The report by Davis includes plots that illustrate the predictions of the experimental

points for all temperatures at an initial CO2 loading of 0.4. Comparison between the

obtained results from the recreated model, including Figure 7.0.1, with the results

given by Davis verified an apparent similarity between the original and recreated

model.

Along with the plots, Davis reported the average relative error for a set of selected

experimental and modeled values for MEA, HEEDA, and HEIA. The corresponding

errors were found for the recreated model to assure its accordance with the original

model. Table 7.0.1 compares the average of the selected relative errors in the original

model with the corresponding errors in the recreated model.

Table 7.0.1: The average relative errors reported by Davis and the corresponding average

relative errors calculated for the recreated model.

Model MEA HEEDA HEIA

Davis 0,059 0,12 0,18

Recreated 0,055 0,13 0,20

Table 7.0.1 reveals proximity between the average relative errors found for MEA,

HEEDA, and HEIA in the recreated and the original model. Hence, the comparison

of the model errors indicates a successful recreation of the model for the respective

components. The lack of reported errors for triHEIA and Trimer makes it difficult

to compare the prediction of these components in the two models. For this reason,

it can not be stated by certainty that Davis’ model was fully recreated. However,
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visual comparison of the plots from the experiments at loading 0.4 discloses a similar

representation of TriHEIA and Trimer as well. So, based on matching degradation plots

and similar average errors for MEA, HEIA, and HEEDA, Davis’ model is concluded to

be successfully recreated.
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Chapter 8

Extending the data set

Experimental data for MEA, HEEDA, and HEIA were added to the model, as described

in Section 5.2. The ability of the model to describe the additional experiments was

examined by comparing the model precision before and after supplementing data.

After the inclusion of data, the RMSE was calculated to 0.2283 mol/L, which is close

to a tripling of the previous RMSE. For most concentrations of MEA, the average

deviation constitutes a relatively low share of the measured concentrations. However,

for the lowest MEA concentrations, typically found at high temperatures and CO2

loadings, the average RMSE indicates significant deviations. The average residuals are

even more significant compared to the measurements of HEEDA and HEIA, suggesting

notable prediction errors for the two degradation products.

To further investigate the reduced overall model performance, the errors were

investigated for each component. Figure 8.0.1 illustrates the change of absolute

and relative errors for each component before and after the addition of data.
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(a) Absolute Errors (b) Relative Errors

Figure 8.0.1: Absolute and relative errors for all experimental points included in the recreated

model, before and after inclusion of more data. The errors in the model describing only Davis’

experiments are marked in grey, and the errors for the complete data set are colored.

It is clear from Figure 8.0.1, that the average errors have increased for MEA, HEEDA,

and HEIA by the addition of data. In order to concretize the visualized errors, the

average of the errors and the average absolute valued errors were calculated for

the different components and tabulated in Table F.0.1, in Appendix F, and in Table

9.2.1. Most prominent is the high relative errors of HEIA and HEEDA in Table 9.2.1,

and the vast majority of MEA underestimation established from Table F.0.1. The

underprediction of MEA was not delimited to experiments performed by certain

researchers or at specific experimental conditions. However, the most substantial

relative errors were connected to the experiments by Zoannou.

Figure 8.0.2 illustrates the model predictions of one of the experiments by Zoannou,

and is selected to illustrate the high relative errors of HEIA and HEEDA, and to

represent the general trend of underprediction of MEA.
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Figure 8.0.2: A selected plot that illustrates the underestimation of MEA and high relative

errors for HEIA and HEEDA after including additional data to the recreated model. The

experiment was performed by Zoannou at 160°C and loading 0.19.

Calculations of the absolute and relative errors in Figure 8.0.1 established increased

absolute and relative errors for MEA, HEEDA, and HEIA, of which new data was

included. The results from the calculations are included in Table 9.2.1, which is

presented in the next chapter. The increased errors caused by the addition of data

demonstrate that Davis’ model is not as precise at predicting the experiments by

other researchers as to describe the experiments performed by himself. Therefore, the

conclusion of optimizing the parameters was made to obtain the best fit for the whole

data set.
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Chapter 9

The final model

9.1 Optimized Parameters

The temperature-dependent rate constants were found by using the modified

Arrhenius equation, given by Equation 6.2.1. The optimal parameter values for the

complete data set were found as described in section 6, and listed in Table 9.1.1.

Table 9.1.1: Optimized values for the reference rate constants, Kr e f , and the activation

energies, Ea , used in the final model.

Rate constant kr e f [L day°1 mol°1] Ea [J/mol]

k1 1.51937 E-3 1.32081 E5

k2 1.25044 E-1 4.2130 E4

k3 2.67772 E-1 7.51734 E4

k4 1.72871 E-1 3.5627 E4

k°4 5.17217 E-5 2.90907 E4

k5 2.10748 E-3 3.82210 E5

k°5 3.97067 E-2 1.09901 E4

When recreating already existing models, a common challenge is that the reported

parameters do not match the reported results. Consequently, it is not possible to

recreate the model by using the reported parameters. When operating with parameters

multiplied by 105, the number of decimals may be of great importance to the final

result. To prevent inconsistency between the parameters and the presented results,

the parameters exactly as given in Table 9.1.1 were used to calculate and the RMSE

and generate the plots.
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9.1.1 Comparison to Literature

As mentioned in Section 2.5, Leonard et al. [6] developed a rate expression for the

loss of MEA, based on the experimental results at 140 and 120°C and at loading 0.44.

The given rate expression enabled comparison of the initial rate of MEA given by

Leonard et al. [6], to the initial rates found for Davis’ model and the final model, given

by Equation 3.2.2. Table 9.1.3 compares the initial rates of MEA loss given by Leonard,

to the initial rates calculated for Davis’ model and for the final model.

Table 9.1.2: Initial rates of MEA loss at 120 and 140°C found for Leonard[6], Davis[5] and for

the final model, given in [molL°1day°1].

Reference 120°C 140°C

Leonard 0.0101 0.0858

Davis 0.0164 0.1386

Final Model 0.0158 0.1122

Table 9.1.3 reveals similar initial rates for the three models, suggesting similar initial

slopes for MEA at the given temperatures. Leonard’s model provides a slightly lower

rate and therefore indicates less initial degradation of MEA than seen for the other

two models. Accordingly, Davis’ model and the final model were observed to slightly

underestimate the experimental data of MEA used in the model by Leonard at the

given temperatures. Furthermore, Table 9.1.3 states that the initial rate of MEA loss is

slightly higher for Davis’ model than for the final model at 120 and 140°C.

The activation energies found by using the final model, in Table 3.3.1 were converted

into kcal/mol and compared to the ones listed by Davis.

Table 9.1.3: The activation energies found in this work, compared to the activation energies

found by Davis.

Activation

Energy

This Work

[kcal/mol]

Davis’ Model

[kcal/mol]

Ea1 31.6 34.4

Ea2 10.1 33.3

Ea3 18.0 31.5

Ea4 8.52 33.0

Ea-4 6.95 32.6

Ea5 91.4 31.3

Ea-5 2.63 31.3

54



CHAPTER 9. THE FINAL MODEL

As seen in Table 9.1.3, Davis found similar activation energies for all reactions, whereas

the corresponding activation energies found in this work varies distinctly. The similar

values found by Davis suggest that the mix of products will not be a function of

temperature. The same conclusion can not be made based on the activation energies

found in this work.

9.2 Model Evaluation

The parameters found by Davis were replaced by the optimized values in Table 9.1.1,

to give a better fit to the complete set of experimental data. The resulting RMSE

of the final model was found to be 0.1536, reflecting a reduction of 30% from the

model with Davis’ parameters. The overall improvement by using the optimized

parameters, rather than Davis’ parameters, is elaborated by investigating error plots

and calculations.

Figure 9.2.1 compares the absolute and relative errors for the final model and the

model using Davis’ parameters.

(a) Absolute Errors (b) Relative Errors

Figure 9.2.1: Absolute and relative errors for all experimental points included in the model

using Davis’ constants and the model using the optimized model. The results from using the

parameters by Davis with the complete data set is marked in grey, and the result when using

the optimized parameters is marked in colors.

The average of the absolute and relative errors included in Figure 9.2.1 was calculated

for each component and included in Table 9.2.1.
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Table 9.2.1: Average of the absolute deviation for all the experimental points used in each

model.

MEA HEEDA Trimer HEIA TriHEIA

Data and parameters by Davis
Abs Err 0.0773 0.0099 0.0033 0.0263 0.0076

Rel Err 0.0215 0.0787 0.1198 0.0993 0.2390

All data with Davis’ parameters
Abs Err 0.1822 0.0613 0.0033 0.0938 0.0076

Rel Err 0.0858 0.8763 0.1198 0.7685 0.2390

All data with optimal parameters
Abs Err 0.1510 0.0559 0.0157 0.0932 0.0279

Rel Err 0.0533 0.7545 0.6977 0.7678 0.7764

All error plots and calculations of the average errors include the first point in the

predictions. The ODE solver integrates from the initial concentration given by the

experiments, which means that the first point will not contribute to prediction error.

Inclusion of the initial concentration adjusts the calculated average errors towards

zero and slightly embellishes the presented model errors. In this thesis, the average

error calculations are mainly used to compare the models and the accuracy for each

component, so the affection of the initial points has no practical significance.

9.2.1 MEA

From Figure 9.2.1a, the absolute errors for MEA appears large. However, the quantities

of MEA are relatively large, which results in the small relative errors seen in Figure

9.2.1b. Table 9.2.1 establish a reduction in the average errors in the MEA predictions

when using the optimized parameters, compared to Davis’ parameters. The prediction

deviates by about 5%, which means that the model generally provides a good

prediction of MEA. Figure 9.2.1 shows that there is no clear trend of model over-

or underprediction in the fitting of MEA.

By comparison of the average relative errors in Table 9.2.1, the model prediction fits

better for MEA than for the other components. This observation is in accordance with

the choice of RMSE as the object function, as discussed in Section 6.3. Essentially,

the relatively large contribution of MEA to the object function causes the fitting of

MEA to be emphasized to a larger degree than the remaining components during the
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parameter fitting. Additionally, there is considerably more experimental data available

for MEA than for the remaining components. The relatively high number of data

points amplifies the contribution from the MEA measurements to the RMSE and the

corresponding strive to fit the experimental values of MEA.

9.2.2 HEIA

Table 9.2.1 reveals a slight improvement in the accuracy of the modeled HEIA

concentrations by using the optimized parameters. Figure 9.2.1 illustrates that the

improvement is not significant, and there are still some clear outliers in the plots. No

prominent trend of under-or overprediction of HEIA is seen in Figure 9.2.1.

HEIA is the degradation compound of the most considerable quantity, and the

corresponding prediction errors contributes second most to the RMSE before the

optimization, as seen in Table 9.2.1. Due to the relatively significant error contribution,

the slight improvement by optimization was somewhat unexpected. However, in

addition to the priority of fitting MEA during the parameter fitting, the optimization

routine emphasizes the fit of the actual outliers. For some cases, it might give a

more considerable reduction of the total error by adjusting the prediction towards

the extreme points than to fit the relatively small error contributions from the more

realistic points. This tendency is a constrain to the chosen objective function. The

improvement of the outliers, seen in Figure 9.2.1, can therefore be at the expense of

improving the fit to the remaining experimental points. The outliers are essentially

results of deviations in the experimental data. Such variations are believed to be a part

of the explanation to the small improvement seen for HEIA.

Essentially, the optimization could not reduce the average error associated with HEIA

to a significant degree, despite the relatively large error contribution caused by the

predictions of HEIA. As a result, the estimations of HEIA contribute considerably to

the final value of the RMSE.
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9.2.3 HEEDA

Table 9.2.1 discloses a modest improvement of the HEEDA predictions by optimization.

As seen in Figure 9.2.1, the largest relative errors have been reduced, but the model

now underestimates the majority of the experimental points.

The same number of experimental points were used for HEEDA as for HEIA, but

HEEDA is measured in smaller quantities. It would therefore be expected that the

improvement of HEIA was larger than for HEEDA. This was, however, not the case,

as HEEDA was more significantly improved, as seen in Table 9.2.1. Still, there are

significant deviations between the predicted and experimental values of HEEDA, as

presented in Figure 9.2.1. These deviations are considered partly due to experimental

differences but mainly due to the parameter fitting, as the error contribution from

HEEDA is relatively small compared to MEA.

9.2.4 Trimer and TriHEIA

As opposed to the other components, Table 9.2.1 shows a decreased model accuracy

for the estimations of Trimer and TriHEIA in the final model. Figure 9.2.1 discloses a

clear trend of underestimation of both TriHEIA and Trimer.

Trimer and TriHEIA are reported to be the components of the smallest concentrations,

and the related average errors are therefore the smallest. For this reason, the associated

error contributions are of little significance to the total RMSE. This, in addition to

the relatively few data points, explains why the predictions of these components are

worsened on behalf of the improvements seen for the other components.
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9.3 Illustrations of the prominent trends

Figure 9.3.1 shows the modeled predictions for a selection of experiments.

(a) Experiment by Davis [5] at 423K and CO2

loading 0.4.

(b) Experiment by Davis [5] at 408K and CO2

loading 0.4.

(c) Experiment by Davis and Rochelle [14] at

423K and loading 0.4.

(d) Experiment by Zoannou et al. [22] at 433K

and loading 0.19.

Figure 9.3.1: A selection of model predicted experiments.

Figure 9.3.1a, 9.3.1b and 9.3.1d all present the overall precise fittings to MEA, which

resulted in low relative errors for MEA. The exception is seen in Figure 9.3.1d, where

the predicted value of MEA deviates substantially from the experimental value. This

point appears as a clear outlier in Figure 9.2.1a.

The general trends of underestimating HEEDA, Trimer and TriHEIA are illustrated in

Figure 9.3.1a and 9.3.1b. Significant relative deviations are linked to the respective

predictions in the two figures. The largest relative error was seen for HEIA, and the

clear outlier in the plot of the relative errors in Figure 9.2.1b is caused by the prediction

in Figure 9.3.1d. Figure 9.3.1a, 9.3.1b and 9.3.1d illustrate that there is no clear trend

of over -or underprediction of HEIA.
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9.4 Experimental Basis

The model aims to find the dependency of degradation on temperature and CO2

loading, based on the experimental data. The value of the modeled results is

therefore highly dependent on reliable experimental data. Suppose the experimental

measurements between the researchers vary. It is then difficult to fit the different

experiments by the same kinetic model and to provide a representative and realistic

dependency of the temperature and loading.

The majority of the applied researchers report having investigated 30wt% MEA

for given CO2 loadings by the procedure described in Section 2.4.1. However, the

experimental data is seen to deviate at identical conditions between researchers.

For instance, the degradation in the experiment by Lepaumier gave 14% more

degradation than Eide-Haugmo, and the measured concentration of HEIA reported by

Lepaumier after five weeks was higher than the corresponding measurement reported

by Davis and Rochelle[14] after eight weeks. There is no obvious explanation for the

deviations between the reported data, and it is not clear if the differences are caused

by the applied analytical methods or experimental factors. However, the level of detail

included in the information available from the publications varies a lot. For instance,

some researchers have checked for leakages in the system and have assured the

correct initial loading and amine concentration, while others omit such information

in the reports. The inconsistency in the included experimental information cause

uncertainty in the experimental basis of the results and the comparability of the data

by the different researchers.

As already presented, Figure 9.3.1c is the source to the largest absolute error for MEA,

and the designated point is linked to the experiment by Davis[5] at 150°C. All other

experiments by Davis[5] were described precisely by the model. The other experiments

performed by Davis and Rochelle[14], at 150°C, were also satisfactorily described. It is,

therefore, difficult to explain the large average deviation seen for this exact experiment.

Essentially, the considerable degradation in the experiment does not follow the same

temperature dependency as the other experiments and could not be fitted as well as

the others.
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The largest errors for HEIA and HEEDA were found in the predictions of the two

experiments by Zoannou[22]. The result from plotting the experiment by Zoannou

with CO2 loading 0.19 is illustrated by Figure 9.3.1d, and the experiment at loading

0.39 showed a similar result. The loss of MEA is well described for both experiments,

but the predictions of HEEDA and HEIA are observed to deviate significantly from

the experimental values. These deviations appear as outliers in Figure 9.2.1. The

significant difference between the precision errors for Zoannou’s experiments and the

rest of the experiment is hypothesized to be expounded by the different experimental

setup. As mentioned in Section 2.5, the experiments by Zoannou were performed in an

open design, while the other experiments were performed in closed systems. This may

have caused the large errors linked to the experiments by Zoannou. However, there is

no obvious explanation as to why the different setup could cause the distinctive result.
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9.4.1 Dependency of Experimental Conditions on Model

Performance

The absolute and relative errors associated to each of the components are plotted as a

function of time, loading and temperature, encapsulated in Figure 9.4.1.

(a) MEA (b) HEEDA

(c) Trimer (d) HEIA.

(e) TriHEIA

Figure 9.4.1: The absolute errors [mol/L] plotted for MEA, HEEDA, Trimer, HEIA, and TriHEIA

as a function of temperature [K], CO2 loading[mol CO2/mol MEA], and duration of the

experiments [days].

Figure 9.4.1 shows that there is no clear correlation between the accuracy of the

model prediction for the different degradation components and the temperature, CO2

loading, or duration of the experiments.
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9.5 Adding AEHEIA data

As explained in Section 9.5, the possibility of confusion of TriHEIA, identified by Davis,

and AEHEIA, found by Eide-Haugmo and Lepaumier, was considered. Therefore, the

experimental results for AEHEIA were included in the model to investigate its fit to the

modeled TriHEIA. The results are plotted in Figure 9.5.1a and 9.5.1b.

(a) Experiment by Lepaumier et al [4]. (b) Experiment by Eide-Haugmo [21].

Figure 9.5.1: Experiments by Lepaumier and Eide-Haugmo at 135°C and loading 0.4. The

green points represent the experimental values of AEHEIA, and the green line represents the

modeled prediction of TriHEIA.

The clear under-prediction of AEHEIA in 9.5.1a and 9.5.1b is consistent with the

general underestimation of TriHEIA, which was seen in Figure 9.4.1. However, the

predicted values of TriHEIA in the final model are not sufficient to describe the

TriHEIA, and it is therefore difficult indicate whether AEHEIA could be described

by the prediction of TriHEIA. A model that adequately represents TriHEIA would make

it easier to indicate similarity between the model descriptions of TriHEIA and the

experimental AEHEIA. No conclusions are therefore made, based on the result in 9.5.1,

but the results are included to point out the possibility that TriHEIA and AEHEIA might

be mixed up due to the lack of available standards.
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9.6 Evaluation of the kinetic model

The activation energies listed in Table 9.1.3, showed a higher activation energy for

HEIA than HEEDA, suggesting a higher stability of HEEDA in the equlibrium reaction.

This is not in accordance with the experimental measurements, as HEIA is the main

degradation product in all of the studied experiments. Additionally, the exceedingly

high activation energy, Ea5, suggests high stability of Trimer and little formation of

TriHEIA. Again, the experiments confirm the opposite, as the applied concentrations

of TriHEIA are more extensive than of Trimer. Consequently, the associated activation

energies do not seem realistic, and the ability of the kinetic model to represent thermal

degradation experiments is therefore questioned.

According to a study performed by Tontiwachwuthikul and Idem[27], the formation of

bicarbonate accelerates at higher CO2 loadings. This formation is not included in the

kinetic model by Davis[5], and the absorption of CO2 in Davis’ model is therefore based

on the assumption that the absorption occurs solely by carbamate formation. Davis[5]

used CO2 as a surrogate for OZD, which participates in the majority of the involved

reactions. By formation of bicarbonate, the concentration of OZD at higher loading is

not proportional to the consumed CO2 in the formation of carbamate. It was therefore

hypothesized that the formed bicarbonate in the experiments at high loadings would

lead to an overestimation of CO2. This would accelerate the modeled carbamate

polymerization and come across as model overestimation of the degradation products.

However, the prediction errors for the model are not observed to be particularly large

at high loadings compared to lower loadings. Additionally, most of the degradation

products are, in fact, underpredicted by the model. So, based on the results, there

is no reason to believe that the omission of bicarbonate from the kinetic model has

impacted the modeled results.

Davis[5] identified MEA Urea and included it in the degradation pathway as a product

from the reaction between MEA and OZD, given in Reaction RX3. However, MEA

Urea was not included in the kinetic model. The inclusion of MEA Urea would cause

more CO2 to be consumed, leading to less formation of the consecutive degradation

products and amplified underestimation of the measured products. Again, there is no

indication from the modeled result that MEA Urea should be included in the kinetic

model for improved results.
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Chapter 10

Conclusion

An already existing model was recreated, describing MEA, HEIA, HEEDA, Trimer, and

TriHEIA as a function of temperature and CO2 loading. The included data set was

expanded to evaluate the model precision for experiments from different researchers

at extended ranges of temperatures and CO2 loadings. The inclusion of data describing

MEA, HEIA, and HEEDA entailed increased average prediction errors for all three

components. An optimization routine was therefore implemented to improve the fit

to the full experimental data set. By applying the optimal parameters found by particle

swarm optimization, the total root mean squared error (RMSE) was reduced by 30%.

The best predictions were seen for MEA, given by the average relative error of 5%. The

descriptions of the two most extensive degradation products, HEIA and HEEDA, were

also slightly improved by the optimization to average relative errors of 77 and 75%.

The corresponding prediction errors for TriHEIA and Trimer, were calculated to 78 and

70%, reflecting a significant increase by the implementation of the optimal parameters.

As no additional data was included for these two components, the increased errors

were purely on behalf of fitting the other components.

The advantage of using the RMSE as the objective function was the emphasized fitting

of MEA, but a consecutive constrain the emphasis of outliers and downgrade of fitting

degradation products, due to relatively small concentrations. Differing experimental

data were found for HEIA and HEEDA, which was also considered a substantial source

of high prediction errors. Finally, the activation energies found for the equilibrium

reactions between HEIA/HEEDA and Trimer/TriHEIA favored the formation of HEEDA

and Trimer, which is not in accordance with the experimental results. The unrealistic

model parameters provided by the kinetic model arise doubt to the adequacy of the

model. Insufficient model descriptions would be an essential source of deviations for

the model.
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Chapter 11

Further Work

The current model was shown to provide a reasonably good description of MEA

but has a clear potential for improvement for the predictions of the degradation

products. It is preferred to develop a model that can adequately represent all of the

degradation compounds. It would therefore be interesting to investigate the impact

on the predictions by changing the objective function. For instance, use of a weighting

factor of the errors, as discussed by Cleger-Tamayo et al. [28], enables weighing of errors

in the same magnitude for all components. This is likely to improve the fitting to the

degradation products’ results, but the estimation of MEA is likely to decrease. However,

it would be interesting to see the extent of penalty to the errors for MEA induced by

changing the objective function. For the case of a low penalty, other choices of the

objective function might be preferred.

The activation energies were not found to be realistic, and it was argued that there is

room for improvement of the kinetic model. It is difficult to state the exact changes

that should be done to the kinetic model, but several approaches can be tested. For

example, the dependency between the concentration of reactants and products might

be introduced by the equilibrium constant instead of using separate forward and

reverse reactions. It would also be possible to simplify the equilibrium reactions by

only considering the forward reaction. Additionally, the inclusion of bicarbonate and

MEA Urea might also be relevant to include in future models.

There are not many extensive experiments performed on thermal degradation and

there is not a large quantity of experimental data included in the model. More data

would give a better basis for model evaluation and improve the reliability of the

provided results. By adding data, the total weight on the outliers would also decrease,

which is likely to improve the results.
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The possible confusion between TriHEIA and AEHEIA should be further considered.

By confirmed mixup, the applicable data set of TriHEIA/AEHEIA would be expanded,

which would give a better basis to evaluate the model precision for the established

component.

Significant experimental deviations between experiments were encountered for some

components at identical conditions. It is uncertain whether the differences are caused

by the applied analytical methods or by experimental factors. Efforts should therefore

be made to investigate the source of these deviations. To facilitate the investigation,

future reports should include a high level of detail in the experimental procedures.

The current model is developed to fit degradation from 30% MEA solutions. By

including data provided for solutions of varying initial amine concentrations, the

consecutive impact on the model performance can be assessed. There might also

be other factors affecting the occurring thermal degradation, such as acid or metal

concentrations. The impact of such elements can be investigated and potentially

included in the model.

By eventual achievement of an adequate model that is representative for the industrial

plants, the model can be used to optimize the stripper conditions. By predicting the

loss of MEA, the related costs can be calculated and evaluated towards the energy

costs.
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Appendix A

Calculating the initial MEA

concentration

All calculations are performed for inital MEA solutions of 30wt% MEA. The calculations

below is an example calculation performed for 0.4 mol CO2 per mol MEA, but same

procedure is used for all loadings.

300 g MEA/kg unloaded sol
61 g/mol

= 4.9
mol MEA

kg unloaded sol

0.4
mol CO2

mol MEA
·4.9

mol MEA
kg unloaded sol

= 1.96
mol CO2

kg unloaded sol

300 g MEA+700 g H2O+1.96
mol CO2

kg unloaded sol
·44

g CO2

mol
= 1086 g loaded solution

4.9
mol MEA

kg unloaded sol
· 1 kg unloaded sol

1.086 kg loaded sol
= 4.52

mol MEA
kg loaded sol

4.52
mol MEA

kg loaded sol
·1089,5

kg loaded sol
L loaded sol

= 4,93
mol MEA

L loaded sol

Where 1089,5 is the solution density for loading 0.4.
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Appendix B

Unit Conversion Calculations

Mol/100g to molarity

The data by Leonard was given in mol/100g. The data was converted into molarity by

equation B.
mol
100g

· 1000g
kg

·Ω
µ

kg
L

∂
= mol

l

Where Ω (kg/L) represents the densities at the different CO2 loadings, given in

literature[29]. The solutions are cooled down before analysis, so all densities were

found at room temperature.

Mg/L to mol/L

The data from one of the experiments by Fytianos was given in mg/L, and is converted

to molarity by Equation B.

mg
L

· 1
Mm

µ
mol

1000mg

∂
= mol

l

Where Mm is the molar mass of the different compounds, given in g/mol.
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% from Nitrogen balance to mol/L

Zoannaou performed a nitrogen balance, so the amounts of MEA and the degradation

products are given as a percentage of the inital Nitrogen concentration. As MEA

holds one Nitrogen atom, the initial concentration of MEA reflects the initial nitrogen

concentration. From there, the percentage given for each component, combined

stochiometry of nitrogen atoms, are used to calculate the associated concentrations.

This is given by Equation B.0.1.

1
∫
·CME A,0

µ
mol

l

∂
· %

100%
= mol

l
(B.0.1)

Where ∫ is the number of Nitrogen atoms in the current component.

Molality to molarity

The data given in molality is converted as described here.

m
mol MEA

kg loaded sol
·Ωkg loaded sol

L loaded sol
= mol MEA

L loaded sol
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Appendix C

The Complete Set of Plots

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure C.0.1
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

Figure C.0.2

VIII



Appendix D

Values for TriHEIA

Table D.0.1: Experimental TriHEIA values used in the recreation of Davis’ Model.

Temp Loading Time Exp

100 0.4 28 0.00081

100 0.4 61.2 0.00049

100 0.4 107 0.00132

120 0.4 14.2 0.002

120 0.4 28 0.004

120 0.4 61.2 0.024

120 0.4 107 0.067

135 0.4 4 0.005

135 0.4 9 0.008

135 0.4 14.2 0.03

135 0.4 28 0.097

135 0.4 61.2 0.234

150 0.4 2 0.014

150 0.4 4 0.041

150 0.4 7 0.095

150 0.4 9 0.132

150 0.4 14.2 0.209
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Appendix E

ODE Solvers

The syntax of the ODE solvers is given as follows.

[t,C] = ode23s(odefun,tspan,C0)

The first input argument, odefun, is the ODE function(s) to be solved, which in this

case are the differential equations in the kinetic model. The second input argument,

tspan, is the time span from t0 to t f i nal , referring to the duration of the experiments.

The initial conditions, y0, was defined as a vector of the initial concentrations of MEA

and the degradation products. The ODE solver integrates the system of differential

equations from t0 to t f i nal . The output is a solution array, [t,C], corresponding to the

concentration profiles given by the recreated model.

The built-in Matlab solver, ode23s, solve stiff differential equations. Differential

equation problems are called stiff if the solution varies slowly, but there are nearby

solutions that vary rapidly, necessitating small steps to find satisfactory results.

Essentially, stiffness is only an efficiency issue. Non-stiff solvers also find the solution

but are more time-consuming if the problem is stiff [30]. The non-stiff solver, ode45,

which was used when recreating the model by Davis, was also tested in the code

development, but ode23s was proved to be more efficient for this case. Thus, ode23s is

preferred in the final model due to efficiency.
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Appendix F

Table of average relative and absolute

errors

The average absolute and relative errors were calculated by Equation 4.3.1 for each

component in the models. The results are used spot trends of model over- or

underestimation. The results are tabulated in Table F.0.1.

Table F.0.1: Average of the absolute deviation for all the experimental points used in each

model.

MEA HEEDA Trimer HEIA TriHEIA

Data and constants by Davis
Abs Err 0.0624 -0.0016 -0.0016 -0.0165 -0.0054

Rel Err 0.0185 0.0010 -0.1109 -0.1227 -0.1285

All data with Davis const
Abs Err -0.0419 0.0072 -0.0016 -0.0308 -0.0054

Rel Err -0.0397 0.6580 -0.1109 0.2660 -0.1285

All data with opt const
Abs Err 0.0011 -0.0510 -0.0151 -0.0120 -0.0230

Rel Err 0.0033 -0.5770 -0.6731 0.3840 -0.5796
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Matlab Code

XV



G.1 Main

1 %MAIN
2 clear , c l c ;
3

4 %set i n i t i a l exponents for the parameters
5 x = [ −1.8 −1.0 −1.2 −0.7 −1.5 −0.5 −1.5 5 5 5 5 5 5 5 ] ;
6

7 %% experimental values :
8 exp_MEA = Cell_array_MEA ( ) ;
9 exp_HEEDA = Cell_array_HEEDA ( ) ;

10 exp_Trimer = Cell_array_Trimer ( ) ;
11 exp_HEIA = Cell_array_HEIA ( ) ;
12 exp_triHEIA = Cell_array_triHEIA ( ) ;
13

14 %% tspan
15 tspan = linspace (0 ,115 ,1001) ;
16

17 %% I n i t i a l
18 C_init = [ 4 . 9 0 0 0 0 0 2 . 0 ] ;
19 T = 400;
20

21 %% Find optimal model parameters
22 x_opt = optimisation ( x , exp_MEA, exp_HEEDA, exp_Trimer , exp_HEIA , exp_triHEIA ) ;
23

24 %% P l o t t i ng
25 pl ott ing ( tspan , exp_MEA, exp_HEEDA, exp_HEIA , exp_Trimer , exp_triHEIA , x_opt ) ;

G.2 Optimisation

1 %OPTIMISATION
2 function xopt = optimisation ( x , exp_MEA, exp_HEEDA, exp_Trimer , exp_HEIA , exp_triHEIA

)
3 options=optimset ( ' Display ' , ' i t e r ' , ' MaxFunEvals ' , 1 ) ;
4

5 p = 14;
6 opts = optimoptions ( ' particleswarm ' ) ;
7 opts . Display = ' i t e r ' ;
8 opts . UseParallel = true ;
9 opts . FunctionTolerance = 1e −4;

10 opts . SwarmSize = 10*p ;
11 opts . MaxStal l I terat ions = 10;
12

13 %%%% k1 k2 k3 k4 k_4 k5 k_5 Ea1 Ea2 Ea3
14 lb = [ −3.2 −1.8 −2.5 −1.5 −5.6 −2.9 −2.0 4.5 3.8

3.9 4.1 3.0 4.5 3 . 8 ] ;
15 ub = [ −1.6 −0.01 −0.01 −0.01 −1.3 −0.01 −0.3 5.3 5.2

5.2 5.2 5.3 5.8 5 . 3 ] ;
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16

17 xopt = particleswarm (@( x ) object_function ( x , exp_MEA, exp_HEEDA, exp_Trimer ,
exp_HEIA , exp_triHEIA ) ,p , lb , ub , opts ) ;

18 end

G.3 Objective Function

1 %OBJECT FUNCTION
2 function RMSE = object_function ( x , exp_MEA, exp_HEEDA, exp_Trimer , exp_HEIA ,

exp_triHEIA )
3

4 m = 0 ;
5 RMSE_num = 0 ;
6

7 %% Go through a l l experiments to add each Prediction error to t o t a l RMSE
8 for i = 1 : s i z e (exp_MEA, 1 )
9 T = exp_MEA{ i , 3 } ;

10 C_init_MEA = exp_MEA{ i , 2 } ( 1 ) ;
11 CO2_load=exp_MEA{ i , 4 } ;
12 CO2_H2O = CO2_load*C_init_MEA ;
13 t_exp_MEA = exp_MEA{ i , 1 } ;
14

15 %I n i t i a l conditions for ODE solver
16 C_init = [ C_init_MEA 0 0 0 0 0 CO2_H2O ] ;
17

18 %Set manual high value for RMSE when rate constants are too high for
19 %the ODE to solve the system of equations
20 warning ( " " ) ;
21 C_mod_mat = odefun ( t_exp_MEA , C_init , x , T) ;
22

23 i f lastwarn ~= ""
24 RMSE = 100;
25 return
26 end
27

28 i f length ( t_exp_MEA ) <= 2
29 C_mod_mat = [C_mod_mat ( 1 , : ) ; C_mod_mat(end , : ) ] ;
30 end
31

32 %MEA
33 C_exp_MEA = exp_MEA{ i , 2 } ;
34 C_mod_MEA = C_mod_mat ( : , 1 ) ;
35

36 i f a l l (C_mod_MEA == C_mod_MEA( 1 ) ) %(~= did not work )
37 e lse
38 m = m + length ( t_exp_MEA ) ;
39 RMSE_num = RMSE_num + sum( (C_mod_MEA' −C_exp_MEA) . ^ 2 ) ;
40 end

XVII



41

42 %HEEDA
43 C_exp_HEEDA = exp_HEEDA{ i , 2 } ;
44 C_mod_HEEDA = C_mod_mat ( : , 2 ) ;
45

46 i f a l l (C_mod_HEEDA == C_mod_HEEDA( 1 ) )
47 e lse
48 m = m + length ( t_exp_MEA ) ;
49 RMSE_num = RMSE_num + sum( (C_mod_HEEDA' −C_exp_HEEDA) . ^ 2 ) ;
50 end
51

52 %Trimer
53 C_exp_Trimer = exp_Trimer { i , 2 } ;
54 C_mod_Trimer = C_mod_mat ( : , 3 ) ;
55

56 i f a l l (C_mod_Trimer == C_mod_Trimer ( 1 ) )
57 e lse
58 m = m + length ( t_exp_MEA ) ;
59 RMSE_num = RMSE_num + sum( ( C_mod_Trimer' −C_exp_Trimer ) . ^ 2 ) ;
60 end
61

62 %HEIA
63 C_exp_HEIA = exp_HEIA { i , 2 } ;
64 C_mod_HEIA = C_mod_mat ( : , 5 ) ;
65

66 i f a l l (C_mod_HEIA == C_mod_HEIA( 1 ) )
67 e lse
68 m = m + length ( t_exp_MEA ) ;
69 RMSE_num = RMSE_num + sum( ( C_mod_HEIA' −C_exp_HEIA ) . ^ 2 ) ;
70 end
71

72 %TriHEIA
73 C_exp_triHEIA = exp_triHEIA { i , 2 } ;
74 C_mod_triHEIA = C_mod_mat ( : , 6 ) ;
75

76 i f a l l ( C_mod_triHEIA == C_mod_triHEIA ( 1 ) )
77 e lse
78 m = m + length ( t_exp_MEA ) ;
79 RMSE_num = RMSE_num + sum( ( C_mod_triHEIA' − C_exp_triHEIA ) . ^ 2 ) ;
80 end
81

82 end
83

84 %Total Error
85 p=14;
86 RMSE = sqrt ( (RMSE_num) /(m−p) ) ;
87

88
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89 end

G.4 ODE Solver

1 %ODE FUNCTION
2 function C = odefun ( tspan , C_init , x , T)
3 [~ ,C] = ode23s (@( t ,C) model( t , C, x , T) , tspan , C_init ) ;
4 end

G.5 Model

1 %MODEL FUNCTION
2 function dC = model( t , C, x , T)
3

4 R = 8 . 3 1 4 ;
5 Tref = 400;
6

7 kr1 = 10^x ( 1 ) ;
8 kr2 = 10^x ( 2 ) ;
9 kr3 = 10^x ( 3 ) ;

10 kr4 = 10^x ( 4 ) ;
11 kr_4 = 10^x ( 5 ) ;
12 kr5 = 10^x ( 6 ) ;
13 kr_5 = 10^x ( 7 ) ;
14

15 Ea1 = 10^x ( 8 ) ;
16 Ea2 = 10^x ( 9 ) ;
17 Ea3 = 10^x (10) ;
18 Ea4 = 10^x (11) ;
19 Ea_4 = 10^x (12) ;
20 Ea5 = 10^x (13) ;
21 Ea_5 = 10^x (14) ;
22

23 k1 = kr1 *exp( −Ea1/R * (1/T − 1/ Tref ) ) ;
24 k2 = kr2 *exp( −Ea2/R * (1/T − 1/ Tref ) ) ;
25 k3 = kr3 *exp( −Ea3/R * (1/T − 1/ Tref ) ) ;
26 k4 = kr4 *exp( −Ea4/R * (1/T − 1/ Tref ) ) ;
27 k_4 = kr_4 *exp( −Ea_4/R * (1/T − 1/ Tref ) ) ;
28 k5 = kr5 *exp( −Ea5/R * (1/T − 1/ Tref ) ) ;
29 k_5 = kr_5 *exp( −Ea_5/R * (1/T − 1/ Tref ) ) ;
30

31 % 1 2 3 4 5 6 7
32 %( 'MEA' , 'HEEDA' , 'TRIMEA' , ' POLY' , ' HEIA ' , ' TRIHEIA ' , 'CO2' )
33

34 dC = zeros ( 7 , 1 ) ;
35 dC( 1 ) = −2*k1 *C( 1 ) *C( 7 ) − k2*C( 2 ) *C( 7 ) − k3*C( 3 ) *C( 7 ) ;
36 dC( 2 ) = k1 *C( 1 ) *C( 7 ) − k2*C( 2 ) *C( 7 ) − k4*C( 2 ) *C( 7 ) + k_4 *C( 5 ) ;
37 dC( 3 ) = k2 *C( 2 ) *C( 7 ) − k3*C( 3 ) *C( 7 ) − k5*C( 3 ) *C( 7 ) − k_5 *C( 6 ) ;
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38 dC( 4 ) = k3 *C( 3 ) *C( 7 ) ;
39 dC( 5 ) = k4 *C( 2 ) *C( 7 ) − k_4 *C( 5 ) ;
40 dC( 6 ) = k5 *C( 3 ) *C( 7 ) − k_5 *C( 6 ) ;
41 dC( 7 ) = k_4 *C( 5 ) − k4*C( 2 ) *C( 7 ) + k_5 *C( 6 ) − k5*C( 3 ) *C( 7 ) ;
42

43 end

G.6 Experimental values - MEA

1 %EXPERIMENTAL
2

3 function C = Cell_array_MEA ( )
4

5 %Rochelle , 0.2
6 time1 = [0 9 ] ;
7 data1 = [4.951 3 . 7 3 ] ;
8 T1 = 423;
9 load1 = 0 . 2 ;

10

11 time2 = [0 2 8 ] ;
12 data2 = [4.951 3 . 8 1 ] ;
13 T2 = 408;
14 load2 = 0 . 2 ;
15

16 time3 = [0 1 0 7 ] ;
17 data3 = [4.951 3 . 9 5 ] ;
18 T3 = 393;
19 load3 = 0 . 2 ;
20

21 time4 = [0 1 0 7 ] ;
22 data4 = [4.951 4 . 5 ] ;
23 T4 = 373;
24 load4 = 0 . 2 ;
25

26

27 %0.5
28 time5 = [0 4 ] ;
29 data5 = [4.899 3 . 1 5 ] ;
30 T5 = 423;
31 load5 = 0 . 5 ;
32

33 time6 = [0 1 4 . 2 ] ;
34 data6 = [4.899 3 . 3 4 ] ;
35 T6 = 408;
36 load6 = 0 . 5 ;
37

38 time7 = [0 6 1 . 2 ] ;
39 data7 = [4.899 3 . 5 ] ;
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40 T7 = 393;
41 load7 = 0 . 5 ;
42

43 time8 = [0 1 0 7 ] ;
44 data8 = [4.899 4 . 4 8 ] ;
45 T8 = 373;
46 load8 = 0 . 5 ;
47

48

49 %0.4
50 time9 = [0 2 4 7 9 1 4 . 2 ] ;
51 data9 = [4.925 4.14 3.63 2.83 2.46 1 . 8 4 ] ;
52 T9 = 423;
53 load9 = 0 . 4 ;
54

55 time10 = [0 4 9 14.2 28 6 1 . 2 ] ;
56 data10 = [4.925 4.57 4.2 3.86 3.05 1 . 9 1 ] ;
57 T10 = 408;
58 load10 = 0 . 4 ;
59

60 time11 = [0 14.2 28 61.2 1 0 7 ] ;
61 data11 = [4.925 4.65 4.42 3.96 3 . 5 2 ] ;
62 T11 = 393;
63 load11 = 0 . 4 ;
64

65 time12 = [0 28 61.2 1 0 7 ] ;
66 data12 = [4.925 4.86 4.82 4 . 7 5 ] ;
67 T12 = 373;
68 load12 = 0 . 4 ;
69

70

71 %EIDE−HAUGMO
72

73 time13 = [0 7 14 21 28 3 5 ] ;
74 data13 = [ 4 . 2 2 3.71 3.3 2.46 2.16 1 . 8 8 ] ;
75 T13 = 408;
76 load13 = 0 . 5 ;
77

78

79 %DAVIS&ROCHELLE
80 %100deg
81 time14 = [0 5 6 ] ;
82 data14 = [4.951 4 . 6 7 0 ] ;
83 T14 = 373;
84 load14 = 0 . 2 ;
85

86 time15 = [0 5 6 ] ;
87 data15 = [4.925 4 . 6 2 4 ] ;
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88 T15 = 373;
89 load15 = 0 . 4 ;
90

91 time16 = [0 5 6 ] ;
92 data16 = [4.899 4 . 5 8 3 ] ;
93 T16 = 373;
94 load16 = 0 . 5 ;
95

96 %120deg
97 time17 = [0 5 6 ] ;
98 data17 = [4.951 4 . 4 8 7 ] ;
99 T17 = 393;

100 load17 = 0 . 2 ;
101

102 time18 = [0 5 6 ] ;
103 data18 = [4.925 4 . 3 0 6 ] ;
104 T18 = 393;
105 load18 = 0 . 4 ;
106

107 time19 = [0 5 6 ] ;
108 data19 = [4.899 3 . 9 5 1 ] ;
109 T19 = 393;
110 load19 = 0 . 5 ;
111

112 %135deg
113 time20 = [0 5 6 ] ;
114 data20 = [4.951 3 . 6 4 7 ] ;
115 T20 = 408;
116 load20 = 0 . 2 ;
117

118 time21 = [0 5 6 ] ;
119 data21 = [4.925 2 . 7 3 5 ] ;
120 T21 = 408;
121 load21 = 0 . 4 ;
122

123 time22 = [0 5 6 ] ;
124 data22 = [4.899 2 . 1 9 2 ] ;
125 T22 = 408;
126 load22 = 0 . 5 ;
127

128 %150deg
129 time23 = [0 5 6 ] ;
130 data23 = [4.925 2 . 1 9 2 ] ;
131 T23 = 423;
132 load23 = 0 . 4 ;
133

134

135 %FYTIANOS 2
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136 time25 = [0 1 4 ] ;
137 data25 = [4.925 4 . 7 9 1 ] ;
138 T25 = 393;
139 load25 = 0 . 4 ;
140

141

142

143 %Zoannou
144 time26 = [0 14 21 5 6 ] ;
145 data26 = [4.952 2.87150 2.45783 0. 99 99 2 ] ;
146 T26 = 433;
147 load26 = 0 . 1 9 ;
148

149 time27 = [0 14 21 5 6 ] ;
150 data27 = [4.931 1.81677 0.88984 0. 12 35 9 ] ;
151 T27 = 433;
152 load27 = 0 . 3 7 ;
153

154

155

156 %LEONARD
157 %120
158 time28 = [0 7 14 2 1 ] ;
159 data28 = [4.90275 4.804695 4.782905 4. 68 48 5 ] ;
160 T28 = 393;
161 load28 = 0 . 4 ;
162

163 %140
164 time29 = [0 7 14 2 1 ] ;
165 data29 = [4.903 4.293 3.650 3 . 0 7 2 ] ;
166 T29 = 413;
167 load29 = 0 . 4 ;
168

169

170 %Lepaumier
171 time30 = [0 7 14 21 28 3 5 ] ;
172 data30 = [4.8993 ' 4.2683 ' 3.6965 ' 2.9321 ' 2.3752 ' 2 . 0 7 1 1 ' ] ;
173 T30 = 408;
174 load30 = 0 . 5 ;
175

176 %Eide−Haugmo
177 time31 = [0 7 14 21 28 3 5 ] ;
178 data31 = [ 4 . 9 4 4.85 4.88 5.01 4.97 4 . 9 8 ] ;
179 T31 = 408;
180 load31 = 0 . 1 ;
181

182 time32 = [0 7 14 21 28 3 5 ] ;
183 data32 = [ 5 . 0 4 4.66 4.39 4.05 3.91 3 . 6 6 ] ;
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184 T32 = 408;
185 load32 = 0 . 2 ;
186

187 time33 = [0 7 14 21 28 3 5 ] ;
188 data33 = [ 4 . 8 7 4.51 4.10 3.54 3.38 3 . 2 0 ] ;
189 T33 = 408;
190 load33 = 0 . 3 ;
191

192 time34 = [0 7 14 21 28 3 5 ] ;
193 data34 = [ 4 . 8 3 4.31 3.38 3.13 3.02 2 . 6 7 ] ;
194 T34 = 408;
195 load34 = 0 . 4 ;
196

197

198 %FYTIANOS
199 time35 = [0 3 5 ] ;
200 data35 = [4.925 3 . 0 3 6 1 ] ;
201 T35 = 408;
202 load35 = 0 . 4 ;
203

204

205 C = { time1 , data1 , T1 , load1 ;
206 time2 , data2 , T2 , load2 ;
207 time3 , data3 , T3 , load3 ;
208 time4 , data4 , T4 , load4 ;
209 time5 , data5 , T5 , load5 ;
210 time6 , data6 , T6 , load6 ;
211 time7 , data7 , T7 , load7 ;
212 time8 , data8 , T8 , load8 ;
213 time9 , data9 , T9 , load9 ;
214 time10 , data10 , T10 , load10 ;
215 time11 , data11 , T11 , load11 ;
216 time12 , data12 , T12 , load12 ;
217 time13 , data13 , T13 , load13 ;
218 time14 , data14 , T14 , load14 ;
219 time15 , data15 , T15 , load15 ;
220 time16 , data16 , T16 , load16 ;
221 time17 , data17 , T17 , load17 ;
222 time18 , data18 , T18 , load18 ;
223 time19 , data19 , T19 , load19 ;
224 time20 , data20 , T20 , load20 ;
225 time21 , data21 , T21 , load21 ;
226 time22 , data22 , T22 , load22 ;
227 time23 , data23 , T23 , load23 ;
228 time25 , data25 , T25 , load25 ;
229 time26 , data26 , T26 , load26 ;
230 time27 , data27 , T27 , load27 ;
231 time28 , data28 , T28 , load28 ;
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232 time29 , data29 , T29 , load29 ;
233 time30 , data30 , T30 , load30 ;
234 time31 , data31 , T31 , load31 ;
235 time32 , data32 , T32 , load32 ;
236 time33 , data33 , T33 , load33 ;
237 time34 , data34 , T34 , load34 ;
238 time35 , data35 , T35 , load35 ;
239 } ;
240

241

242 end

G.7 Experimental values - HEEDA

1 %EXPERIMENTAL HEEDA
2

3 function C = Cell_array_HEEDA ( )
4

5 %ROCHELLE (TEXAS) .
6

7 %Rochelle , 0.2
8 time1 = [0 9 ] ;
9 data1 = [0 0 . 2 3 ] ;

10 T1 = 423;
11 load1 = 0 . 2 ;
12

13 time2 = [0 2 8 ] ;
14 data2 = [0 0 . 1 9 ] ;
15 T2 = 408;
16 load2 = 0 . 2 ;
17

18 time3 = [0 1 0 7 ] ;
19 data3 = [0 0 . 1 7 ] ;
20 T3 = 393;
21 load3 = 0 . 2 ;
22

23 time4 = [0 1 0 7 ] ;
24 data4 = [0 0 . 0 3 ] ;
25 T4 = 373;
26 load4 = 0 . 2 ;
27

28

29 %0.5
30 time5 = [0 1 4 ] ;
31 data5 = [0 0 . 1 6 ] ;
32 T5 = 423;
33 load5 = 0 . 5 ;
34
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35 time6 = [0 1 4 . 2 ] ;
36 data6 = [0 0 . 1 4 ] ;
37 T6 = 408;
38 load6 = 0 . 5 ;
39

40 time7 = [0 6 1 . 2 ] ;
41 data7 = [0 0 . 1 2 ] ;
42 T7 = 393;
43 load7 = 0 . 5 ;
44

45 time8 = [0 1 0 7 ] ;
46 data8 = [0 0 . 0 8 ] ;
47 T8 = 373;
48 load8 = 0 . 5 ;
49

50

51 %0.4
52 time9 = [0 2 4 7 9 1 4 . 2 ] ;
53 data9 = [0 0.16 0.19 0.18 0.16 0 . 1 3 ] ;
54 T9 = 423;
55 load9 = 0 . 4 ;
56

57 time10 = [0 4 9 14.2 28 6 1 . 2 ] ;
58 data10 = [0 0.08 0.15 0.17 0.16 0 . 1 1 ] ;
59 T10 = 408;
60 load10 = 0 . 4 ;
61

62 time11 = [0 14.2 28 61.2 1 0 7 ] ;
63 data11 = [0 0.07 0.11 0.14 0 . 1 4 ] ;
64 T11 = 393;
65 load11 = 0 . 4 ;
66

67 time12 = [0 28 61.2 1 0 7 ] ;
68 data12 = [0 0.02 0.04 0 . 0 7 ] ;
69 T12 = 473;
70 load12 = 0 . 4 ;
71

72

73

74 %EIDE−HAUGMO
75 time13 = [0 7 14 21 28 3 5 ] ;
76 data13 = [0 0.2025 0.2171 0.2064 0.1719 0 . 1 5 4 8 ] ;
77 T13 = 408;
78 load13 = 0 . 5 ;
79

80

81

82 %TEXAS DAVIS
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83 %100deg
84 time14 = [0 5 6 ] ;
85 data14 = [0 0 ] ;
86 T14 = 373;
87 load14 = 0 . 2 ;
88

89 time15 = [0 5 6 ] ;
90 data15 = [0 0 ] ;
91 T15 = 373;
92 load15 = 0 . 4 ;
93

94 time16 = [0 5 6 ] ;
95 data16 = [0 0 ] ;
96 T16 = 373;
97 load16 = 0 . 5 ;
98

99 %120deg
100 time17 = [0 5 6 ] ;
101 data17 = [0 0 . 0 2 0 ] ;
102 T17 = 393;
103 load17 = 0 . 2 ;
104

105 time18 = [0 5 6 ] ;
106 data18 = [0 0 . 0 3 3 ] ;
107 T18 = 393;
108 load18 = 0 . 4 ;
109

110 time19 = [0 5 6 ] ;
111 data19 = [0 0 . 0 3 3 ] ;
112 T19 = 393;
113 load19 = 0 . 5 ;
114

115 %135deg
116 time20 = [0 5 6 ] ;
117 data20 = [0 0 . 1 6 5 ] ;
118 T20 = 408;
119 load20 = 0 . 2 ;
120

121 time21 = [0 5 6 ] ;
122 data21 = [0 0 . 1 1 3 ] ;
123 T21 = 408;
124 load21 = 0 . 4 ;
125

126 time22 = [0 5 6 ] ;
127 data22 = [0 0 . 0 7 3 ] ;
128 T22 = 408;
129 load22 = 0 . 5 ;
130
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131 %150deg
132 time23 = [0 5 6 ] ;
133 data23 = [0 0 ] ;
134 T23 = 423;
135 load23 = 0 . 4 ;
136

137 %FYTIANOS 2
138 time25 = [0 1 4 ] ;
139 data25 = [0 0.044167] ;
140 T25 = 393;
141 load25 = 0 . 4 ;
142

143 %Zoannou
144 time26 = [0 14 21 5 6 ] ;
145 data26 = [0 0.04492 0.03932 0 .1 1 35 8] ;
146 T26 = 433;
147 load26 = 0 . 1 9 ;
148

149 time27 = [0 14 21 5 6 ] ;
150 data27 = [0 0.12977 0.14831 0 .2 5 95 3] ;
151 T27 = 433;
152 load27 = 0 . 3 7 ;
153

154

155

156 %LEONARD
157 %120
158 time28 = [0 7 14 2 1 ] ;
159 data28 = [0 0.0075 0.0118 0 . 0 3 4 2 ] ;
160 T28 = 393;
161 load28 = 0 . 4 ;
162

163 %140
164 time29 = [0 7 14 2 1 ] ;
165 data29 = [0 0.060 0.059 0 . 0 5 1 ] ;
166 T29 = 413;
167 load29 = 0 . 4 ;
168

169

170 %Lepaumier
171 time30 = [0 7 14 21 28 3 5 ] ;
172 data30 = [0 0.1670 0.2041 0.2116 0.1633 0 . 1 5 5 9 ] ;
173 T30 = 408;
174 load30 = 0 . 5 ;
175

176 %Eide−Haugmo
177 time31 = [0 7 14 21 28 3 5 ] ;
178 data31 = [0 0 0 0 0 0 ] ;
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179 T31 = 408;
180 load31 = 0 . 1 ;
181

182 time32 = [0 7 14 21 28 3 5 ] ;
183 data32 = [0 0 0 0 0 0 ] ;
184 T32 = 408;
185 load32 = 0 . 2 ;
186

187 time33 = [0 7 14 21 28 3 5 ] ;
188 data33 = [0 0 0 0 0 0 ] ;
189 T33 = 408;
190 load33 = 0 . 3 ;
191

192 time34 = [0 7 14 21 28 3 5 ] ;
193 data34 = [0 0 0 0 0 0 ] ;
194 T34 = 408;
195 load34 = 0 . 4 ;
196

197 %FYTIANOS
198 time35 = [0 3 5 ] ;
199 data35 = [0 0 . 1 8 1 3 ] ;
200 T35 = 408;
201 load35 = 0 . 4 ;
202

203

204 C = { time1 , data1 , T1 , load1 ;
205 time2 , data2 , T2 , load2 ;
206 time3 , data3 , T3 , load3 ;
207 time4 , data4 , T4 , load4 ;
208 time5 , data5 , T5 , load5 ;
209 time6 , data6 , T6 , load6 ;
210 time7 , data7 , T7 , load7 ;
211 time8 , data8 , T8 , load8 ;
212 time9 , data9 , T9 , load9 ;
213 time10 , data10 , T10 , load10 ;
214 time11 , data11 , T11 , load11 ;
215 time12 , data12 , T12 , load12 ;
216 time13 , data13 , T13 , load13 ;
217 time14 , data14 , T14 , load14 ;
218 time15 , data15 , T15 , load15 ;
219 time16 , data16 , T16 , load16 ;
220 time17 , data17 , T17 , load17 ;
221 time18 , data18 , T18 , load18 ;
222 time19 , data19 , T19 , load19 ;
223 time20 , data20 , T20 , load20 ;
224 time21 , data21 , T21 , load21 ;
225 time22 , data22 , T22 , load22 ;
226 time23 , data23 , T23 , load23 ;
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227 time25 , data25 , T25 , load25 ;
228 time26 , data26 , T26 , load26 ;
229 time27 , data27 , T27 , load27 ;
230 time28 , data28 , T28 , load28 ;
231 time29 , data29 , T29 , load29 ;
232 time30 , data30 , T30 , load30 ;
233 time31 , data31 , T31 , load31 ;
234 time32 , data32 , T32 , load32 ;
235 time33 , data33 , T33 , load33 ;
236 time34 , data34 , T34 , load34 ;
237 time35 , data35 , T35 , load35 ;
238 } ;
239

240

241

242 end

G.8 Experimental values - Trimer

1 %EXPERIMENTAL Trimer
2

3 function C = Cell_array_Trimer ( )
4

5 %ROCHELLE (TEXAS) .
6

7 %0.2
8 time1 = [0 9 ] ;
9 data1 = [0 0 . 0 5 ] ;

10 T1 = 423;
11 load1 = 0 . 2 ;
12

13 time2 = [0 2 8 ] ;
14 data2 = [0 0 . 0 4 ] ;
15 T2 = 408;
16 load2 = 0 . 2 ;
17

18 time3 = [0 1 0 7 ] ;
19 data3 = [0 0 . 0 4 ] ;
20 T3 = 393;
21 load3 = 0 . 2 ;
22

23 time4 = [0 1 0 7 ] ;
24 data4 = [0 0 ] ;
25 T4 = 373;
26 load4 = 0 . 2 ;
27

28

29 %0.5
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30 time5 = [0 4 ] ;
31 data5 = [0 0 . 0 4 ] ;
32 T5 = 423;
33 load5 = 0 . 5 ;
34

35 time6 = [0 1 4 . 2 ] ;
36 data6 = [0 0 . 0 4 ] ;
37 T6 = 408;
38 load6 = 0 . 5 ;
39

40 time7 = [0 6 1 . 2 ] ;
41 data7 = [0 0 . 0 4 ] ;
42 T7 = 393;
43 load7 = 0 . 5 ;
44

45 time8 = [0 1 0 7 ] ;
46 data8 = [0 0 . 0 1 ] ;
47 T8 = 373;
48 load8 = 0 . 5 ;
49

50

51 %0.4
52 time9 = [0 2 4 7 9 1 4 . 2 ] ;
53 data9 = [0 0.02 0.04 0.05 0.05 0 . 0 4 ] ;
54 T9 = 423;
55 load9 = 0 . 4 ;
56

57 time10 = [0 4 9 14.2 28 6 1 . 2 ] ;
58 data10 = [0 0.01 0.03 0.04 0.05 0 . 0 4 ] ;
59 T10 = 408;
60 load10 = 0 . 4 ;
61

62 time11 = [0 14.2 28 61.2 1 0 7 ] ;
63 data11 = [0 0.01 0.02 0.04 0 . 0 5 ] ;
64 T11 = 393;
65 load11 = 0 . 4 ;
66

67 time12 = [0 28 61.2 1 0 7 ] ;
68 data12 = [0 0 0 0 . 0 1 ] ;
69 T12 = 473;
70 load12 = 0 . 4 ;
71

72 %EIDE−HAUGMO
73 time13 = [0 7 14 21 28 3 5 ] ;
74 data13 = [0 0 0 0 0 0 ] ;
75 T13 = 408;
76 load13 = 0 . 5 ;
77
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78 %TEXAS DAVIS
79 %100deg
80 time14 = [0 5 6 ] ;
81 data14 = [0 0 ] ;
82 T14 = 373;
83 load14 = 0 . 2 ;
84

85 time15 = [0 5 6 ] ;
86 data15 = [0 0 ] ;
87 T15 = 373;
88 load15 = 0 . 4 ;
89

90 time16 = [0 5 6 ] ;
91 data16 = [0 0 ] ;
92 T16 = 373;
93 load16 = 0 . 5 ;
94

95 %120deg
96 time17 = [0 5 6 ] ;
97 data17 = [0 0 ] ;
98 T17 = 393;
99 load17 = 0 . 2 ;

100

101 time18 = [0 5 6 ] ;
102 data18 = [0 0 ] ;
103 T18 = 393;
104 load18 = 0 . 4 ;
105

106 time19 = [0 5 6 ] ;
107 data19 = [0 0 ] ;
108 T19 = 393;
109 load19 = 0 . 5 ;
110

111 %135deg
112 time20 = [0 5 6 ] ;
113 data20 = [0 0 ] ;
114 T20 = 408;
115 load20 = 0 . 2 ;
116

117 time21 = [0 5 6 ] ;
118 data21 = [0 0 ] ;
119 T21 = 408;
120 load21 = 0 . 4 ;
121

122 time22 = [0 5 6 ] ;
123 data22 = [0 0 ] ;
124 T22 = 408;
125 load22 = 0 . 5 ;
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126

127 %150deg
128 time23 = [0 5 6 ] ;
129 data23 = [0 0 ] ;
130 T23 = 423;
131 load23 = 0 . 4 ;
132

133 %FYTIANOS 2
134 time25 = [0 1 4 ] ;
135 data25 = [0 0 ] ;
136 T25 = 393;
137 load25 = 0 . 4 ;
138

139 %Zoannou
140 time26 = [0 14 21 5 6 ] ;
141 data26 = [0 0 0 0 ] ;
142 T26 = 433;
143 load26 = 0 . 1 9 ;
144

145 time27 = [0 14 21 5 6 ] ;
146 data27 = [0 0 0 0 ] ;
147 T27 = 433;
148 load27 = 0 . 3 7 ;
149

150

151 %LEONARD
152 %120
153 time28 = [0 7 14 2 1 ] ;
154 data28 = [0 0 0 0 ] ;
155 T28 = 393;
156 load28 = 0 . 4 ;
157

158 %140
159 time29 = [0 7 14 2 1 ] ;
160 data29 = [0 0 0 0 ] ;
161 T29 = 413;
162 load29 = 0 . 4 ;
163

164 %Lepaumier
165 time30 = [0 7 14 21 28 3 5 ] ;
166 data30 = [0 0 0 0 0 0 ] ;
167 T30 = 408;
168 load30 = 0 . 5 ;
169

170 %Eide−Haugmo
171 time31 = [0 7 14 21 28 3 5 ] ;
172 data31 = [0 0 0 0 0 0 ] ;
173 T31 = 408;
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174 load31 = 0 . 1 ;
175

176 time32 = [0 7 14 21 28 3 5 ] ;
177 data32 = [0 0 0 0 0 0 ] ;
178 T32 = 408;
179 load32 = 0 . 2 ;
180

181 time33 = [0 7 14 21 28 3 5 ] ;
182 data33 = [0 0 0 0 0 0 ] ;
183 T33 = 408;
184 load33 = 0 . 3 ;
185

186 time34 = [0 7 14 21 28 3 5 ] ;
187 data34 = [0 0 0 0 0 0 ] ;
188 T34 = 408;
189 load34 = 0 . 4 ;
190

191 %FYTIANOS
192 time35 = [0 3 5 ] ;
193 data35 = [0 0 ] ;
194 T35 = 408;
195 load35 = 0 . 4 ;
196

197

198 C = { time1 , data1 , T1 , load1 ;
199 time2 , data2 , T2 , load2 ;
200 time3 , data3 , T3 , load3 ;
201 time4 , data4 , T4 , load4 ;
202 time5 , data5 , T5 , load5 ;
203 time6 , data6 , T6 , load6 ;
204 time7 , data7 , T7 , load7 ;
205 time8 , data8 , T8 , load8 ;
206 time9 , data9 , T9 , load9 ;
207 time10 , data10 , T10 , load10 ;
208 time11 , data11 , T11 , load11 ;
209 time12 , data12 , T12 , load12 ;
210 time13 , data13 , T13 , load13 ;
211 time14 , data14 , T14 , load14 ;
212 time15 , data15 , T15 , load15 ;
213 time16 , data16 , T16 , load16 ;
214 time17 , data17 , T17 , load17 ;
215 time18 , data18 , T18 , load18 ;
216 time19 , data19 , T19 , load19 ;
217 time20 , data20 , T20 , load20 ;
218 time21 , data21 , T21 , load21 ;
219 time22 , data22 , T22 , load22 ;
220 time23 , data23 , T23 , load23 ;
221 time25 , data25 , T25 , load25 ;
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222 time26 , data26 , T26 , load26 ;
223 time27 , data27 , T27 , load27 ;
224 time28 , data28 , T28 , load28 ;
225 time29 , data29 , T29 , load29 ;
226 time30 , data30 , T30 , load30 ;
227 time31 , data31 , T31 , load31 ;
228 time32 , data32 , T32 , load32 ;
229 time33 , data33 , T33 , load33 ;
230 time34 , data34 , T34 , load34 ;
231 time35 , data35 , T35 , load35 ;
232 } ;
233

234

235

236 end

G.9 Experimental values - HEIA

1 %EXPERIMENTAL HEIA
2

3 function C = Cell_array_HEIA ( )
4

5 %ROCHELLE (TEXAS) .
6

7 % 0.2
8 time1 = [0 9 ] ;
9 data1 = [0 0 . 2 5 ] ;

10 T1 = 423;
11 load1 = 0 . 2 ;
12

13 time2 = [0 2 8 ] ;
14 data2 = [0 0 . 2 ] ;
15 T2 = 408;
16 load2 = 0 . 2 ;
17

18 time3 = [0 1 0 7 ] ;
19 data3 = [0 0 . 1 4 ] ;
20 T3 = 393;
21 load3 = 0 . 2 ;
22

23 time4 = [0 1 0 7 ] ;
24 data4 = [0 0 ] ;
25 T4 = 373;
26 load4 = 0 . 2 ;
27

28

29 %0.5
30 time5 = [0 4 ] ;
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31 data5 = [0 0 . 5 ] ;
32 T5 = 423;
33 load5 = 0 . 5 ;
34

35 time6 = [0 1 4 . 2 ] ;
36 data6 = [0 0 . 4 5 ] ;
37 T6 = 408;
38 load6 = 0 . 5 ;
39

40 time7 = [0 6 1 . 2 ] ;
41 data7 = [0 0 . 3 6 ] ;
42 T7 = 393;
43 load7 = 0 . 5 ;
44

45 time8 = [0 1 0 7 ] ;
46 data8 = [0 0 . 0 6 ] ;
47 T8 = 373;
48 load8 = 0 . 5 ;
49

50

51 %0.4
52 time9 = [0 2 4 7 9 1 4 . 2 ] ;
53 data9 = [0 0.12 0.32 0.49 0.6 0 . 6 1 ] ;
54 T9 = 423;
55 load9 = 0 . 4 ;
56

57 time10 = [0 4 9 14.2 28 6 1 . 2 ] ;
58 data10 = [0 0 0.12 0.23 0.38 0 . 5 8 ] ;
59 T10 = 408;
60 load10 = 0 . 4 ;
61

62 time11 = [0 14.2 28 61.2 1 0 7 ] ;
63 data11 = [0 0 0.05 0.2 0 . 3 1 ] ;
64 T11 = 393;
65 load11 = 0 . 4 ;
66

67 time12 = [0 28 61.2 1 0 7 ] ;
68 data12 = [0 0 0 0 ] ;
69 T12 = 473;
70 load12 = 0 . 4 ;
71

72

73 %EIDE−HAUGMO
74

75 time13 = [0 7 14 21 28 3 5 ] ;
76 data13 = [0 0.1501 0.3822 0.5832 0.6209 0 . 6 9 0 0 ] ;
77 T13 = 408;
78 load13 = 0 . 5 ;
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79

80 %TEXAS DAVIS
81 %100deg
82 time14 = [0 5 6 ] ;
83 data14 = [0 0 . 0 2 0 ] ;
84 T14 = 373;
85 load14 = 0 . 2 ;
86

87 time15 = [0 5 6 ] ;
88 data15 = [0 0 . 0 3 4 ] ;
89 T15 = 373;
90 load15 = 0 . 4 ;
91

92 time16 = [0 5 6 ] ;
93 data16 = [0 0 . 0 3 4 ] ;
94 T16 = 373;
95 load16 = 0 . 5 ;
96

97 %120deg
98 time17 = [0 5 6 ] ;
99 data17 = [0 0 . 1 0 0 ] ;

100 T17 = 393;
101 load17 = 0 . 2 ;
102

103 time18 = [0 5 6 ] ;
104 data18 = [0 0 . 3 3 6 ] ;
105 T18 = 393;
106 load18 = 0 . 4 ;
107

108 time19 = [0 5 6 ] ;
109 data19 = [0 0 . 2 8 8 ] ;
110 T19 = 393;
111 load19 = 0 . 5 ;
112

113 %135deg
114 time20 = [0 5 6 ] ;
115 data20 = [0 0 . 1 8 6 ] ;
116 T20 = 408;
117 load20 = 0 . 2 ;
118

119 time21 = [0 5 6 ] ;
120 data21 = [0 0 . 4 6 7 ] ;
121 T21 = 408;
122 load21 = 0 . 4 ;
123

124 time22 = [0 5 6 ] ;
125 data22 = [0 0 . 4 6 5 ] ;
126 T22 = 408;

XXXVII



127 load22 = 0 . 5 ;
128

129 %150deg
130 time23 = [0 5 6 ] ;
131 data23 = [0 0 ] ;
132 T23 = 423;
133 load23 = 0 . 4 ;
134

135

136 %FYTIANOS 2
137 time25 = [0 1 4 ] ;
138 data25 = [0 0.016703] ;
139 T25 = 393;
140 load25 = 0 . 4 ;
141

142

143

144 %Zoannou
145 time26 = [0 14 21 5 6 ] ;
146 data26 = [0 0.02271 0.33510 1 .2 7 21 2] ;
147 T26 = 433;
148 load26 = 0 . 1 9 ;
149

150 time27 = [0 14 21 5 6 ] ;
151 data27 = [0 0.21012 0.47582 1 .8 0 44 2] ;
152 T27 = 433;
153 load27 = 0 . 3 7 ;
154

155

156 %LEONARD
157 %120
158 time28 = [0 7 14 2 1 ] ;
159 data28 = [0 0 0.0751755 0.1710515];
160 T28 = 393;
161 load28 = 0 . 4 ;
162

163 %140
164 time29 = [0 7 14 2 1 ] ;
165 data29 = [0 0.090 0.198 0 . 2 7 9 ] ;
166 T29 = 413;
167 load29 = 0 . 4 ;
168

169

170 %Lepaumier
171 time30 = [0 7 14 21 28 3 5 ] ;
172 data30 = [0 0.1113 0.3229 0.5456 0.5716 0 . 6 6 0 7 ] ;
173 T30 = 408;
174 load30 = 0 . 5 ;
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175

176 %Eide−Haugmo
177 time31 = [0 7 14 21 28 3 5 ] ;
178 data31 = [0 0 0 0 0 0 ] ;
179 T31 = 408;
180 load31 = 0 . 1 ;
181

182 time32 = [0 7 14 21 28 3 5 ] ;
183 data32 = [0 0 0 0 0 0 ] ;
184 T32 = 408;
185 load32 = 0 . 2 ;
186

187 time33 = [0 7 14 21 28 3 5 ] ;
188 data33 = [0 0 0 0 0 0 ] ;
189 T33 = 408;
190 load33 = 0 . 3 ;
191

192 time34 = [0 7 14 21 28 3 5 ] ;
193 data34 = [0 0 0 0 0 0 ] ;
194 T34 = 408;
195 load34 = 0 . 4 ;
196

197 %FYTIANOS
198 time35 = [0 3 5 ] ;
199 data35 = [0 0 . 2 6 4 ] ;
200 T35 = 408;
201 load35 = 0 . 4 ;
202

203

204 C = { time1 , data1 , T1 , load1 ;
205 time2 , data2 , T2 , load2 ;
206 time3 , data3 , T3 , load3 ;
207 time4 , data4 , T4 , load4 ;
208 time5 , data5 , T5 , load5 ;
209 time6 , data6 , T6 , load6 ;
210 time7 , data7 , T7 , load7 ;
211 time8 , data8 , T8 , load8 ;
212 time9 , data9 , T9 , load9 ;
213 time10 , data10 , T10 , load10 ;
214 time11 , data11 , T11 , load11 ;
215 time12 , data12 , T12 , load12 ;
216 time13 , data13 , T13 , load13 ;
217 time14 , data14 , T14 , load14 ;
218 time15 , data15 , T15 , load15 ;
219 time16 , data16 , T16 , load16 ;
220 time17 , data17 , T17 , load17 ;
221 time18 , data18 , T18 , load18 ;
222 time19 , data19 , T19 , load19 ;
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223 time20 , data20 , T20 , load20 ;
224 time21 , data21 , T21 , load21 ;
225 time22 , data22 , T22 , load22 ;
226 time23 , data23 , T23 , load23 ;
227 time25 , data25 , T25 , load25 ;
228 time26 , data26 , T26 , load26 ;
229 time27 , data27 , T27 , load27 ;
230 time28 , data28 , T28 , load28 ;
231 time29 , data29 , T29 , load29 ;
232 time30 , data30 , T30 , load30 ;
233 time31 , data31 , T31 , load31 ;
234 time32 , data32 , T32 , load32 ;
235 time33 , data33 , T33 , load33 ;
236 time34 , data34 , T34 , load34 ;
237 time35 , data35 , T35 , load35 ;
238 } ;
239

240

241

242 end

G.10 Experimental values - TriHEIA

1 %EXPERIMENTAL triHEIA
2

3 function C = Cell_array_triHEIA ( )
4

5 %ROCHELLE (TEXAS) .
6

7 %0.2
8 time1 = [0 8 ] ;
9 data1 = [0 0 . 0 ] ;

10 T1 = 423;
11 load1 = 0 . 2 ;
12

13 time2 = [0 2 8 ] ;
14 data2 = [0 0 . 0 ] ;
15 T2 = 408;
16 load2 = 0 . 2 ;
17

18 time3= [0 1 1 2 ] ;
19 data3 = [0 0 . 0 ] ;
20 T3 = 393;
21 load3 = 0 . 2 ;
22

23 time4 = [0 1 1 2 ] ;
24 data4 = [0 0 . 0 ] ;
25 T4 = 373;
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26 load4 = 0 . 2 ;
27

28

29 %0.5
30 time5 = [0 4 ] ;
31 data5 = [0 0 . 0 ] ;
32 T5 = 423;
33 load5 = 0 . 5 ;
34

35 time6 = [0 1 4 ] ;
36 data6 = [0 0 . 0 ] ;
37 T6 = 408;
38 load6 = 0 . 5 ;
39

40 time7 = [0 6 3 ] ;
41 data7 = [0 0 . 0 ] ;
42 T7 = 393;
43 load7 = 0 . 5 ;
44

45 time8 = [0 1 1 2 ] ;
46 data8 = [0 0 . 0 ] ;
47 T8 = 373;
48 load8 = 0 . 5 ;
49

50 %0.4
51 time9 = [0 2 4 7 9 1 4 . 2 ] ;
52 data9 = [0 0.014 0.041 0.095 0.132 0 . 2 0 9 ] ;
53 T9 = 423;
54 load9 = 0 . 4 ;
55

56 time10 = [0 4 9 14.2 28 6 1 . 2 ] ;
57 data10 = [0 0.005 0.008 0.03 0.097 0 . 2 3 4 ] ;
58 T10 = 408;
59 load10 = 0 . 4 ;
60

61 time11 = [0 14.2 28 61.2 1 0 7 ] ;
62 data11 = [0 0.002 0.004 0.024 0 . 0 6 7 ] ;
63 T11 = 393;
64 load11 = 0 . 4 ;
65

66 time12 = [0 28 61.2 1 0 7 ] ;
67 data12 = [0 0.00081 0.00049 0 .0 0 13 2] ;
68 T12 = 373;
69 load12 = 0 . 4 ;
70

71

72 %EIDE−HAUGMO
73 %time13 = [0 7 14 21 28 3 5 ] ;
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74 %data13 = [0 0 0 0 0 0 ] ;
75 %T13 = 408;
76 %load13 = 0 . 5 ;
77

78 %EIDE−HAUGMO
79 time13 = [0 7 14 21 28 3 5 ] ;
80 data13 = [0 0.0328 0.0783 0.1578 0.2097 0 . 2 5 4 7 ] ;
81 T13 = 408;
82 load13 = 0 . 5 ;
83

84 %TEXAS DAVIS
85 %100deg
86 time14 = [0 5 6 ] ;
87 data14 = [0 0 ] ;
88 T14 = 373;
89 load14 = 0 . 2 ;
90

91 time15 = [0 5 6 ] ;
92 data15 = [0 0 ] ;
93 T15 = 373;
94 load15 = 0 . 4 ;
95

96 time16 = [0 5 6 ] ;
97 data16 = [0 0 ] ;
98 T16 = 373;
99 load16 = 0 . 5 ;

100

101 %120deg
102 time17 = [0 5 6 ] ;
103 data17 = [0 0 ] ;
104 T17 = 393;
105 load17 = 0 . 2 ;
106

107 time18 = [0 5 6 ] ;
108 data18 = [0 0 ] ;
109 T18 = 393;
110 load18 = 0 . 4 ;
111

112 time19 = [0 5 6 ] ;
113 data19 = [0 0 ] ;
114 T19 = 393;
115 load19 = 0 . 5 ;
116

117 %135deg
118 time20 = [0 5 6 ] ;
119 data20 = [0 0 ] ;
120 T20 = 408;
121 load20 = 0 . 2 ;
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122

123 time21 = [0 5 6 ] ;
124 data21 = [0 0 ] ;
125 T21 = 408;
126 load21 = 0 . 4 ;
127

128 time22 = [0 5 6 ] ;
129 data22 = [0 0 ] ;
130 T22 = 408;
131 load22 = 0 . 5 ;
132

133 %150deg
134 time23 = [0 5 6 ] ;
135 data23 = [0 0 ] ;
136 T23 = 423;
137 load23 = 0 . 4 ;
138

139 %FYTIANOS 2
140 time25 = [0 1 4 ] ;
141 data25 = [0 0 ] ;
142 T25 = 393;
143 load25 = 0 . 4 ;
144

145 %Zoannou
146 time26 = [0 14 21 5 6 ] ;
147 data26 = [0 0 0 0 ] ;
148 T26 = 433;
149 load26 = 0 . 1 9 ;
150

151 time27 = [0 14 21 5 6 ] ;
152 data27 = [0 0 0 0 ] ;
153 T27 = 433;
154 load27 = 0 . 3 7 ;
155

156 %LEONARD
157 %120
158 time28 = [0 7 14 2 1 ] ;
159 data28 = [0 0 0 0 ] ;
160 T28 = 393;
161 load28 = 0 . 4 ;
162

163 %140
164 time29 = [0 7 14 2 1 ] ;
165 data29 = [0 0 0 0 ] ;
166 T29 = 413;
167 load29 = 0 . 4 ;
168

169 %Lepaumier
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170 %time30 = [0 7 14 21 28 3 5 ] ;
171 %data30 = [0 0 0 0 0 0 ] ;
172 %T30 = 408;
173 %load30 = 0 . 5 ;
174

175 %Lepaumier
176 time30 = [0 7 14 21 28 3 5 ] ;
177 data30 = [0 0.0272 0.0594 0.1571 0.1930 0 . 2 6 7 2 ] ;
178 T30 = 408;
179 load30 = 0 . 5 ;
180

181 %Eide−Haugmo
182 time31 = [0 7 14 21 28 3 5 ] ;
183 data31 = [0 0 0 0 0 0 ] ;
184 T31 = 408;
185 load31 = 0 . 1 ;
186

187 time32 = [0 7 14 21 28 3 5 ] ;
188 data32 = [0 0 0 0 0 0 ] ;
189 T32 = 408;
190 load32 = 0 . 2 ;
191

192 time33 = [0 7 14 21 28 3 5 ] ;
193 data33 = [0 0 0 0 0 0 ] ;
194 T33 = 408;
195 load33 = 0 . 3 ;
196

197 time34 = [0 7 14 21 28 3 5 ] ;
198 data34 = [0 0 0 0 0 0 ] ;
199 T34 = 408;
200 load34 = 0 . 4 ;
201

202 %FYTIANOS
203 time35 = [0 3 5 ] ;
204 data35 = [0 0 ] ;
205 T35 = 408;
206 load35 = 0 . 4 ;
207

208

209 C = { time1 , data1 , T1 , load1 ;
210 time2 , data2 , T2 , load2 ;
211 time3 , data3 , T3 , load3 ;
212 time4 , data4 , T4 , load4 ;
213 time5 , data5 , T5 , load5 ;
214 time6 , data6 , T6 , load6 ;
215 time7 , data7 , T7 , load7 ;
216 time8 , data8 , T8 , load8 ;
217 time9 , data9 , T9 , load9 ;
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218 time10 , data10 , T10 , load10 ;
219 time11 , data11 , T11 , load11 ;
220 time12 , data12 , T12 , load12 ;
221 time13 , data13 , T13 , load13 ;
222 time14 , data14 , T14 , load14 ;
223 time15 , data15 , T15 , load15 ;
224 time16 , data16 , T16 , load16 ;
225 time17 , data17 , T17 , load17 ;
226 time18 , data18 , T18 , load18 ;
227 time19 , data19 , T19 , load19 ;
228 time20 , data20 , T20 , load20 ;
229 time21 , data21 , T21 , load21 ;
230 time22 , data22 , T22 , load22 ;
231 time23 , data23 , T23 , load23 ;
232 time25 , data25 , T25 , load25 ;
233 time26 , data26 , T26 , load26 ;
234 time27 , data27 , T27 , load27 ;
235 time28 , data28 , T28 , load28 ;
236 time29 , data29 , T29 , load29 ;
237 time30 , data30 , T30 , load30 ;
238 time31 , data31 , T31 , load31 ;
239 time32 , data32 , T32 , load32 ;
240 time33 , data33 , T33 , load33 ;
241 time34 , data34 , T34 , load34 ;
242 time35 , data35 , T35 , load35 ;
243 } ;
244

245

246

247 end

G.11 Experimental values - TriHEIA

1 %EXPERIMENTAL triHEIA
2

3 function C = Cell_array_triHEIA ( )
4

5 %ROCHELLE (TEXAS) .
6

7 %0.2
8 time1 = [0 8 ] ;
9 data1 = [0 0 . 0 ] ;

10 T1 = 423;
11 load1 = 0 . 2 ;
12

13 time2 = [0 2 8 ] ;
14 data2 = [0 0 . 0 ] ;
15 T2 = 408;
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16 load2 = 0 . 2 ;
17

18 time3= [0 1 1 2 ] ;
19 data3 = [0 0 . 0 ] ;
20 T3 = 393;
21 load3 = 0 . 2 ;
22

23 time4 = [0 1 1 2 ] ;
24 data4 = [0 0 . 0 ] ;
25 T4 = 373;
26 load4 = 0 . 2 ;
27

28

29 %0.5
30 time5 = [0 4 ] ;
31 data5 = [0 0 . 0 ] ;
32 T5 = 423;
33 load5 = 0 . 5 ;
34

35 time6 = [0 1 4 ] ;
36 data6 = [0 0 . 0 ] ;
37 T6 = 408;
38 load6 = 0 . 5 ;
39

40 time7 = [0 6 3 ] ;
41 data7 = [0 0 . 0 ] ;
42 T7 = 393;
43 load7 = 0 . 5 ;
44

45 time8 = [0 1 1 2 ] ;
46 data8 = [0 0 . 0 ] ;
47 T8 = 373;
48 load8 = 0 . 5 ;
49

50 %0.4
51 time9 = [0 2 4 7 9 1 4 . 2 ] ;
52 data9 = [0 0.014 0.041 0.095 0.132 0 . 2 0 9 ] ;
53 T9 = 423;
54 load9 = 0 . 4 ;
55

56 time10 = [0 4 9 14.2 28 6 1 . 2 ] ;
57 data10 = [0 0.005 0.008 0.03 0.097 0 . 2 3 4 ] ;
58 T10 = 408;
59 load10 = 0 . 4 ;
60

61 time11 = [0 14.2 28 61.2 1 0 7 ] ;
62 data11 = [0 0.002 0.004 0.024 0 . 0 6 7 ] ;
63 T11 = 393;
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64 load11 = 0 . 4 ;
65

66 time12 = [0 28 61.2 1 0 7 ] ;
67 data12 = [0 0.00081 0.00049 0 .0 01 3 2] ;
68 T12 = 373;
69 load12 = 0 . 4 ;
70

71

72 %EIDE−HAUGMO
73 %time13 = [0 7 14 21 28 3 5 ] ;
74 %data13 = [0 0 0 0 0 0 ] ;
75 %T13 = 408;
76 %load13 = 0 . 5 ;
77

78 %EIDE−HAUGMO
79 time13 = [0 7 14 21 28 3 5 ] ;
80 data13 = [0 0.0328 0.0783 0.1578 0.2097 0 . 2 5 4 7 ] ;
81 T13 = 408;
82 load13 = 0 . 5 ;
83

84 %TEXAS DAVIS
85 %100deg
86 time14 = [0 5 6 ] ;
87 data14 = [0 0 ] ;
88 T14 = 373;
89 load14 = 0 . 2 ;
90

91 time15 = [0 5 6 ] ;
92 data15 = [0 0 ] ;
93 T15 = 373;
94 load15 = 0 . 4 ;
95

96 time16 = [0 5 6 ] ;
97 data16 = [0 0 ] ;
98 T16 = 373;
99 load16 = 0 . 5 ;

100

101 %120deg
102 time17 = [0 5 6 ] ;
103 data17 = [0 0 ] ;
104 T17 = 393;
105 load17 = 0 . 2 ;
106

107 time18 = [0 5 6 ] ;
108 data18 = [0 0 ] ;
109 T18 = 393;
110 load18 = 0 . 4 ;
111
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112 time19 = [0 5 6 ] ;
113 data19 = [0 0 ] ;
114 T19 = 393;
115 load19 = 0 . 5 ;
116

117 %135deg
118 time20 = [0 5 6 ] ;
119 data20 = [0 0 ] ;
120 T20 = 408;
121 load20 = 0 . 2 ;
122

123 time21 = [0 5 6 ] ;
124 data21 = [0 0 ] ;
125 T21 = 408;
126 load21 = 0 . 4 ;
127

128 time22 = [0 5 6 ] ;
129 data22 = [0 0 ] ;
130 T22 = 408;
131 load22 = 0 . 5 ;
132

133 %150deg
134 time23 = [0 5 6 ] ;
135 data23 = [0 0 ] ;
136 T23 = 423;
137 load23 = 0 . 4 ;
138

139 %FYTIANOS 2
140 time25 = [0 1 4 ] ;
141 data25 = [0 0 ] ;
142 T25 = 393;
143 load25 = 0 . 4 ;
144

145 %Zoannou
146 time26 = [0 14 21 5 6 ] ;
147 data26 = [0 0 0 0 ] ;
148 T26 = 433;
149 load26 = 0 . 1 9 ;
150

151 time27 = [0 14 21 5 6 ] ;
152 data27 = [0 0 0 0 ] ;
153 T27 = 433;
154 load27 = 0 . 3 7 ;
155

156 %LEONARD
157 %120
158 time28 = [0 7 14 2 1 ] ;
159 data28 = [0 0 0 0 ] ;
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160 T28 = 393;
161 load28 = 0 . 4 ;
162

163 %140
164 time29 = [0 7 14 2 1 ] ;
165 data29 = [0 0 0 0 ] ;
166 T29 = 413;
167 load29 = 0 . 4 ;
168

169 %Lepaumier
170 %time30 = [0 7 14 21 28 3 5 ] ;
171 %data30 = [0 0 0 0 0 0 ] ;
172 %T30 = 408;
173 %load30 = 0 . 5 ;
174

175 %Lepaumier
176 time30 = [0 7 14 21 28 3 5 ] ;
177 data30 = [0 0.0272 0.0594 0.1571 0.1930 0 . 2 6 7 2 ] ;
178 T30 = 408;
179 load30 = 0 . 5 ;
180

181 %Eide−Haugmo
182 time31 = [0 7 14 21 28 3 5 ] ;
183 data31 = [0 0 0 0 0 0 ] ;
184 T31 = 408;
185 load31 = 0 . 1 ;
186

187 time32 = [0 7 14 21 28 3 5 ] ;
188 data32 = [0 0 0 0 0 0 ] ;
189 T32 = 408;
190 load32 = 0 . 2 ;
191

192 time33 = [0 7 14 21 28 3 5 ] ;
193 data33 = [0 0 0 0 0 0 ] ;
194 T33 = 408;
195 load33 = 0 . 3 ;
196

197 time34 = [0 7 14 21 28 3 5 ] ;
198 data34 = [0 0 0 0 0 0 ] ;
199 T34 = 408;
200 load34 = 0 . 4 ;
201

202 %FYTIANOS
203 time35 = [0 3 5 ] ;
204 data35 = [0 0 ] ;
205 T35 = 408;
206 load35 = 0 . 4 ;
207
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208

209 C = { time1 , data1 , T1 , load1 ;
210 time2 , data2 , T2 , load2 ;
211 time3 , data3 , T3 , load3 ;
212 time4 , data4 , T4 , load4 ;
213 time5 , data5 , T5 , load5 ;
214 time6 , data6 , T6 , load6 ;
215 time7 , data7 , T7 , load7 ;
216 time8 , data8 , T8 , load8 ;
217 time9 , data9 , T9 , load9 ;
218 time10 , data10 , T10 , load10 ;
219 time11 , data11 , T11 , load11 ;
220 time12 , data12 , T12 , load12 ;
221 time13 , data13 , T13 , load13 ;
222 time14 , data14 , T14 , load14 ;
223 time15 , data15 , T15 , load15 ;
224 time16 , data16 , T16 , load16 ;
225 time17 , data17 , T17 , load17 ;
226 time18 , data18 , T18 , load18 ;
227 time19 , data19 , T19 , load19 ;
228 time20 , data20 , T20 , load20 ;
229 time21 , data21 , T21 , load21 ;
230 time22 , data22 , T22 , load22 ;
231 time23 , data23 , T23 , load23 ;
232 time25 , data25 , T25 , load25 ;
233 time26 , data26 , T26 , load26 ;
234 time27 , data27 , T27 , load27 ;
235 time28 , data28 , T28 , load28 ;
236 time29 , data29 , T29 , load29 ;
237 time30 , data30 , T30 , load30 ;
238 time31 , data31 , T31 , load31 ;
239 time32 , data32 , T32 , load32 ;
240 time33 , data33 , T33 , load33 ;
241 time34 , data34 , T34 , load34 ;
242 time35 , data35 , T35 , load35 ;
243 } ;
244

245

246

247 end

G.12 Plotting

1 function pl o tt i ng ( tspan , exp_MEA, exp_HEEDA, exp_HEIA , exp_Trimer , exp_triHEIA , x )
2 n = length (exp_MEA) ;
3

4 tot_exp_val = 0 ;
5
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6 %% Count length of experimental values to decide s i z e of vectors for plo tt i ng
7 for i = 1 :n
8 tot_exp_val = tot_exp_val + length (exp_MEA{ i , 2 } ) + length (exp_HEEDA{ i , 2 } ) +

length ( exp_Trimer { i , 2 } ) + length ( exp_HEIA { i , 2 } ) + length ( exp_triHEIA { i , 2 } )
; %Total number of experimental values

9 end
10 exp_val_comp = tot_exp_val / 5 ; %Number of experimental values for each component
11

12 %% Preal locat ing Space for P l o t t i ng Arrays
13 abs_err_mod_MEA = zeros ( 1 , exp_val_comp ) ;
14 rel_err_mod_MEA = zeros ( 1 , exp_val_comp ) ;
15 abs_err_mod_HEEDA = zeros ( 1 , exp_val_comp ) ;
16 rel_err_mod_HEEDA = zeros ( 1 , exp_val_comp ) ;
17 abs_err_mod_HEIA = zeros ( 1 , exp_val_comp ) ;
18 rel_err_mod_HEIA = zeros ( 1 , exp_val_comp ) ;
19 abs_err_mod_Trimer = zeros ( 1 , exp_val_comp ) ;
20 rel_err_mod_Trimer = zeros ( 1 , exp_val_comp ) ;
21 abs_err_mod_triHEIA = zeros ( 1 , exp_val_comp ) ;
22 rel_err_mod_triHEIA = zeros ( 1 , exp_val_comp ) ;
23

24 abs_err_tot = zeros ( 1 , tot_exp_val ) ;
25 r e l _ e r r _ t o t = zeros ( 1 , tot_exp_val ) ;
26

27 T_tot = zeros ( 1 , tot_exp_val ) ;
28 T_comp = zeros ( 1 , exp_val_comp ) ;
29 load_tot = zeros ( 1 , tot_exp_val ) ;
30 load_comp = zeros ( 1 , exp_val_comp ) ;
31 time_tot = zeros ( 1 , tot_exp_val ) ;
32 time_comp = zeros ( 1 , exp_val_comp ) ;
33 exp_tot = zeros ( 1 , tot_exp_val ) ;
34 exp_comp_MEA = zeros ( 1 , exp_val_comp ) ;
35 exp_comp_HEEDA = zeros ( 1 , exp_val_comp ) ;
36 exp_comp_trimer = zeros ( 1 , exp_val_comp ) ;
37 exp_comp_HEIA = zeros ( 1 , exp_val_comp ) ;
38 exp_comp_triHEIA = zeros ( 1 , exp_val_comp ) ;
39

40

41 %% Counting to add data at the r i g h t space in P l o t t i n g Arrays
42 count2 = 0 ;
43 count3 = 0 ;
44

45 %% Go through a l l the experiments
46 for i = 1 :n
47 t_exp_MEA = exp_MEA{ i , 1 } ;
48 y_exp_MEA = exp_MEA{ i , 2 } ;
49 y_init_MEA = y_exp_MEA( 1 ) ;
50 T = exp_MEA{ i , 3 } ;
51 CO2_load=exp_MEA{ i , 4 } ;
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52 CO2 = CO2_load* y_init_MEA ;
53 C_init = [ y_init_MEA 0 0 0 0 0 CO2 ] ;
54 y_exp_HEEDA = exp_HEEDA{ i , 2 } ;
55 y_exp_HEIA = exp_HEIA { i , 2 } ;
56 y_exp_triHEIA = exp_triHEIA { i , 2 } ;
57 y_exp_Trimer = exp_Trimer { i , 2 } ;
58 y_mod = odefun ( tspan , C_init , x , T) ;
59

60 % Plot modeled and experimental value
61 f i g u r e ( i ) ;
62 plotting_mod ( tspan , y_mod, t_exp_MEA , y_exp_MEA , y_exp_HEEDA , y_exp_HEIA ,

y_exp_Trimer , y_exp_triHEIA , T , CO2_load ) ;
63 hold on ;
64

65 % Allocate space for abs and r e l arrays for each point in experiment
66

67 m = length ( t_exp_MEA ) ;
68

69 %MEA
70 abs_err_MEA = zeros ( 1 ,m) ;
71 rel_err_MEA = zeros ( 1 ,m) ;
72 y_mod_MEA = y_mod ( : , 1 ) ;
73 y_mod_ip_MEA = interp1 ( tspan ,y_mod_MEA' , t_exp_MEA , ' l i n e a r ' ) ;
74

75 %HEEDA
76 abs_err_HEEDA = zeros ( 1 ,m) ;
77 rel_err_HEEDA = zeros ( 1 ,m) ;
78 y_mod_HEEDA = y_mod ( : , 2 ) ;
79 y_mod_ip_HEEDA = interp1 ( tspan ,y_mod_HEEDA' , t_exp_MEA , ' l i n e a r ' ) ;
80

81 %Trimer
82 abs_err_Trimer = zeros ( 1 ,m) ;
83 rel_err_Trimer = zeros ( 1 ,m) ;
84 y_mod_Trimer = y_mod ( : , 3 ) ;
85 y_mod_ip_Trimer = interp1 ( tspan , y_mod_Trimer ' , t_exp_MEA , ' l i n e a r ' ) ;
86

87 %HEIA
88 abs_err_HEIA = zeros ( 1 ,m) ;
89 rel_err_HEIA = zeros ( 1 ,m) ;
90 y_mod_HEIA = y_mod ( : , 5 ) ;
91 y_mod_ip_HEIA = interp1 ( tspan , y_mod_HEIA' , t_exp_MEA , ' l i n e a r ' ) ;
92

93 %triHEIA
94 abs_err_triHEIA = zeros ( 1 ,m) ;
95 re l_err_tr iHEIA = zeros ( 1 ,m) ;
96 y_mod_triHEIA = y_mod ( : , 6 ) ;
97 y_mod_ip_triHEIA = interp1 ( tspan , y_mod_triHEIA ' , t_exp_MEA , ' l i n e a r ' ) ;
98
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99 count = 0 ;
100

101 %F i l l in errors for each experimental point at the r i g h t place in the
102 %error arrays for each component and for the complete model
103

104 %MEA
105 for j = 1 :m
106 abs_err_MEA ( j ) = y_mod_ip_MEA( j ) − y_exp_MEA( j ) ;
107 abs_err_mod_MEA( count3 + j ) = abs_err_MEA ( j ) ;
108 abs_err_tot ( count2 + j ) = abs_err_MEA ( j ) ;
109

110 rel_err_MEA ( j ) = (y_mod_ip_MEA( j ) −y_exp_MEA( j ) ) / y_exp_MEA( j ) ;
111 rel_err_mod_MEA ( count3 + j ) = rel_err_MEA ( j ) ;
112 r e l _ e r r _ t o t ( count2 + j ) = rel_err_MEA ( j ) ;
113

114 T_tot ( count2 + j ) = T ;
115 T_comp( count3 + j ) = T ;
116 load_tot ( count2 + j ) = CO2_load ;
117 load_comp ( count3 + j ) = CO2_load ;
118 time_tot ( count2 + j ) = t_exp_MEA ( j ) ;
119 time_comp( count3 + j ) = t_exp_MEA ( j ) ;
120 exp_tot ( count2 + j ) = y_exp_MEA( j ) ;
121 exp_comp_MEA( count3 + j ) = y_exp_MEA( j ) ;
122

123 end
124

125 count = count + m;
126

127 %HEEDA
128 for j = 1 :m
129 abs_err_HEEDA ( j ) = y_mod_ip_HEEDA( j ) − y_exp_HEEDA( j ) ;
130 abs_err_mod_HEEDA( count3 + j ) = abs_err_HEEDA ( j ) ;
131 abs_err_tot ( count2 + j ) = abs_err_HEEDA ( j ) ;
132

133 rel_err_HEEDA ( j ) = (y_mod_ip_HEEDA( j ) −y_exp_HEEDA( j ) ) / y_exp_HEEDA( j ) ; %
134 rel_err_mod_HEEDA ( count3 + j ) = rel_err_HEEDA ( j ) ;
135 r e l _ e r r _ t o t ( count2 + count + j ) = rel_err_HEEDA ( j ) ;
136

137 T_tot ( count2+ count + j ) = T ;
138 load_tot ( count2+ count + j ) = CO2_load ;
139 time_tot ( count2 + count + j ) = t_exp_MEA ( j ) ;
140 exp_tot ( count2 + count+ j ) = y_exp_HEEDA( j ) ;
141 exp_comp_HEEDA( count3 + j ) = y_exp_HEEDA( j ) ;
142 end
143

144 count = count + m;
145

146 %Trimer
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147 for j = 1 :m
148 abs_err_Trimer ( j ) = y_mod_ip_Trimer ( j ) − y_exp_Trimer ( j ) ;
149 abs_err_mod_Trimer ( count3 + j ) = abs_err_Trimer ( j ) ;
150 abs_err_tot ( count2 + count + j ) = abs_err_Trimer ( j ) ;
151

152 rel_err_Trimer ( j ) = ( y_mod_ip_Trimer ( j ) −y_exp_Trimer ( j ) ) / y_exp_Trimer ( j )
; %

153 rel_err_mod_Trimer ( count3 + j ) = rel_err_Trimer ( j ) ;
154 r e l _ e r r _ t o t ( count2 + count + j ) = rel_err_Trimer ( j ) ;
155

156 T_tot ( count2+ count + j ) = T ;
157 load_tot ( count2+ count + j ) = CO2_load ;
158 time_tot ( count2 + j ) = t_exp_MEA ( j ) ;
159 exp_tot ( count2 + count+ j ) = y_exp_Trimer ( j ) ;
160 exp_comp_trimer ( count3 + j ) = y_exp_Trimer ( j ) ;
161 end
162

163 count = count + m;
164

165 %HEIA
166 for j = 1 :m
167 abs_err_HEIA ( j ) = y_mod_ip_HEIA ( j ) − y_exp_HEIA ( j ) ;
168 abs_err_mod_HEIA ( count3 + j ) = abs_err_HEIA ( j ) ;
169 abs_err_tot ( count2 + count + j ) = abs_err_HEIA ( j ) ;
170

171 rel_err_HEIA ( j ) = ( y_mod_ip_HEIA ( j ) −y_exp_HEIA ( j ) ) / y_exp_HEIA ( j ) ; %
172 rel_err_mod_HEIA ( count3 + j ) = rel_err_HEIA ( j ) ;
173 r e l _ e r r _ t o t ( count2 + count + j ) = rel_err_HEIA ( j ) ;
174

175 T_tot ( count2+ count + j ) = T ;
176 load_tot ( count2+ count + j ) = CO2_load ;
177 time_tot ( count2+ count + j ) = t_exp_MEA ( j ) ;
178 exp_tot ( count2 + count+ j ) = y_exp_HEIA ( j ) ;
179 exp_comp_HEIA( count3 + j ) = y_exp_HEIA ( j ) ;
180 end
181

182 count = count + m;
183

184 %TriHEIA
185 for j = 1 :m
186 abs_err_triHEIA ( j ) = y_mod_ip_triHEIA ( j ) − y_exp_triHEIA ( j ) ;
187 abs_err_mod_triHEIA ( count3 + j ) = abs_err_triHEIA ( j ) ;
188 abs_err_tot ( count2 + count + j ) = abs_err_triHEIA ( j ) ;
189

190 re l_err_tr iHEIA ( j ) = ( y_mod_ip_triHEIA ( j ) −y_exp_triHEIA ( j ) ) /
y_exp_triHEIA ( j ) ; %

191 rel_err_mod_triHEIA ( count3 + j ) = rel_err_tr iHEIA ( j ) ;
192 r e l _ e r r _ t o t ( count2 + count + j ) = rel_err_tr iHEIA ( j ) ;
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193

194 T_tot ( count2+ count + j ) = T ;
195 load_tot ( count2+ count + j ) = CO2_load ;
196 time_tot ( count2 + j ) = t_exp_MEA ( j ) ;
197 exp_tot ( count2 + count+ j ) = y_exp_HEEDA( j ) ;
198 exp_comp_triHEIA ( count3 + j ) = y_exp_triHEIA ( j ) ;
199 end
200

201 count2 = count2 + 5*m;
202 count3 = count3 + m;
203 end
204

205 abs_err_mod_MEA_nonzero = abs_err_mod_MEA(abs_err_mod_MEA~=0) ; % for
i n v e s t i g a t i n g errors without the f i r s t points in each exp

206

207 %% Use only the a v a i l i b l e experimental data ( where the exp values are not only
zero )

208 % ( This was done manually , should be changed similar to objective function )
209

210 abs_err_mod_HEEDA_val = abs_err_mod_HEEDA ( 1 : 8 9 ) ;
211 T_comp_HEEDA = T_comp( 1 : 8 9 ) ;
212 load_comp_HEEDA = load_comp ( 1 : 8 9 ) ;
213 time_comp_HEEDA = time_comp ( 1 : 8 9 ) ;
214 abs_err_mod_HEEDA_nonzero = abs_err_mod_HEEDA_val ( abs_err_mod_HEEDA_val~=0) ;
215

216 abs_err_mod_Trimer_val = abs_err_mod_Trimer ( 1 : 3 7 ) ;
217 T_comp_Trimer = T_comp( 1 : 3 7 ) ;
218 load_comp_Trimer = load_comp ( 1 : 3 7 ) ;
219 time_comp_Trimer = time_comp ( 1 : 3 7 ) ;
220 abs_err_mod_Trimer_nonzero = abs_err_mod_Trimer_val ( abs_err_mod_Trimer_val~=0) ;
221

222 abs_err_mod_HEIA_val = abs_err_mod_HEIA ( 1 : 8 9 ) ;
223 T_comp_HEIA = T_comp( 1 : 8 9 ) ;
224 load_comp_HEIA = load_comp ( 1 : 8 9 ) ;
225 time_comp_HEIA = time_comp ( 1 : 8 9 ) ;
226 abs_err_mod_HEIA_nonzero = abs_err_mod_HEIA_val ( abs_err_mod_HEIA_val~=0) ;
227

228 abs_err_mod_triHEIA_val = abs_err_mod_triHEIA ( 1 7 : 3 7 ) ;
229 T_comp_triHEIA = T_comp( 1 7 : 3 7 ) ;
230 load_comp_triHEIA = load_comp ( 1 7 : 3 7 ) ;
231 time_comp_triHEIA = time_comp ( 1 7 : 3 7 ) ;
232 abs_err_mod_triHEIA_nonzero = abs_err_mod_triHEIA_val ( abs_err_mod_triHEIA_val ~=0)

;
233

234 %% Find average abs and r e l error for a l l comp
235 av_abs_err = zeros ( 1 , 5 ) ;
236 av_abs_err ( 1 ) = mean(abs_err_mod_MEA) ;
237 av_abs_err ( 2 ) = mean( abs_err_mod_HEEDA_val ) ;
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238 av_abs_err ( 3 ) = mean( abs_err_mod_Trimer_val ) ;
239 av_abs_err ( 4 ) = mean( abs_err_mod_HEIA_val ) ;
240 av_abs_err ( 5 ) = mean( abs_err_mod_triHEIA_val ) ;
241

242 av_abs_err_nonzero = zeros ( 1 , 5 ) ;
243 av_abs_err_nonzero ( 1 ) = mean( abs_err_mod_MEA_nonzero ) ;
244 av_abs_err_nonzero ( 2 ) = mean( abs_err_mod_HEEDA_nonzero ) ;
245 av_abs_err_nonzero ( 3 ) = mean( abs_err_mod_Trimer_nonzero ) ;
246 av_abs_err_nonzero ( 4 ) = mean( abs_err_mod_HEIA_nonzero ) ;
247 av_abs_err_nonzero ( 5 ) = mean( abs_err_mod_triHEIA_nonzero ) ;
248

249 abs_av_abs_err = zeros ( 1 , 5 ) ;
250 abs_av_abs_err ( 1 ) = mean( abs (abs_err_mod_MEA) ) ;
251 abs_av_abs_err ( 2 ) = mean( abs ( abs_err_mod_HEEDA_val ) ) ;
252 abs_av_abs_err ( 3 ) = mean( abs ( abs_err_mod_Trimer_val ) ) ;
253 abs_av_abs_err ( 4 ) = mean( abs ( abs_err_mod_HEIA_val ) ) ;
254 abs_av_abs_err ( 5 ) = mean( abs ( abs_err_mod_triHEIA_val ) ) ;
255

256 abs_av_abs_err_nonzero = zeros ( 1 , 5 ) ;
257 abs_av_abs_err_nonzero ( 1 ) = mean( abs (abs_err_mod_MEA) ) ;
258 abs_av_abs_err_nonzero ( 2 ) = mean( abs ( abs_err_mod_HEEDA_nonzero ) ) ;
259 abs_av_abs_err_nonzero ( 3 ) = mean( abs ( abs_err_mod_Trimer_nonzero ) ) ;
260 abs_av_abs_err_nonzero ( 4 ) = mean( abs ( abs_err_mod_HEIA_nonzero ) ) ;
261 abs_av_abs_err_nonzero ( 5 ) = mean( abs ( abs_err_mod_triHEIA_nonzero ) ) ;
262

263 %Remove Nan from r e l l i s t s
264 rel_err_mod_MEA ( isnan ( rel_err_mod_MEA ) ) = [ ] ;
265 rel_err_mod_HEEDA ( isnan ( rel_err_mod_HEEDA ) ) = [ ] ;
266 rel_err_mod_Trimer ( isnan ( rel_err_mod_Trimer ) ) = [ ] ;
267 rel_err_mod_HEIA ( isnan ( rel_err_mod_HEIA ) ) = [ ] ;
268 rel_err_mod_triHEIA ( isnan ( rel_err_mod_triHEIA ) ) = [ ] ;
269

270 %Remove i n f from l i s t s
271 rel_err_mod_MEA ( i s i n f ( rel_err_mod_MEA ) ) = [ ] ;
272 rel_err_mod_HEEDA ( i s i n f ( rel_err_mod_HEEDA ) ) = [ ] ;
273 rel_err_mod_Trimer ( i s i n f ( rel_err_mod_Trimer ) ) = [ ] ;
274 rel_err_mod_HEIA ( i s i n f ( rel_err_mod_HEIA ) ) = [ ] ;
275 rel_err_mod_triHEIA ( i s i n f ( rel_err_mod_triHEIA ) ) = [ ] ;
276

277 av _ re l _e rr = zeros ( 1 , 5 ) ;
278 av _ re l _e rr ( 1 ) = mean( rel_err_mod_MEA ) ;
279 av _ re l _e rr ( 2 ) = mean( rel_err_mod_HEEDA ) ;
280 av _ re l _e rr ( 3 ) = mean( rel_err_mod_Trimer ) ;
281 av _ re l _e rr ( 4 ) = mean( rel_err_mod_HEIA ) ;
282 av _ re l _e rr ( 5 ) = mean( rel_err_mod_triHEIA ) ;
283

284 abs_av_rel_err = zeros ( 1 , 5 ) ;
285 abs_av_rel_err ( 1 ) = mean( abs ( rel_err_mod_MEA ) ) ;
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286 abs_av_rel_err ( 2 ) = mean( abs ( rel_err_mod_HEEDA ) ) ;
287 abs_av_rel_err ( 3 ) = mean( abs ( rel_err_mod_Trimer ) ) ;
288 abs_av_rel_err ( 4 ) = mean( abs ( rel_err_mod_HEIA ) ) ;
289 abs_av_rel_err ( 5 ) = mean( abs ( rel_err_mod_triHEIA ) ) ;
290

291 rel_err_mod_MEA_nonzero = rel_err_mod_MEA ( rel_err_mod_MEA~=0) ;
292 rel_err_mod_HEEDA_nonzero = rel_err_mod_HEEDA ( rel_err_mod_HEEDA~=0) ;
293 rel_err_mod_Trimer_nonzero = rel_err_mod_Trimer ( rel_err_mod_Trimer ~=0) ;
294 rel_err_mod_HEIA_nonzero = rel_err_mod_HEIA ( rel_err_mod_HEIA~=0) ;
295 rel_err_mod_triHEIA_nonzero = rel_err_mod_triHEIA ( rel_err_mod_triHEIA ~=0) ;
296

297 av_rel_err_nonzero = zeros ( 1 , 5 ) ;
298 av_rel_err_nonzero ( 1 ) = mean( rel_err_mod_MEA_nonzero ) ;
299 av_rel_err_nonzero ( 2 ) = mean( rel_err_mod_HEEDA_nonzero ) ;
300 av_rel_err_nonzero ( 3 ) = mean( rel_err_mod_Trimer_nonzero ) ;
301 av_rel_err_nonzero ( 4 ) = mean( rel_err_mod_HEIA_nonzero ) ;
302 av_rel_err_nonzero ( 5 ) = mean( rel_err_mod_triHEIA_nonzero ) ;
303

304 abs_av_rel_err_nonzero = zeros ( 1 , 5 ) ;
305 abs_av_rel_err_nonzero ( 1 ) = mean( abs ( rel_err_mod_MEA_nonzero ) ) ;
306 abs_av_rel_err_nonzero ( 2 ) = mean( abs ( rel_err_mod_HEEDA_nonzero ) ) ;
307 abs_av_rel_err_nonzero ( 3 ) = mean( abs ( rel_err_mod_Trimer_nonzero ) ) ;
308 abs_av_rel_err_nonzero ( 4 ) = mean( abs ( rel_err_mod_HEIA_nonzero ) ) ;
309 abs_av_rel_err_nonzero ( 5 ) = mean( abs ( rel_err_mod_triHEIA_nonzero ) ) ;
310

311 %% The abs errors from Davis ' Model
312 abs_err_Davis_MEA = [0 −0.1083 0 0.1491 0 0.2200

0 0.3736 0 0.2230 0 0.3034
0 0.3026 0 0.2279 0 0.1037 0.0270

0.1461 0.1604 0.0821 0 0.0464
0.0428 0.0295 0.0846 0.0793 0 0.0578 0.0773

0.0648 −0.0432 0 0.0250 0.0172
0.0208 0 0.0173 −0.0198 0.4387 0.4147 0.4169
0 0.2406 0 0.2207 0
0.2166 0 0.0366 0 −0.2113 0 −0.0656
0 −0.3679 0 −0.6057 0
−0.4977 0 −2.2075 0 −0.0801 0 −0.8826

−1.1143 −1.0674 0 −1.2001 −0.7903
−0.1584 0 −0.0075 −0.0923 −0.1006 0 −0.2528

−0.2999 −0.2511 0 −0.0295 −0.0380
0.2470 0.4065 0.3761 0 −0.0449 −0.2079 −0.4657

−0.5464 −0.6693 0 0.0986 0.0978
0.1894 0.1054 0.1544 0 −0.0342 0.0058 0.2377

0.1105 0.0382 0 0.0041 0.4641 0.3114 0.0784
0.1331 0 −0.2043 ] ;

313 abs_err_Davis_HEEDA = [0 −0.0469 0 −0.0248 0 −0.0209
0 0.0038 0 −0.0012 0 0.0135

0 0.0261 0 −0.0109 0 −0.0117 −0.0256
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−0.0186 −0.0010 0.0248 0 0.0196
−0.0067 −0.0145 −0.0038 0.0414 0 0.0077 0.0057

0.0061 0.0106 0 −0.0014 −0.0024
−0.0108 0 −0.0867 −0.0840 −0.0735 −0.0417 −0.0273
0 0.0188 0 0.0348 0
0.0417 0 0.0975 0 0.1111 0 0.1125
0 0.0235 0 0.0390 0
0.0582 0 0.0652 0 0.0328 0 0.1987

0.1937 −0.0685 0 0.0042 −0.0615
−0.2550 0 0.0370 0.0645 0.0648 0 0.0930

0.0999 0.1051 0 −0.0264 −0.0506
−0.0619 −0.0186 −0.0154 0 0.0553

] ;
314 abs_err_Davis_Trimer = [0 −0.0028 0 −0.0030 0 −0.0112

0 0.0011 0 0.0070 0 0.0004 0 −0.0054
0 −0.0048 0 0.0087 0.0050 −0.0023 −0.0040

0.0009 0 0.0005 −0.0026 −0.0026 −0.0077 −0.0040 0 −0.0038
−0.0041 −0.0085 −0.0131 0 0.0003 0.0014 −0.0064];

315 abs_err_Davis_HEIA = [0 0.0072 0 −0.0160 0 −0.0025
0 0.0030 0 −0.1590 0 −0.1780

0 −0.1271 0 −0.0437 0 −0.0069 −0.0535
−0.0513 −0.0814 0.0345 0 0.0330

−0.0034 −0.0212 0.0232 0.0508 0 0.0188 0.0089
−0.0231 0.0110 0 0.0009 0.0039

0.0110 0 −0.0726 −0.1883 −0.2878 −0.2437 −0.2478
0 −0.0191 0 −0.0307 0
−0.0291 0 −0.0430 0 −0.1775 0 −0.0777
0 0.1389 0 0.1424 0
0.2488 0 0.5434 0 0.0017 0 0.4189

0.1035 −1.0680 0 0.4734 0.1029
−1.7328 0 0.0051 −0.0570 −0.1346 0 0.0721

0.1452 0.1913 0 0.0010 −0.0550
−0.1494 −0.0757 −0.0879 0 0.0073

] ;
316 abs_err_Davis_triHEIA = [0 0.0141 0 0.0072 0 0.0084

0 0.0001 0 −0.0082 0 −0.0239 0 −0.0316
0 0.0008 0 −0.0023 0.0019 −0.0047 −0.0162

−0.0471 0 −0.0031 0.0050 0.0012 −0.0154 −0.0781 0
−0.0011 0.0010 0.0017 −0.0065 0 −0.0008 −0.0004 −0.0009];

317

318 %% pl ott ing the abs error for each component in the model towards Davis ' Model
319 f i g u r e (1000) ;
320 plot ( 0 . 8 , abs_err_Davis_MEA , ' x ' , ' color ' , [ 0 . 7 0.7 0 . 7 ] ) ;
321 hold on ;
322 plot ( 1 , abs_err_mod_MEA , ' x ' , ' color ' , [0.6350 0.0780 0.1840]) ;
323 hold on ;
324 plot ( 1 . 8 , abs_err_Davis_HEEDA , ' x ' , ' color ' , [ 0 . 7 0.7 0 . 7 ] ) ;
325 hold on ;
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326 plot ( 2 , abs_err_mod_HEEDA_val , ' x ' , ' color ' , [0.4940 0.1840 0.5560]) ;
327 hold on ;
328 plot ( 2 . 8 , abs_err_Davis_Trimer , ' x ' , ' color ' , [ 0 . 7 0.7 0 . 7 ] ) ;
329 hold on ;
330 plot ( 3 , abs_err_mod_Trimer_val , ' x ' , ' color ' , [0 .9290 , 0.6940 , 0 .1250]) ;
331 hold on ;
332 plot ( 3 . 8 , abs_err_Davis_HEIA , ' x ' , ' color ' , [ 0 . 7 0.7 0 . 7 ] ) ;
333 hold on ;
334 plot ( 4 , abs_err_mod_HEIA_val , ' x ' , ' color ' , [0 0.4470 0.7410]) ;
335 hold on ;
336 plot ( 4 . 8 , abs_err_Davis_triHEIA , ' x ' , ' color ' , [ 0 . 7 0.7 0 . 7 ] ) ;
337 hold on ;
338 plot ( 5 , abs_err_mod_triHEIA_val , ' x ' , ' color ' , [0 .4660 , 0.6740 , 0 .1880]) ;
339

340 x t i c k s ( [ 0 . 8 1.8 2.8 3.8 4 . 8 ] )
341 x t i c k l a b e l s ( { 'MEA' , 'HEEDA' , ' Trimer ' , 'HEIA ' , ' triHEIA ' } )
342 ylim ( [ − 2 . 5 , 2 . 5 ] )
343 xlim ([ −0 5 . 8 ] )
344 y l ine ( 0 ) ;
345 hold o f f ;
346

347 %% The r e l errors from Davis ' Model
348 f i g u r e (2000) ;
349 rel_err_Davis_MEA = [0 −0.0290 0 0.0391 0 0.0557

0 0.0830 0 0.0708 0 0.0908
0 0.0865 0 0.0509 0 0.0251 0.0074

0.0516 0.0652 0.0446 0 0.0101
0.0102 0.0076 0.0277 0.0415 0 0.0124 0.0175

0.0164 −0.0123 0 0.0051 0.0036
0.0044 0 0.0047 −0.0060 0.1783 0.1920 0.2217
0 0.0515 0 0.0477 0
0.0473 0 0.0082 0 −0.0491 0 −0.0166
0 −0.1009 0 −0.2215 0
−0.2270 0 −1.0070 0 −0.0167 0 −0.3074

−0.4534 −1.0675 0 −0.6606 −0.8881
−1.2817 0 −0.0016 −0.0193 −0.0215 0 −0.0589

−0.0822 −0.0817 0 −0.0069 −0.0103
0.0843 0.1712 0.1816 0 −0.0092 −0.0426 −0.0930

−0.1099 −0.1344 0 0.0212 0.0223
0.0468 0.0270 0.0422 0 −0.0076 0.0014 0.0672

0.0327 0.0119 0 0.0009 0.1373
0.0995 0.0259 0.0499 0 −0.0673

] ;
350 rel_err_Davis_HEEDA = [ −0.2040 −0.1303 −0.1230 0.1266 −0.0078 0.0964

0.2174 −0.1365 −0.0729 −0.1349 −0.1031 −0.0064
0.1911 0.2456 −0.0449 −0.0853 −0.0235

0.3764 0.1098 0.0520 0.0436 0.0758 −0.0700 −0.0600
−0.1543 −0.4279 −0.3868 −0.3559
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−0.2427 −0.1763 4.8731 3.3673 3.4087 0.1427 0.3452
0.7968 0.7416 4.4232 4.9262
−0.6031 0.0326 −0.4146 −0.9824 4.9352 5.4690 1.8933 1.5505

1.6929 2.0607 −0.1581
−0.2478 −0.2926 −0.1138 −0.0986 −0.1464

0.0582 0 0.0652 0 0.0328 0
0.1987 0.1937 −0.0685 0 0.0042 −0.0615

−0.2550 0 0.0370 0.0645 0.0648
0 0.0930 0.0999 0.1051 0 −0.0264 −0.0506

−0.0619 −0.0186 −0.0154 0
0.0553 ] ;

351 rel_err_Davis_Trimer = [0 −0.0555 0 −0.0760 0 −0.2790
0 0 0.1761 0 0.0107 0 −0.1346 0

−0.4815 0 0.4365 0.1251 −0.0451 −0.0794 0.0229 0
0.0451 −0.0858 −0.0656 −0.1546 −0.0997 0 −0.3836 −0.2051

−0.2116 −0.2618 0 −0.6375];
352 rel_err_Davis_HEIA = [0.0286 −0.0802 −0.0179 −0.3179 −0.3956 −0.3531

−0.7286 −0.0573 −0.1672 −0.1046 −0.1357 0.0565
−0.0284 −0.0924 0.0610 0.0876

0.1783 −0.1155 0.0356 −0.4835 −0.4926 −0.4935 −0.3925 −0.3591
−0.9564 −0.9033 −0.8544

−0.4300 −0.5284 −0.2699 0.7468 0.3049 0.5351 0.0990 18.4442
0.3090 −0.8396 2.2529

0.2162 −0.9603 −0.7589 −0.7867 0.8008 0.7333 0.6858 0.0094
−0.1702 −0.2738 −0.1325

−0.1330 0.7938 ] ;
353 rel_err_Davis_triHEIA = [0 0.4698 0 0.3587 0 0.8361

0 0 −0.1170 0 −0.3418 0 −0.4518 0
0 −0.1641 0.0472 −0.0491 −0.1226 −0.2253 0

−0.6122 0.6299 0.0390 −0.1590 −0.3339 0 −0.5470 0.2548
0.0695 −0.0973 0 −0.9872 −0.8014 −0.6515];

354

355 %% pl ott ing the r e l error for each component in the model towards Davis ' Model
356 plot ( 0 , rel_err_Davis_MEA , ' x ' , ' color ' , [ 0 . 7 0.7 0 . 7 ] ) ;
357 hold on ;
358 plot ( 2 , rel_err_mod_MEA , ' x ' , ' color ' , [0.6350 0.0780 0.1840]) ;
359 hold on ;
360 plot (15 , rel_err_Davis_HEEDA , ' x ' , ' color ' , [ 0 . 7 0.7 0 . 7 ] ) ;
361 hold on ;
362 plot (17 , rel_err_mod_HEEDA , ' x ' , ' color ' , [0.4940 0.1840 0.5560]) ;
363 hold on ;
364 plot (30 , rel_err_Davis_Trimer , ' x ' , ' color ' , [ 0 . 7 0.7 0 . 7 ] ) ;
365 hold on ;
366 plot (32 , rel_err_mod_Trimer , ' x ' , ' color ' , [0 .9290 , 0.6940 , 0 .1250]) ;
367 hold on ;
368 plot (45 , rel_err_Davis_HEIA , ' x ' , ' color ' , [ 0 . 7 0.7 0 . 7 ] ) ;
369 hold on ;
370 plot (47 , rel_err_mod_HEIA , ' x ' , ' color ' , [0 0.4470 0.7410]) ;
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371 hold on ;
372 plot (60 , rel_err_Davis_triHEIA , ' x ' , ' color ' , [ 0 . 7 0.7 0 . 7 ] ) ;
373 hold on ;
374 plot (62 , rel_err_mod_triHEIA , ' x ' , ' color ' , [0 .4660 , 0.6740 , 0 .1880]) ;
375

376 x t i c k s ( [ 0 15 30 45 60])
377 x t i c k l a b e l s ( { 'MEA' , 'HEEDA' , ' Trimer ' , 'HEIA ' , ' triHEIA ' } )
378 ylim ( [ − 5 , 2 5 ] )
379 xlim ([ −10 72])
380 y l ine ( 0 ) ;
381 hold o f f ;
382

383

384 %% P l o t t i ng abs errors for each components at the d i f f e r e n t str i ppe r conditions
385

386 %MEA
387 f i g u r e (3000) ;
388 t i t l e ( 'MEA' )
389 h( 1 ) =subplot ( 2 , 2 , 1 ) ;
390 plot (T_comp, abs_err_mod_MEA , ' x ' , ' color ' , [0.6350 0.0780 0.1840])
391 y l ine ( 0 ) ;
392 x label ( ' Temperature ' )
393 h( 2 ) = subplot ( 2 , 2 , 2 ) ;
394 plot ( load_comp , abs_err_mod_MEA , ' x ' , ' color ' , [0.6350 0.0780 0.1840])
395 x label ( 'CO2 loading ' )
396 y l ine ( 0 ) ;
397 h( 3 ) = subplot ( 2 , 2 , 3 ) ;
398 plot ( time_comp , abs_err_mod_MEA , ' x ' , ' color ' , [0.6350 0.0780 0.1840])
399 y l ine ( 0 ) ;
400 x label ( 'Time ' )
401 pos = get (h , ' Position ' ) ;
402 new = mean( c e l l f u n (@( v ) v ( 1 ) , pos ( 1 : 2 ) ) ) ;
403 set (h( 3 ) , ' Position ' , [new, pos { end } ( 2 : end) ] )
404 sgt = s g t i t l e ( 'MEA' ) ;
405 sgt . FontSize = 12;
406

407 %HEEDA
408 f i g u r e (4000) ;
409 h( 1 ) =subplot ( 2 , 2 , 1 ) ;
410 plot (T_comp_HEEDA, abs_err_mod_HEEDA_val , ' x ' , ' color ' , [0.4940 0.1840 0.5560])
411 y l ine ( 0 ) ;
412 x label ( ' Temperature ' )
413 h( 2 ) = subplot ( 2 , 2 , 2 ) ;
414 plot (load_comp_HEEDA, abs_err_mod_HEEDA_val , ' x ' , ' color ' , [0.4940 0.1840 0.5560])
415 y l ine ( 0 ) ;
416 x label ( 'CO2 loading ' )
417 h( 3 ) = subplot ( 2 , 2 , 3 ) ;
418 plot (time_comp_HEEDA, abs_err_mod_HEEDA_val , ' x ' , ' color ' , [0.4940 0.1840 0.5560])
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419 y l ine ( 0 ) ;
420 x label ( 'Time ' )
421 pos = get (h , ' Position ' ) ;
422 new = mean( c e l l f u n (@( v ) v ( 1 ) , pos ( 1 : 2 ) ) ) ;
423 set (h( 3 ) , ' Position ' , [new, pos { end } ( 2 : end) ] )
424 sgt = s g t i t l e ( 'HEEDA' ) ;
425 sgt . FontSize = 12;
426

427 %Trimer
428 f i g u r e (5000) ;
429 h( 1 ) =subplot ( 2 , 2 , 1 ) ;
430 plot ( T_comp_Trimer , abs_err_mod_Trimer_val , ' x ' , ' color ' , [0 .9290 , 0.6940 , 0 .1250])
431 y l ine ( 0 ) ;
432 x label ( ' Temperature ' )
433 h( 2 ) = subplot ( 2 , 2 , 2 ) ;
434 plot ( load_comp_Trimer , abs_err_mod_Trimer_val , ' x ' , ' color ' , [0 .9290 , 0.6940 ,

0 .1250])
435 y l ine ( 0 ) ;
436 x label ( 'CO2 loading ' )
437 h( 3 ) = subplot ( 2 , 2 , 3 ) ;
438 plot ( time_comp_Trimer , abs_err_mod_Trimer_val , ' x ' , ' color ' , [0 .9290 , 0.6940 ,

0 .1250])
439 y l ine ( 0 ) ;
440 x label ( 'Time ' )
441 pos = get (h , ' Position ' ) ;
442 new = mean( c e l l f u n (@( v ) v ( 1 ) , pos ( 1 : 2 ) ) ) ;
443 set (h( 3 ) , ' Position ' , [new, pos { end } ( 2 : end) ] )
444 sgt = s g t i t l e ( ' Trimer ' ) ;
445 sgt . FontSize = 12;
446

447 %HEIA
448 f i g u r e (6000) ;
449 h( 1 ) =subplot ( 2 , 2 , 1 ) ;
450 plot (T_comp_HEIA, abs_err_mod_HEIA_val , ' x ' , ' color ' , [0 0.4470 0.7410])
451 y l ine ( 0 ) ;
452 x label ( ' Temperature ' )
453 h( 2 ) = subplot ( 2 , 2 , 2 ) ;
454 plot ( load_comp_HEIA , abs_err_mod_HEIA_val , ' x ' , ' color ' , [0 0.4470 0.7410])
455 y l ine ( 0 ) ;
456 x label ( 'CO2 loading ' )
457 h( 3 ) = subplot ( 2 , 2 , 3 ) ;
458 plot ( time_comp_HEIA , abs_err_mod_HEIA_val , ' x ' , ' color ' , [0 0.4470 0.7410])
459 y l ine ( 0 ) ;
460 x label ( 'Time ' )
461 pos = get (h , ' Position ' ) ;
462 new = mean( c e l l f u n (@( v ) v ( 1 ) , pos ( 1 : 2 ) ) ) ;
463 set (h( 3 ) , ' Position ' , [new, pos { end } ( 2 : end) ] )
464 sgt = s g t i t l e ( 'HEIA ' ) ;
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465 sgt . FontSize = 12;
466

467 %TriHEIA
468 f i g u r e (7000) ;
469 h( 1 ) =subplot ( 2 , 2 , 1 ) ;
470 plot ( T_comp_triHEIA , abs_err_mod_triHEIA_val , ' x ' , ' color ' , [0 .4660 , 0.6740 ,

0 .1880])
471 y l ine ( 0 ) ;
472 x label ( ' Temperature ' )
473 h( 2 ) = subplot ( 2 , 2 , 2 ) ;
474 plot ( load_comp_triHEIA , abs_err_mod_triHEIA_val , ' x ' , ' color ' , [0 .4660 , 0.6740 ,

0 .1880])
475 y l ine ( 0 ) ;
476 x label ( 'CO2 loading ' )
477 h( 3 ) = subplot ( 2 , 2 , 3 ) ;
478 plot ( time_comp_triHEIA , abs_err_mod_triHEIA_val , ' x ' , ' color ' , [0 .4660 , 0.6740 ,

0 .1880])
479 y l ine ( 0 ) ;
480 x label ( 'Time ' )
481 pos = get (h , ' Position ' ) ;
482 new = mean( c e l l f u n (@( v ) v ( 1 ) , pos ( 1 : 2 ) ) ) ;
483 set (h( 3 ) , ' Position ' , [new, pos { end } ( 2 : end) ] )
484 sgt = s g t i t l e ( ' TriHEIA ' ) ;
485 sgt . FontSize = 12;
486

487 end

G.13 Auxiliary Plotting function 1

1 %PLOTTING y_mod vs y_exp
2 function plotting_mod ( tspan , y_mod, t_exp_MEA , y_exp_MEA , y_exp_HEEDA , y_exp_HEIA

, y_exp_Trimer , y_exp_triHEIA , T , CO2_load )
3

4 %t x t = [ 'T = ' num2str (T) ' , CO2 load = ' num2str ( CO2_load ) ] ;
5 %t i t l e ( t x t ) ;
6 ylim ( [ 0 5 ] ) ;
7 t_end = t_exp_MEA (end) ;
8 xlim ([ −0 t_end + 0 . 1 ] )
9 grid on

10 hold on ;
11

12 %Make legend using dummy points
13 x1 = 0 ;
14 x2 = 0 ;
15 x3 = 0 ;
16 x4 = 0 ;
17 x5 = 0 ;
18 y = 0 ;
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19

20 plot ( x1 , y , ' s ' , ' color ' , [0 .6350 0.0780 0.1840] , ' LineWidth ' ,1 , ' MarkerFaceColor '
, [0 .6350 0.0780 0.1840])

21 plot ( x2 , y , ' s ' , ' color ' , [0 .4940 0.1840 0.5560] , ' LineWidth ' ,1 , ' MarkerFaceColor '
, [0 .4940 0.1840 0.5560])

22 plot ( x3 , y , ' s ' , ' color ' , [ 0 . 9 2 9 0 , 0.6940 , 0.1250] , ' LineWidth ' ,1 , ' MarkerFaceColor '
, [ 0 . 9 2 9 0 , 0.6940 , 0 .1250])

23 plot ( x4 , y , ' s ' , ' color ' , [ 0 0.4470 0.7410] , ' LineWidth ' ,1 , ' MarkerFaceColor ' , [ 0
0.4470 0.7410])

24 plot ( x5 , y , ' s ' , ' color ' , [ 0 . 4 6 6 0 , 0.6740 , 0.1880] , ' LineWidth ' ,1 , ' MarkerFaceColor '
, [ 0 . 4 6 6 0 , 0.6740 , 0 .1880])

25 hold o f f ;
26 legend ( { 'MEA' , 'HEEDA' , ' Trimer ' , 'HEIA ' , ' triHEIA ' } , ' Location ' , ' best ' ) ;
27 %lgd . FontSize = 7 ;
28 hold on ;
29

30 set ( groot , ' defaultLegendAutoUpdate ' , ' o f f ' ) ;
31 yyaxis r i g h t %MEA only
32 ylim ( [ 0 5 ] ) ;
33 xlim ([ −0 t_end + 0 . 1 ] )
34

35

36 i f a l l (y_exp_MEA == y_exp_MEA( 1 ) )
37 e lse
38 plot ( tspan , y_mod ( : , 1 ) , '− ' , ' color ' , [0 .6350 0.0780 0.1840] , ' LineWidth ' , 1 ) ; %MEA
39 hold on
40 plot ( t_exp_MEA , y_exp_MEA , ' s ' , ' MarkerEdgeColor ' , [0 .6350 0.0780 0.1840] , '

LineWidth ' , 1 )
41 hold on
42 end
43

44

45 yyaxis l e f t
46 ylim ( [ 0 2 . 5 ] )
47

48 %Only plot i f the experimental values are d i f f e r e n t from zero
49

50 %HEEDA
51 i f a l l (y_exp_HEEDA == y_exp_HEEDA( 1 ) )
52 e lse
53 plot ( tspan , y_mod ( : , 2 ) , '− ' , ' color ' , [0.4940 0.1840 0.5560] , ' LineWidth ' , 1 )
54 hold on
55 plot ( t_exp_MEA , y_exp_HEEDA , '^ ' , ' MarkerEdgeColor ' , [0 .4940 0.1840 0.5560] , '

LineWidth ' , 1 )
56 hold on
57 end
58

59 %Trimer
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60 i f a l l ( y_exp_Trimer == y_exp_Trimer ( 1 ) )
61 e lse
62 plot ( tspan , y_mod ( : , 3 ) , '− ' , ' color ' , [ 0 . 9 2 9 0 , 0.6940 , 0.1250] , ' LineWidth ' , 1 )
63 hold on
64 plot ( t_exp_MEA , y_exp_Trimer , 'o ' , ' MarkerEdgeColor ' , [ 0 . 9 2 9 0 , 0.6940 , 0.1250] , '

LineWidth ' , 1 )
65 hold on
66 end
67

68 %HEIA
69 i f a l l ( y_exp_HEIA == y_exp_HEIA ( 1 ) )
70 e lse
71 plot ( tspan , y_mod ( : , 5 ) , '− ' , ' color ' , [ 0 0.4470 0.7410] , ' LineWidth ' , 1 )
72 hold on
73 plot ( t_exp_MEA , y_exp_HEIA , 'd ' , ' MarkerEdgeColor ' , [ 0 0.4470 0.7410] , ' LineWidth '

, 1 )
74 hold on
75 end
76

77 %TriHEIA
78 i f a l l ( y_exp_triHEIA == y_exp_triHEIA ( 1 ) )
79 e lse
80 plot ( tspan , y_mod ( : , 6 ) , '− ' , ' color ' , [ 0 . 4 6 6 0 , 0.6740 , 0.1880] , ' LineWidth ' , 1 )
81 hold on
82 plot ( t_exp_MEA , y_exp_triHEIA , 'd ' , ' MarkerEdgeColor ' , [ 0 . 4 6 6 0 , 0.6740 , 0.1880] , '

LineWidth ' , 1 )
83 hold on
84 end
85

86 hold o f f ;
87 end

G.14 Auxiliary Plotting function 2

1 function plot_par (e_MEA, e_HEEDA, e_Trimer , e_triHEIA , e_HEIA , parameter )
2 plot ( parameter , e_MEA, ' x ' ) ;
3 hold on ;
4 plot ( parameter , e_HEEDA, ' x ' ) ;
5 hold on ;
6 plot ( parameter , e_Trimer , ' x ' ) ;
7 hold on ;
8 plot ( parameter , e_triHEIA , ' x ' ) ;
9 hold on ;

10 plot ( parameter , e_HEIA , ' x ' ) ;
11 hold on ;
12 end
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