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Combined Effect of Surfactant Presence and Gas Dissolution on Coalescence in 

Chemical- and Bioreactors 

 

Abstract 

In this work, coalescence of gas bubbles is investigated in the presence of gas dissolution and 

surfactants through a film drainage model. The study on dissolution is carried out for three 

cases considering low 𝑃𝑒, constant mass flux, and variable mass flux applying for all ranges 

of 𝑃𝑒. It is seen through the low 𝑃𝑒 case that any involved reactions in the system have no 

noticeable impact on coalescence. The last two cases indicate that gas dissolution delays the 

coalescence time under specific conditions. While the extent of the dissolution effect for the 

constant mass flux case depends on the contact time of the two bubbles, the one for the variable 

mass flux case considers the important impact of the film saturation in addition to the gas 

solubility and 𝑃𝑒. The effect of dissolution seems to be dependent of the tangential mobility 

which is strongly influenced by the presence of surfactants. The study is summarized in a map 

which exhibits the conditions for negligible effect of surfactants and the complete 

immobilization, depending on the extent of the surface tension changes with the total amount 

of the surfactants present in the system and how unevenly the surfactants are distributed along 

the interface. It is found that some realistic cases require other immobilization mechanisms in 

addition to the Marangoni stresses to reach complete immobilization. 
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1 Introduction 

Multiphase reactors have been commonly used in many industrial processes, such as 

hydrogenation, oxidation, and bioreactions. These reactors usually involve gas, liquid, and 

solid components which interact with each other, resulting in complex hydrodynamic behaviors 

that may influence the effectiveness of the processes. Such systems can be visualized in Figure 

1, where gas bubbles are dispersed in a bubble column reactor filled with a liquid continuous 

phase together with solid presence. The gas bubbles may serve either as nutrients for 

bioreactors or reactants for chemical reactors, which are distributed with various sizes and 

velocities. These bubbles interact through collisions which may lead to coalescence and affect 

the bubble distribution along the reactor. During this interaction, the bubbles dissolve into the 

surrounding liquid medium due to concentration difference. This mechanism potentially 

changes the local jump conditions across the bubble interfaces which affects the bubble 

coalescence. The complexity of these systems arises with the existence of solid phases, e.g., 

cells in bioreactors and impurities in chemical reactors. As solid phases may act like 

surfactants, they tend to attach along the bubble interfaces and change the interfacial properties, 

such as the surface tension. This may cause the bubble interfaces to become immobilized, 

which eventually affects the coalescence behavior. As coalescence is one of key mechanisms 

affecting the distribution of bubbles along a reactor, it is important to study the effects of the 

gas dissolution and the surfactant presence on bubble coalescence. 

 

Figure 1: Evolution of gas bubbles in a multiphase reactor (adapted from Jakobsen, 2008) 

Gas bubbles 
inlet 

Solid 
phases 
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1.1 Studies on Coalescence of Fluid Particles 

Coalescence behavior was studied for the first time by Shinnar and Church (1960) and Shinnar 

(1961) through a film drainage approach. In their experimental setup, they found that 

coalescence occurs within several consecutive mechanisms: a collision between two fluid 

particles entraps the continuous phase as a thin film between the particles, the film drains out 

due to pressure buildup during the bubbles approach, and the distance between the particles 

reaches a critical thickness at which the attractive intermolecular forces start to become 

significant and destabilize the interface, leading to a film rupture and resulting in coalescence. 

This mechanism implies that coalescence is delayed by the drainage of the film, which  seemed 

to be inconsistent with the rapid coalescence proposed by Howarth (1964). Instead of the 

delayed coalescence, he found that coalescence occurs rapidly when the approaching bubble 

velocities are higher than a critical value. Liao and Lucas (2010) clarified this issue by 

discussing that the two findings correspond to different approaches of estimating coalescence 

behavior based on the film drainage and the energy models, respectively. In comparison to the 

critical velocity found by Howarth (1964), Lehr et al. (2002) discovered another critical 

approach velocity above which the fluid particles bounce off instead of coalescing. This 

analysis seemed to agree with Kirkpatrick and Lockett (1974) and Chesters and Hofman (1982) 

who formulated the critical velocity theoretically based on the film drainage approach and the 

energy model, respectively. These discrepant arguments were identified to be valid under 

different velocity spectrums according to Yaminsky et al. (2010) and Horn et al. (2011). In 

Yaminsky et al. (2010)’s study, they observed three different behaviors of air bubble collisions 

in water, which were distinguishable based on two approach velocities: 1 μm/s and 150 μm/s. 

The first one corresponded to a critical speed under which the film tended to stay stable and 

after which the coalescence occurred. When the velocities were between 1 μm/s and 150 μm/s, 

the delayed coalescence was found with apparent dimple. As for the velocities higher than 150 

μm/s, the dimple was no longer visible and the coalescence tended to occur rapidly. Horn et al. 

(2011) completed the analysis with the fourth behavior indicated as bounce which appeared at 

even higher velocities. They summarized the four regimes based on Chesters and Hofman 

(1982); Klaseboer et al. (2000); Yaminsky et al. (2010); and Del Castillo et al. (2011). The four 

behaviors were theoretically studied by Ozan et al. (2021) through their film drainage model 

which was coupled with a force balance. In their investigation, the steady-state, the 

coalescence, and the rebound are possible to appear depending on the collision kinetic energy. 

The film tends to stay stable when the collision energy is low enough to dissipate rapidly. Then, 
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coalescence occurs within intermediate collision energies and rebound show up at even larger 

energies which enable the stored film force to blow up, resulting in the kinetic energy acting 

reversely to the approach of the particles. They also came up with a formula to determine the 

critical velocity at which the rebound starts to occur, which is in accordance with the 

experimental results of Duineveld, (1997); Lehr et al., (2002); Ribeiro and Mewes, (2007). 

In macro scale, the coalescence behavior is analyzed by estimating the coalescence efficiency 

which depends on the drainage time compared to the contact time. When the drainage time is 

longer than the contact time, the two colliding fluid particles are estimated to coalesce. Based 

on the film drainage approach, Coulaloglou (1975) suggested a formula to estimate the 

coalescence efficiency of a gentle collision as 

 
𝜆𝑐 = 𝑒𝑥𝑝 (−

𝑡𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒

𝑡𝑐𝑜𝑛𝑡𝑎𝑐𝑡
)  (1) 

The importance of estimating the drainage time leads to multiple types of modelling which can 

be grouped based on its deformability and its tangential mobility as suggested by Chesters 

(1991); Lee and Hodgson (1968); and Liao and Lucas (2010). Based on the deformability 

criterion, the modelling of deformable interfaces is more preferable as they are able to exhibit 

dimples which were observed in experimental studies (Klaseboer et al., 2000; Yaminsky et al., 

2010), whereas the non-deformable interface modelling is inadequate for this purpose. Further 

investigations were done by Chan et al. (2011) who revealed other possible shapes of deformed 

interfaces with the emergence of an additional rim, a local maximum, and multiple maxima 

and minima at the interface, called as the pimple, wimple, and ripple, respectively. The 

deformable models can be sub-categorized into immobile, partially mobile, and fully mobile, 

depending on the mechanisms controlling the drainage (Chesters, 1991; Lee and Hodgson, 

1968; Liao and Lucas, 2010). The immobile interfaces are indicated by zero tangential velocity 

due to dominating pressure gradients, which give the parabolic flow to the system. When the 

tangential velocity appears, the interfaces become partially mobile with an additional flow from 

the plug component. When this component overpower the pressure gradients, the parabolic 

flow dissipates and the interfaces become fully mobile. Chesters (1991) distinguished the fully 

and partially mobile interfaces from their zero and non-zero tangential stresses, respectively. 

Although this definition was commonly used, Bazhlekov et al. (2000) introduced different 

levels of interfacial mobility through their model based on the extent of the viscous forces by 

varying the ratio of the dispersed phase to the continuous phase viscosities. 
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Regardless of the tangential mobility of the interfaces, Yiantsios and Davis (1991) revealed 

that it is impossible to model coalescence without the inclusion of attractive van der Waals 

forces. They also established two rupturing phenomena in their study. One arises with strong 

van der Waals forces, which result in film rupture occurring at the centerline, called nose 

rupture. The other one, identified as rim rupture, appears with weak van der Waals forces which 

allow the capillary forces to act during the film drainage and promote the emergence of dimple 

at which the rupture takes place. Further studies were examined by Abid and Chesters (1994) 

and Saboni et al. (1995) who considered the van der Waals interactions through the Hamaker 

constant to analyze its effect on the coalescence for constant approach velocity and constant 

van der Waals forces, respectively. Klaseboer et al. (2000) investigated similar works for 

immobile and fully mobile interfaces considering constant approach velocity. Although their 

immobile model fits the experimental results, their solution for the fully mobile interface seems 

to be inconsistent with the experiment, which was analyzed to have immobilized interfaces due 

to contamination to impurities in the system. To complete the model, Ozan and Jakobsen 

(2019a) merged the works of Klaseboer et al. (2000) with the one done by Bazhlekov et al. 

(2000) to investigate the effects of the van der Waals forces and different degrees of mobility 

for constant approach velocity. They introduced three velocity regimes corresponding to the 

nose rupture, the rim rupture with dimple and with multiple rims. In their study, the nose 

rupture occurs within low velocities where the coalescence time decreases with the approach 

velocity. At sufficiently higher velocities, the regime shifts into rim rupture with the emergence 

of dimple which slows down the drainage process, indicated by the less significant decreasing 

trend of the coalescence time. The third regime was found out when the coalescence time starts 

to increase with the approach velocity with multiple rims emerging along the interfaces. In 

their first two regimes, the relation between the coalescence time and the approach velocity 

seem to match the power law formula suggested by Del Castillo et al. (2011) and Orvalho et 

al. (2015) through their experiments.  

1.2 Studies on Coalescence with Surfactant Presence 

Surfactants are frequently found as impurities in typical chemical reactors. Even in bioreactors 

which require a hygienic system, the cells involved in these reactors may also act as surfactants. 

These surfactants are able to attach and spread unevenly along the bubble interface, which 

creates the surface tension gradient, induces Marangoni flows, and eventually influences the 

coalescence behavior. The effect of surfactants on coalescence was theoretically studied by 

Alexandrova (2014) and Alexandrova et al. (2018). Alexandrova (2014) considered the 
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presence of insoluble surfactants by including a surfactant balance across the interface and 

investigated their effects on the film drainage for a constant force. Her study showed that the 

drainage rate decreases with higher surface Péclet number and their model with very high 

surface Péclet number resulted in no rims. Alexandrova et al. (2018) extended the study by also 

investigating the effects of the initial surfactant concentration with different Hamaker constant 

to determine the conditions at which the effects of the Marangoni and the van der Waals forces 

are more influential. They found two critical limits of initial surfactant concentration. Below 

the low limit, the van der Waals forces always become dominant while above the high limit, 

the Marangoni forces start to dominate the film drainage and hinder coalescence. Lu et al. 

(2018) investigated the surfactant transport mechanisms and their effect on micro-bubble 

coalescence. They came up with two mechanisms of surfactant transport, governed by the 

Marangoni flows and the local contraction of the meniscus bridge connecting the interfaces. 

The two phenomena strongly affect the drainage rate by influencing the local pull of the surface 

tension along the bubble interface. While the small-sized bubble tends to keep the surfactants 

accumulated within the curved area due to its strong local contraction, the Marangoni flows 

appears to pull the fluid away from the joining meniscus, resulting in the migration of the 

surfactants towards the back of the bubbles. Ozan and Jakobsen (2019b) studied the film 

drainage of viscous interfaces with constant approach velocity in the presence of low surfactant 

concentrations to investigate the effects of the Marangoni stresses and the surface viscosities 

on the immobilization of the interface. In their conclusion, they proposed regime maps showing 

different conditions of the surface Péclet number and the Boussinesq number under which the 

Marangoni flows and the surface viscosities predominate the drainage behavior. In addition to 

the viscous component of the surface rheology, Ozan and Jakobsen (2020a) extended their 

model by considering the viscoelasticity of the interface which is assumed equivalent to the 

Upper Convected Maxwell model. They found that the elastic forces appearing on the interface 

delay the viscous response of the interface which causes the drainage behavior to initially 

follow the inviscid interface. The drainage begins to deviate from the inviscid interface 

behavior and approach to the Newtonian one after some time, depending on the surface 

Weissenberg number and the Boussinesq number. This delay results in the shifting tangential 

mobility which may cause the coalescence time to differ from both inviscid and Newtonian 

interfaces, implying that the viscoelasticity of the interface plays an important role on the 

coalescence time. 
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1.3 Studies on Coalescence with Mass Transfer 

There are several types of mass transfer studied in the coalescence of fluid particles. One refers 

to the migration of solutes in oil-liquid systems which have been studied experimentally and 

theoretically by Ban et al. (2000); Chevaillier et al. (2006); Gourdon and Casamatta (1991); 

Kamp and Kraume (2014); Kourio et al. (1989), Kourio et al. (1994); Saboni (2002); and 

Saboni et al. (1999). All studies agree to the same conclusion that the solute transfer have two 

different effects, either stimulating or hindering coalescence, depending on the direction of the 

solute transfer, the surface-activity, and the dominating properties. The former effect appears 

when the solute transfers from the dispersed to the continuous phase while the latter one is 

caused by the Marangoni stresses emerging due to the contrary direction of the solute transfer 

(Gourdon and Casamatta, 1991 ; Kourio et al., 1994). The transfer direction was found to be 

not the only factor affecting the coalescence behavior as Saboni (2002) revealed that the solute 

transferring from the dispersed to the continuous phase may also decrease the coalescence 

tendency when the surface-activity is taken into account. Further works were done by Ban et 

al. (2000) and Chevaillier et al. (2006) who found that the solute transferring from the 

continuous to the dispersed phase can slow down the drainage rate by stimulating the tangential 

velocity to the opposite direction of the film drainage. They also clarified that the effect of 

solute transfer from the continuous to the dispersed phase is strongly affected by the approach 

velocity while the opposite direction depends more on the concentration gradient of the solute. 

Another type of the mass transfer phenomenon corresponds to the dissolution of gas bubbles 

in a liquid phase which were studied with various methods. Katsir and Marmur (2014) 

examined the impact of CO2 dissolution on the coalescence time for a system with purified 

water. They analyzed that the dissolved CO2 tends to dissociate in water, which then induces 

surface charges and promotes electric double layer repulsion, resulting in longer coalescence 

time. Farajzadeh et al. (2014) investigated the effect of gas solubility on foam drainage for pure 

gases and mixed gases. In their experimental setup, they measured the decreasing volume of 

the foam due to coalescence with time. They concluded that the foam drainage rate increases 

considerably with the gas solubility. Furthermore, the foams with two components of gases 

were found to have a drainage rate between the ones for the two individual components. Li et 

al. (2019) studied theoretically and experimentally the behavior of a single rising CO2 bubble 

for different sizes and found that the mass flux becomes lower with larger bubbles. In addition, 

they observed the behavior of two bubbles rising side-by-side to determine their critical 

interval, defined as the furthest initial distance between the bubbles which allows coalescence. 
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Compared to their setups without mass transfer, the ones with the mass transfer have lower 

critical interval which indicates that the mass transfer may decrease the coalescence tendency 

with various extents, depending on the mass transfer efficiency. They came up with a 

conclusion that the mass transfer phenomena have considerable impacts on bubble behaviors.  

1.4 Project Objective 

This study aims to investigate the combined effect of gas dissolution and surfactant presence 

on bubble coalescence through a film drainage model. The effect of gas dissolution is taken 

into account by coupling the model with a component mass balance. This model is initially 

examined in the absence of surfactants for three cases: low 𝑃𝑒 where the convective mass 

transfer is negligible, constant mass flux, and variable mass flux which is applicable to the 

entire range of 𝑃𝑒 values. While first two cases are carried under constant fluxes, the third case 

is investigated by varying 𝑃𝑒 and the gas solubility. Then, the effect of surfactants is included 

by adding a surfactant balance to the model. In this case, the extent of Marangoni flows 

emerging due to surfactants is evaluated through the surface Péclet number (𝑃𝑒𝑠), the initial 

concentration of surfactants (Γ0), and the effectivity of surfactants in changing the surface 

tension (𝜎Γ
′). 
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2 Physical System and Mathematical Model 

This study considers two inviscid bubbles of a single substance 𝐴, which collide in a liquid 

phase as visualized in Figure 2. The bubbles approach each other with a constant relative 

approach velocity, 𝑉𝑎𝑝𝑝 = 𝑉2 − 𝑉1, enclosing a thin film of the continuous phase between them. 

The system contains surfactants which are confined to the bubble interfaces, i.e., insoluble in 

the dispersed and the continuous phases. The mass transfer occurs from the dispersed to the 

continuous phase due to the dissolution of the gas with flux of 𝐍𝐴,𝐷→𝐶 . This phenomenon 

results in the dwindling bubbles and moves the interface position by ∆𝑧𝑚𝑡 as depicted in Figure 

2 (c) where 𝜔𝐴,𝑑 and 𝜔𝐴,𝑐 denote the mass fraction of 𝐴 in the dispersed and the continuous 

phases, respectively. As the bubbles move closer, the film gets squeezed until the minimum 

thickness is small enough to stimulate the attractive intermolecular forces to destabilize the 

interface, leading to film rupture and consequently coalescence. 

 

 
Figure 2: (a) - (b) The physical configuration of a thin film between two gas bubbles confined 

by surfactants (adapted from Ozan and Jakobsen, 2019a) and (c) the dissolution of gas 

bubbles from the dispersed phase to the continuous phase 

The dispersed and the continuous phases are assumed incompressible and follow the 

Newtonian behavior with constant 𝜇𝑑 and 𝜇𝑐, respectively. Following Chesters (1991), the 

collision is assumed to occur gently, implying that the bubble radii, 𝑅1 and 𝑅2, are much larger 

than the film radius, �̅�. This justifies the two unequal size bubbles to have the same interfacial 

curvature as for a particle with an equivalent radius of 𝑅𝑝: 

 
𝑅𝑝 = 2(

1

𝑅1
+
1

𝑅2
)
−1

  (2) 

This relationship originates from the summation of the normal stress balances between two 

different size bubbles as given in App. A.2. 
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The implementation of 𝑅𝑝 in the model indicates a symmetrical system around 𝑟 axis which 

holds together with the axisymmetry assumption around the center line, creating equivalent 

behaviors within the four quadrants. Therefore, the solution for one quadrant in 𝑟 ≥ 0 and 𝑧 ≥

0 is evaluated through this study to represent the behaviors of the other quadrants. The model 

performs the cylindrical coordinates to describe the flow within the film while the curvature of 

the interface is described by a curvilinear coordinate system as illustrated in Figure 3. 

 
Figure 3: Cylindrical coordinates where the top and the bottom surfaces of a cylindrical disk 

in (a) are transformed into curvilinear surfaces in (b), representing the gas bubble interfaces 

Figure 3 (a) shows cylindrical coordinates with 𝐞𝑟, 𝐞𝜃, and 𝐞𝑧 as the base vectors which are 

applicable for the bulk flow in the continuous phase. The curved surfaces in Figure 3 (b) 

represent the bubble interfaces which are described in terms of surface coordinates having 

tangent and a normal unit vectors, 𝐭𝟏, 𝐭𝟐, and 𝐧, which are perpendicular to each other. The 

behaviors at the interface equate the jump conditions between the dispersed and the continuous 

phases which are decomposed into tangential and normal components. As an illustration, 𝜏c 

and 𝜏d exhibit the tangential component of the bulk stresses acting within the film and the 

bubble, while 𝑣c,n and 𝑢mt represent the normal component of the bulk velocity and the 

interface displacement rate due to mass transfer. To connect the interface conditions with the 

bulk conditions, the unit vectors are expressed as functions of cylindrical coordinates and all 

operators, e.g., the surface gradient operator, are transformed into cylindrical coordinates. 

For positive 𝑟 and 𝑧 coordinates, the interface position at 𝑧 = ℎ(𝑟, 𝑡)/2 is defined in the surface 

coordinates as 𝐫𝑠 = 𝑟𝐞𝑟(𝜃) + 𝑧𝐞𝑧 = 𝑟𝐞𝑟(𝜃) +
ℎ(𝑟,𝑡)

2
𝐞𝑧. The unit vector 𝐧 is chosen to direct 

from the continuous to the dispersed phase, which is the same direction as positive 𝑧 in this 

case. By choosing 𝐭1 to direct in positive r, the right-hand rule gives 𝐭2 in counterclockwise 
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direction which also yields the coordinate permutation of r, θ, z as the base permutation. 

According to Johns and Narayanan (2007) and Ozan and Jakobsen (2019b), the tangent vectors 

are obtained from the partial derivative of 𝐫𝑠 with respect to 𝑟 and 𝜃, divided by each length. 

Then, the cross product of these tangent vectors yields the normal vector as derived in App. 

A.1, giving: 

 

𝐭1 =

𝜕𝐫𝑠
𝜕𝑟

|
𝜕𝐫𝑠
𝜕𝑟
|
=
𝐞𝑟 +

1
2
𝜕ℎ
𝜕𝑟
𝐞𝑧

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
, 𝐭2 =

𝜕𝐫𝑠
𝜕𝜃

|
𝜕𝐫𝑠
𝜕𝜃
|
= 𝐞𝜃  (3) 

 

𝐧 = 𝐭1 × 𝐭2 =
𝐞𝑟 +

1
2
𝜕ℎ
𝜕𝑟
𝐞𝑧

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
× 𝐞𝜃 =

𝐞𝑧 −
1
2
𝜕ℎ
𝜕𝑟
𝐞𝑟

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
 (4) 

In the right-hand side of Eq. (4), the positive sign of 𝐞𝑧 comes from the cross product between 

𝐞𝑟 and 𝐞𝜃 which follows the base permutation of coordinates r, θ, z. Meanwhile, the negative 

sign of 𝐞𝑟 is the result of the cross product between 𝐞𝑧 and 𝐞𝜃 which gives the reversed 

permutation. These signs are consistent with the direction of 𝐧 from the continuous phase 

towards the dispersed phase, as depicted in Figure 3. When the bubble interfaces deform during 

the film drainage, 𝐫𝑠 also changes which consequently changes the unit vectors as Figure 4.  

 

Figure 4: (a) Perfect spherical and deformed bubbles represented by solid and dashed lines, 

respectively (adapted from Yiantsios and Davis (1991)), (b) the unit vectors at a certain 

interface position for the perfect spherical interface, and (c) the unit vectors at a 

corresponding position for the deformed interface 
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The coalescence behavior is investigated through a film drainage model which is derived from 

the governing equations and the interface conditions. The governing equations describe the 

flow condition within the bulk phases where the bubble interfaces become the boundaries 

described by the interface conditions. 

2.1 Governing Equations 

The governing equations hold for the bulk phases in which the film side flows are formulated 

in cylindrical coordinates. In the presence of the mass transfer, a component mass balance is 

required in addition to the continuity and the Navier-Stokes equations. 

2.1.1 The Continuity Equation 

The continuity equation stems from the mass conservation where the rate of mass change in a 

system equals to the difference between the mass rates flowing into and out of the system, 

described as: 

 𝜕𝜌𝑐
𝜕𝑡

+ ∇ ∙ (𝜌𝑐𝐯𝑐) = 0  (5) 

The first term in the left-hand side indicates the rate of the mass loss or accumulation in a unit 

volume, where 𝜌𝑐 denotes the mass density of the continuous phase. The convective component 

in the second term represents the divergence of the mass entering and leaving the system, driven 

by the fluid motion in the continuous phase with the bulk velocity of 𝐯𝑐. The incompressible 

fluid assumption gives constant 𝜌𝑐, i.e., 
𝜕𝜌𝑐

𝜕𝑡
= 0 and ∇𝜌𝑐 = 0, simplifying Eq. (5) into 

 ∇ ∙ 𝐯𝑐 = 0  (6) 

In the cylindrical coordinate system, the vector differential operator, ∇, is defined as 

 
∇= 𝐞𝑟

𝜕

𝜕𝑟
+ 𝐞𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝐞𝑧

𝜕

𝜕𝑧
  (7) 

while 𝐯𝑐 is assumed to have no 𝜃-component, giving 

 𝐯𝑐 = 𝑣𝑟𝐞𝑟 + 𝑣𝑧𝐞𝑧  (8) 

By taking the dot product between Eqs. (7) and (8), Eq. (6) becomes 

 1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟) +

𝜕𝑣𝑧
𝜕𝑧

= 0 (9) 

The complete derivation is discussed in App. A.3. 
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2.1.2 The Navier-Stokes Equation 

The Navier-Stokes equation originates from the equation of motion for Newtonian fluids which 

equates the acceleration/deceleration of a fluid motion with the rate of momentum change due 

to the effect of forces acting upon the system, expressed as 

 𝜕

𝜕𝑡
(𝜌𝑐𝐯𝑐) + ∇ ∙ (𝜌𝑐𝐯𝑐𝐯𝑐) = −∇P𝑐 − ∇ ∙ 𝜏𝑐 + 𝜌𝑐𝐠 (10) 

The two terms in the left hand-side represent the change of motion comprising the time-

dependent and the convective components. The time-dependent term describes the rate of 

momentum accumulation/loss, whereas the convective term shows the momentum transport in 

a unit volume (𝜌𝑐 𝐯𝑐) which is driven by the fluid motion (represented by 𝐯𝑐). In the right-hand 

side, the terms containing P𝑐, 𝜏𝑐, and 𝐠 respectively describe the effects of the pressure, the 

viscous stress tensor, and the gravitational acceleration on the momentum change. For a 

Newtonian fluid, 𝜏𝑐 is expressed in terms of the fluid viscosity, 𝜇𝑐, and 𝐯𝑐: 

 
𝜏𝑐 = −𝜇𝑐(∇𝐯𝑐 + (∇𝐯𝑐)

𝑇) +
2

3
𝜇𝑐(∇ ∙ 𝐯𝑐)I (11) 

The superscript 𝑇 and the notation I denote the transpose operator and the identity tensor, 

respectively. For a thin film system, the gravity term appears to be negligible compared to the 

other terms as shown in App. A.4. Therefore, the last term of Eq. (10) is cancelled out and the 

substitution of Eq. (11) to Eq. (10) yields 

 
𝜌𝑐
𝜕𝐯𝑐
𝜕𝑡

+ 𝐯𝑐 ∙ ∇𝐯𝑐 = −∇P𝑐 + 𝜇𝑐∇
2𝐯𝑐 (12) 

Specifying ∇ and 𝐯𝑐 as Eqs. (7) and (8), with constant 𝜌𝑐 and 𝜇𝑐 give the 𝑟- and 𝑧-components 

of the Navier-Stokes equation: 

𝑟-component: 𝜌𝑐 (
𝜕𝑣𝑟
𝜕𝑡

+ 𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑟
𝜕𝑧
) = −

𝜕𝑃𝑐
𝜕𝑟

+ 𝜇𝑐 [
𝜕

𝜕𝑟
(
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟)) +

𝜕2𝑣𝑟
𝜕𝑧2

] (13) 

𝑧-component: 𝜌𝑐 (
𝜕𝑣𝑧
𝜕𝑡

+ 𝑣𝑟
𝜕𝑣𝑧
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧
) = −

𝜕𝑃𝑐
𝜕𝑧

+ 𝜇𝑐 [
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑣𝑧
𝜕𝑟
) +

𝜕2𝑣𝑧
𝜕𝑧2

] (14) 

The full derivation is explained in more detail through App. A.4. 

2.1.3 The Component Mass Balance Equation 

The component mass balance describes the distribution of substance 𝐴 in the continuous phase 

due to mass transfer, which is expressed in terms of the mass fraction, 𝜔𝐴,𝑐, as 

 𝜕(𝜌𝑐𝜔𝐴,𝑐)

𝜕𝑡
+ ∇ ∙ (𝜌𝑐𝐯𝑐𝜔𝐴,𝑐) = −∇ ∙ 𝐣𝐴 + 𝑟𝐴 (15) 
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In left-hand side, the first term indicates the rate of mass accumulation of species 𝐴 while the 

second term represents the mass rate change of 𝐴 due to convection. The right-hand side 

represents the contribution of the diffusion and the reaction on the mass balance. Following the 

Fick’s law, the diffusive mass flux, 𝐣𝐴, is defined as a function of the concentration gradient: 

 𝐣𝐴 = −𝜌𝑐𝐷𝐴𝐵∇𝜔𝐴,𝑐 (16) 

with 𝐷𝐴𝐵 denoting the molecular diffusivity, which is considered constant. By applying Eqs. 

(7), (8), and (16) to Eq. (15), the final expression of the component mass balance for the 

incompressible fluid is obtained according to App. A.5 as 

 𝜕𝜔𝐴,𝑐
𝜕𝑡

+ 𝑣𝑟
𝜕𝜔𝐴,𝑐
𝜕𝑟

+ 𝑣𝑧
𝜕𝜔𝐴,𝑐
𝜕𝑧

= 𝐷𝐴𝐵 [
′
.
.

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝜔𝐴,𝑐
𝜕𝑟

) +
𝜕2𝜔𝐴,𝑐
𝜕𝑧2

′
.
.

] +
𝑟𝐴
𝜌𝑐

 (17) 

2.2 Interface Conditions 

The interface conditions are derived according to the law of conservation where the total mass 

and the total momentum passing through the interface are conserved. The mass conservation 

is described in terms of the velocity fields while the momentum conservation yields the stress 

balance across the interface. These conditions are decomposed into the tangential and the 

normal components by taking the dot product of each balance with the tangent and the normal 

unit vectors. 

For a system without mass transfer and surfactants, the mass conservation gives: 

 𝐯𝑐|𝑧=ℎ/2 = 𝐮 

= 𝑈𝑛𝐧 + 𝑈𝑡𝐭1 (18) 

where 𝐮 describes the rate of interfacial displacement with 𝑈𝑛 and 𝑈𝑡 standing for the normal 

and the tangential velocities of the interface. The tangential element gives the no-slip condition 

whereas the normal component results in the kinematic condition. Meanwhile, the momentum 

conservation yields: 

 
‖T‖ ∙ 𝐧 = ∇𝑠 ∙ T𝐼 = (∇𝑠 ∙ I𝑠)𝜎 + I𝑠 ∙ ∇𝑠𝜎 

=   2𝐻𝜎𝐧    +    ∇𝑠𝜎 

 

(19) 

Here, ∇𝑠 and T𝐼 denote the surface gradient operator and the interfacial stress tensor: 

 
∇𝑠=

𝐭1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕

𝜕𝑟
+
𝐭2
𝑟

𝜕

𝜕𝜃
;        T𝐼 = I𝑠σ (20) 

where I𝑠 is the surface identity tensor: 

 I𝑠 = 𝐭1𝐭1 + 𝐭2𝐭2 (21) 
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The double brackets in Eq. (19) indicate the jump condition between the bulk phases which 

defines the bulk stress tensor ‖T‖ as [T𝑐|𝑧=ℎ/2 − T𝑑|𝑧=ℎ/2 ]. In this case, the signs of the film 

side and the bubble side tensors, +T𝑐 and −T𝑑, refer to the same and the opposite directions of 

𝐧. The two terms in the right-hand side of Eq. (19) respectively represent the effect of the 

curvature and the surface tension gradient on the balance. 

The inclusion of the mass transfer leads to a jump condition across the interface, i.e., normal 

to the interface, which affects the normal component of the interface conditions: the kinematic 

condition and the normal stress balance. Meanwhile, the surfactant presence creates the surface 

tension gradient along the interface, which changes the tangential mobility of the interface, i.e., 

the tangential stress balance and the no-slip condition. 

Although the interface is described by the surface coordinates, the unit vectors 𝐭1, 𝐭2, and 𝐧 

are formulated in terms of cylindrical coordinates, as given in Eqs. (3) and (4). Therefore, the 

final formulation of the interface conditions only contain cylindrical coordinates: 𝑟, 𝜃, and 𝑧. 

2.2.1 No-slip Condition 

The no-slip condition refers to the equality of the movement in tangential direction between 

the interface and the bulk phase, which is formulated by taking the tangential component of 

Eq. (18): 

 𝐯𝑐|𝑧=ℎ/2 ∙ 𝐭1 = 𝐮 ∙ 𝐭1 (22) 

As derived in App. A.6, applying 𝐭1 in Eq. (3) to Eq. (22) gives the no-slip condition: 

 𝑣𝑟|𝑧=ℎ/2 +
1
2
𝜕ℎ
𝜕𝑟
𝑣𝑧|𝑧=ℎ/2

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

= 𝑈𝑡 (23) 

The effect of the mass transfer is initially investigated for tangentially immobile interfaces 

which have zero 𝑈𝑡. Then, the mobility of the interface is included afterwards with non-zero 

𝑈𝑡, which is a function of the tangential stress of the dispersed phase, 𝜏𝑑, according to the 

boundary integral method (Davis et al., 1989; Ladyzhenskaya, 1969; Pozrikidis, 1992): 

 
𝑈𝑡 =

1

𝜇𝑑
∫  ∅(𝑟′, 𝜃)  𝜏𝑑  𝑑𝑟′
𝑟∞

0

 (24) 

 
∅(𝑟′, 𝜃) =

𝑟′

2𝜋
∫

𝑐𝑜𝑠𝜃

√𝑟2 + (𝑟′)2 − 2𝑟𝑟′𝑐𝑜𝑠𝜃
𝑑𝜃

𝜋

0

 (25) 

Substituting Eq. (25) to Eq. (24) results in 
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𝑈𝑡 =

1

𝜇𝑑
∫  

𝑟′

2𝜋
∫

𝑐𝑜𝑠𝜃

√𝑟2 + (𝑟′)2 − 2𝑟𝑟′𝑐𝑜𝑠𝜃
𝑑𝜃

𝜋

0

  𝜏𝑑   𝑑𝑟′
𝑟∞

0

 (26) 

where 𝜏𝑑 is obtained from the tangential stress balance, discussed in Section 2.2.4. 

2.2.2 Kinematic Condition 

The name of kinematic originates from the branch of dynamics that study the motion of bodies 

without considering the forces causing the motion. By this definition, the kinematic condition 

for a film system refers to the rate of the interface displacement which is analyzed through the 

normal component of Eq. (18). In the absence of the mass transfer, the kinematic condition 

indicates the equality between the normal velocity of the interface, 𝑈𝑛 = 𝐮 ∙ 𝐧, and the normal 

bulk velocity, 𝐯 ∙ 𝐧, at the interface position. The mass transfer causes a discrepancy between 

the two speeds, which is proportional to the mass flux passing through the interface, 𝑁|𝑧=ℎ/2, 

giving a modified balance: 

 𝑁|𝑧=ℎ/2 = −𝜌(𝐮 − 𝐯) ∙ 𝐧 

= −𝜌𝐮𝑚𝑡 ∙ 𝐧 (27) 

with 𝐮𝑚𝑡 referring to the rate of interface displacement caused by the mass transfer across the 

interface. The negative sign in front of 𝜌 implies that the mass flux moves to the reversed 

direction of 𝐧, as illustrated in Figure 2 (c). Meanwhile, the negative sign between 𝐮 and 𝐯 

represents the speed difference between the bubble interface displacement and the fluid motion. 

Equation (27) yields a relation among 𝐮, 𝐯, and 𝐮𝑚𝑡 in normal direction as 

 𝐮 ∙ 𝐧 = (𝐮𝑚𝑡 + 𝐯) ∙ 𝐧 (28) 

where 𝐮𝑚𝑡 ∙ 𝐧 = 𝑢𝑚𝑡 and 𝐯𝑐 ∙ 𝐧 = 𝑣𝑐,𝑛 are visualized in Figure 3. Following the physical 

configuration in Figure 2 (c) and Figure 3, the direction of 𝑢𝑚𝑡 is the same as Δ𝑧𝑚𝑡 which 

points to positive 𝐧. Meanwhile, 𝑣𝑐,𝑛 has the same direction as 𝑉1 described in Figure 2, which 

is in negative 𝐧. 

The mass conservation for the dissolution of gas defines 𝑁|𝑧=ℎ/2 as the total mass flux 

transferred from the dispersed phase, which has the same amount as the mass flux entering the 

continuous phase. This reformulates Eq. (27) into: 

 𝑁|𝑧=ℎ/2 = −𝜌𝐮𝑚𝑡 ∙ 𝐧 = −𝜌𝑑(𝐮 − 𝐯𝑑) ∙ 𝐧 = −𝜌𝑐(𝐮 − 𝐯𝑐) ∙ 𝐧 (29) 

with 𝜌𝑑 and 𝐯𝑑 representing the mass density and the bulk velocity of the dispersed phase. 
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The general formulation of 𝑁|𝑧=ℎ/2 is composed by the mass flux of the substances involved 

in the system, which are driven by the diffusion and the convection mechanisms. Therefore, 

the total mass flux is analyzed through a balance between the last term of Eq. (29) and the total 

of the diffusive and convective fluxes for all substances, 𝑖: 

 
−𝜌𝑐(𝐮 − 𝐯𝑐) ∙ 𝐧 =∑(−𝜌𝑐𝐷𝐴𝐵∇𝜔𝑖,𝑐 ∙ 𝐧 − 𝜌𝑐𝜔𝑖,𝑐(𝐮 − 𝐯𝑐) ∙ 𝐧)

𝑛

𝑖=1

 (30) 

Considering pure component of gas bubbles, as indicated in Figure 2 (c), the dissolution of gas 

only gives 𝐴 as the only substance transferring through the interfaces. Applying this assumption 

to Eq. (30) yields: 

−𝜌𝑐(𝐮 − 𝐯𝑐) ∙ 𝐧 = −𝜌𝑐𝐷𝐴𝐵∇𝜔𝐴,𝑐 ∙ 𝐧 − 𝜌𝑐𝜔𝐴,𝑐(𝐮 − 𝐯𝑐) ∙ 𝐧  (31) 

where 𝜔𝐴,𝑐 indicates the mass fraction of substance 𝐴 in the continuous phase. With some re-

arrangements, the analysis of Eq. (31) at the interface position, 𝑧 = ℎ/2, gives: 

 (1 − 𝜔𝐴,𝑐|𝑧=ℎ/2) (𝐯𝑐
|𝑧=ℎ/2 − 𝐮) ∙ 𝐧 = −𝐷𝐴𝐵∇𝜔𝐴,𝑐|𝑧=ℎ/2 ∙ 𝐧 

 𝐮 ∙ 𝐧 =  𝐯𝑐|𝑧=ℎ/2 ∙ 𝐧 +
𝐷𝐴𝐵∇𝜔𝐴,𝑐|𝑧=ℎ/2 ∙ 𝐧

(1 − 𝜔𝐴,𝑐|𝑧=ℎ/2)
 

 

(32) 

In the left-hand side, 𝐮 ∙ 𝐧 = 𝑈𝑛, represents the normal velocity of the interface, which is 

defined as 𝑈𝑛 =
1

2

𝜕ℎ

𝜕𝑡
 (Johns and Narayanan, 2007; Ozan and Jakobsen, 2019b). The full 

derivation in App. A.7 results in: 

 

𝑈𝑛 =
1

2

𝜕ℎ

𝜕𝑡
=
𝑣𝑧|𝑧=ℎ/2 −

1
2
𝜕ℎ
𝜕𝑟
𝑣𝑟|𝑧=ℎ/2

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

 

+
1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝐷𝐴𝐵

(1 − 𝜔𝐴,𝑐|𝑧=ℎ/2)
(
′
.
.

𝜕𝜔𝐴,𝑐
𝜕𝑧

|
𝑧=ℎ/2

−
1

2

𝜕ℎ

𝜕𝑟

𝜕𝜔𝐴,𝑐
𝜕𝑟

|
𝑧=ℎ/2

′
.
.

) 

 

 

(33) 

where the right-hand side indicates the normal bulk velocity in the continuous phase and the 

displacement rate of the interface due to the mass transfer. 

2.2.3 Normal Stress Balance 

The normal stress balance originates from the normal component of Eq. (19) which describes 

the conservation of momentum across the interface. The effect of the mass transfer appears on 

the balance as a convective term to describe the momentum jump condition driven by 𝐮𝑚𝑡 =

𝐮 − 𝐯 which is specified in Eq. (28). This yields the normal stress balance as 
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 2𝐻𝜎𝐧 ∙ 𝐧 + ∇𝑠𝜎 ∙ 𝐧 = ‖T‖: 𝐧𝐧 − ‖𝜌((𝐮 − 𝐯) ∙ 𝐧)
2
‖ (34) 

The first term in the left-hand side contains 2𝐻 which describes the twice of the mean curvature 

of deformable interfaces. This term is specified as the surface divergence of 𝐧: 

 2𝐻 = −∇s ∙ 𝐧 =
1

2𝑟

𝜕

𝜕𝑟
(𝑟
𝜕ℎ

𝜕𝑟
) (35) 

The negative sign in front of the surface gradient operator indicates that the interface curves to 

negative 𝐧 direction. The detail derivation of 2𝐻 can be referred to Chesters and Hofman 

(1982) and Ozan and Jakobsen (2020b), which is also provided in App. A.8. As the dot product 

of two identical vectors results in 𝐧 ∙ 𝐧 = 1, the left-hand side of Eq. (34) simplifies to 2𝐻𝜎 =

𝜎

2𝑟

𝜕

𝜕𝑟
(𝑟

𝜕ℎ

𝜕𝑟
). 

The second term in the left-hand side of Eq. (34) takes ∇𝑠 from Eq. (20) to yield 

 ∇𝑠𝜎 ∙ 𝐧 =

[
 
 
 

 
𝐭1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕𝜎

𝜕𝑟
+
𝐭2
𝑟

𝜕𝜎

𝜕𝜃
 

]
 
 
 

∙ 𝐧 = 0 (36) 

Note that 𝐭1 ∙ 𝐧 = 0 and 𝐭2 ∙ 𝐧 = 0 since the two vectors are perpendicular to each other. 

In the first term of the right-hand side of Eq. (34), T denotes the bulk stress tensors for 

Newtonian fluids, which are given as 

 T = −𝑃I + 𝜇(∇𝐯 + (∇𝐯)𝑇) (37) 

whereas the double brackets indicate the jump condition between the bulk phases as explained 

for Eq. (19). Thus, Eq. (34) becomes: 

 2𝐻𝜎 = [(T𝑐 ∙ 𝐧) ∙ 𝐧 − (T𝑑 ∙ 𝐧) ∙ 𝐧] − ‖𝜌(𝑈𝑛 − 𝑣𝑛)
2‖ (38) 

The last term of Eq. (38) describes the normal stress caused by the mass transfer which is 

treated further in Section 2.3. Expanding the first term of the right-hand side in Eq. (38) as 

derived in App. A.8 yields 

 𝜎

2𝑟

𝜕

𝜕𝑟
(𝑟
𝜕ℎ

𝜕𝑟
) = −𝑃𝑐 +

𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [
′
.
.

1

2
(
𝜕ℎ

𝜕𝑟
)
2 𝜕𝑣𝑟
𝜕𝑟

+ (
𝜕𝑣𝑟
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑟
) (−

𝜕ℎ

𝜕𝑟
) + 2

𝜕𝑣𝑧
𝜕𝑧

′
.
.

] 

+𝑃𝑑 − ‖𝜌(𝑈𝑛 − 𝑣𝑛)
2‖ (39) 

Notice that the normal stress emerging in the dispersed phase only considers the pressure 

contribution, 𝑃𝑑, since 𝜇𝑑 ≪ 𝜇𝑐 for bubbles in liquid system. In addition, the surface tension 

changes only to a very small extent. Thus, although the surface tension gradient is important in 

the tangential stress balance, as discussed in Section 2.2.4, the change in its value is negligible, 

meaning that the surface tension is assumed constant in the normal stress balance, i.e., 𝜎 ≈ 𝜎0. 
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2.2.4 Tangential Stress Balance 

The tangential stress balance equates the interfacial stress and the bulk phases stresses along 

the interface which is described as the tangential component of Eq. (19): 

 2𝐻𝜎𝐧 ∙ 𝐭1 + ∇𝑠𝜎 ∙ 𝐭1 = ‖T‖: 𝐧𝐭1 (40) 

The dot product 𝐧 ∙ 𝐭1 = 0 due to their orthogonality, giving no curvature term in the left-hand 

side. By applying ∇𝑠 in Eq. (20), the second term of the left-hand side in Eq. (40) becomes 

 

∇𝑠𝜎 ∙ 𝐭1 =

[
 
 
 

 
𝐭1

√1+
1
4
(
𝜕ℎ
𝜕𝑟
)
2

𝜕𝜎

𝜕𝑟
+
𝐭2
𝑟

𝜕𝜎

𝜕𝜃
 

]
 
 
 

∙ 𝐭1 

=
1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕𝜎

𝜕𝑟
 

(41) 

Here, σ describes the surface tension that changes with r for non-uniform distribution of 

surfactants. By denoting the tangential stress of the dispersed phase as 𝜏𝑑 = −(T𝑑 ∙ 𝐧) ∙ 𝐭1 and 

referring to App. A.9, the tangential stress balance is formulated as 

 1

√1 +
1
4
(
𝜕ℎ
𝜕𝑟
)
2

𝜕𝜎

𝜕𝑟
 

=
𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [−

𝜕ℎ

𝜕𝑟

𝜕𝑣𝑟
𝜕𝑟

+ (
𝜕𝑣𝑟
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑟
) (1 −

1

4
(
𝜕ℎ

𝜕𝑟
)
2

) +
𝜕ℎ

𝜕𝑟

𝜕𝑣𝑧
𝜕𝑧

′
.
.

] + 𝜏𝑑 (42) 

 

The surface tension gradient, 𝜕𝜎/𝜕𝑟, appearing in the left-hand side represents the Marangoni 

effects due to concentration gradient, 𝜕Γ/𝜕𝑟, that is caused by uneven distribution of 

surfactants on the interface. This implies that the change in the surface tension depends on the 

change in the surface excess concentration, which is expressed as 

 𝜕𝜎

𝜕𝑟
=
𝜕𝜎

𝜕Γ

𝜕Γ

𝜕𝑟
 

≈
Δ𝜎

ΔΓ

𝜕Γ

𝜕𝑟
= 𝜎Γ

𝜕Γ

𝜕𝑟
 

 

 

(43) 

The term 𝜕𝜎/𝜕Γ describes the dependency of the surface tension on the surface excess 

concentration which is assumed to be constant and introduced as 𝜎Γ. Substituting Eq. (43) to 

Eq. (42) yields 

 𝜎Γ
𝜕Γ
𝜕𝑟

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
=

𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [−

𝜕ℎ

𝜕𝑟

𝜕𝑣𝑟
𝜕𝑟

+ (
𝜕𝑣𝑟
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑟
) (1 −

1

4
(
𝜕ℎ

𝜕𝑟
)
2

) +
𝜕ℎ

𝜕𝑟

𝜕𝑣𝑧
𝜕𝑧

′
.
.

] + 𝜏𝑑 (44) 
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2.2.5 Surface Excess Concentration Balance 

This balance describes the distribution of the surfactants along the interface, which is expressed 

in terms of the surface excess concentration, Γ. Since the surfactants are assumed to be confined 

to the interfaces, the surfactant excess concentration balance reads: 

 𝜕Γ

𝜕𝑡
+ ∇𝑠 ∙ (Γ𝐮) + ∇𝑠 ∙ (𝐉𝐼 ∙ I𝑠) = 0 (45) 

In the left-hand side, the first term represents the rate of accumulation of Γ, the second term 

where 𝐮 is defined as Eq. (18) describes the rate of change due to the convection, and the last 

term corresponds to the diffusion, where 𝐉𝐼 stands for the interfacial mass flux of the surfactant: 

 𝐉𝐼 = −𝐷𝐼∇𝑠Γ (46) 

The right-hand side of Eq. (45) describes the concentration jump condition between the bulk 

phases, which appears to be zero since the surfactants are assumed to be confined at the 

interface. Implementing 𝐮, I𝑠, and 𝐉𝐼 in Eqs. (18), (21), and (46) expands Eq. (45) into 

 𝜕Γ

𝜕𝑡
+ ∇𝑠 ∙ [

−
Γ(𝑈𝑛𝐧 + 𝑈𝑡𝐭1)

.
] + ∇𝑠 ∙ [

−
(−𝐷𝐼∇𝑠Γ) ∙ (𝐭1𝐭1 + 𝐭2𝐭2)

.
] = 0 (47) 

By substituting 𝐭1, 𝐭2, 𝐧, and ∇𝑠 in Eqs. (3), (4), and (20) to Eq. (47), taking the dot product 

rules as App. A.1 derives the surface excess concentration balance as 

 
𝜕Γ

𝜕𝑡
+

1
𝑟
𝜕
𝜕𝑟
(𝑟Γ𝑈𝑡)

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2
−
1

2

Γ𝑈𝑛

[1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

3
2

𝜕2ℎ

𝜕𝑟2
−
Γ𝑈𝑛
2𝑟

𝜕ℎ
𝜕𝑟

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

 

−
𝐷𝐼

1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕Γ

𝜕𝑟
) −

1

4

𝜕Γ

𝜕𝑟

𝜕ℎ
𝜕𝑟
𝜕2ℎ
𝜕𝑟2

1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2] = 0 

 

 

 

(48) 

2.3 Non-dimensionalization 

The model equations are non-dimensionalized to determine the dominant terms based on the 

lubrication theory. The transformation requires the characteristic scales to link the dimensional 

and non-dimensional variables with a relation: 

 𝜑 = �̅��̃� (49) 

where the left-hand side indicates the dimensional variable and the signs bar and tilde represent 

the characteristic scale and the dimensionless variable, respectively. The characteristic scales 

are analyzed by taking a clean system without mass transfer as the default case. This implies 

that the surfactant effect on the tangential stress balance, Eq. (42), and the mass transfer effect 

on the kinematic condition and the normal stress balance, Eqs. (33) and (39), are not considered 
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when determining the characteristic scales. Then, the determined scales are used to evaluate 

the importance of the surfactant presence and the mass transfer on the corresponding equations. 

Since the film is thin, the thickness of the film is smaller than the film radius. Introducing 

epsilon, 𝜖, as a parameter having a small value gives ℎ̅/�̅� = 𝜖 ≪ 1. The film radius is justified 

to be much smaller than the equivalent radius of the bubble, 𝑅𝑝, for a gentle collision. This 

results in: 

 �̅� = 𝜖𝑅𝑝, ℎ̅ = 𝜖�̅� = 𝜖2𝑅𝑝 (50) 

The radial and axial velocity scales, �̅�𝑟 and �̅�𝑧, are analyzed by evaluating the continuity 

equation in Eq. (9) which signifies the equality of the rate of mass flowing throughout the 

system. In terms of dimensionless variables, Eq. (9) is written as 

 �̅�𝑟
�̅�
[
′
.
.

1

�̃�

𝜕

𝜕�̃�
(�̃��̃�𝑟)

′
.
.

] +
�̅�𝑧

ℎ̅
[
′
.
.

𝜕�̃�𝑧
𝜕�̃�

′
.
.

] = 0 (51) 

The mass conservation indicates that the two terms in the left-hand side should stay, meaning 

that both terms have comparable magnitudes: 

 �̅�𝑟
�̅�
=
�̅�𝑧

ℎ̅
 (52) 

Substituting Eq. (50) to Eq. (53) yields 

 
�̅�𝑧 =

ℎ̅

�̅�
�̅�𝑟 = 𝜖�̅�𝑟 (53) 

This transforms the continuity equation in Eq. (51) into the dimensionless form: 

 1

�̃�

𝜕

𝜕�̃�
(�̃��̃�𝑟) +

𝜕�̃�𝑧
𝜕�̃�

= 0 (54) 

The time scale is determined through the kinematic condition in Eq. (33) which describes the 

displacement of the interfaces with time due to the fluid motion. Since the coalescence time 

stems from the drainage of the film which moves the interface position, the relationship among 

the length, the velocity, and the time scales are well described in the kinematic condition. In 

terms of dimensionless variables, Eq. (33) can be written as 

 

ℎ̅

𝑡̅
[
′
.
.

1

2

𝜕ℎ̃

𝜕�̃�

′
.
.

] =

�̅�𝑧[
.
.�̃�𝑧
.
.] −

ℎ̅�̅�𝑟
�̅� [

′
.
.

1
2
𝜕ℎ̃
𝜕�̃�
�̃�𝑟 ]

√1 + (
ℎ̅
�̅�
)
2

[
′
.
.

1
4
(
𝜕ℎ̃
𝜕�̃�
)
2

 ]

+
𝐷𝐴𝐵

(1 − 𝜔𝐴,𝑐)

[
′
.
.

1

ℎ̅
(
𝜕𝜔𝐴,𝑐
𝜕�̃�

) −
ℎ̅
�̅�2
(
1
2
𝜕ℎ̃
𝜕�̃�
𝜕𝜔𝐴,𝑐
𝜕�̃�

) ]

√1 + (
ℎ̅
�̅�
)
2

[
′
.
.

1
4
(
𝜕ℎ̃
𝜕�̃�
)
2

 ]

 (55) 

By implementing the length and the velocity scales in Eqs. (50) and (53), Eq. (55) becomes 
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ℎ̅

𝑡̅
[
′
.
.

1

2

𝜕ℎ̃

𝜕�̃�

′
.
.

] =

�̅�𝑧 [
′
.
.

�̃�𝑧 −
1
2
𝜕ℎ̃
𝜕�̃�
�̃�𝑟 ]

√1 + 𝜖2 [
′
.
.

1
4
(
𝜕ℎ̃
𝜕�̃�
)
2

 ]

+
𝐷𝐴𝐵

(1 − 𝜔𝐴,𝑐)

[
′
.
.

1

ℎ̅
(
𝜕𝜔𝐴,𝑐
𝜕�̃�

) −
𝜖2

ℎ̅
(
1
2
𝜕ℎ̃
𝜕�̃�
𝜕𝜔𝐴,𝑐
𝜕�̃�

) ]

√1 + 𝜖2 [
′
.
.

1
4
(
𝜕ℎ̃
𝜕�̃�
)
2

 ]

 (56) 

The small value of 𝜖2 appearing in the second term inside the square roots makes this term 

omitted (𝜖2 ≪ 1). In addition, the last term of the right-hand side indicates that the radial 

component of the diffusive flux is insignificant compared to the axial component (
𝜖2

ℎ̅
≪

1

ℎ̅
), 

which simplifies Eq. (56) into 

 ℎ̅

𝑡̅
[
′
.
.

1

2

𝜕ℎ̃

𝜕�̃�

′
.
.

] = �̅�𝑧 [
′
.
.

�̃�𝑧 −
1

2

𝜕ℎ̃

𝜕�̃�
�̃�𝑟

′
.
.

] +
𝐷𝐴𝐵

(1 − 𝜔𝐴,𝑐)

1

ℎ̅
[
′
.
.

𝜕𝜔𝐴,𝑐
𝜕�̃�

′
.
.

] (57) 

The significant terms are analyzed based on the default case without mass transfer which is 

then used to evaluate the importance of the mass transfer. i.e., the last term of Eq. (57). Since 

the mass should be conserved, the left-hand side and the first term of the right-hand side in Eq. 

(57) should stay as two significant terms with comparable magnitudes, 
ℎ̅

�̅�
= �̅�𝑧, which yields  

 
𝑡̅ =

ℎ̅

�̅�𝑧
 (58) 

Substituting Eq. (58) into Eq. (57) gives the dimensionless normal velocity of the interface �̃�𝑛: 

 
�̃�𝑛 =

1

2

𝜕ℎ̃

𝜕�̃�
= �̃�𝑧|�̃�=ℎ̃/2 −

1

2

𝜕ℎ̃

𝜕�̃�
�̃�𝑟|𝑧=ℎ̃/2 +

1

𝑃𝑒

1

(1 − 𝜔𝐴,𝑐|𝑧=ℎ̃/2)

𝜕𝜔𝐴,𝑐
𝜕�̃�

|
𝑧=ℎ̃/2

 (59) 

The first two terms in the right-hand side represent the axial and the radial components of the 

dimensionless normal velocity in the continuous phase, ṽ𝑐,𝑛. Meanwhile, the last term 

corresponds to the contribution of the mass transfer in the interface displacement rate which 

scales with 1/𝑃𝑒 =
𝐷𝐴𝐵

�̅�𝑧ℎ̅
, giving the bulk Péclet number, 𝑃𝑒, as 

 
𝑃𝑒 =

�̅�𝑧ℎ̅

𝐷𝐴𝐵
 (60) 

where 𝑃𝑒 signifies the ratio between the convective and the diffusive mass transfer rates in the 

bulk phase. 

The analysis of the pressure scale is based on the film drainage mechanism in which the 

movement of the approaching bubbles squeezes the film and results in the pressure gradient in 

𝑟-direction. This justifies that the pressure scale stems from the 𝑟-component of the Navier-

Stokes equation in Eq. (13) which can be expressed in terms of dimensionless variables by 

implementing Eqs. (50), (53), and (58) to give 
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𝜖𝜌𝑐�̅�𝑟

2

ℎ̅
[
𝜕�̃�𝑟
𝜕�̃�

+ �̃�𝑟
𝜕�̃�𝑟
𝜕�̃�

+ �̃�𝑧
𝜕�̃�𝑟
𝜕�̃�
] =

�̅�𝜖

ℎ̅
[−
𝜕�̃�𝑐
𝜕�̃�
] +

𝜇𝑐�̅�𝑟𝜖
2

ℎ̅2
[
𝜕

𝜕�̃�
(
1

�̃�

𝜕

𝜕�̃�
(�̃��̃�𝑟))] +

𝜇𝑐�̅�𝑟

ℎ̅2
[
𝜕2�̃�𝑟
𝜕�̃�2

] (61) 

Comparing the last two terms in the right-hand side indicates that the radial deviatoric stress is 

insignificant compared to the axial component (
𝜇𝑐�̅�𝑟𝜖

2

ℎ̅2
≪

𝜇𝑐�̅�𝑟

ℎ̅2
). This yields the remaining terms 

after the division by 
𝜇𝑐�̅�𝑟

ℎ̅2
 as 

 
𝜖𝜌𝑐�̅�𝑟ℎ̅

𝜇𝑐
[
′
.
.

𝜕�̃�𝑟
𝜕�̃�

+ �̃�𝑟
𝜕�̃�𝑟
𝜕�̃�

+ �̃�𝑧
𝜕�̃�𝑟
𝜕�̃�

′
.
.

] =
�̅�ℎ̅𝜖

𝜇𝑐�̅�𝑟
[−
𝜕�̃�𝑐
𝜕�̃�

′
.
.

] + [
′
.
.

𝜕2�̃�𝑟
𝜕�̃�2

′
.
.

] (62) 

The scales in the left-hand side, 
𝜖𝜌𝑐�̅�𝑟ℎ̅

𝜇𝑐
, reflect a Reynolds number which is estimated to be 

small for a thin film according to experimental studies. Thus, the left-hand side of Eq. (62) can 

be omitted, leaving the remaining terms in the right-hand side as the significant terms with 

comparable magnitudes, 
�̅�ℎ̅𝜖

𝜇𝑐�̅�𝑟
= 1, to comply with the momentum conservation. This 

formulates the pressure scale as 

and simplifies Eq. (62) into 

 
0 = −

𝜕�̃�𝑐
𝜕�̃�

+
𝜕2�̃�𝑟
𝜕�̃�2

 (64) 

The characteristic scales acquired in Eqs. (50), (53), (58), and (63) are implemented to non-

dimensionalize the remaining equations. For the 𝑧-component of the Navier-Stokes, expressing 

Eq. (14) in terms of dimensionless variables give 

 
𝜖2𝜌𝑐�̅�𝑟

2

ℎ̅
[
𝜕�̃�𝑧
𝜕�̃�

+ �̃�𝑟
𝜕�̃�𝑧
𝜕�̃�

+ �̃�𝑧
𝜕�̃�𝑧
𝜕�̃�
] =

𝜇𝑐�̅�𝑟

ℎ̅2𝜖
[−
𝜕�̃�𝑐
𝜕�̃�
] +

𝜇𝑐�̅�𝑟𝜖
3

ℎ̅2
[
1

�̃�

𝜕

𝜕�̃�
(�̃��̃�𝑟)] +

𝜇𝑐�̅�𝑟𝜖

ℎ̅2
[
𝜕2�̃�𝑧
𝜕�̃�2

] (65) 

The right-hand side considers the pressure term as the only significant term since the last two 

terms are negligible (
𝜇𝑐�̅�𝑟𝜖

3

ℎ̅2
≪

𝜇𝑐�̅�𝑟

ℎ̅2𝜖
;
𝜇𝑐�̅�𝑟𝜖

ℎ̅2
≪

𝜇𝑐�̅�𝑟

ℎ̅2𝜖
). Dividing the remaining terms with 

𝜇𝑐�̅�𝑟

ℎ̅2𝜖
 

yields a Reynolds number, 
𝜖3𝜌𝑐�̅�𝑟ℎ̅

𝜇𝑐
, in the left-hand side which gives a small magnitude as 

justified for Eq. (62). Therefore, Eq. (65) becomes 

 
0 = −

𝜕�̃�𝑐
𝜕�̃�

 (66) 

The non-dimensionalization of the component balance for the dissolution of gas transforms Eq. 

(17) into 

 �̅�𝑧

ℎ̅
(
′
.
.

𝜕𝜔𝐴,𝑐
𝜕�̃�

+ �̃�𝑟
𝜕𝜔𝐴,𝑐
𝜕�̃�

+ �̃�𝑧
𝜕𝜔𝐴,𝑐
𝜕�̃�

′
.
.

) = 𝐷𝐴𝐵 [
′
.
.

𝜖2

ℎ̅2
1

�̃�

𝜕

𝜕�̃�
(�̃�
𝜕𝜔𝐴,𝑐
𝜕�̃�

) +
1

ℎ̅2
𝜕2𝜔𝐴,𝑐
𝜕�̃�2

′
.
.

] +
𝑟𝐴
𝜌𝑐

 (67) 

 
�̅� =

𝜇𝑐�̅�𝑟

ℎ̅𝜖
 (63) 
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The radial diffusive term appears to be negligible compared to the axial component (
𝜖2

ℎ̅2
≪

1

ℎ̅2
). 

The remaining terms are divided with 
�̅�𝑧

ℎ̅
 to simplify Eq. (67) into 

 𝜕𝜔𝐴,𝑐
𝜕�̃�

+ �̃�𝑟
𝜕𝜔𝐴,𝑐
𝜕�̃�

+ �̃�𝑧
𝜕𝜔𝐴,𝑐
𝜕�̃�

=
1

𝑃𝑒

𝜕2𝜔𝐴,𝑐
𝜕�̃�2

+ 𝑄 (68) 

where 𝑃𝑒 is defined in Eq. (60) and 𝑄 is introduced as the dimensionless reaction term: 

 
𝑄 =

ℎ̅

�̅�𝑧

𝑟𝐴
𝜌𝑐
= 𝑡̅

𝑟𝐴
𝜌𝑐

 (69) 

The no-slip condition is evaluated by scaling �̃�𝑡 with �̅�𝑟, transforming Eq. (23) into 

 
�̅�𝑟[�̃�𝑟] + 𝜖

2�̅�𝑟 [

.

.

.

1
2
𝜕ℎ̃
𝜕�̃�
�̃�𝑧

.

.

.
]

√1 + 𝜖2 [
′
.
.

1
4
(
𝜕ℎ̃
𝜕�̃�
)
2

 ]

= �̅�𝑟�̃�𝑡 (70) 

In the numerator part of the left-hand side, the axial velocity term appears to be insignificant 

compared to the radial velocity. Additionally, the second term inside the square root is 

negligible compared to 1, simplifying Eq. (70) into 

 �̃�𝑟|𝑧=ℎ̃/2 = �̃�𝑡 (71) 

The normal stress balance is assessed by re-writing Eq. (39) as 

 

-
𝜇𝑐�̅�𝑟

ℎ̅𝜖
‖�̃�‖ +

𝜇𝑐�̅�𝑟𝜖
3

ℎ̅
[
1
2
(
𝜕ℎ̃
𝜕�̃�
)
2
𝜕�̃�𝑟
𝜕�̃�
]+ [

𝜇𝑐�̅�𝑟𝜖
2

ℎ̅
(
𝜕�̃�𝑟
𝜕�̃�
)+

𝜇𝑐�̅�𝑟𝜖
3

ℎ̅
(
𝜕�̃�𝑧
𝜕�̃�
)] (-

𝜕ℎ̃
𝜕�̃�
)+

𝜇𝑐�̅�𝑟𝜖

ℎ̅
(2
𝜕�̃�𝑧
𝜕�̃�
)

1 + 𝜖2 [

.

.

.

1
4
(
𝜕ℎ̃
𝜕�̃�
)
2 .
.
.
]

 

 
−�̅�𝑧

2 ‖𝜌(�̃�𝑛 − �̃�𝑛)
2
‖ =

𝜖2𝜎0

ℎ̅
[
′
.
.

1

2�̃�

𝜕

𝜕�̃�
(�̃�
𝜕ℎ̃

𝜕�̃�
)
′
.
.

] (72) 

The right-hand side indicates that the surface tension is assumed constant, i.e., 𝜎 ≈ 𝜎0, as 

mentioned in Section 2.2.3. In the second term of the left-hand side, the denominator is 

noticeably close to 1 since 𝜖2 ≪ 1. Then, comparing all terms containing 
𝜇𝑐�̅�𝑟

ℎ̅
 leaves the 

pressure terms as the significant term, hence, reduces Eq. (72) into 

 
−
𝜇𝑐�̅�𝑟

ℎ̅𝜖
‖�̃�‖ − 𝜖2�̅�𝑟

2 ‖𝜌(�̃�𝑛 − �̃�𝑛)
2
‖ =

𝜖2𝜎0

ℎ̅
[
′
.
.

1

2�̃�

𝜕

𝜕�̃�
(�̃�
𝜕ℎ̃

𝜕�̃�
)
′
.
.

] (73) 

Notice that �̅�𝑧
2 in the third terms of the left-hand side of Eq. (72) transforms into 𝜖2�̅�𝑟

2. By 

dividing both sides with 
𝜇𝑐�̅�𝑟

ℎ̅𝜖
, Eq. (73) becomes 
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−‖�̃�‖ −

𝜖3�̅�𝑟ℎ̅

𝜇𝑐
‖𝜌(�̃�𝑛 − 𝑣𝑛)

2
‖ =

𝜖3𝜎0
𝜇𝑐�̅�𝑟

[
′
.
.

1

2�̃�

𝜕

𝜕�̃�
(�̃�
𝜕ℎ̃

𝜕�̃�
)
′
.
.

] (74) 

The momentum conservation should hold for cases without mass transfer. This requires the 

pressure and the curvature terms to stay as significant terms with comparable magnitudes. 

Equating both magnitudes yields �̅�𝑟 in terms of the physical properties as 

 �̅�𝑟 =
𝜎0
𝜇𝑐
𝜖3 (75) 

and transforms Eq. (74) into 

 
−‖�̃�‖ −

𝜖3�̅�𝑟ℎ̅

𝜇𝑐
‖𝜌(�̃�𝑛 − �̃�𝑛)

2
‖ =

1

2�̃�

𝜕

𝜕�̃�
(�̃�
𝜕ℎ̃

𝜕�̃�
) (76) 

Re-evaluating Eq. (76) with �̅�𝑟 and ℎ̅ in Eqs. (75) and (50) estimates the magnitude in the 

second term of the left hand-side to be 10-4, which is less significant than the coefficient of the 

pressure and the curvature terms that is around 1. This implies that the role of the mass transfer 

on the normal stress balance is negligible. By referring to section 2.2.3, the double bracket 

defines the jump condition in the pressure term as ‖�̃�‖ = �̃�𝑐 − �̃�𝑑 which expands Eq. (76) into 

 
�̃�𝑑|𝑧=ℎ̃/2 − �̃�𝑐|𝑧=ℎ̃/2 =

1

2�̃�

𝜕

𝜕�̃�
( �̃�

𝜕ℎ̃

𝜕�̃�

′
.
.

) (77) 

Based on Eq. (75), all remaining characteristic scales and the dimensionless numbers in Eqs. 

(53), (58), (60), (63), and (69) can be formulated in terms of the physical properties as 

summarized in Eq. (91). 

The non-dimensionalization of the tangential stress balance re-writes Eq. (44) as 

 𝜎0
�̅� [�̃�Γ̃

𝜕Γ̃
𝜕�̃�
]

√1 + 𝜖2 [
1
4
(
𝜕ℎ̃
𝜕�̃�
)
2

]

 

=
𝜇𝑐

1 + 𝜖2 [
1
4
(
𝜕ℎ̃
𝜕�̃�
)
2

]

{
′
.
.

�̅�𝑟𝜖
2

ℎ̅
[−
𝜕ℎ̃

𝜕�̃�

𝜕�̃�𝑟
𝜕�̃�
]+(

�̅�𝑟

ℎ̅
[
𝜕�̃�𝑟
𝜕�̃�
] +

�̅�𝑟𝜖
2

ℎ̅
[
𝜕�̃�𝑧
𝜕�̃�
])(1 − 𝜖2 [

1

4
(
𝜕ℎ̃

𝜕�̃�
)

2

])

+
�̅�𝑟𝜖

2

ℎ̅
[
′
.
.

𝜕ℎ̃

𝜕�̃�

𝜕�̃�𝑧
𝜕�̃�

′
.
.

]
′
.
.

} + 𝜏�̅��̃�𝑑 

 

 

 

 

 

 

 

(78) 

Notice that the numerator in the left-hand side stems from 
𝜕𝜎

𝜕𝑟
 which scales with 

𝜎0

�̅�
 where 𝜎0 

stands for the initial surface tension. All terms having a magnitude of 𝜖2, which is smaller than 

1, are omitted. This reduces Eq. (78) into 
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 𝜎0
�̅�
[�̃�Γ̃

𝜕Γ̃

𝜕�̃�
] = 𝜇𝑐 {

′
.
.

�̅�𝑟𝜖
2

ℎ̅
[−
𝜕ℎ̃

𝜕�̃�

𝜕�̃�𝑟
𝜕�̃�
] +

�̅�𝑟

ℎ̅
[
𝜕�̃�𝑟
𝜕�̃�
] +

�̅�𝑟𝜖
2

ℎ̅
[
𝜕�̃�𝑧
𝜕�̃�
] +

�̅�𝑟𝜖
2

ℎ̅
[
′
.
.

𝜕ℎ̃

𝜕�̃�

𝜕�̃�𝑧
𝜕�̃�

′
.
.

]
′
.
.

} + 𝜏�̅��̃�𝑑 (79) 

In the right-hand side, the three terms containing �̅�𝑟𝜖
2/ℎ̅ are negligible compared to the one 

with a magnitude of �̅�𝑟/ℎ̅, simplifying Eq. (79) into 

 𝜎0
�̅�
[�̃�Γ̃

𝜕Γ̃

𝜕�̃�
] = 𝜇𝑐

�̅�𝑟

ℎ̅
[
𝜕�̃�𝑟
𝜕�̃�
] + 𝜏�̅��̃�𝑑 (80) 

The important terms in this stage are analyzed by taking a clean system without surfactants as 

the default case, i.e., Γ = 0, which needs to satisfy the law of momentum conservation. This 

requires the two terms in the right-hand side to stay significant with equal magnitudes: 

 
𝜏�̅� = 𝜇𝑐

�̅�𝑟

ℎ̅
 (81) 

Evaluating Eq. (80) with Eq. (81) gives 

 𝜎0
�̅�

ℎ̅

𝜇𝑐�̅�𝑟
[�̃�Γ̃

𝜕Γ̃

𝜕�̃�
] =

𝜕�̃�𝑟
𝜕�̃�
|
𝑧=ℎ̃/2

+ �̃�𝑑|𝑧=ℎ̃/2 (82) 

where ℎ̅, �̅�, and �̅�𝑟 are defined in Eqs. (50) and (75), transforming Eq. (82) into 

 1

𝜖2
[�̃�Γ̃

𝜕Γ̃

𝜕�̃�
] =

𝜕�̃�𝑟
𝜕�̃�
|
𝑧=ℎ̃/2

+ �̃�𝑑|𝑧=ℎ̃/2 (83) 

Here, the magnitude of the left-hand side appears to be larger than the ones for the two terms 

in the right-hand side (1/𝜖2 ≫ 1). This indicates that the left-hand side is more dominant than 

the other two terms. However, neglecting the terms in the right-hand side results in 
1

𝜖2
[�̃�Γ̃

𝜕Γ̃

𝜕�̃�
] =

0, which is unreasonable for this term to become the largest term and also zero at the same 

time. Thus, the right-hand side of Eq. (83) cannot be neglected in this case. By merging �̃�Γ̃ 

with 1/𝜖2, Eq. (83) becomes 

 
�̃�Γ̃
′ 𝜕Γ̃

𝜕�̃�
=
𝜕�̃�𝑟
𝜕�̃�
|
𝑧=ℎ̃/2

+ �̃�𝑑|𝑧=ℎ̃/2 (84) 

where �̃�Γ̃
′ =

1

𝜖2
�̃�Γ̃ =

1

𝜖2
Δ�̃�

ΔΓ̃
 is called as the dimensionless dependence hereafter. Equation (84) is 

required to determine 𝑈𝑡 for tangentially mobile interfaces through Eq. (26) which can be 

expressed in terms of dimensionless variables: 

 
�̅�𝑟�̃�𝑡 =

1

𝜇𝑑
𝜏�̅��̅� ∫  

�̃�′

2𝜋
∫

𝑐𝑜𝑠𝜃

√�̃�2 + (�̃�′)2 − 2�̃��̃�′𝑐𝑜𝑠𝜃
𝑑𝜃

𝜋

0

  �̃�𝑑   𝑑�̃�′
�̃�∞

0

 (85) 

where the integration variable 𝑟′ scales with �̅�. Substituting Eq. (81) to Eq. (85) results in 

 
�̃�𝑡 =

1

𝜆∗
∫  

�̃�′

2𝜋
∫

𝑐𝑜𝑠𝜃

√�̃�2 + (�̃�′)2 − 2�̃��̃�′𝑐𝑜𝑠𝜃
𝑑𝜃

𝜋

0

 �̃�𝑑   𝑑�̃�′
�̃�∞

0

 (86) 



43 

 

The notation 𝜆∗ =
𝜖𝜇𝑑

𝜇𝑐
 denotes the viscosity ratio of the dispersed phase to the continues phase, 

which signifies the level of interfacial mobility. Since this study concerns on a collision of gas 

bubbles in water, the value of 𝜆∗ is relatively small, which indicates that it is easier for the 

interface to move tangentially, reflecting high mobility (high �̃�𝑡) when the system is free from 

surfactants. For an initial investigation, this study considers the interfaces to be tangentially 

immobile, �̃�𝑡 = 0, and the tangential stress balance in Eq. (84) is not required. 

The non-dimensionalization of the surfactant excess concentration balance estimates the term 

1+
1

4
(
𝜕ℎ

𝜕𝑟
)
2

= 1 + 𝜖2 [
1

4
(
𝜕ℎ̃

𝜕�̃�
)
2

] as 1 due to the small parameter, 𝜖2 ≪ 1, which reduces Eq. (48) 

into 

 Γ𝑚
𝑡̅
[
𝜕Γ̃

𝜕�̃�
] +

�̅�𝑟Γ𝑚
�̅�

[
1

�̃�

𝜕

𝜕�̃�
(�̃�Γ̃�̃�𝑡)] −

�̅�𝑧Γ𝑚𝜖

�̅�
[
1

2
Γ̃�̃�𝑛

𝜕2ℎ̃

𝜕�̃�2
] −

�̅�𝑧Γ𝑚𝜖

�̅�
[
Γ̃�̃�𝑛
2�̃�

𝜕ℎ̃

𝜕�̃�
] 

−𝐷𝐼 {
Γ𝑚
�̅�2
[
1

�̃�

𝜕

𝜕�̃�
(�̃�
𝜕Γ̃

𝜕�̃�
)] −

Γ𝑚𝜖
2

�̅�2
[
1

4

𝜕Γ̃

𝜕�̃�

𝜕ℎ̃

𝜕�̃�

𝜕2ℎ̃

𝜕�̃�2
]} = 0 

 

 

(87) 

Notice that 𝑈𝑛 and Γ scale with �̅�𝑧 and Γ𝑚, respectively, where Γ𝑚 denotes the surface excess 

concentration when the critical micelle concentration is reached. Rearranging Eq. (87) and 

applying �̅�𝑟, �̅�, ℎ̅, and 𝑡̅ summarized in Eq. (91) gives 

 𝜎0Γ𝑚𝜖
2

𝜇𝑐𝑅𝑝
[
𝜕Γ̃

𝜕�̃�
+
1

�̃�

𝜕

𝜕�̃�
(�̃�Γ̃�̃�𝑡)] +

𝜎0Γ𝑚𝜖
4

𝜇𝑐𝑅𝑝
[−
1

2
Γ̃�̃�𝑛

𝜕2ℎ̃

𝜕�̃�2
−
Γ̃�̃�𝑛
2�̃�

𝜕ℎ̃

𝜕�̃�
] 

−𝐷𝐼
Γ𝑚

𝑅𝑝
2𝜖2

[
1

�̃�

𝜕

𝜕�̃�
(�̃�
𝜕Γ̃

𝜕�̃�
)] + 𝐷𝐼

Γ𝑚

𝑅𝑝
2 [
1

4

𝜕Γ̃

𝜕�̃�

𝜕ℎ̃

𝜕�̃�

𝜕2ℎ̃

𝜕�̃�2
] = 0 

 

 

(88) 

In the left-hand side, the second and the fourth terms are negligible compared to the first and 

the third terms, respectively. Thus, Eq. (88) becomes 

 𝜎0Γ𝑚𝜖
2

𝜇𝑐𝑅𝑝
[
𝜕Γ̃

𝜕�̃�
+
1

�̃�

𝜕

𝜕�̃�
(�̃�Γ̃�̃�𝑡)] − 𝐷𝐼

Γ𝑚

𝑅𝑝
2𝜖2

[
1

�̃�

𝜕

𝜕�̃�
(�̃�
𝜕Γ̃

𝜕�̃�
)] = 0 (89) 

Dividing all terms with 𝐷𝐼
Γ𝑚

𝑅𝑝
2𝜖2

 results in 

 
𝑃𝑒𝑠 [

𝜕Γ̃

𝜕�̃�
+
1

�̃�

𝜕

𝜕�̃�
(�̃�Γ̃�̃�𝑡)] −

1

�̃�

𝜕

𝜕�̃�
(�̃�
𝜕Γ̃

𝜕�̃�
) = 0 (90) 

with 𝑃𝑒𝑠 =
𝜎0𝑅𝑝

𝜇𝑐𝐷𝐼
𝜖4 denoting the surface Péclet number. 

All characteristic scales and the produced dimensionless numbers are expressed in Table 1 

whereas the non-dimensionalized equations are presented in Table 2. 
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Table 1: The characteristic scales and the dimensionless numbers of the model equations 

Characteristic scales: 
 

�̅�  = 𝜖𝑅𝑝; ℎ̅ = 𝜖2𝑅𝑝; �̅�𝑟 =
𝜎0
𝜇𝑐
𝜖3; �̅�𝑧 =

𝜎0
𝜇𝑐
𝜖4; �̅�𝑎𝑝𝑝 =

𝜎0
𝜇𝑐
𝜖4;  

𝑡̅  =
𝑅𝑝𝜇𝑐

𝜎0𝜖2
; �̅� =

𝜎0
𝑅𝑝
; 𝜏�̅� =

𝜎0
𝑅𝑝
𝜖; �̅�𝑡 =

𝜎0
𝜇𝑐
𝜖3  (91) 

Dimensionless numbers:  

𝜆∗ =
𝜖𝜇𝑑
𝜇𝑐

; �̃�Γ̃
′ =

1

𝜖2
Δ�̃�

ΔΓ̃
; 𝑄 =

𝑅𝑝𝜇𝑐

𝜎0𝜖2
𝑟𝐴
𝜌𝑐
; 𝑃𝑒 =

𝜎0𝑅𝑝

𝜇𝑐𝐷𝐴𝐵
𝜖6; 𝑃𝑒𝑠 =

𝜎0𝑅𝑝

𝜇𝑐𝐷𝐼
𝜖4 (92) 

 

Table 2: The dimensionless thin film equations 

The governing equations 

Continuity: 
1

�̃�

𝜕

𝜕�̃�
(�̃��̃�𝑟) +

𝜕�̃�𝑧
𝜕�̃�

= 0 

Navier-Stokes: 

𝑟-component 

0 = −
𝜕�̃�𝑐
𝜕�̃�

+
𝜕2�̃�𝑟
𝜕�̃�2

, 

𝑧-component 

0 = −
𝜕�̃�𝑐
𝜕�̃�

 

Component mass 

balance of gas 𝐴: 

𝜕𝜔𝐴,𝑐
𝜕�̃�

+ �̃�𝑟
𝜕𝜔𝐴,𝑐
𝜕�̃�

+ �̃�𝑧
𝜕𝜔𝐴,𝑐
𝜕�̃�

=
1

𝑃𝑒

𝜕2𝜔𝐴,𝑐
𝜕�̃�2

+ 𝑄 

Interface conditions 

No-slip condition: �̃�𝑟|𝑧=ℎ̃/2 = �̃�𝑡 

Tangential velocity: �̃�𝑡 =
1

𝜆∗
∫  

�̃�′

2𝜋
∫

𝑐𝑜𝑠𝜃

√�̃�2 + (�̃�′)2 − 2�̃��̃�′𝑐𝑜𝑠𝜃
𝑑𝜃

𝜋

0

  �̃�𝑑  𝑑�̃�′
�̃�∞

0

 

Kinematic 

condition: 

1

2

𝜕ℎ̃

𝜕�̃�
= �̃�𝑧|

𝑧=
ℎ̃
2

−
1

2

𝜕ℎ̃

𝜕�̃�
�̃�𝑟|𝑧=ℎ̃/2 +

1

𝑃𝑒

1

(1 − 𝜔𝐴,𝑐|𝑧=ℎ̃/2 )

𝜕𝜔𝐴,𝑐
𝜕�̃�

|
𝑧=
ℎ̃
2

 

Stress balance: 

Normal component 

�̃�𝑑|
𝑧=
ℎ̃
2

− �̃�𝑐|
𝑧=
ℎ̃
2

=
1

2�̃�

𝜕

𝜕�̃�
(�̃�
𝜕ℎ̃

𝜕�̃�
), 

Tangential component 

�̃�Γ̃
′ 𝜕Γ̃

𝜕�̃�
=
𝜕�̃�𝑟
𝜕�̃�
|
𝑧=ℎ̃/2

+ �̃�𝑑|𝑧=ℎ̃/2 

Surfactant balance: 𝑃𝑒𝑠 [
𝜕Γ̃

𝜕�̃�
+
1

�̃�

𝜕

𝜕�̃�
(�̃�Γ̃�̃�𝑡)] −

1

�̃�

𝜕

𝜕�̃�
(�̃�
𝜕Γ̃

𝜕�̃�
) = 0 
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2.4 Analytical Treatment and The Boundary Conditions 

In the absence of the mass transfer, the 𝑧-component of the model equations are able to be 

solved analytically, resulting in a set of 1-dimensional equations. When the mass transfer is 

taken into account, it requires the component mass balance to be solved in 2 dimensions. This 

part is treated specifically through the numerical technique, which is discussed further in 

Section 3. 

2.4.1 The Thinning Equation 

The thinning equation expresses the time evolution of the interface displacement, 
𝜕ℎ

𝜕𝑡
, which 

originates from the evaluation of the kinematic condition by determining the bulk velocity at 

the interface. The radial velocity profile is acquired from the 𝑟-component of the Navier-Stokes 

in Eq. (64) by integrating it twice with respect to 𝑧. Then, the radial velocity is applied to the 

continuity equation in Eq. (54) to obtain the axial velocity. 

According to the 𝑧-component of the Navier-Stokes in Eq. (66), there is no pressure gradient 

in 𝑧-direction. This implies that �̃� stays constant when integrating Eq. (64) with respect to 𝑧, 

which yields 

 
�̃�𝑟 =

1

2

𝜕�̃�

𝜕�̃�
�̃�2 + 𝐶1�̃� + 𝐶2 (93) 

Notice that all 𝜕�̃�𝑐/𝜕𝑟 terms transform into 𝜕�̃�/𝜕𝑟 which represents the gradient of the excess 

pressure as explained in Section 2.4.2. Equation (93) is substituted into Eq. (54) to obtain 

 𝜕�̃�𝑧
𝜕�̃�

= −
1

�̃�

𝜕

𝜕�̃�
( 
�̃�

2

𝜕�̃�

𝜕�̃�
 ) �̃�2 −

1

�̃�

𝜕

𝜕�̃�
(
.
.�̃�𝐶1

.

.)�̃� −
1

�̃�

𝜕

𝜕�̃�
(
.
.�̃�𝐶2

.

.) 
(94) 

which can be integrated with respect to �̃� by noticing that �̃�𝑐, �̃�, 𝐶1, and 𝐶2 are independent of 

�̃�, resulting in 

 
�̃�𝑧 = −

1

3

1

�̃�

𝜕

𝜕�̃�
( 
�̃�

2

𝜕�̃�

𝜕�̃�
 ) �̃�3 −

1

2

1

�̃�

𝜕

𝜕�̃�
(
.
.�̃�𝐶1

.

.)�̃�
2 −

1

�̃�

𝜕

𝜕�̃�
(
.
.�̃�𝐶2

.

.)�̃� + 𝐶3 (95) 

The symmetry condition around �̃� axis, i.e., at �̃� = 0, indicates that the radial velocity gradient 

in 𝑧-direction and the axial velocity are zero: 

 𝜕�̃�𝑟
𝜕�̃�
|
𝑧=0

= 0, �̃�𝑧|𝑧=0 = 0 (96) 

The implementation of Eq. (96) into Eqs. (93) and (95) determines the two constants, 𝐶1 = 0 

and 𝐶3 = 0, which give the velocity profiles: 
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�̃�𝑟 =

1

2

𝜕�̃�

𝜕�̃�
�̃�2 + 𝐶2 (97) 

 
�̃�𝑧 = −

1

3

1

�̃�

𝜕

𝜕�̃�
( 
�̃�

2

𝜕�̃�

𝜕�̃�
 ) �̃�3 −

1

�̃�

𝜕

𝜕�̃�
(
.
.�̃�𝐶2

.

.)�̃� (98) 

The constant 𝐶2 is identified by substituting the no-slip condition from Eq. (71) into Eq. (97), 

giving 𝐶2 = �̃�𝑡 −
1

2

𝜕�̃�

𝜕�̃�
(
ℎ̃

2
)
2

. Implementing the constant 𝐶2 to Eqs. (97) and (98) formulates the 

radial and axial velocity profiles as 

 
�̃�𝑟 =

1

2

𝜕�̃�

𝜕�̃�
[
′
.
.

�̃�2 − (
ℎ̃

2
)

2

 ] + �̃�𝑡 (99) 

 
�̃�𝑧 = −

1

3

1

�̃�

𝜕

𝜕�̃�
( 
�̃�

2

𝜕�̃�

𝜕�̃�
 ) �̃�3 −

1

�̃�

𝜕

𝜕�̃�
(
.
.�̃��̃�𝑡

.

.)�̃� +
1

�̃�

𝜕

𝜕�̃�
[
′
.
.

�̃�

2

𝜕�̃�

𝜕�̃�
(
ℎ̃

2
)

2

 ] �̃� (100) 

Finally, evaluating Eqs. (99) and (100) at the interface, �̃� = ℎ̃/2, expands the kinematic 

condition in Eq. (59) which is derived in App. A.11 to yield the thinning equation: 

 𝜕ℎ̃

𝜕�̃�
=

1

12�̃�

𝜕

𝜕�̃�
(�̃�
𝜕�̃�

𝜕�̃�
ℎ̃3) −

1

�̃�

𝜕

𝜕�̃�
(′
.
�̃��̃�𝑡ℎ̃

′
.
) + 𝑀 (101) 

The two first terms in the right-hand side represent the parabolic and the plug components of 

the flow which are caused by the pressure gradient and the tangential velocity, respectively. 

The last term, describing the role of the mass transfer in the balance, is proportional to the mass 

flux and defined as 

 
𝑀 =

2

𝑃𝑒

1

(1 − 𝜔𝐴,𝑐|𝑧=ℎ̃/2)

𝜕𝜔𝐴,𝑐
𝜕�̃�

|
𝑧=ℎ̃/2

 (102) 

Notice that positive 𝑀 refers to mass transfer from the dispersed to the continuous phase. 

The solution of Eq. (101) requires two boundary conditions, which follow the symmetry 

condition and the gentle collision assumption: 

𝜕ℎ̃

𝜕�̃�
|
�̃�=0

= 0, 
𝜕ℎ̃

𝜕�̃�
|
�̃�=�̃�∞

= −�̃�𝑎𝑝𝑝 +𝑀|�̃�=�̃�∞ (103) 

The symmetry condition applies at the center of the radial coordinate, �̃� = 0, where the gradient 

of the interface position with 𝑟 is zero. Meanwhile, the gentle collision refers to the equivalence 

between the rate of the interface displacement at large radial distance, at �̃�∞, and the approach 

velocity, �̃�𝑎𝑝𝑝, where 𝑀 is also considered. The initial film thickness, ℎ(𝑟, 0), signifying the 

initial distance of two spherical bubbles is expressed as 
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ℎ(𝑟, 0) = ℎ00 +

𝑟2

𝑅𝑝
 (104) 

with ℎ00 denoting the initial minimum distance of the two bubbles, which takes place at 𝑟 = 0, 

and the term 𝑟2/𝑅𝑝 resembling a perfect sphere. Applying the characteristic scales in Table 1 

transforms Eq. (104) into 

 ℎ̃(�̃�, 0) = ℎ̃00 + �̃�
2 (105) 

where the value of ℎ̃00 should be sufficiently large to represent a perfect spherical shape, i.e., 

the interface is not deformed yet. 

For the immobile case, there is no tangential velocity, �̃�𝑡 = 0, which eliminates the second 

term of the right-hand side in Eq. (101), giving 

 𝜕ℎ̃

𝜕�̃�
=

1

12�̃�

𝜕

𝜕�̃�
(�̃�
𝜕�̃�

𝜕�̃�
ℎ̃3) +𝑀 (106) 

When the interface is fully mobile, the viscosity ratio goes to zero, 𝜆∗ → 0, and the boundary 

integral equation in Eq. (86) needs to be rearranged into  

 
�̃�𝑡 𝜆

∗ = ∫  
�̃�′

2𝜋
∫

𝑐𝑜𝑠𝜃

√�̃�2 + (�̃�′)2 − 2�̃��̃�′𝑐𝑜𝑠𝜃
𝑑𝜃

𝜋

0

 �̃�𝑑  𝑑�̃�′
�̃�∞

0

 (107) 

Introducing �̂�𝑡 = 𝜆∗�̃�𝑡 as the tangential velocity for the fully mobile case reformulates Eq. 

(101) into 

 
𝜆∗
𝜕ℎ̃

𝜕�̃�
=

𝜆∗

12�̃�

𝜕

𝜕�̃�
(�̃�
𝜕�̃�

𝜕�̃�
ℎ̃3) −

1

�̃�

𝜕

𝜕�̃�
(′
.
�̃��̂�𝑡ℎ̃

′
.
) + 𝜆∗𝑀 

𝜕ℎ̃

𝜕�̃�𝜆∗
 = −

1

�̃�

𝜕

𝜕�̃�
(′
.
�̃��̂�𝑡ℎ̃

′
.
) 

 

 

(108) 

implying that the contribution of the pressure gradient is omitted and the effect of the mass 

transfer becomes negligible. Here, 𝜆∗ in the left-hand side of Eq. (108) merges into the 

dimensionless time, giving �̃�𝜆∗ =
�̃�

𝜆∗
=

𝑡

�̅�𝜆∗
. This rearrangement consequently re-defines the 

boundary condition at �̃� = �̃�∞ as 

 𝜕ℎ̃

𝜕�̃�𝜆∗
|
�̃�=�̃�∞

= −�̃�𝑎𝑝𝑝,𝜆∗ (109) 

with �̃�𝑎𝑝𝑝,𝜆∗ = �̃�𝑎𝑝𝑝 𝜆
∗ =

𝑉𝑎𝑝𝑝

�̅�𝑎𝑝𝑝
𝜆∗. 
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2.4.2 The Pressure Equation 

The pressure equation stems from the normal stress balance in Eq. (77) which is expressed in 

terms of the excess pressure, describing the pressure deviation of the bubble interface to a 

perfect sphere. This requires the normal stress balance for a perfect sphere: 

 
−𝑃𝑐,0 + 𝑃𝑑,0 = 2𝐻𝜎0 =

2𝜎0
𝑅𝑝

 (110) 

which is transformed into dimensionless variables by implementing the pressure scale from 

Table 1 to obtain 

 −�̃�𝑐,0 + �̃�𝑑,0 = 2 (111) 

Taking the difference between Eq. (111) and Eq. (77) results in the pressure equation: 

 
−�̃�𝑐,0 − (−�̃�𝑐) + �̃�𝑑,0 − �̃�𝑑 = 2 −

1

2�̃�

𝜕

𝜕�̃�
(�̃�
𝜕ℎ̃

𝜕�̃�
 ) 

�̃� = 2 −
1

2�̃�

𝜕

𝜕�̃�
(�̃�
𝜕ℎ̃

𝜕�̃�
 ) (112) 

Notice that �̃�𝑑 is approximately the same as �̃�𝑑,0 for a gentle collision, hence, �̃�𝑑,0 − �̃�𝑑 ≈ 0. 

Therefore, �̃� = �̃�𝑐 − �̃�𝑐,0 stands for the film side excess pressure. This definition is introduced 

to all model equations containing 𝜕�̃�𝑐/𝜕𝑟 which turns into 𝜕�̃�/𝜕𝑟 since 
𝜕�̃�𝑐

𝜕𝑟
=

𝜕�̃�

𝜕𝑟
. In addition, 

this model requires a disjoining pressure to account for the attractive intermolecular forces 

which enable coalescence. For a thin film, the disjoining pressure is given as 

 Π𝐷 = 𝐴/6𝜋ℎ
3 (113) 

with 𝐴 standing for the Hamaker constant which represents the strength of the van der Waals 

interactions between the two bubbles. As the film becomes thinner, the van der Waals 

interactions get more impactful and accelerate the drainage rate significantly, which leads to a 

film rupture, followed by coalescence. The non-dimensionalization of Eq. (113) gives an 

additional term to Eq. (112) to become the pressure equation: 

 
�̃� = 2 −

1

2�̃�

𝜕

𝜕�̃�
(�̃�
𝜕ℎ̃

𝜕�̃�
 ) +

𝐴∗

ℎ̃3
 (114) 

with 𝐴∗ =
𝐴

6𝜋𝜎𝑅𝑝
2𝜖6

 reflecting the dimensionless Hamaker constant. The boundary conditions 

are defined through the symmetry condition and the gentle collision: 

𝜕�̃�

𝜕�̃�
|
�̃�=0

= 0, �̃�|
�̃�=�̃�∞

= 0 (115) 
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The symmetry condition indicates that the pressure gradient is zero at the center of 𝑟-coordinate 

whereas the gentle collision implies that the interface at large radial distance stays undeformed 

(no excess pressure). 

 

2.4.3 The Component Mass Balance Equation 

The solution of the component mass balance in Eq. (68) requires two boundary conditions for 

each 𝑟- and 𝑧-direction. In 𝑟-direction, the axisymmetry and the gentle collision indicate zero 

concentration gradient at the center line and at large radial distance, respectively: 

 𝜕𝜔𝐴,𝑐
𝜕�̃�

|
�̃�=0

= 0, 
𝜕𝜔𝐴,𝑐
𝜕�̃�

|
�̃�=�̃�∞

= 0 (116) 

Meanwhile, in 𝑧-direction, the boundary conditions stem from the symmetry condition around 

𝑟-axis and the solubility condition: 

𝜕𝜔𝐴,𝑐
𝜕�̃�

|
𝑧=0

= 0, 𝜔𝐴,𝑐|𝑧=ℎ̃/2 =
𝑘𝐻𝑃𝐴,𝑑
𝜌𝑐

= 𝐾′ (117) 

The symmetry condition holds for �̃� = 0 where there is no concentration gradient with 𝑧 

whereas the solubility condition signifies the mass fraction of gas 𝐴 at the interface as the 

solubility of gas 𝐴 in the continuous phase, introduced as 𝐾′. Following Henry’s law, 𝐾′ is 

proportional to the Henry’s law constant and the partial pressure of species 𝐴, notated by 𝑘𝐻 

and 𝑃𝐴,𝑑, respectively. As the bubbles are assumed to have a single component, 𝑃𝐴,𝑑 is the same 

as the total pressure of the dispersed phase. The implementation of the second boundary 

condition of Eq. (117) formulates Eq. (102) into 

 
𝑀 =

2

𝑃𝑒

1

(1 − 𝐾′)

𝜕𝜔𝐴,𝑐
𝜕�̃�

|
𝑧=ℎ̃/2

 (118) 

The estimation of 𝑀 in Eq. (118) considers 3 cases: low 𝑃𝑒 which omits the left-hand side of 

Eq. (68), constant mass flux where Eq. (68) is not necessary, and variable mass flux which 

requires Eq. (68) to be solved in 2 dimensions. 

2.4.3.1 Case 1: Low Péclet Number 

Low 𝑃𝑒 values imply that the diffusive transport dominates the mass transfer mechanism, and 

eliminates the left-hand side of Eq. (68): 

 
0 =

1

𝑃𝑒

𝜕2𝜔𝐴,𝑐
𝜕�̃�2

+ 𝑄 (119) 
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This case estimates the reaction term, 𝑄, with a zero- and a first-order kinetics. The zero-order 

reaction has no dependence on the mass fraction, 𝜔𝐴,𝑐, which allows 𝑄 to stay constant. 

Therefore, Eq. (119) can be solved analytically by assigning the boundary conditions in Eq. 

(117), yielding: 

 
𝜔𝐴,𝑐 = −

1

2
𝑃𝑒𝑄 [�̃�2 − ( 

ℎ̃

2
 )

2

] + 𝐾′ (120) 

By referring to App. A.12, evaluating the first derivative of Eq. (120) with �̃� at the interface 

approximates 𝑀 in Eq. (118) with 𝑃𝑒 canceling out each other, resulting in 

 
𝑀 = −

𝑄ℎ̃

(1 − 𝐾′)
 (121) 

Substituting Eq. (121) to the thinning equation in Eq. (101) formulates 

 𝜕ℎ̃

𝜕�̃�
=

1

12�̃�

𝜕

𝜕�̃�
(�̃�
𝜕�̃�

𝜕�̃�
ℎ̃3) −

1

�̃�

𝜕

𝜕�̃�
(′
.
�̃��̃�𝑡ℎ̃

′
.
) −

𝑄ℎ̃

(1 − 𝐾′)
 (122) 

Notice that 𝑄 has a negative value since the substance 𝐴 acts as a reactant, which gives positive 

𝑀 in Eq. (121), reflecting mass transfer from the dispersed to the continuous phase. 

When the reaction follows a first-order kinetic, 𝑄 becomes a linear function of 𝜔𝐴,𝑐 and the 

analytic solution of Eq. (119) derived in App. A.12 yields 

 

𝑀 = 2
√−𝑡̅𝑘1𝑃𝑒

𝑃𝑒

𝐾′

(1 − 𝐾′)

𝑒√−�̅�𝑘1𝑃𝑒
ℎ̃
2 − 𝑒−√−�̅�𝑘1𝑃𝑒

ℎ̃
2

𝑒√−�̅�𝑘1𝑃𝑒
ℎ̃
2 + 𝑒−√−�̅�𝑘1𝑃𝑒

ℎ̃
2

 (123) 

Applying Eq. (123) to Eq. (101) results in the thinning equation for a first-order reaction: 

 𝜕ℎ̃

𝜕�̃�
=

1

12�̃�

𝜕

𝜕�̃�
(�̃�
𝜕�̃�

𝜕�̃�
ℎ̃3) −

1

�̃�

𝜕

𝜕�̃�
(′
.
�̃��̃�𝑡ℎ̃

′
.
) 

+2
√−𝑡�̅�1𝑃𝑒

𝑃𝑒

𝐾′

(1 − 𝐾′)

𝑒√−�̅�𝑘1𝑃𝑒
ℎ̃
2 − 𝑒−√−�̅�𝑘1𝑃𝑒

ℎ̃
2

𝑒√−�̅�𝑘1𝑃𝑒
ℎ̃
2 + 𝑒−√−�̅�𝑘1𝑃𝑒

ℎ̃
2

 

 
(124) 

with 𝑘1 denoting the first-order reaction rate constant. 

2.4.3.2 Case 2: Constant Mass Flux 

This case considers the mass flux across the interface, 𝑁|𝑧=ℎ/2 in Eq. (29), to stay constant, 

i.e., constant 𝑀 in Eq. (118). The effect of the mass transfer is examined by specifying positive 

constant values for 𝑀 without requiring the component mass balance in Eq. (68). To evaluate 

some real systems, the estimation of 𝑀 values for O2 and CO2 are based on Apps. B.1-B.2. 
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2.4.3.3 Case 3: Variable Mass Flux (2D Model) 

The variable mass flux in this case considers both convective and diffusive terms in Eq. (68) 

to be significant. As the investigation in case 1 reveals insignificant effect of 𝑄, as explained 

in Section 4.1, Eq. (68) simplifies into 

 𝜕𝜔𝐴,𝑐
𝜕�̃�

+ �̃�𝑟
𝜕𝜔𝐴,𝑐
𝜕�̃�

+ �̃�𝑧
𝜕𝜔𝐴,𝑐
𝜕�̃�

=
1

𝑃𝑒

𝜕2𝜔𝐴,𝑐
𝜕�̃�2

 (125) 

where �̃�𝑟 and �̃�𝑧 are expressed in Eqs. (99) and (100). Equation (125) requires the boundary 

conditions in Eqs. (116) and (117) to obtain the 𝜔𝐴,𝑐 profiles in 2 dimensions, from which the 

name ‘2D model’ originates. The solution for 𝜔𝐴,𝑐 at a given time are used to estimate 𝑀 based 

on Eq. (118): 

 
𝑀 =

2

𝑃𝑒

1

(1 − 𝐾′)

𝜕𝜔𝐴,𝑐
𝜕�̃�

|
𝑧=ℎ̃/2

 (126) 

which is applied to Eqs. (101) and (103). Here, 𝑃𝑒 is able to cover all values and 𝐾′ changes 

with 𝑃𝑑 according to Eq. (117). 

2.4.4 The Tangential Velocity 

The tangential velocity is formulated by substituting �̃�𝑑|𝑧=ℎ̃/2 from Eq. (84) to Eq. (86) 

 
�̃�𝑡  =

1

𝜆∗
∫  

�̃�′

2𝜋
∫

𝑐𝑜𝑠𝜃

√�̃�2 + (�̃�′)2 − 2�̃��̃�′𝑐𝑜𝑠𝜃
𝑑𝜃

𝜋

0

[�̃�Γ̃
′ 𝜕Γ̃

𝜕�̃�
−
𝜕�̃�𝑟
𝜕�̃�
|
𝑧=ℎ̃/2

] 𝑑�̃�′
�̃�∞

0

 (127) 

where 
𝜕�̃�𝑟

𝜕𝑧
|
𝑧=ℎ̃/2

 is taken from the first derivative of Eq. (99) with �̃� as 

 𝜕�̃�𝑟
𝜕�̃�
|
𝑧=ℎ̃/2

=
𝜕

𝜕�̃�
{ 
1

2

𝜕�̃�

𝜕�̃�
[
′
.
.

�̃�2 − (
ℎ̃

2
)

2

 ] + �̃�𝑡 }|

𝑧=ℎ̃/2

 

=
𝜕�̃�

𝜕�̃�
�̃�|
𝑧=ℎ̃/2

=
𝜕�̃�

𝜕�̃�

ℎ̃

2
 

 

 

(128) 

Substituting Eq. (128) to Eq. (127) gives 

 
�̃�𝑡  =

1

𝜆∗
∫  

�̃�′

2𝜋
∫

𝑐𝑜𝑠𝜃

√�̃�2 + (�̃�′)2 − 2�̃��̃�′𝑐𝑜𝑠𝜃
𝑑𝜃

𝜋

0

[�̃�Γ̃
′ 𝜕Γ̃

𝜕�̃�
−
𝜕�̃�

𝜕�̃�

ℎ̃

2
] 𝑑�̃�′

�̃�∞

0

 (129) 

with �̃�Γ̃
′  is the parameter having the estimated values as discussed in Section 4.2 and the term 

𝜕Γ̃

𝜕�̃�
 requires the solution of the surface excess concentration balance. The symmetry conditions 

give no tangential velocity at the center and no velocity gradient at the boundary, which read: 

 
�̃�𝑡|�̃�=0 = 0, 

𝜕�̃�𝑡
𝜕�̃�
|
�̃�=�̃�∞

= 0 (130) 
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2.4.5 The Surface Excess Concentration Balance 

Equation (90) is solved by applying the symmetry conditions giving no gradients: 

 𝜕�̃�

𝜕�̃�
|
�̃�=0

= 0, 
𝜕�̃�

𝜕�̃�
|
�̃�=�̃�∞

= 0 (131) 

Then, the initial condition is defined as 

 
Γ̃(�̃�, 0) = Γ̃0 =

Γ0
Γ𝑚

 (132) 

The overall model equations are summarized in Table 3. Notice that all equations, except the 

component mass balance, are valid at the interface. 

Table 3: The dimensionless equations and the boundary conditions 

Thinning equation: 
𝜕ℎ̃

𝜕�̃�
=

1

12�̃�

𝜕

𝜕�̃�
(�̃�
𝜕�̃�

𝜕�̃�
ℎ̃3) −

1

�̃�

𝜕

𝜕�̃�
(′
.
�̃��̃�𝑡ℎ̃

′
.
) + 𝑀 

 Boundary conditions: Initial condition: 

 
𝜕ℎ̃

𝜕�̃�
|
�̃�=0

= 0 ; 
𝜕ℎ̃

𝜕�̃�
|
�̃�=�̃�∞

= −�̃�𝑎𝑝𝑝 +𝑀|�̃�=�̃�∞ ℎ̃(�̃�, 0) = ℎ̃00 + �̃�
2 

Pressure equation: �̃� = 2 −
1

2�̃�

𝜕

𝜕�̃�
(�̃�
𝜕ℎ̃

𝜕�̃�
 ) +

𝐴∗

ℎ̃3
 

 Boundary conditions: 

 
𝜕�̃�

𝜕�̃�
|
�̃�=0

= 0 ; �̃�|
�̃�=�̃�∞

= 0 

Component mass 

balance for gas 𝐴 

𝜕𝜔𝐴,𝑐
𝜕�̃�

+ �̃�𝑟
𝜕𝜔𝐴,𝑐
𝜕�̃�

+ �̃�𝑧
𝜕𝜔𝐴,𝑐
𝜕�̃�

=
1

𝑃𝑒

𝜕2𝜔𝐴,𝑐
𝜕�̃�2

+ 𝑄 

 Boundary conditions in 𝑟: Boundary conditions in 𝑧: 

 
𝜕𝜔𝐴,𝑐
𝜕�̃�

|
�̃�=0

= 0 ; 
𝜕𝜔𝐴,𝑐
𝜕�̃�

|
�̃�=�̃�∞

= 0 
𝜕𝜔𝐴,𝑐
𝜕�̃�

|
𝑧=0

= 0 ; 𝜔𝐴,𝑐|𝑧=ℎ̃/2 = 𝐾′ 

Tangential velocity: 𝑈𝑡  =
1

𝜆∗
∫  

�̃�′

2𝜋
∫

𝑐𝑜𝑠𝜃

√�̃�2 + (�̃�′)2 − 2�̃��̃�′𝑐𝑜𝑠𝜃
𝑑𝜃

𝜋

0

[�̃�Γ̃
′ 𝜕Γ̃

𝜕�̃�
−
𝜕�̃�

𝜕�̃�

ℎ̃

2
] 𝑑�̃�′

�̃�∞

0

 

 Boundary conditions: 

 𝑈𝑡|�̃�=0 = 0 ; 
𝜕�̃�𝑡
𝜕�̃�
|
�̃�=�̃�∞

= 0 

Surfactant balance: 𝑃𝑒𝑠 [
𝜕Γ̃

𝜕�̃�
+
1

�̃�

𝜕

𝜕�̃�
(�̃�Γ̃�̃�𝑡)] −

1

�̃�

𝜕

𝜕�̃�
(�̃�
𝜕Γ̃

𝜕�̃�
) = 0 

 Boundary conditions: Initial condition: 

 
𝜕�̃�

𝜕�̃�
|
�̃�=0

= 0, 
𝜕�̃�

𝜕�̃�
|
�̃�=�̃�∞

= 0 Γ̃(�̃�, 0) = Γ̃0 =
Γ0
Γ𝑚

 

Since all variables are transformed into dimensionless, tildes in the dimensionless variables are 

omitted after this section. 
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3 Method 

The mathematical problems in this study are solved using numerical computation to estimate 

the drainage behavior. The model is initially investigated in the absence of surfactants for three 

cases: low 𝑃𝑒, constant mass flux, and variable mass flux which is applicable for any 𝑃𝑒 values. 

Then, the effect of the surfactant presence is taken into account by including the tangential 

mobility to the model and coupling it with the surface excess concentration balance. The 

complete model, i.e., Case 3, contains radial and axial components which are solved by 

applying a two-step solver. The first part of the solver computes Γ, 𝑃, ℎ, and 𝑈𝑡, at a given time 

by solving the 𝑟-component of Eqs. (90), (101), (114) and (129) simultaneously. In this part, 

𝑀 is taken from the previous time step (assigned as zero initially). The second part of the solver 

takes the solutions obtained from the first part to solve the 𝑧-component of Eq. (125), resulting 

in the 2-dimensional mass fraction profiles. These solutions are used to compute 𝑀 which is 

required in the first part to determine Γ, 𝑃, ℎ, and 𝑈𝑡 for the next time step. While the two parts 

of the solver are required for Case 3, the first two cases do not need the second part since 𝑀 is 

estimated via analytical calculation or assigned as a constant. 

In the first step of the solver, the thinning, the pressure, the tangential velocity, and the surface 

excess concentration balance equations summarized in Table 3 are solved simultaneously using 

the corresponding boundary and initial conditions. In addition, the initial values of 𝑃, 𝑈𝑡, and 

𝑀 are taken as zero. The discretization of the time derivative follows the second-order 

backward differentiation by assigning the initial conditions in the first and the second time 

steps. To obtain higher resolution, the spatial derivatives in 𝑟-direction are approximated via a 

spectral method based on the Chebyshev polynomials (Guo et al., 2013). The tangential 

velocity in Eq. (129) is solved by employing the integration matrix [𝐴] as suggested by Ozan 

and Jakobsen (2019a) to handle the singularity in the boundary integral kernel, yielding 

 
𝑈𝑡 =

[𝐴]

𝜆∗
[𝜎Γ

′
𝜕Γ

𝜕𝑟
−
𝜕𝑃

𝜕𝑟

ℎ

2
] (133) 

By omitting the subscript 𝑡 in 𝑈𝑡, the discretization of the domain in 𝑟-direction into 𝑁𝑟 grids, 

i.e., 𝑁𝑟+1 grid points, turns the four evaluated variables into an array of size (𝑁𝑟+1) x 1 and 

yields the discretized equations as follows. 
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The discretized thinning equation in Eq. (101): 

 3

2∆𝑡
[

.
𝛿𝑖𝑗
.
] ℎ𝑖

𝑘+1 −
2

∆𝑡
ℎ𝑖
𝑘 +

1

2∆𝑡
ℎi
𝑘−1 

= [

.

 
1

12
[𝑑𝑖𝑎𝑔 (

1

𝑟𝑖
)] [

.
𝐷𝑟,𝑖𝑗
.
] [

.
𝑑𝑖𝑎𝑔(𝑟𝑖)

.
] [

.

𝑑𝑖𝑎𝑔(ℎ𝑖
𝑘)
3

.
] [

.
𝐷𝑟,𝑖
.
] 

.

] 𝑃𝑖
𝑘+1 

−[

.

 [𝑑𝑖𝑎𝑔 (
1

𝑟𝑖
)] [

.
𝐷𝑟,𝑖𝑗
.
] [

.
𝑑𝑖𝑎𝑔(𝑟𝑖)

.
] [

.
𝑑𝑖𝑎𝑔(ℎ𝑖

𝑘)
.

] 

.

] 𝑈𝑖
𝑘+1 +𝑀𝑖

𝑘  

 

 

 

 

 

(134) 

The discretized pressure equation in Eq. (114): 

 
[

.
𝛿𝑖𝑗
.
] 𝑃𝑖

𝑘+1 

= 2 [

.
1,1,1, … ,1

.
]
(𝑁𝑟+1)

− [ 

.
1

2
[𝑑𝑖𝑎𝑔 (

1

𝑟𝑖
)] [

.
𝐷𝑟,𝑖𝑗
.
] [

.
𝑑𝑖𝑎𝑔(𝑟𝑖)

.
] [

.
𝐷𝑟,𝑖𝑗
.
]

.

 ] ℎ𝑖
𝑘+1 +

𝐴∗

(ℎ𝑖
𝑘)
3 

 

 

(135) 

The discretized tangential velocity equation in Eq. (133): 

 
[

.
𝛿𝑖𝑗
.
] 𝑈𝑖

𝑘+1 =
1

𝜆∗
[

.
𝐴𝑖
.
] [ 

.

𝜎Γ
′ [

.
𝐷𝑟,𝑖𝑗
.
]

.

 ] Γ𝑖
𝑘+1 −

1

𝜆∗
[

.
𝐴𝑖
.
] [[𝑑𝑖𝑎𝑔 (

ℎ𝑖
𝑘

2
)] [

.
𝐷𝑟,𝑖𝑗
.
] ] P𝑖

𝑘+1 (136) 

The discretized surface excess concentration balance in Eq. (90): 

 
𝑃𝑒𝑠 {

3

2∆𝑡
[

.
𝛿𝑖𝑗
.
] Γ𝑖

𝑘+1 −
2

∆𝑡
Γ𝑖
𝑘 +

1

2∆𝑡
Γ𝑖
𝑘−1} 

+𝑃𝑒𝑠 [𝑑𝑖𝑎𝑔 (
1

𝑟𝑖
)] [

.
𝐷𝑟,𝑖𝑗
.
] [

.
𝑑𝑖𝑎𝑔(𝑟𝑖)

.
] [

.
𝑑𝑖𝑎𝑔(Γ𝑖

𝑘)
.

] 𝑈𝑖
𝑘+1 

−[𝑑𝑖𝑎𝑔 (
1

𝑟𝑖
)] [

.
𝐷𝑟,𝑖𝑗
.
] [

.
𝑑𝑖𝑎𝑔(𝑟𝑖)

.
] [

.
𝐷𝑟,𝑖𝑗
.
] Γ𝑖

𝑘+1 = 0 

 

 

 

(137) 

Here, 𝑘 denotes the time step, i.e., the terms in the (𝑘+1)𝑡ℎ time step are unknown. The 

subscripts 𝑖 = 1, … , (𝑁𝑟+1) and 𝑗 = 1,… , (𝑁𝑟+1) respectively describe the row and the 

column positions of the corresponding elements. The spectral differentiation matrix, 𝐷𝑟, is 

obtained from the Chebyshev polynomial function and applied to take the derivative with 

respect to 𝑟. The notations 𝛿𝑖𝑗 and 𝑑𝑖𝑎𝑔 respectively describe the identity matrix of size (𝑁𝑟+1 

x 𝑁𝑟+1) and the diagonalization function that arranges its input with size (𝑁𝑟+1) x 1 into a 

diagonal square matrix. All matrix operators multiplying the unknown terms are grouped into 

[
1

2
𝐵𝑞𝑟,𝑖𝑗

1

2
], where 𝑞=1, 2, 3, 4 corresponds to the sequence of Eqs. (134)-(137) and 𝑟=1, 2, 3, 4 

specifies the sequence of the unknown variables ℎ𝑖
𝑘+1, 𝑃𝑖

𝑘+1, 𝑈𝑖
𝑘+1, and Γ𝑖

𝑘+1. The known parts 

of the transient term are defined as ℎ𝑘𝑡,𝑖 = −
2

∆𝑡
ℎ𝑖
𝑘+

1

2∆𝑡
ℎ𝑖
𝑘−1 and Γ𝑘𝑡,𝑖 = −

2

∆𝑡
Γ𝑖
𝑘+

1

2∆𝑡
Γ𝑖
𝑘−1. By 

arranging the unknown and the known terms into the left-hand and the right-hand sides, Eqs. 

(134)-(137) are rewritten into 
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 [
1

2
𝐵11,𝑖𝑗

1

2
] ℎ𝑖

𝑘+1 − [
1

2
𝐵12,𝑖𝑗

1

2
] 𝑃𝑖

𝑘+1 + [
1

2
𝐵13,𝑖𝑗

1

2
]𝑈𝑖

𝑘+1 = −ℎ𝑘𝑡,𝑖 +𝑀𝑖
𝑘 (138) 

 

 [
1

2
𝐵21,𝑖𝑗

1

2
] ℎ𝑖

𝑘+1 + [
1

2
𝐵22,𝑖𝑗

1

2
] 𝑃𝑖

𝑘+1 = 2 [

.
1,1,1, … ,1

.
]
(𝑁𝑟+1)

+
𝐴∗

(ℎ𝑖
𝑘)
3 (139) 

 

 [
1

2
𝐵32,𝑖𝑗

1

2
] 𝑃𝑖

𝑘+1 + [
1

2
𝐵33,𝑖𝑗

1

2
]𝑈𝑖

𝑘+1 − [
1

2
𝐵34,𝑖𝑗

1

2
] Γ𝑖

𝑘+1 = 0 (140) 

 

 [
1

2
𝐵43,𝑖𝑗

1

2
]𝑈𝑖

𝑘+1 + [
1

2
𝐵44,𝑖𝑗

1

2
] Γ𝑖

𝑘+1 = −Γ𝑘𝑡,𝑖 (141) 

Then, by specifying the known terms in the right-hand side as [
1

2
𝑅𝐻𝑆𝑞,𝑖

1

2
], Eqs. (138)-(141) 

are merged into one equation: 

  

[
 
 
 
 
 
 
 
 
1

2
[

.
𝐵11,𝑖𝑗
.
] [

.
𝐵12,𝑖𝑗
.
]

1

2
[

.
𝐵21,𝑖𝑗
.
] [

.
𝐵22,𝑖𝑗
.
]

[

.
𝐵13,𝑖𝑗
.
] [

.
𝐵14,𝑖𝑗
.
]
1

2

[

.
𝐵23,𝑖𝑗
.
] [

.
𝐵24,𝑖𝑗
.
]
1

2
1

2
[

.
𝐵31,𝑖𝑗
.
] [

.
𝐵32,𝑖𝑗
.
]

1

2
[

.
𝐵41,𝑖𝑗
.
] [

.
𝐵42,𝑖𝑗
.
]

[

.
𝐵33,𝑖𝑗
.
] [

.
𝐵34,𝑖𝑗
.
]
1

2

[

.
𝐵43,𝑖𝑗
.
] [

.
𝐵44,𝑖𝑗
.
]
1

2]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2
ℎ𝑖
𝑘+1 1

2
1

2
𝑃𝑖
𝑘+1 1

2
1

2
𝑈𝑖
𝑘+1 1

2
1

2
Γ𝑖
𝑘+1 1

2]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1

2
𝑟ℎ𝑠1,𝑖

1

2
1

2
𝑟ℎ𝑠2,𝑖

1

2
1

2
𝑟ℎ𝑠3,𝑖

1

2
1

2
𝑟ℎ𝑠4,𝑖

1

2]
 
 
 
 
 
 
 

 (142) 

Here, the matrices [𝐵14,𝑖𝑗], [𝐵23,𝑖𝑗], [𝐵24,𝑖𝑗], [𝐵31,𝑖𝑗], [𝐵41,𝑖𝑗], and [𝐵42,𝑖𝑗] contain a value of 

zero in all of their elements. Combining all matrices [𝐵𝑞𝑟,𝑖𝑗] and [𝑟ℎ𝑠𝑞,𝑖] respectively into [𝐶𝑓𝑔] 

and [𝑅𝐻𝑆𝑓] yields 

 

[
 
 
 
 

          

1
1
𝐶𝑓𝑔
1
1

        

]
 
 
 
 

  

[
 
 
 
 
 
1

2
ℎ𝑖
𝑘+1 1

2
1

2
𝑃𝑖
𝑘+1 1

2
1

2
𝑈𝑖
𝑘+1 1

2
1

2
Γ𝑖
𝑘+1 1

2]
 
 
 
 
 

= 

[
 
 
 
 
1
1

𝑅𝐻𝑆𝑓
1
1 ]

 
 
 
 

 (143) 

with 𝑓 = 1, … , 4𝑥(𝑁𝑟+1) and 𝑔 = 1,… , 4𝑥(𝑁𝑟+1) denoting the indices of the corresponding 

elements. The boundary conditions in Eqs. (103), (115), (130), and (131) are discretized into 

[

.
𝐷𝑟,1𝑗
.
] ℎ𝑖

𝑘+1 = 0, 
3

2∆𝑡
ℎ(𝑁𝑟+1)
𝑘+1 −

2

∆𝑡
ℎ(𝑁𝑟+1)
𝑘 +

1

2∆𝑡
ℎ(𝑁𝑟+1)
𝑘−1 = −𝑉𝑎𝑝𝑝 +𝑀(𝑁𝑟+1)

𝑘  (144) 

[

.
𝐷𝑟,1𝑗
.
] 𝑃𝑖

𝑘+1 = 0, 𝑃(𝑁𝑟+1)
𝑘+1 = 0 (145) 

 𝑈1
𝑘+1 = 0, [

.
𝐷𝑟,(𝑁𝑟+1)𝑗

.
] 𝑈𝑖

𝑘+1 = 0 (146) 

[

.
𝐷𝑟,1𝑗
.
] Γ𝑖

𝑘+1 = 0, [

.
𝐷𝑟,(𝑁𝑟+1)𝑗

.
] Γ𝑖

𝑘+1 = 0 (147) 
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The rearrangement of the unknown and the known terms of Eq. (144) into the left-hand and 

the right-hand sides yields 

[

.
𝐷𝑟,1𝑗
.
] ℎ𝑖

𝑘+1 = 0, ℎ(𝑁𝑟+1)
𝑘+1 =

−ℎ𝑘𝑡,(𝑁𝑟+1) − 𝑉𝑎𝑝𝑝 +𝑀(𝑁𝑟+1)
𝑘

3
2∆𝑡

 (148) 

 

where ℎ𝑘𝑡 is defined as in Eq. (138). The boundary conditions are implemented by substituting 

Eqs. (145)-(148) to the first and the last rows of the corresponding matrices [𝐵𝑞𝑟,𝑖𝑗] and [𝑟ℎ𝑠𝑞,𝑖] 

in Eq. (142) which are re-expressed as [𝐶𝑓𝑔] and [𝑅𝐻𝑆𝑓] in Eq. (143). 

For the thinning equation, the left-hand sides of Eq. (148) is taken to replace [𝐵11,1𝑗] and 

[𝐵11,(𝑁𝑟+1)𝑗] while the right-hand side of Eq. (148) replaces [𝑟ℎ𝑠1,1] and [𝑟ℎ𝑠1,(𝑁𝑟+1)]. 

Defining these conditions in Eq. (143) replaces the 1𝑠𝑡 and the (𝑁𝑟+1)
𝑡ℎ rows of [𝐶𝑓𝑔] and 

[𝑅𝐻𝑆𝑓] into 

 
𝐶1𝑔             = [

.
𝐷𝑟,1𝑗  0 0 0…0

.
]
4𝑥(𝑁𝑟+1)

, 

𝑅𝐻𝑆1         = 0 (149) 

  

𝐶(𝑁𝑟+1)𝑔     = [[
.

0 0 0…0 0 1
.

]
(𝑁𝑟+1)

[
.

0 0 0…0
.

]
3𝑥(𝑁𝑟+1)

] , 

𝑅𝐻𝑆(𝑁𝑟+1) =
−ℎ𝑘𝑡,(𝑁𝑟+1) − 𝑉𝑎𝑝𝑝 +𝑀(𝑁𝑟+1)

𝑘

3
2∆𝑡

 

 

 

 

 

(150) 

The boundary conditions for the pressure equation are implemented by replacing [𝐵22,1𝑗] and 

[𝐵22,(𝑁𝑟+1)𝑗] with the left-hand sides of Eq. (145) together with the replacement of [𝑟ℎ𝑠2,1] and 

[𝑟ℎ𝑠2,(𝑁𝑟+1)] by the right-hand side of Eq. (145). Introducing them into Eq. (143) substitutes 

the (𝑁𝑟+2)
𝑡ℎ and the (2𝑁𝑟+2)

𝑡ℎ rows of [𝐶𝑓𝑔] and [𝑅𝐻𝑆𝑓], resulting in 

 
𝐶(𝑁𝑟+2)𝑔       = [[

.
0 0 0…0

.
]
(𝑁𝑟+1)

[

.
𝐷𝑟,1𝑗  0 0 0…0

.
]
3𝑥(𝑁𝑟+1)

] , 

𝑅𝐻𝑆(𝑁𝑟+2)   = 0 (151) 

  

𝐶(2𝑁𝑟+2)𝑔     = [[
.

0 0 0…0 0 1
.

]
2𝑥(𝑁𝑟+1)

[
.

0 0 0…0
.

]
2𝑥(𝑁𝑟+1)

] , 

𝑅𝐻𝑆(2𝑁𝑟+2) = 0 (152) 

The same procedure is applied for the tangential velocity equation by assigning the left-hand 

sides of Eq. (146) to [𝐵33,1𝑗] and [𝐵33,(𝑁𝑟+1)𝑗], and the right-hand side ones to [𝑟ℎ𝑠3,1] and 
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[𝑟ℎ𝑠3,(𝑁𝑟+1)], which define the (2𝑁𝑟+3)
𝑡ℎ and the (3𝑁𝑟+3)

𝑡ℎ rows of [𝐶𝑓𝑔] and [𝑅𝐻𝑆𝑓] in 

Eq. (143) as 

 
𝐶(2𝑁𝑟+3)𝑔     = [[

.
0 0 0…0

.
]
2𝑥(𝑁𝑟+1)

[
.

1 0 0…0
.

]
2𝑥(𝑁𝑟+1)

] , 

𝑅𝐻𝑆2𝑁𝑟+3   = 0 (153) 

 
𝐶(3𝑁𝑟+3)𝑔      = [[

.
0 0 0…0

.
]
2𝑥(𝑁𝑟+1)

[𝐷𝑟,(𝑁𝑟+1)𝑗   
.

0 0 0…0
.

]
2𝑥(𝑁𝑟+1)

] , 

𝑅𝐻𝑆(3𝑁𝑟+3) = 0 (154) 

Lastly, the boundary conditions for the surface excess concentration balance are implemented 

by taking the left-hand sides of Eq. (147) to [𝐵44,1𝑗] and [𝐵44,(𝑁𝑟+1)𝑗] and substituting the right-

hand side ones to [𝑟ℎ𝑠4,1] and [𝑟ℎ𝑠4,(𝑁𝑟+1)], which replace the (3𝑁𝑟+4)
𝑡ℎ and the (4𝑁𝑟+4)

𝑡ℎ 

rows of [𝐶𝑓𝑔] and [𝑅𝐻𝑆𝑓] in Eq. (143), giving 

 
𝐶(3𝑁𝑟+4)𝑔      = [

.
0 0 0…0 0  𝐷𝑟,1𝑗

.
]
4𝑥(𝑁𝑟+1)

, 

𝑅𝐻𝑆3𝑁𝑟+4    = 0 

 

 

(155) 

 
𝐶(4𝑁𝑟+4)𝑔      = [

.
0 0 0…0 0  𝐷𝑟,(𝑁𝑟+1)𝑗

.
]
4𝑥(𝑁𝑟+1)

, 

𝑅𝐻𝑆(4𝑁𝑟+4) = 0 (156) 

By applying Eqs. (149)-(156), Eq. (143) is solved to obtain the film thickness, the excess 

pressure, the tangential velocity, and the surface excess concentration profiles along 𝑟-axis as  

 

  

[
 
 
 
 
 
1

2
ℎ𝑖
𝑘+1 1

2
1

2
𝑃𝑖
𝑘+1 1

2
1

2
𝑈𝑖
𝑘+1 1

2
1

2
Γ𝑖
𝑘+1 1

2]
 
 
 
 
 

= 

[
 
 
 
 

          

1
1
𝐶𝑓𝑔
1
1

        

]
 
 
 
 
.−1

 

[
 
 
 
 
1
1

𝑅𝐻𝑆𝑓
1
1 ]

 
 
 
 

 (157) 

The magnitude of 𝑀𝑖
𝑘 in Eqs. (134) and (150) is assumed to be constant, i.e., 𝑀𝑖

𝑘 ≈ 𝑀, for the 

first two cases. Specifically for the first case, 𝑀 is estimated through Eqs. (121) and (123) for 

the zero- and the first-order reactions, respectively. Meanwhile, the third case takes 𝑀𝑖
𝑘 from 

Eq. (126) which requires Eq. (125) to be solved numerically in two dimensions. Although it 

involves 2-dimensional components, the solver is developed in a specific way as described in 

Figure 5 where the 𝑟- and 𝑧- components are solved separately. In this section, the subscript 

𝐴, 𝑐 in 𝜔𝐴,𝑐 is omitted for the discretization purposes. 
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Figure 5: Algorithm of the first and the second parts of the solver. The subscripts 𝑖 = 1, … ,𝑁𝑟+1 

and 𝑚 = 1,… ,𝑁𝑧+1 correspond to the nodes in 𝑟- and 𝑧- directions, respectively. 

ℎ𝑖
𝑘+1; 𝑃𝑖

𝑘+1; 

𝑈𝑖
𝑘+1; Γ𝑖

𝑘+1 

Inputs 

Simulation parameters : 𝑁𝑟, 𝑟0, 𝑟∞, ∆𝑡, 𝑁𝑧 

Physical parameters : 𝑉𝑎𝑝𝑝, 𝐴∗, 𝜆∗, 𝐾′, 𝑃𝑒, 𝑃𝑒𝑠, 𝜎Γ
′  

Initial conditions : 𝑡0, ℎ0, 𝑃0, 𝑈0, Γ0, 𝜔0, 𝑀0 

Spatial discretization 

in 𝑟-direction 

Matrix building 

Problem solving 

Boundary condition 

implementation 

[𝐷𝑟,𝑖𝑗] and 𝑟𝑖 

[𝐶𝑓𝑔] and [𝑅𝐻𝑆𝑓] 

in Eq. (143) 

Eqs. (149)-(156) 

Spatial discretization 

in 𝑧-direction 

Matrix building 

Problem solving 

Boundary condition 

implementation 

[𝐷𝑧,𝑚𝑛|𝑟=𝑟𝑖
] and 𝑧𝑖𝑚 

[𝐶𝜔,𝑚𝑛|𝑟=𝑟𝑖
]  and [𝑅𝐻𝑆𝜔,𝑚|𝑟=𝑟𝑖

] 

in Eq. (165) 

Eq. (168) 

𝜔𝑖𝑚
𝑘+1 

𝑀 computation 

𝑀𝑖
𝑘 

𝑣𝑟 and 𝑣𝑧 computation 

𝑣𝑟,𝑖𝑚
𝑘  and 𝑣𝑧,𝑖𝑚

𝑘  

 

ℎ𝑖
𝑘+1, 𝑃𝑖

𝑘+1, 𝜔𝑖𝑚
𝑘 , [𝐷𝑟,𝑖𝑗], 

𝑟𝑖, 𝑁𝑟, 𝑁𝑧, ∆𝑡, 𝐾
′, 𝑃𝑒 

Outputs 

Profiles : ℎ, 𝑃, 𝑈𝑡, and Γ 

Outcome : nose rupture, rim rupture,  

: or no coalescence 

Simulation time : 𝑡 = 𝑡𝑐 for coalescence and  

: 𝑡 = 0 for no coalescence 

yes 

no 
If min (ℎ𝑖

𝑘+1) < 10-3 
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As summarized in Figure 5, the second step of the solver is constructed in addition to the first 

step to determine the bulk velocities and the mass fraction profiles within the film. In this step, 

the radial discretization component and the solutions for ℎ𝑖
𝑘+1 and 𝑃𝑖

𝑘+1 obtained in the first 

step are taken to solve a one-dimensional problem in 𝑧 direction for a fixed value of 𝑟. The 

dependence of the upper boundary, 𝑧 = ℎ/2, on 𝑟 implies that each problem is solved for a 

different domain size. 

Following the first step of the solver, the spatial derivatives in 𝑧-direction are discretized using 

the Chebyshev spectral method. The differentiation matrix [𝐷𝑧] and 𝑧 positions are obtained 

for each 𝑟 value and denoted as [𝐷𝑧|𝑟=𝑟𝑖] and 𝑧|𝑟=𝑟𝑖. The time derivative is approximated by 

the first-order backward differentiation. Then, by specifying 𝑁𝑧 as the number of grids for 𝑧-

coordinate, Eq. (125) is discretized at 𝑟 = 𝑟𝑖 as 

 1

∆𝑡
[

.
𝛿𝑚𝑛
.
] 𝜔𝑚

𝑘+1|𝑟=𝑟𝑖 −
1

∆𝑡
𝜔𝑚
𝑘 |𝑟=𝑟𝑖 + 𝑑𝑖𝑎𝑔 (𝑣𝑟,𝑚

𝑘 |
𝑟=𝑟𝑖

)𝑑𝜔𝑚
𝑘 |𝑟=𝑟𝑖 

+ 𝑑𝑖𝑎𝑔 (𝑣𝑧,𝑚
𝑘 |

𝑟=𝑟𝑖
) [

.
 𝐷𝑧,𝑚𝑛|𝑟=𝑟𝑖.

] 𝜔𝑚
𝑘+1|𝑟=𝑟𝑖 

=
1

𝑃𝑒
[

.
 𝐷𝑧,𝑚𝑛|𝑟=𝑟𝑖.

] [

.
 𝐷𝑧,𝑚𝑛|𝑟=𝑟𝑖.

] 𝜔𝑚
𝑘+1|𝑟=𝑟𝑖 

 

 

 

 

(158) 

Here, 𝑚 = 1,… , (𝑁𝑧+1) and 𝑛 = 1,… , (𝑁𝑧+1) are the row and the column positions of the 

corresponding elements. This defines [𝐷𝑧,𝑚𝑛|𝑟=𝑟𝑖
] as a spectral differentiation matrix of sizes 

(𝑁𝑧+1) x (𝑁𝑧+1) evaluated at 𝑟 = 𝑟𝑖 which takes the derivative with respect to 𝑧 at 𝑟 = 𝑟𝑖. 

The term 𝑑𝜔𝑚
𝑘 |𝑟=𝑟𝑖 describes the derivative of 𝜔 with respect to 𝑟 which is evaluated at 𝑟 = 𝑟𝑖. 

In other words, 𝑑𝜔𝑚
𝑘 |𝑟=𝑟𝑖 is the 𝑖𝑡ℎ element of [𝑑𝜔𝑚

𝑘 |𝑟=1  … 𝑑𝜔𝑚
𝑘 |𝑟=𝑟𝑁𝑟+1] = [𝑑𝜔𝑖𝑚

𝑘 ]
𝑇
 which 

is computed from 

 
𝑑𝜔𝑖𝑚

𝑘 = [

.
 𝐷𝑟,𝑖𝑗
.
] 𝜔𝑖𝑚

𝑘    ; 𝑖 = 1,… , (𝑁𝑟+1); 𝑗 = 1, … , (𝑁𝑟+1); 

𝑚 = 1,… , (𝑁𝑧+1) (159) 

where [𝐷𝑟,𝑖𝑗] is taken from the first step of the solver. The bulk velocities, 𝑣𝑟,𝑚
𝑘 |

𝑟=𝑟𝑖
 and 

𝑣𝑧,𝑚
𝑘 |

𝑟=𝑟𝑖
, in Eq. (158) are obtained by determining the velocity profiles within the film, 𝑣𝑟,𝑖𝑚

𝑘  

and 𝑣𝑧,𝑖𝑚
𝑘 , from the discretization of Eqs. (99) and (100): 

 

𝑣𝑟,𝑖𝑚
𝑘 =

1

2
[[

.
 𝐷𝑟,𝑖𝑗
.
] 𝑃𝑖

𝑘+1] ⊙ [𝑧𝑖𝑚
2 − (

.
ℎ𝑖
𝑘+1

2.

)

2

] (160) 

 
𝑣𝑧,𝑖𝑚
𝑘 = −

1

3

1

𝑟𝑖
⊙𝑑𝑃1,𝑖⊙𝑧𝑖𝑚

3 +
1

𝑟𝑖
⊙𝑑𝑃2,𝑖⊙𝑧𝑖𝑚 (161) 
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The solutions for ℎ𝑖
𝑘+1 and 𝑃𝑖

𝑘+1 are taken from the first part of the solver. The element-wise 

notation (⊙) multiplies each element of the corresponding matrices or arrays located in the 

same row, 𝑖. The terms 𝑑𝑃1,𝑖 and 𝑑𝑃2,𝑖 are defined as 

 
𝑑𝑃1,𝑖 = [

.
 𝐷𝑟,𝑖𝑗
.
] [
𝑟𝑖
2
⊙ [[

.
 𝐷𝑟,𝑖𝑗
.
] 𝑃𝑖

𝑘+1]] (162) 

 

𝑑𝑃2,𝑖 = [

.
 𝐷𝑟,𝑖𝑗
.
] [
𝑟𝑖
2
⊙ [[

.
 𝐷𝑟,𝑖𝑗
.
] 𝑃𝑖

𝑘+1] ⊙ (

.
ℎ𝑖
𝑘+1

2.

)

2

] (163) 

The rearrangement of Eq. (158) into the matrix operator, the unknown, and the known terms 

yields 

 

[

.
1

∆𝑡
[

.
𝛿𝑚𝑛
.
] + 𝑑𝑖𝑎𝑔 (𝑣𝑧,𝑚

𝑘 |
𝑟=𝑟𝑖

) [

.
 𝐷𝑧,𝑚𝑛|𝑟=𝑟𝑖.

] −
1

𝑃𝑒
[

.
 𝐷𝑧,𝑚𝑛|𝑟=𝑟𝑖.

] [

.
 𝐷𝑧,𝑚𝑛|𝑟=𝑟𝑖.

]

.

] 𝜔𝑚
𝑘+1|𝑟=𝑟𝑖

= [

.
1

∆𝑡
𝜔𝑚
𝑘 |𝑟=𝑟𝑖 − 𝑑𝑖𝑎𝑔 (𝑣𝑟,𝑚

𝑘 |
𝑟=𝑟𝑖

) 𝑑𝑟𝜔𝑚
𝑘 |𝑟=𝑟𝑖

.
] 

 

 

 

(164) 

By defining the matrix operator and the known terms as [𝐶𝜔,𝑚𝑛|𝑟=𝑟𝑖
] and [𝑅𝐻𝑆𝜔,𝑚|𝑟=𝑟𝑖

], Eq. 

(164) is rewritten into 

 
[
1

2
𝐶𝜔,𝑚𝑛|𝑟=𝑟𝑖

1

2
] [ 

.
𝜔𝑚
𝑘+1|𝑟=𝑟𝑖
.

] = [
1

2
𝑅𝐻𝑆𝜔,𝑚|𝑟=𝑟𝑖

1

2
] (165) 

The boundary conditions in 𝑟-direction are taken from Eq. (116), which are expressed as 

𝜔𝑚
𝑘+1|𝑟=1 = 𝜔𝑚

𝑘+1|𝑟=2, 𝜔𝑚
𝑘+1|𝑟=𝑟𝑁𝑟 = 𝜔𝑚

𝑘+1|𝑟=𝑟(𝑁𝑟+1)  (166) 

while the boundary conditions in 𝑧-direction stem from the discretization of Eq. (117): 

[

.
𝐷𝑧,1𝑛|𝑟=𝑟𝑖.

] 𝜔𝑚
𝑘+1|𝑟=𝑟𝑖 = 0, 𝜔𝑁𝑧+1

𝑘+1 |
𝑟=𝑟𝑖

= 𝐾′ (167) 

Equation (166) implies that the problem is solved for 𝑖 = 2,… , 𝑁𝑟 since the solutions for 𝑖 = 1 

and 𝑖 = 𝑁𝑟+1 are equivalent to the solutions for 𝑖 = 2 and 𝑖 = 𝑁𝑟, respectively. Then, Eq. (167) 

is implemented by replacing the first and last rows of [
1

2
𝐶𝜔,𝑚𝑛|𝑟=𝑟𝑖

1

2
] and [

1

2
𝑅𝐻𝑆𝜔,𝑚|𝑟=𝑟𝑖

1

2
] in 

Eq. (165), resulting in 

 
𝐶𝜔,1𝑛|𝑟=𝑟𝑖

         = [

.
𝐷𝑧,1𝑛|𝑟=𝑟𝑖.

] ,              [
1

2
𝑅𝐻𝑆𝜔,1|𝑟=𝑟𝑖

1

2
]       = 0 

𝐶𝜔,(𝑁𝑧+1)𝑛|𝑟=𝑟𝑖
= [

.
0…0 0 1

.
]
(𝑁𝑧+1)

,    [
1

2
𝑅𝐻𝑆𝜔,𝑁𝑧+1|𝑟=𝑟𝑖

1

2
] = K′;  𝑖 = 2,… ,𝑁𝑟 ; 

𝑛 = 1, … , (𝑁𝑧+1) (168) 
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Finally, Eq. (165) is solved together with the boundary conditions in Eq. (168) by determining 

 
[ 

.
𝜔𝑚
𝑘+1|𝑟=𝑟𝑖
.

] = [
1

2
𝐶𝜔,𝑚𝑛|𝑟=𝑟𝑖

1

2
]
−1

[
1

2
𝑅𝐻𝑆𝜔,𝑚|𝑟=𝑟𝑖

1

2
] ;  𝑖 = 2,… ,𝑁𝑟 ; 

𝑚 = 1,… , (𝑁𝑧+1); 

𝑛 = 1,… , (𝑁𝑧+1) (169) 

and executing Eq. (166). The solution for 𝜔𝑚
𝑘+1|𝑟=𝑟𝑖 is used by taking the 𝑚𝑡ℎ element of its 

derivative with respect to 𝑧, which gives 
𝜕𝜔

𝜕𝑧
|
𝑧=ℎ/2

. The result is then used to compute 𝑀𝑖
𝑘 in 

the first step of the solver which is required to solve the thinning equation at the next time step. 

The procedure discussed so far considers the complete model with gas dissolution and 

surfactant presence. When a specific case is examined, the model equations are adjusted 

according to Table 4.  

Table 4: The model equations for specific cases 

Cases Adjustment to the Model 

Immobile interfaces 

(𝑈𝑡 = 0) 

- The thinning equation becomes Eq. (106) 

- Eqs. (90) and (133) are not required 

Fully mobile interfaces 

(𝜆∗ → 0) 

- The thinning equation turn into Eq. (107) 

- The velocity equation becomes Eq. (108) 

- The boundary condition in Eq. (109) is applied 

Absence of gas dissolution 

(𝑀 = 0) 

- Eq. (125) is not required 

- The second part of the solver is not required 

Absence of surfactants 

(Γ0 = 0) 

- Eq. (90) is not required 

The solver computes iteratively to give solutions for the next time steps until the coalescence 

is estimated to occur. This behavior is indicated by quick decreases in the dimensionless 

minimum film thickness, min (ℎ𝑖
𝑘+1), which may reach negative values in the simulation. 

Therefore, the simulation is set to stop the iteration when min (ℎ𝑖
𝑘+1) reaches below 10-3 as an 

indicator of coalescence. The time required for one single simulation to satisfy this condition 

is considered as the coalescence time. When the gas dissolution is taken into account, it may 

cause some increases in min (ℎ𝑖
𝑘+1) to a larger value than the initial one. In this case, the 

outcome is considered as no coalescence. 
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4 Results and Discussion 

In this study, the film drainage behavior is examined by considering two phenomena: the 

dissolution of gas and the surfactant presence. Each phenomenon is studied separately in 

Sections 4.1 and 4.2 by investigating their physical behaviors, i.e., mass fluxes in the presence 

of dissolution and tangential mobility for systems with surfactants, and their impacts on the 

drainage behavior. Then, the combined effect of both phenomena is analyzed in Section 4.3. 

The model is validated by executing four cases which are then compared to the solutions 

obtained by Ozan and Jakobsen (2019a). Two of these cases consider the constant mass flux 

and the variable mass flux to validate the first and the second parts of the solver, respectively, 

for the immobile case. Similarly for the mobile case, each part of the solver is validated by 

taking the tangential mobility into account. 

 

Figure 6: Time evolution of the film thickness profiles reproduced from Figure 5 of Ozan and 

Jakobsen (2019a) for validation of the first part of the solver without considering the mass 

transfer (𝑀 = 0). The four types of behavior in (a)-(d) respectively correspond to the nose 

rupture, the rim rupture with dimple formation and with multiple rims formation (the pimple 

and the ripple shapes). The results are obtained at 𝐴∗ = 10-4, ℎ00 = 10, and 𝑟∞ = 15. 



63 

 

Figure 6 presents the time evolution of the film thickness profiles at different 𝑉𝑎𝑝𝑝 values, 

which are obtained from the first part of the solver for no-flux case (𝑀 = 0). Overall, the 

results seem to be identical to Figure 5 of Ozan and Jakobsen (2019a). In all subplots, the film 

thickness decreases with time due to the drainage until the film ruptures at different times, 

shown in the last profiles, after which coalescence is estimated to occur. In Figure 6 (a), the 

rupture occurs at the center which is indicated as the nose rupture. This type of behavior occurs 

at relatively low 𝑉𝑎𝑝𝑝 where the attractive van der Waals forces start to become significant to 

destabilize the film and results in coalescence before the capillary forces act upon the system. 

As 𝑉𝑎𝑝𝑝 increases, the capillary forces become sufficiently stronger to promote rims formation 

at the interface before the film is thin enough to allow the van der Waals forces to act 

substantially. In these cases, the film ruptures at the position of the rim, which is called the rim 

rupture as represented in Figure 6 (b)-(d). The dimple shape in case (b) is commonly known 

whereas the other two shapes are discussed further by Chan et al. (2011). According to their 

Section 3.1.2, the pimple in case (c) refers to an additional minimum emerging locally at the 

interface while the ripple in case (d) is indicated by the multiple minima and maxima appearing 

along the interface. 

The second part of the solver is validated together with the first part by setting 𝐾′ into zero, 

i.e., no mass flux, and comparing the results with the constant flux case for 𝑀 = 0. The 

comparison in Figure 7 shows that the results with the two-step solver, i.e., the 2D solver, fit 

perfectly with the constant flux solver. Therefore, all results for the no-flux case in this section 

are obtained from the constant flux solver. 

 

Figure 7: Coalescence time as a function of 𝑉𝑎𝑝𝑝 for validation of the 2D solver. All results 

are obtained at 𝐴∗ = 10-4, ℎ00 = 10, and 𝑟∞ = 15. 
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To compare with Figure 4 of Ozan and Jakobsen (2019a), the 𝑡𝑐 curves in Figure 7 seem to 

match well with their 𝐴∗ = 10−4 case. The linear decreasing trend of 𝑡𝑐 within the low 𝑉𝑎𝑝𝑝 

values is found to give the nose rupture as described in Figure 6 (a). Then, the slope of 

log(𝑡𝑐)/log(𝑉𝑎𝑝𝑝) decreases at around 𝑉𝑎𝑝𝑝 = 0.01 where the dimple starts to grow along the 

interface as represented in Figure 6 (b). This decreasing slope indicates that the drainage rate 

is slowed down by the emergence of the dimple which tend to strengthen the resistance of the 

interface to the drainage process. Then, the decreases in 𝑡𝑐 become less significant until 𝑡𝑐 

passes its minimum point and starts to increase with 𝑉𝑎𝑝𝑝. In this regime, the multiple rims 

appear along the interface as shown in Figure 6 (c)-(d), which delay the drainage rate even 

more, resulting in the increasing trend of 𝑡𝑐. 

The mobile solver is validated by reproducing Figures 7 (a) and 10 of Ozan and Jakobsen 

(2019a) using the first-step of the solver and the two steps of the solver, respectively. In their 

work, the time is scaled with 𝜇𝑑 instead of 𝜇𝑐 that is used in this study. This results in the 

different transformation of the dimensionless time, i.e., 𝑡𝑐. To yield the same transformation as 

their work, the coalescence time obtained in this study needs to be divided by the viscosity 

ratio, 𝜆∗. The results are presented in Figure 8 which seem to be in good agreement with Figure 

7 (a) of Ozan and Jakobsen (2019a). The decreasing-increasing trend of 𝑡𝑐 is similarly found 

in the mobile case for different extents of mobility. As 𝜆∗ values get smaller, i.e., more mobile 

interfaces, the coalescence times approach to the fully mobile case which fits with the results 

for 𝜆∗ = 0.1. 

 

Figure 8: Reproduction of Fig. 7 (a) of Ozan and Jakobsen (2019a) using the first-step of the 

solver showing coalescence time for different 𝜆∗ as a function of 𝑉𝑎𝑝𝑝 evaluated at 𝐴∗ = 10-4, 

ℎ00 = 2, 𝑟∞ = 30, and 𝑀 = 0. 
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Figure 9 shows the time evolution of the film thickness profiles for partially and fully mobile 

cases that are obtained from the two-step solver. The results seem to be in accordance with the 

ones obtained in Ozan and Jakobsen (2019a)’s Figure 10 where the pimpling and the wimpling 

behaviors in their figure are also found here. While the pimple shape in case (a) is similarly 

shown in Figure 6 (c) for immobile case, the wimple shape in Figure 9 (b) only shows up when 

the interface is fully mobile (𝜆∗ → 0). This corresponds to the contribution of the parabolic 

flow (𝜆∗ ≠ 0) in hindering the emergence of the wimple as discussed in Ozan and Jakobsen 

(2019a). 

 

Figure 9: Reproduction of Fig. 10 of Ozan and Jakobsen (2019a) using the two-step solver 

which shows the time evolution of the film thickness for (a) partially mobile and (b) fully 

mobile interfaces, exhibiting the pimpling and the wimpling behaviors, respectively. All 

results are obtained at ℎ00 = 2, 𝑟∞ = 30, and 𝐾′ = 0. 

4.1 The Effect of Gas Dissolution on Coalescence 

The effect of the gas dissolution is investigated for three cases based on 1 mm bubbles in water. 

The first case considers low 𝑃𝑒 where the convective transport is assumed to be negligible. In 

the second case, the mass flux is assumed to be constant and its effect is investigated by varying 

𝑀. The third case applies for variable mass fluxes which hold for any 𝑃𝑒 values. This case is 

studied by observing the behavior of the mass transfer, i.e., the time evolution of 𝑀, before the 

effects of the gas solubility and 𝑃𝑒 on the drainage rate are examined. As the default case, all 

results are evaluated for immobile interfaces (𝑈𝑡 = 0) with the absence of surfactants. 

Specifically for the first case, the negligible convection assumption implies that the reaction 

term should stay to balance the diffusive term. This means that the first case only holds for 

systems which involve reactions. 



66 

 

4.1.1 Case 1: Low Péclet Number 

The model in this case is evaluated by estimating 𝑀 for the zero- and the first-order reactions 

as expressed in Eqs. (121) and (123). A typical bioreactor system is taken as the base case, 

where O2 is commonly used as nutrients for cells. Following the typical bioreactor systems 

discussed in Lopes et al. (2014), the O2 solubility in water at 1-15 bar is taken to estimate 𝐾′ 

which is on the order of 10−5 − 10−4. Then, by assuming that the dimensionless film thickness 

is roughly at ℎ ≪ 0.1, 𝑀 is estimated to be around 10−14 − 10−9 for the zero-order reactions 

and 10−16 − 10−10 for the first-order reactions. These values are assigned as constant 𝑀 to 

estimate the coalescence times for different 𝑉𝑎𝑝𝑝, which are summarized in Figure 10. 

 

Figure 10: Coalescence time for different 𝑀 values as a function of 𝑉𝑎𝑝𝑝. All results are 

evaluated at 𝐴∗ = 10-4, ℎ00 = 10, and 𝑟∞ = 15. 

Compared to the no-flux case (𝑀 = 0), the coalescence time for 𝑀 < 10−4 seems to be 

indistinguishable. As expected from Eq. (101), when 𝑀 is too small, the effect of dissolution 

on the film drainage becomes insignificant. In this case, 𝑀 depends on the gas solubility, 𝐾′, 

and the consumption rate of the gas, 𝑟𝐴, which are relatively low for bioreactions. The low 𝐾′ 

value results in low concentration gradient within the film, which restricts the diffusive transfer 

of the substance. In addition, 𝑟𝐴, which serves as the sink term in this case, is expected to 

promote larger flux compared to the non-reactive systems by increasing the concentration 

gradient. However, this effect becomes less significant when 𝑟𝐴 is low. According to Eqs. (121) 

and (123), 𝑀 seems to be quite insensitive to the changes in 𝐾′ and 𝑟𝐴. Thus, changing these 
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two parameters to larger values for a system with chemical reactions still yields small 𝑀 values, 

which are below 10-4. 

In comparison to reactive systems assumed in this case, Li et al. (2019) observed that gas 

dissolution also occurs and influences coalescence in the absence of reactions. In their 

experiments, they used CO2 which has a solubility of 100 times higher than the O2 solubility 

and came up with their Eq. (3.2) which describes the relationship between the mass flux of CO2 

and the bubble size. According to their expression, the values of 𝑀 for 1 mm CO2 bubbles are 

estimated to be on the order of 10−6 − 10−2 (further details are derived in App. 0). Based on 

Figure 10, the values of 𝑀 ≥ 10−4 for CO2 bubbles are seen to be influential on the coalescence 

time. This implies that the effect of dissolution may not be neglected for gases with high 

solubility. In addition, the considerable effect of dissolution also applies for non-reactive 

systems according to Li et al. (2019), which cannot be simulated using the low 𝑃𝑒 case since 

𝑀 in this case disappears when there are no reactions. This indicates that the model for low 𝑃𝑒 

case may be inadequate to represent the dissolution phenomena on film drainage. 

4.1.2 Case 2: Constant Mass Flux 

In this case, 𝑀 is assigned as a constant value which may represent any values of 𝑃𝑒, 𝐾′, and 

reactive or non-reactive systems. The values of 𝑀 are varied between 10−8 and 5 𝑥 10−4 with 

the results given in Figure 11. While the curves for 𝑀 < 10−4 match the no-flux case, the 

results for 𝑀 ≥ 10−4 show slower drainage time compared to the no-flux case. The gas transfer 

from the dispersed to the continuous phase shrinks the bubbles out which displaces the 

interfaces away from each other. This implies that the rate of the film drainage becomes slower 

with higher 𝑀. As also described in Eq. (101), when 𝑀 is constant, the film thickness increases 

more with larger 𝑀. 
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Figure 11: Coalescence time for different 𝑀 as a function of 𝑉𝑎𝑝𝑝, showing three different 

patterns. All curves are obtained at 𝐴∗ = 10-4, ℎ00 = 10, and 𝑟∞ = 15. 

For 𝑀 ≥ 10−4, the extent of 𝑀 effect on 𝑡𝑐 seems to change with 𝑉𝑎𝑝𝑝, revealing three patterns 

which are separated roughly by the dot-dashed lines. At low 𝑉𝑎𝑝𝑝 values, the effect of 𝑀 in 

slowing the drainage rate becomes less significant with 𝑉𝑎𝑝𝑝 until the curves merge at 

intermediate 𝑉𝑎𝑝𝑝 values, starting from 𝑉𝑎𝑝𝑝 ≈ 0.006. These cases occur in the decreasing trend 

of 𝑡𝑐 where the contact time between the bubbles gets faster with 𝑉𝑎𝑝𝑝. This reduces the period 

for the mass flux to occur, which consequently decreases the significance of 𝑀 effect in 

prolonging 𝑡𝑐. As 𝑀 is assumed constant here, the extent of 𝑀 effect can be connected directly 

to the contact time. This is also shown through the boundary condition at 𝑟 = 𝑟∞ in Eq. (103) 

where 𝑀 becomes less dominant on the rate of the interface displacement when 𝑉𝑎𝑝𝑝 is larger. 

After passing the intermediate values, at 𝑉𝑎𝑝𝑝 ≥ 0.02, the drainage rate is slowed down by the 

emergence of the dimple. This implies that the contact time begins to increase with 𝑉𝑎𝑝𝑝, thus, 

the curves start to separate again as discussed further in Figure 14. 

The slowing down effect of 𝑀 is also found for very low 𝑀 values when they are comparable 

to 𝑉𝑎𝑝𝑝. As shown in Figure 12, the 𝑡𝑐 curves for 𝑀 = 10−8 and 𝑀 = 10−6 appear to deviate 

from the no-flux case within very low 𝑉𝑎𝑝𝑝 values. However, according to Yaminsky et al. 

(2010), the coalescence hardly occurs in such low 𝑉𝑎𝑝𝑝 since the film tends to stay stable at 
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𝑉𝑎𝑝𝑝 < 1 μm/s. This value corresponds to a dimensionless 𝑉𝑎𝑝𝑝 of 10−4 below which the 

visible effect of the mass transfer for 𝑀 < 10−4 may be unrealistic. 

 

Figure 12: Coalescence time as a function of the approach velocity at very low 𝑉𝑎𝑝𝑝 regime, 

showing that smaller 𝑀 affects the coalescence time when 𝑀 values are comparable to 𝑉𝑎𝑝𝑝 

At intermediate 𝑉𝑎𝑝𝑝 values, the effect of 𝑀 in increasing 𝑡𝑐 can be seen clearer in Figure 13. 

All curves for 𝑀 < 10−4 show similar 𝑡𝑐 which are indicated the same as 𝑡𝑐 for the no-flux 

case. Then, 𝑡𝑐 starts to increase with 𝑀 by around 1%-2% for 𝑀 = 10−4 and 8%-14% for 𝑀 =

5 𝑥 10−4. After this value, higher 𝑀 seems to give asymptotic trend which may indicate that 

the gas dissolves completely into the continuous phase. However, there is no apparent reason 

for this behavior to occur in real systems, especially since the mass transfer should reach an 

equilibrium state. At this stage, there is no concentration difference between the dispersed 

phase and the continuous phase, i.e., no further phase change. 
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Figure 13: Coalescence time as a function of 𝑀 at (a) 𝑉𝑎𝑝𝑝 = 0.006, (b) 𝑉𝑎𝑝𝑝 = 0.008, (c) 𝑉𝑎𝑝𝑝 

= 0.01, and (d) 𝑉𝑎𝑝𝑝 = 0.02 with 𝐴∗ = 10-4, ℎ00 = 10, and 𝑟∞ = 15 

At high 𝑉𝑎𝑝𝑝 values, 𝑉𝑎𝑝𝑝 > 0.02, the curves for 𝑀 ≥ 10−4 separate from the no-flux case as 

shown clearer in Figure 14. The decreasing trend correspond to the dimple formation at the 

interface, which delays the drainage process compared to the linear trend in the first two 

patterns discussed above. This allows the mass transfer to occur for longer period and affect 

the drainage behavior more significantly. As 𝑉𝑎𝑝𝑝 becomes larger, the dimple becomes more 

pronounced, which decreases the drainage rate more, provides longer contact time, and results 

in more visible effect of 𝑀 until multiple rims appear in the increasing trend of 𝑡𝑐. In this 

regime, all curves increase with approximately the same slope of log(𝑡𝑐) /log (𝑉𝑎𝑝𝑝). 

  

Figure 14: Coalescence time as a function of 𝑉𝑎𝑝𝑝 at high 𝑉𝑎𝑝𝑝 regime, showing that the 

minimum 𝑡𝑐 is obtained at lower 𝑉𝑎𝑝𝑝 for higher 𝑀 



71 

 

It can be seen respectively from the decreasing and the increasing trends that the curves for 

larger 𝑀 separate at lower 𝑉𝑎𝑝𝑝 and reach the minimum 𝑡𝑐 at lower 𝑉𝑎𝑝𝑝 as well. These 

behaviors show that the mass transfer favors the interfaces to deform to a larger extent, as can 

be seen in Figure 15. In both cases, the thickness profiles show similar behavior until 𝑡 = 200 

at which the interface starts to deform. After this stage, the two cases show different behavior 

where the no-flux case gives film rupture already at 𝑡 = 305 with the deformed radius of 𝑟𝑑 ≈

1 while at the same time, the film for 𝑀 = 5 𝑥 10−4 has not reached its critical thickness. 

Consequently, the interface for 𝑀 = 5 𝑥 10−4 keeps deforming to a larger 𝑟𝑑 until the film 

ruptures at around 𝑡 = 465 and 𝑟𝑑 ≈ 1.8. Therefore, the drainage for higher 𝑀 reaches the 

multiple rim regime, i.e., passes min (𝑡𝑐), at lower 𝑉𝑎𝑝𝑝. 

 

Figure 15: Time evolution of the film thickness profiles for (a) the no-flux case (𝑀 = 0) and 

(b) 𝑀 = 5 x 10-4 showing wider deformed radius, 𝑟𝑑, caused by the gas dissolution. All results 

are obtained at 𝑉𝑎𝑝𝑝 = 0.06, 𝐴∗ = 10-4, ℎ00 = 10, and 𝑟∞ = 15. 

The results with constant mass flux show that the gas dissolution starts to affect the film 

drainage when 𝑀 ≥ 10−4 which is in the range of the approximated 𝑀 for CO2 bubbles. 

Meanwhile, the dissolution of gasses with low solubility, such as O2, seems to have no effect 

on the drainage. However, mass fluxes in real systems may not stay constant along the 

interfaces and during the interaction. Therefore, an analysis on the variable mass flux case with 

2D model is required to conclude the effect of the gas dissolution on coalescence. 

4.1.3 Case 3: Variable Mass Flux (2D Model) 

In this section, 𝑀 is computed throughout the simulation as a function of 𝑟 and 𝑡 which requires 

the second part of the solver in addition to the first part. As the default case, the convective and 

the diffusive transfer rates are considered to be equally significant by setting 𝑃𝑒 = 1. The gas 

solubility is taken as 𝐾′ = 10−3 which represent systems such as CO2 bubbles dispersed in 
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water at 1 bar or O2 bubbles dispersed in water at 100 bar. The results are initially examined 

by analyzing the bulk velocities and the mass fraction profiles within the film as presented in 

Figure 16. 

 
Figure 16: Surface profiles of (a)-(b) the bulk velocities and (c) the mass fraction at 𝑡 = 100. 

The results are obtained at 𝐾′ = 10-3, 𝑃𝑒 = 1, 𝑉𝑎𝑝𝑝 = 0.001, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 15. 

All profiles are obtained at 𝑡 = 100 which show the film behaviors before the bubbles deform. 

The radial bulk velocity, 𝑣𝑟, along the interface (the dark-blue area in (a)) shows zero values 

which is expected for immobile case (𝑈𝑡 = 0). These values increase along 𝑧-direction and 

attain their maximum at 𝑧 = 0, indicating that there is no further velocity gradient in 𝑧-

direction, which is also consistent with the first symmetry condition in Eq. (96). The axial bulk 

velocity, 𝑣𝑧, follows the second symmetry condition in Eq. (96) which is zero at 𝑧 = 0 (the 

yellow area in (b)). Then, 𝑣𝑧 decreases to negative values towards the interface which 

represents the movement of the upper bubble to negative 𝑧. The mass fraction, 𝜔𝐴,𝑐, at the 

interface (the yellow area in (c)) has the same value as 𝐾′ = 10−4 which then decreases in both 

𝑧- and 𝑟-directions towards 𝜔𝐴,𝑐 = 0, showing the concentration difference within the film. 

The surface profiles presented in Figure 16 seem to fit the expected physical behavior. 

However, there are some numerical stability issues encountered during the evaluation of 𝑀 

behavior, particularly in the rim rupture regime and the mobile solver. The film drainage 

behavior presented in Section 4.1.3.1 is obtained from the 2D solver after the numerical issues 

are resolved to a certain stage, as discussed further in Section 4.1.3.2. During the attempts of 

resolving these issues, some alternative methods of estimating the coalescence time were 

examined and discussed in Section 4.1.3.3. 
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4.1.3.1 Film Drainage with the 2D Solver 

The time evolution of 𝑀 is introduced in this section to understand the physical behavior of the 

variable mass flux across the interface. In Figure 17 (a), it is shown that 𝑀 decreases with time 

throughout the simulation until coalescence is estimated to occur at 𝑡𝑐 ≈ 2100. For all 𝑟 

positions, 𝑀 initially falls by around 10 times to a value of 𝑀 ≈ 5 𝑥 10−4 before its behavior 

becomes dependent of 𝑟. The decreasing trend of 𝑀 indicates that the mass flux diminishes 

during the film drainage. As the gas transfers to the continuous phase, the concentration of the 

gas within the film, 𝜔𝐴,𝑐, increases with time. This reduces the concentration difference of the 

gas inside the film which appears in the last term of Eq. (102), resulting in the decreasing 𝑀 

throughout the time. 

 
Figure 17: (a) 𝑀 as a function of time from the smallest to the largest 𝑟 positions where the 

leftmost to the rightmost dashed-dot curves indicate 𝑟 ≈ 3, 𝑟 ≈ 5, 𝑟 ≈ 7, 𝑟 ≈ 8, and 𝑟 ≈ 10, 

(b)-(c) time evolution of the mass fraction of 𝐴 within the film against 𝑧 for 𝑟 ≈ 3 and 𝑟 ≈ 5. 

All results are obtained at 𝐾′ = 10-3, 𝑃𝑒 = 1, 𝑉𝑎𝑝𝑝 = 0.001, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 15. 
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Compared to large 𝑟 positions, 𝑀 decreases more significantly at smaller 𝑟. This can be 

explained through Figure 17 (b)-(c) where 𝜔𝐴,𝑐 grows faster for smaller 𝑟, which reduces the 

concentration gradient more quickly. This happens because the film within smaller 𝑟 is 

relatively thinner, which enables the gas to fill these domains more quickly. The dissolved gas 

accumulates inside the film until its concentration at the given 𝑟 reaches 𝜔𝐴,𝑐 = 𝐾′, which is 

indicated as local film saturation. In this case, the gas cannot dissolve further, i.e., no mass 

flux, since there is no concentration gradient along 𝑧. Therefore, the last term of Eq. (102) 

becomes zero, resulting in 𝑀 = 0. The film saturation locally occurs at different time for 

different 𝑟. As described in Figure 17 (b)-(c), the local saturation for 𝑟 ≈ 3 is obtained at 𝑡 ≈

100 while at a larger position, at 𝑟 ≈ 5, the film saturates at 𝑡 ≈ 500. These conditions are 

detected in Figure 17 (a) where 𝑀 for the corresponding 𝑟 and times reaches below 10−6. This 

implies that 𝑀 ≤ 10−6 is small enough to consider that the film is locally saturated, which also 

shows that the film saturates more quickly at smaller 𝑟.  

The 𝑀 behavior is evaluated further for higher 𝑉𝑎𝑝𝑝 values, where the decreasing 𝑀 also holds 

as shown in Figure 18 (a)-(c). In all cases, 𝑀 at a given time decreases with smaller 𝑟 and 

reaches its minimum value at 𝑟 = 0. Then, the film saturates locally (𝑀 ≤ 10−6) starting from 

the center, which matches the analysis of Figure 17. The local saturation seems to occur at 

wider 𝑟 for larger 𝑉𝑎𝑝𝑝, reaching 𝑟 ≈ 2.1, 𝑟 ≈ 2.2, and 𝑟 ≈ 2.7 at 𝑡 = 35 for the three velocities 

in cases (a)-(c), respectively. This behavior can be seen more clearly in Figure 18 (d) which 

presents the width of saturated film, 𝑟𝑠𝑎𝑡, for the three corresponding 𝑉𝑎𝑝𝑝 as a function of time. 

The areas under the three curves represent the saturated domains which increase during the 

drainage process. It is clearly seen that 𝑟𝑠𝑎𝑡 is relatively wider for larger 𝑉𝑎𝑝𝑝 which implies 

that 𝑉𝑎𝑝𝑝 favors the film to saturate more easily. This happens because the film thins out faster 

with larger 𝑉𝑎𝑝𝑝 before the interfaces deform and start to affect the drainage behavior. As a 

consequence, the film is filled by the gas more quickly and reaches the solubility at earlier time. 

This effect is magnified by the role of 𝑉𝑎𝑝𝑝 in enforcing the film to flow out of the collision 

zone which expands 𝑟𝑠𝑎𝑡 wider. Especially for the cases with comparable convective and 

diffusive transfer rates as investigated here, 𝑀 is affected by the flow of the film which gets 

stronger with the velocity, allowing the film to reach the local saturation more easily. 
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Figure 18: Time evolution of (a) - (c) 𝑀 profiles for different 𝑉𝑎𝑝𝑝 values and (d) the radial 

position which separates the saturated and unsaturated film domains. All results are obtained 

at 𝐾′ = 10-3, 𝑃𝑒 = 1, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 15. 

To compare with small 𝑟 positions, the behavior in large 𝑟 can be examined from the maximum 

values of 𝑀 which are estimated to occur at 𝑟 = 𝑟∞ according to Figure 17. The results in 

Figure 19 show that max(𝑀) increases with decreasing 𝑉𝑎𝑝𝑝 and it converges to the same value 

for 𝑉𝑎𝑝𝑝 = 10
−3 and 𝑉𝑎𝑝𝑝 = 10−4. This indicates that the rate of decreasing 𝑀 is relatively 

faster for larger 𝑉𝑎𝑝𝑝, which is consistent with the analysis of easier local saturation for larger 

𝑉𝑎𝑝𝑝. 

 

Figure 19: Time evolution of maximum 𝑀 for different 𝑉𝑎𝑝𝑝. All results are obtained at 𝐾′ = 

10-3, 𝑃𝑒 = 1, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 15. 
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After observing the dissolution behavior, now its effect on the film drainage is evaluated by 

varying 𝑃𝑒 and 𝐾′. Figure 20 shows the effect of 𝑃𝑒 on max(𝑀) and 𝑡𝑐. It can be seen in case 

(a) that max(𝑀) behaves differently with 𝑃𝑒, which rises until 𝑃𝑒 = 0.004 and declines 

afterwards. When 𝑃𝑒 ≤ 0.004, the convective transport may not be strong enough to promote 

film saturation. Therefore, larger 𝑃𝑒 results in more amount of mass crossing the interface 

without significantly promoting film saturation, which yields the increasing trend of max(𝑀). 

This behavior changes after 𝑃𝑒 = 0.004 when the convection is estimated to be influential 

enough to favor film saturation. In this case, higher 𝑃𝑒 promotes larger mass flux which allow 

the film to reach local saturation more easily and eventually stops the mass transfer at earlier 

time. Consequently, larger 𝑃𝑒 results in the decreasing trend of max(𝑀) due to the implication 

from the film saturation. This is also noticed through Eq. (102) where the terms 2/𝑃𝑒 and 

𝜕𝜔𝐴,𝑐/𝜕𝑧 give opposite effects on 𝑀. When the former term dominates, larger 𝑃𝑒 yields lower 

𝑀 as indicated by the decreasing trend of max(𝑀). This only occurs when 𝑃𝑒 is sufficiently 

large to favor saturation. On the other hand, when the term 𝜕𝜔𝐴,𝑐/𝜕𝑧 dominates, larger 𝑃𝑒 

results in higher 𝑀, which corresponds to the increasing trend when the convection is too weak 

to influence the amount of the mass flux, i.e., harder for the film to saturate. Depending on the 

dominating term, the behavior of 𝑀 may change with 𝑃𝑒 as described in Eq. (102). 

 

Figure 20: (a) Maximum 𝑀 at 𝑡 = 25 as a function of 𝑃𝑒 for different 𝑉𝑎𝑝𝑝 and (b) coalescence 

time for different 𝑃𝑒 as a function of 𝑉𝑎𝑝𝑝 with 𝐾′ = 10-3, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 15 

The effect of 𝑃𝑒 on 𝑀 appears to be insignificant on 𝑡𝑐 as presented in Figure 20 (b). 

Considering that the mass transfer from the dispersed to the continuous phase displaces the 

interface to the reversed direction of the approach of the bubbles, it is expected for the mass 
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transfer to slow down the drainage rate of the film. However, the film saturation may be 

impactful on the drainage mechanism in this case. As larger 𝑀 favors film saturation in the 

collision domain, the effect of dissolution disappears already at earlier time, resulting in the 

same behavior as the no-flux case afterwards. Thus, the coalescence time for 𝐾′ = 10−3 is not 

really affected by the gas dissolution. 

In comparison to 𝐾′ = 10−3, the results for different 𝐾′ are presented in Figure 21. It is shown 

that the 𝑡𝑐 curves differ from the no-flux case only when 𝐾′ = 10−2 and 𝑃𝑒 ≤ 1. Since the gas 

concentration needs to reach the solubility for the film to saturate, a system with larger 𝐾′ 

allows more amount of gas to transfer before reaching the film saturation. This implies that the 

dissolution occurs for a longer period and becomes more influential to the drainage process 

when 𝐾′ is large enough to delay the saturation. In addition to 𝐾′, the dynamic behavior of 

saturation is also influenced by 𝑃𝑒 and 𝑉𝑎𝑝𝑝. As discussed in Figure 20, the film saturation is 

promoted by 𝑃𝑒 and 𝑉𝑎𝑝𝑝, which explains the disappearance of the mass transfer effect at larger 

values of both parameters. Based on this analysis, the effect of gas dissolution associated with 

the role of film saturation needs to be considered when 𝐾′ is sufficiently high and the values of 

𝑃𝑒 and 𝑉𝑎𝑝𝑝 are relatively low. 

 

Figure 21: Coalescence time for different 𝐾′ and different 𝑃𝑒 as a function of 𝑉𝑎𝑝𝑝 with 𝐴∗ = 

10-4, ℎ00 = 2, and 𝑟∞ = 15 

The drainage behavior discussed so far is based on the default case with immobile interfaces. 

Specifically for bubble collisions, the low viscosity of the bubbles compared to the continuous 
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phase result in high mobility of the interfaces. Nevertheless, the drainage behavior is  found to 

be similar in the mobile cases when the gas dissolution is considered. When the interfaces are 

highly mobile, the tangential velocity appears to increase the drainage rate, which thins the film 

faster compared to the immobile one. This implies that the film saturates more easily which 

reduces the significance of the dissolution effect on 𝑡𝑐. Combining this condition with the other 

parameters leads to a conclusion that the gas dissolution influences the film drainage when the 

local saturation is delayed, which is only possible under specific conditions: 

- The systems involve gasses with high solubility at relatively high pressure to give 𝐾′ ≥ 10−2, 

which corresponds to the solubility of, for instance, CO2 in water at 10 bar. 

- The transport mechanism needs to be less influenced by the convection, i.e., 𝑃𝑒 ≤ 1. 

- The approach velocity of the bubbles are sufficiently low. 

- The tangential mobility of the interfaces are relatively low, which may imply a requirement 

for immobilization mechanisms to be involved in the system. 

The analysis of the 2D case also shows the inadequacy of the model with constant mass flux 

as it is not capable to simulate the film saturation occurring during the bubble collision. 

As mentioned previously, the results discussed in this section are obtained from the 2D solver 

which encountered some stability issues and numerical difficulties for some cases, such as 𝑀 

behavior for the rim rupture regime or the mobile interface. These issues are discussed further 

in Section 4.1.3.2 together with the attempts of resolving them.  

4.1.3.2 Several Attempts to Resolve the Numerical Issues 

Although the two-step solver is constructed to solve 1D problems separately, there are some 

numerical issues encountered during the initial simulations. One is related to small values 

involved in this study, such as the computed 𝜔𝐴,𝑐 and 𝑀. Another challenge appears due to 

different grid points of 𝑧 coordinate for each 𝑟 since the domain size in 𝑧 direction changes 

with 𝑟 due to the interface’s shape. 

Implementation of 𝝎𝑨,𝒄 and 𝑴 Criteria to Handle Small Numbers 

As 𝜔𝐴,𝑐 varies between 0 and 𝐾′, it may attain very small values close to zero, that are smaller 

than the machine accuracy and may be misinterpreted by the solver as small negative values. 

This error may accumulate throughout the next computations, resulting in significant negative 

values, which are not physical. Therefore, a command is added to the solver to set all small 

values, 𝜔𝐴,𝑐 ≤ 10−15, into zero, hereafter is called as the 𝜔𝐴,𝑐 criterion. A similar issue was 
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found in the computed 𝑀. Despite the physical existence of negative 𝑀 values, their presence 

in this study is contradictory to the assumption that the mass transfer occurs from the dispersed 

to the continuous phase. Therefore, a similar command as the 𝜔𝐴,𝑐 criterion is applied in this 

case, mentioned as the 𝑀 criterion. At a later stage of the simulation, the 𝑀 criterion seems to 

cause some inconsistencies in the solver, particularly in the rim rupture regime. One example 

of the cases is shown in Figure 22 where the time evolution of the minimum film thickness, 

min (ℎ), is compared for three different cases. The no-flux case (𝐾′ = 0) represents the 

expected behavior while the other two cases, marked with the circle and the triangle symbols, 

are obtained for 𝐾′ = 10−3 with the inclusion and exclusion of the 𝑀 criterion, respectively. 

The thickness at which the curve starts to drop rapidly is defined as the critical min (ℎ) and the 

final time obtained at each curve represents the estimated 𝑡𝑐. 

 

Figure 22: The time evolution of the minimum thickness for 𝐾′ = 10-3 at 𝑉𝑎𝑝𝑝 = 0.1 evaluated 

at different parameter settings in comparison to the expected behavior represented by the dot-

dashed curve (obtained for 𝐾′ = 0) 

Unlike the dot-dashed curve which decreases smoothly, the min (ℎ) for 𝐾′ = 10−3 with 𝑀 

criterion seems to be broken off suddenly. In addition, it can be seen that different parameter 

settings such as the time step Δ𝑡 and the spatial grid 𝑁𝑧 give inconsistent 𝑡𝑐 with various critical 

min (ℎ) values. Meanwhile, min (ℎ) for no 𝑀 criterion cases look smoother and their critical 

min (ℎ) are approximately the same as the one obtained in the no-flux case. By excluding the 

𝑀 criterion from the particular problematic cases, the estimated 𝑡𝑐 for the whole simulation are 

compared to the results before excluding the 𝑀 criterion, which are shown in Figure 23. 
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Figure 23: Coalescence time as a function of 𝑉𝑎𝑝𝑝 when (a) 𝑀 criterion is applied to the 

whole simulation, showing suspicious results: (i) and (ii) show unexpected decreasing 𝑡𝑐 for 

𝐾′ = 10-3 while (iii) shows unreasonable merging curves of 𝑡𝑐 for all 𝐾′ values, (b) 𝑀 

criterion is excluded from the problematic cases (i)-(ii). All results are obtained at 𝐴∗ = 10-4, 

ℎ00 = 10, and 𝑟∞ = 15. 

In Figure 23 (a), 𝑡𝑐 for  𝐾′ = 10−3 at (i) 𝑉𝑎𝑝𝑝 = 0.1 and (ii) 𝑉𝑎𝑝𝑝 = 0.14 are suspected to be 

inaccurate, which therefore, are re-evaluated without including the 𝑀 criterion. Although it 

means that the mass transfer is allowed to occur in the opposite direction of the assumed one, 

the behavior inside the film may be unpredictable when the dimple emerges, e.g., the 

concentration gradients in 𝑟-direction, 𝜕𝜔𝐴,𝑐/𝜕𝑟, may change into negative values. Thus, the 

exclusion of the 𝑀 criterion is still acceptable for the problematic cases. The last results at (iii) 

𝑉𝑎𝑝𝑝 = 0.18 also seems suspicious since there is no argument that can explain the merging 

curves after they separate at around the minimum 𝑡𝑐. Moreover, the deformed radius of the 

interface for case (iii) appears to be too large (above 50% of 𝑟∞) to be considered as the gentle 

collision assumed in this study. Therefore, the result for case (iii) is excluded and the corrected 

version is given in Figure 23 (b). All of the inconsistencies occurred during the simulation are 

explained further in App. C.1. 

Re-evaluation of 𝑴 Criterion to Improve the Numerical Stabilities 

Although the corrected results in Figure 23 (b) looks reasonable, there are some other issues 

appearing during the simulation. One of them is related to the convergence issues for mobile 

cases which are similar to Figure 22. In this case, the estimation of 𝑡𝑐 does not converge to one 

value when the simulation parameters, such as Δ𝑡 and 𝑁𝑧, are changed, which makes it hard to 

estimate 𝑡𝑐.  
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Beside the convergence issues, there are some other suspicious behaviors even for immobile 

case, such as the time evolution of 𝑀 for a fixed 𝑟 value. As presented in Figure 24 (a), some 

increases in 𝑀 appear after 𝑡 ≈ 180 while 𝑀 is expected to stay as zero due to film saturation. 

This behavior also appears in Figure 24 (b) after the 𝑀 criterion is excluded from the solver 

with some decreases in 𝑀 during the local saturation. These small decreases affect the 

behaviors significantly which may mislead the entire analysis of the effect of gas dissolution 

as discussed in Figure 25 and 26. 

 

Figure 24: Time evolution of 𝑀 evaluated at 𝑟 = 1 for (a) with 𝑀 criterion and (b) without 𝑀 

criterion. All results are obtained at 𝐴∗ = 10-4, ℎ00 = 10, and 𝑟∞ = 15. 

Figure 25 shows the change of behaviors when the type of the rupture shift from the nose to 

the rim rupture. As discussed in Section 4.1.3.1, the effect of the mass transfer is found to 

consistently increase 𝑡𝑐. Meanwhile, in Figure 25, the increasing 𝑡𝑐 due to mass transfer only 

holds for the nose rupture regime as if the mass transfer is also able to decrease 𝑡𝑐 when the 

rim rupture occurs in case (d). These competing effects unfortunately can be misinterpreted as 

a physical phenomenon through Figure 26. In these film thickness profiles, the final value of 

the deformed radius, 𝑟𝑑, seems to be a requirement for the film rupture to occur. As the dimple 

emerges due to the capillary forces, the same 𝑉𝑎𝑝𝑝 gives the same capillary forces, resulting in 

the same final value of 𝑟𝑑 for both cases at 𝑟𝑑,𝑓𝑖𝑛𝑎𝑙 ≈ 2.2. When 𝐾′ = 10−3 increases the film 

thickness after the interface deforms, at ℎ ≈ 0.1, 𝑟𝑑 becomes larger compared to the no-flux 

case. This causes the case with 𝐾′ = 10−3 to reach 𝑟𝑑,𝑓𝑖𝑛𝑎𝑙 faster and gives earlier 𝑡𝑐. However, 

the increasing thickness after 𝑡 = 120 is found to occur due to computational errors instead of 

the physical effect of the mass transfer. This can be detected from the increasing min (ℎ) in 

Figure 26 (a) which occurs at approximately the same time as the decreasing 𝑀 in Figure 24 

(b). This type of connection is similarly found in the mobile cases where the increases in min 

(ℎ) also begin at min (ℎ) ≈ 0.1 as presented in App. C.1. 
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Figure 25: Examples of incorrect results for 𝐾′ = 10-3 obtained from unstable solver in 

comparison to the no-flux case, showing coalescence time as a function of 𝐾′ for the nose 

rupture regime at (a) 𝑉𝑎𝑝𝑝 = 0.001 and (b) 𝑉𝑎𝑝𝑝 = 0.006, and for the rim rupture regime at (c) 

𝑉𝑎𝑝𝑝 = 0.01 and (d) 𝑉𝑎𝑝𝑝 = 0.06. All results are obtained at 𝐴∗ = 10-4, ℎ00 = 10, and 𝑟∞ = 15. 

 
Figure 26: Examples of incorrect results for 𝐾′ = 10-3 obtained from unstable solver in 

comparison to the no-flux case, showing (a) some increases in min (ℎ) for 𝐾′ = 10-3 and (b) 

the same value of 𝑟𝑑,𝑓𝑖𝑛𝑎𝑙 reached faster for 𝐾′ = 10-3. The same color in subplot (b) 

represents the same dimensionless time at which the thickness profiles are obtained and the 

first five profiles (from 𝑡 = 0 to 𝑡 = 120) show the same behavior between the two cases. All 

results are obtained at 𝑉𝑎𝑝𝑝 = 0.1, 𝐴∗ = 10-4, ℎ00 = 10, and 𝑟∞ = 15. 
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The reason behind the instabilities in 𝑀, i.e., Figure 24, is because the current 𝑀 criterion only 

applies for a given time step at certain 𝑟 values. Meanwhile, the computation for the next time 

steps may be influenced by the applied 𝑀 criterion in the neighboring 𝑟 from the previous time 

steps. In other words, the fluctuations in Figure 24 (a) might not come from small numbers 

anymore but due to some significant differences in 𝑀 between the neighboring 𝑟 values after 

setting one of them into 𝑀 = 0. In the meantime, there seems to be no physical reasoning for 

𝑀 to raise again once it reaches zero as expected for dissipating flux. Therefore, the 𝑀 criterion 

is changed into a new rule, which is, when 𝑀 reaches below the limit value at any given time, 

it will be set to zero for the rest of the simulation without the possibility of gaining a non-zero 

value again. This rule is applied by creating an array of size 𝑁𝑟 + 1, i.e., the same size as 𝑀, 

which multiplies 𝑀 in every time steps. This array is initially set to have a value of one in all 

elements. When 𝑀(𝑟) ≤ 10−15, the elements of the array at the corresponding 𝑟 are changed 

into zero which enables the corresponding 𝑀 to stay as zero for the rest of the simulation. After 

applying this method, the instabilities of 𝑀 for small 𝑟 disappear together with the convergence 

issues. 

Implementation of Saturation Condition to Solve the Discontinuity of the Solutions 

The instability issues discussed so far only concern on 𝑟 = 1 which are solved already by the 

new 𝑀 criterion. However, similar problems are also found at large 𝑟 which are shown through 

the time evolution of 𝑀 for different 𝑟 given in Figure 27. Although the fluctuations in 𝑀 are 

not seen any more in this case, 𝑀 behaves differently at different positions where it increases 

for even nodes and decreases for odd nodes. These different behaviors between the neighboring 

𝑟 indicate discontinuities in the solutions which are unexpected for a continuous model in this 

study. One attempt to solve this issue is by applying a saturation condition. In this condition, 

when the value of 𝜔𝐴,𝑐 at a given location is close to 𝐾′, the film is accepted to be saturated 

locally and 𝜔𝐴,𝑐 is set equal to 𝐾′. Specifically for this study, the saturation condition is given 

as 
|𝜔𝐴,𝑐−𝐾

′|

𝐾′
≤ 10−5. After applying this condition, the discontinuities for some 𝑟 points 

dissapear, unfortunately they still exist in large 𝑟 values as can be seen in Figure 28. 
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Figure 27: Time evolution of 𝑀 after the implementation of the new 𝑀 criterion. Both plots 

are obtained from the same case. The left and the right plots respectively show more specific 

data for even and odd values of 𝑟𝑖. 

 

Figure 28: Time evolution of 𝑀 with the implementation of saturation condition in addition 

to the new 𝑀 criterion. The leftmost to the rightmost curves represent 𝑀 for the smallest to 

the largest 𝑟. 

Implementation of the Continuity Equation for 𝒗𝒛 Computation 

The discontinuity described in Figure 28 seems to be related to 𝑣𝑧 computation. In further 

analysis provided in App. C.2, the pressure gradient in the first term of Eq. (95) may be the 

main source of the problem. Since the pressure along the interface is found to oscillate, taking 

its derivative with 𝑟 twice magnifies the oscillation. When this term meets 𝑧3 in the first term 

of Eq. (95), the oscillation becomes more significant especially since the grids of 𝑧 are different 

for each 𝑟, hence, having 𝑧 on the order of 3 increases the difference in the grids. 
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One of the attempts was applied by expanding the pressure gradient term and evaluating the 

significance of the second derivative. The results show that the second derivative is the main 

source of the problem while it cannot be neglected compared to the first derivative. Therefore, 

another way was executed by computing 𝑣𝑧 using the continuity equation in Table 2 with 𝑣𝑟 as 

the input. 

 

Figure 29: Time evolution of 𝑀 and surface profiles of 𝑣𝑧 at 𝑡 = 100 with the 

implementation of the new 𝑀 criterion, the saturation condition, and the continuity equation 

for 𝑣𝑧 computation 

The results in Figure 29 show that the discontinuities in the time evolution of 𝑀 disappear 

completely. However, the surface profiles of 𝑣𝑧 indicate a discrepancy in the boundary 

condition at the interface, i.e., 𝑣𝑧|𝑧=ℎ/2 ≠
1

2

𝜕ℎ

𝜕𝑡
. This may happen because of the different 

domain of 𝑧 for each 𝑟. In the analytical calculation, since 𝑧 is a coordinate, i.e., 𝑧 does not 

depend on 𝑟, it can be taken out from the derivative operation with respect to 𝑟. However, in 

the numerical computation, since 𝑣𝑟 contains 𝑧, using the differentiation matrix to take the 

derivative of 𝑣𝑟 with respect to 𝑟 in the continuity equation may imply that 𝑧 is considered to 

be dependent of 𝑟. As 𝑧 nodes are different for each 𝑟, the term 𝜕𝑧/𝜕𝑟 that should be zero is 

computed as non-zero in this case. As a result, 𝑣𝑧 approaches zero towards the boundary instead 

of following the interface displacement rate at 𝑟 = 𝑟∞. 

4.1.3.3 Alternative Estimation of Coalescence Time 

The 2D solver developed so far still encounters some unresolved numerical issues as discussed 

in Section 4.1.3.2 which makes the solver unable to determine the complete solutions. In 

addition, it takes quite long time for one simulation to finish since the two steps of the solver 

iterate the computation consecutively throughout the simulation. There are some alternative 

methods can be implemented when the 2D model is specifically used to estimate 𝑡𝑐. 
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Saturation Time Criterion 

Considering that the film saturation (𝑀 → 0) may occur before the film rupture, it is possible 

to estimate the coalescence time by neglecting the mass flux after some time. In this case, the 

time at which the film saturation is estimated to occur is mentioned as 𝑡𝑠𝑎𝑡 and the condition 

applied to the code is called as the saturation time condition. In Figure 30, some cases are taken 

as samples to show at what time approximately 𝐾′ can be assumed zero. When 𝐾′ is set to zero 

at 𝑡 = 𝑡𝑠𝑎𝑡, the resulting coalescence time, 𝑡𝑐′, can be plotted against 𝑡𝑠𝑎𝑡/𝑡𝑐 where 𝑡𝑐 is the 

estimated coalescence time without neglecting the mass flux. The results in Figure 30, except 

for cases (c) and (f), imply that 𝑡𝑐
′  goes to 𝑡𝑐 when 𝑡𝑠𝑎𝑡/𝑡𝑐 ≈ 0.5, meaning that neglecting 𝐾′ 

after roughly half of the simulation time may result in the same 𝑡𝑐 as the one without neglecting 

𝐾′. This method seems to be applicable for different 𝑉𝑎𝑝𝑝, 𝜆∗, and 𝑃𝑒. Although the sampled 

cases are taken when the convergence issues still occurred (notice that 𝑡𝑐 for 𝐾′ = 10−3 is 

lower than 𝑡𝑐 for the no-flux case in cases (a), (b), and (f)), the general idea can be adapted for 

time consideration. 

 

Figure 30: Coalescence times, 𝑡𝑐′, obtained when 𝐾′ is set into zero after some time (𝑡𝑠𝑎𝑡) as 

a function of 𝑡𝑠𝑎𝑡/𝑡𝑐 for different 𝑉𝑎𝑝𝑝, 𝑃𝑒, and 𝜆∗. The red dashed lines represent 𝑡𝑐 for the 

no-flux case and the black dashed lines show 𝑡𝑐 for 𝐾′ = 10-3 without including the saturation 

time criterion. 
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𝑴 Expression 

This expression enables the solutions for variable mass flux case to be estimated without 

applying the second-step of the solver. The results obtained from the 2D solver show how 𝑀 

decreases during the film thins out and how the rate of the decreasing 𝑀 changes with 𝑟. These 

behaviors can be summarized to estimate 𝑀 as a function of ℎ and 𝑟. As a sample, the results 

are taken from one case that gives reliable results, i.e., the nose rupture regime. Then, 𝑀 for a 

single 𝑟 is plotted in terms of log (𝑀) against ℎ to estimate their relationship for one fixed 𝑟 

value by using a linear regression. The same procedure is applied for several 𝑟 positions to 

obtain several equations for log(𝑀) = 𝑎 ℎ + 𝑏. The constants 𝑎 and 𝑏 are then formulated as 

functions of 𝑟 using suitable regressions. Further details on the estimation of the 𝑀 expression 

are given in Appendix D. Finally, log (𝑀) can be expressed in terms of ℎ and 𝑟 which is 

estimated as 

 log(𝑀0) = 58290 𝑟
−4.362ℎ − 68100 𝑟−2.4 (170) 

The notation 𝑀0 refers to the 𝑀 expression for the base case, i.e., 𝐾′ = 10−3 and 𝑃𝑒 = 1. In 

addition to the 𝑀 expression, a saturation condition is applied by setting 𝑀 = 0 for small 𝑟 

values. This 𝑀 expression can be rewritten as 

 𝑀 = 𝑐 𝑀0 = 1058290 𝑟
−4.362ℎ−68100 𝑟−2.4  (171) 

where 𝑐 is a multiplicator that can be varied to evaluate different magnitudes of 𝑀, i.e., various 

extent of the mass transfer. The 𝑀 expression is evaluated at 𝑐 = 1 as the default case and the 

results are compared to the ones obtained from the 2D solver. 

Figure 31 presents the time evolution of the film thickness profiles obtained from the 2D solver 

and the 𝑀 expression which shows good agreement between the two cases. The estimated 𝑡𝑐 

from the 𝑀 expression deviates by 0.5% which is considered to be insignificant. Further 

evaluation on the behavior of the mass transfer is presented in Figure 32 where 𝑀 for different 

𝑟 is plotted with time. The results from the 𝑀 expression seem to follow the 2D case with 

decreasing trend of 𝑀. For the 2D case, 𝑀 initially reach around 4𝑥10−4 before declining 

quickly. Compared to this value, the maximum initial 𝑀 given by the 𝑀 expression reaches 

approximately 4𝑥10−5, which is ten times lower than the one for the 2D case. As the film 

drains out, the maximum value of 𝑀 for the 𝑀 expression becomes slightly higher than the 2D 

case, which may counterbalance the difference in the initial 𝑀, resulting in similar 𝑡𝑐. 
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Figure 31: Time evolution of the film thickness profiles obtained from (a) the 2D case and (b) 

the 𝑀 expression. All results are obtained at 𝑉𝑎𝑝𝑝 = 0.0002, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 15, 

based on 𝐾′ = 10-3 and 𝑃𝑒 = 1. 

 

Figure 32: Time evolution of 𝑀 for different 𝑟, obtained from (a) the 2D case and (b) the 𝑀 

expression. 𝑀 from the smallest to the largest 𝑟 is represented by the leftmost to the 

rightmost curves in case (a) and the bottom to the top curves in case (b). All results are 

obtained at 𝑉𝑎𝑝𝑝 = 0.0002, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 15, based on 𝐾′ = 10-3 and 𝑃𝑒 = 1. 

The 𝑀 expression is evaluated further for different 𝑉𝑎𝑝𝑝 where the results in Figure 33 show 

that the rate of the decreasing 𝑀 gets faster with 𝑉𝑎𝑝𝑝. This seems to fit with the analysis in 

Figure 19 where the slope of max(𝑀) increases with 𝑉𝑎𝑝𝑝. This results in 𝑀 disappearing faster 

for larger 𝑉𝑎𝑝𝑝. The disappearance of 𝑀 in Figure 33 is indicated as the film saturation. This 

implies that higher 𝑉𝑎𝑝𝑝 favors film saturation, which is in accordance with the 2D case 

discussed in Figure 18. 
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Figure 33: Time evolution of 𝑀 profiles for different 𝑉𝑎𝑝𝑝 obtained from the 𝑀 expression, 

showing the time required for local saturation to occur. All results are obtained at 𝐴∗ = 10-4, 

ℎ00 = 2, and 𝑟∞ = 15, based on 𝐾′ = 10-3 and 𝑃𝑒 = 1. 

Figure 34 summarizes 𝑡𝑐 as a function of 𝑉𝑎𝑝𝑝 for the 2D case and the 𝑀 expression. It can be 

seen that the estimated 𝑡𝑐 from the 𝑀 expression fits well with the curve for the 2D case. This 

implies that the 𝑀 expression is applicable for different 𝑉𝑎𝑝𝑝, which means that the variable 

mass flux model may be solved without using the second step of the solver to save more time 

in obtaining the solutions. 

 

Figure 34: Coalescence time as a function of 𝑉𝑎𝑝𝑝 obtained from (a) the 2D case and (b) the 𝑀 

expression. All results are obtained at 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 15, based on 𝐾′ = 10-3 and 

𝑃𝑒 = 1. 
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The 𝑀 expression is evaluated further by varying 𝑐 to estimate 𝑡𝑐 for different extent of mass 

transfer, given in Figure 35. It is seen that larger 𝑀 gives higher 𝑡𝑐 and the influence of 𝑀 on 

𝑡𝑐 gets more significant with decreasing 𝑉𝑎𝑝𝑝. These behaviors seem to follow the 2D case as 

represented by Figure 21. 

 

Figure 35: Coalescence time as a function of 𝑉𝑎𝑝𝑝 for different 𝑀 expression. All results are 

obtained at 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 15. 

All results obtained from the 𝑀 expression seem to follow the behaviors in the 2D case, which 

may indicate the 𝑀 expression as a good approach to estimate the film drainage behaviors for 

the variable mass flux case by only using a 1D solver, i.e., the first part of the solver. The 

implementation of the 𝑀 expression does not only give faster solutions compared to the 2D 

solver but may also be helpful to avoid any numerical issues encountered in the 2D solver when 

solving other cases. Despite its applicability, it may be important to determine the relationship 

between 𝑐 and the physical properties, i.e., 𝐾′ and 𝑃. 

  



91 

 

4.2 The Effect of Surfactant Presence on Coalescence 

The model for surfactant cases is validated by comparing the results with Figures 8-11 of Ozan 

and Jakobsen (2019b). In their work, they investigated the effect of the surface viscosity, which 

is represented by the Boussinesq number, 𝐵𝑜, in the presence of surfactants. By extracting their 

results with 𝐵𝑜 = 0, i.e., no surface viscosities considered, the coalescence times can be 

compared with the ones obtained in this study. It should be noticed that the surface Péclet 

number, 𝑃𝑒𝑠, in their study is scaled with 𝜇𝑑 as the implication of the time scale they used. To 

match their transformation, 𝑃𝑒𝑠 in this study should be divided by 𝜆∗ as presented in Figure 36. 

It can be shown that the results fit the ones obtained in Ozan and Jakobsen (2019b) both for 

𝜇𝑑 ≈ 𝜇𝑐 and for 𝜇𝑑 ≪ 𝜇𝑐. 

 

Figure 36: Reproduction of Ozan and Jakobsen (2019b)’s Fig. 8-11 showing coalescence time 

for their 𝐵𝑜 = 0 system as a function of 𝑉𝑎𝑝𝑝 for (a) 𝜇𝑑 ≈ 𝜇𝑐 with 𝜆∗ = 10−2 and (b) 𝜇𝑑 ≪ 𝜇𝑐 

with 𝜆∗ = 10−4. All results are obtained at 𝜎Γ
′ = −5000, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 30. 

The study with surfactant presence is conducted by setting the viscosity ratio based on air 

bubbles dispersed in water using 𝜖 = 10−2 which yields 𝜆∗ = 10−4. In the absence of 

surfactants, the estimated value 𝜆∗ here represents highly mobile interfaces. The interfaces may 

be immobilized by the presence of surfactants with varying degrees, depending on Γ0, 𝜎Γ
′ , and 

𝑃𝑒𝑠. The three parameters respectively describe the amount of surfactants present in the system, 

the strength of the surfactants in changing the surface tension, and the non-uniformity of the 

distribution of the surfactants along the interfaces. By varying these three parameters, the 

results are compared to the immobile and fully mobile cases as presented in Figure 37. For 

|𝜎Γ
′| = 5000 in cases (a) and (b), the effect of surfactants appears when Γ0 > 10−5, which 
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seems to be in accordance with Figures 8-11 of Ozan and Jakobsen (2019b) for their 𝐵𝑜 = 0 

case. As the magnitude of 𝜎Γ
′  decreases by 10 times to |𝜎Γ

′| = 500 in cases (c) and (d), the 

surfactants start to affect the system when Γ0 > 10
−4, which is 10 times higher than the one in 

cases (a) and (b). This behavior is similarly found in cases (e) and (f) where the surfactants 

need to be present at Γ0 > 10−3 to change 𝑡𝑐 of a system with |𝜎Γ
′| = 50. These results imply 

that the surfactants become influential only after the product of |𝜎Γ
′Γ0| > 0.05. When this rule 

is satisfied, the surfactants start to immobilize the system and change 𝑡𝑐. 

 

Figure 37: Coalescence time as a function of 𝑉𝑎𝑝𝑝 for different values of Γ0, |𝜎Γ
′ |, and 𝑃𝑒𝑠. All 

results are obtained at 𝜆∗ = 10−4, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 30. 

The merged parameter |𝜎Γ
′Γ0| appears to represent how much the surface tension changes with 

the total amount of surfactants present in the system. When the dependence is weaker, i.e., 

smaller |𝜎Γ
′ |, the changes in the surface tension becomes less sensitive to the surfactant 

presence, which implies that the system requires more surfactants, i.e., higher Γ0, to change the 
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surface tension. As the dependence becomes stronger (larger |𝜎Γ
′|), the surface tension may 

change more significantly only by small quantities of surfactants in the system. This 

relationship is also described by the term 𝜎Γ
′ 𝜕Γ

𝜕𝑟
 in Eq. (129). Since Γ scales with Γ0, the product 

of 𝜎Γ
′Γ0 may result in the same behavior as shown in Figure 38. Therefore, |𝜎Γ

′Γ0| can be used 

as a single parameter to be investigated in the next section.  

 

Figure 38: Coalescence time as a function of 𝑉𝑎𝑝𝑝 showing identical curves for fixed values 

of the product |𝜎Γ
′Γ0|. All results are obtained at 𝜆∗ = 10−4, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 30. 

The effect of the surfactant presence is initially investigated by varying 𝑃𝑒𝑠 for |𝜎Γ
′| = 0.5. The 

effect of 𝑃𝑒𝑠 change the distribution of the surfactants along the interface where higher 𝑃𝑒𝑠 

results in more uneven distribution of the surfactants on the interfaces. As can be shown in 

Figure 39, 𝑃𝑒𝑠 = 0.2 in case (a) results in the nose rupture with 𝑡𝑐 ≈ 20.1. When 𝑃𝑒𝑠 increases 

to 𝑃𝑒𝑠 = 2000 in case (b), the interface deforms with the emergence of the dimple, resulting 

in the rim rupture at 𝑡𝑐 ≈ 131, which indicates slower drainage rate compared to case (a). The 

delayed drainage rate implies that 𝑃𝑒𝑠 reduces the tangential mobility of the interfaces. Since 

𝑃𝑒𝑠 represents the ratio of the convective to the diffusive transfer rates, higher 𝑃𝑒𝑠 provides 

stronger convection to distribute the surfactants more nonuniformly along the interface. This 

yields larger excess concentration gradients, which result in larger surface tension gradients, 

i.e., stronger Marangoni stresses, and eventually immobilizes the interfaces more significantly. 
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Figure 39: Time evolution of the film thickness profiles for (a) 𝑃𝑒𝑠 = 0.2 and (b) 𝑃𝑒𝑠 = 2000. 

All results are obtained at |𝜎Γ
′Γ0| = 0.5, 𝑉𝑎𝑝𝑝 = 0.1, 𝜆∗ = 10-4, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 30. 

The effect of 𝑃𝑒𝑠 in slowing down the drainage rate is also evident in Figure 40 where the 

minimum film thickness starts to behave differently at min(ℎ) ≈ 0.1. For relatively low values 

of 𝑃𝑒𝑠, 𝑃𝑒𝑠 ≤ 20, there is no delayed decreases in min(ℎ) and the nose rupture occurs within 

these cases. Meanwhile, the three largest values of 𝑃𝑒𝑠 shows a delay in the decreasing min(ℎ) 

which corresponds to the rims formation as described in Figure 39 (b). As 𝑃𝑒𝑠 reaches very 

high values, the behavior of the film drainage becomes more similar to the one for the immobile 

case. This implies that the effect of 𝑃𝑒𝑠 in increasing the nonuniformity of the surfactant 

distribution promotes the Marangoni stresses which causes the interfaces to be more 

immobilized. 

 

Figure 40: Minimum film thickness for different 𝑃𝑒𝑠 as a function of time, with |𝜎Γ
′Γ0| = 0.5, 

𝑉𝑎𝑝𝑝 = 0.1, 𝜆∗ = 10-4, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 30 
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Figure 41 shows the time evolution of the surface excess concentration and its gradient for the 

corresponding 𝑃𝑒𝑠 values. In cases (a) and (b), the surface excess concentration is found to 

decrease with time. Compared to 𝑃𝑒𝑠 = 0.2, where the decrease in the Γ profiles only reaches 

ΔΓ ≈ 5 𝑥 10−6, 𝑃𝑒𝑠 = 2000 decreases the Γ profiles up to ΔΓ ≈ 4.5 𝑥 10−5 which is 

approximately 10 times higher than the case with 𝑃𝑒𝑠 = 0.2. This shows that higher 𝑃𝑒𝑠 tends 

to drive the surfactants further from the center towards 𝑟∞ which results in higher concentration 

gradient as presented in cases (c) and (d). It is clearly seen that 𝑃𝑒𝑠 = 2000 results in the 

concentration gradient 100 times higher than the one obtained for 𝑃𝑒𝑠 = 0.2. This behavior is 

consistent with Eq. (129), where larger concentration gradients result in slower tangential 

velocity, 𝑈𝑡. As also shown in Figure 42, the order of magnitude of 𝑈𝑡 for 𝑃𝑒𝑠 = 2000 is 

substantially lower than that of 𝑃𝑒𝑠 = 0.2, which consequently reduces the tangential mobility 

of the interface. 

As the drainage progresses, the Γ profiles in Figure 41 (b) change at 𝑡 ≥ 50, unlike the profiles 

in Figure 41 (a) which consistently decreases until coalescence occurs. These different 

behaviors correspond to the shapes of the interface. As can be seen in Figure 39 (b), the dimple 

starts to appear at 𝑡 = 50, similarly as the time at which the surfactant concentrations begin to 

rise with time. Starting at 𝑡 = 150, the dimple becomes more visible and the minimum Γ occurs 

at a further position away from 𝑟 = 0 until 𝑟 ≈ 1, at which the film ruptures at 𝑡𝑐 ≈ 130. The 

increasing concentration at 𝑟 = 0 implies that the surfactants migrate towards the center which 

may be caused by some backward flows within the deformed domain. These backward flows 

correspond to the negative values of 𝑈𝑡 which are shown in Figure 42 (b) at 𝑡 ≥ 50. The impact 

of the behavior changes is also shown in Figure 41 (d) within the corresponding times. 
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Figure 41: Time evolution of (a)-(b) the concentration and (c)-(d) the concentration gradient 

profiles for low and high 𝑃𝑒𝑠 values. All results are obtained at 𝑉𝑎𝑝𝑝 = 0.1, |𝜎Γ
′Γ0| = 0.5, 𝜆∗ = 

10-4, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 30. 

The effect of 𝑃𝑒𝑠 in reducing the tangential mobility can be shown more clearly in Figure 42. 

In comparison to 𝑃𝑒𝑠 = 0.2 where 𝑈𝑡 increases with time, the case with 𝑃𝑒𝑠 = 2000 shows 

decreasing 𝑈𝑡 profiles throughout the drainage process. These contrast behaviors seem to occur 

due to the contrary effects of the pressure gradients and the surface tension gradients on the 

tangential stresses, which are described in Eq. (129). The increasing 𝑈𝑡 values appear due to 

the pressure gradients which keep raising as the film is squeezed by the approaching bubbles. 

Meanwhile, the surface tension gradients, i.e., the Marangoni stresses, tend to pull the 

tangential flows back to the center, which lowers 𝑈𝑡 values. The dominance between the two 

mechanisms depends on the extent of the Marangoni flows, which scale with 𝑃𝑒𝑠. When 𝑃𝑒𝑠 

is relatively lower, the nonuniformity of the surfactant distribution becomes less, resulting in 

weaker Marangoni flows. Consequently, the tangential mobility is dominated by the pressure 

gradients which yield the increasing trend of 𝑈𝑡 in case (a). On the other hand, as 𝑃𝑒𝑠 gets 

higher, the surfactants are distributed more non-uniformly which promotes Marangoni flows 

that may start to act more significantly in reducing 𝑈𝑡 as shown in case (b). 
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Figure 42: Time evolution of the tangential velocity for (a) 𝑃𝑒𝑠 = 0.2 and (b) 𝑃𝑒𝑠 = 2000 with 

𝑉𝑎𝑝𝑝 = 0.1, |𝜎Γ
′Γ0| = 0.5, 𝜆∗ = 10-4, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 30 

The strength of the Marangoni flows is also found to depend on the product |𝜎Γ
′Γ0| which is 

investigated by varying |𝜎Γ
′Γ0| for fixed values of 𝑃𝑒𝑠. The results given in Figure 43 show 

different extent of tangential mobility, i.e., different strength of the Marangoni flows, ranging 

from the fully mobile to the completely immobile interfaces. Compared to the fully mobile case 

(𝜆∗ → 0), which represents a clean system without surfactants, the drainage behavior for all 

𝑃𝑒𝑠 values remains unchanged when |𝜎Γ
′Γ0| = 0.05. This implies that the surfactants are not 

influential enough to create surface tension gradients unless |𝜎Γ
′Γ0| > 0.05. When this 

requirement is satisfied, the coalescence time becomes distinguishable from that of the fully 

mobile case, which indicates that the interface starts to get immobilized by the presence of 

surfactants in the system. This immobilizing effect becomes more pronounced with larger 

|𝜎Γ
′Γ0|, resulting in the 𝑡𝑐 curves to approach the immobile case. Similarly for 𝑃𝑒𝑠, its effect in 

immobilizing the interface is shown for fixed values of |𝜎Γ
′Γ0|, for example, at |𝜎Γ

′Γ0| = 0.5 or 

|𝜎Γ
′Γ0| = 5. 

As the Marangoni stresses grow stronger with |𝜎Γ
′Γ0| and 𝑃𝑒𝑠, the tangential mobility becomes 

lower and lower until 𝑈𝑡 vanishes completely, resulting in the same drainage behavior as the 

immobile interface (𝑈𝑡 = 0). In this case, |𝑃𝑒𝑠𝜎Γ
′Γ0| is found to attain the same value on the 

order of 103 for 𝑃𝑒𝑠 ≤ 200. As 𝑃𝑒𝑠 gets larger, the distribution of the surfactants may be 

uneven enough to create sufficient Marangoni stresses in immobilizing the interface completely 

even for smaller |𝜎Γ
′Γ0|, i.e., when the surfactants are present in less quantities or with less 

significant impact on the surface tension gradients. For very high 𝑃𝑒𝑠 values, however, the 

drainage behavior becomes independent of 𝑃𝑒𝑠. As can be seen in cases (e) and (f), the 𝑡𝑐 

curves look similar for both 𝑃𝑒𝑠 = 2000 and 𝑃𝑒𝑠 = 20000. In these cases, the rule of the 
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complete immobilization does not apply anymore, leading to a minimum requirement of 

|𝜎Γ
′Γ0| = 5 instead. 

 

Figure 43: Coalescence time as a function of 𝑉𝑎𝑝𝑝 for different |𝜎Γ
′Γ0| and 𝑃𝑒𝑠. All results are 

obtained at 𝜆∗ = 10-4, 𝐴∗ = 10-4, ℎ00 = 2, and 𝑟∞ = 30. 

The effect of surfactants is summarized in Figure 44 where the determining parameters, |𝜎Γ
′Γ0| 

and 𝑃𝑒𝑠, represent the tangential mobility of the interface. The dotted line at |𝜎Γ
′Γ0| ≈ 0.05 
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represents the minimum requirement for the surfactants to start immobilizing the interface, 

which seems to be independent of 𝑃𝑒𝑠 values. Below this condition, the effect of the surfactant 

presence appears to be insignificant and the drainage behavior stays the same as the fully 

mobile case. This implies that the surfactants need to be present in the system with sufficient 

quantities or with adequate effect on the surface tension gradient in order for them to affect the 

drainage behavior. When this condition is satisfied, the surfactants start to change the 

coalescence time by immobilizing the system, resulting in less mobile interfaces with different 

levels of mobility. As 𝑃𝑒𝑠 and |𝜎Γ
′Γ0| get higher, the region may pass the solid line towards the 

top zone where 𝑈𝑡 goes to zero and the interfaces become completely immobilized. This 

condition requires specific values of |𝜎Γ
′Γ0| and 𝑃𝑒𝑠 which compensate each other. As 𝑃𝑒𝑠 

increases, the minimum requirement for |𝜎Γ
′Γ0| decreases until 𝑃𝑒 ≥ 200 where 𝑃𝑒𝑠 is too 

larger already to affect the system, hence, |𝜎Γ
′Γ0| ≥ 5 needs to be satisfied within this range. 

Considering the realistic systems for chemical- or bioreactors, the surface diffusivity of 

surfactants may range from 10−11 to 10−8 m2/s (Chang and Franses, 1995; López-Esparza et 

al., 2006; Pereira et al., 2014). By taking 1 mm air bubbles dispersed in water as the default 

case and assuming 0.01 ≤ 𝜖 ≤ 0.1, 𝑃𝑒𝑠 can be estimated to range from 10−2 to 107. The 

surfactants may be present as impurities or cells which are typically low in the concentrations, 

giving an estimate for the highest initial concentration as Γ0 = 0.01Γ𝑚. Then, by assuming 

Δ𝜎/ΔΓ = −0.5, i.e., the surface tension decreases to half when the critical micelle 

concentration is reached, the largest value of |𝜎Γ
′ | can be roughly estimated to reach |𝜎Γ

′| ≈

5000 for 0.01 ≤ 𝜖 ≤ 0.1. This yields the maximum value of |𝜎Γ
′Γ0| to be approximately 50, 

which becomes a limit of the complete immobilization in real systems. Therefore, the systems 

with 𝑃𝑒 ≤ 2 may not be possible to give the complete immobilization since the requirement 

for |𝜎Γ
′Γ0| ≥ 500 is physically unrealistic. This indicates that the Marangoni flows induced by 

the surfactant presence are insufficient to result in the complete immobilization, especially in 

systems with |𝜎Γ
′Γ0| ≈ 50 and 𝑃𝑒𝑠 ≤ 20. These cases require other immobilization 

mechanism, such as the surface viscosities studied by Ozan and Jakobsen (2019b), to explain 

the complete immobilization. 
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Figure 44: Conditions at which the complete immobilization is estimated to be obtained. The 

solid line indicates the minimum requirement of the product |𝜎Γ
′Γ0| as a function of 𝑃𝑒𝑠 for 

the surfactants to immobilize the system completely. The dotted line reflects the minimum 

|𝜎Γ
′Γ0| required for the surfactants to affect the system. 

 

4.3 The Combined Effect of Gas Dissolution and Surfactant Presence on 

Coalescence 

In comparison to the effect of dissolution, the presence of surfactants in the system seems to 

be more influential on the drainage behavior. This can be shown by investigating the constant 

mass flux together with the surfactant presence. Although it is not the most realistic case, the 

constant mass flux can be taken as the extreme case since it is the one that changes the behavior 

the most. The results presented in Figure 45 are obtained at |𝜎Γ
′Γ0| = 0.5 for different 𝑃𝑒𝑠 and 

different 𝑀 values. For fully mobile case, i.e., no surfactants, there is no apparent effect of 

dissolution on the drainage behavior. As the surfactants start to induce the Marangoni stresses, 

the drainage rate is slowed down due to the immobilization effect which becomes more 

influential with larger 𝑃𝑒𝑠. This results in the approaching bubbles to have longer contact 

period which allows more mass to pass across interface, i.e., more significant effect of 

dissolution on the drainage behavior. Although the effect of dissolution appears at relatively 

high 𝑉𝑎𝑝𝑝 in cases (d)-(f), this should be unrealistic since 𝑉𝑎𝑝𝑝 promotes film saturation which 

stops the mass transfer at earlier time. 
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Figure 45: Coalescence time for different 𝑀 as a function of 𝑉𝑎𝑝𝑝 for (a) fully mobile, (b)-(e) 

different 𝑃𝑒𝑠, and (f) immobile cases. All results are obtained at |𝜎Γ
′Γ0| = 0.5, 𝜆∗ = 10-4, 𝐴∗ = 

10-4, ℎ00 = 2, and 𝑟∞ = 30. 

The same cases are examined with a different way of plotting as given in Figure 46. It can be 

seen that both dissolution and surfactants increase the coalescence time respectively by 

enlarging the distance between the bubbles and inducing the surface tension gradients which 

immobilize the interfaces. At low 𝑉𝑎𝑝𝑝 values, the effect of dissolution may appear to be 

relatively more significant compared to the surfactants’ effect. As 𝑉𝑎𝑝𝑝 gets higher, the slopes 

of 𝑡𝑐/log (𝑃𝑒𝑠) increase which implies that the surfactants become more influential on the 

coalescence time. On the other hand, the curves merge closer to each other, indicating 

negligible effect of dissolution at high 𝑉𝑎𝑝𝑝. These behaviors also apply for the 2D case with 

even less significant effect of dissolution due to film saturation.  
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Figure 46: Coalescence time for different 𝑀 as a function of 𝑃𝑒𝑠 for (a) 𝑉𝑎𝑝𝑝 = 0.01, (b) 𝑉𝑎𝑝𝑝 

= 0.02, (c) 𝑉𝑎𝑝𝑝 = 0.1, and (d) 𝑉𝑎𝑝𝑝 = 1. All results are obtained at |𝜎Γ
′Γ0| = 0.5, 𝜆∗ = 10-4, 

𝐴∗ = 10−4, ℎ00 = 2, and 𝑟∞ = 30 

Based on these results, the dissolution of gas may influence the drainage behavior more 

significantly with the presence of surfactant. However, its effect on the coalescence time seems 

to be negligible compared to the immobilizing effect of surfactants.  
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5 Conclusion 

In this study, the behavior of two approaching bubbles is investigated through a film drainage 

model by considering the gas dissolution and the surfactant presence in the system. Both 

phenomena are found to prolong the coalescence time under specific conditions where the 

former tends to enlarge the distance of the two bubbles and the latter creates the Marangoni 

flows which decrease the tangential mobility of the interface. 

The effect of the gas dissolution is analyzed for three cases: assuming low 𝑃𝑒 for negligible 

convective transport, constant mass flux, and variable mass flux that applies for all 𝑃𝑒 values. 

The first two cases seem inadequate to represent the behavior of the gas dissolution. In the low 

𝑃𝑒 case, the effect of possible reactions is also studied and found to be negligible. Meanwhile, 

the constant mass flux case is unable to model the saturation phenomena during the drainage 

which results in the overestimation of the coalescence time. In the third case, where the 

component mass balance of the dissolved gas is resolved in two dimensions, it is revealed that 

the extent of the gas dissolution effect depends on how much it stimulates the film saturation. 

It is concluded that the dissolution starts to affect the drainage behavior when the gas solubility 

reaches 10−2 kg/kg water and 𝑃𝑒 ≤ 1, with relatively low values of approach velocity and 

tangential mobility. 

In comparison to the gas dissolution, the effect of the surfactant presence appears to be more 

influential, especially within large approach velocities. The extent of this effect is determined 

by the amount of the surfactants present in the system (Γ0), their strength in changing the 

surface tension (𝜎Γ
′), and the nonuniformity of the surfactant distribution characterized by the 

surface Péclet number (𝑃𝑒𝑠). The surfactants start to immobilize the system when |𝜎Γ
′Γ0| ≥

0.05 by inducing the Marangoni stresses along the interface. The immobilizing effect becomes 

more significant with |𝜎Γ
′Γ0| and 𝑃𝑒𝑠 until the tangential velocity disappears, resulting in the 

complete immobilization of the interfaces. This condition is obtained at |𝜎Γ
′Γ0𝑃𝑒𝑠| ≥ 103 for 

𝑃𝑒𝑠 ≤ 200 and at |𝜎Γ
′Γ0| ≈ 5 for 𝑃𝑒𝑠 ≥ 200. However, for some realistic cases with |𝜎Γ

′Γ0| ≈

50 and 𝑃𝑒𝑠 ≤ 20, the Marangoni stresses are unable to immobilize the system completely 

without other immobilization mechanisms. 

For further investigation, it may be important to extend this study by considering the non-

Newtonian fluids which can be encountered in chemical- and bioreactors. In addition, the gas 

dissolution may also change the coalescence behavior through other mechanisms, for example, 
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the gas may dissociate and create the surface charges that generate the electric double layer 

repulsions between the interfaces. In the meantime, the solver developed so far still encounters 

some numerical stability issues in resolving the flow within the film, which may need to be 

improved for further studies in future. 
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Appendix A: Mathematical Derivation 

A.1 Vector and Tensor Operations 

The mathematical model of the film drainage in this study involves two coordinate systems: 

the cylindrical coordinates for the bulk phases and the surface coordinates for the interface of 

the bubbles. The radial, angular, and axial components of the cylindrical coordinates are 

described by the base vectors: 𝐞𝑟, 𝐞𝜃, 𝐞𝑧 while the tangential and normal components of the 

surface coordinates are notated by the unit vectors: 𝐭1, 𝐭2, and 𝐧 which are defined as functions 

of the cylindrical base vectors. In general, the mathematical derivation requires the identity 

tensor, I, and the vector differential operator, ∇, defined in cylindrical coordinates as 

 
∇= 𝐞𝑟

𝜕

𝜕𝑟
+ 𝐞𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝐞𝑧

𝜕

𝜕𝑧
 (A.1) 

 I = ∑∑𝐞𝑖𝐞𝑗𝛿𝑖𝑗
𝑗𝑖

= 𝐞𝑟𝐞𝑟 + 𝐞𝜃𝐞𝜃 + 𝐞𝑧𝐞𝑧 (A.2) 

In addition, the inclusion of surfactants into the model requires the surface gradient operator 

and the surface identity tensor, ∇𝑠 and I𝑠, which are expressed in the surface coordinate system: 

 
∇𝑠=

𝐭1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕

𝜕𝑟
+
𝐭2
𝑟

𝜕

𝜕𝜃
 

(A.3) 

 I𝑠 = 𝐭1𝐭1 + 𝐭2𝐭2 (A.4) 

The flow within the film relates to the bulk velocity in the continuous phase, 𝐯𝑐: 

 𝐯𝑐 = 𝑣𝑟𝐞𝑟 + 𝑣𝜃𝐞𝜃 + 𝑣𝑧𝐞𝑧 (A.5) 

In this study, the velocity in 𝜃-component is assumed to be zero (𝑣𝜃 = 0), thus the velocity 

vector becomes 

 𝐯𝑐 = 𝑣𝑟𝐞𝑟 + 𝑣𝑧𝐞𝑧 (A.6) 

Cross Product of Two Vectors 

The cross product between two vectors, 𝐞𝑖 × 𝐞𝑗, equals to 휀𝑖𝑗𝑘𝐞𝑘 where 휀𝑖𝑗𝑘 is the permutation 

symbol, given as 

𝐞𝑖 × 𝐞𝑗 = 휀𝑖𝑗𝑘𝐞𝑘 {

   휀𝑖𝑗𝑘 =    1,

   휀𝑖𝑗𝑘 = −1,

   휀𝑖𝑗𝑘 =    0,
 

if 𝑖𝑗𝑘 = 123, 231, or 312 

if 𝑖𝑗𝑘 = 321, 132, or 213 

if any two indices are alike (A.7) 



 

 

This operation is required in Section 2 to derive the normal unit vector, 𝐧, in Eq. (4) from the 

cross product of the tangent vectors 𝐭1 and 𝐭2: 

 

𝐧 = 𝐭1 × 𝐭2 =
𝐞𝑟 +

1
2
𝜕ℎ
𝜕𝑟
𝐞𝑧

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
× 𝐞𝜃 

=
(𝐞𝑟 × 𝐞𝜃) +

1
2
𝜕ℎ
𝜕𝑟
(𝐞𝑧 × 𝐞𝜃)

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

 

 

 

 

 

(A.8) 

By implementing the cross product rule in Eq. (A.7), the normal vector 𝐧 becomes 

 

𝐧 =
(휀𝑟𝜃𝑧)𝐞𝑧 +

1
2
𝜕ℎ
𝜕𝑟
(휀𝑧𝜃𝑟)𝐞𝑟

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

=
𝐞𝑧 −

1
2
𝜕ℎ
𝜕𝑟
𝐞𝑟

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
 (A.9) 

Dot Product of Two Vectors 

The dot product between 𝐞𝑖 ∙ 𝐞𝑗 is equivalent to the Kronecker delta 𝛿𝑖𝑗 which reads 

𝐞𝑖 ∙ 𝐞𝑗 = 𝛿𝑖𝑗 {
   𝛿𝑖𝑗 = 1,

   𝛿𝑖𝑗 = 0,
 

if 𝑖 = 𝑗 

if 𝑖 ≠ 𝑗 
(A.10) 

This operation is frequently involved throughout the derivation to obtain the normal and 

tangential components of model equations, which will be shown in more details in Appendices 

A.2 - A.11. 

Differential Operations 

The differential operation for the cylindrical coordinate system involves the spatial derivatives 

of the base vectors 
𝜕

𝜕𝑖
𝐞𝑗: 

 

𝜕

𝜕𝑟
𝐞𝑟 =  0, 

𝜕

𝜕𝜃
𝐞𝑟 = 𝐞𝜃, 

𝜕

𝜕𝑧
𝐞𝑟 =  0, 

𝜕

𝜕𝑟
𝐞𝜃 =      0, 

𝜕

𝜕𝜃
𝐞𝜃 = −𝐞𝑟 , 

𝜕

𝜕𝑧
𝐞𝜃 =     0, 

𝜕

𝜕𝑟
𝐞𝑧 = 0 

𝜕

𝜕𝜃
𝐞𝑧 = 0 

𝜕

𝜕𝑧
𝐞𝑧 = 0 

 

 

 

(A.11) 

This operation normally appears in some derivations involving ∇ and vectors such as the 

velocity gradient, ∇𝐯𝑐, which is derived by applying Eqs. (A.1) and (A.6): 

 
∇𝐯𝑐 = (𝐞𝑟

𝜕

𝜕𝑟
+ 𝐞𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝐞𝑧

𝜕

𝜕𝑧
) (𝑣𝑟𝐞𝑟 + 𝑣𝑧𝐞𝑧)  



 

 

= 𝐞𝑟
𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝐞𝑟
𝜕

𝜕𝑟
𝐞𝑟𝑣𝑟 + 𝐞𝑟

𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝐞𝑟
𝜕

𝜕𝑟
𝐞𝑧𝑣𝑧 + 𝐞𝜃

1

𝑟

𝜕𝑣𝑟
𝜕𝜃

𝐞𝑟 

+𝐞𝜃
𝜕

𝜕𝜃
𝐞𝑟
𝑣𝑟
𝑟
+ 𝐞𝜃

1

𝑟

𝜕𝑣𝑧
𝜕𝜃

𝐞𝑧 + 𝐞𝜃
𝜕

𝜕𝜃
𝐞𝑧
𝑣𝑧
𝑟
+ 𝐞𝑧

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟 

+𝐞𝑧
𝜕

𝜕𝑧
𝐞𝑟𝑣𝑟 + 𝐞𝑧

𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧 + 𝐞𝑧
𝜕

𝜕𝑧
𝐞𝑧𝑣𝑧 

 

 

 

 

(A.12) 

Implementing Eq. (A.11) eliminates the spatial derivative of vectors except for 
𝜕

𝜕𝜃
𝐞𝑟, hence, 

simplifies Eq. (A.12) into 

 
∇𝐯𝑐 = 𝐞𝑟

𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝐞𝑟
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝐞𝜃
1

𝑟

𝜕𝑣𝑟
𝜕𝜃

𝐞𝑟 + 𝐞𝜃𝐞𝜃
𝑣𝑟
𝑟
+ 𝐞𝜃

1

𝑟

𝜕𝑣𝑧
𝜕𝜃

𝐞𝑧

+ 𝐞𝑧
𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟 + 𝐞𝑧
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧 

= 𝐞𝑟
𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝐞𝑟
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝐞𝜃𝐞𝜃
𝑣𝑟
𝑟
+ 𝐞𝑧

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟 + 𝐞𝑧
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧 

 

 

 

(A.13) 

where the gradient in 𝜃-direction is neglected due to the axisymmetry assumption. 

The involvement of ∇𝑠 in the tangential stress balance and the excess concentration balance 

requires the derivatives of 𝐧 and 𝐭1with respect to 𝑟 and 𝜃 which are derived as 

 
𝜕

𝜕𝑟
𝐧 =

𝜕

𝜕𝑟

[
 
 
 

1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
𝐞𝑧

]
 
 
 

−
𝜕

𝜕𝑟

[
 
 
 1

2
𝜕ℎ
𝜕𝑟

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
𝐞𝑟

]
 
 
 

 

= −
1

2
[1 +

1

4
(
𝜕ℎ

𝜕𝑟
)
2

]

−3/2
1

2

𝜕ℎ

𝜕𝑟

𝜕2ℎ

𝜕𝑟2
𝐞𝑧

−

{
 

 
1

2

𝜕2ℎ

𝜕𝑟2
1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
−
1

2

𝜕ℎ

𝜕𝑟

1

2
[1 +

1

4
(
𝜕ℎ

𝜕𝑟
)
2

]

−3/2
1

2

𝜕ℎ

𝜕𝑟

𝜕2ℎ

𝜕𝑟2

}
 

 

𝐞𝑟 

= −
1

4
[1 +

1

4
(
𝜕ℎ

𝜕𝑟
)
2

]

−3/2
𝜕ℎ

𝜕𝑟

𝜕2ℎ

𝜕𝑟2
𝐞𝑧 −

1

2

𝜕2ℎ

𝜕𝑟2
1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[1 −

1
4 (
𝜕ℎ
𝜕𝑟
)
2

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2] 𝐞𝑟 

= −
1

4
[1 +

1

4
(
𝜕ℎ

𝜕𝑟
)
2

]

−3/2
𝜕ℎ

𝜕𝑟

𝜕2ℎ

𝜕𝑟2
𝐞𝑧 −

1

2

𝜕2ℎ

𝜕𝑟2
1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[

1

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2] 𝐞𝑟 

= −
1

4
[1 +

1

4
(
𝜕ℎ

𝜕𝑟
)
2

]

−3/2
𝜕ℎ

𝜕𝑟

𝜕2ℎ

𝜕𝑟2
𝐞𝑧 −

1

2

𝜕2ℎ

𝜕𝑟2
[1 +

1

4
(
𝜕ℎ

𝜕𝑟
)
2

]

−3/2

𝐞𝑟 (A.14) 

 



 

 

 
𝜕

𝜕𝜃
𝐧 =

𝜕

𝜕𝜃

[
 
 
 

1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
𝐞𝑧

]
 
 
 

−
𝜕

𝜕𝜃

[
 
 
 1

2
𝜕ℎ
𝜕𝑟

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
𝐞𝑟

]
 
 
 

 

= −

1
2
𝜕ℎ
𝜕𝑟

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
𝐞𝜃 

 

 

(A.15) 

 

 
𝜕

𝜕𝑟
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𝜕
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𝜕𝑟

𝜕2ℎ
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𝜕𝜃
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𝜕

𝜕𝜃
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√1 +
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𝜕𝑟
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2
𝐞𝑟
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𝜕

𝜕𝜃
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𝜕𝑟
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𝐞𝑧
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=
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√1 +
1
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𝜕𝑟
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𝐞𝜃 

 

 

(A.17) 

 

 

 



 

 

A.2 Derivation of Equivalent Radius 

Following Abid and Chesters (1994), the equivalent radius, 𝑅𝑝, for a thin film assuming gentle 

collision is derived from the normal stress balance of two bubbles with unequal radii, 𝑅1 and 

𝑅2. The upper bubble having the interface position at +𝑧1 has a normal stress balance: 

 
𝑃1 =

2𝜎

𝑅1
− 𝜎(

𝜕2𝑧1
𝜕𝑟2

+
1

𝑟

𝜕𝑧1
𝜕𝑟
) (A.18) 

while the other bubble located in the bottom position with −𝑧2 indicating the interface position 

has a normal stress balance: 

 
𝑃2 =

2𝜎

𝑅2
+ 𝜎(

𝜕2𝑧2
𝜕𝑟2

+
1

𝑟

𝜕𝑧2
𝜕𝑟
) (A.19) 

The excess pressure is independent of the coordinate z, 
𝜕𝑃𝑐

𝜕𝑧
= 0, as indicated from the 𝑧-

component of Navier-Stokes equation in Table 2. This implies that the two excess pressures in 

Eqs. (A.18) and (A.19) are identical and can be defined as one single variable 𝑃 (𝑃1 = 𝑃2 =

𝑃). Therefore, summing Eqs. (A.18) and (A.19) yields 

 
2𝑃 = 2𝜎 (

1

𝑅1
+
1

𝑅2
) − 𝜎 (

𝜕2(𝑧1 − 𝑧2)

𝜕𝑟2
+
1

𝑟

𝜕(𝑧1 − 𝑧2)

𝜕𝑟
) (A.20) 

Since the film thickness is defined as the distance between the two bubble, ℎ = 𝑧1 − 𝑧2, 

dividing Eq. (A.20) by 2 results in 

 
𝑃 = 2𝜎 [

1

2
(
1

𝑅1
+
1

𝑅2
)] −

𝜎

2
(
𝜕2ℎ

𝜕𝑟2
+
1

𝑟

𝜕ℎ

𝜕𝑟
) 

= 2𝜎
1

𝑅𝑝
−
𝜎

2

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕ℎ

𝜕𝑟
) (A.21) 

The first term in the right-hand side indicates the excess pressure for a spherical bubble 

described in Eq. (110) where 
1

𝑅𝑝
=

1

2
(
1

𝑅1
+

1

𝑅2
). It is shown that the nondimensionalization of 

Eq. (A.21) results in the same formulation of the pressure equation as given in Eq. (112) and 

𝑅𝑝 is defined as 2 (
1

𝑅1
+

1

𝑅2
)
−1

, as written in Eq. (2). 

 

 



 

 

A.3 Derivation of the Continuity Equation 

As expressed in Eqs. (5) and (6), the continuity equation reads 

 𝜕𝜌𝑐
𝜕𝑡

+ ∇ ∙ (𝜌𝑐𝐯𝑐) = 0 (A.22) 

and simplifies into 

 𝜕𝜌𝑐
𝜕𝑡

+ 𝐯𝑐 ∙ ∇𝜌𝑐 + 𝜌𝑐(∇ ∙ 𝐯𝑐) = 0 

𝜌𝑐(∇ ∙ 𝐯𝑐)            = 0 (A.23) 

The implementation of Eqs. (A.1) and (A.6) yields 

 
 ∇ ∙ 𝐯𝑐 = (𝐞𝑟

𝜕

𝜕𝑟
+ 𝐞𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝐞𝑧

𝜕

𝜕𝑧
) ∙ (𝑣𝑟𝐞𝑟 + 𝑣𝑧𝐞𝑧) 

= 𝐞𝑟 ∙
𝜕

𝜕𝑟
(𝑣𝑟𝐞𝑟) + 𝐞𝑟 ∙

𝜕

𝜕𝑟
(𝑣𝑧𝐞𝑧) + 𝐞𝜃 ∙

1

𝑟

𝜕

𝜕𝜃
(𝑣𝑟𝐞𝑟) + 𝐞𝜃 ∙

1

𝑟

𝜕

𝜕𝜃
(𝑣𝑧𝐞𝑧) 

+𝐞𝑧 ∙
𝜕

𝜕𝑧
(𝑣𝑟𝐞𝑟) + 𝐞𝑧 ∙

𝜕

𝜕𝑧
(𝑣𝑧𝐞𝑧) 

= (𝐞𝑟 ∙ 𝐞𝑟)
𝜕𝑣𝑟
𝜕𝑟

+ (𝐞𝑟 ∙
𝜕

𝜕𝑟
𝐞𝑟) 𝑣𝑟 + (𝐞𝑟 ∙ 𝐞𝑧)

𝜕𝑣𝑧
𝜕𝑟

+ (𝐞𝑟 ∙
𝜕

𝜕𝑟
𝐞𝑧) 𝑣𝑧 

+(𝐞𝜃 ∙ 𝐞𝑟)
1

𝑟

𝜕𝑣𝑟
𝜕𝜃

+ (𝐞𝜃 ∙
𝜕

𝜕𝜃
𝐞𝑟)

𝑣𝑟
𝑟
+ (𝐞𝜃 ∙ 𝐞𝑧)

1

𝑟

𝜕𝑣𝑧
𝜕𝜃

 

+(𝐞𝜃 ∙
𝜕

𝜕𝜃
𝐞𝑧)

𝑣𝑧
𝑟
+ (𝐞𝑧 ∙ 𝐞𝑟)

𝜕𝑣𝑟
𝜕𝑧

+ (𝐞𝑧 ∙
𝜕

𝜕𝑧
𝐞𝑟) 𝑣𝑟 

+(𝐞𝑧 ∙ 𝐞𝑧)
𝜕𝑣𝑧
𝜕𝑧

+ (𝐞𝑧 ∙
𝜕

𝜕𝑧
𝐞𝑧) 𝑣𝑧 

 

 

 

 

 

(A.24) 

Applying the dot product rule and the differential operation in Eqs. (A.10) and (A.11) into 

Eq. (A.24) results in 

 
∇ ∙ 𝐯𝑐 = 𝛿𝑟𝑟

𝜕𝑣𝑟
𝜕𝑟

+ (𝐞𝑟 ∙ 0)𝑣𝑟 + 𝛿𝑟𝑧
𝜕𝑣𝑧
𝜕𝑟

+ (𝐞𝑟 ∙ 0)𝑣𝑧 + 𝛿𝜃𝑟
1

𝑟

𝜕𝑣𝑟
𝜕𝜃

+ 𝛿𝜃𝜃
𝑣𝑟
𝑟
+ 𝛿𝜃𝑧

1

𝑟

𝜕𝑣𝑧
𝜕𝜃

+ (𝐞𝜃 ∙ 0)
𝑣𝑧
𝑟
+ 𝛿𝑧𝑟

𝜕𝑣𝑟
𝜕𝑧

+ (𝐞𝑧 ∙ 0)𝑣𝑟 + 𝛿𝑧𝑧
𝜕𝑣𝑧
𝜕𝑧

+ (𝐞𝑧 ∙ 0)𝑣𝑧 

=
𝜕𝑣𝑟
𝜕𝑟

+
𝑣𝑟
𝑟
+
𝜕𝑣𝑧
𝜕𝑧

 (A.25) 

By reformulating the first two terms of the right-hand side of Eq. (A.25): 
𝜕𝑣𝑟

𝜕𝑟
+
𝑣𝑟

𝑟
=

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟), 

the substitution of Eq. (A.25) into Eq. (A.23) gives 

 1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟) +

𝜕𝑣𝑧
𝜕𝑧

= 0 (A.26) 

as the final formulation of the continuity equation expressed in Eq. (9). 



 

 

A.4 Derivation of the Navier-Stokes Equation 

The derivation of the Navier-Stokes equation starts from Eq. (10): 

 𝜕

𝜕𝑡
(𝜌𝑐𝐯𝑐) + ∇ ∙ (𝜌𝑐𝐯𝑐𝐯𝑐) = −∇P𝑐 − ∇ ∙ 𝜏𝑐 + 𝜌𝑐𝐠 (A.27) 

The negligible gravitational forces in the last term of the right-hand side is indicated by 

estimating their magnitudes which are assumed constant and only act in z-direction: 

 
𝜌𝑐𝐠 = 𝜌𝑐𝑔𝑧 = 1000

𝑘𝑔

𝑚3
 𝑥 9.8

𝑚

𝑠2
= 9800

𝑘𝑔

𝑚2𝑠2
 (A.28) 

It is found through the nondimensionalization of z-component of Navier-Stokes equation that 

the pressure term is the only significant term (shown in Table 2) and its magnitude for 𝜖 = 0.1 

is estimated based on the physical properties given in Table B.1, which results in 

 
𝜕𝑃𝑐
𝜕𝑧

=
�̅�

ℎ̅

𝜕�̃�𝑐
𝜕�̃�

=

𝜎
𝑅𝑝

𝜖2𝑅𝑝

𝜕�̃�𝑐
𝜕�̃�

=
72.8 𝑥 10−3

𝑘𝑔
𝑠2

0.12 𝑥 (5𝑥10−4 𝑚)2
𝜕�̃�𝑐
𝜕�̃�

= 2.91𝑥107
𝑘𝑔

𝑚2𝑠2
𝜕�̃�𝑐
𝜕�̃�

 
(A.29) 

The gravitational forces in Eq. (A.28) is shown to be much smaller than the magnitude of the 

pressure term in Eq. (A.29), thus, the last term of Eq. (A.27) is not considered. Considering 

constant 𝜌𝑐 for an incompressible fluid, Eq. (A.29) can be rewritten as 

 
𝜌𝑐
𝜕𝐯𝑐
𝜕𝑡

+ 𝜌𝑐∇ ∙ (𝐯𝑐𝐯𝑐) = −∇P𝑐 − ∇ ∙ 𝜏𝑐 (A.30) 

Expanding the second term of the left-hand side of Eq. (A.30) yields 

 𝐿𝐻𝑆2𝑛𝑑 = 𝜌𝑐∇ ∙ (𝐯𝑐𝐯𝑐) 

= 𝜌𝑐𝐯𝑐 ∙ ∇𝐯𝑐 + 𝜌𝑐𝐯𝑐(∇ ∙ 𝐯𝑐) 

= 𝜌𝑐𝐯𝑐 ∙ ∇𝐯𝑐 (A.31) 

with ∇ ∙ 𝐯𝑐 = 0 coming from the continuity equation in Eq. (A.23). 

For a Newtonian fluid, the deviatoric stress tensor, 𝜏𝑐, contained in the last term of Eq. (A.30) 

is described as Eq. (11): 

 
𝜏𝑐 = −𝜇𝑐(∇𝐯𝑐 + (∇𝐯𝑐)

𝑇) +
2

3
𝜇𝑐(∇ ∙ 𝐯𝑐)I (A.32) 

Applying ∇ ∙ 𝐯𝑐 = 0 eliminates the last term of Eq. (A.32). Thus, the substitution of Eq. (A.32) 

to the second term of the right-hand side of Eq. (A.30) gives 

 𝑅𝐻𝑆2𝑛𝑑 = −∇ ∙ 𝜏𝑐 

= 𝜇𝑐∇ ∙ [∇𝐯𝑐 + (∇𝐯𝑐)
𝑇] 

= 𝜇𝑐∇ ∙ ∇𝐯𝑐 + 𝜇𝑐∇ ∙ (∇𝐯𝑐)
𝑇 (A.33) 



 

 

where the Laplacian of the vectors defines each term of the right-hand side as 

 𝜇𝑐∇ ∙ ∇𝐯𝑐 = 𝜇𝑐∇
2𝐯𝑐      and      𝜇𝑐∇ ∙ (∇𝐯𝑐)

𝑇 = 𝜇𝑐∇(∇ ∙ 𝐯𝑐) = 0 (A.34) 

Applying Eqs. (A.31) and (A.33) to Eq. (A.30) results in 

 
𝜌𝑐
𝜕𝐯𝑐
𝜕𝑡

+ 𝜌𝑐𝐯𝑐 ∙ ∇𝐯𝑐 = −∇P𝑐 + 𝜇𝑐∇
2𝐯𝑐 (A.35) 

By using ∇ and ∇𝐯𝑐 defined in Eqs. (A.1) and (A.13), elaborating the left-hand side of Eq. 

(A.35) gives the first term as 

 
𝐿𝐻𝑆1𝑠𝑡 = 𝜌𝑐

𝜕

𝜕𝑡
(𝑣𝑟𝐞𝑟 + 𝑣𝑧𝐞𝑧) = 𝜌𝑐

𝜕𝑣𝑟
𝜕𝑡

𝐞𝑟 + 𝜌𝑐
𝜕𝑣𝑧
𝜕𝑡

𝐞𝑧 (A.36) 

and the second term as 

 𝐿𝐻𝑆2𝑛𝑑 = 𝜌𝑐𝐯𝑐 ∙ ∇𝐯𝑐 

= 𝜌𝑐(𝑣𝑟𝐞𝑟 + 𝑣𝑧𝐞𝑧)

∙ [𝐞𝑟
𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝐞𝑟
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝐞𝜃𝐞𝜃
𝑣𝑟
𝑟
+ 𝐞𝑧

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟 + 𝐞𝑧
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧] (A.37) 

The dot product is taken by applying Eq. (A.10), yielding 

 
𝐿𝐻𝑆2𝑛𝑑 = 𝜌𝑐 [𝑣𝑟(𝐞𝑟 ∙ 𝐞𝑟)

𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝑣𝑟(𝐞𝑟 ∙ 𝐞𝑟)
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝑣𝑟(𝐞𝑟 ∙ 𝐞𝜃)𝐞𝜃
𝑣𝑟
𝑟

+ 𝑣𝑟(𝐞𝑟 ∙ 𝐞𝑧)
𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟 + 𝑣𝑟(𝐞𝑟 ∙ 𝐞𝑧)
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧 + 𝑣𝑧(𝐞𝑧 ∙ 𝐞𝑟)
𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟

+ 𝑣𝑧(𝐞𝑧 ∙ 𝐞𝑟)
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝑣𝑧(𝐞𝑧 ∙ 𝐞𝜃)𝐞𝜃
𝑣𝑟
𝑟
+ 𝑣𝑧(𝐞𝑧 ∙ 𝐞𝑧)

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟

+ 𝑣𝑧(𝐞𝑧 ∙ 𝐞𝑧)
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧] 

= 𝜌𝑐 [𝑣𝑟𝛿𝑟𝑟
𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝑣𝑟𝛿𝑟𝑟
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝑣𝑟𝛿𝑟𝜃𝐞𝜃
𝑣𝑟
𝑟
+ 𝑣𝑟𝛿𝑟𝑧

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟

+ 𝑣𝑟𝛿𝑟𝑧
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧 + 𝑣𝑧𝛿𝑧𝑟
𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝑣𝑧𝛿𝑧𝑟
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝑣𝑧𝛿𝑧𝜃𝐞𝜃
𝑣𝑟
𝑟

+ 𝑣𝑧𝛿𝑧𝑧
𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟 + 𝑣𝑧𝛿𝑧𝑧
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧] 

= 𝜌𝑐 [𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝑣𝑟
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝑣𝑧
𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟 + 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧] (A.38) 

By compiling Eqs. (A.36) and (A.38) together, the left-hand side of Eq. (A.35) becomes 

 
𝐿𝐻𝑆 = 𝜌𝑐

𝜕𝑣𝑟
𝜕𝑡

𝐞𝑟 + 𝜌𝑐
𝜕𝑣𝑧
𝜕𝑡

𝐞𝑧 + 𝜌𝑐 [𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝑣𝑟
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝑣𝑧
𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟 + 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧] 

= 𝜌𝑐 (
𝜕𝑣𝑟
𝜕𝑡

+ 𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑟
𝜕𝑧
) 𝐞𝑟 + 𝜌𝑐 (

𝜕𝑣𝑧
𝜕𝑡

+ 𝑣𝑟
𝜕𝑣𝑧
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧
) 𝐞𝑧 (A.39) 

 



 

 

Decomposing the right-hand side of Eq. (A.35) gives the first term as 

 
𝑅𝐻𝑆1𝑠𝑡 = −∇P𝑐 = −(𝐞𝑟

𝜕

𝜕𝑟
+ 𝐞𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝐞𝑧

𝜕

𝜕𝑧
)P𝑐 

= −(𝐞𝑟
𝜕P𝑐
𝜕𝑟

+ 𝐞𝜃
1

𝑟

𝜕P𝑐
𝜕𝜃

+ 𝐞𝑧
𝜕P𝑐
𝜕𝑧
) (A.40) 

 

The pressure gradient in 𝜃-direction vanishes due to the axisymmetry assumption, resulting in  

 
𝑅𝐻𝑆1𝑠𝑡 = −𝐞𝑟

𝜕P𝑐
𝜕𝑟

− 𝐞𝑧
𝜕P𝑐
𝜕𝑧

 (A.41) 

Meanwhile, the second term of the right-hand side in Eq. (A.35) is expanded by taking ∇𝐯𝑐 

from Eq. (A.13), giving 

 𝑅𝐻𝑆2𝑛𝑑 = 𝜇𝑐∇
2𝐯𝑐 = 𝜇𝑐∇ ∙ ∇𝐯𝑐 

= 𝜇𝑐 (𝐞𝑟
𝜕

𝜕𝑟
+ 𝐞𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝐞𝑧

𝜕

𝜕𝑧
)

∙ [𝐞𝑟
𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝐞𝑟
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝐞𝜃𝐞𝜃
𝑣𝑟
𝑟
+ 𝐞𝑧

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟 + 𝐞𝑧
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧] (A.42) 

Expanding Eq. (A.42), eliminating the gradient in 𝜃-direction, and implementing Eqs. (A.10) 

and (A.11) give 

 
𝑅𝐻𝑆2𝑛𝑑 = 𝜇𝑐 [𝐞𝑟 ∙

𝜕

𝜕𝑟
(𝐞𝑟

𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝐞𝑟
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝐞𝜃𝐞𝜃
𝑣𝑟
𝑟
+ 𝐞𝑧

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟 + 𝐞𝑧
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧)

+ 𝐞𝜃 ∙
1

𝑟

𝜕

𝜕𝜃
(𝐞𝑟

𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝐞𝑟
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝐞𝜃𝐞𝜃
𝑣𝑟
𝑟
+ 𝐞𝑧

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟 + 𝐞𝑧
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧)

+ 𝐞𝑧 ∙
𝜕

𝜕𝑧
(𝐞𝑟

𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝐞𝑟
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 + 𝐞𝜃𝐞𝜃
𝑣𝑟
𝑟
+ 𝐞𝑧

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟 + 𝐞𝑧
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧)] 

= 𝜇𝑐 [(𝐞𝑟 ∙ 𝐞𝑟)
𝜕

𝜕𝑟
(
𝜕𝑣𝑟
𝜕𝑟
) 𝐞𝑟 + (𝐞𝑟 ∙ 𝐞𝑟)

𝜕

𝜕𝑟
(
𝜕𝑣𝑧
𝜕𝑟
)𝐞𝑧 + (𝐞𝜃 ∙ 𝐞𝜃)

1

𝑟

𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟

+ (𝐞𝜃 ∙ 𝐞𝜃)
1

𝑟

𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 − (𝐞𝜃 ∙ 𝐞𝜃)
𝑣𝑟
𝑟2
𝐞𝑟 + (𝐞𝑧 ∙ 𝐞𝑧)

𝜕

𝜕𝑧
(
𝜕𝑣𝑟
𝜕𝑧
) 𝐞𝑟

+ (𝐞𝑧 ∙ 𝐞𝑧)
𝜕

𝜕𝑧
(
𝜕𝑣𝑧
𝜕𝑧
)𝐞𝑧] 

= 𝜇𝑐 [𝛿𝑟𝑟
𝜕2𝑣𝑟
𝜕𝑟2

𝐞𝑟 + 𝛿𝑟𝑟
𝜕2𝑣𝑧
𝜕𝑟2

𝐞𝑧 + 𝛿𝜃𝜃
1

𝑟

𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 + 𝛿𝜃𝜃
1

𝑟

𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 − 𝛿𝜃𝜃
𝑣𝑟
𝑟2
𝐞𝑟

+ 𝛿𝑧𝑧
𝜕2𝑣𝑟
𝜕𝑧2

𝐞𝑟 + 𝛿𝑧𝑧
𝜕2𝑣𝑧
𝜕𝑧2

𝐞𝑧] 

= 𝜇𝑐 [
𝜕2𝑣𝑟
𝜕𝑟2

𝐞𝑟 +
1

𝑟

𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 −
𝑣𝑟
𝑟2
𝐞𝑟 +

𝜕2𝑣𝑟
𝜕𝑧2

𝐞𝑟 +
𝜕2𝑣𝑧
𝜕𝑟2

𝐞𝑧 +
1

𝑟

𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 +
𝜕2𝑣𝑧
𝜕𝑧2

𝐞𝑧] (A.43) 



 

 

Equation (A.43) is simplified by reformulating the 1st-3rd terms 
𝜕2𝑣𝑟

𝜕𝑟2
𝐞𝑟 +

1

𝑟

𝜕𝑣𝑟

𝜕𝑟
𝐞𝑟 −

𝑣𝑟

𝑟2
𝐞𝑟 into 

 𝜕2𝑣𝑟
𝜕𝑟2

𝐞𝑟 +
1

𝑟

𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟 −
𝑣𝑟
𝑟2
𝐞𝑟 =

𝜕

𝜕𝑟
(
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟)) 𝐞𝑟 (A.44) 

 

and the 5th-6th terms 
𝜕2𝑣𝑧

𝜕𝑟2
𝐞𝑧 +

1

𝑟

𝜕𝑣𝑧

𝜕𝑟
𝐞𝑧 into 

 𝜕2𝑣𝑧
𝜕𝑟2

𝐞𝑧 +
1

𝑟

𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧 =
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑣𝑧
𝜕𝑟
) 𝐞𝑧 (A.45) 

which yields 

 
𝑅𝐻𝑆2𝑛𝑑 = 𝜇𝑐 [

𝜕

𝜕𝑟
(
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟)) 𝐞𝑟 +

𝜕2𝑣𝑟
𝜕𝑧2

𝐞𝑟 +
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑣𝑧
𝜕𝑟
) 𝐞𝑧 +

𝜕2𝑣𝑧
𝜕𝑧2

𝐞𝑧] (A.46) 

Combining Eqs. (A.41) and (A.46) gives the right-hand side of Eq. (A.35) as 

 
𝑅𝐻𝑆 = −𝐞𝑟

𝜕P𝑐
𝜕𝑟

− 𝐞𝑧
𝜕P𝑐
𝜕𝑧

 

+𝜇𝑐 [
𝜕

𝜕𝑟
(
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟)) 𝐞𝑟 +

𝜕2𝑣𝑟
𝜕𝑧2

𝐞𝑟 +
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑣𝑧
𝜕𝑟
)𝐞𝑧 +

𝜕2𝑣𝑧
𝜕𝑧2

𝐞𝑧] 

 

(A.47) 

Equating Eqs. (A.39) and (A.47) results in the Navier-Stokes equation: 

 
𝜌𝑐 (

𝜕𝑣𝑟
𝜕𝑡

+ 𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑟
𝜕𝑧
)𝐞𝑟 + 𝜌𝑐 (

𝜕𝑣𝑧
𝜕𝑡

+ 𝑣𝑟
𝜕𝑣𝑧
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧
) 𝐞𝑧 

= −𝐞𝑟
𝜕P𝑐
𝜕𝑟

− 𝐞𝑧
𝜕P𝑐
𝜕𝑧

+ 𝜇𝑐 [
𝜕

𝜕𝑟
(
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟)) 𝐞𝑟 +

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑣𝑧
𝜕𝑟
) 𝐞𝑧 +

𝜕2𝑣𝑟
𝜕𝑧2

𝐞𝑟 +
𝜕2𝑣𝑧
𝜕𝑧2

𝐞𝑧] 

 

(A.48) 

which can be decomposed into: 

r-component: 𝜌𝑐 (
𝜕𝑣𝑟
𝜕𝑡

+ 𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑟
𝜕𝑧
) = −

𝜕𝑃𝑐
𝜕𝑟

+ 𝜇𝑐 [
𝜕

𝜕𝑟
(
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟)) +

𝜕2𝑣𝑟
𝜕𝑧2

] (A.49) 

z-component: 𝜌𝑐 (
𝜕𝑣𝑧
𝜕𝑡

+ 𝑣𝑟
𝜕𝑣𝑧
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧
) = −

𝜕𝑃𝑐
𝜕𝑧

+ 𝜇𝑐 [
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑣𝑧
𝜕𝑟
) +

𝜕2𝑣𝑧
𝜕𝑧2

] (A.50) 

 

 

 



 

 

A.5 Derivation of the Component Mass Balance Equation 

The component mass balance of species 𝐴 follows Eq. (15): 

 𝜕(𝜌𝑐𝜔𝐴,𝑐)

𝜕𝑡
+ ∇ ∙ (𝜌𝑐𝐯𝑐𝜔𝐴,𝑐) = −∇ ∙ 𝐣𝐴 + 𝑟𝐴 (A.51) 

where the mass flux 𝐣𝐴 is estimated by the Fick’s law: 

 𝐣𝐴 = −𝜌𝑐𝐷𝐴𝐵∇𝜔𝐴,𝑐 (A.52) 

By having constant 𝜌𝑐 due to the incompressible fluid assumption, taking 𝜌𝑐 out of the 

differential operator and substituting Eq. (A.52) into Eq. (A.51) yield 

 
𝜌𝑐
𝜕𝜔𝐴,𝑐
𝜕𝑡

+ 𝜌𝑐∇ ∙ (𝐯𝑐𝜔𝐴,𝑐) = −𝜌𝑐∇ ∙ (−𝐷𝐴𝐵∇𝜔𝐴,𝑐) + 𝑟𝐴 (A.53) 

Elaborating the second term in the left-hand side gives 

 𝐿𝐻𝑆2𝑛𝑑 = 𝜌𝑐∇ ∙ (𝐯𝑐𝜔𝐴,𝑐) = 𝜌𝑐(𝐯𝑐 ∙ ∇𝜔𝐴) + 𝜌𝑐𝜔𝐴,𝑐(∇ ∙ 𝐯𝑐) 

= 𝜌𝑐(𝐯𝑐 ∙ ∇𝜔𝐴) (A.54) 

noting that ∇ ∙ 𝐯𝑐 = 0 as defined in Eq. (A.23). The mass diffusivity, 𝐷𝐴𝐵, in the first term of 

the right-hand side of Eq. (A.53) is considered constant, hence, can be taken out of the 

differential operator, resulting in 

 𝑅𝐻𝑆1𝑠𝑡 = −𝜌𝑐∇ ∙ (−𝐷𝐴𝐵∇𝜔𝐴,𝑐) = 𝐷𝐴𝐵𝜌𝑐∇ ∙ ∇𝜔𝐴,𝑐 

= 𝐷𝐴𝐵∇
2𝜔𝐴 

(A.55) 

where ∇2 denotes the Laplace operator. Substituting Eqs. (A.54) and (A.55) into Eq. (A.53) 

and dividing both sides with 𝜌𝑐 formulates 

 𝜕𝜔𝐴,𝑐
𝜕𝑡

+ 𝐯𝑐 ∙ ∇𝜔𝐴 = 𝐷𝐴𝐵∇
2𝜔𝐴 +

𝑟𝐴
𝜌𝑐

 (A.56) 

Applying ∇ and 𝐯𝑐 as Eqs. (A.11) and (A.6) expands Eq. (A.56) into 

 𝜕𝜔𝐴,𝑐
𝜕𝑡

+ (𝑣𝑟𝐞𝑟 + 𝑣𝑧𝐞𝑧) ∙ (𝐞𝑟
𝜕𝜔𝐴,𝑐
𝜕𝑟

+ 𝐞𝜃
1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝜃

+ 𝐞𝑧
𝜕𝜔𝐴,𝑐
𝜕𝑧

) 

= 𝐷𝐴𝐵 [𝐞𝑟 ∙
𝜕

𝜕𝑟
(𝐞𝑟

𝜕𝜔𝐴,𝑐
𝜕𝑟

+ 𝐞𝜃
1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝜃

+ 𝐞𝑧
𝜕𝜔𝐴,𝑐
𝜕𝑧

) + 𝐞𝜃

∙
1

𝑟

𝜕

𝜕𝜃
(𝐞𝑟

𝜕𝜔𝐴,𝑐
𝜕𝑟

+ 𝐞𝜃
1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝜃

+ 𝐞𝑧
𝜕𝜔𝐴,𝑐
𝜕𝑧

) + 𝐞𝑧

∙
𝜕

𝜕𝑧
(𝐞𝑟

𝜕𝜔𝐴,𝑐
𝜕𝑟

+ 𝐞𝜃
1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝜃

+ 𝐞𝑧
𝜕𝜔𝐴,𝑐
𝜕𝑧

)

.

.

.
] +

𝑟𝐴
𝜌𝑐

 

 

 

  

(A.57) 



 

 

By following the dot product rule in Eq. (A.10), the left-hand side of Eq. (A.57) is derived into 

 
𝐿𝐻𝑆 =

𝜕𝜔𝐴,𝑐
𝜕𝑡

+ [𝑣𝑟(𝐞𝑟 ∙ 𝐞𝑟)
𝜕𝜔𝐴,𝑐
𝜕𝑟

+ 𝑣𝑟(𝐞𝑟 ∙ 𝐞𝜃)
1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝜃

+ 𝑣𝑟(𝐞𝑟 ∙ 𝐞𝑧)
𝜕𝜔𝐴,𝑐
𝜕𝑧

+ 𝑣𝑧(𝐞𝑧 ∙ 𝐞𝑟)
𝜕𝜔𝐴,𝑐
𝜕𝑟

+ 𝑣𝑧(𝐞𝑧 ∙ 𝐞𝜃)
1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝜃

+ 𝑣𝑧(𝐞𝑧 ∙ 𝐞𝑧)
𝜕𝜔𝐴,𝑐
𝜕𝑧

.

.

.
] 

=
𝜕𝜔𝐴,𝑐
𝜕𝑡

+ [𝑣𝑟𝛿𝑟𝑟
𝜕𝜔𝐴,𝑐
𝜕𝑟

+ 𝑣𝑟𝛿𝑟𝜃
1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝜃

+ 𝑣𝑟𝛿𝑟𝑧
𝜕𝜔𝐴,𝑐
𝜕𝑧

+ 𝑣𝑧𝛿𝑧𝑟
𝜕𝜔𝐴,𝑐
𝜕𝑟

+ 𝑣𝑧𝛿𝑧𝜃
1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝜃

+ 𝑣𝑧𝛿𝑧𝑧
𝜕𝜔𝐴,𝑐
𝜕𝑧

.

.

.
] 

=
𝜕𝜔𝐴,𝑐
𝜕𝑡

+ 𝑣𝑟
𝜕𝜔𝐴,𝑐
𝜕𝑟

+ 𝑣𝑧
𝜕𝜔𝐴,𝑐
𝜕𝑧

 

 

(A.58) 

while the right-hand side of Eq. (A.57) is derived by also implementing Eq. (A.11) and 

neglecting the gradient in 𝜃-direction due to axisymmetric assumption, yielding 

 
𝑅𝐻𝑆 = 𝐷𝐴𝐵 [ (𝐞𝑟 ∙ 𝐞𝑟)

𝜕

𝜕𝑟
(
𝜕𝜔𝐴,𝑐
𝜕𝑟

) + (𝐞𝜃 ∙ 𝐞𝜃)
1

𝑟
(
𝜕𝜔𝐴,𝑐
𝜕𝑟

) + (𝐞𝑧 ∙ 𝐞𝑧)
𝜕

𝜕𝑧
(
𝜕𝜔𝐴,𝑐
𝜕𝑧

)

.

.

.
] +

𝑟𝐴
𝜌𝑐

 

= 𝐷𝐴𝐵 [ 𝛿𝑟𝑟
𝜕

𝜕𝑟
(
𝜕𝜔𝐴,𝑐
𝜕𝑟

) + 𝛿𝜃𝜃
1

𝑟
(
𝜕𝜔𝐴,𝑐
𝜕𝑟

) + 𝛿𝑧𝑧
𝜕

𝜕𝑧
(
𝜕𝜔𝐴,𝑐
𝜕𝑧

)

.

.

.
] +

𝑟𝐴
𝜌𝑐

 

= 𝐷𝐴𝐵 [ 
𝜕2𝜔𝐴,𝑐
𝜕𝑟2

+
1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝑟

+
𝜕2𝜔𝐴,𝑐
𝜕𝑧2

.

.

.
] +

𝑟𝐴
𝜌𝑐

 

 

(A.59) 

Substituting Eqs. (A.58) and (A.59) to the left-hand and the righ-hand sides of Eq. (A.57) gives 

 𝜕𝜔𝐴,𝑐
𝜕𝑡

+ 𝑣𝑟
𝜕𝜔𝐴,𝑐
𝜕𝑟

+ 𝑣𝑧
𝜕𝜔𝐴,𝑐
𝜕𝑧

= 𝐷𝐴𝐵 [ 
𝜕2𝜔𝐴,𝑐
𝜕𝑟2

+
1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝑟

+
𝜕2𝜔𝐴,𝑐
𝜕𝑧2

.

.

.
] +

𝑟𝐴
𝜌𝑐

 (A.60) 

The term 
𝜕2𝜔𝐴,𝑐

𝜕𝑟2
+
1

𝑟

𝜕𝜔𝐴,𝑐

𝜕𝑟
 in the right-hand side is equivalent to 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜔𝐴,𝑐

𝜕𝑟
) which formulates 

the mass fraction profile into 

 𝜕𝜔𝐴,𝑐
𝜕𝑡

+ 𝑣𝑟
𝜕𝜔𝐴,𝑐
𝜕𝑟

+ 𝑣𝑧
𝜕𝜔𝐴,𝑐
𝜕𝑧

= 𝐷𝐴𝐵 [ 
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝜔𝐴,𝑐
𝜕𝑟

) +
𝜕2𝜔𝐴,𝑐
𝜕𝑧2

.

.

.
] +

𝑟𝐴
𝜌𝑐

 (A.61) 

 

 



 

 

A.6 Derivation of the No-Slip Condition 

The no-slip condition stems from Eq. (22): 

 𝐯𝑐|𝑧=ℎ/2 ∙ 𝐭1 = 𝐮 ∙ 𝐭1 (A.62) 

Defining the right-hand side as the tangential velocity of the interface, 𝑈𝑡, and substituting 𝐭1 

and 𝐯𝑐 in Eqs. (3) and (A.6) into Eq. (A.62) result in 

 

(𝑣𝑟𝐞𝑟 + 𝑣𝑧𝐞𝑧) ∙
𝐞𝑟 +

1
2
𝜕ℎ
𝜕𝑟
𝐞𝑧

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
= 𝑈𝑡 (A.63) 

Elaborating the dot product of the left-hand side in Eq. (A.63) and implementing (A.10) give 

 
𝐿𝐻𝑆 =

1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[ 𝑣𝑟(𝐞𝑟 ∙ 𝐞𝑟) +

𝑣𝑟
2

𝜕ℎ

𝜕𝑟
(𝐞𝑟 ∙ 𝐞𝑧) + 𝑣𝑧(𝐞𝑧 ∙ 𝐞𝑟)

+
𝑣𝑧
2

𝜕ℎ

𝜕𝑟
(𝐞𝑧 ∙ 𝐞𝑧)

.

.

.
] 

=
1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[𝑣𝑟(𝛿𝑟𝑟) +

𝑣𝑟
2

𝜕ℎ

𝜕𝑟
(𝛿𝑟𝑧) + 𝑣𝑧(𝛿𝑧𝑟) +

𝑣𝑧
2

𝜕ℎ

𝜕𝑟
(𝛿𝑧𝑧)

.

.

.
] 

=
1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[𝑣𝑟 +

𝑣𝑧
2

𝜕ℎ

𝜕𝑟

.

.

.
] 

 

 

 

 

 

(A.64) 

Noting that the left-hand side is evaluated at the interface, 𝑧 = ℎ/2, substituting Eq. (A.64) to 

Eq. (A.63) yields 

 𝑣𝑟|𝑧=ℎ/2 +
1
2
𝜕ℎ
𝜕𝑟
𝑣𝑧|𝑧=ℎ/2

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

= 𝑈𝑡 (A.65) 

 

 

 

 



 

 

A.7 Derivation of the Kinematic Conditions 

Referring to Section 2.2.2, the kinematic condition with the inclusion of the mass transfer has 

been derived in detail until Eq. (32): 

 (1 − 𝜔𝐴,𝑐|𝑧=ℎ/2) (𝐯𝑐
|𝑧=ℎ/2 − 𝐮) ∙ 𝐧 = −𝐷𝐴𝐵∇𝜔𝐴,𝑐|𝑧=ℎ/2 ∙ 𝐧 (A.66) 

which can be re-arranged into 

 
(𝐯𝑐|𝑧=ℎ/2 ∙ 𝐧) − (𝐮 ∙ 𝐧) = −

𝐷𝐴𝐵

1 − 𝜔𝐴,𝑐|𝑧=ℎ/2
(∇𝜔𝐴,𝑐|𝑧=ℎ/2 ∙ 𝐧) 

𝐮 ∙ 𝐧 =  𝐯𝑐|𝑧=ℎ/2 ∙ 𝐧 +
𝐷𝐴𝐵∇𝜔𝐴,𝑐|𝑧=ℎ/2 ∙ 𝐧

(1 − 𝜔𝐴,𝑐|𝑧=ℎ/2)
 

 

 

(A.67) 

The left-hand side is identified as the normal velocity of the interface, 𝑈𝑛, while the right-hand 

side is expanded by employing ∇, 𝐯𝑐, and 𝐧 in Eqs. (A.1), (A.6), and (A.8), yielding 

 

𝑈𝑛 = (𝑣𝑟𝐞𝑟 + 𝑣𝑧𝐞𝑧) ∙
(𝐞𝑧 −

1
2
𝜕ℎ
𝜕𝑟
𝐞𝑟)

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

+
𝐷𝐴𝐵

(1 − 𝜔𝐴,𝑐)
(𝐞𝑟

𝜕𝜔𝐴,𝑐
𝜕𝑟

+ 𝐞𝜃
1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝜃

+ 𝐞𝑧
𝜕𝜔𝐴,𝑐
𝜕𝑧

) ∙
(𝐞𝑧 −

1
2
𝜕ℎ
𝜕𝑟
𝐞𝑟)

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

 

 

 

 

(A.68) 

The expansion of the dot product gives 

 
𝑈𝑛 =

1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[ 𝑣𝑟(𝐞𝑟 ∙ 𝐞𝑧) −

𝑣𝑟
2

𝜕ℎ

𝜕𝑟
(𝐞𝑟 ∙ 𝐞𝑟) + 𝑣𝑧(𝐞𝑧 ∙ 𝐞𝑧) −

𝑣𝑧
2

𝜕ℎ

𝜕𝑟
(𝐞𝑧 ∙ 𝐞𝑟)

.

.

.
]

+
𝐷𝐴𝐵

(1 − 𝜔𝐴,𝑐)

1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[(𝐞𝑟 ∙ 𝐞𝑧)

𝜕𝜔𝐴,𝑐
𝜕𝑟

− (𝐞𝑟 ∙ 𝐞𝑟)
1

2

𝜕𝜔𝐴,𝑐
𝜕𝑟

𝜕ℎ

𝜕𝑟

+ (𝐞𝜃 ∙ 𝐞𝑧)
1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝜃

− (𝐞𝜃 ∙ 𝐞𝑟)
1

2

1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝜃

𝜕ℎ

𝜕𝑟
+ (𝐞𝑧 ∙ 𝐞𝑧)

𝜕𝜔𝐴,𝑐
𝜕𝑧

− (𝐞𝑧 ∙ 𝐞𝑟)
1

2

𝜕𝜔𝐴,𝑐
𝜕𝑧

𝜕ℎ

𝜕𝑟

.

.

.
] 

 

 

 

 

 

 

(A.69) 

Applying Eq. (A.10) formulates Eq. (A.69) into 

 

 

 



 

 

 
𝑈𝑛 =

1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
(𝑣𝑟𝛿𝑟𝑧 −

𝑣𝑟
2

𝜕ℎ

𝜕𝑟
𝛿𝑟𝑟 + 𝑣𝑧𝛿𝑧𝑧 −

𝑣𝑧
2

𝜕ℎ

𝜕𝑟
𝛿𝑧𝑟)

+
𝐷𝐴𝐵

(1 − 𝜔𝐴,𝑐)

1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[𝛿𝑟𝑧

𝜕𝜔𝐴,𝑐
𝜕𝑟

− 𝛿𝑟𝑟
1

2

𝜕𝜔𝐴,𝑐
𝜕𝑟

𝜕ℎ

𝜕𝑟

+ 𝛿𝜃𝑧
1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝜃

− 𝛿𝜃𝑟
1

2

1

𝑟

𝜕𝜔𝐴,𝑐
𝜕𝜃

𝜕ℎ

𝜕𝑟
+ 𝛿𝑧𝑧

𝜕𝜔𝐴,𝑐
𝜕𝑧

− 𝛿𝑧𝑟
1

2

𝜕𝜔𝐴,𝑐
𝜕𝑧

𝜕ℎ

𝜕𝑟

.

.

.
] 

=
(−

𝑣𝑟
2
𝜕ℎ
𝜕𝑟
+ 𝑣𝑧)

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
+

𝐷𝐴𝐵

(1 − 𝜔𝐴,𝑐)

1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[−
1

2

𝜕𝜔𝐴,𝑐
𝜕𝑟

𝜕ℎ

𝜕𝑟
+
𝜕𝜔𝐴,𝑐
𝜕𝑧

.

.

.
] 

 

 

 

 

 

(A.70) 

Evaluating the right-hand side at the interface position, 𝑧 = ℎ/2, with some rearrangements 

results in 

 

𝑈𝑛 =
𝑣𝑧|𝑧=ℎ/2 −

1
2
𝜕ℎ
𝜕𝑟
𝑣𝑟|𝑧=ℎ/2

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

+
1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝐷𝐴𝐵

(1 − 𝜔𝐴,𝑐|𝑧=ℎ/2)
(
𝜕𝜔𝐴,𝑐
𝜕𝑧

|
𝑧=ℎ/2

−
1

2

𝜕ℎ

𝜕𝑟

𝜕𝜔𝐴,𝑐
𝜕𝑟

|
𝑧=ℎ/2

) 

 

 

(A.71) 

The normal velocity 𝑈𝑛 is derived according Johns and Narayanan (2007) in their Appendix 

C. Then, by following Ozan and Jakobsen (2019b)’s derivation for a thin film, the surface 

position is described in its implicit form, 𝑓 = 𝑧 − ℎ(𝑟, 𝑡)/2, and used to determine 𝑈𝑛 as 

 

𝑈𝑛 = −

𝜕𝑓
𝜕𝑡
|∇𝑓|

=

1
2
𝜕ℎ
𝜕𝑡

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
4
≈
1

2

𝜕ℎ

𝜕𝑡
 

 

(A.72) 

 

 

 

 

 

 

 



 

 

A.8 Derivation of the Normal Stress Balance 

The normal stress balance considering the mass transfer is expressed in Eq. (34) as 

 2𝐻𝜎𝐧 ∙ 𝐧 + ∇𝑠𝜎 ∙ 𝐧 = ‖T‖: 𝐧𝐧 − ‖𝜌((𝐮 − 𝐯) ∙ 𝐧)
2
‖ (A.73) 

The left-hand side indicates the dot product of two identical vectors, 𝐧 ∙ 𝐧 = 1. The twice of 

the mean curvature of deformable interfaces, 2𝐻, stems from the surface divergence of 𝐧 as 

described in Eq. (35), which is derived by applying ∇s in Eq. (A.3) and expanding the dot 

product: 

 

2𝐻 = −∇s ∙ 𝐧 = −

(

 
𝐭1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕

𝜕𝑟
+
𝐭2
𝑟

𝜕

𝜕𝜃

)

 ∙ 𝐧 

= −
1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2
(𝐭1 ∙

𝜕

𝜕𝑟
𝐧) −

1

𝑟
(𝐭2 ∙

𝜕

𝜕𝜃
𝐧) 

 

 

(A.74) 

The term (𝐭1 ∙
𝜕

𝜕𝑟
𝐧) is derived by substituting Eqs. (3) and (A.14) to take the dot product as 

 

𝐭1 ∙
𝜕

𝜕𝑟
𝐧 =

𝐞𝑟 +
1
2
𝜕ℎ
𝜕𝑟
𝐞𝑧

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
∙

{
 
 

 
 

−

1
4
𝜕ℎ
𝜕𝑟
𝜕2ℎ
𝜕𝑟2

𝐞𝑧

[1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

3/2
−

1
2
𝜕2ℎ
𝜕𝑟2

𝐞𝑟

[1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

3/2

}
 
 

 
 

 

= −

1
2
𝜕2ℎ
𝜕𝑟2

[1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

2 −

1
8 (
𝜕ℎ
𝜕𝑟
)
2 𝜕2ℎ
𝜕𝑟2

[1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

2 

= −

1
2
𝜕2ℎ
𝜕𝑟2

[1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

[1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

2  

= −

1
2
𝜕2ℎ
𝜕𝑟2

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 

 

 

 

 

 

 

 

 

 

 

 

(A.75) 

while the term (𝐭2 ∙
𝜕

𝜕𝜃
𝐧) is found by applying Eqs. (3) and (A.15): 

 𝐭2 ∙
𝜕

𝜕𝜃
𝐧 = 𝐞𝜃 ∙ −

1
2
𝜕ℎ
𝜕𝑟

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
𝐞𝜃 = −

1
2
𝜕ℎ
𝜕𝑟

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
 (A.76) 



 

 

The substitution of Eqs. (A.75) and (A.76) to (A.74) results in 

 

2𝐻 = −∇s ∙ 𝐧 = −
1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2
(−

1
2
𝜕2ℎ
𝜕𝑟2

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2)−

1

𝑟

(

 −

1
2
𝜕ℎ
𝜕𝑟

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

)

  

=
1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[

1
2
𝜕2ℎ
𝜕𝑟2

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 +

1

2

1

𝑟

𝜕ℎ

𝜕𝑟
] 

= [1 +
1

4
(
𝜕ℎ

𝜕𝑟
)
2

]

−3/2

{

,

1

2

𝜕2ℎ

𝜕𝑟2
+
1

2

1

𝑟

𝜕ℎ

𝜕𝑟
[1 +

1

4
(
𝜕ℎ

𝜕𝑟
)
2

]

.

} 

 

 

 

 

 

 

(A.77) 

Since 
ℎ̅

�̅�
= 𝜖 ≪ 1 holds as defined in Section 2.3, the term 1 +

1

4
(
𝜕ℎ

𝜕𝑟
)
2

 is approximately 1 and 

the curvature is obtained as 

 2𝐻 =
1

2

𝜕2ℎ

𝜕𝑟2
+
1

2

1

𝑟

𝜕ℎ

𝜕𝑟
=
1

2𝑟

𝜕

𝜕𝑟
(𝑟
𝜕ℎ

𝜕𝑟
) (A.78) 

The complete derivation is discussed in Ozan and Jakobsen (2020b) with Eq. 4.43 of their work 

showing the same final expression as Eq. (A.78), which is also consistent with Eq. (7) of 

Chesters and Hofman (1982). Substituting Eq. (A.78) to the left-hand side of Eq. (A.73) gives 

 𝐿𝐻𝑆 = 2𝐻𝜎 =
𝜎

2𝑟

𝜕

𝜕𝑟
(𝑟
𝜕ℎ

𝜕𝑟
) (A.79) 

The first term of the right-hand side of Eq. (A.73) contains the bulk stress tensors for Newtonian 

fluids which are expressed as Eq. (37): 

 T = −𝑃I + 𝜇(∇𝐯 + (∇𝐯)𝑇) (A.80) 

where I and ∇𝐯 are given in Eqs. (A.2) and (A.13). The transpose of the velocity gradient, 

(∇𝐯)𝑇, equals to the switched components of ∇𝐯 from (𝜕/𝜕𝑥𝑖)𝑣𝑗  to (𝜕/𝜕𝑥𝑗)𝑣𝑖: 

 
∇𝐯 =∑∑𝐞𝑖𝐞𝑗

𝜕

𝜕𝑥𝑖
𝑣𝑗

𝑗𝑖

 ;     (∇𝐯)𝑇 =∑∑𝐞𝑖𝐞𝑗
𝜕

𝜕𝑥𝑗
𝑣𝑖

𝑗𝑖

 (A.81) 

This implies that the last term in Eq. (A.80) can be formulated as 

 𝜇(∇𝐯 + (∇𝐯)𝑇)

= 𝜇 (2
𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟𝐞𝑟 +
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑟𝐞𝑧 +
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧𝐞𝑟 + 2
𝑣𝑟
𝑟
𝐞𝜃𝐞𝜃 +

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑧𝐞𝑟

+
𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟𝐞𝑧 + 2
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧𝐞𝑧) (A.82) 



 

 

Implementing Eq. (A.80) to the first term of the right-hand side in Eq. (A.73) gives 

 
T: 𝐧𝐧 = [

1
−𝑃I + 𝜇(∇𝐯 + (∇𝐯)𝑇)

1
] : 𝐧𝐧 =

.
−𝑃I: 𝐧𝐧 + 𝜇[∇𝐯 + (∇𝐯)𝑇]: 𝐧𝐧

.
 

= [
.

−𝑃I ∙ 𝐧 
.

] ∙ 𝐧 + 𝜇 [

.
[∇𝐯 + (∇𝐯)𝑇] ∙ 𝐧 

.
]
.
∙ 𝐧
.

 

 

 

 
(A.83) 

For gas bubbles in liquid, 𝜇𝑑 is much smaller than 𝜇𝑐, implying that the deviatoric stress of the 

dispersed phase can be omitted. This simplifies the normal stress of the dispersed phase into 

 T𝑑: 𝐧𝐧 = −𝑃𝑑 (A.84) 

By applying Eqs. (A.2), (A.8), and (A.10), the evaluation of Eq. (A.83) for the continuous 

phase gives the first dot product in the second term of the left-hand side as 

 

−𝑃𝑐I ∙ 𝐧 = −𝑃𝑐 (
1

𝐞𝑟𝐞𝑟 + 𝐞𝜃𝐞𝜃 + 𝐞𝑧𝐞𝑧
1

) ∙
(𝐞𝑧 −

1
2
𝜕ℎ
𝜕𝑟
𝐞𝑟)

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

 

= −
𝑃𝑐

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[

.

.

.
𝐞𝑟(𝐞𝑟 ∙ 𝐞𝑧) − 𝐞𝑟(𝐞𝑟 ∙ 𝐞𝑟)

1

2

𝜕ℎ

𝜕𝑟
+ 𝐞𝜃(𝐞𝜃 ∙ 𝐞𝑧) − 𝐞𝜃(𝐞𝜃 ∙ 𝐞𝑟)

1

2

𝜕ℎ

𝜕𝑟

+ 𝐞𝑧(𝐞𝑧 ∙ 𝐞𝑧) − 𝐞𝑧(𝐞𝑧 ∙ 𝐞𝑟)
1

2

𝜕ℎ

𝜕𝑟

.

.

.
] 

= −
𝑃𝑐

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[

.

.

.
𝐞𝑟𝛿𝑟𝑧 − 𝐞𝑟𝛿𝑟𝑟

1

2

𝜕ℎ

𝜕𝑟
+ 𝐞𝜃𝛿𝜃𝑧 − 𝐞𝜃𝛿𝜃𝑟

1

2

𝜕ℎ

𝜕𝑟
+ 𝐞𝑧𝛿𝑧𝑧 − 𝐞𝑧𝛿𝑧𝑟

1

2

𝜕ℎ

𝜕𝑟

.

.

.
] 

 
 = −

𝑃𝑐

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[−𝐞𝑟

1

2

𝜕ℎ

𝜕𝑟
+ 𝐞𝑧

.

.

.
] 

(A.85) 

Taking the dot product between Eqs. (A.85) and (A.8) yields the double dot product of the 

pressure term in Eq. (A.83): 

 

−𝑃𝑐I: 𝐧𝐧 = [

.
−𝑃𝑐I ∙ 𝐧 

.
] ∙ 𝐧 = −

𝑃𝑐

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[−𝐞𝑟

1

2

𝜕ℎ

𝜕𝑟
+ 𝐞𝑧

.

.

.
] ∙
(𝐞𝑧 −

1
2
𝜕ℎ
𝜕𝑟
𝐞𝑟)

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

 

= −
𝑃𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [−𝐞𝑟 ∙ 𝐞𝑧

1

2

𝜕ℎ

𝜕𝑟
+ 𝐞𝑟 ∙ 𝐞𝑟 (

1

2

𝜕ℎ

𝜕𝑟
)
2

+ 𝐞𝑧 ∙ 𝐞𝑧 − 𝐞𝑧 ∙ 𝐞𝑟
1

2

𝜕ℎ

𝜕𝑟

.

.

.
] 

= −
𝑃𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [−𝛿𝑟𝑧

1

2

𝜕ℎ

𝜕𝑟
+ 𝛿𝑟𝑟 (

1

2

𝜕ℎ

𝜕𝑟
)
2

+ 𝛿𝑧𝑧 − 𝛿𝑧𝑟
1

2

𝜕ℎ

𝜕𝑟

.

.

.
] 

= −
𝑃𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [ 
1

4
(
𝜕ℎ

𝜕𝑟
)
2

+ 1 ] 

= −𝑃𝑐 (A.86) 



 

 

The deviatoric stress term is derived by taking the first dot product between Eqs. (A.82) and 

(A.8) using the dot product rule in Eq. (A.10): 

 
𝜇𝑐 [

.
 ∇𝐯 + (∇𝐯)𝑇 

.
] ∙ 𝐧 

= 𝜇𝑐 [ 2
𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟𝐞𝑟 +
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑟𝐞𝑧 +
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧𝐞𝑟 + 2
𝑣𝑟
𝑟
𝐞𝜃𝐞𝜃 +

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑧𝐞𝑟 +
𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟𝐞𝑧

+ 2
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧𝐞𝑧

.

.

.
] ∙
(𝐞𝑧 −

1
2
𝜕ℎ
𝜕𝑟
𝐞𝑟)

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

 

=
𝜇𝑐

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[ 2
𝜕𝑣𝑟
𝜕𝑟

𝐞𝑟(𝐞𝑟 ∙ 𝐞𝑟) (-
1

2

𝜕ℎ

𝜕𝑟
)+

𝜕𝑣𝑧
𝜕𝑟

𝐞𝑟(𝐞𝑧 ∙ 𝐞𝑧) +
𝜕𝑣𝑧
𝜕𝑟

𝐞𝑧(𝐞𝑟 ∙ 𝐞𝑟) (-
1

2

𝜕ℎ

𝜕𝑟
)

+
𝜕𝑣𝑟
𝜕𝑧

𝐞𝑧(𝐞𝑟 ∙ 𝐞𝑟) (-
1

2

𝜕ℎ

𝜕𝑟
) +

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟(𝐞𝑧 ∙ 𝐞𝑧) + 2
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧(𝐞𝑧 ∙ 𝐞𝑧)

.

.

.
] 

=
𝜇𝑐

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[−
𝜕𝑣𝑟
𝜕𝑟

𝜕ℎ

𝜕𝑟
𝐞𝑟+

𝜕𝑣𝑧
𝜕𝑟

𝐞𝑟 −
1

2

𝜕𝑣𝑧
𝜕𝑟

𝜕ℎ

𝜕𝑟
𝐞𝑧 −

1

2

𝜕𝑣𝑟
𝜕𝑧

𝜕ℎ

𝜕𝑟
𝐞𝑧+

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟+2
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧

.

.

.
] 

 

(A.87) 

 

The double dot product is then obtained by taking the dot product between Eqs. (A.87) and 

(A.8) with the same rule as in Eq. (A.10), resulting in 

 
𝜇𝑐 [

.
 ∇𝐯 + (∇𝐯)𝑇 

.
] : 𝐧𝐧 = 𝜇𝑐 [

.
[∇𝐯 + (∇𝐯)𝑇] ∙ 𝐧 

.
]
.
∙ 𝐧
.

 

=
𝜇𝑐

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[ −

𝜕𝑣𝑟
𝜕𝑟

𝜕ℎ

𝜕𝑟
𝐞𝑟 +

𝜕𝑣𝑧
𝜕𝑟

𝐞𝑟 −
1

2

𝜕𝑣𝑧
𝜕𝑟

𝜕ℎ

𝜕𝑟
𝐞𝑧 −

1

2

𝜕𝑣𝑟
𝜕𝑧

𝜕ℎ

𝜕𝑟
𝐞𝑧 +

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟 + 2
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧

.

.

.
]

∙
(𝐞𝑧 −

1
2
𝜕ℎ
𝜕𝑟
𝐞𝑟)

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

 

=
𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [ 
1

2

𝜕𝑣𝑟
𝜕𝑟

(
𝜕ℎ

𝜕𝑟
)
2

−
1

2

𝜕𝑣𝑧
𝜕𝑟

𝜕ℎ

𝜕𝑟
−
1

2

𝜕𝑣𝑧
𝜕𝑟

𝜕ℎ

𝜕𝑟
−
1

2

𝜕𝑣𝑟
𝜕𝑧

𝜕ℎ

𝜕𝑟
−
1

2

𝜕𝑣𝑟
𝜕𝑧

𝜕ℎ

𝜕𝑟
+ 2

𝜕𝑣𝑧
𝜕𝑧

.

.

.
] 

 

 
=

𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [ 
1

2

𝜕𝑣𝑟
𝜕𝑟

(
𝜕ℎ

𝜕𝑟
)
2

−
𝜕𝑣𝑧
𝜕𝑟

𝜕ℎ

𝜕𝑟
−
𝜕𝑣𝑟
𝜕𝑧

𝜕ℎ

𝜕𝑟
+ 2

𝜕𝑣𝑧
𝜕𝑧

.

.

.
] 

=
𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [ 
1

2
(
𝜕ℎ

𝜕𝑟
)
2 𝜕𝑣𝑟
𝜕𝑟

+ (
𝜕𝑣𝑟
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑟
) (−

𝜕ℎ

𝜕𝑟
) + 2

𝜕𝑣𝑧
𝜕𝑧

.

.

.
] (A.88) 

 



 

 

Combining Eqs. (A.86) and (A.88) yields the normal stress balance in the continuous phase: 

 T𝑐: 𝐧𝐧 = −𝑃𝑐I: 𝐧𝐧 + 𝜇𝑐[∇𝐯 + (∇𝐯)
𝑇]: 𝐧𝐧 

= −𝑃𝑐 +
𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [ 
1

2
(
𝜕ℎ

𝜕𝑟
)
2 𝜕𝑣𝑟
𝜕𝑟

+ (
𝜕𝑣𝑟
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑟
) (−

𝜕ℎ

𝜕𝑟
) + 2

𝜕𝑣𝑧
𝜕𝑧

.

.

.
] 

 

(A.89) 

The subtraction between Eqs. (A.84) and (A.89) gives the jump condition in the first term of 

the right-hand side of Eq. (A.73) as 

 𝑅𝐻𝑆1𝑠𝑡 = ‖T‖: 𝐧𝐧 = T𝑐: 𝐧𝐧 − T𝑑: 𝐧𝐧 

= −𝑃𝑐 +
𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [ 
1

2
(
𝜕ℎ

𝜕𝑟
)
2 𝜕𝑣𝑟
𝜕𝑟

+ (
𝜕𝑣𝑟
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑟
) (−

𝜕ℎ

𝜕𝑟
) + 2

𝜕𝑣𝑧
𝜕𝑧

.

.

.
] + 𝑃𝑑 

 

(A.90) 

The dot product in the last term of the right-hand side of Eq. (A.73) is defined as the normal 

velocity in bulk phases, 𝑣𝑛, and the normal velocity of the interface, 𝑈𝑛, which gives: 

 𝑅𝐻𝑆2𝑛𝑑 = −‖𝜌((𝐮 − 𝐯) ∙ 𝐧)
2
‖ 

= −‖𝜌(𝐮 ∙ 𝐧 − 𝐯 ∙ 𝐧)2‖ 

= −‖𝜌(𝑈𝑛 − 𝑣𝑛)
2‖ (A.91) 

Finally, Eqs. (A.79), (A.90), and (A.91) are substituted into Eq. (A.73) as 

 2𝐻𝜎𝐧 ∙ 𝐧 = ‖T‖: 𝐧𝐧 − ‖𝜌((𝐮 − 𝐯) ∙ 𝐧)
2
‖ 

𝜎

2𝑟

𝜕

𝜕𝑟
(𝑟
𝜕ℎ

𝜕𝑟
) = −𝑃𝑐 +

𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [ 
1

2
(
𝜕ℎ

𝜕𝑟
)
2 𝜕𝑣𝑟
𝜕𝑟

+ (
𝜕𝑣𝑟
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑟
) (−

𝜕ℎ

𝜕𝑟
) + 2

𝜕𝑣𝑧
𝜕𝑧

.

.

.
]

+ 𝑃𝑑 − ‖𝜌(𝑈𝑛 − 𝑣𝑛)
2‖ = 0 (A.92) 

Arranging Eq. (A.92) gives the final expression of the normal stress balance as Eq. (39): 

 𝜎

2𝑟

𝜕

𝜕𝑟
(𝑟
𝜕ℎ

𝜕𝑟
) = 𝑃𝑑 − 𝑃𝑐 +

𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [ 
1

2
(
𝜕ℎ

𝜕𝑟
)
2 𝜕𝑣𝑟
𝜕𝑟

+(
𝜕𝑣𝑟
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑟
) (−

𝜕ℎ

𝜕𝑟
)+2

𝜕𝑣𝑧
𝜕𝑧

.

.

.
]

− ‖𝜌(𝑈𝑛 − 𝑣𝑛)
2‖ (A.93) 

 

 



 

 

A.9 Derivation of the Tangential Stress Balance 

The tangential stress balance with the presence of surfactants follows Eq. (40): 

 2𝐻𝜎𝐧 ∙ 𝐭1 + ∇𝑠𝜎 ∙ 𝐭1 = ‖T‖: 𝐧𝐭1 (A.94) 

with ‖T‖ = [Tc − Td]. The dot product between two orthogonal vectors, 𝐧 and 𝐭1, gives zero 

to the first term of the left-hand side, simplifying Eq. (A.94) into 

 ∇𝑠𝜎 ∙ 𝐭1 = [T𝑐|𝑧=ℎ/2: 𝐧𝐭1 − T𝑑|𝑧=ℎ/2: 𝐧𝐭1] (A.95) 

Substituting ∇𝑠 in Eq. (A.3) to the left-hand side of Eq. (A.95) yields 

 ∇𝑠𝜎 ∙ 𝐭1 =

[
 
 
 

(

 
𝐭1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕𝜎

𝜕𝑟
+
𝐭2
𝑟

𝜕𝜎

𝜕𝜃

)

 

]
 
 
 

∙ 𝐭1 
(A.96) 

 

 

Noting that the dot product of two identical vectors gives 1 and the one between two orthogonal 

vectors gives 0, Eq. (A.96) becomes 

 
∇𝑠𝜎 ∙ 𝐭1 =

1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕𝜎

𝜕𝑟
 

(A.97) 

The first term of the right-hand side in Eq. (A.95) is derived by substituting the Newtonian 

stress tensor in Eq. (A.80) for the continuous phase: 

 
T𝑐: 𝐧𝐭1 = [ −𝑃𝑐I + 𝜇𝑐(∇𝐯𝑐 + (∇𝐯𝑐)

𝑇)
|
|
] : 𝐧𝐭1 

=

.
−𝑃𝑐I: 𝐧𝐭1 + 𝜇𝑐[∇𝐯𝑐 + (∇𝐯𝑐)

𝑇]: 𝐧𝐭1
.

 

= [

.
−𝑃𝑐I ∙ 𝐧 

.
] ∙ 𝐭1 + 𝜇𝑐 {

.
[∇𝐯𝑐 + (∇𝐯𝑐)

𝑇] ∙ 𝐧 
.

}

.
∙ 𝐭1
.

 

 

 

 
 

(A.98) 

By expanding the pressure term of Eq. (A.98) with −𝑃𝑐I ∙ 𝐧  and 𝐭1 in Eqs. (A.85) and (3), 

taking the dot product according to Eq. (A.10) give 

 

−𝑃𝑐I: 𝐧𝐭1 = (
1

−𝑃𝑐I ∙ 𝐧 
1

) ∙ 𝐭1 = −
𝑃𝑐

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[−𝐞𝑟

1

2

𝜕ℎ

𝜕𝑟
+ 𝐞𝑧

.

.

.
] ∙

𝐞𝑟 +
1
2
𝜕ℎ
𝜕𝑟
𝐞𝑧

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

 

= −
𝑃𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [−𝐞𝑟 ∙ 𝐞𝑟

1

2

𝜕ℎ

𝜕𝑟
− 𝐞𝑟 ∙ 𝐞𝑧 (

1

2

𝜕ℎ

𝜕𝑟
)
2

+𝐞𝑧 ∙ 𝐞𝑟 + 𝐞𝑧 ∙ 𝐞𝑧
1

2

𝜕ℎ

𝜕𝑟

.

.

.
] 

= −
𝑃𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [−𝛿𝑟𝑟

1

2

𝜕ℎ

𝜕𝑟
− 𝛿𝑟𝑧 (

1

2

𝜕ℎ

𝜕𝑟
)
2

+ 𝛿𝑧𝑟 + 𝛿𝑧𝑧
1

2

𝜕ℎ

𝜕𝑟

.

.

.
] 

= −
𝑃𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [−

1

2

𝜕ℎ

𝜕𝑟
+
1

2

𝜕ℎ

𝜕𝑟

.

.

.
] 

= 0 (A.99) 



 

 

The last term of Eq. (A.98) is derived by following the dot product with 𝐧 described in Eq. 

(A.87), then applying Eqs. (3) and (A.10) to take the dot product with 𝐭1 as 

 
𝜇𝑐 [

.
 ∇𝐯𝑐 + (∇𝐯𝑐)

𝑇 
.

] : 𝐧𝐭1 = 𝜇𝑐 [

.
[∇𝐯𝑐 + (∇𝐯𝑐)

𝑇] ∙ 𝐧 
.

]

.
∙ 𝐭1
.

 

=
𝜇𝑐

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2
[−
𝜕𝑣𝑟
𝜕𝑟

𝜕ℎ

𝜕𝑟
𝐞𝑟+

𝜕𝑣𝑧
𝜕𝑟

𝐞𝑟 −
1

2

𝜕𝑣𝑧
𝜕𝑟

𝜕ℎ

𝜕𝑟
𝐞𝑧

−
1

2

𝜕𝑣𝑟
𝜕𝑧

𝜕ℎ

𝜕𝑟
𝐞𝑧+

𝜕𝑣𝑟
𝜕𝑧

𝐞𝑟+2
𝜕𝑣𝑧
𝜕𝑧

𝐞𝑧

.

.

.
] ∙
𝐞𝑟 +

1
2
𝜕ℎ
𝜕𝑟
𝐞𝑧

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2
 

=
𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [−

𝜕𝑣𝑟
𝜕𝑟

𝜕ℎ

𝜕𝑟
+
𝜕𝑣𝑧
𝜕𝑟

−
1

4

𝜕𝑣𝑧
𝜕𝑟

(
𝜕ℎ

𝜕𝑟
)
2

−
1

4

𝜕𝑣𝑟
𝜕𝑧

(
𝜕ℎ

𝜕𝑟
)
2

+
𝜕𝑣𝑟
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑧

𝜕ℎ

𝜕𝑟

.

.

.
] 

=
𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [−

𝜕ℎ

𝜕𝑟

𝜕𝑣𝑟
𝜕𝑟

+
𝜕𝑣𝑧
𝜕𝑟

(1 −
1

4
(
𝜕ℎ

𝜕𝑟
)
2

)+
𝜕𝑣𝑟
𝜕𝑧

(1 −
1

4
(
𝜕ℎ

𝜕𝑟
)
2

)+
𝜕ℎ

𝜕𝑟

𝜕𝑣𝑧
𝜕𝑧

.

.

.
] 

=
𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [−

𝜕ℎ

𝜕𝑟

𝜕𝑣𝑟
𝜕𝑟

+ (
𝜕𝑣𝑟
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑟
) (1 −

1

4
(
𝜕ℎ

𝜕𝑟
)
2

) +
𝜕ℎ

𝜕𝑟

𝜕𝑣𝑧
𝜕𝑧

.

.

.
] (A.100) 

 

By substituting Eqs. (A.99) and (A.100) to Eq. (A.98), the tangential stress of the film side is 

found as 

 T𝑐: 𝐧𝐭1 = −𝑃𝑐I: 𝐧𝐭1 + 𝜇𝑐[∇𝐯𝑐 + (∇𝐯𝑐)
𝑇]: 𝐧𝐭1 

= 0 +
𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [−

𝜕ℎ

𝜕𝑟

𝜕𝑣𝑟
𝜕𝑟

+ (
𝜕𝑣𝑟
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑟
) (1 −

1

4
(
𝜕ℎ

𝜕𝑟
)
2

) +
𝜕ℎ

𝜕𝑟

𝜕𝑣𝑧
𝜕𝑧

.

.

.
] 

 

(A.101) 

The tangential stress for the dispersed phase in the last term of Eq. (A.95) is defined as  𝜏𝑑 =

−(T𝑑 ∙ 𝐧) ∙ 𝐭1. Applying this together with Eqs. (A.97) and (A.101) to Eq. (A.95) yields the 

tangential stress balance as 

 

1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕𝜎

𝜕𝑟
 

=
𝜇𝑐

1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [−

𝜕ℎ

𝜕𝑟

𝜕𝑣𝑟
𝜕𝑟

+ (
𝜕𝑣𝑟
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑟
) (1 −

1

4
(
𝜕ℎ

𝜕𝑟
)
2

) +
𝜕ℎ

𝜕𝑟

𝜕𝑣𝑧
𝜕𝑧

′
.
.

] + 𝜏𝑑 

 

 

 

 

(A.102) 

 



 

 

A.10 Derivation of the Surface Excess Concentration Balance 

The excess concentration of the surfactant along the interface is given as Eq. (45): 

 
𝜕Γ

𝜕𝑡
+ ∇𝑠 ∙ (Γ𝐮) + ∇𝑠 ∙ (𝐉𝐼 ∙ I𝑠) = 0 

 

(A.103) 

where 𝐉𝐼 is defined in Eq. (46): 

 𝐉𝐼 = −𝐷𝐼∇𝑠Γ (A.104) 

Expanding the second term of the left-hand side of Eq. (A.103) yields 

 

𝐿𝐻𝑆2𝑛𝑑 = ∇𝑠 ∙ (Γ𝐮) 

= 𝐮 ∙ ∇𝑠Γ + Γ(∇𝑠 ∙ 𝐮) 

= [

.
𝑈𝑛𝐧+𝑈𝑡𝐭1

.
] ∙

[
 
 
 

𝐭1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕Γ

𝜕𝑟
+
𝐭2
𝑟

𝜕Γ

𝜕𝜃

]
 
 
 

+

[
 
 
 

Γ 𝐭1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕

𝜕𝑟
+
Γ 𝐭2
𝑟

𝜕

𝜕𝜃

]
 
 
 

∙ [

.
𝑈𝑛𝐧+𝑈𝑡𝐭1

.
] 

 

= 𝑈𝑛

[
 
 
 

(𝐧 ∙ 𝐭1)

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕Γ

𝜕𝑟
+
(𝐧 ∙ 𝐭2)

𝑟

𝜕Γ

𝜕𝜃

]
 
 
 

+𝑈𝑡

[
 
 
 

(𝐭1 ∙ 𝐭1)

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕Γ

𝜕𝑟
+
(𝐭1 ∙ 𝐭2)

𝑟

𝜕Γ

𝜕𝜃

]
 
 
 

+
Γ

√1+
1
4
(
𝜕ℎ
𝜕𝑟
)
2

𝜕𝑈𝑛
𝜕𝑟

(
.

.
𝐭1 ∙ 𝐧

.

.
) +

Γ𝑈𝑛

√1+
1
4
(
𝜕ℎ
𝜕𝑟
)
2
(𝐭1 ∙

𝜕

𝜕𝑟
𝐧)

+
Γ

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕𝑈𝑡
𝜕𝑟

(
.

.
𝐭1 ∙ 𝐭1

.

.
) +

Γ𝑈𝑡

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2
(𝐭1 ∙

𝜕

𝜕𝑟
𝐭1)

+
Γ

𝑟

𝜕𝑈𝑛
𝜕𝜃

(
.

.
𝐭2 ∙ 𝐧

.

.
) +

Γ𝑈𝑛
𝑟
(𝐭2 ∙

𝜕

𝜕𝜃
𝐧) +

Γ

𝑟

𝜕𝑈𝑡
𝜕𝜃

(
.

.
𝐭2 ∙ 𝐭1

.

.
)

+
Γ𝑈𝑡
𝑟
(𝐭2 ∙

𝜕

𝜕𝜃
𝐭1) (A.105) 

The term (𝐭1 ∙
𝜕

𝜕𝑟
𝐭1) is derived by substituting Eqs. (3) and (A.16) to yield 

 

𝐭1 ∙
𝜕

𝜕𝑟
𝐭1 =

𝐞𝑟 +
1
2
𝜕ℎ
𝜕𝑟
𝐞𝑧

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
∙

{
 
 

 
 

−

1
4
𝜕ℎ
𝜕𝑟
𝜕2ℎ
𝜕𝑟2

𝐞𝑟

[1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

3/2
+

1
2
𝜕2ℎ
𝜕𝑟2

𝐞𝑧

[1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

3/2

}
 
 

 
 

 

= −

1
4
𝜕ℎ
𝜕𝑟
𝜕2ℎ
𝜕𝑟2

[1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

2 +

1
4
𝜕ℎ
𝜕𝑟
𝜕2ℎ
𝜕𝑟2

[1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

2 

= 0 (A.106) 



 

 

The term (𝐭2 ∙
𝜕

𝜕𝜃
𝐭1) is computed by substituting Eqs. (3) and (A.17) to give 

 
𝐭2 ∙

𝜕

𝜕𝜃
𝐭1 = 𝐞𝜃 ∙

1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
𝐞𝜃 =

1

√1 +
1
4 (
𝜕ℎ
𝜕𝑟
)
2
 

(A.107) 

Implementing Eqs. (A.75) - (A.76) and (A.106) - (A.107), taking the dot product between two 

vectors orthogonal to each other as zero, and having 𝐭1 ∙ 𝐭1 = 1 simplify Eq. (A.105) into 

 

𝐿𝐻𝑆2𝑛𝑑 = ∇𝑠 ∙ (Γ𝐮) 

=
𝑈𝑡

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕Γ

𝜕𝑟
−
1

2

Γ𝑈𝑛

[1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

3/2

𝜕2ℎ

𝜕𝑟2
+

Γ

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕𝑈𝑡
𝜕𝑟

−
Γ𝑈𝑛
2𝑟

𝜕ℎ
𝜕𝑟

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2
+
Γ𝑈𝑡
𝑟

1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2
 

 

 

 

 

 

(A.108) 

The third term of the left-hand side of Eq. (A.103) decomposes by substituting Eqs. (A.104), 

(A.3), and (A.4) into 

 

𝐿𝐻𝑆3𝑟𝑑 = ∇𝑠 ∙ (𝐉𝐼 ∙ I𝑠) 

= ∇𝑠 ∙ [

.
(−𝐷𝐼∇𝑠Γ) ∙ (𝐭1𝐭1 + 𝐭2𝐭2)

.
] 

= ∇𝑠 ∙

[
 
 
 
 

.

(

 −𝐷𝐼
𝐭1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕Γ

𝜕𝑟
− 𝐷𝐼

𝐭2
𝑟

𝜕Γ

𝜕𝜃

)

 ∙ (𝐭1𝐭1 + 𝐭2𝐭2)

. ]
 
 
 
 

 

 

 

 

 

 

 

(A.109) 

The axisymmetry condition eliminates the concentration gradient with respect to 𝜃-direction. 

By considering constant 𝐷𝐼, applying ∇𝑠 from Eq. (A.3) and the dot product rules gives 

 

𝐿𝐻𝑆3𝑟𝑑 = ∇𝑠 ∙

[
 
 
 
 

.

(

 −𝐷𝐼
𝐭1 ∙ (𝐭1𝐭1 + 𝐭2𝐭2)

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕Γ

𝜕𝑟

)

 

. ]
 
 
 
 

 

=

[
 
 
 

𝐭1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕

𝜕𝑟
+
𝐭2
𝑟

𝜕

𝜕𝜃

]
 
 
 

∙

[
 
 
 
 

.

(

 −
𝐷𝐼

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕Γ

𝜕𝑟
𝐭1

)

 

. ]
 
 
 
 

 

 

  



 

 

 

=
−𝐷𝐼(𝐭1 ∙ 𝐭1)

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

[
 
 
 
 
 

𝜕2Γ

𝜕𝑟2
1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2
−
𝜕Γ

𝜕𝑟

1

2

1
2
𝜕ℎ
𝜕𝑟
𝜕2ℎ
𝜕𝑟2

[1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

3
2

]
 
 
 
 
 

−
𝐷𝐼

1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕Γ

𝜕𝑟
(𝐭1 ∙

𝜕

𝜕𝑟
𝐭1) −

𝐷𝐼

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

1

𝑟

𝜕Γ

𝜕𝑟
(𝐭2 ∙

𝜕

𝜕𝜃
𝐭1) 

 

=
−𝐷𝐼

1+
1
4
(
𝜕ℎ
𝜕𝑟
)
2 [
𝜕2Γ

𝜕𝑟2
−
1

4

𝜕Γ

𝜕𝑟

𝜕ℎ
𝜕𝑟
𝜕2ℎ
𝜕𝑟2

1+
1
4
(
𝜕ℎ
𝜕𝑟
)
2] −

𝐷𝐼

1+
1
4
(
𝜕ℎ
𝜕𝑟
)
2

1

𝑟

𝜕Γ

𝜕𝑟
 

=
−𝐷𝐼

1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕Γ

𝜕𝑟
) −

1

4

𝜕Γ

𝜕𝑟

𝜕ℎ
𝜕𝑟
𝜕2ℎ
𝜕𝑟2

1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2] 

 

 

 

 

 

 

(A.110) 

Note that 𝐭1 ∙
𝜕

𝜕𝑟
𝐭1 = 0 and 𝐭2 ∙

𝜕

𝜕𝜃
𝐭1 =

1

√1+
1

4
(
𝜕ℎ

𝜕𝑟
)
2
 according to Eqs. (A.106) and (A.107). 

Applying Eqs. (A.108) and (A.110) into Eq. (A.103) results in 

 

𝜕Γ

𝜕𝑡
+

𝑈𝑡

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕Γ

𝜕𝑟
−
1

2

Γ𝑈𝑛

[1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

3/2

𝜕2ℎ

𝜕𝑟2
+

Γ

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

𝜕𝑈𝑡
𝜕𝑟

−
Γ𝑈𝑛
2𝑟

𝜕ℎ
𝜕𝑟

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2
+
Γ𝑈𝑡
𝑟

1

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

−
𝐷𝐼

1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕Γ

𝜕𝑟
) −

1

4

𝜕Γ

𝜕𝑟

𝜕ℎ
𝜕𝑟
𝜕2ℎ
𝜕𝑟2

1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2] = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A.111) 

which is reformulated by using the relation: 𝑈𝑡
𝜕Γ

𝜕𝑟
+ Γ

𝜕𝑈𝑡

𝜕𝑟
+
Γ𝑈𝑡

𝑟
=

1

𝑟

𝜕

𝜕𝑟
(𝑟Γ𝑈𝑡) to yield 

 

𝜕Γ

𝜕𝑡
+

1
𝑟
𝜕
𝜕𝑟
(𝑟Γ𝑈𝑡)

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2
−
1

2

Γ𝑈𝑛

[1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

]

3/2

𝜕2ℎ

𝜕𝑟2
−
Γ𝑈𝑛
2𝑟

𝜕ℎ
𝜕𝑟

√1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2

−
𝐷𝐼

1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2 [
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕Γ

𝜕𝑟
) −

1

4

𝜕Γ

𝜕𝑟

𝜕ℎ
𝜕𝑟
𝜕2ℎ
𝜕𝑟2

1+
1
4 (
𝜕ℎ
𝜕𝑟
)
2] = 0 

 

 

 

 

 

 

 

 

(A.112) 

 



 

 

A.11 Derivation of the Thinning Equation 

In this section, all equations are present in terms of dimensionless variables. 

The thinning equation in Eq. (101) comes from the kinematic condition in Eq. (59):  

 
𝑈𝑛 =

1

2

𝜕ℎ

𝜕𝑡
= 𝑣𝑧|𝑧=ℎ/2 −

1

2

𝜕ℎ

𝜕𝑟
𝑣𝑟|𝑧=ℎ/2 +

1

𝑃𝑒

1

(1 − 𝜔𝐴,𝑐|𝑧=ℎ/2)

𝜕𝜔𝐴,𝑐
𝜕𝑧

|
𝑧=ℎ/2

 (A.113) 

by evaluating 𝑣𝑟 and 𝑣𝑧 at the interface. Applying 𝑧 = ℎ/2 into Eq. (100) gives the 𝑣𝑧 profiles 

at the interface as: 

 
𝑣𝑧|𝑧=ℎ/2 = −

1

3

1

𝑟

𝜕

𝜕𝑟
(

.

.

.

𝑟

2

𝜕𝑃𝑐
𝜕𝑟
 ) 𝑧3|

𝑧=ℎ/2

−
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑈𝑡)𝑧|

𝑧=ℎ/2
+
1

𝑟

𝜕

𝜕𝑟
[
𝑟

2

𝜕𝑃𝑐
𝜕𝑟

( 
ℎ

2
 )
2

] 𝑧|
𝑧=ℎ/2

 

 
 = −

1

3

1

𝑟

𝜕

𝜕𝑟
(

.

.

.

𝑟

2

𝜕𝑃𝑐
𝜕𝑟

.

.

.
) (

.

.

.

ℎ

2

.

.

.
)

3

−
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑈𝑡) (

.

.

.

ℎ

2

.

.

.
)+

1

𝑟

𝜕

𝜕𝑟
[
𝑟

2

𝜕𝑃𝑐
𝜕𝑟

( 
ℎ

2
 )
2

] 
ℎ

2
 (A.114) 

Expanding the last term of the right-hand side in Eq. (A.114) gives 

 1

𝑟

𝜕

𝜕𝑟
[
𝑟

2

𝜕𝑃𝑐
𝜕𝑟

( 
ℎ

2
 )
2

] 
ℎ

2
=
1

𝑟

𝜕

𝜕𝑟
(

.

.

.

𝑟

2

𝜕𝑃𝑐
𝜕𝑟
 ) ( 

ℎ

2
 )
2

( 
ℎ

2
 )+

1

𝑟
(

.

.

.

𝑟

2

𝜕𝑃𝑐
𝜕𝑟
 )
𝜕

𝜕𝑟
[(
ℎ

2
)
2

] ( 
ℎ

2
 ) (A.115) 

Thus, Eq. (A.115) becomes  

 
𝑣𝑧|𝑧=ℎ/2 = −

1

3

1

𝑟

𝜕

𝜕𝑟
(

.

.

.

𝑟

2

𝜕𝑃𝑐
𝜕𝑟

.

.

.
) (

.

.

.

ℎ

2

.

.

.
)

3

−
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑈𝑡) (

.

.

.

ℎ

2

.

.

.
) +

1

𝑟

𝜕

𝜕𝑟
(

.

.

.

𝑟

2

𝜕𝑃𝑐
𝜕𝑟
 ) ( 

ℎ

2
 )
3

 

 +
1

2
(

.

.

.

𝜕𝑃𝑐
𝜕𝑟
 )
𝜕

𝜕𝑟
[(
ℎ

2
)
2

] ( 
ℎ

2
 ) 

 

 

(A.116) 

The first and the third terms in the right-hand side of Eq. (A.116) are summed up into 

 
𝑣𝑧|𝑧=ℎ

2
=
2

3

1

𝑟

𝜕

𝜕𝑟
(

.

.

.

𝑟

2

𝜕𝑃𝑐
𝜕𝑟

.

.

.
) (

.

.

.

ℎ

2

.

.

.
)

3

−
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑈𝑡) (

.

.

.

ℎ

2

.

.

.
)+

1

2
(

.

.

.

𝜕𝑃𝑐
𝜕𝑟
 )
𝜕

𝜕𝑟
[(
ℎ

2
)
2

] ( 
ℎ

2
 ) (A.117) 

Expanding the last term of Eq. (A.117) yields 

 1

2
( 
𝜕𝑃𝑐
𝜕𝑟
 )
𝜕

𝜕𝑟
[(
ℎ

2
)
2

] ( 
ℎ

2
 ) =

1

2
 ( 
𝜕𝑃𝑐
𝜕𝑟
 ) 2 ( 

ℎ

2
 )
𝜕

𝜕𝑟
( 
ℎ

2
 ) ( 

ℎ

2
 ) 

=
1

2
 ( 
𝜕𝑃𝑐
𝜕𝑟
 ) 2 (

ℎ

2
)
2 𝜕

𝜕𝑟
( 
ℎ

2
 ) 

 

 

(A.118) 

By applying 
𝜕

𝜕𝑟
[(
ℎ

2
)
3

] = 3 (
ℎ

2
)
2 𝜕

𝜕𝑟
(
ℎ

2
), Eq. (A.118) is reformulated into 



 

 

 1

2
 ( 
𝜕𝑃𝑐
𝜕𝑟
 )
𝜕

𝜕𝑟
[(
ℎ

2
)
2

] ( 
ℎ

2
 ) =

1

2
 (

.

.

.

𝜕𝑃𝑐
𝜕𝑟

.

.

.
)
2

3

𝜕

𝜕𝑟
[(
ℎ

2
)
3

] =
2

3
{
1

2
(

.

.

.

𝜕𝑃𝑐
𝜕𝑟

.

.

.
)
𝜕

𝜕𝑟
[(
ℎ

2
)
3

]} (A.119) 

Then, Eq. (A.119) is substituted to Eq. (A.117) to yield (A.124) 

 
𝑣𝑧|𝑧=ℎ/2 =

2

3

1

𝑟

𝜕

𝜕𝑟
(

.

.

.

𝑟

2

𝜕𝑃𝑐
𝜕𝑟

.

.

.
) (

.

.

.

ℎ

2

.

.

.
)

3

−
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑈𝑡) (

.

.

.

ℎ

2

.

.

.
) +

2

3
{
1

2
(

.

.

.

𝜕𝑃𝑐
𝜕𝑟

.

.

.
)
𝜕

𝜕𝑟
[(
ℎ

2
)
3

]} (A.120) 

Merging the first and the last terms of the right-hand side of Eq. (A.120) results in the axial 

velocity profiles at the interface: 

 
𝑣𝑧|𝑧=ℎ/2 =

2

3
 
1

𝑟

𝜕

𝜕𝑟
[

.

.

.

𝑟

2

𝜕𝑃𝑐
𝜕𝑟

(

.

.

.

ℎ

2

.

.

.
)

3

 ] −
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑈𝑡) (

.

.

.

ℎ

2

.

.

.
) (A.121) 

The evaluation of 𝑣𝑟 in Eq. (99) at the interface yields 

 
−
1

2

𝜕ℎ

𝜕𝑟
𝑣𝑟|𝑧=ℎ/2 = −

1

2

𝜕ℎ

𝜕𝑟
{
1

2

𝜕𝑃𝑐
𝜕𝑟

[𝑧2 − (
ℎ

2
)
2

]|
𝑧=ℎ/2

+ 𝑈𝑡}

= −
1

2

𝜕ℎ

𝜕𝑟
{

.

.
′
.

1

2

𝜕𝑃𝑐
𝜕𝑟

[(
ℎ

2
)
2

− (
ℎ

2
)
2

] + 𝑈𝑡

.

.
′
.

} = −
1

2

𝜕ℎ

𝜕𝑟
𝑈𝑡 

 

 

(A.122) 

Implementing Eqs. (A.121) and (A.122) to the first two terms in the right-hand side of Eq. 

(A.113) gives the kinematic condition as 

 1

2

𝜕ℎ

𝜕𝑡
=
2

3
 
1

𝑟

𝜕

𝜕𝑟
[

.

.

.

𝑟

2

𝜕𝑃𝑐
𝜕𝑟

(

.

.

.

ℎ

2

.

.

.
)

3

 ] −
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑈𝑡) (

.

.

.

ℎ

2

.

.

.
) −

1

2

𝜕ℎ

𝜕𝑟
𝑈𝑡 

+
1

𝑃𝑒

1

(1 − 𝜔𝐴,𝑐|𝑧=ℎ/2)

𝜕𝜔𝐴,𝑐
𝜕𝑧

|
𝑧=ℎ/2

 

 

 

(A.123) 

The second and the third terms in the right-hand side of Eq. (A.123) are merged into 

−
1

2𝑟

𝜕

𝜕𝑟
(𝑟𝑈𝑡ℎ) by following the partial derivative rule. With some rearrangements of the first 

term in the right-hand side of Eq. (A.123), the thinning equation is obtained as in Eq. (101): 

 𝜕ℎ

𝜕𝑡
=
1

12
 
1

𝑟

𝜕

𝜕𝑟
[

.

.

.
𝑟
𝜕𝑃𝑐
𝜕𝑟

ℎ3 ] −
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑈𝑡ℎ) + 𝑀 (A.124) 

where 𝑀 describes the interfacial displacement rate due to mass transfer, specified in Eq. (118): 

 
𝑀 =

2

𝑃𝑒

1

(1 − 𝐾′)

𝜕𝜔𝐴,𝑐
𝜕𝑧

|
𝑧=ℎ/2

 (A.125) 

 



 

 

A.12 Derivation of the Component Mass Balance for Low 𝑷𝒆 Case 

All equations in this section are expressed in dimensionless variable. In the limit of low 𝑃𝑒, 

the left-hand side of Eq. (68) disappears due to negligible convective mass rates, yielding Eq. 

(119) as 

 
0 =

1

𝑃𝑒

𝜕2𝜔𝐴,𝑐
𝜕𝑧2

+ 𝑄 (A.126) 

The dimensionless reaction term 𝑄 is specified in Table 1 which is also described as a function 

of 𝑡̅ as Eq. (69): 

 
𝑄 =

𝑅𝑝𝜇𝑐

𝜎𝜖2
𝑟𝐴
𝜌𝑐
= 𝑡̅

𝑟𝐴
𝜌𝑐

 (A.127) 

The two boundary conditions are taken from Eq. (117): 

𝜕𝜔𝐴,𝑐
𝜕𝑧

|
𝑧=0

= 0 𝜔𝐴,𝑐|𝑧=ℎ/2 =
𝑘𝐻𝑃𝐴,𝑑
𝜌𝑐

= 𝐾′ (A.128) 

Analytical Solution for Zero-order Reactions 

The zero-order reactions consider the consumption rate 𝑟𝐴 to be independent on 𝜔𝐴,𝑐, which 

gives constant 𝑄. The first and the second integrations of Eq. (A.126) with respect to 𝑧 yields 

the concentration gradient and the mass fraction profiles, respectively, as: 

 𝜕𝜔𝐴,𝑐
𝜕𝑧

= −(
.
.𝑃𝑒𝑄

.

.) 𝑧 + 𝐶1 (A.129) 

 
𝜔𝐴,𝑐  = −

1

2
(
.
.𝑃𝑒𝑄

.

.) 𝑧
2 + 𝐶1𝑧 + 𝐶2 (A.130) 

By substituting the first boundary condition in Eq. (A.128) to Eq. (A.129), the constant 𝐶1 is 

obtained as 

 𝜕𝜔𝐴,𝑐
𝜕𝑧

|
𝑧=0

= −(
.
.𝑃𝑒𝑄

.

.) 𝑧|𝑧=0
+ 𝐶1 

= 𝐶1 = 0 

 

(A.131) 

Then, 𝐶1 and the second boundary condition in Eqs. (A.131) and (A.128) are applied to Eq. 

(A.130) to determine 𝐶2 as 

 
𝐶2 = 𝜔𝐴,𝑐|𝑧=ℎ/2 +

1

2
(
.
.𝑃𝑒𝑄

.

.) 𝑧
2|
𝑧=ℎ/2

 

= 𝐾′ +
1

2
(
.
.𝑃𝑒𝑄

.

.) (

.

.

.

ℎ

2

.

.

.
)

2

 

 

(A.132) 

 



 

 

The substitution of Eqs. (A.131) and (A.132) to Eqs. (A.129) and (A.130) results in the 

concentration gradient profile as 

 𝜕𝜔𝐴,𝑐
𝜕𝑧

= −(
.
.𝑃𝑒𝑄

.

.) 𝑧 (A.133) 

and the mass fraction profiles as 

 
𝜔𝐴,𝑐  = −

1

2
(
.
.𝑃𝑒𝑄
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.
.𝑃𝑒𝑄

.
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.

.

ℎ
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= −
1

2
(
.
.𝑃𝑒𝑄

.

.) [𝑧
2 − (

.

.

.

ℎ

2

.

.

.
)

2

] + 𝐾′ 

 

 
(A.134) 

Finally, 𝑀 for the zero-order reaction is obtained by evaluating Eq. (A.133) at the interface 

position 𝑧 = ℎ/2: 

 𝜕𝜔𝐴,𝑐
𝜕𝑧

|
𝑧=ℎ/2

= −(
.
.𝑃𝑒𝑄

.

.)
ℎ

2
 (A.135) 

and substituting Eq. (A.135) to Eq. (A.125) to yield the same formula as Eq. (121): 

 
𝑀 =

2

𝑃𝑒

1

(1 − 𝐾′)
[ −(

.

.𝑃𝑒𝑄
.
.)
ℎ

2

.

.

.
] = −

𝑄ℎ

(1 − 𝐾′)
 (A.136) 

Analytical Solution for First-order Reactions 

The first-order reactions indicate a linear relationship between 𝑟𝐴 and 𝜔𝐴,𝑐 as 

 𝑟𝐴 = 𝑘1𝜌𝐴,𝑐 = 𝑘1𝜔𝐴,𝑐𝜌𝑐 (A.137) 

Here, 𝜌𝐴,𝑐 and 𝑘1 respectively stand for the mass concentration of 𝐴 in the continuous phase 

and the reaction rate constant for first-order kinetics. In this case, the mass balance in Eq. 

(A.126) is solved by applying 𝑄 and 𝑟𝐴 in Eqs. (A.127) and (A.137) to yield 

 
0 =

1

𝑃𝑒

𝜕2𝜔𝐴,𝑐
𝜕𝑧2

+ 𝑡̅
𝑅𝐴
𝜌𝑐

 

=
1

𝑃𝑒

𝜕2𝜔𝐴,𝑐
𝜕𝑧2

+ 𝑡̅
𝑘1𝜔𝐴,𝑐𝜌𝑐
𝜌𝑐

=
1

𝑃𝑒

𝜕2𝜔𝐴,𝑐
𝜕𝑧2

+ 𝑡̅𝑘1𝜔𝐴,𝑐 

 

 

(A.138) 

The analytical solution of the second-order homogeneous linear differential equation suggests 

the reformulation of Eq. (A.138) into its characteristic polynomial form: 

 
0 =

1

𝑃𝑒
𝐷2 + 𝑡̅𝑘1 (A.139) 

Here, 𝐷 denotes the differential operator with an order of 2, i.e., there are two solutions for 𝐷: 

 𝐷 = ±√−𝑡̅𝑘1𝑃𝑒 (A.140) 

The solution for 𝜔𝐴,𝑐 is obtained with two unknown constants, 𝐶1 and 𝐶2: 

 𝜔𝐴,𝑐 = 𝐶1𝑒
√−�̅�𝑘1𝑃𝑒 𝑧 + 𝐶2𝑒

−√−�̅�𝑘1𝑃𝑒 𝑧 (A.141) 



 

 

The first derivative of Eq. (A.141) is evaluated at 𝑧 = 0 by implementing the first boundary 

condition of Eq. (A.128) to yield 

 𝜕𝜔𝐴,𝑐
𝜕𝑧

       = √−𝑡̅𝑘1𝑃𝑒 𝐶1𝑒
√−�̅�𝑘1𝑃𝑒 𝑧 −√−𝑡̅𝑘1𝑃𝑒 𝐶2𝑒

−√−�̅�𝑘1𝑃𝑒 𝑧 

 

𝜕𝜔𝐴,𝑐
𝜕𝑧

|
𝑧=0

= √−𝑡̅𝑘1𝑃𝑒 𝐶1𝑒
√−�̅�𝑘1𝑃𝑒 𝑧|

𝑧=0
−√−𝑡�̅�1𝑃𝑒 𝐶2𝑒

−√−�̅�𝑘1𝑃𝑒 𝑧|
𝑧=0

 

= √−𝑡̅𝑘1𝑃𝑒 𝐶1 −√−𝑡̅𝑘1𝑃𝑒 𝐶2 

= √−𝑡̅𝑘1𝑃𝑒 (
.
.𝐶1 − 𝐶2

.

.) = 0 

(A.142) 

 

(A.143) 

Equation (A.143) implies that 𝐶1 = 𝐶2, thus, applying the second boundary condition in Eq. 

(A.128) gives 

 𝜔𝐴,𝑐|𝑧=ℎ/2 = 𝐶1𝑒
√−�̅�𝑘1𝑃𝑒 𝑧|

𝑧=ℎ/2
+ 𝐶1𝑒

−√−�̅�𝑘1𝑃𝑒 𝑧|
𝑧=ℎ/2

 

= 𝐶1 [

.

.

.
𝑒√−�̅�𝑘1𝑃𝑒 

ℎ
2 + 𝑒−√−�̅�𝑘1𝑃𝑒 

ℎ
2

.

.

.
] = 𝐾′ 

 

(A.144) 

and determines 𝐶1 and 𝐶2 as 

 
𝐶1 = 𝐶2 =

𝐾′

𝑒√−�̅�𝑘1𝑃𝑒 
ℎ
2 + 𝑒−√−�̅�𝑘1𝑃𝑒 

ℎ
2

 (A.145) 

Implementing Eq. (A.145) to Eqs. (A.141) and (A.142) results in the mass fraction and the 

concentration gradient profiles respectively: 

 
𝜔𝐴,𝑐 =

𝐾′

𝑒√−�̅�𝑘1𝑃𝑒 
ℎ
2 + 𝑒−√−�̅�𝑘1𝑃𝑒 

ℎ
2

[

.

.

.
𝑒√−�̅�𝑘1𝑃𝑒 𝑧 + 𝑒−√−�̅�𝑘1𝑃𝑒 𝑧

.

.

.
] 

 

 

(A.146) 

 𝜕𝜔𝐴,𝑐
𝜕𝑧

=
𝐾′

𝑒√−�̅�𝑘1𝑃𝑒 
ℎ
2 + 𝑒−√−�̅�𝑘1𝑃𝑒 

ℎ
2
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.

.
√−𝑡�̅�1𝑃𝑒 𝑒

√−�̅�𝑘1𝑃𝑒 𝑧 −√−𝑡̅𝑘1𝑃𝑒 𝑒
−√−𝑡̅𝑘1𝑃𝑒 𝑧

.

.

.
] 

=
𝐾′√−𝑡�̅�1𝑃𝑒

𝑒√−�̅�𝑘1𝑃𝑒 
ℎ
2 + 𝑒−√−�̅�𝑘1𝑃𝑒 

ℎ
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.

.
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𝑒√−�̅�𝑘1𝑃𝑒 𝑧 − 𝑒−√−�̅�𝑘1𝑃𝑒 𝑧

.

.

.
] 

 

(A.147) 

Then, the concentration gradient in Eq. (A.147) is evaluated at the interface position 𝑧 = ℎ/2 

and applied to Eq. (A.125) to determine 𝑀 for the first-order reactions: 

 

𝑀 =
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𝑃𝑒

1

(1 − 𝐾′)
{

′
..
.

𝐾′√−𝑡̅𝑘1𝑃𝑒
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ℎ
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.
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′
..
.
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= 2
√−𝑡̅𝑘1𝑃𝑒

𝑃𝑒

𝐾′

(1 − 𝐾′)

𝑒√−�̅�𝑘1𝑃𝑒 
ℎ
2 − 𝑒−√−�̅�𝑘1𝑃𝑒 

ℎ
2

𝑒√−�̅�𝑘1𝑃𝑒 
ℎ
2 + 𝑒−√−�̅�𝑘1𝑃𝑒 

ℎ
2

 

 

 

(A.148) 



 

 

Appendix B : Parameter Estimation 

B.1 Physical Properties and Parameter Conditions 

Table B.1: Physical properties for 1 mm O2 bubbles in water and parameter conditions for 

typical bioreactor systems 

Parameters Unit Values References 

Chemical and physical properties   

𝑘𝐻 kg/m3.atm 10-2 (Doran, 2013; Sander, 2015) 

𝜌𝑐 kg/m3 103  

𝜇𝑐 kg/m.s 10-3  

𝑅𝑝 m 5 x 10-4  

𝜎 kg/s2 72.8 x 10-3  

𝑘0 mol/L.s 10-6 
(Doran, 2013; Gomez et al., 

2006) 

𝑘1 1/s 10-5 (Lainioti & Karaiskakis, 2013) 

𝐷𝐴𝐵 m2/s 10-9 
(Doran, 2013; Gomez et al., 

2006) 

Operating parameters  

𝑃𝐴,𝑑 atm 1 - 15 (Lopes et al., 2014) 

 

 

  



 

 

B.2 Estimation of 𝑴 for CO2 Bubbles 

The estimation of 𝑀 for CO2 bubbles is made by calculating the mass flux, 𝑁|𝑧=ℎ/2, of a 1 mm 

CO2 bubble according to Li et al. (2019) using their Eq. (3.2): 

 𝑁|𝑧=ℎ/2 = 4 𝑥 10
−8(2𝑅𝑝)

−0.947
 

= 4 𝑥 10−8(0.1)−0.947 = 3.5 𝑥 10−7 g/cm2. s (B.1) 

with 𝑅𝑝 is in cm and 𝑁|𝑧=ℎ/2 is in g/cm2.s. 

The mass flux is assigned to Eq. (29) as 

 𝑁|𝑧=ℎ/2 = −𝜌𝐮𝑚𝑡 ∙ 𝐧 = −𝜌𝑐(𝐮 − 𝐯𝑐) ∙ 𝐧 = −3.5 𝑥 10−6 kg/m2.s (B.2) 

with the negative sign indicating the mass transfer from the dispersed to the continuous phase. 

The dot product results in the normal bulk velocity, 𝑣𝑐,𝑛, and the normal interface velocity, 

𝑈𝑛=
1

2

𝜕ℎ

𝜕𝑡
 (Johns and Narayanan, 2007; Ozan and Jakobsen, 2019b), which rearranges Eq. (B.2) 

into 

𝑈𝑛 = 𝑣𝑐,𝑛 +
3.5 𝑥 10−6 kg/m2.s

𝜌𝑐
=
1

2

𝜕ℎ

𝜕𝑡
 (B.3) 

The non-dimensionalization of Eq. (B.3) gives  

𝜕ℎ̃

𝜕�̃�
= 2�̃�𝑐,𝑛 + 2 

3.5 𝑥 10−6 kg/m2.s

�̅�𝑧𝜌𝑐
= 2�̃�𝑐,𝑛 +𝑀 (B.4) 

Therefore, 𝑀 can be determined as 

𝑀 = 2 
3.5 𝑥 10−6 kg/m2.s

�̅�𝑧𝜌𝑐
 (B.5) 

The velocity scale �̅�𝑧 is determined from Eq. (91):  

 �̅�𝑧 =
𝜎0
𝜇𝑐
𝜖4 = 72.8 𝜖4 m/s (B.6) 

By assuming 0.01 < 𝜖 < 0.1 as in App. B.1, �̅�𝑧 is estimated to range from 7.28 𝑥 10−7 −

7.28 𝑥 10−3 m/s. Substituting these values to Eq. (B.5) gives an estimation on the magnitude 

of 𝑀 to be on the order of 10−6 − 10−2. 

 

  



 

 

Appendix C: Analysis of Numerical Issues 

In this section, the numerical issues encountered in the two-step solver (the 2D solver) is 

discussed. 

C.1 Initial Attempts to Resolve the Inconsistencies in the Solver 

During the initial trials of the (the 2D solver), the estimated coalescence time, 𝑡𝑐, for different 

𝐾′ are presented in Figure C.1. 

 

Figure C.1: The first trial of estimating 𝑡𝑐 for 2D case 

It can be seen that the 𝑡𝑐 curves do not follow the expected behavior, represented by 𝐾′ = 0. 

The 𝑡𝑐 curve for 𝐾′ = 10-4 turns up sharply at 𝑉𝑎𝑝𝑝 = 0.1 while the one for 𝐾′ =10-3 keeps 

decreasing with 𝑉𝑎𝑝𝑝. This may indicate some inaccuracies occurred during the numerical 

computation, which can be detected from the minimum film thickness min(ℎ) plot as shown 

in Figure C.2. This plot is expected to behave like the no-flux case (𝐾′ = 0), represented by the 

blue curve, which decreases smoothly along the time. In addition, all curves should reach 

approximately the same critical minimum thickness for the same 𝑉𝑎𝑝𝑝 regardless of 𝐾′ values. 

Here, the critical minimum thickness is defined as  the minimum thickness at which the 

attractive van der Waals forces start to act significantly, giving a fast decreasing trend on the 

min(ℎ) values before coalescence is estimated to occur. Figure C.2 shows that the min(ℎ) plots 

for 𝐾′ = 10−4 and 𝐾′ = 10−3 with ∆𝑡 = 0.05 drop sharply at earlier critical thickness. These 

unexpected behaviors may occur due to the unsuitable parameter settings, for example, the 

solver may require smaller ∆𝑡 to compute more accurately. 



 

 

 

Figure C.2: The time evolution of the minimum film thickness evaluated at different ∆𝑡 

values for (a) 𝐾′ = 10-4 at 𝑉𝑎𝑝𝑝 = 0.1 and (b) 𝐾′ = 10-3 at 𝑉𝑎𝑝𝑝 = 0.1 with the blue curve 

representing the expected behavior which is obtained for 𝐾′ = 0 

By verifying the behavior of min(ℎ) for other ∆𝑡 values and comparing the results with the one 

for the no-flux case, it is shown in Figure C.2 (a) that min(ℎ) drops unexpectedly at min(ℎ) ≈

0.1 even when ∆𝑡 is set to ∆𝑡 = 0.01. In comparison, the results for ∆𝑡 = 0.005 and ∆𝑡 =

0.001 seem to give relatively smoother trends until min(ℎ) ≈ 0.03, which is close enough 

tothe critical minimum thickness of the no-flux case. Therefore, ∆𝑡 = 0.005 is taken to estimate 

𝑡𝑐 in this case. However, setting ∆𝑡 into smaller values may not always result in more accurate 

solutions as it is found in Figure C.2 (b) that the two smallest ∆𝑡, at 0.001 and 0.0005, give a 

sudden decrease earlier than the larger ∆𝑡 values. Furthermore, the results in Figure C.3 

indicates that there are still some numerical issues although the parameter ∆𝑡 has been adjusted. 

 

Figure C.3: Coalescence time with adjusted  ∆𝑡 



 

 

Compared to Figure C.1, the results in Figure C.3 seem more reasonable except for the three 

cases (i)-(iii). In case (iii), all 𝐾′ values result in similar 𝑡𝑐 which seems to be unreasonable for 

the curves to merge once again after they separate at around their minimum 𝑡𝑐. In these cases, 

it is found that the interface deforms wider than 50% of 𝑟∞, which indicates that the gentle 

collision assumption does not hold for 𝑉𝑎𝑝𝑝 = 0.18, thus, case (iii) is excluded from this study. 

Cases (i) and (ii) seem to correspond to Figure C.2 (b), where all ∆𝑡 values are unable to satisfy 

the two requirements for accurate 𝑡𝑐 estimate, which are a smooth trend of min(ℎ) and a similar 

critical minimum thickness as the no-flux case. Therefore, the two cases need to be investigated 

further by evaluating the number of grids for 𝑧 and the 𝑀 criterion as presented in Figure C.4. 

 

Figure C.4: The time evolution of the minimum thickness evaluated at different 𝑁𝑧 values 

and re-consideration of 𝑀 criterion for 𝐾′ = 10-3 at 𝑉𝑎𝑝𝑝 = 0.1 with the blue curve 

representing the expected behavior which is obtained for 𝐾′ = 0 

At this stage, the simulation is run for 11 grid points of 𝑧 domain, i.e., 𝑁𝑧 = 10. Although the 

resulting surface profiles in Figure 16 look smooth enough to indicate that 𝑁𝑧 = 10 is 

sufficient, the two cases, (i) and (ii), in Figure C.3 are re-evaluated at different 𝑁𝑧 values. As 

shown in Figure C.4, min(ℎ) for 𝑁𝑧 = 15 falls even earlier than the one for 𝑁𝑧 = 10, which 

implies that higher 𝑁𝑧 does not always result in more accurate estimation of 𝑡𝑐. On the other 

hand, the decreasing min(ℎ) for 𝑁𝑧 = 6 looks smoother with unreasonably faster 𝑡𝑐 as plotted 

in Figure C.3. This indicates that 𝑁𝑧 might be not the source of the problems, leading to the 



 

 

next attempt which is to exclude the 𝑀 criterion from the code. Although this criterion was 

originally created due to the negative 𝑀 values appearing to be unexpected direction of the 

mass transfer, they are physically acceptable to occur at high 𝑉𝑎𝑝𝑝 since the emergence of the 

dimple may change the behavior of 𝑀. The results for no 𝑀 criterion in Figure C.4 show 

smoother trend of min(ℎ) where the critical minimum thickness is approximately the same as 

the no-flux case. This implies that the current 𝑀 criterion might result in further instabilities in 

the solver, which therefore, needs to be excluded for cases (i) and (ii). By taking Δ𝑡 = 0.001 

and excluding 𝑀 criterion, the updated results are shown in Figure C.5. 

 

Figure C.5: Corrected 𝑡𝑐 after re-evaluation of parameter settings and re-consideration of 𝑀 

criterion 

Although Figure C.5 seems to be the most reliable results compared to the previous plots in 

Figure C.1 and Figure C.3, there are some other numerical issues detected in Figure C.6 and 

Figure C.7 for immobile and mobile cases, respectively, which are discussed in Section 4.1.3.2 

as incorrect results. 



 

 

    

Figure C.6: Incorrect results for the immobile case due to numerical issues showing some 

increases in min(ℎ) at the same time as the instabilities in 𝑀 

    

Figure C.7: Incorrect results for the mobile case due to numerical issues showing some 

increases in min(ℎ) at the same time as the instabilities in 𝑀 

 

  



 

 

C.2 Analysis of 𝒗𝒛 Computation as the Main Source of the Issues 

The analytical solution to 𝑣𝑧 is expressed in Eq. (100) as 
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The connection between 𝑣𝑧 computation and the time evolution of 𝑀 is analyzed by neglecting 

term by term of Eq. (C.1). It is found that the unexpected behavior of 𝑀 dissapears when the 

second derivative of the pressure in the first term of Eq. (C.1) is neglected. This can be shown 

by expanding the first term into 
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Then, the second derivative term in Eq. (C.2) is excluded to yield 
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The results given in Figure C.8 show that the discontinuities in case (a) dissappear when the 

second derivative of the first term in Eq. (C.1) is neglected. However, Figure C.9 and Figure 

C.10 indicate that the second derivative is important in determining the behavior, thus, cannot 

be neglected in this case. 

 

Figure C.8: (a) Unexpected behavior of 𝑀 due to numerical issues in 𝑣𝑧 computation and (b) 

the expected behavior of 𝑀 obtained by neglecting the second derivative of the first term in 𝑣𝑧 



 

 

 

Figure C.9: Significance of the second derivative term of 𝑣𝑧 in the nose rupture regime 

 

Figure C.10: Significance of the second derivative term of 𝑣𝑧 in the rim rupture regime  



 

 

Appendix D: Estimation of 𝑴 Expression 

D.1 Expression of 𝑴(𝒉) for Some 𝒓 Values 

The 𝑀 expression is estimated by approximating the relationship between 𝑀 and ℎ for fixed 𝑟 

positions through the linear regression as shown in Figure D.1 which yields the constants 𝑎 and 

𝑏 for the corresponding 𝑟 as Table D.1. 

 

Figure D.1: Linear regression of log (𝑀) and ℎ for fixed 𝑟 values 

Table D.1: The constants 𝑎 and 𝑏 obtained from the linear regression of log (𝑀) and ℎ for 

fixed 𝑟 values 

r_pos r y = a x + b 

105 4.0253 log M = 150 h - 2700 
110 4.3779 log M = 95 h - 2000 
130 5.8639 log M = 24 h - 870 
155 7.8141 log M = 6.7 h - 430 
180 9.7428 log M = 2.7 h - 260 
200 11.1818 log M = 1.5 h - 200 
227 12.8585 log M = 0.84 h - 140 
250 13.9556 log M = 0.61 h - 120 
280 14.8194 log M = 0.48 h - 110 
301 15 log M = 0.46 h - 110 



 

 

D.2 Estimation of 𝑴(𝒉, 𝒓) 

The resulting constants 𝑎 and 𝑏 are plotted against 𝑟 to determine their relationships in Figure 

D.2. 

 

Figure D.2: Estimation of the constants 𝑎 and 𝑏 as functions of 𝑟, obtained from power 

regression 

Finally, the value of 𝑀 can be estimated as a function of ℎ and 𝑟 as 

 log𝑀 = 58290 𝑟−4.362ℎ − 68100 𝑟−2.4 (D.1) 
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Appendix E : MATLAB Codes 

The parameters involved in the MATLAB codes are defined using different notations from the 

main report in Section 3 with the corresponding notations shown in Table E.1. 

Table E.1: Notations defined in the main report and in the MATLAB code 

Parameters 
Notation 

Main report MATLAB 

The lower limit of 𝑟 domain at 𝑟 = 0 𝑟0 L 

The upper limit of 𝑟 domain at 𝑟 = 𝑟∞ 𝑟∞ R 

Number of grids for 𝑟 𝑁𝑟 N 

Number of grids for 𝑧 𝑁𝑧 M 

Time step ∆𝑡 dt 

Differentiation matrix for 𝑟 𝐷𝑟,𝑖𝑗 D 

Differentiation matrix for 𝑧 evaluated at 

𝑟 = 𝑟𝑖 
𝐷𝑧,𝑚𝑛|𝑟=𝑟𝑖

 Dz 

Relative approach velocity 𝑉𝑎𝑝𝑝 vapp 

Solubility of the gas 𝐾′ Kp 

Dimensionless Hamaker constant 𝐴∗ A_star 

Viscosity ratio 𝜆∗ lambda 

Surface Peclet number 𝑃𝑒𝑠 Pe_s 

Dependence 𝜎Γ
′  sigma 

Product of dependence and initial surface 

excess concentration 
𝜎Γ
′Γ0 sigma_times_Gamma00 

The 𝑖𝑡ℎ element of the film thickness at 

the (𝑘 − 1)𝑡ℎ time step 
ℎ𝑖
𝑘−1 hkm1 

The 𝑖𝑡ℎ element of the film thickness at 

the 𝑘𝑡ℎ time step 
ℎ𝑖
𝑘 hk 

The 𝑖𝑡ℎ element of the film thickness at 

the (𝑘 + 1)𝑡ℎ time step 
ℎ𝑖
𝑘+1 Hkp1 

The 𝑖𝑡ℎ element of the excess pressure at 

the (𝑘 − 1)𝑡ℎ time step 
𝑃𝑖
𝑘−1 Pkm1 



 

 

Parameters 
Notation 

Main report MATLAB 

The 𝑖𝑡ℎ element of the excess pressure at 

the 𝑘𝑡ℎ time step 
𝑃𝑖
𝑘 Pk 

The 𝑖𝑡ℎ element of the excess pressure at 

the (𝑘 + 1)𝑡ℎ time step 
𝑃𝑖
𝑘+1 Pkp1 

The 𝑖𝑡ℎ element of the tangential velocity 

at the 𝑘𝑡ℎ time step 
𝑈𝑖
𝑘 Uk 

The 𝑖𝑡ℎ element of the tangential velocity 

at the (𝑘 + 1)𝑡ℎ time step 
𝑈𝑖
𝑘+1 Ukp1 

The 𝑖𝑡ℎ element of the surfaces excess 

concentration at the (𝑘 − 1)𝑡ℎ time step 
Γ𝑖
𝑘−1 Gammakm1 

The 𝑖𝑡ℎ element of the surface excess 

concentration at the 𝑘𝑡ℎ time step 
Γ𝑖
𝑘 Gammak 

The 𝑖𝑡ℎ element of the surface excess 

concentration at the (𝑘 + 1)𝑡ℎ time step 
Γ𝑖
𝑘+1 Gammakp1 

The 𝑚𝑡ℎ element of the mass fraction at 

the 𝑘𝑡ℎ time step at the position of 𝑟 = 𝑟𝑖 
𝜔𝑚
𝑘 |𝑟=𝑟𝑖 wk 

The 𝑚𝑡ℎ element of the mass fraction at 

the (𝑘 + 1)𝑡ℎ time step at the position of 

𝑟 = 𝑟𝑖 

𝜔𝑚
𝑘+1|𝑟=𝑟𝑖 wkp1 

The 𝑖𝑡ℎ element of the rate of interface 

displacement due to mass transfer 
𝑀𝑖 MT 

An array with a value of zero in all 

elements 
[0 0 0…0]𝑠𝑖𝑧𝑒 zeros(1,size) 

An array with a value of one in all 

elements 
[1 1 1…1]𝑠𝑖𝑧𝑒 ones(1,size) 

  

 

 

 



 

 

E.1 The First Part of the Solver 

%clearing previous outcomes and turning off any warnings when 

running the simulation 

clear all 

clc 

close all 

warning off 

load('integration_matrix_N_300') %call the integral matrix 

that has been stored 

 

 

%Step 1 – Specifying domain, number of grids, and time step 

L = 0; R = 15;   %domain for r (𝑟0 and 𝑟∞) 
N = 300; M = 10; %number of grids for r (𝑁𝑟) and z (𝑁𝑧) 
dt= 0.05;        %time step (Δ𝑡) 
 

%Step 2 – Cheb function for discretization of r 

[Dc,zc] = cheb(N); 

  

%Step 3 – Mapping function to adjust the domain 

[a,b,r] = mapping(L,R,zc); 

D = a*Dc;      %differentiation matrix for r (𝐷𝑟) 
  

%Step 4a - Physical parameters 

vapp   = 0.0006; %approach velocity (𝑉𝑎𝑝𝑝) 

Kp     = 10^-3;  %solubility (𝐾′) 
Pe     = 1;      %bulk Peclet number (𝑃𝑒) 
A_star = 10^-4;  %Hamaker constant (𝐴∗) 
lambda = 10^-4;  %viscosity ratio (𝜆∗) 
Pe_s   = 50;     %surface Peclet number (𝑃𝑒𝑠) 

sigma_times_Gamma00=-20; %merged parameter (𝜎Γ
′Γ0) 

sigma  = -5000; %dependence of the surface tension on the 

surface excess concentration (𝜎Γ
′) 

Gamma00= sigma_times_Gamma00/sigma;%initial surface excess 

concentration (Γ0) 
 

 

%Step 4b – Initial conditions 

h00    = 2; %initial minimum thickness 

h0     = h00 + r.^2; 

P0     = zeros(N+1,1); 

w0     = zeros(N+1,M+1); 

U0     = zeros(N+1,1); 

Gamma0 = ones(N+1,1)*Gamma00; 

t      = 0; 

 

hkm1 = h0; hk = h0; 

Pkm1 = P0; Pk = P0; 



 

 

wk   = w0;  

wkm1 = w0; 

dwdz = zeros(N+1,1); 

Uk   = U0; 

Gammakm1 = Gamma0; Gammak = Gamma0; 

 

mass_flux_zero_maker=ones(N+1,1); %an array to multiply the 

computed M as a part of the new M criterion 

MT = 2/Pe./(1-wk(:,end)).*dwdz; %computed M 

  

hstore=[];Pstore=[];tstore=[];MTstore=[];Ustore=[];Gammastore=[]; 

 

%%%%%%Integration matrix calculations, called AA in the code 

ep=10^-4.2; 

% AA is only a function of number of grids, meaning that the 

code is run for once, for the defined N (number of grids for r) 

% The stored AA is then loaded at the beginning of the code 

 

[Zcheb,rhoI] = newforBIMnonsing(r,ep); 

 

cc = ones(N+1,1); 

   cc(1)=2; 

   cc(N+1)=2; 

  

   for mm = 0:N 

       for nn = 0:N 

           invT(mm+1,nn+1) = 2*(-

1)^mm*cos(mm*nn*pi/N)/(N*cc(mm+1)*cc(nn+1)); 

       end 

   end 

    

   weights=zeros(N+1,1); 

for j=1:N+1 

for i=1:2:length(invT) 

weights(j)=weights(j)-2*invT(i,j)/((i-1)^2-1); 

end 

end 

weights=weights/a; 

W=repmat(weights,1,N+1)'; 

AA=Zcheb.*W/2/pi; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Parts of matrix A that are independent of dt, thus, do not 

need to be included in the iteration to save time 

I     = eye(N+1,N+1); %Identity matrix 

 

A11 = 3/2*I; 

A14 = zeros(N+1,N+1); 

  

A21 = 1/2*diag(1./r)*D*diag(r)*D;  

A22 = I; 



 

 

A23 = zeros(N+1,N+1); 

A24 = zeros(N+1,N+1); 

  

A31 = zeros(N+1,N+1); 

A33 = I; 

A34 = -1/lambda*sigma*AA*D; 

  

A41 = zeros(N+1,N+1); 

A42 = zeros(N+1,N+1); 

 

 

freq=20; %defining frequency of saving data 

 

%Starting the iteration 

for k=2:(10^8) 

  

    t=t+dt; 

  

%Step 5 - Build A and RHS matrices 

A12 = -dt/12*diag(1./r)*D*diag(r)*diag(hk.^3)*D; 

A13 = dt*diag(1./r)*D*diag(r)*diag(hk); 

 

A32 = 1/lambda*AA*diag(hk/2)*D; 

  

A43 = dt*Pe_s*diag(1./r)*D*diag(r)*diag(Gammak); 

A44 = 3/2*I*Pe_s-dt*diag(1./r)*D*diag(r)*D; 

 

RHS1 = 2*hk-hkm1/2+dt*MT;       %Including M to the model 

RHS2 = 2*ones(N+1,1)+A_star./(hk.^3); 

RHS3 = zeros(N+1,1); 

RHS4 = 2*Pe_s*Gammak - 1/2*Pe_s*Gammakm1; 

 

A = [A11 A12 A13 A14; A21 A22 A23 A24; A31 A32 A33 A34; A41 

A42 A43 A44]; 

RHS = [RHS1; RHS2; RHS3; RHS4]; 

  

%Step 6 - BCs 

A(1,:) = [ D(1,:) zeros(1,3*(N+1))]; 

RHS(1) = 0; %dhdr=0 at r=0 

 

A(N+1,:) = [zeros(1,N) 1 zeros(1,3*(N+1))]; 

RHS(N+1) = ((-vapp + MT(end))*dt + 2*hk(N+1)-

1/2*hkm1(N+1))*2/3; %dh/dt=-Vapp + M at r=r_inf 

 

A(N+2,:) = [zeros(1,N+1) D(1,:) zeros(1,2*(N+1))]; 

RHS(N+2) = 0; %dPdr=0 at r=0 

 

A(2*(N+1), :) = [zeros(1,N+1) zeros(1,N) 1 zeros(1,2*(N+1))]; 

RHS(2*(N+1)) = 0; %P=0 at r=r_inf 

 



 

 

A(2*(N+1)+1,:)= [zeros(1,2*(N+1)) 1 zeros(1,N) zeros(1,N+1)]; 

RHS(2*(N+1)+1) = 0; %U=0 at r=0 

 

A(3*(N+1),:)  = [zeros(1,2*(N+1)) D(end,:) zeros(1,N+1)]; 

RHS(3*(N+1)) = 0; %dUdr=0 at r=r_inf 

 

A(3*(N+1)+1,:)= [zeros(1,3*(N+1)) D(1,:)]; RHS(3*(N+1)+1) = 0; 

%dGammadr=0 at r=0 

 

A(4*(N+1),:)  = [zeros(1,3*(N+1)) D(end,:)]; RHS(4*(N+1)) = 0; 

%dGammadr=0 at r=r_inf 

 

  

%Step 7 - solve 

sol=A\RHS; 

  

hkp1 = sol(1:N+1); 

Pkp1 = sol(N+2:end); 

Ukp1 = sol(2*(N+1)+1:3*(N+1)); 

Gammakp1 = sol(3*(N+1)+1:end); 

 

%Calling the outcomes from the second part of the solver 

[RHSw,Aw,wkp1,dwdz,dwdr,z,vr,vz,Dz] = 

code_massfracH_spec(M,N,hkp1,Pkp1,wk,D,r,Kp,Pe,dt); 

 

 

%Computing M for the next time step 

MT = 2/Pe./(1-Kp).*dwdz; 

 

%New M criterion 

for rr2=1:N+1 

    if MT(rr2) <= 10^-15 

       mass_flux_zero_maker(rr2)=0; 

    end 

end 

 

MT=MT.*mass_flux_zero_maker; %applying the new M criterion 

 

%Defining the solutions as the inputs for the next time step 

hkm1=hk; hk=hkp1; Pkm1=Pk; Pk=Pkp1; wk=wkp1; Uk=Ukp1; 

Gammakm1=Gammak; Gammak=Gammakp1; 

 

%Saving data 

minhstore(k-1)=min(hkp1); 

minh=min(minhstore); 

MTmax(k-1)=max(MT); 

 

  

if mod(k,freq)==2 

    minh 

    hstore=[hstore hkp1]; 



 

 

    Pstore=[Pstore Pkp1]; 

    tstore=[tstore t]; 

    MTstore=[MTstore MT]; 

    Ustore=[Ustore Ukp1]; 

    Gammastore=[Gammastore Gammakp1]; 

end 

  

%Coalescence criterion with critical film thickness of 10^-3 

[criterion,min_pos]=min(hkp1); 

if criterion<10^-3 

    if min_pos==1 

        outcome=sprintf('nose rupture') 

    else 

        outcome=sprintf('rim rupture') 

    end 

    tc=t 

    break 

%No coalescence criterion when film thickness > 1.5 of the 

initial minimum thickness 

elseif criterion>1.5*h00; 

    outcome=sprintf('bye') 

    tc=0 

    break 

end 

end 

 

%Summarizing the saved data  

hstore=[hstore hkp1]; 

    Pstore=[Pstore Pkp1]; 

    tstore=[tstore t]; 

    MTstore=[MTstore MT]; 

    Ustore=[Ustore Ukp1]; 

    Gammastore=[Gammastore Gammakp1]; 

  

%Step 8 - plotting 

figure 

semilogy(r,hstore) 

xlabel('r') 

ylabel('h') 

figure 

plot(r,Pstore) 

xlabel('r') 

ylabel('P') 

figure 

semilogy(r,MTstore(:,1:end-1)) 

xlabel('r') 

ylabel('MT') 

  

 



 

 

E.2 The Second Part of the Solver 

%Specifying the inputs from the first part of the solver and 

the outputs from this part 

function [RHSw,Aw,wkp1,dwdz,dwdr,z,vr,vz,Dz] = 

code_massfracH_spec(M,N,hkp1,Pkp1,wk,D,r,Kp,Pe,dt) 

 

% Cheb function for discretization of z: only depend on M, 

which in here is defined as the number of grids for z 

[Dc2,zc2] = cheb(M); 

  

% Mapping function to adjust the domain of z: for each r point 

for i = 1:N+1 

[az(i),bz(i),z(:,i)] = mapping(0,hkp1(i)/2,zc2); 

Dz(:,:,i) = az(i)*Dc2; 

  

% velocity profiles for each r point 

dP   = D*Pkp1;                   

drP1 = D*(r/2.*dP);              

drP2 = D*(r/2.*dP.*(hkp1/2).^2); 

dwdr = D*wk; 

  

vr(:,i) = 1/2*dP(i)*(z(:,i).^2-(ones(M+1,1)*hkp1(i)/2).^2); 

end 

 

for ii = 2:N+1 

vz(:,ii) = -

1/3*(1/r(ii))*drP1(ii)*z(:,ii).^3+(1/r(ii))*drP2(ii)*z(:,ii); 

end 

%BC for r 

vz(:,1)=vz(:,2); 

 

%Computing the mass fraction for each r value 

for n = 2:N 

% A and RHS 

Aw(:,:,n) = eye(M+1)*Pe+dt*Pe*diag(vz(:,n))*Dz(:,:,n)-

dt*Dz(:,:,n)^2; 

RHSw(:,n) = (wk(n,:)*Pe)'-dt*Pe*vr(:,n).*(dwdr(n,:))'; 

 

% BCs for z 

Aw(1,:,n) = [Dz(1,:,n)]; RHSw(1,n) = 0; 

Aw(end,:,n) = [zeros(1,M) 1]; RHSw(end,n) = Kp(n); 

 

% solve 

wkp1(:,n) = Aw(:,:,n)\RHSw(:,n); 

  

% dwdz at interface 

dwdz(n,:)=Dz(end,:,n)*wkp1(:,n); 

  

end 



 

 

 

%Transpose the matrix before getting called to the first part 

of the solver 

wkp1=wkp1'; 

  

%Mass fraction criterion 

for rr=1:N 

    for zz=1:M+1 

        if (wkp1(rr,zz))<=10^-15 

            wkp1(rr,zz)=0; 

%Saturation condition 

        elseif abs(wkp1(rr,zz)-Kp(rr))/Kp(rr) <=10^-5 

            wkp1(rr,zz)=Kp(rr); 

             

        end 

         

    end 

end 

 

wkp1(1,:)=wkp1(2,:); %BC at r=0, dwdr=0 

wkp1(N+1,:) = wkp1(N,:); %BC at r_inf, dwdr=0 

 

% dwdz at interface 

for nn=1:N+1 

dwdz(nn)=(wkp1(nn,end)-wkp1(nn,end-1))/(z(end,nn)-z(end-

1,nn)); 

end 

dwdz=dwdz'; 

 

 

end 
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