
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

Eva Anita Sivertsen
Henriette Sofie Høgstedt Strehl

Flutter Analysis of Twin-Deck
Configurations for a Suspension
Bridge Crossing the Sulafjord

Wind Tunnel Testing and Numerical Predictions

Master’s thesis in ICT, Civil and Environmental Engineering
Supervisor: Ole Øiseth

June 2021

M
as

te
r’s

 th
es

is





Eva Anita Sivertsen
Henriette Sofie Høgstedt Strehl

Flutter Analysis of Twin-Deck
Configurations for a Suspension Bridge
Crossing the Sulafjord

Wind Tunnel Testing and Numerical Predictions

Master’s thesis in ICT, Civil and Environmental Engineering
Supervisor: Ole Øiseth
June 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Structural Engineering





Department of Structural Engineering                 
Faculty of Engineering 

NTNU − Norwegian University of Science and Technology 
 
 
 
 

MASTER THESIS 2021 
 
 

SUBJECT AREA: 
Structural Dynamics 

DATE: 
10.06.2021 

NO. OF PAGES: 
26+80+44=150 

 
 
TITLE: 
  

Flutter analysis of twin-deck configurations for a suspension bridge  
crossing the Sulafjord 
 

 Flutter analyse for konfigurasjoner av dobbelt kassetverrsnitt for hengebro over  
Sulafjorden 

BY: 
 
 

Eva Anita Sivertsen 
Henriette Sofie Høgstedt Strehl  

 

 
RESPONSIBLE TEACHER: Professor Ole Øiseth 
 
SUPERVISOR(S): Professor Ole Øiseth 
 
CARRIED OUT AT: Department of Structural Engineering 

SUMMARY: 
Proposed in the "Ferry-free E39" project is the alternative of a twin-deck suspension bridge crossing the 
Sulafjord. The deep fjord surrounded by complex terrain requires a single span of 2800 m, which exceeds the 
longest suspension bridges today. Due to the rough coastal climate, wind-induced vibrations of the bridge 
deck are of major concern. At high wind velocities, violent bridge deck oscillations may lead to destructive 
behaviour in the absence of aerodynamic stability. To encounter the challenge, additional research is 
required to assess how the stability is affected by several bridge deck design variables. Twin-deck 
configurations of three geometric shapes and three different gaps are investigated to achieve sufficient 
aerodynamic stability for the suspension bridge crossing the Sulafjord. Flutter analysis is conducted for the 
nine configurations to estimate the stability limits. The modal parameters are obtained from global element 
models based on the feasibility study by Multiconsult. For the wind tunnel testing, section models are built 
and equipped with attachments. The static forces and self-excited forces are established from the wind tunnel 
tests, defining the static coefficients and aerodynamic derivatives, respectively. To predict the stability limits, 
the aerodynamic derivatives are approximated by 3rd order polynomials. Reliable estimates of the 
aerodynamic derivatives are crucial at the critical reduced frequency. Desirable is a stable bridge without 
encountering issues of vibrations due to vortex shedding. Thus, wind tunnel tests detecting the vortex-
induced behaviour are performed. The governing instability phenomenon is assessed as multi-modal coupled 
flutter. The stability limits converge for the mode combination of the two first vertical symmetric modes and 
the first torsional symmetric mode. Despite small variations in the girder shapes, the stability limits for two of 
the geometric shapes proved to be superior. Evident is also a general tendency of increasing stability limit 
with larger gap. Deviations from the stability limit trends are substantiated by the inaccuracy of polynomial fits 
of the aerodynamic derivatives at the critical reduced frequency. For the three-mode flutter phenomenon, the 
stability limits obtained ranges between 86.0 ms-1 and 105.5 ms-1. With a stability criterion of 75.9 ms-1, all the 
configurations pass the instability control of the Norwegian bridge design code - N400. 
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Abstract

Proposed in the ”Ferry-free E39” project is the alternative of a twin-deck suspension bridge
crossing the Sulafjord. The deep fjord surrounded by complex terrain requires a single span of
2800 m, which exceeds the longest suspension bridges today. Due to the rough coastal climate,
wind-induced vibrations of the bridge deck are of major concern. At high wind velocities,
violent bridge deck oscillations may lead to destructive behaviour in the absence of aerodynamic
stability. To encounter the challenge, additional research is required to assess how the stability
is affected by several bridge deck design variables. Twin-deck configurations of three geometric
shapes and three different gaps are investigated to achieve sufficient aerodynamic stability for
the suspension bridge crossing the Sulafjord.

Flutter analysis is conducted for the nine configurations to estimate the stability limits. The
modal parameters are obtained from global element models based on the feasibility study by
Multiconsult (Multiconsult, 2015). For the wind tunnel testing, section models are built and
equipped with attachments. The static forces and self-excited forces are established from the
wind tunnel tests, defining the static coefficients and aerodynamic derivatives, respectively.
To predict the stability limits, the aerodynamic derivatives are approximated by 3rd order
polynomials. Reliable estimates of the aerodynamic derivatives are crucial at the critical reduced
frequency. Desirable is a stable bridge without encountering issues of vibrations due to vortex
shedding. Thus, wind tunnel tests detecting the vortex-induced behaviour are performed.

The governing instability phenomenon is assessed as multi-modal coupled flutter. The stability
limits converge for the mode combination of the two first vertical symmetric modes and the
first torsional symmetric mode. Despite small variations in the girder shapes, the stability
limits for two of the geometric shapes proved to be superior. Evident is also a general tendency
of increasing stability limit with larger gap. Deviations from the stability limit trends are
substantiated by the inaccuracy of polynomial fits of the aerodynamic derivatives at the critical
reduced frequency. For the three-mode flutter phenomenon, the stability limits obtained ranges
between 86.0 ms−1 and 105.5 ms−1. With a stability criterion of 75.9 ms−1, all the configurations
pass the instability control of the Norwegian bridge design code - N400 (Statens vegvesen, 2015).

vii



viii



Sammendrag

Prosjektet ”Ferjefri E39” inkluderer et forslag om å krysse Sulafjorden med en hengebro med
dobbelt-kassetverrsnitt. Den dype fjorden som omgis av et komplekst terreng er opphavet for be-
hovet om et enkelt spenn p̊a 2800 m. Broens spenn overg̊ar dermed de lengste hengebroene som
eksisterer i dag. P̊a grunn av det værharde kystklimaet er vind-induserte vibrasjoner i brodekket
en stor bekymring. Ved store vind hastigheter kan ukontrollerbare svingninger i brodekke føre
til destruktive bevegelser ved fravær av aerodynamisk stabilitet. For å imøtekomme slike ut-
fordringer er det behov for ytterligere forskning p̊a hvilken innvirkning detaljer i design har p̊a
brudekkets stabilitet. Konfigurasjoner av doble kasse-tverrsnitt, med tre geometriske former og
tre ulike avstander mellom kassene, er analysert med form̊al om å kunne oppn̊a tilstrekkelig
aerodynamisk stabilitet for hengebroen over Sulafjorden.

Flutter analyse er anvendt for å estimere stabilitets grensene til de ni konfigurasjonene. De
modale parameterne er hentet ut fra globale element modeller som er basert p̊a mulighetsstudiet
til Multiconsult (Multiconsult, 2015). Fra de statiske og selv-induserte kreftene i responsen
fra ulike vind-tunnel tester hentes henholdsvis de statiske koeffisientene og aerodynamiske de-
riverte. For beregning av stabilitets grensene er de aerodynamiske deriverte tilnærmet med
tredje grads polynomer. Avgjørende er gode estimater av de aerodynamiske deriverte for den
kritiske reduserte frekvensen. I tillegg er eventuell ustabilitet for̊arsaket av svingninger fra
virvelavløsninger kontrollert ved vind-tunnel tester som avdekker slik oppførsel.

Flutter analysen avslørte at multi-modal koblet flutter er det dominerende instabilitets fenomenet
for alle konfigurasjonene. Konvergens av stabilitets grensene ble funnet for kombinasjon av de to
første symmetriske vertikale modene og den første symmetriske torsjonsmoden. Selv med min-
imale geometriske forskjeller, skiller to av tverrsnittene seg ut med betydelig høyere stabilitets
grenser. I tillegg finnes en åpenbar trend med økende stabilitets grenser for større avstander mel-
lom brokassene. Avvik fra trendene for stabilitets grensene kan begrunnes med unøyaktighet
vedrørende de polynomiske tilnærmingene av de aerodynamiske deriverte for den kritiske re-
duserte frekvensen. De oppn̊adde stabilitets grensene for de ni konfigurasjonene, basert p̊a det
nevnte tre-moders flutter fenomenet, varierte mellom 86.0 ms−1 og 105.5 ms−1. Alle konfig-
urasjonene oppfyller dermed det beregnede stabilitets kravet fra H̊andbok N400 p̊a 75.9 ms−1

(Statens vegvesen, 2015).
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Chapter 1

Introduction

With worldwide demand for longer span bridges follows great challenges in structural design.
In Norway, the Norwegian Parliament aims to replace the current ferry connections along the
E39 trailing the west coast. The Sulafjord is among the largest fjord-crossings in the ”Ferry-free
E39” project. Because of the deep fjord exceeding 400 m depth, the alternative of a single-
span suspension bridge crossing the Sulafjord is suggested (Multiconsult, 2015). With a main
span of 2800 m, the suspension bridge crossing the Sulafjord will surpass the longest suspension
bridges today. The complex mountain terrain and the rough weather conditions towards the
open ocean make the wind-induced response a crucial aspect of the bridge design (Cheynet et
al., 2016; Fenerci et al., 2017; Lystad et al., 2018). Until the collapse of the Tacoma Narrows
Bridge in 1940, there was limited understanding of the wind-structure interaction of long-span
suspension bridges. The models currently used for wind-induced response are based on finite
element formulations, which accounts for unsteady self-excited forces (Davenport, 1962; Scanlan
and Tomko, 1971; Jain et al., 1996), non-linearities (Chen and Kareem, 2003; Diana et al.,
2008), skew winds (Zhu and Xu, 2005) and non-stationary winds (Hu et al., 2013). In the last
decades, multi-box girders have been introduced for long-span suspension bridges to alter the
aerodynamic behaviour. Innovative designs were adopted for the Xihoumen Bridge twin-box
girder and the Messina Straits crossing composed of three box girders (Gimsing and Georgakis,
2012).

The thesis aims to achieve a sufficient aerodynamic stability of the twin-deck suspension bridge
crossing the Sulafjord. The flutter phenomenon is investigated, defining the instability at high
wind velocities. To increase the aerodynamic stability, a twin-box girder configuration is pro-
posed. An increase in the gap have been found to improve the aerodynamic stability of twin-
decks (Sato et al., 2002; Fujino and Siringoringo, 2013; Yang et al., 2015). However, research
is required to assess how several bridge design variables affect the onset of flutter. Thus, nine
configurations of various girder shapes and gaps are explored. The aerodynamic stability limit
is estimated by performing flutter analysis. Global element models are created to obtain the
modal parameters. The static forces and self-excited forces are established from wind tunnel
tests, defining the static coefficients and aerodynamic derivatives, respectively. Encountered by
twin-box girders are vibrations due to vortex shedding (Kwok et al., 2012; Laima and Li, 2015;
Álvarez et al., 2018). Therefore, the vortex-induced vibration performance is evaluated.
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The chapter divisions present the structure of the thesis. Chapter 2 introduces the Sulafjord
site and the stability criterion. The literature review in Chapter 3 presents the background
theory with an understanding that the reader has knowledge of the basic structural dynamics.
In Chapter 4, an overview of twin-box girders and control measures of existing long-span cable-
supported bridges is presented. Chapter 5, 6 and 7 gathers the methodology of the thesis. In
Chapter 5, the selection of the girder design is deliberated and the chosen configurations are
presented. The global element models used to attain the modal parameters are introduced in
Chapter 6. The wind tunnel tests are described in Chapter 7, including the building of the section
models, the experimental setup and the testing procedure. The results are presented, analysed
and discussed in Chapter 8. The conclusions and proposals for further work are presented in
Chapter 9 and Chapter 10, respectively.
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Chapter 2

Bridge Crossing of the Sulafjord

The bridge crossing of the Sulafjord is a part of the E39 Coastal Highway Route along the west
coast of Norway. As seen in Figure 2.1(a), the E39 extends from Kristiansand to Trondheim,
with a length of approximately 1100 km. Due to the coastal topography of Norway being
dominated by fjords and islands, the E39 depends on several ferry crossings to stay connected.
These ferry crossings, in addition to other factors, make the E39 route a very time-consuming
distance. Since the area is one of the largest export regions in Norway and houses several large
cities, it would be beneficial to make the travel distance more time-efficient. Therefore, The
Norwegian Government decided that the National Transportation Plan (NTP) for 2018-2029
should include an improvement of the entire E39 Coastal Highway Route (Norwegian Public
Roads Administration, 2020).

An essential part of the improvements is the project ”Ferry-free E39” which is administrated by
the Norwegian Public Roads Administration (NPRA). It’s aim is to replace the ferry connections
with permanent fjord crossings such as bridges or sub-sea tunnels. A feasibility study of the
Sulafjord crossing was conducted by Multiconsult in 2015 (Multiconsult, 2015). The proposed
location of the bridge is outlined with a black line in Figure 2.1(b). It would replace the current
ferry crossing from Festøya to Leirv̊agen with a rearranged E39 requiring two new fjord crossings.
The original path of the E39 is indicated by the red lines.

(a) The E39 Coastal Highway Route (b) Proposed location of the Sulafjord bridge crossing

Figure 2.1: Overview of E39 and the area surrounding Ålesund (Maps: ©Kartverket)
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The fjord crossings can be wide as well as deep and are often exposed to tough coastal climate
providing challenging conditions for permanent bridge crossings. At the proposed location the
fjord has a width of approximately 3200 m and a depth exceeding 400 m. The bridge itself would
be a suspension bridge with two towers and a main span of 2800 m (Multiconsult, 2015). This
would be a significant increase in span length from the largest suspension bridge span today,
which belongs to the Akashi-Kaikyo bridge in Japan with a main span of 1991 m (Brancaleoni,
2016). The 1915Çanakkale Bridge in Turkey is under construction, at the time of completion
it will possess a span of 2023 m thereupon becoming the longest span in the world (Generate
Directorate of Highways, 2020).

2.1 Stability Criterion

The stability requirement is derived for the location of the Sulafjord bridge crossing. To calcu-
late the critical wind speed (Vcrit), indicating the lower stability criteria for the Sulafjord, the
following equation from the bridge design manual N400 is used (Statens vegvesen, 2015)

Vcrit
γVcrit

≥ Vm(z = zm, T = 600 s,RP = 500 yrs) (2.1)

and
γVcrit = 1.6

According to N400, the mean wind value (Vm) should be taken at a mean height of the terrain
(zm) and yield for a 600 second time-interval (T ) with a return-period (RP ) of 500 years.

The mean wind speed is obtained from the extreme value statistics for a return period of 500
years. The mean wind probability density function was adapted as a Weibull distribution based
on hindcast data (Kjeller Vindteknikk, 2019) from the Sulafjord center location as reported in
Castellon et al. (2021). A final value of the mean wind speed is found as

Vm(T = 600 s,RP = 500 yrs) = 47.46 ms−1

resulting in a stability criterion for the Sulafjord bridge crossing of

Vcrit ≥ 1.6 · Vm = 75.94 ms−1 (2.2)
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Chapter 3

Literature Review

A brief explanatory chapter is included to secure a basic understanding of the topics introduced
in the master’s thesis. The presented theory is summarized and further reading, as well as the
books and articles cited in the chapters, can be found in the reference list.

3.1 Modal Theory

Modal analysis uses the natural mode shapes of a structure to determine its free vibration
response to different load types. An eigenvalue problem is established to derive the systems
natural mode shapes of vibration (φ) and corresponding natural frequencies (ω). A modal
frequency domain approach demands that a sufficiently accurate eigenvalue solution is available.
The desired accuracy of the results is obtained by including the necessary number of modes
(Nmod) in the calculations (Strømmen, 2010).

The bridge deck of a suspension bridge can be idealized as a flexible line-like structure with
x as the horizontal position in the span-wise direction and y-axis in the transverse horizontal
along-wind direction. The motion of the bridge deck can then be described by mode shape
vectors (φj) with components in the vertical (z), horizontal (y) and torsional (θ) direction, all
as functions of x. The natural eigenmode shape vector (φj) and the generalized coordinate
(ηj) associated with mode number j of the multi-degree-of-freedom (MDOF) system of a bridge
girder are expressed as

φj(x) =
[
φy φz φθ

]T
(3.1)

For a linear system, the total displacements can be derived by superposition of the response
from each mode (rj(x)) over the total number of modes. A single-mode response is taken as
the product between the generalized coordinates and the natural eigenmodes, defining the total
response as

r(x, t) =

Nmod∑
j=1

φj(x) · ηj(t) = φ(x) · η(t) (3.2)
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The mode shape matrix and the vector of generalized coordinates corresponding to Nmod modes

φ(x) =
[
φ1(x) ... φj(x) ... φNmod(x)

]
η(t) =

[
η1(t) ... ηj(t) ... ηNmod(t)

]T
By inserting Equation 3.2 in the systems equilibrium equations and performing integration over
the length of the span, the equation of motion in the modal frequency domain is obtained.

M̃0η̈(t) + C̃0η̇(t) + K̃0η(t) = Q̃(t) + Q̃ae(t, η, η̇, η̈) (3.3)

Here, modal mass, damping and stiffness matrices, given as M̃0, C̃0 and K̃0 respectively, all
obtained in still air, indicated by the zero indexes. The matrices of the left-hand side in are
defined as

M̃0 = diag[M̃j ] M̃j =

∫
L

(φTj M0φj)

C̃0 = diag[C̃j ] C̃j = 2 M̃j ωj ζj

K̃0 = diag[K̃j ] K̃j = ω2
j M̃j

The diagonal matrices of size 1xNmod introduce a number of Nmod uncoupled modal equations.
The damping ratio ζ decreases the displacement amplitude in the DOFs for each natural period
of vibration 2π/ωn.

Referring on the right-hand side of Equation 3.3, Q̃(t) is the total modal wind load while
Q̃ae(t, η, η̇, η̈) accounts for the motion induced loads of the structure. Both load vectors are
derived by integration over the length of the bridge span subjected to wind flow (Lexp) as
follows

Q̃j(t) =

∫
Lexp

φTj · q dx =

∫
Lexp

φTj ·


qy

qz

qθ

 · dx (3.4)

Q̃aej (t, η, η̇, η̈) =

∫
Lexp

φjT · qSE dx =

∫
Lexp

φTj ·


qSEy

qSEz

qSEθ

 · dx (3.5)

with the load vectors having three components of load per unit length representing drag, lift
and moment (Strømmen, 2010).
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3.2 Wind and Motion Induced Forces

Wind is a spatiotemporal phenomenon of dynamic and random nature (Fujino and Siringoringo,
2013). By considering a time period of typically 10 minutes, the wind speed can be assessed
as a mean component (mean wind) and a fluctuating component (gust). The main flow is
assumed to act perpendicular to the longitudinal bridge direction. For a long-span bridge,
wind-induced vibrations are of major concern. As illustrated in Figure 3.1 the occurrence of
wind and motion-induced forces depends on the mean wind velocity (Strømmen, 2010). The
static response diverts from being proportional to the mean wind velocity squared when self-
excited (SE) forces are encountered. The dynamic response will generally originate from vortex
shedding forces, buffeting forces and SE forces with increasing mean wind velocity. At high
mean wind velocities, the response may increase rapidly as it approaches unstable behaviour.

Figure 3.1: Typical response variation with mean wind velocity and causative forces

3.2.1 Static Forces

The mean wind induces static forces on a bridge deck in a deflected position through aerostatic
pressures. By applying strip theory, only three force components in the flow axes require con-
sideration: the lift force (qL), the drag force (qD) and the pitching moment (qM ). The static
forces are utilized to determine the static coefficients (Tamura and Kareem, 2013).
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3.2.2 Vortex Shedding Forces

The flexible structure of the bridge deck of a suspension bridge is prone to exhibit fluctuating
motion due to the vortex shedding forces, also known as vortex-induced vibrations (VIVs). If
the shedding frequency becomes equal to the eigen-frequencies of the first vertical or torsional
vibration modes, resonance will occur. As the structure interacts with the wind flow, the flow
gets separated and vortices shed behind the structure. The slender geometry of a bridge deck
causes the vortices to shed alternately with a certain shedding frequency, fs, inflicting vortex
shedding forces on the bridge deck. The along wind vortex shedding forces are of less influence
and can be neglected due to the dominance of the across wind forces and torsional vortex
shedding forces (Strømmen, 2010).

3.2.3 Buffeting Forces

The velocity fluctuations in a wind flow together with any motion-induced contributions can
cause a buffeting mechanism where vibrating motion is initiated in the bridge deck. Even
though the buffeting forces occurs at higher wind speeds than the vortex shedding forces, the
forces rarely appear exclusively alone (Strømmen, 2010). The vibrations are usually harmless
to the bridge structure but can contribute to fatigue and serviceability issues. The buffeting
mechanism depends on the turbulence of the oncoming wind flow, which will not be studied in
this thesis but should be included in further analysis of the bridge decks.

3.2.4 Self-excited Forces

The movements of the bridge deck immersed in wind affects the surrounding flow. The deck dis-
places the air causing changes in the relative velocity. Vibrations and resulting self-excited forces
are initiated by the interaction between the bridge deck and the flow. The motion-dependent
forces are commonly expressed in terms of aerodynamic derivatives (Fujino and Siringoringo,
2013).

3.3 Motion Induced Instabilities

Unstable behaviour is induced when even the smallest increase in mean wind velocity triggers
an infinite displacement response. A point is reached at which the structure is unable to damp
the motions caused by the addition of aerodynamic energy. The phenomenon is illustrated in
Figure 3.1, where the lowest mean wind velocity causing unstable behaviour (Vcr) represents the
stability limit. It is distinguished between static and dynamic response. The static response
occurs for zero frequency (ω = 0), while the dynamic response is narrow-banded and centred on
the resonance frequency (ωr). Motion induced instabilities are commonly classified according to
the type of displacement (Table 3.1). For suspension bridges in general, the dynamic instability
phenomena are of greater interest than the static instability phenomenon due to the lower critical
wind velocity (Gimsing and Georgakis, 2012).
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Table 3.1: Classification of motion induced instabilities

Motion induced instability Description

Static divergence Static response in torsion

Galloping Dynamic response in vertical direction

Torsional flutter Dynamic response in torsion

Coupled flutter Dynamic response in combined vertical and torsional motion

The stability limit is determined from the properties of the Nmod by Nmod impedance matrix

Êη(ω, V ) =
{
I − κae −

(
ω·diag

[
1
ωj

])2
+ 2iω·diag

[
1
ωj

] (
ζ − ζae

)}
(3.6)

where

κaej =
K̃aej

ω2
j M̃j

and ζaej =
C̃aej

2ωjM̃j

The impedance matrix is the inverse of the frequency response function. κae and ζae is the aero-
dynamic modal stiffness contributions matrix and the aerodynamic damping ratio contributions
matrix, which is defined as follows:

κae =

[
κaezz κaezθ

κaeθz κaeθθ

]
=


ρB2

2m̃z

(
ωz(V )
ωz

)2
H∗4

∫
Lexp

φ2zdx∫
L φ

2
zdx

ρB3

2m̃z

(
ωz(V )
ωz

)2
H∗3

∫
Lexp

φzφθdx∫
L φ

2
zdx

ρB3

2m̃θ

(
ωθ(V )
ωθ

)2
A∗4

∫
Lexp

φθφzdx∫
L φ

2
θdx

ρB4

2m̃θ

(
ωθ(V )
ωθ

)2
A∗3

∫
Lexp

φ2θdx∫
L φ

2
θdx

 (3.7)

ζae =

[
ζaezz ζaezθ

ζaeθz ζaeθθ

]
=


ρB2

4m̃z

(
ωz(V )
ωz

)2
H∗1

∫
Lexp

φ2zdx∫
L φ

2
zdx

ρB3

4m̃z

(
ωz(V )
ωz

)2
H∗2

∫
Lexp

φzφθdx∫
L φ

2
zdx

ρB3

4m̃θ

(
ωθ(V )
ωθ

)2
A∗1

∫
Lexp

φθφzdx∫
L φ

2
θdx

ρB4

4m̃θ

(
ωθ(V )
ωθ

)2
A∗2

∫
Lexp

φ2θdx∫
L φ

2
θdx

 (3.8)

Equations 3.7 and 3.8 show how motion-induced instabilities depend on the eight aerodynamic
derivatives (ADs) associated with instability. For infinite displacement response to occur, the
absolute value of the determinant to the impedance matrix must equal zero (Equation 3.9).
The solution to the eigenvalue problem consists of Nmod roots, each associated with an unstable
behaviour.

∣∣∣det(Êη(ω, V )
)∣∣∣ = 0 (3.9)

3.3.1 Static Divergence

A deflected position of the bridge deck in still-air motion introduces aerostatic pressures and
consequently the loss of torsional stiffness. For a certain wind velocity recognized as the torsional
divergence velocity, the torsional stiffness will vanish completely (Gimsing and Georgakis, 2012).
By incorporating a resonant frequency of zero, the impedance matrix reduces to zero when the
aerodynamic rotational stiffness contribution equals 1 (Strømmen, 2010).

Êη(ωr = 0, Vcr) = 1− κaeθθ = 0 (3.10)
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3.3.2 Galloping

Galloping, also known as bending flutter, is the aeroelastic instability in which the bridge deck
exhibits large-amplitude oscillations in the vertical direction. The wind-induced phenomenon
is caused by the shift in pressure distributions around the cross-section due to initial motion
changing the angle of attack of the wind flow relative to the deck (Fujino and Siringoringo,
2013). Seen as the oscillating motion of galloping does not involve rotation nor horizontal
displacement of the bridge deck, its shape can be described using only the vertical component.
The lowest frequency at which the mode shape occurs is the resonant frequency of the mode
shape. Introducing the relation ωr = ωz(Vcr) in the impedance matrix and obtaining a reduced
expression as

Êη

(
ωr = ωz(Vcr), Vcr

)
= 1− κaezz −

(
ωr
ωz

)2
+ 2i

(
ζz − ζaezz

)(
ωr
ωz

)
(3.11)

A resonance frequency representing the vertical stability limit may be derived as below when
setting the real and imaginary part of 3.11 equal to zero

ωr = ωz

(
1 + ρB2

2m̃z
H∗4

∫
Lexp φ

2
zdx∫

L φ
2
zdx

)−1/2

(3.12)

with corresponding damping properties of

ζz = ζaezz =
ρB2

4m̃z

ωr
ωz
H∗1

∫
Lexp φ

2
zdx∫

L φ
2
zdx

(3.13)

H∗4 and H∗1 are the stiffness and damping related ADs associated with galloping, respectively.

3.3.3 Torsional flutter

Unlike galloping, torsional flutter is an unsteady phenomenon. As the bridge deck experiences
twisting motion, it displaces the surrounding air. Changes in the relative velocity of the bridge
deck introduce the effect of added mass (Tamura and Kareem, 2013). Therefore, the unsteady
self-excited forces are represented by aerodynamic derivatives as a function of reduced velocity.
Torsional flutter occurs when the total damping of the system in torsional motion equals zero.
The impedance matrix is reduced by inserting the lowest natural frequency associated with the
torsional mode (Strømmen, 2010).

Êη

(
ωr = ωθ(Vcr), Vcr

)
= 1− κaeθθ −

(
ωr
ωθ

)2
+ 2i

(
ζθ − ζaeθθ

)(
ωr
ωθ

)
(3.14)

By setting the real and imaginary part of Equation 3.14 equal to zero, the dynamic stability
limit in torsion may be identified at a resonance frequency of

ωr = ωθ

(
1 + ρB4

2m̃θ
A∗3

∫
Lexp φ

2
θdx∫

L φ
2
θdx

)−1/2

(3.15)
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and with damping properties of

ζθ = ζaeθθ =
ρB4

4m̃θ

ωr
ωθ
A∗2

∫
Lexp φ

2
θdx∫

L φ
2
θdx

(3.16)

A∗3 and A∗2 are the stiffness and damping related ADs associated with torsional flutter, respec-
tively.

3.3.4 Coupled flutter

Coupled flutter is the instability of SE motion where displacement responses in vertical and
torsional direction couples into a joint resonant motion (Strømmen, 2010). Each displacement
response corresponds to the first vertical or torsional eigenmode of the bridge deck in which one
component dominates, either φz or φθ respectively. Required for the onset of coupling is the
shape-wise similarity of the modes. The coupling of the motion can only occur if the off-diagonal
terms of the Êη matrix in Equation 3.6 have non-zero values. In terms of identifying the coupled
flutter stability limit, the determinant of the impedance matrix needs to be zero.

∣∣∣det(Êη(ωr, Vcr))
∣∣∣ = 0 (3.17)

The combined resonant motion of the two eigenmodes, defines

ωr = ωz(Vcr) = ωθ(Vcr) (3.18)

The analysis is most commonly conducted in the frequency domain due to the flutter derivatives
being functions of reduced frequency (Fujino and Siringoringo, 2013). An iterative procedure is
then required to solve Equation 3.17 as the identification of the AD’s in the impedance matrix
Êη(ω, V ) demands known values of ωr and Vcr.

3.4 Experimental Fluid Dynamics

Analytical solutions to the flutter problem of bridge decks are proven unsatisfactory, clarify-
ing the need for experimental fluid dynamics. Scaling laws are used to determine the dynamic
similarity between different experimental cases and predict bridge performance from model ob-
servations. The static forces and the SE forces are recorded from laboratory experiments to
model the static coefficients and the aerodynamic derivatives, respectively.

3.4.1 Scaling laws

Scaling laws are applied to obtain similitude between the bridge and the section models tested
in the wind tunnel. From dimensional analysis, it is found that while the governing equations
and fundamental laws maintain, the downsizing leads to disruption in the equilibrium of forces
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that dominate. Scaling laws are utilized to describe the variation of physical quantities with
the size of the system while the other quantities remain constant. Based on the Π-theorem
of Buckingham a set of dimensionless parameters must be equal for the real structure and the
section model (Buckingham, 1914). It is essential to employ dimensional parameters to predict
structure performance from model observations. In the thesis, the dimensionless parameters
considered are (Gimsing and Georgakis, 2012):

Reduced frequency: K =
Bω

V
Strouhal number: St =

fsD

Vs

Reduced velocity: Vr =
V

Bω
Scruton number: Sc =

mζ

ρD2

Reynolds number: Re =
V D

ν

Where B is the width; ω is the angular frequency of motion; V is the mean wind velocity; ν is
the kinematic viscosity of air (approx. 1.15× 10−5 m2s−1); fs is the vortex shedding frequency;
D is the characteristic dimension set to the girder depth; Vs is the velocity at which vortices are
shed; m is the mass per unit length; ρ is the air density and ζ is the structural damping ratio
which may be found from direct measurements from the logarithmic decrement of the envelope
(Chopra, 2012).

The relative importance between the inertia forces and viscous forces of the fluid is expressed
through the Reynolds number. The dynamic forces of traditional bluff bridge decks appear
to be independent of the Reynolds number. However, the dynamic forces of the streamlined
sections commonly used today show Reynolds number dependency. The Stonecutters Bridge
girder reveals a 30% variation in drag force coefficient with wind speeds (Larose and D’Auteuil,
2006). Similarly to the effect of sharp edges of bluff girders, fixing the location of flow separation
can reduce the Reynolds number dependency of streamlined sections (Lee et al., 2014).

The Strouhal number represents the non-dimensional vortex shedding frequency and is a critical
parameter for VIVs. Considering twin-decks, the Strouhal number has been found to increase
with increasing gap (Kwok et al., 2012; Laima and Li, 2015; Álvarez et al., 2018). Modifications
causing an increase in the Strouhal number makes it more difficult to achieve the serviceability
requirements of the bridge.

The main cables and hangers of suspension bridges are prone to vibration due to their low
damping, high flexibility and small mass. The Scruton number is a non-dimensional mass-
damping parameter used to evaluate the propensity of cables to vibrate due to dry inclined
galloping and rain-wind-induced vortex shedding. According to Gimsing and Georgakis (2012),
Sc > 10 is considered appropriate to avoid such vibrations for smooth cables subjected to typical
wind velocities.

3.4.2 Static Coefficients

When performing static tests with rotation of the deck, the static coefficients can be derived as
functions of the angle of inclination (α) of the bridge deck relative to the mean wind flow. The
force and moment coefficients, CD, CL and CM , establish a relation of the measured static forces
to a chosen reference area (Strømmen, 2010). By analyzing magnitude and trend with respect
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to the angle α the different static coefficients give insights to pressure distributions around the
bridge deck girders and can reveal Reynolds dependency. The relation to the static forces can
be defined in the following manner


CD(α)

CL(α)

CM (α)

 =
1

1
2 ρ V

2D
·


qD
D
B qL
D
B2 qM

 (3.19)

where qD, qL and qM are the measured static forces for drag, lift and moment per unit length.
B and D are the chosen reference width and depth respectively while ρ denotes the air-density
and V is the mean wind velocity.

Seen as the static load coefficients have a non-linear variation, it is preferable to simplify their
curves. By adapting quasi-steady theory one can utilize the following linear approximation


CD(α)

CL(α)

CM (α)

 =


CD(ᾱ)

CL(ᾱ)

CM (ᾱ)

+ αf ·


C ′D(ᾱ)

C ′L(ᾱ)

C ′M (ᾱ)

 (3.20)

here, a mean angle ᾱ and the fluctuating part of α namely αf are introduced together with
the first derivative of the coefficients with respect to the angle of incidence. These derivatives,
C ′D, C ′L and C ′D, describe the slopes of the static coefficients dependant on ᾱ. The quasi-steady
assumptions can then give insights into the global trends and the tendency of the structure to
exhibit different instabilities such as galloping and torsional flutter (Chen and Kareem, 2002).

3.4.3 Aerodynamic Derivatives

The study of aerodynamic instabilities originated from the aerospace industry. A theory was
developed for the flutter problem of aircraft wings with a thin airfoil assumption by Theodorsen
(1949) and further adopted for the wind-induced vibrations of bridges by Scanlan and Tomko
(1971). ADs are used to define the SE forces and evaluate the propensity of the bridge to become
unstable at high wind velocities. Assuming single harmonic motion and linear behaviour, the
following unsteady SE forces on the bridge deck are obtained by Scanlan and Tomko (1971). In
compact form the SE forces are expressed as:

qSE = Caeṙ + ·Kaer (3.21)

where

qSE =


qSEy

qSEz

qSEθ

 ṙ =


ṙy

ṙz

ṙθ

 r =


ry

rz

rθ
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Cae =
ρV BK

2


P ∗1 P ∗5 BP ∗2

H∗5 H∗1 BH∗2

BA∗5 BA∗1 B2A∗2

 Kae =
ρV 2K2

2


P ∗4 P ∗6 BP ∗3

H∗6 H∗4 BH∗3

BA∗6 BA∗4 B2A∗3



P ∗k , H∗k and A∗k for k = [1, 6] are the dimensionless coefficients termed ADs or flutter derivatives
associated with drag, lift and pitching moment, respectively. The self-excited forces are func-
tions of ADs, reduced frequency (K), mean wind velocity (V ), air density (ρ), section width
(B), displacements (r) and velocities (ṙ). By being associated with velocity- or displacement-
proportional forces, the ADs are either damping or stiffness related.

The influence of ADs on the stability limit remains to be understood completely. Studies have
verified that the influence of ADs can vary according to the classification of motion-induced in-
stabilities (Fujino and Siringoringo, 2013; Gimsing and Georgakis, 2012; Chen, 2007; Strømmen,
2010; Trein and Shirato, 2011). Table 3.2 shows how ADs may relate to unstable behaviour.

Table 3.2: Influence of ADs on unstable behaviour

Motion induced instability Condition for instability to occur

Static divergence A∗
3 > 0

Galloping H∗
1 > 0

Torsional flutter A∗
2 > 0

Coupled flutter H∗
1 > 0, A∗

2 > 0, A∗
1xH∗

3 > 0,|H∗
2 | > 0, |H∗

3 | > 0, |A∗
1| > 0,

|A∗
3| >> 0, |A∗

4| > 0

Analytical expressions for ADs have been established considering simple cases. For other cases,
experimental determination of ADs is required (Tamura and Kareem, 2013). ADs may be identi-
fied by wind tunnel tests of section models applying free or forced vibrations. The free vibration
tests give more realistic in-wind behaviour, while the forced vibrations tests provide less scat-
ter (Siedziako and Øiseth, 2017a). Through forced vibration tests, ADs can be identified in
the frequency or time domain. The frequency-domain methods are simpler. However, spectral
leakage effects due to frequency domain truncation may be present. Spectral leakage can re-
duce the accuracy of estimation significantly as it causes a redistribution of energy within the
spectrum. The more complex algorithm of a time-domain approach may therefore be preferable
(Siedziako et al., 2017). As suggested by Han et al. (2014), the time domain method where the
model is fitted to the recorded time series of self-excited forces by least squares is applied. The
self-excited forces can be obtained from forced vibration tests by subtracting the static forces,
buffeting forces and inertia forces from the measured total forces (Siedziako et al., 2017). In
compact form, the self-excited forces in Equations 3.21 are expressed as

qSE = XE (3.22)
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where

qSE =


qSEy,1 qSEz,1 qSEθ,1

qSEy,2 qSEz,2 qSEθ,2
...

...
...

qSEy,n qSEz,n qSEθ,n

 X =


ṙy,1 ṙz,1 ṙθ,1 ry,1 rz,1 rθ,1

ṙy,2 ṙz,2 ṙθ,2 ry,2 rz,2 rθ,2
...

...
...

...
...

...

ṙy,n ṙz,n ṙθ,n ry,n rz,n rθ,n
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∗
3 BK2
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4


for n sample numbers in the time series. X is the motion history matrix and E is the equiv-
alent coefficient matrix containing the ADs. By minimizing the sum of squares the equivalent
coefficient matrix is estimated as follows:

E = (XTX)−1XT qSE (3.23)

3.5 Flutter Analysis

Before the computer age, the common methods for determining the stability limit was the bi-
modal approach and Selberg’s formula (Chen et al., 2001). To ensure a wind-resistant design
of long-span suspension bridges with low natural frequency, examination of coupled flutter at
a higher reduced velocity range was required. Higher-order modes were found to contribute
significantly, resulting in the development of multi-mode flutter analysis procedure (Jain et al.,
1996). In the frequency domain, multi-mode analysis determines the stability limit by finding
a solution to the complex eigenvalue problem. Equation 3.3 reduces to the complex eigenvalue
problem by setting η(t) = η0eλt and neglecting the turbulence-induced buffeting force and the
aerodynamic mass effect(

λ2M̃0 + λC̃0 + K̃0

)
η0e

λt =
1

2
ρV 2

(
K̃ae +

λb

V
C̃ae

)
η0e

λt (3.24)

which results in complex eigenvalues of

λj = −ζjωj + iωj

√
1− ζ2

j ; (j = 1, ..., Nmod) (3.25)
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To obtain a solution to the complex eigenvalue problem, iterations are required as the aerody-
namic modal stiffness matrix (K̃ae) and aerodynamic modal damping matrix (C̃ae) depend on
the mean wind velocity and frequency. The flutter onset is triggered by unstable behaviour due
to negative damping. When the real part of Equation 3.25 equals zero in one of the in-wind
modes, the damping ratio becomes zero which identifies the stability limit (Vcr) (Chen, 2007).
The following pseudocode describes the multi-mode flutter analysis process.

INPUT Modal properties: φ,M̃0, ωj
INPUT ADs: P ∗1 − P ∗6 , H∗1 −H∗6 , A∗1 −A∗6
SET initial in-wind velocity: Vk = V0

SET initial wind velocity increment: ∆V
WHILE in-wind velocity is less than critical wind velocity: Vk < Vcr

FOR mode j in Nmod modes
ESTABLISH aerodynamic modal stiffness and damping matrices: K̃aej , C̃aej

SOLVE complex eigenvalue problem (Equation 3.24)
END
IF real part of resulting eigenvalue matrix is less than zero: Re(λ) < 0

INCREASE in-wind velocity: Vk+1 = Vk + ∆V
ELSE

HALF wind velocity increment: ∆V = ∆V
2

DECREASE in-wind velocity: Vk+1 = Vk −∆V
IF wind velocity increment is less than 0.1ms−1: ∆V < 0.1

EQUATE critical wind velocity to in-wind velocity: Vcr = Vk
END

END
END
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Chapter 4

Cable Supported Bridges

The collapse of the Tacoma Narrows Bridge in 1940 marks a turning point in the evolution of
cable-supported bridges. Today, it is a common perception that the failure of the bridge was due
to torsional flutter. The two main factors responsible for the collapse was nearly no torsional
rigidity and the aerodynamic unstable design of the bridge deck (Fujino and Siringoringo, 2013).
After the Tacoma Narrows Bridge collapse, the focus of the prominent designers of the period
shifted from considering only static wind pressure to the phenomena of aerodynamic stability.
This chapter introduces existing concepts and vibration control measures of cable-supported
bridges.

4.1 Presentation of Multi-Box Girders

The multi-box girders of one cable-stayed bridge (Stonecutters Bridge) and four suspension
bridges (Yi Sun-Sin Bridge, Xihoumen Bridge, 1915Çanakkale Bridge and Messina Bridge) are
studied in this section. Table 4.1 presents the cable-supported bridges arranged by increasing
main span. The outlines are mainly obtained from Brancaleoni (2016) and show the shape
of the deck including the countermeasures of guide vanes and spoilers. Other attachments
such as railings, wind screens and maintenance rails are omitted. Key information about the
construction period, main span, gap to depth ratio and slenderness are collected in Table 4.1. A
tendency is evident for the suspension bridges of increasing gap to depth ratio with increasing
main span.

Based on the experience gained from instability problems of the traditional single-box girders,
it was found that the span of the Xihoumen Bridge could not achieve the stability requirement
of 78.7 ms−1 with one girder only (Gimsing and Georgakis, 2012). To counteract flutter, the
Xihoumen Bridge adopted the twin-box girder and initiated a trend for the proceeding design
of suspension bridges. A critical wind speed of 88 ms−1 was estimated for the twin-box configu-
ration of the Xihoumen Bridge. However, for the Stonecutters Bridge, the gap between the box
girders was implemented due to the space required for the pylon shaft to pass between. The
twin-box girder design is not justified by aerodynamic stability as a single-box girder could have
satisfied the critical flutter velocity (Gimsing and Georgakis, 2012). The wind-induced problem
encountered by the Stonecutters Bridge was VIV. Guide vanes were mounted at the knuckle
lines of the bottom girder plates to diminish vortex formation (Larsen et al., 2008).
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Table 4.1: Multi-box girders

Stonecutters

Construction period: 2004-2009 Gap/depth: 3.97

Main span: 1018 m Slenderness: 0.0035

Yi Sun-Sin

Construction period: 2007-2012 Gap/depth: 1.54

Main span: 1545 m Slenderness: 0.0018

Xihoumen

Construction period: 2005-2007 Gap/depth: 1.71

Main span: 1650 m Slenderness: 0.0021

1915Çanakkale

Construction period: 2017- Gap/depth: 2.57

Main span: 2023 m Slenderness: 0.0017

Messina

Construction period: - Gap/depth: 2.96

Main span: 3300 m Slenderness: 0.0007
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The crossing of the Messina Straits is currently the longest span suspension bridge investigated.
To address the issue of aerodynamic stability, the deck design is composed of three separated
and streamlined box girders (Gimsing and Georgakis, 2012). The 1915Çanakkale Bridge is
under construction about to become the largest suspension bridge in the world at the time of
completion (Generate Directorate of Highways, 2020).

4.2 Countermeasures

Engineering solutions to reduce the undesirable vibration effect of long-span bridges have been
adopted as countermeasures. Various vibration control measures are introduced to prevent the
occurrence of different instability phenomena. However, absent are clear guidelines for engineers
to select suitable countermeasures for long-span suspension bridges (Zhou et al., 2019). The
relevant countermeasures of the thesis are presented and limited to the central slot concept and
the installation of guide vanes and dampers.

4.2.1 Gap

The introduction of a gap reduces the pressure difference between the upper and lower girder
surfaces and improves the flutter stability (Fujino and Siringoringo, 2013). The VIV performance
of a twin-box girder is inferior to a single-box girder (Yang et al., 2016; Álvarez et al., 2018). At
a critical gap to depth ratio, the flow surrounding the gap alters as seen in Figure 4.1. Small gaps
prevent the formation of vortices behind the upstream girder and vortices are alternately shed
behind the downstream girder. Whereas for moderate gaps, the flow detaches at the leeward side
of the upstream girder and vortices emerge in the gap interfering with the downstream girder.
For large gaps, a vortex street is created behind both girders without mutual interference. From
wind tunnel testing, Laima and Li (2015) and Kwok et al. (2012) has identified a critical gap
to depth ratio of approximately 2.14. However, the effectiveness of the flutter performance is
strongly dependent on the girder design and the composition of attachments (Yang et al., 2015).

(a) Small gap

(b) Moderate gap

(c) Large gap

Figure 4.1: Expected flow regime of various gaps
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4.2.2 Guide Vanes

Installing guide vanes beneath the girder of the Stonecutters Bridge is an efficient countermeasure
for migrating the response due to vortex shedding (Larsen et al., 2008). By smoothing the air
flow around the corners of the upstream girder section, the guide vanes prevent the formation of
vortices at the flow separation point. Consequently, the vortex shedding street of the upstream
girder no longer influences the downstream girder. Figure 4.2 illustrates the expected flow regime
for a twin-box girder without and with guide vanes. Through a series of wind tunnel tests, Yang
et al. (2016) explored the VIV performance of guide vanes of twin-box girders, revealing a
dependency of effectiveness on the position and geometry of the guide vane along with the gap
to width ratio of the deck.

After the completion of the Great Belt Bridge, vortex wind-induced problems were discovered.
Aiming to suppress the VIV of the single-box girder, guide vanes were installed (Fujino and
Siringoringo, 2013). The proceeding investigations by Frandsen (2004) found a reduction in
critical flutter wind velocity of the suspension bridge due to the addition of guide vanes. However,
an increase in critical flutter wind velocity was found with the installation guide vanes on twin-
box girders (Zhou et al., 2019). The external guide vanes exhibiting superior flutter performance
compared to the internal guide vanes.

(a) without guide vanes

(b) With guide vanes

Figure 4.2: Expected flow regime without and with guide vanes

4.2.3 Tuned Mass Dampers

The tuned mass damper (TMD) exploits the physics of an oscillator; a system that when dis-
placed from its equilibrium position experiences a restoring force. The structural damping in the
cables of suspension bridges is very low and dampers are often installed to mechanically control
the vibrations (Gimsing and Georgakis, 2012). The Millennium Bridge is a prime example. The
lateral suspension bridge serves as a pedestrian crossing of the River Thames in London. At
the opening of the bridge into the new millennium, unpleasant swaying was experienced. The
crossing crowd of walking people falling into step created a frequency that matched the natural
frequency of the bridge. To counteract the bridge vibrations, dampers were installed. The fre-
quency associated with the damper is tuned to the resonant frequency of the bridge. When the
bridge is excited at the tuned frequency, the damper moves out of phase with the bridge. By
absorbing the kinetic energy from the bridge, the TMD reduces the amplitude of vibration and
increases the damping ratio.
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Chapter 5

Girder Configurations and Design

The aim of this thesis is to derive at a twin-box section with sufficient aerodynamic stability for
the super-long span. The first step is to determine an initial selection of cross-sections whose
geometry is optimized based on prior knowledge of the bridge deck aerodynamics. According
to Fujino and Siringoringo (2013) a low width to depth ratio diminishes the susceptibility of
coupled and torsional flutter. Also mentioned, is the increased flutter stability by streamlining
the decks and the adoption of fairings. Effectiveness of the gap is depends on the gap to width
ratio of the configurations as well as the cross-sectional design (Laima and Li, 2015). Further
reading provides insights to the possible effects of each chosen attribute.

By combining three designs with three different gap widths, a potential to distinguish between
the behaviour of the design attributes from the gap width effects is enabled. The three different
cross-sectional designs are given the names S1, S2 and S3 and can be seen in Figure 5.1.

Figure 5.1: The three chosen cross-sectional designs of the twin-decks, with length units in [m]
and 1:1 scale
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The geometry of S2 is obtained by interpolation of the coordinates of S1 and S3 in Matlab.
Through interpolation, a geometric relation is obtained between S1, S2 and S3 which is beneficial
when observing the influence of the geometric variations. For all three girder cross-sections, the
non-varying geometric properties are the girder depths and the roadway, with values of 2.5 m
and 14 m respectively. The change in total widths of S1, S2 and S3 are caused by the varying
angles of the inner and outer girder tip. Figures of the cross-sections with detailed dimensions
are presented in Appendix B.

Multiconsult proposed an asymmetrical streamlined twin-box girder design for the suspension
bridge crossing the Sulafjord in 2015 (Multiconsult, 2015). Wind tunnel tests showed good
results for galloping and torsional instabilities but were on the other hand too vulnerable for
both flutter and static divergence (Grongstad and Kildal, 2018). Neither the Multiconsult design
nor a symmetrical less streamlined version of the design studied in Giske and Midtgarden (2018),
met the critical flutter wind speed requirements of the bridge crossing of the Sulafjord.

A significant alteration in the girder designs of this thesis from the previously tested cross-
sections is the narrow depth with respect to width. When addressing the flutter issue, less
separation of the wind flow at the tip can mitigate the formation of vortexes along the girder
surface. By the employment of fairings at the outer parts of the cross sections the flutter stability
can be improved (Fujino and Siringoringo, 2013). The fairing angle is the horizontal angle of
the inclined web. The cross-sections all have fairing angles below 15 degrees, which has proven
to be beneficial for the aerodynamic stability (Wang et al., 2011).

The gap is defined as the horizontal distance between the inner uppermost points of the girders
circumference. For this thesis, all three cross-sections will be tested with gaps of 5.5, 10.5 and
15.5 m, labelled G1, G2 and G3, respectively. By studying the existing long-span suspension
bridges with twin-box girders, presented in Table 4.1, noticeable is a trend of an increasing gap
to depth ratio with increasing main span for the suspension bridges. The gap to depth ratio for
this thesis can be seen in Table 5.1 and are all above the critical ratio at approximately 2.14
(Laima and Li, 2015). Testing with different gap to depth ratios is favourable to observe both
if the behaviour of the Strouhal number will be as expected as well as the effect the different
gaps has on the flutter stability.

Gap Gap width [m] Gap to depth ratio

G1 5.5 2.2

G2 10.5 4.2

G3 15.5 6.2

Table 5.1: Chosen gaps and the corresponding gap to depth ratio.
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Chapter 6

Global Element Models

Global element models of the suspension bridge crossing the Sulafjord are used to extract the
modal parameters required to calculate the aerodynamic stability limits. The feasibility study of
the Sulafjord crossing by Multiconsult is used as a reference for the bridge design (Multiconsult,
2015). Figure 6.1 shows the finite element (FE) model of the suspension bridge crossing the
Sulafjord.

Figure 6.1: FE model of the Sulafjord Bridge

For each of the nine girder configurations, a FE model in Abaqus/CAE is created with assis-
tance from Postdoc. Øyvind Wiig Petersen by writing the input file using Python commands
(Dassault Systèmes Simulia Corp., 2014). The script Sulafjorden TD21 S1G1 .py used to
model S1-G1 is provided in the electronic attachments (Appendix A). Abaqus scripting is the
preferred approach for parametric modelling due to the efficiency of parameter modification and
simplicity of implementing new commands. The script is a development of the work presented by
Dombu and Gjelstad (2019), which models the Langenuen Bridge. The existing script remains
unchanged except for the following modifications:

• A second girder is introduced to obtain a twin-box girder.

• The pylon type is changed from ’A’-shaped to ’H’-shaped pylons and multiple portal beams
are added.
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• A function that searches for nearby points is implemented to ease the creation of connection
elements and ties with changing input variables.

• The geometric variables and section properties of the model parts are modified to fit the
bridge design of the Sulafjord crossing.

6.1 Modelling Principles

The workflow in Abaqus is illustrated in Figure 6.2. The green boxes are input parameters, the
grey boxes represent the process and the red box is the desired output. The script AbaqusEx-
portModal.py is provided by Postdoc. Øyvind Wiig Petersen to extract the modal properties
from the .odb-files containing the results from the Abaqus simulations. The modal parameters
are further used in the computation of the aerodynamic stability limits.
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Figure 6.2: Flowchart illustrating the workflow in Abaqus

The Abaqus model is assembled similar to the construction stages of a suspension bridge. To
provide an illustation, Figure 6.3 demonstrates the construction of the Hardanger Bridge, which
replicate the static steps created in Abaqus. The pylons are withdrawn using retraction cables
to obtain a natural vertical position of the pylons when loaded by the self-weight of the bridge.
For simplicity, the force of the retraction cables at the tower tops are omitted, resulting in an
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inward lean of the towers at the final construction stage (Step 3). This is a valid assumption as
inward leaning towers will have minor impact on the flutter analyses. An iteration procedure
is executed in Abaqus to account for the displacement due to self-weight with a margin of less
than 0.1 m. The adjusted input parameters are the main span sag of the cables and the vertical
curvature of the girders.

Figure 6.3: Construction of the Hardanger Bridge (Illustration: Statens vegvesen (2011))

6.2 Geometry

Figure 6.4 presents the definitions of the input parameters in Abaqus and the geometry at the
final construction stage. The beams representing the girders are positioned in the mass centre
of the girders. The parameter p defines the horizontal distance between the girders, which is
unique for each configuration (Table 6.1).
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Figure 6.4: Input parameters

Table 6.1: Values of the parameter p

p [m]

Config. G1 G2 G3

S1 15.032 20.032 25.032

S2 15.838 20.838 25.838

S3 16.310 21.310 26.310
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6.3 Section Properties

The section properties of the cables, hangers, pylons and portal beams are tabulated in Table
6.2. Modal properties are not sensitive to pylon stiffness. Therefore, the pylons are assigned
box profiles with simplified constant cross-section and thickness. Figure 6.5 illustrates the con-
servatively selected dimensions for the pylons and the portal beams.

Table 6.2: Section properties

Component Material E ρ A I11 = I22 J

[GPa] [kgm−3] [m2] [m4] [m4]

Cables Steel 200 7850.0 6.3110× 10−1 3.170× 10−2 6.340× 10−2

Hangers Steel 155 7850.0 6.3330× 10−3 3.192× 10−6 6.384× 10−6

Pylons Concrete 37 2500.0

Portal beams Concrete 37 2500.0

12.5 m

14
.5

 m

1.5 m

var.

A

A

12.5 m

14
.5

 m

1.5 m

5 m

8 m

1 m

Plan of pylons Section A

A

A

Figure 6.5: Profiles of pylons and portal beams

6.4 Added Girder Inertia

In Abaqus, the bridge deck girder is modelled using line-like elements without height and width
dimensions. Hence, geometric shape variations are accounted for by introducing added girder
inertia, linear mass and eccentricities for each girder cross-section. The modelled beam elements
are placed in the shear centre of each cross-section thereby obtaining zero eccentricities for
girders and diaphragms. Calculated values for configuration S1-G1 is presented in Table 6.3 and
identical tables for all 9 configurations can be found in Appendix C.

Table 6.3: Added girder inertia for S1-G1

Component Linear mass e1 e2 I11 I22

[kg/m] [m] [m] [kgm2/m] [kgm2/m]

Girder 6045.550 0 0 5542.885 143309.600

Diaphgrama 562.119 0 0 201.824 9034.565

Asphalt 2800.000 2.234 1.287 1.493 45733.333

Hanger heads 33.333 9.234 1.047 0.025 0.025

Cross-beams 191.125 -6.141 0 240.794 120.449
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Neither stress analysis nor buckling of the cross-sectional plates is performed in this thesis as
the focus is set on aerodynamic performance of twin-deck bridge girders with varying geometric
shapes and gaps. Capacity calculations were performed for a twin-deck solution for the Sulafjord
bridge crossing by Multiconsult (Multiconsult, 2015). To ensure reasonable values the plate and
asphalt thickness, as well as stiffener geometry and dimensions are adopted from their feasibility
study.

(a) Type 1: For top plate (b) Type 2: For remaining plates

Figure 6.6: Geometry and dimensions of stiffeners

The inertia forces I11 and I22, around the local y-axis and z-axis of the girders respectively, are
calculated using the computational program CrossX for thin-walled cross-sections. A simplified
version of the cross-section with only the main outer plates and an effective wall thickness (teff )
is used. The effective thickness is derived by dividing the total steel area of the cross-section,
plates and stiffeners, by its circumference. The main aim by introducing stiffeners is therefore to
derive reasonable values for cross-sectional linear weight and total steel area for the calculations.

The placement and number of the longitudinal stiffeners in Figure 6.7(b) is only based on, not
identical to, a detail drawing from Multiconsult. Minimal variations in the circumferences of
S1, S2 and S3 gave a similar amount of stiffeners and steel area, resulting in a mean value of
teff = 22.5mm for all cross-sections. The dimensions and layout of the cross beams are based
on the concept study of Rambøll (2015), due to the lack of detailed drawings in Multiconsult
(2015). The dimensions of the cross-beam stiffeners are equivalent to stiffener of Type 1.

2100

2100

(a) Cross-beam

Asphalt Hanger head

Cross-beam Diaphragm

SS
(Girder Shear Centre)

Stiffener Type 1

Stiffener Type 2

(b) Right box girder with details and proposed stiffener layout

Figure 6.7: Cross-beam and right box girder of S1 with details

The only gap dependent parameters are the horizontal eccentricities and the length of the cross-
beams. The shear centre of the cross-beam is vertically aligned with the girder shear centre,
obtaining zero eccentricity. Cross-beams and hanger heads are added to the girder every 4 m,
at the same span-wise position. Diaphragms of 10 mm thickness are spaced with 24 m intervals
along each girder. The total linear mass of each deck configuration is tabulated in Appendix D.
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Chapter 7

Wind Tunnel Tests

7.1 Section Models

Wind tunnel testing is a crucial part of determining the aerodynamic stability of a proposed
cross-sectional design for a super long-span suspension bridge. A section model is a down-scaled
replica of a section of the bridge deck girders. The width of the wind tunnel introduces a length
limit to the section models. To ensure sufficiently slenderness for all gap widths, the section
models are built in a 1:50 scale with a length of 2.64 m. This chapter addresses the different
components and explains the building process.

7.1.1 Girders

The section models are made out of a PVC-based material called Divinycell, which is a light
compact material that can imitate the low mass of a slender bridge girder and is easy to mill into
different shapes. Due to the low strength and stiffness of Divinycell, an aluminium pipe is used
as reinforcement in the longitudinal direction. The pipe also serves as a connection to the load
cells in the wind tunnel. The girders are assembled as sandwich elements with Divinycell-blocks
on each side of the aluminium pipe. Prior to mounting, three half-circle shaped paths are milled
into each Divinycell-block. One path for the aluminium pipe, and two paths with the diameter of
the wooden handle of the TMDs. One of the smaller paths is milled out to even out the weight
loss of the TMD path. The model parts are glued together with ”Casco Superfix Mounting
Glue” spread out with spatulas and left to dry with applied pressure, see Figure 7.1(a).

For milling, a CNC-router of the model LTS-1530-4A provided by the Structural Engineering
Department at NTNU as seen in Figure 7.1(b), is used. The router makes it possible to mill
an entire section all at once, resulting in only 6 milling jobs, one for each girder. By following
a three-axis system, the router uses coordinates obtained from a Matlab script for each girder
section to orient itself during milling. Placing of the model and choice of local origo before
milling is crucial to the accuracy of the finished results. A vacuum system restrains the finished
sandwich elements of the girders during the milling. Due to the high precision of the router, the
position of the models has to be completely parallel to the longitudinal axis of the CNC-router
system before restraining them. Only one side is milled at a time, the milling procedure is
repeated for the bottom face of the model.
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(a) Glued sandwich elements (b) Milling with CNC-router (c) Damaged S3 fixed with sealant

Figure 7.1: Pictures from building process

The steep inner angle of S3 caused the suction cap of the drill to rip the model. A transparent
sealant of the type ”Casco Clearseal” was applied to smooth out the severe damages, see Figure
7.1(c). The required amount of sealant resulted in a slight increase in the self-weight for the
upwind girder of S3. Smaller cracks and misplaced holes are also sealed off with the sealant
to guarantee a smooth surface as possible. In addition, although the milling is highly precise,
all section models have been sanded with fine sandpaper for the removal of dust and smaller
inaccuracies.

7.1.2 Built-in Tuned Mass Dampers

In the previous attempt on the stability limit for the bridge crossing the Sulafjord made by
(Grongstad and Kildal, 2018), a self-made TMD proved to be favourable. To enhance the
chances of improved stability of the girder, a built-in TMD is included in each section model.
The design of the TMDs is proposed by Ole Øiseth as an upgraded version of the TMDs used
in (Grongstad and Kildal, 2018). It is composed of a wooden handle and a wooden skewer with
20 coins at the tip, assembled as shown in Figure 7.2. The skewer and coins make up for a
cantilever with a lumped mass of approximately 87 g. The wooden handle is glued and clamped
inside the section models, while the coins are glued to the skewer which can be pulled to the
desired length. As a result, the cantilevered mass can move freely when the section models start
vibrating. A rough estimate showed a frequency of 8 Hz for a TMD with a cantilever length of 11
cm. The frequency of the section models are unknown prior to testing, so a slit for adjustment
is cut out of the Divinycell material above the TMDs.
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Figure 7.2: Self-constructed TMD illustrating a cantilever of 11 cm

7.1.3 Railings

Attachments are added to the bridge girder section models due to research by Siedziako and
Øiseth (2017b) revealing a significant impact on the wind tunnel test results. Handrails and
crash barriers can cause larger flow separation and decrease in the vortex shedding frequency,
resulting in significant effects on the VIV (Laima et al., 2018). These attachments also serve as
safety measures on a finished bridge and cannot be omitted.

Figure 7.3: Picture of finished handrails (top) and crash barriers (bottom)

All section models are tested with railings, both handrails and crash barriers. One set of railings
are used for all tests, hence the railings are transferred between the section models. The railings
are milled out of a hard transparent plastic plate by the same CNC router as for the girders.
Due to the vacuum system, the router cannot cut all the way through the plate and the railings
have to be detached from the plate with a knife, consequently causing quite rough edges. To
ensure that the railings do not interfere excessively with the wind flow during testing, the edges
are scraped smooth with a knife. 3D printing could have shortened the production time of the
railings significantly. Seen as the railings are to be transferred the material used for 3D printing
is evaluated as too fragile and therefore excluded as an option.
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7.1.4 Guide Vanes

To diminish VIV, guide vanes are attached to the bottom girder plates at the outer knuckle
lines. The guide vanes are modelled with scaled-down dimensions of the guide vanes installed
at the Great Belt Bridge (Larsen et al., 2000). Figure 7.4 shows the guide vanes created in
Solidworks (Dassault Systèmes Simulia Corp., 2020). Protruding spikes are made to ease the
attachment of the guide vanes to the bottom of the girder. The angle (α) obtains values of
171.12 ◦, 169.51 ◦ and 167.20 ◦ for S1, S2 and S3, respectively. The guide vanes are 3D-printed
with the powder-based material PA2200 using the fused deposition modelling (FDM) device
EOS P 395. Due to the limitations of the 3D printer, segments with a length of 291.5 mm are
produced. PA2200 is a high-performance alternative to polylactic acid (PLA). However, because
of the brittle material properties, minimum model thicknesses of 1 mm and 2 mm are selected
for the plate and the installation spikes to avoid damage to the guide vanes.
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Figure 7.4: Model of guide vanes

7.2 Experimental Setup

The tests are conducted in the wind tunnel located in the Fluid Mechanics Laboratory at NTNU.
The wind tunnel is a closed loop with a 2.7 m wide, 2.0 m high and 11 m long test arena. At
the inlet, the wind profile is uniform and the flow is close to laminar (Siedziako et al., 2017). A
pitot probe positioned halfway between the inlet and the rig computes the wind speed from air
density variations with temperature. Figure 7.5 shows the experimental setup with the section
models placed in the wind tunnel. Railings and guide vanes are attached to the girders. The
actuators are mounted on the outer walls of the wind tunnel generating horizontal, vertical and
rotational motion. At the ends of the section models, load cells are installed to measure the
load. The gap is varied by moving the section models which are fastened to pre-drilled holes in
the connection steel beam.
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(a) Wind tunnel test arena

(b) Girder attachments (c) Forced vibration rig (d) Bult-in TMD

Figure 7.5: Section models installed in the wind tunnel

7.3 Testing Procedure

A series of wind tunnel tests are performed on the nine girder configurations. For the calculation
of the critical wind speed, estimation of the mass and damping is required. The mass per
unit length of the section models with attachments is recorded (Appendix D). The damping
is determined from the decay of a free vibration time series initiated by a gentle stroke to the
girder. The built-in TMDs in Figure 7.5(d) are manually tuned approximately to the natural
frequency of the section model by sliding the rod altering the position of the coins relative
to the wooden block. As TMDs are challenging to replicate in full-scale, it is desirable to
achieve adequate damping and VIV performance without the influence of the TMD. Therefore,
additional damping and VIV tests with a disabled TMD is conducted for S2-G3 by moving
the coins to the cantilever support. In the wind tunnel, air density fluctuations of 1.18-1.19
kgm−3 are experienced. The air density of 1.2 kgm−3 is used as a conservative measure in the
proceeding computations. With a sampling frequency of 200 Hz, the following wind tunnel tests
are conducted.
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7.3.1 VIV Tests

Vibrations due to vortex shedding are detected by performing a VIV test. While the section
model is fixed in neutral position, the wind speed is gradually increased. With resonance,
vibrations are observed when the natural frequency of the model coincides with the vortex
shedding frequency. Vibrations due to vortex shedding disturbs the measured load. Therefore,
the wind speeds causing VIVs are avoided in the proceeding quasi-static and forced vibration
tests.

7.3.2 Quasi-Static Tests

To determine the static coefficients, quasi-static tests are performed. With a frequency of 0.008
Hz and an amplitude of 8 degrees, the section model is quasi-statically rotated such that the
inertia forces can be neglected. In addition to a reference test in still-air, the procedure is
repeated for wind speeds of 6, 8 and 10 ms−1 to reveal Reynolds number dependency of the
static coefficients.

7.3.3 Forced Vibration Tests

Forced vibration tests are conducted to identify the eighteen ADs. The section models are forced
into the single-harmonic motions listed, each providing the results associated with six ADs.

• Horizontal motion with amplitude of 20 mm

• Vertical motion with amplitude of 20 mm

• Torsional motion with amplitude of 1 degree

The frequencies 0.25, 0.5, 0.8, 1.1, 1.4, 1.7, 2.0 and 2.5 Hz are considered in the forced vibration
tests. The reference still-air test is conducted to measure the inertia force and the in-wind tests
with wind speeds of 6 and 8 ms−1 provide the data points in the ADs plots.
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Chapter 8

Results, Analysis and Discussions

This chapter presents the processed data from the global element models and wind tunnel
tests in addition to the predicted stability limits. The scripts importAbaqusResults.m, VIV.m,
staticCoeffAllTests.m, aerodynamicDerivativesAllTests.m and flutterAnalysis.m are provided by
Prof. Ole Øiseth to acquire the modal properties, results from the VIV tests, static coefficients,
aerodynamic derivatives and predicted stability limits, respectively. The instability behaviour
of the individual configurations are investigated and comparisons between the configurations are
made. Lastly, the limitations of the results are presented.

8.1 Modal Properties

To estimate the stability limit, the modal properties are obtained from FE modal analysis.
Appendix E provides the results for all FE-models processed using modalProperties.m. The first
vertical mode is illustrated in Figure 8.1.

Figure 8.1: First vertical mode of FE-model
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The modal properties for S1-G1 are presented in Table 8.1. The 50 first modes dominated by
girder deflection is considered to evaluate the stability. The mode numbers, mode names, gen-
eralized masses and generalized stiffnesses are presented and arranged by increasing frequency.
Alongside, the displacement plots for horizontal, vertical and torsional motion are displayed.
The mode names are composed of the horizontal (H), vertical (V) and torsional (T) direction of
motion followed by an accumulating index. Considering each direction of motion separately, the
generalized stiffness increases with the frequency, while the generalized mass remains roughly
constant.

Table 8.1: Modal properties for S1-G1

No. Name M̃ K̃ f Displacement plot

[kg] [Nm−1] [Hz] Horizontal Vertical Torsional

1 H1 3.847× 107 1.419× 106 0.031

2 H2 3.054× 107 5.014× 106 0.064

3 V1 4.227× 107 6.957× 106 0.065

4 V2 2.189× 107 5.212× 106 0.078

5 V3 3.298× 107 1.626× 107 0.112

6 V4 3.794× 107 1.951× 107 0.114

7 H3 2.583× 107 1.419× 107 0.118

12 V5 3.496× 107 2.954× 107 0.146

15 V6 4.123× 107 4.915× 107 0.174

20 H4 3.897× 107 6.462× 107 0.205

21 V7 3.782× 107 6.278× 107 0.205

23 T1 2.760× 107 5.678× 107 0.228

24 V8 3.993× 107 8.741× 107 0.235

33 V9 3.585× 107 1.023× 108 0.269

35 T2 2.388× 107 7.705× 107 0.286

38 V10 3.502× 107 1.264× 108 0.302

41 V11 3.348× 107 1.508× 108 0.338

42 H5 2.740× 107 1.243× 108 0.339

43 V12 3.342× 107 1.852× 108 0.375

50 V13 3.223× 107 2.179× 108 0.414

In Figures 8.2(a), 8.2(b) and 8.2(c) the natural frequencies are plotted against the gap for
horizontal, vertical and torsional vibration modes, respectively. As the natural frequencies
and mode shapes are similar for all sections, an average is taken of the section configurations.
Where the darker shades of blue represent the higher-order modes. A 2nd order polynomial fit
is implemented as a dashed line to observe modifications in natural frequency with changes in
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the gap. The listed changes in natural frequency are observed with alternations in the gap.

• For the horizontal modes, the natural frequency increases with the gap. With larger
gaps, the generalized stiffness increases, which causes an increase in natural frequency.
The increase in natural frequency due to the increased stiffness dominates the decrease in
natural frequency due to the increased inertia. The increase in natural frequency is more
prominent for the higher-order modes.

• For the vertical modes, a slight decrease in natural frequency with increasing gap is no-
ticeable. With the increase in the gap, heavier cross-beams are obtained. Consequently,
the inertia increases resulting in a small decrease in the natural frequency. The decrease
in natural frequency is more clear for the higher-order modes.

• The torsional modes exhibit different trends. The first torsional mode is influenced by the
increasing inertia causing a decrease in natural frequency for larger gaps. For the second
torsional mode, the natural frequency increases for larger gaps. The stiffness-increasing
effect dominates the mass-decreasing effect of the natural frequency.

Summarized, the sections have similar modal properties as expected due to the small amend-
ments in the section shapes, while deviations in frequencies are observed for altering gaps.

(a) Horizontal modes (b) Vertical modes (c) Torsional modes

Figure 8.2: Natural frequencies
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8.2 Vortex-Induced Vibrations

In this section, the vortex-induced oscillating behaviour of the section models and full-scale
bridge decks is considered. For the section models, the VIV tests and Strouhal numbers are
investigated. While the damping and Scruton numbers are studied for both the section models
and the full-scale bridge decks.

As TMDs are challenging to replicate in full-scale, it is desirable to achieve adequate VIV per-
formance without the influence of the TMD. Figure 8.3(a) and 8.3(b) show the VIV test results
for S2-G3 with active and disabled TMD, respectively. The VIV wind tunnel test results for
all configurations are gathered in Appendix F. The sum of the recorded forces for the upstream
girder and downstream girder are displayed for gradually increasing velocity. With resonance,
vibrations are observed when the natural frequency of the section model coincides with the vor-
tex shedding frequency. Identified for both the active and disabled TMD is a velocity causing
VIV of 3.15 ms−1. The amplitudes of the forces are smaller for the section model with the
active TMD compared to the section model with the disabled TMD. The plotted force-time
series indicates that the built-in TMDs of the tested sections models affect the severity of the
vortex-induced oscillations.

(a) Active TMD (b) Disabled TMD

Figure 8.3: VIV test results for S2-G3

The Strouhal numbers calculated for the section models are investigated using the script strouhal-
Number.m. Figure 8.4 displays the plot of the Strouhal numbers against the gap to depth
ratios. The blue, red and green data points represent the configurations of S1, S2 and S3, re-
spectively. All the configurations have a gap to depth ratios above the critical gap to depth
ratio. Therefore, flow patterns as in moderate gap to depth ratios are expected. The flow de-
taches at the leeward side of the upstream girder and vortices emerge in the gap. A wake is
formed behind the upstream girder, which interferes with the downstream girder. Higher values
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Figure 8.4: Strouhal number of section models

of the Strouhal number makes it more dif-
ficult to achieve the serviceability require-
ments of the bridge. Thus lower values of
the Strouhal number are preferable, indicat-
ing that S1 has superior VIV performance
compared to S2 and S3. The dashed line
is a 2nd order polynomial fitted curve to
each section model to emphasize the changes
in the Strouhal number with altering gaps.
Observed is the trend of increasing Strouhal
number with increasing gap to depth ratio.
The smaller gaps obtain superiour VIV per-
formance, which is supported by Kwok et al.
(2012).

From successive peaks in a damped free vibration time history, the damping ratio is deter-
mined using the script damping.m. Figures 8.5(a) and 8.5(b) show the vertical acceleration
time series for S1 with the active and the disabled TMD, respectively. The decay of motion is
captured by the envelope of the measurements defined by a logarithmic decrement. The calcu-
lated damping ratio for S2 with the active TMD is 0.5%, which differs from the damping ratio
determined for S2 with the disabled TMD of 0.2%. The higher damping ratio of S2 with the
active TMD suggests that the built-in TMD faster reduces the amplitude of the vibrations. The
beating phenomenon is observed, where frequency components are closely located (Tamura and
Kareem, 2013). The two girders of the twin-deck have close natural frequencies, which results
in the girders alternately interfering constructively and destructively, amplifying and cancelling
each other. A similar beating effect may occur when the girder frequency and the TMD are
discordant due to imprecise tuning of the TMD. The acceleration time series and damping ratios
are presented in Appendix G for each section configuration. The damping ratio is conservatively
taken as 0.4% for all configurations. In the Norwegian bridge design code - N400, the damping
ratio for suspension bridges is set to 0.2% (Statens vegvesen, 2015). The damping ratios are
further used in the VIV performance assessments of the section models and the full-scale bridge
decks.

(a) Active TMD, ζ = 0.5% (b) Disabled TMD, ζ = 0.2%

Figure 8.5: Decay of motion for S2
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The Scruton numbers are computed in scrutonNumber.m to evaluate the propensity of the
girders to vibrate due to vortex shedding. Figure 8.6(a) and 8.6(b) show the Scruton numbers
plotted against the gap to depth ratio for the section models and the full-scale bridge decks,
respectively. The blue, red and green data points respectively represent the configurations of
S1, S2 and S3. A 2nd order polynomial fit is implemented as a dashed line between the data
points of each girder shape. Observed is weak growth in the Scruton number with increasing
gap for the full-scale bridge decks. Since the height is chosen as the characteristic dimension,
the Scruton numbers of the section models are independent of alterations in the gap between
the girders. The Scruton number appears to increase linearly with the mass. S2 is the lightest
of the section models, while S1 is the lightest of the full-scale bridge decks. The proximity in
weight may reason the swapped order of section models S1 and S2 in the estimation of the
Scruton number. Present are the uncertainties related to the materials and assembly of the
section models, including the repair of damages resulting in added mass. The Scruton number
is a non-dimensional mass-damping parameter. To obtain section models comparable to real
structures, a set of dimensionless parameter must be equal. The Scruton numbers calculated
from the full-scale bridge decks are larger than the section models. As expected, larger vibrations
due to vortex shedding are experienced in the wind tunnel compared to the bridge location.

(a) Section models (b) full-scale bridge decks

Figure 8.6: Scruton number

8.3 Static Coefficients

The static coefficients are obtained by quasi-static tests in the wind tunnel as described in
Section 7.3.2 and processed using staticCoeffAllTests.m. The configurations are rotated with an
amplitude of ±8 degrees and wind speeds of V ≈ 10, 8 and 6 ms−1. All figures in this section
present the static coefficients as functions of α, denoting the bridge deck inclination angle with
respect to the mean wind flow. The drag coefficients (CD(α)), lift coefficients (CL(α)) and
moment coefficients (CM (α)) are plotted for each configuration, respectively.

Figures 8.8-8.10 plots the response of each section for the three different wind speeds. The
multiple lines of the same colour are due to the plotting of the data from multiple rotations of
the section models at each wind speed. The small deviations between the lines for the same
wind speed highlight the sensitivity of the cross-sectional forces to the wind flow in a rotating
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motion. The exact wind speed at which the different tests were conducted can be seen in the
legends of each plot. Configuration S2-G1 in Figure 8.9(a) is tested at V = 9.1 ms−1 as the
configuration exhibited vortex-induced vibrations at V ≈ 10 ms−1 which may affect the accuracy
of the results.

An important property of the plots in Figures 8.8-8.10 is the lack of offset between the curves
for different wind speeds. This implies that the static forces on the bridge deck do not depend
on the wind speed. Hence, based on the obtained static coefficients the configurations can be
said to have very low if any, Reynolds dependency.

All drag coefficients CD have data appearing as a clean parabolic curve without deviations. The
high values of CD are to be discussed later in this section. The lift and moment coefficients, CL
and CM , also show clear trends with typical linear development. The average values are smaller
and more common than those of the drag coefficient CD. Yielding for all gaps, CL presents
itself with negative values for α < 4 degrees for configurations of S1 and S3, and α < 6 for S2
implying that the mean vertical forces inflicted on the bridge deck by the wind flow works in
a downward direction. An accelerated flow over the streamlined bottom surface entails larger
pressures with negative values, causing negative average pressures for the whole bridge deck
(Kwok et al., 2012). As an inclination angle of ±8 degrees is beyond what could be assumed
as a realistic displacement for a bridge deck, the bridge decks will presumably exhibit merely
negative values of the lift coefficients.

There are some appearing non-linearity at large negative inclination angles for the moment
coefficients CM . The noise from the vibration response of configuration S1-G1 is plotted together
with the mean value lines in Figure 8.7 to illustrate the increased vibrations causing the slight
non-linearity. At large negative values of α the wind flow is induced at the top surface of the
bridge decks which may be causing a more turbulent flow around the sections consequently
putting them in motion. Seen as the bridge decks does not exhibit noise of the same magnitude
for positive values of α, the more streamlined design and guide-vanes on the bottom surface may
seem to have a beneficial impact on the linearity of the static coefficients. By studying CM in
Figures 8.8-8.10, the non-linearities present in the plots seem to be minimal for S1, increased
for S2 and most prominent for S3, magnified with increasing gaps for each section configuration.
The observed pattern may be substantiated by the change in inner angles between the geometries
for S1, S2 and S3 aggravating the turbulent flow.
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Figure 8.7: Static coefficients with plotted vibration response for S1-G1
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(a)

(b)

(c)

Figure 8.8: Static coefficients for configurations of section S1
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(a)

(b)

(c)

Figure 8.9: Static coefficients for configurations of section S2
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(a)

(b)

(c)

Figure 8.10: Static coefficients for configurations of section S3
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Figure 8.11: Static coefficients for all configurations at V = 10ms−1

Figure 8.12: Static coefficients for configurations of S3 at V = 10ms−1

Figure 8.13: Static coefficients for configurations of gap G2 at V = 10ms−1

For enhanced visualization of the diversity between the static coefficients, a plot containing
static coefficients for all configurations at wind speed V ≈ 10 ms−1 can be found in Figure
8.11. All configurations display the same shapes in the curves for each coefficient with only
minor deviations. The drag coefficients appear to vary with a shift in values, while the lift
and moment coefficients are separated with different inclinations of the linear trends. A low
inclination is preferred for CL and CM as steeper curves can indicate that the forces acting on
the bridge decks are of greater magnitude.
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In general, it is desirable that the value of CM (α) is zero at α = 0 degrees to prevent that the
cross-sections rotate when exposed to wind flow in a neutral position. An offset from zero in
CM (α) of approximately -0.025 can be observed for all configurations except S2-G3. A negative
shift in CM (α) is evident for S2-G3, consequently resulting in twice the magnitude in the offset
of approximately -0.05. This may indicate that the configuration is slightly less resistant to
rotations than the other configurations. Both offset values are still small indicating fairly good
rotational stability.

As mentioned, the values of the drag force coefficients CD are rather high with a range of 1.3-3.5.
A possible explanation for the high values is that the used reference height and length of the
cross-section should be equivalent to the area that is up against the wind flow. Consequently,
for a twin-deck section, the additional area from the second girder adding additional drag forces
to the configuration is not accounted for.

There is an interesting pattern to the average values of the drag coefficient CD for varying
gaps. By plotting section S3 individually in Figure 8.12, it becomes clear that the values of CD
increases with an increasing gap. Identical plots for S1 and S2 revealing a similar pattern can
be found in Appendix H. The fact that the smallest gap gives lower values may be explained
by less propensity of vortexes shedding in the gap. As the gap increases the wake behind the
first girder may induce larger positive drag forces behind the upstream girder simultaneously
increasing the value of the total drag coefficient.

The inclination of the linear trends in Figure 8.12 seems to decrease with increasing gaps.
With a sufficiently large gap, the pressure difference between top and bottom surfaces may
cause vortexes to enter the gap increasing the fluctuating pressures on the downwind girder and
increasing the drag force (Kwok et al., 2012). The plots for S1 and S2 show great similarities
with the patterns for each of the coefficients in Figure 8.12 with one evident deviation being the
negative shift in values for CD for configuration S2-G3. However, S2-G1 and S2-G2 are coherent
with the previously mentioned pattern.

As the configurations do not have one varying parameter but are combinations of three cross-
sections and three gaps, finding a geometrical pattern in relation to the response in static forces
is more complicated. In means of revealing or dismiss such a relation, the three section types
are plotted for gap G2 in Figure 8.13. The plots state the fact that a larger gap seems to give
fewer variations in CD, while having the opposite effect on CD. The configurations of S2 seem
to exhibit higher drag forces than S1 and S3. One of the geometrical differences between the
sections is the inner angle of the girders. If this appears to be decisive, the angle of S2 may have
caused increased turbulence in the flow in the large gap adding drag to the respective girders.
The lift coefficient, CL, seems to be less affected by varying gaps. Same plots for all three gaps,
revealing a similar patterns for gaps G1 and G3 are presented in Appendix H.

Configuration S2-G3 deviates from the other eight configurations. It is less coherent with the
observed patterns in addition to the negative shift in values for the moment coefficient CM .
This raises the question if the configuration does in fact have other aerodynamic properties than
the others, or if the bad reading of response from the load cells during wind tunnel testing has
resulted in inaccurate values.

Due to the negligible wind speed dependency of the static coefficients, plots for comparisons
between the configurations have only been produced for V ≈ 10 ms−1. Yielding for Figures 8.11
and 8.12as well as the plots present in Appendix H.
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8.4 Aerodynamic Derivatives

This section analyses the experimentally obtained aerodynamic derivatives (ADs) P ∗1−6, H∗1−6

and A∗1−6 for each of the nine configurations as well as a quantitative comparison between the
configurations. The ADs for each of the configurations have been obtained by forced vibration
tests in the wind tunnel as described in Section 7.3.3. The experimental was processed using
the Matlab script aerodynamicDerivativesAllTests.m.

The ADs are related to the sections by the length of the section models (L) and the width
(B) for each configuration. All figures plots the ADs as functions of reduced frequency (K)
instead of reduced velocity (Vr). Plotting the ADs as functions of reduced frequency enhances
the variations due to different geometric forms and gaps of the configurations. If the ADs
are plotted as functions of Vr they obtain close-to-zero values at low reduced velocities, this is
avoided when plotting them as functions of K (Øiseth et al., 2010). Common for all figures is
that the ADs are organized identically to the stiffness and damping matrices related to the SE
forces, K̂ae and Ĉae, as seen in Section 3.4.3.

Figure 8.15 show scatter plots of the AD data points for configuration S1-G1 as functions
of reduced frequency, plotted for each wind speed at which they were obtained. The colour
definition is illustrated in Figure 8.14. Identical plotted ADs for the remaining configurations
are presented in Appendix I. The scatter plots with separated wind speeds are favourable to
evaluate if the trend differs for ADs obtained at different wind speeds, i.e. show Reynolds
dependency.

There is an overall tendency of the ADs to have minimal offsets between the data points extracted
at different wind speeds. Even though the trends in the damping related drag force coefficient
P ∗2 displays a clear offset in Figure 8.15, its values are of significantly less magnitude than the
other coefficients resulting in the offset being negligible. The lack of offset suggests that the
ADs are independent of wind speed implying that the sections may possess little to no Reynolds
dependency. The minimal presence of offset between the trends also puts emphasis on the choice
to present the rest of the results with combined data from both wind speeds without distinction.

The coefficient H∗1 in Figure 8.15 appear to have two separate trends for the different wind
speeds for S1-G1. Similar divergent trends can be observed for H∗1 for S1-G2, S2-G1, S2-G3
and S3-G3, as well as for P ∗1 for S1-G2, S1-G3, S2-G2, S3-G1 and S3-G3. This can also be
observed in the background scatter of Figures 8.17 - 8.25 even if the experimental ADs are not
distinguished for the two wind speed. When the coefficients develop two separate trends it may
seem as the linear model used to estimate the damping related ADs do not fit the time-series
for the mentioned ADs.
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Figure 8.14: Legend for Figure 8.15
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Figure 8.15: ADs plotted as functions of reduced frequency for S1-G1, obtained at wind speeds
V = 6 ms−1 and V = 8 ms−1
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Figures 8.17 - 8.25 contains stiffness and damping related ADs with a third-degree polynomial
curve fitted to the data points. The grey circular points indicate the experimentally obtained
data points for the ADs while the green line indicates the polynomial curve, both as functions
of reduced frequency. Legend for the plots can be found in Figure 8.16.

The ADs are evaluated based on the presence of scatter with the polynomial fitted curves. The
less critical ADs related to the self-excited drag force, P ∗1−6, has a more frequent occurrence
of scatter. The overall magnitude of P ∗1−6 for all configurations is low making them prone to
dominance from inertia forces which can be a possible explanation for the scatter. The damping
related coefficient P ∗2 possesses evident scatter for all configurations making for the increased
inaccuracy of the obtained polynomial fittings of this particular AD. P ∗1 is also damping related
and possesses positive values for configurations S2-G1 and S3-G1 for K > 1. This would
indicate that these configurations could have a presence of negative drag damping which is
unusual behaviour.

The ADs, H∗1−4 and A∗1−4, may be important for the stability and show little to no scatter for
the configurations assuring good accuracy for the polynomial fitted curves, with exception of
H∗1 . The previously mentioned deviating trends for the coefficient H∗1 for some of the configu-
rations consequently makes for a worse polynomial fit. This may introduce uncertainties in the
calculation of the stability limit. H∗1 is related to self-excited forces in the vertical direction.
The presence of higher-order self-excited forces could also be a reason for increased scatter.

Analysis of the ADs influence on motion-induced instabilities is conducted using Figure 8.26
containing the third-degree polynomial fitted curves for all configurations as functions of K. The
motion-induced instabilities and the relation to the ADs, together with the equations relating
the ADs to the self-excited drag, lift and moment forces, are presented in Section 3.3.

The damping related AD H∗1 influences the damping of the vertical vibrations of the configu-
rations. In Figure 8.26 it can be seen that all values for H∗1 are negative implying that neither
of the configurations have risk of galloping. S1-G1 and S1-G3 exhibit larger negative values for
high reduced frequencies than the others, which may be beneficial.

A∗2 is also damping related but influences the vibrations in the torsional direction. Its values in
Figure 8.26 show overall negative values implying that neither of the configurations are prone
to torsional flutter. The negative values cause positive damping therefore A∗2 could improve the
results in the stability limit calculations.

The stiffness related AD A∗3 influences the torsional vibrations and should be of negative value to
eliminate the risk of static divergence. This is not the case in Figure 8.26 as A∗3 possesses positive
values for all configurations which has a destabilizing effect on coupled flutter consequently
decreasing the stability limit (Trein and Shirato, 2011). The prominent high values of all girder
configurations of sections type S3 could consequently reduce the stability limit additionally.

The product between H∗3 and A∗1 only has a stabilizing effect when exhibiting negative values.
Since only A∗1 is negative this particular requirement is fulfilled. Anyhow, the high absolute
values ofH∗3 is concerning as it is disadvantageous towards coupled flutter and could consequently
decrease the stability limit of the configurations.

The polynomial fitted curves of the different configurations in Figure 8.26 are compared. For
several of the different ADs the configuration S1-G3 is prominent with values of the highest
magnitude. This yields for the stiffness related ADs P ∗6 , P ∗3 , H∗4 and H∗3 , in addition to the
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damping related ADs P ∗2 and H∗1 . In general between the section configurations, S3 configura-
tions are prominent for H∗3 and A∗1. The ADs exhibit higher absolute values than S1 and S2.
The configurations of S3 also possesses high values for A∗3 together with S1-G1 and S2-G1.

The configuration of S3-G1 seems to vary less than the others as the reduced frequency increases
in Figure 8.26. It generally has low absolute values and more linear trends. If the values of the
ADs approach constant values, this may imply that the AD is frequency independent. The same
trends with a slight increase in variation can be found to yield for S2-G1 as well. Meanwhile,
S3-G2 has a tendency to be in intermediate positions with respect to the other curves. It is
rarely of the lowest nor the highest magnitude in values. This is only the case for P ∗1 at higher
reduced frequencies as the coefficient has an evident offset from the others at K = 0.

A figure containing ADs for all configurations plotted as functions of reduced frequency Vr is
included in Appendix I. It displays the bad presentation of the ADs for low values of Vr. Due to
Vr being dependent on the varying section model widths B, the AD data is obtained for different
ranges of Vr.
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Figure 8.16: Legend for Figure 8.17-8.25
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Figure 8.17: ADs for S1-G1
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Figure 8.18: ADs for S1-G2
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Figure 8.19: ADs for S1-G3
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Figure 8.20: ADs for S2-G1
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Figure 8.21: ADs for S2-G2
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Figure 8.22: ADs for S2-G3
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Figure 8.23: ADs for S3-G1
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Figure 8.24: ADs for S3-G2
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Figure 8.25: ADs for S3-G3
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Figure 8.26: Polynomial fit for all configurations with ADs as functions of K
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8.5 Predicted Stability Limits

To estimate the stability limit, multi-mode flutter analysis that accounts for the coupling effect
of several vibration modes is performed. The instability condition is identified by finding the
solution giving a singular impedance matrix. An increasing sequence of in-wind velocities is
introduced until the in-wind velocity equates the critical wind velocity within a certain accuracy.
The multi-mode flutter analysis approach is deliberated in Section 3.5.

Flutter analysis is based on modal superpositioning, which introduces the vibration mode shapes
as generalized coordinates. The number of modes to include depend on whether the stability
limit changes. For the flutter analyses, an adequate number of 50 modes are considered as the
contribution from higher-order modes does not change the estimated stability limits.

In Figure 8.27, the still-air vibration modes which contribute to the instability phenomena
are displayed by plotting the absolute value of the eigenvector. The lowest critical velocity is
often provided by combining the fundamental vertical and torsional modes (Trein and Shirato,
2011). However, in the multi-mode flutter analysis of the Hardanger Bridge, three vibrations
modes were found to contribute significantly (Øiseth et al., 2010). The latter also applies to the
Sulafjord bridge crossing. Common for all configurations is the main contributions from three
vibration modes. The flutter instability phenomenon is indicated by the strong influence from
the two first vertical symmetric modes (V2 and V3) and the first torsional symmetric mode
(T1).

Figure 8.27: Modes contributing to the instability phenomena
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The stability limits for a selection of vibration mode combinations are presented in Table 8.2.
For the combination of modes V2, V3 and T1, the stability limits converge. Minor changes of
maximum 1.3% in the stability limits are observed by adding contributing vertical and horizontal
modes of higher order. The converging stability limits for the three vibration modes indicate
that the governing instability phenomenon is multi-modal coupled flutter for all configurations.

Table 8.2: Stability limits for selected vibration modes

Vcr [ms−1]

Mode combination S1-G1 S1-G2 S1-G3 S2-G1 S2-G2 S2-G3 S3-G1 S3-G2 S3-G3

1-50 94.8 97.6 105.5 95.2 100.5 102.0 81.6 89.9 83.7

V2, T1 127.9 124.6 >130 127.6 127.1 >130 107.4 109.9 103.4

V3, T1 119.3 117.4 125.7 118.0 117.4 >130 98.7 101.2 97.6

V2, V3, T1 105.5 103.4 105.5 104.9 105.2 100.5 87.6 91.2 86.0

V2, V3, V5, T1 104.5 102.9 105.7 103.8 104.5 101.6 86.5 90.4 87.1

V2, V4, V5, V7, T1 104.5 103.0 105.7 103.8 104.6 101.8 86.6 90.5 87.1

H1, V2, V4, V5, V7,
T1

104.5 102.9 105.7 103.7 104.5 101.5 86.5 90.4 87.1

To better understand the instability behaviour, the research is narrowed down to consider the
modes with the main contribution to the flutter phenomenon: V2, V3 and T1. In Figure 8.28, the
stability limits of the three-mode flutter phenomenon are plotted against the gap to depth ratio.
The blue, red and green data points represent the configurations of S1, S2 and S3, respectively.
While the orange solid line represents the stability criterion of the Norwegian bridge design code
- N400 (Statens vegvesen, 2015). The calculation of the stability criterion at the location of the
the Sulafjord bridge crossing is provided in Chapter 2. It is noticeable that the configurations
have stability limits above the stability criterion. Thus indicating that all configurations pass the
instability control of N400. The configurations of S1 and S2 exhibit superior stability behaviour
compared to S3. In Figure 8.28, a 2nd order polynomial fit is implemented as a dashed line
between the data points of each girder shape to observe the change in stability limit with altering
gap. The central slot concept improves the flutter stability by reducing the pressure difference
between the upper and lower surfaces of the bridge deck. Evident in Figure 8.28 is a general
tendency of increasing stability limit with gap. The configurations S1-G2, S2-G3 and S3-G3
oppose the trend, which may be reasoned by the inaccuracies in the polynomial fits of the ADs.

The ADs characterize the self-excited forces acting on the bridge and are be obtained from forced
vibration tests. The imposed oscillation is repeated for 8 frequencies and 2 wind speeds, which
provides a total of 16 data points for each degree of freedom. Lastly, a 3rd order polynomial is
adapted to the measured data points. Reliable estimates of the ADs are crucial in the assessment
of the flutter phenomena. The uncertainties of the approximated ADs relates to the quantity and
scatter of data points acquired from the wind tunnel tests. Adapting a linear or quadratic model
to a non-linear or non-quadratic scatter plot may also introduce significant errors. However, only
the approximation of the AD at the critical reduced frequency will influence the critical wind
velocity. Securing a good approximation in the reduced frequency regime associated with the
stability limit may improve the estimation of the instability behaviour. In Table 8.3, the reduced
frequencies of the three-mode flutter phenomenon are noted. All the reduced frequencies are
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within the reduced frequency regime of the wind tunnel tests. The reliability of the calculated
stability limits is strengthened by not using extrapolated approximations of the ADs.

Figure 8.28: Stability limits of the three-mode flutter phenomenon

Table 8.3: Reduced frequencies of the three-mode flutter phenomenon

K [-]

Config. G1 G2 G3

S1 0.378 0.403 0.423

S2 0.380 0.404 0.416

S3 0.459 0.466 0.483
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To observe the importance of the ADs in calculating the stability limit, a sensitivity analysis
is conducted by modifying the ADs using sensitivityAnalysisAD.m. The ADs H∗1−4 and A∗1−4

that represent the heaving and the pitching harmonic motions are studied. A scale factor (λ)
is introduced separately to the selected ADs of S1-G1 for the mode combination of V2, V3 and
T1. Table 8.4 records the percentage change in the stability limits with individually scaled ADs.
The sensitivity analysis shows significant influence of the ADs: H∗3 , A∗1, A∗2 and A∗3. The other
selected ADs appear to have a minor influence on the stability limit. Identical ADs were found
significant in flutter stabilisation of the Hardanger Bridge (Øiseth et al., 2010).

Table 8.4: Percentage change in the stability limits of the three-mode flutter phenomenon of
S1-G1 with separately scaled ADs

λ H∗
1 H∗

2 H∗
3 H∗

4 A∗
1 A∗

2 A∗
3 A∗

4

0.4 -3% -1% 136% 0% 17% -20% 23% 3%

0.6 -2% -1% 14% 0% 10% -12% 14% 2%

0.8 -1% 0% 6% 0% 5% -5% 6% 1%

1.0 0% 0% 0% 0% 0% 0% 0% 0%

1.2 2% 0% -5% 0% -4% 5% -5% -1%

1.4 4% 1% -9% 0% -8% 9% -10% -2%

1.6 6% 1% -12% 0% -11% 13% -14% -2%

At the critical reduced frequency, the approximated ADs in Figure 8.26 of significant influence
can be associated with the stability limits obtained of the three-mode flutter phenomena. The
higher absolute values of A∗1 and A∗3 for S3 than S1 and S2 at the critical reduced frequencies give
increased vulnerability to unstable behaviour of S3. With growing values of H∗3, the polynomial
fits are displayed in the order of G3, G2 and G1. Indicating a decrease in H∗3 with increasing
gap. This substantiates the theory presented of larger separation between the girders leading
to improved flutter stability due to the reduction in pressure difference between the upper and
lower girder surfaces (Fujino and Siringoringo, 2013). The high negative values of A∗2 for S1-G2,
S2-G3 and S3-G3 at the critical reduced frequencies supports the lower stability limits obtained
than expected, which break the trend of improved flutter stability with greater gap.

Flutter is an instability phenomenon that involves the introduction of self-excited forces due to
flow-structure interaction. The unstable behaviour is initiated when the energy input from the
wind exceeds the energy dissipated by the structure. The flutter phenomenon is investigated
by considering the resulting complex eigenvalues and eigenvectors, giving the solution to the
complex eigenvalue problem. To ensure bridge stability, the real part of the complex eigenvalues
has to become negative, which represents positive damping.
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Figure 8.29 shows the in-wind frequencies and damping ratios determined from the complex
eigenvalues of configuration S1-G1. The stability limit is defined by the lowest mean wind
velocity, where zero damping occurs in one of the in-wind modes. The damping ratio reaches
zero for the first torsional mode, T1. However, an increase in damping ratio with the mean
wind velocity is observed for the vertical modes, V2 and V3. For the larger gap, a decrease in
the main contributing vertical mode is noticeable at high mean wind velocities. Evident is the
loss of stiffness with increasing mean wind velocity. The twisting response of the bridge due to
flutter appears to reduce the torsional stiffness. The greater proximity of the frequencies at high
mean wind velocities eases the coupling effect of the vertical and torsional modes. Appendix
J provides the results for the other configurations. For the S2 and S3 configurations, similar
results and behaviour of the S1 configurations are obtained and observed.

(a) S1-G1

(b) S1-G2

(c) S1-G3

Figure 8.29: In-wind frequencies (left) and damping ratios (right) of the three-mode flutter
phenomenon of S1
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The complex eigenvectors (η) considering the flutter phenomenon of the S1 configurations are
plotted in Figure 8.30. The Argand diagrams show the vertical and torsional mode contribu-
tions and the phase angles between the heaving and the pitching harmonic oscillations. The
contributions from vertical modes increase and torsional modes decrease with larger gap. The
smaller contribution of the driving instability mode (T1) for the larger gaps may be related
to the general increase in stability limit with gap. The phase angle or phase lag is indicated
by the relative direction of the plotted arrows in the Argand diagrams. The phase lags of 90
degrees and 180 degrees acquired between the gap configurations represent time lags of 1

4T and
1
2T in the time history, respectively. Considering the configurations individually, the vertical
and torsional modes couples with a phase lag, transferring energy between the air flow and
vertical and torsional bridge motions. The phase lags between V2, V3 and T1 become slightly
greater with larger gap. Hence, an indication of enhanced difficulty of energy transfer within
the wind-structure system for larger gaps. Appendix K provides the Argand diagrams for all
configurations where the configurations of S2 and S3 show similar results and behaviour as the
configurations of S1.

(a) Legend for Argand diagrams

(b) S1-G1 (c) S1-G2 (d) S1-G3

Figure 8.30: Argand diagrams displaying flutter mode complexity of S1

The coupling of still-air vibration modes is further explored. Two main factors are found to
impact the coupling tendency of vibration modes: (1) the separation in natural frequency and
(2) the degree of shape-wise similarity of the vertical and the torsional vibration modes (Øiseth
et al., 2010). Table 8.1 shows that the natural frequencies of V3 and T1 are less separated than
V2 and T1 and that the still-air modes of V3 and T1 have a stronger resemblance than V2 and
T1. As seen in Table 8.2, the two factors yield a lower critical velocity of mode combinations
V3 and T1 than V2 and T1, consistent with the hypothesis presented.

Figure 8.31 shows the separation in natural frequency of the vertical modes (V2 and V3) and
the torsional mode (T1) for variations in the gap at zero mean wind velocity. Evident is the
greater proximity between the natural frequencies of the vertical vibration modes and the tor-
sional vibration mode with increasing gap. For the majority of the configurations, increases in
the critical velocity with larger gaps are observed. Suggesting that the closely spaced natural
frequencies for larger gaps may improve the predicted stability limit.
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(a) Vertical modes (b) Torsional modes

Figure 8.31: Natural frequencies of the three-mode flutter phenomenon at V=0 ms−1

(a) Vertical mode shape of V2

(b) Vertical mode shape of V3

(c) Vertical mode shape of V2 and V3 (d) Torsional mode shape of T1

Figure 8.32: Mode shapes of the three-mode flutter phenomenon
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Flutter instability will not occur for a combination of diverse vibration mode shapes. Therefore
the shape-wise similarity is a measure to evaluate the possibility of multi-mode effects. Illus-
trations of the flutter vibration mode are provided in Figure 8.32 to observe the shape-wise
similarity. The still-air vibration modes for V2, V3, sum of V2 and V3 and T1 are displayed.
Noticeable is the shape-wise similarity between the sum of the vertical modes and the torsional
mode in the three-mode coupled flutter phenomenon.

The mode shape similarity factor (ψ) can be used to estimate the degree of shape-wise similarity.
For perfect shape-wise similarity, the mode shape similarity factor will equal 1. As seen in
Equation 8.3, a strong shape-wise similarity is obtained for the coupling of the vertical modes
V2 and V3 and the torsional mode T1. The mode shape integrals in Equations 8.1 and 8.2
confirm that the still-air mode shapes of V3 and T1 have greater similarity than V2 and T1.

ψ4,23 =

∫
φ4φ23dx∫
φ2

4dx

∫
φ4φ23dx∫
φ2

23dx
= 0.43 (8.1)

ψ5,23 =

∫
φ5φ23dx∫
φ2

5dx

∫
φ5φ23dx∫
φ2

23dx
= 0.54 (8.2)

ψ(4+5),23 =

∫
φ(4+5)φ23dx∫
φ2

(4+5)dx

∫
φ(4+5)φ23dx∫

φ2
23dx

= 0.94 (8.3)

8.6 Limitations of Results

The sources of error are divided into sections considering the inaccuracies of the FE-model, the
errors related to the section models and the wind tunnel tests and limitations of the processing
of the results. The inaccuracies of the global element models are listed as follows.

• The retraction force applied to the top of the towers is neglected, resulting in an inward
lean of the towers. The simplification has minor impact on the flutter analysis.

• The iteration procedure executed in Abaqus to account for the displacement due to self-
weight is within margins of 0.1 m from the final construction geometry.

• The boundary conditions and interactions are idealised. E.g. the ties between the cables
and the hangers are modelled as fixed connections promoting excessive vibrations in hang-
ers and cables. The true behaviour of the bridge may better be represented by connections
between the girders and the hangers that allow for rotation.

• Identical configuration of hangers as the Langenuen Bridge with 24 m of separation of
the hangers. In the feasibility study by Multiconsult, a 20 m separation of the hangers is
specified.

• Conservative choices are made for the properties of the girder, cables, hangers, pylons and
portal beams.

The errors related to the section models and wind tunnel effects include

• The dimensions, positioning, finish and material properties of the section models and
attachments can affect the results from the wind tunnel tests.
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• The influence of the boundary layer in proximity to the wind tunnel walls is minor con-
sidering the boundary layer thickness against the span of the section model. Therefore, a
uniform velocity profile is assumed.

• With a blockage ratio of 2.5%, no considerations are made for the blockage effect (Lee
et al., 2014).

• The gap between the section model and the wind tunnel walls measure 3 cm. End plates
are not used as the section model almost spans entirely across the width of the wind tunnel.
The flow in the wind tunnel is considered two-dimensional.

• The pitot probe is positioned with sufficient distance from the section model such that it
does not affect the flow induced on the section model.

The following limitations of the processed results from the global element models and the wind
tunnel tests are considered.

• The quality of the data depends on the execution of the wind tunnel tests and the sampling
frequency. The sampling frequency is the number of data points acquired per second, which
defines the precision of the recorded data.

• Conservative density assumptions are made. In the wind tunnel, air density fluctuations of
1.18-1.19 kgm−3 are recorded. The air density of 1.2 kgm−3 is used in the data processing.
For the location of the bridge crossing of the Sulafjord, the theoretical density of 1.25
kgm−3 is implemented (Statens vegvesen, 2015).

• The evaluated damping ratio from the logarithmic decrements is sensitive to the selection
of points and the duration of the damped free vibration time series. Due to the beating
phenomenon, the envelope is not representative of the true damping. The damping ratio
from the Norwegian bridge design code of ζ = 0.2% (Statens vegvesen, 2015) may deviate
from the bridge crossing the Sulafjord. The estimations of the damping ratio are considered
acceptable for conducted assessment of VIV performance.

• It is assumed a locally stationary and homogeneous wind field acting on the bridge, con-
sidered as a line-like structure. The wind speed is assumed to be assessed in terms of a
time-invariant mean part and a randomly fluctuating component.

• The predicted stability limits is to a great extent affected by the flutter derivatives. Signif-
icant uncertainties in ADs relate to the number and scatter of data points acquired from
the forced vibration tests in addition to the fit of the polynomial curve. Approximations of
ADs at the critical reduced frequency are within the frequency regime of the wind tunnel
tests, strengthening the reliability of the calculated stability limits.
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Chapter 9

Conclusions

Sufficient aerodynamic stability limits are found for the twin-deck configurations of a suspension
bridge crossing the Sulafjord. The wind-structure interaction is explored for nine twin-deck
configurations of different shapes and gaps. Through interpolation, a geometric relation is
established yielding three girder shapes with minor amendments. The sharpness of the inner
and outer fairings alter, causing changes in the angle of the fairings and the girder width. The
twin-deck configurations represent the three girder shapes (S1-S3) combined with the three gaps
(G1-G3). For the configurations, the aerodynamic stability and the vortex-induced oscillating
behaviour is evaluated. The modal properties are extracted from global element models, while
the static coefficients and aerodynamic derivatives are experimentally obtained.

The VIV and damping tests show that less severe vortex-induced oscillations and improved
damping is achieved with built-in dampers. However, the TMDs are challenging to replicate in
full-scale and therefore do not solve the issue of VIVs. To fulfil the serviceability requirements
of the bridge, excessive vibrations shall be avoided. The configurations of S1 and smaller gaps
obtain superior VIV performance in the wind tunnel. Additionally, the section models are found
to exhibit larger vibrations due to vortex shedding than the equivalent full-scale bridge decks.

The analysis of the static coefficients and aerodynamic derivatives revealed negligible dependency
on the Reynolds number for the nine section models. The overall static coefficients exhibited
clear trends with minimal presence of non-linearity. Low presence of scatter and good polynomial
fittings for most of the critical aerodynamic derivatives entails better results. Whereas, the
aerodynamic derivatives that show deviating trend with increased wind speed, causes for a worse
polynomial fit as well as inaccuracies concerning the stability limit calculations. Most of the
critical aerodynamic derivatives achieved good estimations with a third degree polynomial fitting
contributing to enhanced accuracy of the stability limits. Considering both the static coefficients
and aerodynamic derivatives, the configurations of section type S3 displays a stability weakness
due to evident deviations throughout the analysis.

In the computation of the stability limits, the contributions of 50 modes are found adequate.
The stability limits converge for the combination of the two first vertical symmetric modes (V2
and V3) and the first torsional symmetric mode (T1). For the three-mode flutter phenomenon,
the calculated stability limits ranges between 86.0 ms−1 and 105.5 ms−1 . The configurations
of S1 and S2 exhibit superior stability behaviour and detected is also a general tendency of
increasing stability limit with larger gaps. Deviations from the stability limit trends may be due
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to inaccurate polynomial fits of the ADs. Crucial are reliable estimates of the ADs at the critical
reduced frequency in assessment of the flutter phenomenon. The sensitivity analysis conducted
shows significant influence on the stability limit of the ADs: H∗3, A∗1, A∗2 and A∗3. High absolute
values of A∗1 and A∗3 substantiate the more unstable behaviour of S3. With growing values of
H∗3 the gap decreases, supporting the improved flutter stability with increasing gap. The high
values of A∗2 may reason the lower stability limits obtained than expected for S1-G2, S2-G3 and
S3-G3. However, all the configurations fulfil the stability criterion of 75.9 ms−1 determined from
the Norwegian bridge design code - N400 (Statens vegvesen, 2015).
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Chapter 10

Further Work

During the work of this master’s thesis, several subjects of further work have been identified.
The proposed work for further investigation and control of the aerodynamic performance of the
twin-deck configurations is presented as follows:

• Study the effect of the section model attachments on VIV and flutter performance in the
wind tunnel. The attachments of railings, guide vanes and TMD are introduced in the
thesis. However, other cross-sectional details like wind barrier, grid plates and central
stabilizers can be investigated. Research on the importance of cross-sectional details have
been conducted by Zhou et al. (2019), Laima et al. (2018), and Yang et al. (2017).

• Repetition of the wind tunnel tests with applied wind in opposite direction to establish if
the geometry of the section models entail a shift in the aerodynamic properties. S1-G2,
S2-G3 and S3-G3 obtain lower stability limits than expected, which may be due to the
inaccuracies of the experimentally obtained static coefficients and aerodynamic derivatives.
The reliability of the flutter analyses can be assessed through Monte Carlo simulations as
conducted for the Hardanger Bridge by Øiseth et al. (2015).

• The effect of turbulence should be further investigated as inflows on bridges have turbulence
characteristics (Laima and Li, 2015). The wind tunnel tests are performed in smooth
flow and turbulence may alter the wind-structure interaction significantly. Therefore, the
buffeting behaviour of the twin-decks should be further examined.

• Further research is required to evaluate the vortex-induced response and stability behaviour
of the twin-deck configurations in greater detail. For the twin-box girders, further work
can involve the wind-induced pressure differences (Kwok et al., 2012), the vortex shedding
behaviour (Chen et al., 2014), the Reynolds dependency of ADs (Lee et al., 2014) and the
flutter performance (Nieto et al., 2020).

• Optimization of the twin-deck configurations as conducted by Cid Montoya et al. (2021).
Since all twin-decks preformed well within the stability criterion, the girder design may be
optimized reducing the material consumption and construction costs.

• Improvements of the global element models to obtain mathematical models more repre-
sentative of true bridge behaviour. Adjustments can be made to the interactions and
boundary conditions, girder geometry and properties including cross-beams etc.
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Appendix A

List of Electronic Attachments



Python scripts:

• Sulafjorden TD21 S1G1 .py

• AbaqusExportModal.py

Matlab scripts:

• importAbaqusResults.m

• modalProperties.m

• VIV.m

• strouhalNumber.m

• damping.m

• scrutonNumber.m

• staticCoeffAllTests.m

• aerodynamicDerivativesAllTests.m

• flutterAnalysis.m

• stabilityLimits.m

• sensitivityAnalysisAD.m



Appendix B

Detailed Girder Geometries
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Figure B.1: Detailed layout of section types with dimensions in 1:1 scale.
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Figure B.2: Detailed layout of section types with aluminium pipe and dimensions in 1:50.





Appendix C

Added Girder Inertia



The added girder inertia is presented for S1, S2 and S3 in Table C.1, Table C.2 and Table C.3,
respectively. The Local 1-coordinate to the center of mass e1 has opposing signs for girder 1 and
girder 2 as the local coordinate axes 1 and 2 are defined in the direction of the global negative
y and positive z, respectively.

Table C.1: Added girder inertia for S1

Component Gap Linear mass e1 e2 I11 I22

[kg/m] [m] [m] [kgm2/m] [kgm2/m]

Girder ∀ 6045.550 0.000 0.000 5542.885 143 309.600

Diaphgrama ∀ 562.119 0.000 0.000 201.824 9034.565

Asphalt ∀ 2800.000 ∓2.234 1.287 1.493 45 733.333

Hanger heads ∀ 33.333 ∓9.234 1.047 0.025 0.025

Cross-beams G1 191.125 ±6.141 0.000 240.794 120.449

G2 364.875 ±7.391 0.000 459.697 838.072

G3 538.625 ±8.641 0.000 678.601 2695.929

Table C.2: Added girder inertia for S2

Component Gap Linear mass e1 e2 I11 I22

[kg/m] [m] [m] [kgm2/m] [kgm2/m]

Girder ∀ 6078.510 0.000 0.000 5670.055 146 127.750

Diaphgrama ∀ 589.339 0.000 0.000 220.036 9756.765

Asphalt ∀ 2800.000 ∓1.831 1.286 1.493 45 733.333

Hanger heads ∀ 33.333 ∓8.831 1.061 0.025 0.025

Cross-beams G1 191.125 ±7.294 0.000 240.794 120.449

G2 364.875 ±8.544 0.000 459.697 838.072

G3 538.625 ±9.794 0.000 678.601 2695.929

Table C.3: Added girder inertia for S3

Component Gap Linear mass e1 e2 I11 I22

[kg/m] [m] [m] [kgm2/m] [kgm2/m]

Girder ∀ 6237.380 0.000 0.000 6029.350 157 698.650

Diaphgrama ∀ 618.384 0.000 0.000 234.126 10 894.230

Asphalt ∀ 2800.000 ∓1.595 1.239 1.493 45 733.333

Hanger heads ∀ 33.333 ∓8.595 1.021 0.025 0.025

Cross-beams G1 191.125 ±8.280 0.000 240.794 120.449

G2 364.875 ±9.530 0.000 459.697 838.072

G3 538.625 ±10.780 0.000 678.601 2695.929



Appendix D

Linear Mass of Section Models



Table D.1: Linear mass of section models

m [kgm−1]

Config. S1 S2 S3

∀ 2.15 2.13 2.20



Appendix E

Modal Properties
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Appendix F

VIV Tests



(a) S1-G1 (b) S1-G2

(c) S1-G3

Figure F.1: Results from VIV tests S1



(a) S2-G1 (b) S2-G2

(c) S2-G3

Figure F.2: Results from VIV tests S2



(a) S3-G1 (b) S3-G2

(c) S3-G3

Figure F.3: Results from VIV tests S3



Appendix G

Damping of Section Models



(a) S1, ζ = 0.4 % (b) S2, ζ = 0.5 %

(c) S3, ζ = 0.5 %

Figure G.1: Decay of motion



Appendix H

Static Coefficients



(a)

(b)

(c)

Figure H.1: Static coefficients for same section with varying gap widths.



(a)

(b)

(c)

Figure H.2: Static coefficients for same gap widths with varying section type: (a) Gap 1 (b)
Gap 2 (C) Gap 3





Appendix I

Aerodynamic Derivatives



The following pages show the scatter plots with separated data for the wind speeds V ≈ 6 m/s
and V ≈ 8 m/s for each of the nine configurations. Legend can be seen in Figure I.1.

Included is also figures containing the polynomial fitted ADs for all configurations as functions
of reduced velocity (Vr). Colour maps for the different curves can be found next to the figures.
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Figure I.2: Scatter plots of ADs for each of the nine configurations.
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Figure I.3: Polynomial fit for all configurations with ADs as functions of Vr



Appendix J

In-Wind Frequencies and Damping
Ratios



(a) S2-G1

(b) S2-G2

(c) S2-G2

(d) S3-G1

(e) S3-G2



(f) S3-G3

Figure J.0: In-wind frequencies (left) and damping ratios (right) of the three-mode flutter phe-
nomenon of S2 and S3





Appendix K

Argand Diagrams of Flutter Mode
Complexity



(a) Legend for Argand diagrams

(b) S1-G1 (c) S1-G2 (d) S1-G3

(e) S2-G1 (f) S2-G2 (g) S2-G3

(h) S3-G1 (i) S3-G2 (j) S3-G3

Figure K.1: Argand diagrams of flutter mode complexity
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