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Abstract 
 

This thesis deals with the development of a computer program that implements the 

iteration method. The iteration method is a non-linear numerical method used to calculate 

the capacity of reinforced concrete shells. A user manual is prepared to make the program 

more accessible to users. 

The theory behind the iteration method and its derivation are presented. Moreover, a 

detailed study of the materials used in a reinforced concrete shell (reinforcement steel and 

concrete) and corresponding material models is conducted. The choice of material models 

has a considerable impact on the results of the computer program. The iteration method 

procedure is then further developed to expand its application to calculate beams and 

columns. 

The primary purpose of the thesis is to develop a user-friendly computer program that 

uses the iteration method correctly in the calculation of reinforced concrete shells, beams, 

and columns.  

To ensure that the program gives correct results, results obtained by the program are 

compared to results from hand calculations and an approved computer program. There 

are, in some cases, relatively small differences, but they can be explained by the fact that 

the iteration method is an approximation and not 100% accurate. The comparisons show 

that the results from the program are consistent with the hand calculations and the 

approved computer program.  
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Sammendrag 
 

Denne oppgaven omhandler å utvikle et dataprogram som  iverksetter iterasjonsmetoden. 

Iterasjonsmetoden er en ikke-linear numerisk beregningsmetode som beregner 

kapasiteten i armerte betongskall. For at det skal være enkelt å bruke programmet, en 

brukermanual er laget. 

Teorien og derivasjon av iterasjonsmetoden er først presentert. Dessuten, er det tatt en 

gjennomgang av materialer brukt in armert betongskall (armering og betong) og 

tilsvarende materialmodellene er utført. Valget av materialmodeller har en stor innvirkning 

på resultatet av dataprogrammet. Iterasjonsmetoden er dermed utviklet videre for å 

utvidet den til beregning av bjelker og søyler. 

Hovedhensikten med oppgaven er å lage og utvikle et brukervennlig dataprogram som 

regner riktig armerte betongskall, -bjelke og -søyle, i henhold til iterasjonsmetoden.  

For å forsikre at dataprogrammet regner riktig, resultater hentet fra dataprogrammet er 

sammenlignet med resultater fra håndberegninger og et godkjent dataprogram. Det finnes, 

i noen tilfeller, relativt lite avvik, men disse kan forklares med at iterasjonsmetoden er en 

tilnærming og ikke 100% nøyaktig. Sammenligningene viser at resultatene fra 

dataprogrammet er i samsvar med resultatene fra håndberegninger og det godkjente 

dataprogrammet. 
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Concrete shells are structural constructions that can be structurally and economically 

effective as well as architecturally attractive. Since a shell element is subjected to both 

normal forces and moments in two directions, it is difficult and unpractical to calculate its 

capacity by hand. Therefore capacity control methods and algorithms are implemented to 

calculate it. 

The thesis aims to develop a user-friendly computer program to calculate the capacity of 

a shell section subjected to membrane forces and bending moments. The capacity control 

is implemented by the iteration method, a non-linear numerical method that analyses a 

shell section's capacity. The iteration method is further expanded to calculating the 

capacity control of beams and columns. 

The primary workload in the thesis preparation is to understand the iteration method in 

the calculation of reinforced concrete shells, beams, and columns and then implement it in 

a computer program by using the programming language Python. The program is then 

tested, and at last, a user manual is prepared. 

The thesis consists of five chapters: 

1. Introduction: The background, objective, and structure of the thesis are presented. 

 

2. Theory: The technical description of shells, material models of concrete and 

reinforcement, methods for designing and calculating reinforced concrete shells, 

and extension of the iteration method to beams and columns are presented. 

 

3. Computer Program: The computer program is described in detail, and the user 

manual for the program is presented. 

 

4. Verification: The computer program is run, and its results are compared to 

examples with known results. 

 

5. Conclusion: The results obtained in the previous chapter are summarized, and a list 

of proposals for further development of the calculation program is presented. 

 

In the Appendix, derivation of the formulas used in calculations, hand calculation of the 

examples used in testing are presented.    

1 Introduction 
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Shells are defined as elements subjected to both membrane and bending forces and can 

be plane or curved with respect to either one or two directions. 

 

 

Figure 2.1: Middle plane, curvature radius and thickness of a thin shell [1] 

 

The classical thin shell theory, Love-Kirchoff theory, is based on the following 

assumptions[1]: 

- The shell thickness is considerably smaller compared to its other dimensions and 

its radius of curvature. 

- Plane sections normal to the shell mid-surface prior to deformation remain plane 

and perpendicular and perpendicular to the deformed mid-surface. 

- Stresses normal to the shell mid-surface are negligible. 

- Strains and stresses are small. 

 

 

2.1 Material Models 

 

Reinforced concrete shells consist of concrete and reinforcement steel. Both concrete and 

reinforcement steel have non-linear strain-stress relations. However, Eurocode 2 (EC2) 

allows the use of simplified material models, which can be found in EC2-3[2].  

2 Theory 
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2.1.1 Concrete 

In the standard EC2, three strain-stress relation models for concrete are presented. These 

are: 

- Non-linear model EC2-3.1.5 

- Idealized parabola-rectangle model EC2-3.1.7(1) 

- Bilinear model EC2-3.1.7(2). 

 

 

Figure 2.2: Non-linear concrete model [2] 

The non-linear model is shown in Figure 2.2, and the following formulas represent the 

strain-stress relation: 

2

1 ( 2)
c

cm

k

f k

  



−
=

+ −
         for    

1
0

c cu
        (2.1.1) 

1
/

c c
  =           (2.1.2) 

1
1.05 /

cm c cm
k E f= g          (2.1.3) 

Where: 

cm
f : mean compressive strength at 28 days  

cm
E : modulus of elasticity of concrete 

1c
 : strain at peak stress 

1cu
 : nominal ultimate strain 
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Figure 2.3: Parabola-rectangle diagram for concrete under compression [2] 

 

The idealized parabola-rectangle model is shown in Figure 2.3, and the following formulas 

represent the strain-stress relation: 

2

2

1 1 for  0

n

c
c cd c c

c

f


  


     = − −     
   

          (2.1.4) 

     

2 2
for    

c cd c c cu
f   =          (2.1.5)  

Where: 

cd
f : design compressive strength  

2c
 : strain at reaching the maximum strength 

2cu
 : ultimate strain 
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Figure 2.4: Bilinear diagram for concrete under compression [2] 

 

The bilinear model is shown in Figure 2.4, and the following formulas represent the strain-

stress relation: 

3

3

     for   0c
c cd c c

c

f


  


=  g        (2.1.6) 

3 3
     for   

c cd c c cu
f   =          (2.1.7) 

Where: 

 cd
f : design compressive strength  

3c
 : strain at reaching the maximum strength 

3cu
 : ultimate strain 
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2.1.2 Reinforcement Steel 

As previously mentioned, reinforcement steel has a non-linear strain-stress relationship, 

as shown in Figure 2.5.  

 

Figure 2.5: Stress-strain diagrams for typical reinforcing steel [2] 

 

However, EC2 allows the use of two simplified design models. These are two bilinear 

models, a model with an inclined top branch and a model with a horizontal top branch, as 

shown in Figure 2.6. 

 

Figure 2.6: Idealized and design stress-strain diagrams for reinforcing steel [2] 

 

The strain-stress relationship for the model with a horizontal top branch represented by 

the following formulas: 

    for   0
yd

s s s s

s

f
E

E
  =           (2.1.8) 
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    for   
yd

s yd s uk

s

f
f

E
  =           (2.1.9) 

Where: 

yd
f : design yield stress 

s
E : modulus of elasticity of reinforcement 

uk
 : elongation at maximum force 

The computer program implements the design stress-strain relationship with a horizontal 

top branch. According to EC2-3.2.7(2), when using this model, there is no need to check 

the strain limit [2]. 

 

2.2 Design of shells 

 

The design of reinforced concrete shells consists of finding the necessary concrete 

dimensions and steel reinforcement amounts such that there is equilibrium between 

internal sectional forces and external forces.  

 

Figure 2.7: Stresses in a shell element 

 

The stresses along the shell thickness, based on the Love-Kirchoff theory, are shown in 

Figure 2.7. The resulting forces and moments are shown in Figure 2.8 and consist of two 

bending moments (Mx and My), one torsional moment (Mxy), two transverse shear forces 

(Vx, Vy), three membrane forces (Nx, Ny, Nxy). 
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Figure 2.8: Stress resultants in a plane shell element 

 

 

The stress resultants shown in Figure 2.8 are obtained by integrating the stresses on Figure 

2.7 along the shell thickness t. 

 

t/2

t/2
x x

N dz
−

=    

t/2

t/2
y y

N dz
−

=     

t/2

t/2
xy xy

N dz
−

=        

t/2

t/2
x x

M zdz
−

=    

t/2

t/2
y y

M zdz
−

=    

t/2

t/2
xy xy

M zdz
−

=   

t/2

t/2
x zx

V zdz
−

=    

t/2

t/2
y zy

V zdz
−

=   

 

The stress resultants calculated above are then subdivided into longitudinal reinforcement 

stresses, concrete stresses, and shear. Generally, these calculations present some 

difficulties due to varying stresses along the shell thickness. Therefore, in order to approach 

such a complex problem, the introduction of simplifying assumptions is necessary. Two 

methods that assume the use of orthogonal reinforcement are the Membrane Method and 

the Sandwich Method. 

2.2.1 Membrane Method 

In the membrane method, the shell section is subdivided into two layers(one top and one 

bottom) which resist the moments and in-plane forces, while the transverse shear forces 

are neglected. 
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Equilibrium equations in the x and y direction are used to calculate nx1, nx2, ny1, ny12, nxy1, 

nxy2, as shown in Figure 2.9. Once these forces are calculated, the two membranes are 

designed using the compression field theory[1]. 

 

Figure 2.9: Equivalent membrane forces [1] 

The membrane method is a simplified approach to shell design and is based on many 

assumptions. The cracking of concrete is only checked in the middle plane of the 

membranes, transverse shear is neglected, and strain compatibility is ignored. 

Notwithstanding the shortcomings mentioned above, it can be used for preliminary design, 

and its results can subsequently be checked and improved by more accurate methods.  

 

2.2.2 Sandwich Method 

In the sandwich method, the shell section is subdivided into three layers. The two outer 

layers support the inner layer and resist the moments and in-plane forces, while the inner 

layer carries the transverse shear forces as a beam in the principal shear direction[1]. 

 

Figure 2.10: Definition of forces in different layers [1] 
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2.3 Iteration Method 

 

The iteration method is a general method for the capacity control of a reinforced concrete 

shell, where the geometry and reinforcement amount is given. The method is based on 

Kirchoff’s hypothesis about linear strain distribution over the thickness of a shell. 

Therefore, out-of-plan normal stresses are assumed to be zero and excluded from the 

analysis. 

External forces and moments acting on the shell are obtained using FEM or other design 

methods. Based on these results, the method finds the strain distribution for both concrete 

and reinforcement in an iterative manner, which ensures equilibrium between external and 

internal sectional forces. 

 

2.3.1 Derivation of the iteration method 

 

As previously mentioned, the iteration method aims to find a state where internal and 

external sectional forces are in equilibrium. It means finding a strain distribution that 

ensures equilibrium, where the internal forces are functions of strain[1]: 

( ),t r
=R S ε            (2.3.1) 

Where: 

R :  external load vector     

x

y

xy

x

y

xy

N

N

N

M

M

M

 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
  

R        (2.3.2) 

S : internal load vector 

,t r
ε : generalized strain vector   

xm

ym

xym

x

y

xy













 
 
 
 
 
 

   
   = =   
      

 
 
 
 
  

m
ε

ε
κ

     (2.3.3) 

m
ε : strain of the middle plane of the shell element 
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κ : curvature of the middle plane of the shell element  

The distribution of strain over the shell thickness can be represented as follows: 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

xm

ym

x
xym

y t

x

xy
y

xy

z

z z

z
















 
 
 
 

    −            = = −  =  = −            −      
 
 
 
  

m
ε ε κ A ε  (2.3.4) 

 

The relationship between strain and stress represented by eq. (2.3.1) is non-linear and is 

illustrated in Figure 2.11. 

 

Figure 2.11: Non-linear stiffness relationship[1] 

 

The strain-stress relationship in Figure 2.11 is defined as: 

( ), , 1t r t r +
= R K ε ε          (2.3.5) 

Where ( ),t r
K ε is the secant stiffness matrix for concrete and reinforcement combined at 

iteration number r. 

The material stiffness matrix K  is obtained by using the principle of virtual work. The 

generalized displacement and rotation are represented by the vector r : 
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x

y

xy

x

y

xy

r

r

r
a







 
 
 
 
 
 

   
   =    
      

 
 
 
 
  

m
ε

r
κ

         (2.3.6) 

Where a  is the dimension of the shell element.  

The principle of virtual work can be represented as follows:    

Virtual displacement vector:  t
a =r ε       (2.3.7) 

External virtual work:  
T

e
W a=  r R     (2.3.8) 

Internal virtual work:   
T

i
V

W dV=   ε σ     (2.3.9) 

Since the material model is defined in a general form, the in-plane stress can be written 

as: 

( )= σ C ε ε            (2.3.10) 

Where:   

- C : material matrix, which includes both concrete and reinforcement 

- ;
x x

y y

xy xy

 

 

 

   
   
   
   = =   
   
   
      

σ ε   

2 T

e t
W a = ε R           (2.3.11) 

T T T T

i t t
V V V

W dV dV dV  = = =  ε σ ε Cεσ ε A CAε σ     (2.3.12) 

According to the principle of virtual work: 

/2
2 2

/2

h
T T T

e i t t t
h

W W a a dz 
−

= → = ε R ε A CA ε     (2.3.13) 
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Consequently, the equilibrium equation for a shell element is: 

/2

/2

h
T

t t

h

dz
−

= =R A CA ε Kε        (2.3.14) 

where the stiffness matrix of the shell is: 

/2

/2

h
T

h

dz
−

= K A CA           (2.3.15) 

and by a congruence multiplication of the integrand, the stiffness matrix can be 

represented as: 

/2

2

/2

h

h

z
dz

z z−

 − 
=  

 −  


C C
K

C C
         (2.3.16) 

The strains and curvatures at the middle plane of the shell can therefore be calculated by 

applying the following equilibrium equation: 

1

t

−

= ε K R           (2.3.17) 

The integrand in the formula for stiffness matrix K is solved by dividing the shell cross-

section into layers. The concrete is divided into n layers; each layer has a thickness of 

/h h n = , where h is the thickness of the shell. The reinforcement is subdivided into 

layers, where each layer has a distance z from the middle plane. The stiffness matrices for 

concrete and reinforcement are: 

Concrete:  2
1 1

n n
T i i i

c i i i
i i

i i i i

z
h h

z z= =

 − 
 =     = 
 −  

 
C C

K A C A
C C

  (2.3.18)  

Reinforcement: 

2 2
1

m
sxj j sxj syj j syj

s sxj syj
j

j sxj j sxj j syj j syj

z z
A A

z z z z=

    − −    
    =  +     
  − −   

    


C C C C

K
C C C C

  (2.3.19) 

c s
= +K K K           (2.3.20) 
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The internal vector S  can be represented as: 

x

y

xyN

M x

y

xy

N

N

N

M

M

M

 
 
 
 
 
       = =         
 
 
 
 
  

S
S

S
         (2.3.21) 

The stress resultants  N
S  and M

S  can be expressed as: 

 

/2

/2

h

N
h

dz
−

= S σ          (2.3.22) 

/2

/2

h

M
h

z dz
−

= −S σ          (2.3.23) 

which can be solved numerically as the summation of concrete and reinforcement 

contributions: 

1 1
0

sxj sxjn m

N ci syj syj

i j

A

h A




= =

  
 
 =   +  
 
 
 

 S σ       (2.3.24) 

1 1

( )

0

sxj sxjn m

M ci syj syj

i j

z A

h z z A




= =

 −   
 
 =   −  + −   
 
 
 

 S σ      (2.3.25) 

Where: 

ci
σ : concrete stress in layer i 

sxj
 : x-direction reinforcement stress in layer j 

syj
 :  y-direction reinforcement stress in layer j  
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In the iteration method, concrete and reinforcement are considered non-linear. To take 

into account the cracking of concrete in tension and non-linear behavior in compression, 

an orthotropic material model in the directions of the principal stress is used. 

1 11 12 1

2 12 22 22

12 12 12

0
1

0
1 (1 )

0 0
2

p p p

E E

E E

E

  

  
  

 
 

    
    
    
   = = =  
    −    −       

 
  

σ C ε     (2.3.26) 

Where: 

- p
σ : stresses in principal directions 

- p
ε : strains in principal directions  

- 11
E , 22

E : secant modulus in the principal directions  

- i
ii

i

E



= for i=1,2 ;  11 22

12
2

E E
E

+
=      (2.3.27) 

-  : Poisson’s ratio  

To obtain the stresses and strains in principal directions, they must be transformed from 

the stresses and strains in global directions x and y by the following formula: 

( )
p

= ε T ε          (2.3.28) 

where: 

-  : angle for the principal direction;  
1

arctan
2

xy

x y




 

 
 
 = 
  −
 

 (2.3.29) 

- ( )T : Transformation matrix

2 2

2 2

2 2

cos sin sin cos

( ) sin cos sin cos

2sin cos 2sin cos cos sin

   

    

     

 
 
 
 
 = − 
 
 − −  

T    (2.3.30) 

Assuming that principal strains and principal stresses have the same axis, it is possible to 

transform both the principal stresses and principal stiffness matrix to the corresponding 

global stresses and global stiffness matrix. 

( ) ( ) ( ) ( )
T T T

c p p p p
   =  =   =   σ T σ T C ε T C T ε   (2.3.31) 

( ) ( )
T

p p
 =  C T C T          (2.3.32) 
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A similar approach is used for the reinforcement layers. 

If the longitudinal reinforcement directions are assumed in the global x-y directions, the 

stress-strain relationship for a layer is: 

s s
= σ C ε           (2.3.33) 

0 0

0 0

0 0 0

sx sx x

s sy sy y

sxy xy

E

E

 

 

 

                = =                   

σ        (2.3.34) 

Where: 

sx
E , sy

E : secant modulus for the reinforcement in x- and y-direction, respectively  

Suppose the longitudinal reinforcement directions don’t correspond with the global x-y 

directions. In that case, the material matrix must be transformed by using a transformation 

matrix similar to that used in the concrete layers: 

( ) ( )
xy T

s s
 =  C T C T          (2.3.35) 

Where   is the angle of the reinforcement relative to the global directions.  

To decide whether equilibrium between internal and external forces is reached, a 

convergence criterium must be defined. One method is the use of the relative difference 

between each of the internal and external stress resultants. The iteration stops on two 

conditions: 

1. The relative differences are under the convergence criterium  , which typically is 

in order of magnitude 0.01. 

2. The number of iterations is higher than the allowed maximum iteration number. 

The convergence criterium is defined as: 

 
,k i k

k


−


R S

R
            (2.3.36) 

- k= 1,2,…,6  

- i: iteration number 

 

2.3.2 Iteration method procedure 

To have an overview of how the iteration method is implemented, a step-by-step procedure 

is presented[1]. 

1. Calculate the external load vector R and the reinforcement amount. 

 

2. Assume linear elastic isotropic behavior for concrete and linear elastic behavior for 

reinforcement, and calculate the initial stiffness matrix 
0

K . 
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Concrete:  
0 0

20 0
1 1

0 0

n n
T i i i

c i i i
i i

i i i i

z
h h

z z= =

 − 
 =     = 
 −  

 
C C

K A C A
C C

 

Reinforcement: 

0 0 0 0

2 20
1

0 0 0 0

m
sxj j sxj syj j syj

s sxj syj
j

j sxj j sxj j syj j syj

z z
A A

z z z z=

    − −    
    =  +     
  − −   

    


C C C C

K
C C C C

 

0 0 0c s
= +K K K  

  

3. Calculate strains and curvatures at the middle-plane of the shell 
1

0 0t

−

= ε K R  

 

4. Calculate in-plane strains for each concrete and reinforcement layer 

0 0i i t
= ε A ε   

 

5. Calculate the principal directions and principal strains in each concrete layer 

0 0
( )

p i i i i
= ε T ε  

1
arctan

2

i

xy

i i i

x y




 

 
 
 =   
  −
 

 

 

6. Calculate concrete stress in local principal directions for each concrete layer. The 

principal stresses are calculated based on the stress-strain relationship model used 

for concrete. 

 

7. Transform principal stresses in each concrete layer to stresses in global directions 

0 0
( )

T

c i i i p i
= σ T σ  

 

8. Calculate reinforcement stresses in each reinforcement layer 

0 0 0s j s j j
= σ C ε  

 

9. Calculate the internal stress resultants 

0 0 0c s
= +S S S  
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0

0

0

0

01 1 0

0

0

0

sxj sx

syj sy

n m

c i

i c ii j j sxj sx

j syj sy

A

A

h
z z A

z A









= =

  
 
  
       =   +    −  −      
 −   
 
 
  

 
σ

S
σ

  

10. Calculate the maximum relative difference between external and internal forces.  

Maximum relative difference = 
0,

max
k k

k

 − 
 
  
 

R S

R
 

 

11. Check for convergence based on the chosen convergence criterium  . 

If 
0,

max
k k

k


 − 
  
  
 

R S

R
  equilibrium is achieved and the iteration stops. 

If 
0,

max
k k

k


 − 
  
  
 

R S

R
 equilibrium is not achieved and the iteration continues.  

 

12. Calculate a new secant modulus for every concrete and reinforcement layer. 

 

13. Calculate a new material matrix for every concrete and reinforcement layer using 

the secant modulus obtained in step 12. 

pli
C ;  p: principal,   l: iteration number,   i: layer number  

 

14. Transform the principal material matrices obtained in step 13 to global material 

matrices. 
T

li i pli i 
=  C T C T   

Repeat steps 2 to 12 with the newly obtained material matrix for both concrete and 

reinforcement until the convergence criterium is satisfied. 

 

2.3.3 Utilization ratio 

The utilization ratio is used to evaluate the degree of utilization of an element compared 

to its maximum capacity. When using the iteration method and there is convergence, the 

maximum strain values in concrete and reinforcement layers are obtained. These are then 

compared to their respective strain limit values [1]. 

The utilization ratio for concrete is: 

c
c

cu

UR



=            (2.3.37) 
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Where: 

 
c
  : maximum compressive principal strain in concrete 

cu
 :  ultimate strain 

The utilization ratio for reinforcement is: 

s
s

ud

UR



=           (2.3.38) 

Where: 

s
 : maximum strain in reinforcement 

ud
 : strain limit for the reinforcement 

As described in chapter 2.1.2, the stress-strain model adopted in the computer program 

does not need to check the strain limit. Based on these premises, the user can decide the 

value 
ud
  but needs to consider that it directly affects the utilization ratio. In the following 

calculations, the value 
ud
  is set to 1%, which is relatively high compared to the 

reinforcement strain at reaching the maximum strength 
yd
  of  2.17‰. In the verification 

of the computer program, it is preferable to use a high 
ud
  to test the program in extreme 

load cases and high strain values. 

 

2.3.4 Application of the iteration method 

As previously mentioned, the main objective of the iteration method is to control the 

capacity of concrete shells. The forces considered in the analysis are shown in Figure 2.12. 

 

Figure 2.12: Shell, forces and moments in the iteration method 
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A beam can be considered as a shell subjected to an axial force and moment in one 

direction. Consequently, the iteration method can be easily applied to a beam. As the 

iteration method calculates a shell size of 1m x 1m, the force and moment values, 

reinforcement amount, and geometry need to be transformed accordingly. 

A column is subjected to a uniaxial force and two bending moments with respect to x- and 

y-direction, respectively, as shown in Figure 2.13 

 

Figure 2.13: Column, forces and moments 

 

In order to implement the iteration method in a column, the moments are combined by 

the following formula: 

2 2

s x y
M M M= +  

1
arctan

y

x

M

M


 
 

=  
 
 

 

 

The resulting moment Ms acts about the s-axis, which is at an angle 
1

 with the x-axis. 

Consequently, the section can be considered subjected to uniaxial force and a moment in 

one direction, with the s -axis as the middle plane of the section. The reinforcement layers 

are generally not parallel to the s-axis. Therefore the layer subdivision is applied to both 

concrete and reinforcement. There are four different cases to be considered based on the 

value and direction of the moments.  
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Figure 2.14: Column, s-axis 

 

A detailed description of the calculations that allow the use of the iteration method for the 

capacity control of columns is presented in Appendix E. 
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The computer program is written in Python programming language. Python is an open-

source and cross-platform programming language that was first released in 1991 and has 

become increasingly popular over the last ten years. It is an object-oriented programming 

language that can be used for multiple purposes such as scientific computing, web 

development, etc., by downloading and installing the appropriate packages. Python 

packages for science and numerical computations used in this program are 

NumPy(fundamental package for scientific computing) and Matplotlib (Python 2D plotting 

library)[3]. 

The editor used in the development of the computer program is Spyder. It is an open-

source, cross-platform integrated development environment (IDE) for scientific computing 

in Python[4]. 

During the preparation of the computer program, the main aim was to make a robust 

algorithm able to take every possibility into account. To make the script easily accessible 

to others and ensure a direct connection between the theory and the script, the symbols 

and variables used in the script are taken directly from the Theory chapter 2. 

The calculation program is subdivided into three main parts: beam, column, and shell. All 

three parts follow the main algorithm described in chapter 2.3. As the version of the 

algorithm used in the capacity calculation of a shell is the complete one, it will be used in 

the detailed description of the program in chapter 3.1. 

 

 

3.1 Description of the Program 

 

The computer program follows all the steps of the iteration method algorithm described in 

chapter 2.3.2. In this section, important syntaxes and the implementation of some 

important steps in the algorithm are presented and explained. 

3.1.1 Step 1: External load vector R and the reinforcement amount 

The external load vector R contains three forces Nx, Ny, Nxy, and three moments Mx, My, 

Mxy. The units accepted by the program are kN for forces and kNm for moments, while all 

subsequent steps are implemented in N and mm. The input data is converted into N and 

mm to ensure compatibility between units. 

3 Computer Program 
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Figure 3.1: Python code, external load vector 

 

The same approach is used for reinforcement amount data, which is inserted into the 

program as mm2/m. 

 

 

Figure 3.2: Python code, reinforcement amount 

 

3.1.2 Step 3: Middle-plane strains and curvatures 

In step 3, the strains and curvatures at the midplane of the shell are calculated by the 

following formula, where the stiffness matrix is inverted: 

1

0 0t

−

= ε K R  

A matrix can be correctly inverted if it is regular (non-singular) and well-conditioned (not 

ill-conditioned). A singular matrix has a determinant equal to zero, while an ill-conditioned 

matrix has a high condition number. In order to take such possibilities into account, when 

the matrix is either singular or ill-conditioned, the program implements an alternative 

method known as the Moore-Penrose pseudo-inverse of a matrix[5].  

 

Figure 3.3: Python code, middle-plane strains and curvatures 
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3.1.3 Step 6: Concrete stress in principal directions 

In this step, the concrete stress for each concrete layer in local principal directions is 

calculated by using the stress-strain relationship model of concrete. The computer program 

allows the user to choose between two concrete models: the parabola-rectangle model 

(concModel == 1) and the bilinear model (concModel == 2). Subsequently, two sets of 

formulas are used to obtain the principal stresses of each layer. 

It should be noted that the script shown in Figure 3.4 is within a for-loop, and the 

calculation is implemented for each concrete layer. As previously mentioned, the tensile 

strength of concrete is assumed to be zero. Therefore, if the strain is positive, the concrete 

stress value is set to zero. If the compressive strain is higher than the ultimate strain  

( 2cu
 ), the concrete stress value is zero. 

 

Figure 3.4: Python code, concrete stress in principal directions 

  

3.1.4 Step 8: Reinforcement stress 

The stresses in each reinforcement layer are obtained by using the following formula: 

0 0 0s j s j j
= σ C ε  

In a shell, the reinforcement is categorized by direction and position. Consequently, there 

are four layers, namely: x-direction bottom, x-direction top, y-direction bottom, y-direction 

top. 

The program implements a for-loop in relation to the reinforcement position. At the same 

time, instead of using matrix multiplication, the elasticity modulus values of each layer are 

used to calculate the reinforcement stress. 

These calculations are an implementation of the design stress-strain model with the 

horizontal top branch of the reinforcement.  
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Figure 3.5: Python code, reinforcement stress 

 

The resulting stress vector is a 3x1 vector, where the first two values are stresses in x- 

and y-direction, respectively. The third value represents shear, and it is set to zero as it is 

not considered in the reinforcement stress calculations. 

 

3.1.5 Step 10: Maximum relative difference 

The maximum relative difference between external and internal forces is calculated by 

using the following formula: 

0,max k k

k

 − 
 
  
 

R S

R
 

However, some exceptions should be taken into account. As previously discussed, the 

external forces vector is composed of 6 elements, and some could be zero. In such a case, 

the formula will be a division by zero and the result will be infinite. Whenever a value in 

the external forces vector is zero, an alternative method using the difference between 

external and internal forces is used. The resulting algorithm is as follows: 

 

Figure 3.6: Python code, maximum relative difference 
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The resulting values are three: maximum relative difference (devMax), maximum 

difference for forces (diffNMax), and maximum difference for moments (diffMMax). 

Therefore, the convergence criterium is subdivided into three parts: 

-  : relative difference 

- N
 : difference for Forces 

- M
 : difference for Moments  

The use of different convergence criterium for forces and moments is because they are 

defined in terms of N and mm they have different orders of magnitude. These convergence 

criteria are determined by taking into account all value possibilities of the external load 

vector. 

 

Figure 3.7: Python code, convergence criterium 

 

3.1.6 Step 12: Updating concrete secant modulus 

The new secant modulus for every concrete and reinforcement layers are calculated by 

using the following formulas: 

i
ii

i

E



= for i=1,2 ;  11 22

12
2

E E
E

+
=  

An exception that needs to be taken into account is when the strain is equal to zero. 

According to the formula above: if the strain is equal to zero, the secant modulus will be 

without a solution, as the expression becomes a division by zero. To prevent that, when 

the strain is zero, the secant modulus is set to zero. This is shown in Figure 3.8 for concrete 

layers. 
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Figure 3.8: Python code, new concrete secant modulus 
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3.2 User Manual 

 

The program is designed to be as user-friendly as possible. To run the program, the user 

opens the folder where the program is downloaded and runs the application startMain.exe. 

The user manual section is composed of three sections: input, output, and exceptions. 

 

3.2.1 Input  

 

 

Figure 3.9: Screenshot of the structure selection window 

 

The first window shown in Figure 3.9 allows the user to select the structure type. 

Once the structure is selected,  a new window appears depending on the selected structure 

type. The input windows for beam, shell, and column are presented below. 
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As shown in Figure 3.10, Figure 3.11, and Figure 3.12, the input values are categorized 

into Forces, Geometry, Reinforcement, Concrete, and Iteration. Common inputs for all 

structure types are described here, while those specific to the structure types are described 

in their respective sections. 

The sign of forces and moments follow the directions shown in the section figure. In the 

case of axial force, compression has a negative value and tension has a positive value. The 

moment is positive when the bottom part is under tension and the top part is under 

compression. 

In the reinforcement part,  fyk is the reinforcement yield strength, γs is the partial safety 

factor for reinforcement, and εud is the reinforcement strain limit. 

In the concrete section, the concrete model is selected from a drop-down list where the 

user can choose between two concrete models: parabola- rectangle and bilinear. fck is the 

concrete compressive yield strength, γc is the partial safety factor for concrete. 

The iteration part controls the number of concrete layers n, convergence criterium β, and 

the maximum number of iterations maxIt.  

 

1. Beam 

 

Figure 3.10: Screenshot of the beam input window 
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In the geometry part, b and h are the width and height of the section, c1 and c2  represent 

the distance between the bottom and top reinforcement and their corresponding concrete 

section edges. 

In the reinforcement part, Asx1 and Asx2 are the bottom and top reinforcement area, while 

Esx1 and Esx2 are their respective modulus of elasticity. 

 

2. Shell 

 

Figure 3.11: Screenshot of the shell input window 

 

In the geometry part, h is the height of the section, c1 and c2  represent the distance 

between the bottom and top reinforcement cover and their corresponding edges as shown 

in the section figure. 

In the reinforcement part, Asx1 and Asx2 are the bottom and top reinforcement area in 

the x-direction, while Asy1 and Asy2 are the bottom and top reinforcement area in the y-

direction. Esx1, Esx2, Esy1, and Esy2 are their respective modulus of elasticity. 
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3. Column 

 

 

Figure 3.12: Screenshot of the column input window 

 

In the forces part, the value of the three section forces is inserted. The sign of forces and 

moments follows the directions shown in the section figure. In the case of axial force, 

compression has a negative value and tension has a positive value. The x-direction moment 

(Mx) is positive when the bottom of the section is under tension and the top of the section 

is under compression. The y-direction moment (My)  is positive when the right part of the 

section is under tension and the left part of the section is under compression. 

In the geometry part, b and h are the width and height of the section. cx1 and cx2  

represent the distance between the bottom and top reinforcement and their corresponding 

edges. In contrast, cy1 and cy2  represent the distance between the right and left 

reinforcement and their corresponding edge, as shown in the section figure. 

In the reinforcement part, Asx1 and Asx2 are the bottom and top reinforcement areas, 

while Asy1 and Asy2 are the right and left reinforcement areas. Esx1, Esx2, Esy1, and Esy2 

are their respective modulus of elasticity. 
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3.2.2 Output  

 

When the user clicks the run button, the program calculates according to the inserted 

values, and a new output window displays the results. The result windows for beams, 

shells, and columns are presented below.  

The window is divided into parts showing concrete, reinforcement, internal forces, and 

iteration number results. A graphic representation of the results above is also displayed. 

1. Beam 

 

Figure 3.13: Screenshot of the beam output window 

 

In the concrete part, the maximum strain and stress for concrete are displayed. The 

utilization ratio is a strain ratio between the maximum concrete strain and the ultimate 

strain ( ,max
/

c cu
  ). 

In the reinforcement part, the strain and stress values for both bottom and top 

reinforcements are shown. The utilization ratio is a strain ratio between the reinforcement 

strain values and reinforcement strain limit ( /
s ud
  ). 
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The internal forces part shows the value of the internal forces reached after the iteration. 

The number of iterations used to achieve convergence is displayed in the iteration number 

part. 

The graphs in the first row show the strain and stress distribution in concrete in the graphic 

representation. The graphs in the second row present the convergence process of the force 

and the moment during the iteration.   

 

2. Shell 

 

Figure 3.14: Screenshot of the shell output window 

 

In the concrete part, the maximum strain and stress for concrete are presented. The 

utilization ratio is the strain ratio between the maximum concrete strain and the ultimate 

strain ( ,max
/

c cu
  ). 

In the reinforcement part, the strain and stress values for the bottom and top 

reinforcements in both x- and y- directions are presented. The utilization ratio is the strain 

ratio between the reinforcement strain values and reinforcement strain limit  

( /
s ud
  ). 

The internal forces part shows the value of the internal forces reached after the iteration. 

The number of iterations is shown in the iteration number part. 
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The graphic representation is composed of four rows. The graphs in the first row display 

the concrete strain in the principal directions. The graphs in the second row show the 

concrete stress distribution in the principal directions. The third- and fourth-row graphs 

display the convergence process of the forces and moments, respectively, during the 

iteration process.  

 

3. Column 

 

Figure 3.15: Screenshot of the column output window 

 

In the concrete part, the maximum strain and stress for concrete are presented. The 

utilization ratio is a strain ratio between the maximum concrete strain (tension and 

compression) and the ultimate strain ( ,max
/

c cu
  ). 

In the reinforcement part, the maximum reinforcement strain values for compression and 

tension are displayed. The utilization ratio is a strain ratio between the maximum 

reinforcement strain values and reinforcement strain limit ( ,max
/

s ud
  ). 
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The internal forces part shows the value of the internal forces reached after the iteration. 

The number of iterations used to achieve convergence is shown in the iteration number 

part.  

The graphs in the first row show the strain and stress distribution in concrete. This 

distribution does not necessarily follow the height of the column. As detailed in Appendix 

E, the layer subdivision direction is at an angle ( 1
 ) from the x-direction:

1
arctan( / )

y x
M M =  

The graphs in the second row display the convergence process of the force and moments 

during the iteration.   

 

3.2.3 Exceptions  

 

This section covers situations when the iteration program doesn’t converge and when a 

non-numerical value is inserted. 

If the program doesn’t converge, the iteration stops, and a dialog box, as shown in Figure 

3.16, pops up. 

 

Figure 3.16: Screenshot of the no-convergence dialog box 

 

If a non-numerical value is inserted, the program doesn’t run and a dialog box, as shown 

in Figure 3.17, pops up. 

 

Figure 3.17: Screenshot of the dialog box when a non-numerical value is inserted 
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Software verification is defined as a process of exercising a software system by using 

various inputs to validate its behavior, discover bugs or defects, and improve the software’s 

quality. Defects in a program can have many causes, such as mistakes in writing code, 

wrong requirements, ambiguous instructions, etc.[6]  

Software testing can be subdivided into four levels: unit testing, integration testing, system 

testing, and acceptance testing [6]. However, the testing of this computer program is 

implemented using a simplified approach subdivided into three parts:  

1. Example with known results: an example is calculated using basic hand calculations 

or an approved computer program. 

2. Use of the program: the computer program is used to calculate the same example. 

3. Comparing the results: the results from hand calculations and the program are 

compared. 

This method can have two possible outcomes: 

1. Results from both methods are equal, which means the program is functioning as 

expected. This outcome is a green light for the further development of the program. 

2. Results from both methods are different, which means the program is not 

functioning correctly. Therefore, the program needs to be rectified, and the 

verification is rerun. 

The computer program is designed to calculate shell sections for capacity control and lower 

loads. With the appropriate modifications detailed in chapter 2.3.4, beams and columns 

can also are calculated. The following verification examples are set up in order of 

complexity.  

The formulas for the design of concrete beams in EC-2.6 apply to concrete sections at 

ultimate limit state (ULS) [2]. The computer program uses the stress-strain relationship 

formulas presented in chapter 2.1 to calculate the internal forces and moments in a section. 

These concrete and reinforcement stress-strain relationships are used to derive formulas 

for calculating the internal forces and moments in a section. The computer program results 

can thus be compared to exact hand calculation results. The derivation of the hand 

calculation formulas is detailed in Appendix A.  

 

4.1 Shells and beams at load capacity 

 

The examples used in this section are first calculated by hand by using formulas for 

obtaining the maximum capacity of the section. The results from the program are then 

compared to the hand-calculated results, which are referred to as control results.  

4 Verification  
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The hand calculations and control results of the following examples are shown in Appendix 

B and Appendix C. 

4.1.1 Compression 

 

 

 

Figure 4.1: Shell, compression in one direction 

 

Input 

 

Symbol Value Unit  Symbol Value Unit 

Nx -1700 kN/m  Asx1 0 mm2/m 

Ny 0 kN/m  Asx2 0 mm2/m 

Nxy 0 kN/m  Asy1 0 mm2/m 

Mx 0 kNm/m  Asy2 0 mm2/m 

My 0 kNm/m  Esx1 200000 N/mm2 

Mxy 0 kNm/m  Esx2 200000 N/mm2 

    Esy1 200000 N/mm2 

h 100 mm  Esy2 200000 N/mm2 

c1 0 mm  fyk 500 N/mm2 

c2 0 mm  γs 1.15  

    εud 0.01  

n variable      

β variable 
  concrete 

model 

parabola-

rectangle 

 

max it. 1000   fck 30 N/mm2 

    γc 1.5  

    ν 0  

Table 4.1: Shell input, compression in one direction 
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Results 

Concrete 

 β=0.001 β=0.0001 

Concrete 

Layers (n) 

Stress 

(N/mm2) 

Iteration 

number 

Stress 

(N/mm2) 

Iteration 

number 

10 -16.98 32 -17.00 100 

30 -16.98 32 -17.00 100 

100 -16.98 32 -17.00 100 

1000 -16.98 32 -17.00 100 

Control -17.00  -17.00  

     

Concrete 

Layers (n) 

Strain 

(‰) 

Iteration 

number 

Strain 

(‰) 

Iteration 

number 

10 -1.938 32 -1.980 100 

30 -1.938 32 -1.980 100 

100 -1.938 32 -1.980 100 

1000 -1.938 32 -1.980 100 

Control -2.000  -2.000  

Table 4.2: Shell concrete results, compression in one direction 

Comments 

- Convergence criterium (β): Both stress and strain values increase in accuracy as 

the value of β decreases; however, lower values of β lead to an increase in the 

number of iterations. 

 

- Concrete layers (n): The number of concrete layers does not affect the results. 

Since the only force acting on the section is a compressive force Nx, the stress and 

strain values are the same for any number of subdivisions of concrete layers. 

 

 

4.1.2 Tension 

 

Figure 4.2: Shell, tension in one direction 
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Input 

Symbol Value Unit  Symbol Value Unit 

Nx 500 kN/m  Asx1 580 mm2/m 

Ny 0 kN/m  Asx2 580 mm2/m 

Nxy 0 kN/m  Asy1 0 mm2/m 

Mx 0 kNm/m  Asy2 0 mm2/m 

My 0 kNm/m  Esx1 200000 N/mm2 

Mxy 0 kNm/m  Esx2 200000 N/mm2 

    Esy1 200000 N/mm2 

h 100 mm  Esy2 200000 N/mm2 

c1 35 mm  fyk 500 N/mm2 

c2 35 mm  γs 1.15  

    εud 0.01  

n variable      

β variable 
  concrete 

model 

parabola-

rectangle 

 

max it. 1000   fck 30 N/mm2 

    γc 1.5  

    ν 0  

Table 4.3: Shell input, tension in one direction 

 

Results 

Reinforcement 

 β=0.001 β=0.0001 

Concrete 

Layers (n) 

Stress(N/mm2 ) Iteration 

number 

Stress(N/mm2 ) Iteration 

number Sx1 Sx2 Sx1 Sx2 

10 431.03 431.03 2 431.03 431.03 2 

30 431.03 431.03 2 431.03 431.03 2 

100 431.03 431.03 2 431.03 431.03 2 

1000 431.03 431.03 2 431.03 431.03 2 

Control 431.03 431.03  431.03 431.03  

     

Concrete 

Layers (n) 

Strain (‰) Iteration 

number 

Strain(‰) Iteration 

number Sx1 Sx2 Sx1 Sx2 

10 2.155 2.155 2 2.155 2.155 2 

30 2.155 2.155 2 2.155 2.155 2 

100 2.155 2.155 2 2.155 2.155 2 

1000 2.155 2.155 2 2.155 2.155 2 

Control 2.155 2.155  2.155 2.155  

Table 4.4: Shell reinforcement results, tension in one direction 
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Comments 

- Convergence criterium (β): Both stress and strain values remain unchanged for 

different values of β.  

 

- Concrete layers (n): The number of concrete layers does not affect the results. 

Since the only force acting on the section is a tension force Nx, and the tensile 

strength of concrete is assumed zero, the stress and strain values are the same for 

any number of subdivisions of concrete layers. 

 

4.1.3 Moment in one direction 

 

 

Figure 4.3: Shell, moment in one direction 

Input 

Symbol Value Unit  Symbol Value Unit 

Nx 0 kN/m  Asx1 3768 mm2/m 

Ny 0 kN/m  Asx2 0 mm2/m 

Nxy 0 kN/m  Asy1 0 mm2/m 

Mx 516.780 kNm/m  Asy2 0 mm2/m 

My 0 kNm/m  Esx1 200000 N/mm2 

Mxy 0 kNm/m  Esx2 200000 N/mm2 

    Esy1 200000 N/mm2 

h 400 mm  Esy2 200000 N/mm2 

c1 35 mm  fyk 500 N/mm2 

c2 0 mm  γs 1.15  

    εud 0.01  

n variable      

β variable 
  concrete 

model 

parabola-

rectangle 

 

max it. 1000   fck 30 N/mm2 

    γc 1.5  

    ν 0  

Table 4.5: Shell input, moment in one direction 
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Results 

Concrete 

 β=0.001 β=0.0001 

Concrete 

Layers (n) 

Stress 

(N/mm2) 

Iteration 

number 

Stress 

(N/mm2) 

Iteration 

number 

10 - 255 - 255 

30 -17.00  283 -17.00  511 

100 -17.00  260 -17.00  518 

1000 -17.00  256 -17.00  515 

Control -17.00   -17.00   

     

Concrete 

Layers (n) 

Strain 

(‰) 

Iteration 

number 

Strain 

(‰) 

Iteration 

number 

10 - 255 - 255 

30 -3.226 283 -3.373 511 

100 -3.259 260 -3.396 518 

1000 -3.299 256 -3.438 421 

Control -3.500  -3.500  

Table 4.6: Shell concrete results, moment in one direction 

 

 

Reinforcement 

 β=0.001 β=0.0001 

Concrete 

Layers (n) 

Stress 

(N/mm2) 

Iteration 

number 

Stress 

(N/mm2) 

Iteration 

number 

10 - 255 - 255 

30 434.78  283 434.78  511 

100 434.78  260 434.78  518 

1000 434.78  256 434.78  515 

Control 434.78   434.78   

     

Concrete 

Layers (n) 
Strain 

Iteration 

number 
Strain 

Iteration 

number 

10 - 255 - 255 

30 7.017 283 7.460 511 

100 6.711 260 7.103 518 

1000 6.684 256 7.073 515 

Control 7.232  7.232  

Table 4.7: Shell reinforcement results, moment in one direction 

Comments 

- Convergence criterium (β): The stress values in concrete and reinforcement are 

unchanged for both values of β and equal to the control value. In contrast, the 

strain values in both materials increase in accuracy as β decreases. The iteration 

number increases as β decreases. 
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- Concrete layers (n): For n equal to 10, the iteration doesn’t converge, which means 

the concrete layer subdivision is not enough. In the other three concrete layer 

numbers, the iteration converges, and the stress values for concrete and 

reinforcement are unchanged and equal to the control value. The strain values for 

concrete increase in accuracy as n increases. However, strain values for 

reinforcement don’t have a uniform response to increase in n. However, it should 

be noted that the maximum strain difference, which occurs for n=1000 and 

β=0.001, the relative difference compared to the control value is 7.48%. 

 

 

4.1.4 Moment and axial force in one direction 

 

Moment and axial force can be combined in various ways. In the following cases, the choice 

of combinations is based on examples similar to those presented in the book 

‘Betongkonstruksjoner – Beregning og dimensjonering etter Eurocode2’ [7]. The following 

examples represent various capacity extremes for a reinforced concrete section due to 

fracture in concrete and high reinforcement strains. The hand calculations for this section 

are presented in Appendix B.4. 

 

 

Figure 4.4: Shell, moment and axial force in one direction 
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Input 

Symbol Value Unit  Symbol Value Unit 

Nx variable kN/m  Asx1 4910 mm2/m 

Ny 0 kN/m  Asx2 4910 mm2/m 

Nxy 0 kN/m  Asy1 0 mm2/m 

Mx variable kNm/m  Asy2 0 mm2/m 

My 0 kNm/m  Esx1 200000 N/mm2 

Mxy 0 kNm/m  Esx2 200000 N/mm2 

    Esy1 200000 N/mm2 

h 400 mm  Esy2 200000 N/mm2 

c1 40 mm  fyk 500 N/mm2 

c2 40 mm  γs 1.15  

    εud 0.03  

n variable      

β variable 
  concrete 

model 

parabola-

rectangle 

 

max it. 2000   fck 30 N/mm2 

    γc 1.5  

    ν 0  

Table 4.8: Shell input, moment and axial force in one direction 

 

1. Compression fracture in concrete 

 

Nx = -7983.240 kN 

Mx = 471.606 kNm 

 

 

Results 

Concrete 

 β=0.001 β=0.0001 

Concrete 

Layers (n) 

Stress 

(N/mm2) 

Iteration 

number 

Stress 

(N/mm2) 

Iteration 

number 

10 -17.00  70 -17.00 125 

30 -17.00  68 -17.00  118 

100 -17.00  67 -17.00  118 

1000 -17.00  67 -17.00  118 

Control -17.00   -17.00   

     

Concrete 

Layers (n) 

Strain 

(‰) 

Iteration 

number 

Strain 

(‰) 

Iteration 

number 

10 -3.353 70 -3.404 125 

30 -3.399 68 -3.446 118 

100 -3.430 67 -3.478 118 

1000 -3.444 67 -3.493 118 

Control -3.500  -3.500  

Table 4.9: Shell concrete results, case 1 
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Reinforcement 

 β=0.001 β=0.0001 

Concrete 

Layers (n) 

Stress(N/mm2 ) 
Iteration 

number 
Stress(N/mm2 ) 

Iteration 

number 

Sx1 Sx2  Sx1 Sx2  

10 -68.49 -434.78 70 -68.02 -434.78 125 

30 -70.25 -434.78 68 -69.83 -434.78 118 

100 -70.46 -434.78 67 -70.03 -434.78 118 

1000 -70.48 -434.78 67 -70.05 -434.78 118 

Control -70.00 -434.78  -70.00 -434.78  

     

Concrete 

Layers (n) 

Strain 

(‰) 

Iteration 

number 

Strain 

(‰) 

Iteration 

number 

Sx1 Sx2  Sx1 Sx2  

10 -0.342 -3.176 70 -0.340 -3.223 125 

30 -0.351 -3.112 68 -0.349 -3.154 118 

100 -0.352 -3.103 67 -0.350 -3.146 118 

1000 -0.352 -3.102 67 -0.350 -3.145 118 

Control -0.350 -3.150  -0.350 -3.150  

Table 4.10: Shell reinforcement results, case 1 

Comments 

According to the hand calculations detailed in Appendix B.4.1, the whole section is under 

compression, and the failure is due to compression fracture in concrete. As for 

reinforcement, the top reinforcement yields while the bottom reinforcement does not.  

- Convergence criterium (β): The stress values for concrete and top reinforcement 

are unchanged for both values of β and equal to the control value. The stress values 

for the bottom reinforcement increase in accuracy as the value of β decreases, 

except for n=10. The strain values for concrete and top reinforcement increase in 

accuracy as β decreases. The strain values for bottom reinforcement have a similar 

trend except for when n=10. The iteration number increases with lower β. 

 

- Concrete layers (n): The stress values for concrete and top reinforcement are 

unchanged and equal to the control value for all values of n. The strain values for 

concrete increase in accuracy as n increases. In contrast, strain values for 

reinforcement don’t have a uniform response to the increase in n. However, it 

should be noted that the maximum strain difference, which occurs in the bottom 

reinforcement for n=10 and β=0.0001, the relative difference compared to the 

control value is 2.86%. 
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2. Compression fracture in concrete and yield strain in reinforcement 

 

Nx = -3056.574 kN 

Mx = 1012.053 kNm 

Results 

Concrete 

 β=0.001 β=0.0001 

Concrete 

Layers (n) 

Stress 

(N/mm2) 

Iteration 

number 

Stress 

(N/mm2) 

Iteration 

number 

10 -17.00  27 -17.00 76 

30 -17.00  27 -17.00  38 

100 -17.00  28 -17.00  40 

1000 -17.00  27 -17.00  40 

Control -17.00   -17.00   

     

Concrete 

Layers(n) 

Strain 

(‰) 

Iteration 

number 

Strain 

(‰) 

Iteration 

number 

10 -3.215 27 -3.242 76 

30 -3.388 27 -3.397 38 

100 -3.461 28 -3.469 40 

1000 -3.487 27 -3.497 40 

Control -3.500  -3.500  

Table 4.11: Shell concrete results, case 2 

 

Reinforcement 

 β=0.001 β=0.0001 

Concrete 

Layers(n) 

Stress(N/mm2 ) 
Iteration 

number 
Stress(N/mm2 ) 

Iteration 

number 

Sx1 Sx2  Sx1 Sx2  

10 434.68 -434.78 27 434.78 -434.78 76 

30 434.52 -434.78 27 434.78 -434.78 38 

100 434.46 -434.78 28 434.74 -434.78 40 

1000 434.41 -434.78 27 434.74 -434.78 40 

Control 434.78 -434.78  434.78 -434.78  

     

Concrete 

Layers(n) 

Strain 

(‰) 

Iteration 

number 

Strain 

(‰) 

Iteration 

number 

Sx1 Sx2  Sx1 Sx2  

10 2.173 -2.898 27 2.196 -2.923 76 

30 2.173 -2.864 27 2.174 -2.872 38 

100 2.172 -2.863 28 2.174 -2.870 40 

1000 2.172 -2.861 27 2.174 -2.870 40 

Control 2.173 -2.870  2.173 -2.870  

Table 4.12: Shell reinforcement results, case 2 



46 

 

Comments 

According to the hand calculations detailed in Appendix B.4.2, the failure is due to 

compression fracture in concrete. The top reinforcement yields due to compression, while 

the bottom reinforcement yields due to tension with a strain value 
3

2.173 10
−

 .  

- Convergence criterium (β): The stress values for concrete and reinforcement are 

unchanged for both values of β and equal to the control value. The strain values for 

concrete increase in accuracy as β decreases. In the case of strain in reinforcement, 

bottom reinforcement values don’t have a uniform response to changes in β, while 

top reinforcement values increase in accuracy as β decreases. The iteration number 

increases as β decreases. 

 

- Concrete layers (n): The stress values for concrete and reinforcement are 

unchanged and equal to the control value for all values of n. The strain values for 

concrete increase in accuracy as n increases. Strain values for the bottom 

reinforcement don’t have a uniform response to increase in n, while the strain 

values for the top reinforcement increase in value as n increases. However, it should 

be noted that in the maximum strain difference, which occurs in the bottom 

reinforcement for n=10 and β=0.0001, the relative difference compared to the 

control value is 1.85%. 

 

3. Compression fracture in concrete and double yield strain in reinforcement 

 

Nx = -2039.995 kN 

Mx = 965.340 kNm 

Results 

Concrete 

 β=0.001 β=0.0001 

Concrete 

Layers(n) 

Stress 

(N/mm2) 

Iteration 

number 

Stress 

(N/mm2) 

Iteration 

number 

10 -17.00 165 - 280 

30 -17.00  95 -17.00  393 

100 -17.00  98 -17.00  349 

1000 -17.00  96 -17.00  342 

Control -17.00   -17.00   

     

Concrete 

Layers(n) 

Strain 

(‰) 

Iteration 

number 

Strain 

(‰) 

Iteration 

number 

10 -3.287 165 - 280 

30 -3.033 95 -3.381 393 

100 -3.133 98 -3.421 349 

1000 -3.163 96 -3.456 342 

Control -3.500  -3.500  

Table 4.13: Shell concrete results, case 3 
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Reinforcement 

 β=0.001 β=0.0001 

Concrete 

Layers(n) 

Stress(N/mm2 ) 
Iteration 

number 
Stress(N/mm2 ) 

Iteration 

number 

Sx1 Sx2  Sx1 Sx2  

10 434.78 -434.78 165 - - 280 

30 434.78 -434.78 95 434.78 -434.78 393 

100 434.78 -434.78 98 434.78 -434.78 349 

1000 434.78 -434.78 96 434.78 -434.78 342 

Control 434.78 -434.78  434.78 -434.78  

     

Concrete 

Layers(n) 

Strain 

(‰) 

Iteration 

number 

Strain 

(‰) 

Iteration 

number 

Sx1 Sx2  Sx1 Sx2  

10 5.563 -2.767 165 - - 280 

30 4.334 -2.338 95 5.094 -2.582 393 

100 4.350 -2.338 98 4.935 -2.534 349 

1000 4.334 -2.333 96 4.922 -2.529 342 

Control 5.000 -2.556  5.000 -2.556  

Table 4.14: Shell reinforcement results, case 3 

Comments 

According to the hand calculations detailed in Appendix B.4.3, the failure is due to 

compression fracture in concrete. The top reinforcement yields due to compression, while 

the bottom reinforcement yields due to tension with a strain value 
3

5.00 10
−

 .  

The iteration doesn’t converge when n=10 and β=0.0001. 

- Convergence criterium (β): The stress values for concrete and reinforcement are 

unchanged for both values of β and equal to the control value. The strain values for 

concrete and reinforcement increase in accuracy as β decreases. The iteration 

number increases as β decreases. 

 

- Concrete layers (n): The stress values for concrete and reinforcement are 

unchanged and equal to the control value for all values of n. The strain values for 

concrete increase in accuracy as n increases. Strain values for both bottom and top 

reinforcement don’t have a uniform response to increase in n. The maximum strain 

difference occurs in the bottom reinforcement for n=30, n=1000, and β=0.001; the 

relative difference compared to the control value is 13.32%. This is a high relative 

difference. However, when β=0.0001, the results’ accuracy improves considerably. 
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4. Compression fracture in concrete and high strain level in reinforcement 

 

Nx = -220.956 kN 

Mx = 729.419 kNm 

 

Results 

Concrete 

 β=0.001 β=0.0001 

Concrete 

Layers(n) 

Stress 

(N/mm2) 

Iteration 

number 

Stress 

(N/mm2) 

Iteration 

number 

10 -17.00 457 -17.00 619 

30 -17.00  769 -17.00  1244 

100 -17.00  643 -17.00  1045 

1000 -17.00  621 -17.00  1010 

Control -17.00   -17.00   

     

Concrete 

Layers(n) 

Strain 

(‰) 
Iterations 

Strain 

(‰) 
Iterations 

10 -2.920 457 -2.933 619 

30 -3.239 769 -3.279 1244 

100 -3.368 643 -3.404 1045 

1000 -3.449 621 -3.485 1010 

Control -3.500  -3.500  

Table 4.15: Shell concrete results, case 4 

 

Reinforcement 

 β=0.001 β=0.0001 

Concrete 

Layers(n) 

Stress(N/mm2 ) 
Iteration 

number 
Stress(N/mm2 ) 

Iteration 

number 

Sx1 Sx2  Sx1 Sx2  

10 434.78 -313.32 457 434.78 -314.07 619 

30 434.78 -289.56 769 434.78 -290.25 1244 

100 434.78 -288.32 643 434.78 -288.94 1045 

1000 434.78 -288.19 621 434.78 -288.80 1010 

Control 434.78 -288.89  434.78 -288.89  

     

Concrete 

Layers(n) 

Strain 

(‰) 

Iteration 

number 

Strain 

(‰) 

Iteration 

number 

Sx1 Sx2  Sx1 Sx2  

10 20.080 -1.567 457 20.233 -1.570 619 

30 15.750 -1.448 769 16.097 -1.451 1244 

100 14.783 -1.442 643 15.058 -1.445 1045 

1000 14.700 -1.441 621 14.962 -1.444 1010 

Control 15.000 -1.444  15.000 -1.444  

Table 4.16: Shell reinforcement results, case 4 
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Comments 

According to the hand calculations detailed in Appendix B.4.4, the failure is due to 

compression fracture in concrete. The top reinforcement is under compression below yield 

value, while the bottom reinforcement yields due to tension with a high strain value 
2

1.50 10
−

 .  

- Convergence criterium (β): The stress values for concrete and bottom 

reinforcement are unchanged for both values of β and equal to the control value. 

In contrast, the stress values for top reinforcement increase in accuracy as β 

decreases only when n has a high value of 100 or 1000. The strain value for concrete 

increases in accuracy as β decreases. On the other hand, the strain values for 

reinforcement increase in accuracy as β decreases only when the value on n is either 

100 or 1000. The iteration number increases as β decreases. 

 

- Concrete layers (n): The stress values for concrete and bottom reinforcement are 

unchanged and equal to the control value for all n. In contrast, the stress values 

for top reinforcement don’t have a uniform response to increase in n. The strain 

values for concrete increase in accuracy as n increases. Strain values for both 

bottom and top reinforcement for β=0.0001 increase in accuracy as n increases, 

while for β=0.001, the response is not uniform. 

 

 

4.1.5 Moment and axial force in two directions 

The following is an example of calculating a shell element where all six sectional forces are 

present. The shell is a part of a box girder bridge in reinforced concrete. The material 

properties and sectional forces are taken from a FEM analysis [1]. 

The control calculations for this example are calculated by an iteration-method computer 

program developed and approved by NTNU. 

The example is subdivided into two parts: 

- In the first part, the input data is obtained from a hand calculation design and run. 

The result shows that the top reinforcement in the y-direction (Asy1 = 1241 mm2/m)  

is over-dimensioned. 

-  In the second part, the top reinforcement in the y-direction is reduced (Asy1 = 500 

mm2/m), and the program is rerun. 
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Figure 4.5: Shell, moment, and axial force in two directions 

 

Input 

Symbol Value Unit  Symbol Value Unit 

Nx 4127 kN/m  Asx1 5570 mm2/m 

Ny 250 kN/m  Asx2 5365 mm2/m 

Nxy -464 kN/m  Asy1 1289 mm2/m 

Mx -38 kNm/m  Asy2 variable mm2/m 

My 70 kNm/m  Esx1 200000 N/mm2 

Mxy 3 kNm/m  Esx2 200000 N/mm2 

    Esy1 200000 N/mm2 

h 350 mm  Esy2 200000 N/mm2 

c1 75 mm  fyk 500 N/mm2 

c2 75 mm  γs 1.15  

    εud 0.01  

n variable      

β 0.001 
  concrete 

model 

parabola-

rectangle 

 

max it. 2000   fck 65 N/mm2 

    γc 1.5  

    ν 0  

Table 4.17: Shell input, moment, and axial force in two directions 
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1.   Asy2 = 1241 mm2/m  

Results 

Concrete 

Concrete 

Layers (n) 

Stress 

(N/mm2) 

Iteration 

number 

10 -9.50 367 

30 -10.63 355 

100 -11.07 355 

1000 -11.25 354 

Control -12.00 365 

   

Concrete 

Layers (n) 
Strain (‰) 

Iteration 

number 

10 -0.427 367 

30 -0.481 355 

100 -0.502 355 

1000 -0.511 354 

Control -0.4 365 

Table 4.18: Shell concrete result, case 1 

 

Reinforcement 

Concrete 

Layers (n) 

Stress (N/mm2 ) 
Iteration 

number 

Sx1 Sx2 Sy1 Sy2  

10 401.89 434.78 434.78 264.01 367 

30 401.71 434.78 434.78 262.61 355 

100 401.69 434.78 434.78 262.45 355 

1000 401.69 434.78 434.78 262.44 354 

Control 401 435 435 262 365 

    

Concrete 

Layers (n) 

Strain (‰) 
Iteration 

number 

Sx1 Sx2 Sy1 Sy2  

10 2.009 4.328 3.232 1.320 367 

30 2.009 4.233 3.206 1.313 355 

100 2.008 4.222 3.203 1.312 355 

1000 2.008 4.221 3.203 1.312 354 

Control 2.0 4.1 3.1 1.3 365 

Table 4.19: Shell reinforcement results, case 1 

Comments 

- Concrete: The stress values for concrete increase in accuracy as the number of 

concrete layers increases. In contrast, concrete strain values decrease in accuracy 

as n increases. It should, however, be noted that the obtained strain values are 

relatively accurate.   
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- Reinforcement: The stress values of Sx2 and Sy1 are unchanged and equal to the 

control value at yield stress. The stress values of Sx1 and Sy2 increase in 

accuracy as n increases. The strain values of both bottom and top reinforcements 

increase in accuracy as n increases. 

 

2.  Asy2 = 500 mm2/m 

Results 

Concrete 

Concrete 

Layers 

Stress 

(N/mm2) 

Iteration 

number 

10 -11.75 314 

30 -15.20 332 

100 -16.73 331 

1000 -17.38 331 

Control -18 349 

   

Concrete 

Layers 
Strain (‰) 

Iteration 

number 

10 -0.353 314 

30 -0.707 332 

100 -0.786 331 

1000 -0.821 331 

Control -0.7 349 

Table 4.20: Shell concrete results, case 2 

Reinforcement 

Concrete 

Layers 

Stress (N/mm2 ) Stress (N/mm2 ) 
Iteration 

number 

Sx1 Sx2 Sy1 Sy2  

10 426.51 434.78 434.78 434.78 314 

30 424.15 434.78 434.78 434.78 332 

100 423.94 434.78 434.78 434.78 331 

1000 423.93 434.78 434.78 434.78 331 

Control 423 435 435 435 349 

    

Concrete 

Layers 

Strain (‰) 
Iteration 

number 

Sx1 Sx2 Sy1 Sy2  

10 2.132 10.126 2.168 4.063 314 

30 2.121 9.410 2.319 3.815 332 

100 2.120 9.340 2.334 3.793 331 

1000 2.120 9.333 2.336 3.790 331 

Control 2.1 9.2 2.2 3.7 349 

Table 4.21: Shell reinforcement result, case 2 



53 

 

Comments 

- Concrete: The stress values of concrete increase in accuracy as the number of 

concrete layers increases. In contrast, the concrete strain does not have a uniform 

response to increase in n. However, it should be noted that the strain results for 

concrete when n is higher than 10 are relatively accurate. 

 

- Reinforcement: The stress values of Sx2, Sy1, and Sy2 are unchanged and equal 

to the control value at yield stress. The stress value of Sx1 increases in accuracy 

as n increases. The strain values of both bottom and top reinforcements increase 

in accuracy as n increases. 

 

4.2 Shells and beams below load capacity 

 

The computer program is designed to give accurate results regarding the maximum 

capacity of the section and when forces and moments below the maximum capacity are 

applied to a section. To verify that, moments and forces lower than the capacity of the 

section are inserted into the program, and the resulting strain values are used to calculate 

the corresponding moments and forces by hand. These are then compared to the original 

forces and moments. Examples of the hand calculations are presented in Appendix C. 

The following verifications are executed for sections subjected only to moment in one 

direction. This simplified method is implemented to verify the accuracy of the algorithm in 

the program. The verification is executed for both concrete models used in the computer 

program, the parabola-rectangle and bilinear models. 

The results are presented in table form, where the strain values obtained from the program 

are inserted into the second and the third column. The resulting moments (M) and forces 

(N), as well as the difference to the original values (δN, δM) and the relative difference to 

the actual values ( devN, devM), are presented. 

This verification will also compare the effect of the number of concrete layer subdivisions 

(n) and the convergence criterium (β) on the result accuracy. 

 

 

Figure 4.6: Shell, moment in one direction 
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Input 

 

Symbol Value Unit  Symbol Value Unit 

Nx 0 kN/m  Asx1 3768 mm2/m 

Ny 0 kN/m  Asx2 0 mm2/m 

Nxy 0 kN/m  Asy1 0 mm2/m 

Mx variable kNm/m  Asy2 0 mm2/m 

My 0 kNm/m  Esx1 200000 N/mm2 

Mxy 0 kNm/m  Esx2 200000 N/mm2 

    Esy1 200000 N/mm2 

h 400 mm  Esy2 200000 N/mm2 

c1 35 mm  fyk 500 N/mm2 

c2 0 mm  γs 1.15  

    εud 0.01  

n variable      

β variable 
  concrete 

model 
variable 

 

max it. 1000   fck 30 N/mm2 

    γc 1.5  

    ν 0  

Table 4.22: Shell input, load below capacity 

 

Results 

1.  

Mx = 200 kNm 

concrete model: parabola-rectangle   

β=0.001 

n 
εc 

(compression) 

εs 

 (tension) 

N  

(kN) 

δN 

(kN) 
devN 

M 

(kNm) 

δM  

(kNm) 
devM 

Iteration 

number 

10 4.909157*10-4 8.456347*10-4 123.62 123.62 - 183.75 16.25 8.10*10-2 3 

102 5.560051*10-4 8.426155*10-4 12.79 12.79 - 198.26 1.74 9.00*10-3 4 

103 5.628869*10-4 8.426000*10-4 1.20 1.20 - 199.84 0.16 8.03*10-4 4 

104 5.635795*10-4 8.425993*10-4 0.03 0.03 - 200.00 0.001 6.93*10-6 4 

105 5.636490*10-4 8.425993*10-4 0.09 0.09 - 200.02 0.02 7.30*10-5 4 

 

β=0.0001 

n 
εc 

(compression) 

εs 

 (tension) 

N  

(kN) 

δN 

(kN) 
devN 

M 

(kNm) 

δM  

(kNm) 
devM 

Iteration 

number 

10 4.910125*10-4 8.457463*10-4 123.59 123.59 - 183.78 16.22 8.10*10-2 4 

102 5.559494*10-4 8.425070*10-4 12.87 12.87 - 198.25 1.75 9.00*10-3 5 

103 5.628247*10-4 8.425908*10-4 1.29 1.29 - 199.82 0.18 8.78*10-4 5 

104 5.635177*10-4 8.425905*10-4 0.121 0.121 - 199.99 0.02 8.11*10-5 5 

105 5.635870*10-4 8.425905*10-4 0.004 0.004 - 200.00 0.00 1.40*10-6 5 

Table 4.23: Shell results, load below capacity, case 1 
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2.  

Mx = 350 kNm 

concrete model: parabola-rectangle 

β=0.001 

n 
εc 

(compression) 

εs 

 (tension) 

N  

(kN) 

δN 

(kN) 
devN 

M 

(kNm) 

δM  

(kNm) 
devM 

Iteration 

number 

10 9.230866*10-4 1.496565*10-3 203.34 203.34 - 324.75 25.25 7.21*10-2 6 

102 1.043691*10-3 1.489687*10-3 20.68 20.68 - 347.30 2.70 7.72*10-3 5 

103 1.056221*10-3 1.489616*10-3 2.37 2.37 - 349.68 0.32 9.15*10-4 5 

104 1.057479*10-3 1.489615*10-3 0.54 0.54 - 349.92 0.08 2.32*10-4 5 

105 1.057605*10-3 1.489615*10-3 0.35 0.35 - 349.95 0.06 1.63*10-4 5 

 

β=0.0001 

n 
εc 

(compression) 

εs 

 (tension) 

N  

(kN) 

δN 

(kN) 
devN 

M 

(kNm) 

δM  

(kNm) 
devM 

Iteration 

number 

10 9.231257*10-4 1.496574*10-3 203.30 203.30 - 324.76 25.24 7.21*10-2 7 

102 1.043957*10-3 1.489734*10-3 20.35 20.35 - 347.35 2.65 7.56*10-3 7 

103 1.056482*10-3 1.489662*10-3 2.04 2.04 - 349.73 0.27 7.64*10-4 7 

104 1.057738*10-3 1.489661*10-3 0.21 0.21 - 349.97 0.028 8.13*10-5 7 

105 1.057863*10-3 1.489661*10-3 0.03 0.03 - 350.00 0.00 1.33*10-5 7 

Table 4.24: Shell results, load below capacity, case 2 

   

 

3.  

Mx = 200 kNm 

concrete model: bilinear 

β=0.001 

n 
εc 

(compression) 

εs 

 (tension) 

N  

(kN) 

δN 

(kN) 
devN 

M 

(kNm) 

δM  

(kNm) 
devM 

Iteration 

number 

10 6.905206*10-4 8.659070*10-4 73.25 73.25 - 189.35 10.65 5.32*10-2 3 

102 7.665291*10-4 8.633115*10-4 7.53 7.53 - 198.85 1.15 5.74*10-3 4 

103 7.746059*10-4 8.632344*10-4 0.69 0.69 - 199.89 0.12 5.77*10-4 3 

104 7.754212*10-4 8.632261*10-4 0.02 0.02 - 199.99 0.011 5.57*10-5 3 

105 7.755025*10-4 8.632256*10-4 0.07 0.07 - 200.00 7*10-4 3.60*10-6 3 

 

β=0.0001 

n 
εc 

(compression) 

εs 

 (tension) 

N  

(kN) 

δN 

(kN) 
devN 

M 

(kNm) 

δM  

(kNm) 
devM 

Iteration 

number 

10 6.905206*10-4 8.659070*10-4 123.59 123.59 - 183.78 16.22 8.10*10-2 3 

102 7.665291*10-4 8.633115*10-4 12.87 12.87 - 198.25 1.75 9.00*10-3 4 

103 7.745680*10-4 8.632733*10-4 0.75 0.75 - 199.88 0.12 5.79*10-4 4 

104 7.753757*10-4 8.632730*10-4 0.08 0.08 - 199.99 0.01 5.79*10-5 4 

105 7.754565*10-4 8.632730*10-4 0.01 0.01 - 200.00 0.001 5.80*10-6 4 

Table 4.25: Shell results, load below capacity, case 3 
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4.  

Mx = 350 kNm 

concrete model: bilinear 

β=0.001 

n 
εc 

(compression) 

εs 

 (tension) 

N  

(kN) 

δN 

(kN) 
devN 

M 

(kNm) 

δM  

(kNm) 
devM 

Iteration 

number 

10 1.208411*10-3 1.515337*10-3 128.16 128.16 - 331.37 18.63 5.32*10-2 3 

102 1.341426*10-3 1.510795*10-3 13.17 13.17 - 347.99 2.01 5.74*10-3 4 

103 1.355560*10-3 1.510660*10-3 1.21 1.21 - 349.80 0.20 5.77*10-4 3 

104 1.356987*10-3 1.510646*10-3 0.04 0.04 - 349.98 0.02 5.56*10-5 3 

105 1.357129*10-3 1.510645*10-3 0.12 0.12 - 350.00 0.00 3.6*10-6 3 

 

β=0.0001 

n 
εc 

(compression) 

εs 

 (tension) 

N  

(kN) 

δN 

(kN) 
devN 

M 

(kNm) 

δM  

(kNm) 
devM 

Iteration 

number 

10 1.208411 *10-3 1.515337*10-3 128.16 128.16 - 331.37 18.63 5.32*10-2 3 

102 1.341426*10-3 1.510795*10-3 13.17 13.17 - 347.99 2.01 5.74*10-3 4 

103 1.355494*10-3 1.510728*10-3 1.32 1.32 - 349.80 0.20 5.79*10-4 4 

104 1.356907*10-3 1.510727*10-3 0.13 0.13 - 349.98 0.02 5.83*10-5 4 

105 1.357049*10-3 1.510728*10-3 0.01 0.01 - 350.00 0.00 5.60*10-6 4 

Table 4.26: Shell results, load below capacity, case 4 

   

Comments 

- Convergence criterium (β): the value of β has a negligible effect on the accuracy of 

the result. However, it should be noted that the values of β used are 10-3 and 10-4, 

which are both relatively accurate convergence criteria. The iteration number 

increases as the value of β decreases. 

- Concrete layers (n): the accuracy of both forces and moments increases as the 

value of n increases. It should be noted that for n=10 and 100, the obtained values 

of the moments and especially the forces are very different from the original values. 
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4.3 Columns at load capacity 

 

The examples used in this section are first calculated by hand by using formulas for 

obtaining the maximum capacity of the section. The results from the program are 

compared to the hand-calculated results, which are referred to as control results. Due to 

few available examples for calculating columns, one of the previously used cases with 

moment and axial force in one direction is used. 

 

4.3.1 Biaxial moment and axial force 

The following example is taken from the book ‘Betongkonstruksjoner – Beregning og 

dimensjonering etter Eurocode2’ [7]. The corresponding hand calculation is detailed in 

Appendix E. 

The result of the hand calculation is the value of the section’s moment capacity in x- and 

y-direction.  

Mrdx = 210 kNm 

Mrdy = 132 kNm 

 

 

 

Figure 4.7: Column, axial force and biaxial moment 
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Input 

Symbol Value Unit  Symbol Value Unit 

N -1500 kN  Asx1 942 mm2 

Mx variable kNm  Asx2 942 mm2 

My variable kNm  Asy1 0 mm2 

    Asy2 0 mm2 

b 300 mm  Es 200000 N/mm2 

h 400 mm  fyk 500 N/mm2 

cx1 40 mm  γs 1.15  

cx2 40 mm  εud 0.03  

cy1 0 mm     

cy2 0 mm  
concrete 

model 

parabola-

rectangle 
 

    fck 35 N/mm2 

n variable   γc 1.5  

β variable      

max it. 1000      

Table 4.27: Column input, biaxial moment and axial force 

 

Results 

1. Mx = 210 kNm 

My = 0 kNm 

 Convergence 

Concrete 

Layers (n) 
β=0.001 β=0.0001 

10 Yes Yes 

30 Yes Yes 

100 Yes Yes 

1000 Yes Yes 

Table 4.28: Column results, case 1 

2. Mx = 0 kNm 

My = 132 kNm 

 Convergence 

Concrete 

Layers (n) 
β=0.001 β=0.0001 

10 Yes Yes 

30 Yes Yes 

100 Yes Yes 

1000 Yes Yes 

Table 4.29: Column results, case 2 
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Comments 

The program shows that the section has the moment and axial force capacity calculated 

by hand. The solution converges for all values of concrete layer n and convergence 

criterium β. 

 

4.3.2 Uniaxial moment  and axial force 

 

The following example is the same as the one presented in section 4.1.4, example 1. The 

only difference is that the calculation is implemented by the algorithm version used to 

calculate columns. 

Input 

 

Symbol Value Unit  Symbol Value Unit 

N -7983.240 kN  Asx1 4910 mm2 

Mx 471.606 kNm  Asx2 4910 mm2 

My 0 kNm  Asy1 0 mm2 

    Asy2 0 mm2 

b 1000 mm  Es 200000 N/mm2 

h 400 mm  fyk 500 N/mm2 

cx1 40 mm  γs 1.15  

cx2 40 mm  εud 0.03  

cy1 0 mm     

cy2 0 mm  
concrete 

model 

parabola-

rectangle 
 

    fck 30 N/mm2 

n variable   γc 1.5  

β variable      

max it. 1000      

Table 4.30: Column input, uniaxial moment and axial force 
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Results 

Concrete 

 β=0.001 β=0.0001 

Concrete 

Layers 

Stress 

(N/mm2) 

Iteration 

number 

Stress 

(N/mm2) 

Iteration 

number 

10 -17.00 9 -17.00 11 

30 -17.00  46 -17.00  81 

100 -17.00  60 -17.00  105 

1000 -17.00  66 -17.00  116 

Control -17.00   -17.00   

     

Concrete 

Layers 

Strain 

(‰) 

Iteration 

number 

Strain 

(‰) 

Iteration 

number 

10 -2.158 9 -2.160 11 

30 -2.798 46 -2.824 81 

100 -3.218 60 -3.257 105 

1000 -3.421 66 -3.469 116 

Control -3.500  -3.500  

Table 4.31: Column concrete results, uniaxial moment and axial force 

Reinforcement 

 β=0.001 β=0.0001 

Concrete 

Layers 

Max Stress 

(N/mm2 ) 

Iteration 

number 

Max Stress 

(N/mm2 ) 

Iteration 

number 

10 -431.69 9 -431.91 11 

30 -434.78 46 -434.78 81 

100 -434.78 60 -434.78 105 

1000 -434.78 66 -434.78 116 

Control -434.78  -434.78  

     

Concrete 

Layers 

Max Strain 

(‰) 

Iteration 

number 

Max Strain 

(‰) 

Iteration 

number 

10 -2.158 9 -2.160 11 

30 -2.616 46 -2.640 81 

100 -2.931 60 -2.966 105 

1000 -3.083 66 -3.126 116 

Control 3.150  -3.150  

Table 4.32: Column reinforcement results, uniaxial moment and axial force 

Comments 

According to the hand calculations detailed in Appendix B.4.1, the whole section is under 

compression, and the failure is due to compression fracture in concrete. As for 

reinforcement, the top reinforcement yields while the bottom reinforcement does not. The 

column algorithm displays only the maximum compressive strain and stress for concrete 

and the maximum compressive and tensile strain and stress for reinforcement. The 
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obtained values are not as accurate as those calculated by the shell and beam version of 

the program.   

- Convergence criterium (β): The stress and strain values for both reinforcement and 

concrete increase in accuracy as the value of β decreases. The iteration number 

increases as β decreases. 

- Concrete layers (n): The stress and strain values for both concrete and 

reinforcement increase in accuracy as n increases. The iteration number increases 

with n. 
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The computer program developed in this thesis fulfills the expected results. It can perform 

the capacity control for beams, shells, and columns. 

The literature studies and theories represent the basis for the development of the program. 

The comparison between known results and the results from the program shows that the 

method used and its code implementation are correct. However, there is room for 

improvement and optimization of the code. 

The known results used in the verification of the program are hand calculations and results 

from an approved iteration method program. The comparison with these known results 

aims to test the program in general and the effect of the number of concrete layers n, 

convergence criterium β on its accuracy. 

For beams and shells at load capacity, the value of n should be at least 100. A more 

accurate convergence criterium (β=0.0001) is needed to obtain satisfactory results in the 

case of very high reinforcement strains. When calculating columns, the reinforcement is 

also subdivided into n layers. Therefore, a high (n=103) subdivision number is needed to 

obtain accurate results. When calculating with loads below capacity, layer subdivision has 

a significant impact on the result accuracy. It is preferable to use a value of n of at least 

103 to obtain relatively precise results.  

Based on the testing, it can be stated that the accuracy of the results increases with n and 

decreases as β increases. In the following discussion on the accuracy of the program, the 

most accurate results obtained with n=103  and β=0.0001  are considered. 

When comparing the results between hand calculations and the computer program, it can 

be shown that they are very similar with some minor differences. The differences could be 

caused by the fact that the program uses more decimal numbers than the corresponding 

hand calculations. 

When comparing the results with those from the approved iteration computer program, 

the reinforcement stress and strain are nearly equal to the control results. In contrast, the 

concrete strain and stress values show some minor differences. Lack of information about 

the material models and general criteria used in the approved computer program makes it 

difficult to comment on the cause of the differences. However, given the complexity of the 

example, with six sectional forces and reinforcement in both directions, the comparison is 

satisfactory. 

The verification of the column results consists of two examples. The comparison with these 

known results is satisfactory. However, more testing and comparisons need to be carried 

out to ensure the accuracy of the method. 

Based on the examples, the programs can accurately calculate beams, shells, and columns. 

However, as a new program, it needs to be improved, tested with complicated examples, 

and updated. 

 

5 Conclusion  
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A list of proposals for further development of the program follows: 

- Verification of the program with other programs that don’t implement the iteration 

method and improving it accordingly. 

- Develop the program with an option to implement the effect of multiaxial effects of 

the uniaxial stress-strain relationship of concrete. This would mean a reduced 

compressive strength for cracked concrete. 

- Update the program such that it displays the utilization ratio in case of no-

convergence, giving the user a better understanding of the no-convergence causes. 
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Appendix A: Internal forces and moments in a reinforced concrete section 

Appendix B: Hand calculations for capacity control of beams 

Appendix C: Hand calculations for loads below the capacity of beams 

Appendix D: Hand calculations for capacity control of columns 

Appendix E: Iteration method implementation for columns

Appendices 



 

 



 

Based on the concrete and reinforcement models described in chapter 2, the derivation of 

the formulas for calculating internal forces and moments when the strain distribution in a 

reinforced concrete section is known is presented here. 

 

 

Figure A.1: Strain distribution 

 

A.1 Parabola – rectangle Concrete model 

 

As described in chapter 2, the parabola-rectangle concrete model is an idealized model, 

and the following formulas calculate the strain-stress relation.  

A.1.1 Force and moment when 
2

0
c c
    
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c
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c
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

  


     = − −     
   

 

c c
y = 

A. Internal forces and moments in a 

reinforced  concrete section 



 

Figure A.2: Strain distribution,    Stress-strain relationship 

The strain distribution across the compressed part of the concrete section and the stress-

strain relationship when 
2

0
c c
    is shown in Figure A.2. 

 

Force Fc when 
2

0
c c
     

Based on the previously described stress-strain relations, the resulting force Fc can be 

calculated by integrating the stress values across the compressed concrete section. 
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This is a general formula for strains below or equal to the strain at reaching the 

maximum strength (
2c

 ). If the strain is equal to 
2c

 , the formula can be simplified as:  
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2c c

 =  :  
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The coefficient n has a value of 2 for concrete strength class 50 and below. In that case, 

the formula for the force Fc is further simplified: 

For n=2:      
2

2

3
c cd c

F b f y=     

 

Moment Mc when 
2

0
c c
     

In order to calculate the resulting moment, first, the neutral axis of the parabolic shape 

has to be found, as the formula for the moment is: 

c c
M F y=   

The neutral axis of the compressed concrete section is calculated by: 
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The obtained results are difficult to simplify. However, when the strain value is 
2c

 , the 

expression can be simplified as:  
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Furthermore, if the coefficient n=2, the expression can be simplified as: 
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The neutral axis of the compressed concrete section when the strain value is 
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A.1.2 Force and moment when 
2 2c c cu

      

The following calculations represent the case when the strain is higher than 
2c

  and 

lower than the ultimate strain (
2cu

 )    
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Figure A.3: Stress distribution, Stress-strain relationship 

In the following calculations, concrete strain values will be assumed equal to the values 

for  

concrete classes C12 to C50 where  
2c

  is 2.00‰ and 
2cu

  is 3.5‰. 

 

Force Fc when  

By using the formula for similar triangles, 
2 2

4

7
c cu

y y= . 

The resulting force is the sum of the force when 
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the force when . The latter can be easily calculated as the stress is 

constant and equal to 
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Moment Mc when  

The position of the neutral axis, where the force 
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F  acts, is calculated by the static 

formula: i i
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A.2 Bilinear Concrete model 

As described in chapter 2, the bilinear concrete model is an idealized model, and the 

following formulas calculate the strain-stress relation.  
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Figure A.4: Strain distribution, Stress-strain relationship 

Force Fc when 
3

0
c c
     

Based on the previously described stress-strain relations, the resulting force Fc can be 

calculated by integrating the stress values across the compressed concrete section. 
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This is a general formula for strains below or equal to the strain at reaching the 

maximum strength (
3c

 ). If the strain is equal to 
3c

 , the formula can be simplified as:  
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The resulting force is: 
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Moment Mc when 
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0
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In order to calculate the resulting moment, first, the neutral axis position of the 

compressed section has to be found. 
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The moment Mc is thus calculated as: 

3

3

1

3
cd c

c c

c

bf y
M F y




=  =   

This is a general moment formula when 
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   . However, in the specific case when 

the strain has value 
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 , the expression is simplified, and the following expression is 

obtained.  
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A.2.2 Force and moment when 
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      

The following calculations represent the case when the strain is higher than 
3c

  and 

lower than the ultimate strain (
3cu

 ), as shown in Figure A.5. 
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Figure A.5: Strain distribution, Stress-strain relationship  



 

In the following calculations, concrete strain values will be assumed equal to the values 

for concrete classes C12 to C50, where  
3c

  is 1.75‰ and 
3cu

  is 3.0‰. 
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By using the formula for similar triangles, 
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The resulting force is the sum of the force when 
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0
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constant and equal to 
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The neutral axis position, where the force 
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F  acts is calculated by the static formula: 
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Examples 1 to 3 represent single forces or moments acting in one direction 

Examples 4 to 7 represent combinations of forces and moments acting in one direction 
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B.3 Moment in one direction 
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B. Hand calculations for capacity control of 

beams 
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2 2

,
3768 7128.2

s s b
A mm A mm=  = , the section is under-reinforced 

The reinforcement ratio of the section is: 

434.782 3768
0.3261

17 17
17 1000 365

21 21

yd s

cd

f A

f b d


 

= = =

    

 

Reinforcement strain: 

3 21 1 0.3261
0.0035 7.232 10 3.0 10

0.3261
s cu ud


  



− −− −
=  =  =   =    

Moment capacity of the section: 

217 99
1

21 238
rd cd

M f b d 
 
 =    −   
 

 

217 99
17 0.3261 1 0.3261 1000 365 516.780

21 238
rd

M kNm
 
 =    −    =  
 

  

 

B.4 Moment and axial force in one direction 

B.4.1 Compression fracture in concrete 

  

 

4 3
1

1 2

40
0.0035 3.5 10 2.17 10

400
s cu yd

c

h
  

− −

=  =  =   =    



4 2

1 1
200000 3.5 10 70

sd s s
E N mm 

−

=  =   =  

3 3
1

2 2

360
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400
s cu yd

h c

h
  

− −−
=  =  =   =   

2

2
434.782

sd yd
f N mm = =   
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17 400 1000 5504.761
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c cd
F f h b kN=    =    =  

 
1 1 1

70 4910 343.700
sd s

S A kN=  =  =  

 
2 2 2

434.782 4910 2134.779
sd s

S A kN=  =  =  

1 2
5504.761 343.700 2134.779 7983.240

c
N F S S kN= + + = + + =   

2 2 1 1

99

2 238 2 2
c

h h h
M F h S c S c

     
     = − + − − −          
     

 

( ) ( )
10

5504.761 0.4 2134.779 0.2 0.04 343.7 0.2 0.04
119

471.606

M

M kNm

=   + − − −

=

  

 

 

B.4.2 Compression fracture in concrete and yield in reinforcement 

 

 

3

1
2.173 10

s yd
 

−

= =    

2

1
434.782

sd yd
f N mm = =  



3

3 3

3.5 10
360 222.104

3.5 10 2.173 10
d mm

−

− −


=  =

 + 
  

3 3
2

2 2

222.104 40
0.0035 2.870 10 2.17 10

222.104
s cu yd

d c

d


  



− −− −
=  =  =   =   

2

2
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sd yd
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c cd
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sd s
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2 2 2

434.782 4910 2134.779
sd s

S A kN=  =  =  

1 2
3056.574 2134.779 2134.779 3056.574

c
N F S S kN= − + = − + =   

1
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2 238
c

h
M F d S h

   = − +   
 

 

3 399
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M

M kNm

− − 
 = −  +    
 
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B.4.3 Compression fracture in concrete and double yield strain in 

reinforcement 

 

 

3

1
2 * 5.0 10

s yk
 

−

= =    

2

1
434.782

sd yd
f N mm = =  



3
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3.5 10
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
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d


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
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=  =  =   =   
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M
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 
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B.4.4 Compression fracture in concrete and high strain level in 

reinforcement 
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
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c
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M F d S S
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M
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 = −  +   +    
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The formulas for calculating the resulting forces and moments from strain values in 

concrete and reinforcements are obtained in Appendix A. The calculation process is 

implemented in two Mathcad templates, one for each concrete model. An example of 

each template is presented here. 

  

C. Hand calculations for loads below the 

capacity of beams 



C.1 Parabola-rectangle concrete model 

 

 



 

  



C.2 Bilinear concrete model 

 



 

 

 



 

The following example is taken from the book ‘Betongkonstruksjoner – Beregning og 

dimensjonering etter Eurocode2’. It is the capacity control of a section subjected to 

biaxial moments and an axial force. 

The section geometry and material data are presented below. 

 

 

 

Concrete B35: 

2
19.8 /

cd
f N mm=   

Reinforcement B500C: 
2

434 /
yd
f N mm=  

300b mm=  

400h mm=  

1 2 1 2
40

x x y y
c c c c mm= = = =   

 

 

 

 

 

Design force and moments: 

1500
Ed

N kN=  150
Edx

M kNm=   30
Edy

M kNm=  

Reinforcement: 

2

1 2
3 314 942

sx sx
A A mm= =  =  

2

1 2
2 314 628

sy sy
A A mm= =  =   

 

D. Hand calculation for capacity control of 

columns 



The mechanical reinforcement ratios are calculated: 

500 2 942
0.224

35 300 400

yk sx

x

ck c

f A
w

f A

 
= = =

 
 

 
500 2 628

0.150
35 300 400

yk sy

y

ck c

f A
w

f A

 
= = =

 
 

 

Dimensionless axial force: 

 

3
1500 10

0.36
35 300 400

Ed

ck

N
n

f bh


= = =

 
 

 

Figure D.1: m-n diagram 

 

 

The dimensionless M-N diagram for 
2

0.10d =  in Figure D.1 gives: 

2 6
0.125 0.125 35 300 400 10 210

Rdx Rdx
m M kNm

−

= → =     =   

2 6
0.105 0.105 35 400 300 10 132

Rdy Rdy
m M kNm

−

= → =     =   

 

The capacity of the section is controlled by using the following formula from EC2-

5.8.9(4): 



1

aa

EdyEdx

Rdx Rdy

MM

M M

     
 +      

   

  

For a=1: 

150 30
0.71 0.23 0.94 1

210 132
+ = + =   

 

The column section has the capacity to support the design forces. 

A graphic representation of the capacity curve is presented below: 

 

 

 

  



 

The column is a structure subjected to compression and uniaxial or biaxial bending. In 

the case of uniaxial bending, it can be calculated by using beam calculation methods. 

However, in the case of biaxial bending, beam calculation methods cannot be used.  

 

Figure E.1: Column section 

In order to apply the iteration method to columns subjected to biaxial bending, the two 

moments need to be combined.  

 

Figure E.2: Moment addition 

E. Iteration method implementation for 

columns 



2 2

s x y
M M M= +  

 1
arctan

y

x

M

M


 
 

=  
 
 

  

 

The moment Ms acts about the s-axis. The s-axis is considered the new middle plane of 

the section; its direction is at an angle 1
  with respect to the x-axis direction. Based on 

the direction of the s-axis with respect to the diagonal of the section, the task can be 

subdivided into four cases. 

 

Figure E.3: Axis-s orieintation cases 

 

Based on the four cases, the geometric details of the section, the concrete layer 

directions and dimensions, and the reinforcement layers’ positions compared to the 

concrete layer dispositions are obtained.  

As a result, the task at hand can be summarized as a reinforced concrete section 

subjected to one moment Ms and an axial force N, where all geometric data is known. 

Such a task can be calculated by using the iteration method. 

The calculations for the four cases are presented in detail in the following sections. In 

each case, the concrete and reinforcement subdivisions with respect to the layer 

distributions are approached separately. 

  



E.1 Case 1 

1

1

0

 


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Figure E.4: column section, case 1 

 

E.1.1 Concrete 

Once the angle 1
  is obtained, the height of the new section (perpendicular to the s-axis) 

is defined as 2 z
h . Where : 

 1
( ) cos

z c
h h h = −   

As shown in Figure E.4, c
h is the distance from the intersection of the s-axis and the 

right/left edge to the top/bottom edge of the section: 

1
tan

2 2
c

h b
h = −   

The concrete section is divided into n layers, and each layer has a thickness of :  

2
z

h
h

n


 =   

The distance of each concrete layer from the axis s is obtained by: 

2 2 21

2
z z z z

ci z z

h h h h
z i h i h

n n n n
=  +  − =  + −  

 

h



Where: 

: denomination of concrete layers, and can have values from 0 to n-1. 

 

The width of the concrete layer varies with the distance from axis s. 

For concrete layers within a distance 1
cos

c
h   from the axis, the concrete layer width 

is constant and equal to:  

1 1

2 2
cos cos

c

b
b

b
 

=  =  

When the concrete layers have a distance higher than 1
cos

c
h   from the axis, the 

concrete layer width is obtained by: 

( ) 1

1

1
tan

tan
ci z ci

b h z 


 
 

= −  +  
 

  

 

E.1.2 Reinforcement 

 

The reinforcement is subdivided into the same layers used for concrete. Therefore, the 

primary task is to find the position of reinforcement with respect to the layers. It should 

be noted that the strain value within a layer is considered constant.  

Based on the height of the concrete layers, their length in x- and y-direction are 

obtained. 

1
sin

x

h
h




 =  : horizontal length of the concrete layer. 

1
cos

y

h
h




 =  : vertical length of the concrete layer. 

Subsequently, the original reinforcement layers Asx1, Asx2, Asy1, and Asy1 are subdivided 

and matched with the corresponding concrete layers.  

The first and last layer number where the reinforcements Asx1, Asx2, Asy1, and Asy1 are 

calculated is presented in the table below: 
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c
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h
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b
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2
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−
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
 

1 2Asx L Asx F

x

b
i i

h
= +


 

1sy
A   

1

1

y

Asy F

x

c
i

h
=


 1 1Asy L Asy F

y

h
i i

h
= +


 

2sy
A   

2

2

y

Asy F

x

b c
i

h

−
=


 2 2Asy L Asy F

y

h
i i

h
= +


 

 

First
i :  concrete layer number where a reinforcement layer begins. 

Last
i :  concrete layer number where a reinforcement layer finishes. 

For example 
1Asx F

i  is the concrete layer number where the bottom reinforcement in x-

direction starts, while 
1Asx L

i  is the last concrete layer number for that reinforcement 

layer. In that way, it is possible to map the reinforcement layers, which are vertical or 

horizontal, to an inclined concrete layer distribution. 

The results of the calculations are decimals, while the layer numbers are integers. 

Therefore, they are converted to integers. The choice of converting to integers as 

opposed to rounding is to consider the fact that the number of the first layer is zero and 

the last layer is n-1. 

A similar approach is used for the other three cases, which are presented below. 



E.2 Case 2 
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Figure E.5: Column section, case 2 

E.2.1 Concrete 

 

The angle between the axis s and y-axis ( 2
 ) is calculated as: 1

90  − . 

The height of the new section (perpendicular to the axis s) is defined as 2 z
h . Where : 

 2
( ) cos

z c
h b b = −   

As shown in Figure E.5, c
h is the distance from the intersection of the s-axis and the 

top/bottom edge to the right/left edge of the section: 

2
tan

2 2
c

b h
h = −   

The concrete section is divided into n layers, and each layer has a thickness of :  

2
z

h
h

n


 =   

The distance of each concrete layer from the axis s is obtained by: 

2 2 21

2
z z z z

ci z z

h h h h
z i h i h

n n n n
=  +  − =  + −  

h



Where: 

: denomination of concrete layers, and can have values from 0 to n-1.  

 

The width of the concrete layer varies with the distance from axis s. 

For concrete layers within a distance of 2
cos

c
h   from the axis, the concrete layer 

width is constant and equal to:  

2 2

2 2
cos cos

c

h
h

b
 

=  =  

When the concrete layers have a distance higher than 2
cos

c
h   from the axis, the 

concrete layer width is obtained by: 

( ) 2

2

1
tan

tan
ci z ci

b h z 


 
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= −  +  
 

  

 

E.2.2 Reinforcement 

 

Based on the height of the concrete layers, their length in the x- and y-direction are 

calculated. 

2
cos

x

h
h




 =   

2
sin

y

h
h




 =   

  

Subsequently, the original reinforcement layers Asx1, Asx2, Asy1, and Asy1 are subdivided 

and matched with the corresponding concrete layers.  

The first and last layer number for the reinforcement  Asx1, Asx2, Asy1, and Asy1 is 

presented in the table below. 
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E.3 Case 3 
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Figure E.6: Column section, case 3 

 

 

 

 



E.3.1 Concrete 

 

Once the angle 1
  is obtained, the height of the new section (perpendicular to the s-axis) 

is defined as 2 z
h . Since 1

  is negative, its absolute value is used in the following 

calculations. 

 
1

( ) cos
z c

h h h = −   

As shown in Figure E.6, c
h is the distance from the intersection of the axis s and the 

right/left edge to the top/bottom edge of the section: 

1
tan

2 2
c

h b
h = −   

The concrete is divided in n layers and each layer has a thickness of :  

2
z

h
h

n


 =   

The distance of each concrete layer from the axis s is obtained by: 

2 2 21

2
z z z z

ci z z

h h h h
z i h i h

n n n n
=  +  − =  + −  

Where: 

: denomination of concrete layers, and can have values from 0 to n-1  

 

The width of the concrete layer varies with the distance from axis s. 

For concrete layers within a distance of 
1

cos
c

h   from the axis, the concrete layer 

width is constant and equal to:  

1 1

2 2
cos cos

c

b
b

b
 

=  =  

When the concrete layers have a distance higher than 
1

cos
c

h   from the axis, the 

concrete layer width is obtained by: 
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E.3.2 Reinforcement 

 

Based on the height of the concrete layers, their length in the x- and y-direction are 

obtained. 

1
sin

x

h
h




 =   

1
cos

y

h
h




 =   

The original reinforcement layers Asx1, Asx2, Asy1, and Asy1, are subdivided and matched 

with the corresponding concrete layers.  

The first and last layer number for the reinforcement  Asx1, Asx2, Asy1, and Asy1 is 

presented below. 
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E.4 Case 4 
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Figure E.7: Column section, case 4 

 

E.4.1 Concrete 

The angle between the axis s and y-axis ( 2
 ) is calculated as: 

1
90  − . 

The height of the new section (perpendicular to the axis s) is defined as 2 z
h . Where : 

 
2

( ) cos
z c

h b b = −   

As shown in Figure E.7, c
h is the distance from the intersection of the axis s and the 

top/bottom edge to the right/left edge of the section: 

2
tan

2 2
c

b h
h = −   

The concrete section is divided into n layers, and each layer has a thickness of :  

2
z

h
h

n


 =   

The distance of each concrete layer from the axis s is obtained by: 

2 2 21
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z z z z
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h h h h
z i h i h

n n n n
=  +  − =  + −  
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Where: 

: denomination of concrete layers, and can have values from 0 to n-1.  

 

The width of the concrete layer varies with the distance from axis s. 

For concrete layers within a distance of 
2

cos
c

h   from the axis, the concrete layer 

width is constant and equal to:  

2 2
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When the concrete layers have a distance higher than 
2

cos
c

h   from the axis, the 

concrete layer width is obtained by: 
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E.4.2 Reinforcement 

 

Based on the height of the concrete layers, their length in x- and y-direction are 

obtained. 
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Subsequently, the original reinforcement layers Asx1, Asx2, Asy1, and Asy1 are subdivided 

and matched with the corresponding concrete layers.  

The first and last layer number for the reinforcement  Asx1, Asx2, Asy1, and Asy1 is 

presented below. 

 

 

 

 

 

 

i



 

 
First
i  Last

i  

1sx
A   1

1
x

Asx F

y

c
i

h
=


 
1 1Asx L Asx F

x

b
i i

h
= +


 

2sx
A   2

2
x

Asx F

y

h c
i

h

−
=


 

1 2Asx L Asx F

x

b
i i

h
= +


 

1sy
A   

1

1

y

Asy F

x

b c
i

h

−
=


 1 1Asy L Asy F

y

h
i i

h
= +


 

2sy
A   

2

2

y

Asy F

x

c
i

h
=


 2 2Asy L Asy F

y

h
i i

h
= +


 

 

 

 

 


	List of Figures
	List of Tables
	List of Symbols
	1 Introduction
	2 Theory
	2.1 Material Models
	2.1.1 Concrete
	2.1.2 Reinforcement Steel

	2.2 Design of shells
	2.2.1 Membrane Method
	2.2.2 Sandwich Method

	2.3 Iteration Method
	2.3.1 Derivation of the iteration method
	2.3.2 Iteration method procedure
	2.3.3 Utilization ratio
	2.3.4 Application of the iteration method


	3 Computer Program
	3.1 Description of the Program
	3.1.1 Step 1: External load vector R and the reinforcement amount
	3.1.2 Step 3: Middle-plane strains and curvatures
	3.1.3 Step 6: Concrete stress in principal directions
	3.1.4 Step 8: Reinforcement stress
	3.1.5 Step 10: Maximum relative difference
	3.1.6 Step 12: Updating concrete secant modulus

	3.2 User Manual
	3.2.1 Input
	3.2.2 Output
	3.2.3 Exceptions


	4 Verification
	4.1 Shells and beams at load capacity
	4.1.1 Compression
	4.1.2 Tension
	4.1.3 Moment in one direction
	4.1.4 Moment and axial force in one direction
	4.1.5 Moment and axial force in two directions

	4.2 Shells and beams below load capacity
	4.3 Columns at load capacity
	4.3.1 Biaxial moment and axial force
	4.3.2 Uniaxial moment  and axial force


	5 Conclusion
	References
	Appendices
	A. Internal forces and moments in a reinforced  concrete section
	A.1 Parabola – rectangle Concrete model
	A.1.1 Force and moment when
	A.1.2 Force and moment when

	A.2 Bilinear Concrete model
	A.2.1 Force and moment when
	A.2.2 Force and moment when


	B. Hand calculations for capacity control of beams
	B.1 Compression
	B.2 Tension
	B.3 Moment in one direction
	B.4 Moment and axial force in one direction
	B.4.1 Compression fracture in concrete
	B.4.2 Compression fracture in concrete and yield in reinforcement
	B.4.3 Compression fracture in concrete and double yield strain in reinforcement
	B.4.4 Compression fracture in concrete and high strain level in reinforcement


	C. Hand calculations for loads below the capacity of beams
	C.1 Parabola-rectangle concrete model
	C.2 Bilinear concrete model

	D.  Hand calculation for capacity control of columns
	E. Iteration method implementation for columns
	E.1 Case 1
	E.1.1 Concrete
	E.1.2 Reinforcement

	E.2  Case 2
	E.2.1 Concrete
	E.2.2 Reinforcement

	E.3 Case 3
	E.3.1 Concrete
	E.3.2 Reinforcement

	E.4 Case 4
	E.4.1 Concrete
	E.4.2 Reinforcement



