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Abstract

This thesis deals with the development of a computer program that implements the
iteration method. The iteration method is a non-linear numerical method used to calculate
the capacity of reinforced concrete shells. A user manual is prepared to make the program
more accessible to users.

The theory behind the iteration method and its derivation are presented. Moreover, a
detailed study of the materials used in a reinforced concrete shell (reinforcement steel and
concrete) and corresponding material models is conducted. The choice of material models
has a considerable impact on the results of the computer program. The iteration method
procedure is then further developed to expand its application to calculate beams and
columns.

The primary purpose of the thesis is to develop a user-friendly computer program that
uses the iteration method correctly in the calculation of reinforced concrete shells, beams,
and columns.

To ensure that the program gives correct results, results obtained by the program are
compared to results from hand calculations and an approved computer program. There
are, in some cases, relatively small differences, but they can be explained by the fact that
the iteration method is an approximation and not 100% accurate. The comparisons show
that the results from the program are consistent with the hand calculations and the
approved computer program.



Sammendrag

Denne oppgaven omhandler 3 utvikle et dataprogram som iverksetter iterasjonsmetoden.
Iterasjonsmetoden er en ikke-linear numerisk beregningsmetode som beregner
kapasiteten i armerte betongskall. For at det skal vaere enkelt & bruke programmet, en
brukermanual er laget.

Teorien og derivasjon av iterasjonsmetoden er fgrst presentert. Dessuten, er det tatt en
gjennomgang av materialer brukt in armert betongskall (armering og betong) og
tilsvarende materialmodellene er utfgrt. Valget av materialmodeller har en stor innvirkning
pd resultatet av dataprogrammet. Iterasjonsmetoden er dermed utviklet videre for &
utvidet den til beregning av bjelker og sayler.

Hovedhensikten med oppgaven er a lage og utvikle et brukervennlig dataprogram som
regner riktig armerte betongskall, -bjelke og -sgyle, i henhold til iterasjonsmetoden.

For & forsikre at dataprogrammet regner riktig, resultater hentet fra dataprogrammet er
sammenlignet med resultater fra h&ndberegninger og et godkjent dataprogram. Det finnes,
i noen tilfeller, relativt lite avvik, men disse kan forklares med at iterasjonsmetoden er en
tilneerming og ikke 100% ngyaktig. Sammenligningene viser at resultatene fra
dataprogrammet er i samsvar med resultatene fra handberegninger og det godkjente
dataprogrammet.
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1 Introduction

Concrete shells are structural constructions that can be structurally and economically
effective as well as architecturally attractive. Since a shell element is subjected to both
normal forces and moments in two directions, it is difficult and unpractical to calculate its
capacity by hand. Therefore capacity control methods and algorithms are implemented to
calculate it.

The thesis aims to develop a user-friendly computer program to calculate the capacity of
a shell section subjected to membrane forces and bending moments. The capacity control
is implemented by the iteration method, a non-linear numerical method that analyses a
shell section's capacity. The iteration method is further expanded to calculating the
capacity control of beams and columns.

The primary workload in the thesis preparation is to understand the iteration method in
the calculation of reinforced concrete shells, beams, and columns and then implement it in
a computer program by using the programming language Python. The program is then
tested, and at last, a user manual is prepared.

The thesis consists of five chapters:
1. Introduction: The background, objective, and structure of the thesis are presented.
2. Theory: The technical description of shells, material models of concrete and

reinforcement, methods for designing and calculating reinforced concrete shells,
and extension of the iteration method to beams and columns are presented.

3. Computer Program: The computer program is described in detail, and the user
manual for the program is presented.

4. Verification: The computer program is run, and its results are compared to
examples with known results.

5. Conclusion: The results obtained in the previous chapter are summarized, and a list
of proposals for further development of the calculation program is presented.

In the Appendix, derivation of the formulas used in calculations, hand calculation of the
examples used in testing are presented.



2 Theory

Shells are defined as elements subjected to both membrane and bending forces and can
be plane or curved with respect to either one or two directions.

h ‘ middle plane

Figure 2.1: Middle plane, curvature radius and thickness of a thin shell [1]

The classical thin shell theory, Love-Kirchoff theory, is based on the following
assumptions[1]:

- The shell thickness is considerably smaller compared to its other dimensions and
its radius of curvature.

- Plane sections normal to the shell mid-surface prior to deformation remain plane
and perpendicular and perpendicular to the deformed mid-surface.

- Stresses normal to the shell mid-surface are negligible.

- Strains and stresses are small.

2.1 Material Models

Reinforced concrete shells consist of concrete and reinforcement steel. Both concrete and
reinforcement steel have non-linear strain-stress relations. However, Eurocode 2 (EC2)
allows the use of simplified material models, which can be found in EC2-3[2].



2.1.1 Concrete

In the standard EC2, three strain-stress relation models for concrete are presented. These
are:

- Non-linear model EC2-3.1.5
- Idealized parabola-rectangle model EC2-3.1.7(1)
- Bilinear model EC2-3.1.7(2).

0,4 fem

Figure 2.2: Non-linear concrete model [2]

The non-linear model is shown in Figure 2.2, and the following formulas represent the
strain-stress relation:

2
% _ _Kn-n _ tor 0<lg| <l (2.1.1)
f.,, l1+(k-2)
n=c¢. /¢, (2.1.2)
k =1.05E_, de.,|/ f., (2.1.3)

Where:

f.,: mean compressive strength at 28 days

Ecm : modulus of elasticity of concrete

.4+ strain at peak stress

&1 - hominal ultimate strain
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Figure 2.3: Parabola-rectangle diagram for concrete under compression [2]

The idealized parabola-rectangle model is shown in Figure 2.3, and the following formulas
represent the strain-stress relation:

n

&
o.=f4 1- 1—8—0 for 0<e <¢g, (2.1.4)
c2

o.=f, for ¢,<¢ <¢,, (2.1.5)
Where:
fcd: design compressive strength

€., . strain at reaching the maximum strength

&

-2 - Ultimate strain
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Figure 2.4: Bilinear diagram for concrete under compression [2]

The bilinear model is shown in Figure 2.4, and the following formulas represent the strain-
stress relation:

£

o.=Ff,+—= for 0<e <g, (2.1.6)
c3

o.=f, for e;<¢ <¢, (2.1.7)

Where:

f ,: design compressive strength
&.3 : strain at reaching the maximum strength

&3+ ultimate strain



2.1.2 Reinforcement Steel
As previously mentioned, reinforcement steel has a non-linear strain-stress relationship,
as shown in Figure 2.5.

a 1 o
fi=kfw}-------------- | fi= kfazp------oom o2 :
: f],z: _____ :
fx {---- : |
| £ g : £
En | " 0.2% . -
| T - :
a) Hot rolled steel b) Cold worked steel

Figure 2.5: Stress-strain diagrams for typical reinforcing steel [2]

However, EC2 allows the use of two simplified design models. These are two bilinear
models, a model with an inclined top branch and a model with a horizontal top branch, as
shown in Figure 2.6.

G
)
kf!'k_ _____________________ _: o= —.:-—: kfyk
fyk' """" i-:"_—’-:;';/_‘_ _____._-—-—-""‘ikfykl'f;”s
fra=fud s - F . .
i / : E K= (f/fk
| Idealised
E E Design
fyd/: E. I Eul:l Euk &

Figure 2.6: Idealized and design stress-strain diagrams for reinforcing steel [2]

The strain-stress relationship for the model with a horizontal top branch represented by
the following formulas:

fd
o,=¢E, for 0<g < EL (2.1.8)
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yd

o, =f =
ES

; v for

<& L€y (2.1.9)

Where:

f,q+ design yield stress
E. : modulus of elasticity of reinforcement

&,k - elongation at maximum force

The computer program implements the design stress-strain relationship with a horizontal

top branch. According to EC2-3.2.7(2), when using this model, there is no need to check
the strain limit [2].

2.2 Design of shells

The design of reinforced concrete shells consists of finding the necessary concrete
dimensions and steel reinforcement amounts such that there is equilibrium between
internal sectional forces and external forces.

Figure 2.7: Stresses in a shell element

The stresses along the shell thickness, based on the Love-Kirchoff theory, are shown in
Figure 2.7. The resulting forces and moments are shown in Figure 2.8 and consist of two
bending moments (Mx and My), one torsional moment (Mxy), two transverse shear forces
(Vx, Vy), three membrane forces (Nx, Ny, Nxy).



Figure 2.8: Stress resultants in a plane shell element

The stress resultants shown in Figure 2.8 are obtained by integrating the stresses on Figure
2.7 along the shell thickness t.

t/2 t/2 t/2

N, = J. o,dz N, = _[ c,dz N, = J. c,,dz
-t/2 -t/2 -t/2
t/2 t/2 t/2

M, = f o,z2dz M, = f o,zdz M, = _f c,,2dz
-t/2 -t/2 -t/2
t/2 t/2

V, = j 7,,2dZ V, = I r,,2dz
-t/2 -t/2

The stress resultants calculated above are then subdivided into longitudinal reinforcement
stresses, concrete stresses, and shear. Generally, these calculations present some
difficulties due to varying stresses along the shell thickness. Therefore, in order to approach
such a complex problem, the introduction of simplifying assumptions is necessary. Two
methods that assume the use of orthogonal reinforcement are the Membrane Method and
the Sandwich Method.

2.2.1 Membrane Method

In the membrane method, the shell section is subdivided into two layers(one top and one
bottom) which resist the moments and in-plane forces, while the transverse shear forces
are neglected.



Equilibrium equations in the x and y direction are used to calculate nxi, nx2, Ny1, Ny12, Nxy1,
Nxy2, @s shown in Figure 2.9. Once these forces are calculated, the two membranes are
designed using the compression field theory[1].

membrane 2

- L Nyy2 s
Ik s 2 -
~ .+7 Mgy2
~ BN e ot Iy
P -
LF x2 Mxv]
/ / i *.— f“'
A { Nyl
X 1 nxl membranel

Figure 2.9: Equivalent membrane forces [1]

The membrane method is a simplified approach to shell design and is based on many
assumptions. The cracking of concrete is only checked in the middle plane of the
membranes, transverse shear is neglected, and strain compatibility is ignored.
Notwithstanding the shortcomings mentioned above, it can be used for preliminary design,
and its results can subsequently be checked and improved by more accurate methods.

2.2.2 Sandwich Method

In the sandwich method, the shell section is subdivided into three layers. The two outer
layers support the inner layer and resist the moments and in-plane forces, while the inner
layer carries the transverse shear forces as a beam in the principal shear direction[1].

Figure 2.10: Definition of forces in different layers [1]



2.3 Iteration Method

The iteration method is a general method for the capacity control of a reinforced concrete
shell, where the geometry and reinforcement amount is given. The method is based on
Kirchoff’'s hypothesis about linear strain distribution over the thickness of a shell.
Therefore, out-of-plan normal stresses are assumed to be zero and excluded from the
analysis.

External forces and moments acting on the shell are obtained using FEM or other design
methods. Based on these results, the method finds the strain distribution for both concrete
and reinforcement in an iterative manner, which ensures equilibrium between external and
internal sectional forces.

2.3.1 Derivation of the iteration method

As previously mentioned, the iteration method aims to find a state where internal and
external sectional forces are in equilibrium. It means finding a strain distribution that
ensures equilibrium, where the internal forces are functions of strain[1]:

R=S(g,,) (2.3.1)
Where:
NX
Ny
N,,
R : external load vector R = (2.3.2)
MX
My
S : internal load vector
xm
Eym
€ &
€t generalized strain vector €& :{ “‘] = " (2.3.3)
K K,
y

€, : strain of the middle plane of the shell element

10



K : curvature of the middle plane of the shell element

The distribution of strain over the shell thickness can be represented as follows:

. 1 0 0 -z 0 O
€E=|¢ |=-¢,-z2-k=A- =0 1 0 0 -z O
y 0O 0 1 0 0 -z

xy

(2.3.4)

The relationship between strain and stress represented by eq. (2.3.1) is non-linear and is

illustrated in Figure 2.11.

4 I.oad vector

£r Er+1

Figure 2.11: Non-linear stiffness relationship[1]

The strain-stress relationship in Figure 2.11 is defined as:

R=K(g, ) €

t,r+1

(2.3.5)

Where K(Etlr)is the secant stiffness matrix for concrete and reinforcement combined at

iteration number r.

The material stiffness matrix K is obtained by using the principle of virtual work. The

generalized displacement and rotation are represented by the vector F:

11



.,
I
Q
1
= M
| |
D 2 Q‘ SO

(2.3.6)
Where a is the dimension of the shell element.
The principle of virtual work can be represented as follows:
Virtual displacement vector: or=ace, (2.3.7)
T
External virtual work: W,=or - a- R (2.3.8)
T
Internal virtual work: w. :J. o€ - o-dV (2.3.9)
14

Since the material model is defined in a general form, the in-plane stress can be written
as:

o=C(g)- € (2.3.10)

Where:

- C: material matrix, which includes both concrete and reinforcement

GX gX
- O= oy, |1 €= &,
z-xy 7/xy
2 T
W, =a o€, R (2.3.11)
7 =I 5€ odV =I 5€ CeadV =j SstTATCAstodV (2.3.12)
4 4 4

According to the principle of virtual work:

h/2

W, =W, -» azéetTR = a25£: _[ ATCAdzst (2.3.13)
2

“h/

12



Consequently, the equilibrium equation for a shell element is:

h/2
R= | A'CAdze,=Kg, (2.3.14)

-h/2

where the stiffness matrix of the shell is:

h/2

K- [ A'lcAdz (2.3.15)

-h/2

and by a congruence multiplication of the integrand, the stiffness matrix can be
represented as:

hi21 € -zC
K- L | dz (2.3.16)
—h/2 -zC z C

The strains and curvatures at the middle plane of the shell can therefore be calculated by
applying the following equilibrium equation:

g =K - R (2.3.17)

The integrand in the formula for stiffness matrix K is solved by dividing the shell cross-
section into layers. The concrete is divided into n layers; each layer has a thickness of
Ah = h/ n, where h is the thickness of the shell. The reinforcement is subdivided into
layers, where each layer has a distance z from the middle plane. The stiffness matrices for
concrete and reinforcement are:

n T n C, _ZICI

Concrete: K, = ZAh- A -C. A = AhZ ) (2.3.18)
I= =T -z,C, zC

Reinforcement:

C.. -zC_. C . -zC .
j Jsxj syj J sy

K, - N +A, ) (2.3.19)
-z,C,; Z,Cy -z,C,, Zz,C,,

K=K_+K, (2.3.20)

13



The internal vector S can be represented as:

NX
Ny
S N
S=| "= ¥ (2.3.21)
SM Mx
My
The stress resultants S, and S,, can be expressed as:
h/2
S, = o dz (2.3.22)
-h/2
h/2
S, = -zo dz (2.3.23)
“h/2

which can be solved numerically as the summation of concrete and reinforcement
contributions:

e O
n m SXj Sxj

Sy=D.Mh-0,+>| A, o, (2.3.24)
i=1 j=1 0
n m -z Asxj ’ O_sxj

S.=2Ah- (-2)-0,+>|-z- A, o, (2.3.25)
i=1 j=1 0

Where:

O, : concrete stress in layer /
0, + x-direction reinforcement stress in layer j

Oyt y-direction reinforcement stress in layer j

14



In the iteration method, concrete and reinforcement are considered non-linear. To take
into account the cracking of concrete in tension and non-linear behavior in compression,
an orthotropic material model in the directions of the principal stress is used.

o, ) E,, VE, 0 &
0, o,|=Ce, = - vE,, E,, 0 g, (2.3.26)
-v
), 0 0 (1-v)E, V12
L 2 ]
Where:

O, : stresses in principal directions
- &, :strainsin principal directions

E11/ Ezz: secant modulus in the principal directions

o, E.,+E
- E, =— fori=1,2; E,=—"14%—"%2

12
1 (C,". 2

(2.3.27)

- v : Poisson’s ratio

To obtain the stresses and strains in principal directions, they must be transformed from
the stresses and strains in global directions x and y by the following formula:

g, = T(O)- € (2.3.28)
where:

1
- @: angle for the principal direction; 8 = > arctan Py (2.3.29)

& — &,

- T(O): Transformation matrix

c0529 sinze singcosé
T(O) = sin’0 cos’ 0 —sin@cosé (2.3.30)

-2sin@cosd 2sindcosd cosze—sinze

Assuming that principal strains and principal stresses have the same axis, it is possible to
transform both the principal stresses and principal stiffness matrix to the corresponding
global stresses and global stiffness matrix.

6, -T(@©) 0,-T©®)-C,-g=-T(©-C,-T0O- = (2.3.31)

C,-T (6 C,- T(0) (2.3.32)

15



A similar approach is used for the reinforcement layers.

If the longitudinal reinforcement directions are assumed in the global x-y directions, the
stress-strain relationship for a layer is:

o.=C, - &€ (2.3.33)
O-SX ESX O 0 X

o,=|o,|= 0 E, O] ¢ (2.3.34)
Toxy 0 0 O Y xy

Where:

ESX , Esy : secant modulus for the reinforcement in x- and y-direction, respectively

Suppose the longitudinal reinforcement directions don’t correspond with the global x-y
directions. In that case, the material matrix must be transformed by using a transformation
matrix similar to that used in the concrete layers:

c’ =T () C,  T(a) (2.3.35)

Where « is the angle of the reinforcement relative to the global directions.

To decide whether equilibrium between internal and external forces is reached, a
convergence criterium must be defined. One method is the use of the relative difference
between each of the internal and external stress resultants. The iteration stops on two
conditions:

1. The relative differences are under the convergence criterium £, which typically is

in order of magnitude 0.01.
2. The number of iterations is higher than the allowed maximum iteration number.

The convergence criterium is defined as:

R, -S,, < p (2.3.36)
Rk
- k=1,2,..,6

- j: iteration number

2.3.2 Iteration method procedure
To have an overview of how the iteration method is implemented, a step-by-step procedure
is presented[1].

1. Calculate the external load vector R and the reinforcement amount.

2. Assume linear elastic isotropic behavior for concrete and linear elastic behavior for
reinforcement, and calculate the initial stiffness matrix KO'

16



. T . COi ZiCOI
Concrete: K, = ZAh- A -C, - A =Ah 5
= = -z,C,, Zz,C,
Reinforcement:
m COsxj —Z jasxj COsyj —Z jCOSyj
KsO = Zf‘ Asx' : 2 + A, -
- J syJ 2
g “Z;Cosg Z;Cosy ~Z,Cos;  Z;Cosy
Ko: Kco + KsO

Calculate strains and curvatures at the middle-plane of the shell
-1
E,=K, - R

Calculate in-plane strains for each concrete and reinforcement layer
g, =A - &,

1

Calculate the principal directions and principal strains in each concrete layer
£p0i = Tgi(ei)' €

0, = 1 arctan
2

Calculate concrete stress in local principal directions for each concrete layer. The
principal stresses are calculated based on the stress-strain relationship model used
for concrete.

Transform principal stresses in each concrete layer to stresses in global directions
T
O = Tgi(ei) © O

Calculate reinforcement stresses in each reinforcement layer
Oy, = Cst - &y

Calculate the internal stress resultants

so = Sco + SsO

17



10.

11.

12.

13.

14.

Asxj O-sxo
Asyj O-syO
n m
O, 0
S, =Ah- >’ cor +
~ -z .-0O ~ -z.-A._.- o
i=1 i cOi j=1 J SXj sx0
—Zj- Asyj Osy0
0 —

Calculate the maximum relative difference between external and internal forces.
R

k SO,k

R,

Maximum relative difference = max

Check for convergence based on the chosen convergence criterium f.
Rk B SO,k

If max[ J < f equilibrium is achieved and the iteration stops.

R
If max[ : ] > B equilibrium is not achieved and the iteration continues.

Calculate a new secant modulus for every concrete and reinforcement layer.

Calculate a new material matrix for every concrete and reinforcement layer using
the secant modulus obtained in step 12.
C p: principal,

/: iteration number, i: layer number

pli ’

Transform the principal material matrices obtained in step 13 to global material
matrices.

T
Cli = Tei : Cpli - T

&l

Repeat steps 2 to 12 with the newly obtained material matrix for both concrete and
reinforcement until the convergence criterium is satisfied.

2.3.3 Utilization ratio

The utilization ratio is used to evaluate the degree of utilization of an element compared
to its maximum capacity. When using the iteration method and there is convergence, the
maximum strain values in concrete and reinforcement layers are obtained. These are then
compared to their respective strain limit values [1].

The utilization ratio for concrete is:

Ze (2.3.37)
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Where:

Cc

Eq ultimate strain

The utilization ratio for reinforcement is:

UR = 5s

s
gud

Where:

&t maximum strain in reinforcement

E,q + Strain limit for the reinforcement

As described in chapter 2.1.2, the stress-strain model adopted in the computer program
does not need to check the strain limit. Based on these premises, the user can decide the

value ¢, but needs to consider that it directly affects the utilization ratio. In the following
calculations, the value ¢, is set to 1%, which is relatively high compared to the
reinforcement strain at reaching the maximum strength Eya of 2.17%.. In the verification

of the computer program, it is preferable to use a high ¢, , to test the program in extreme

load cases and high strain values.

2.3.4 Application of the iteration method
As previously mentioned, the main objective of the iteration method is to control the
capacity of concrete shells. The forces considered in the analysis are shown in Figure 2.12.

Figure 2.12: Shell, forces and moments in the iteration method

&£ 1 maximum compressive principal strain in concrete

Z
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A beam can be considered as a shell subjected to an axial force and moment in one
direction. Consequently, the iteration method can be easily applied to a beam. As the
iteration method calculates a shell size of 1Im x 1m, the force and moment values,
reinforcement amount, and geometry need to be transformed accordingly.

A column is subjected to a uniaxial force and two bending moments with respect to x- and
y-direction, respectively, as shown in Figure 2.13

M, N
h <4 — > x
L 3 M

'y
¥

Figure 2.13: Column, forces and moments

In order to implement the iteration method in a column, the moments are combined by
the following formula:

M, = M.+ M

My
a, = arctan| —~

X

The resulting moment Ms acts about the s-axis, which is at an angle «, with the x-axis.

Consequently, the section can be considered subjected to uniaxial force and a moment in
one direction, with the s -axis as the middle plane of the section. The reinforcement layers
are generally not parallel to the s-axis. Therefore the layer subdivision is applied to both
concrete and reinforcement. There are four different cases to be considered based on the
value and direction of the moments.
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Figure 2.14: Column, s-axis

A detailed description of the calculations that allow the use of the iteration method for the
capacity control of columns is presented in Appendix E.
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3 Computer Program

The computer program is written in Python programming language. Python is an open-
source and cross-platform programming language that was first released in 1991 and has
become increasingly popular over the last ten years. It is an object-oriented programming
language that can be used for multiple purposes such as scientific computing, web
development, etc., by downloading and installing the appropriate packages. Python
packages for science and numerical computations used in this program are
NumPy(fundamental package for scientific computing) and Matplotlib (Python 2D plotting
library)[3].

The editor used in the development of the computer program is Spyder. It is an open-
source, cross-platform integrated development environment (IDE) for scientific computing
in Python[4].

During the preparation of the computer program, the main aim was to make a robust
algorithm able to take every possibility into account. To make the script easily accessible
to others and ensure a direct connection between the theory and the script, the symbols
and variables used in the script are taken directly from the Theory chapter 2.

The calculation program is subdivided into three main parts: beam, column, and shell. All
three parts follow the main algorithm described in chapter 2.3. As the version of the
algorithm used in the capacity calculation of a shell is the complete one, it will be used in
the detailed description of the program in chapter 3.1.

3.1 Description of the Program

The computer program follows all the steps of the iteration method algorithm described in
chapter 2.3.2. In this section, important syntaxes and the implementation of some
important steps in the algorithm are presented and explained.

3.1.1 Step 1: External load vector R and the reinforcement amount

The external load vector R contains three forces Nx, Ny, Nxy,, and three moments Mx, M,
Mxy. The units accepted by the program are kN for forces and kNm for moments, while all
subsequent steps are implemented in N and mm. The input data is converted into N and
mm to ensure compatibility between units.
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. Nx
. ny
. Nxy

. Mx
. my
. MxXy = mxy

[ I s I s
(]
(]

Figure 3.1: Python code, external load vector

The same approach is used for reinforcement amount data, which is inserted into the
program as mm?2/m.

D 5 5 S 0

e
]
]

Figure 3.2: Python code, reinforcement amount

3.1.2 Step 3: Middle-plane strains and curvatures
In step 3, the strains and curvatures at the midplane of the shell are calculated by the
following formula, where the stiffness matrix is inverted:

-1
g,=K, - R

A matrix can be correctly inverted if it is regular (non-singular) and well-conditioned (not
ill-conditioned). A singular matrix has a determinant equal to zero, while an ill-conditioned
matrix has a high condition number. In order to take such possibilities into account, when
the matrix is either singular or ill-conditioned, the program implements an alternative
method known as the Moore-Penrose pseudo-inverse of a matrix[5].

.solve(K,R)
gError as err:
" in str{err):
np.matmul{np.linalg.pinv(K, hermitian= True)}, R)

m matrix

ond > 18:
epst = np.matmul(np.linalg.pinv(K, hermitian= True}, R)

Figure 3.3: Python code, middle-plane strains and curvatures
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3.1.3 Step 6: Concrete stress in principal directions

In this step, the concrete stress for each concrete layer in local principal directions is
calculated by using the stress-strain relationship model of concrete. The computer program
allows the user to choose between two concrete models: the parabola-rectangle model
(concModel == 1) and the bilinear model (concModel == 2). Subsequently, two sets of
formulas are wused to obtain the  principal stresses of each layer.
It should be noted that the script shown in Figure 3.4 is within a for-loop, and the
calculation is implemented for each concrete layer. As previously mentioned, the tensile
strength of concrete is assumed to be zero. Therefore, if the strain is positive, the concrete
stress value is set to zero. If the compressive strain is higher than the ultimate strain

(€.2 ), the concrete stress value is zero.

F"-F'c1[1][
_ "1EF"-'-1['I][""]

spci[j][e]/epsc3
and epspci[j][@]>=-epscu3:

Figure 3.4: Python code, concrete stress in principal directions

3.1.4 Step 8: Reinforcement stress
The stresses in each reinforcement layer are obtained by using the following formula:

s0j — Cst : 80;‘

In a shell, the reinforcement is categorized by direction and position. Consequently, there
are four layers, namely: x-direction bottom, x-direction top, y-direction bottom, y-direction
top.

The program implements a for-loop in relation to the reinforcement position. At the same
time, instead of using matrix multiplication, the elasticity modulus values of each layer are
used to calculate the reinforcement stress.

These calculations are an implementation of the design stress-strain model with the
horizontal top branch of the reinforcement.
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Figure 3.5: Python code, reinforcement stress

The resulting stress vector is a 3x1 vector, where the first two values are stresses in x-
and y-direction, respectively. The third value represents shear, and it is set to zero as it is
not considered in the reinforcement stress calculations.

3.1.5 Step 10: Maximum relative difference
The maximum relative difference between external and internal forces is calculated by
using the following formula:

Rk - SO,k
Rk

maX

However, some exceptions should be taken into account. As previously discussed, the
external forces vector is composed of 6 elements, and some could be zero. In such a case,
the formula will be a division by zero and the result will be infinite. Whenever a value in
the external forces vector is zero, an alternative method using the difference between
external and internal forces is used. The resulting algorithm is as follows:

Diff = R - S
RelDiff = np.

[d][e] = o

_ diff[d][é] = abs(Diff[d][e])

‘RelDiff[d][@] = abs(Diff[d][e]/R[d][e])

Figure 3.6: Python code, maximum relative difference
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The resulting values are three: maximum relative difference (devMax), maximum
difference for forces (diffNMax), and maximum difference for moments (diffMMax).

Therefore, the convergence criterium is subdivided into three parts:

- [ : relative difference
- p,: difference for Forces

- Py difference for Moments

The use of different convergence criterium for forces and moments is because they are
defined in terms of N and mm they have different orders of magnitude. These convergence
criteria are determined by taking into account all value possibilities of the external load
vector.

min{[i for i in RMAbs if 3]

RNMin * beta

1 RMAbs if i > @])

RMAbs

RMMin

betaM = RMMin/1
betan betaM

Figure 3.7: Python code, convergence criterium

3.1.6 Step 12: Updating concrete secant modulus
The new secant modulus for every concrete and reinforcement layers are calculated by
using the following formulas:

o
E. =— fori=1,2; E, =
£ 2

An exception that needs to be taken into account is when the strain is equal to zero.
According to the formula above: if the strain is equal to zero, the secant modulus will be
without a solution, as the expression becomes a division by zero. To prevent that, when
the strain is zero, the secant modulus is set to zero. This is shown in Figure 3.8 for concrete
layers.
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= (sigpciMat[1][1i])/ (epspciMat[1][i])

E12 = (E11+E22)/2

Figure 3.8: Python code, new concrete secant modulus
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3.2 User Manual

The program is designed to be as user-friendly as possible. To run the program, the user
opens the folder where the program is downloaded and runs the application startMain.exe.
The user manual section is composed of three sections: input, output, and exceptions.

3.2.11In put
B Iterstion Method — m| ®
e “/ﬂ
/ a/
- "
e B
/
) Beam
M
. .,7—~ o
| /a/
o
O shel
4
_ M i
() Column B =

Select

Figure 3.9: Screenshot of the structure selection window

The first window shown in Figure 3.9 allows the user to select the structure type.

Once the structure is selected, a new window appears depending on the selected structure
type. The input windows for beam, shell, and column are presented below.
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As shown in Figure 3.10, Figure 3.11, and Figure 3.12, the input values are categorized
into Forces, Geometry, Reinforcement, Concrete, and Iteration. Common inputs for all
structure types are described here, while those specific to the structure types are described
in their respective sections.

The sign of forces and moments follow the directions shown in the section figure. In the
case of axial force, compression has a negative value and tension has a positive value. The
moment is positive when the bottom part is under tension and the top part is under
compression.

In the reinforcement part, f« is the reinforcement yield strength, ys is the partial safety
factor for reinforcement, and €ua is the reinforcement strain limit.

In the concrete section, the concrete model is selected from a drop-down list where the
user can choose between two concrete models: parabola- rectangle and bilinear. f« is the
concrete compressive yield strength, yc is the partial safety factor for concrete.

The iteration part controls the number of concrete layers n, convergence criterium B, and
the maximum number of iterations maxlIt.

1. Beam
8 Beam Input - X
Forces Geometry Iteration
N[ meaw b [ w0 |mm n 100
m [ e7sos i o [ w0 |mm B

Reinforcement Concrete

Asxl mm~2 concrete model | parabola - rectangle

Eot [ w00 | Njmmn2 v
Esx2 M/mm~2

fa 500 Njmm~2

Vs 1.15

£ 0.01

Run

Figure 3.10: Screenshot of the beam input window
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In the geometry part, b and h are the width and height of the section, c1 and c2 represent
the distance between the bottom and top reinforcement and their corresponding concrete
section edges.

In the reinforcement part, Asx1 and Asx2 are the bottom and top reinforcement area, while
Esx1 and Esx2 are their respective modulus of elasticity.

2. Shell
B Shell Input - X
Forces Geometry Iteration
o kNm
wl o Jwe [ o :
ey kym ct | 75 | mm 8
Mx iimfm | 7s | om maxtt
wl_ n Jowm
-
Reinforcement Concrete

Asxl mm~2fm Esyl 200000 Nfmm~2
Asx2 5365 mm~2fm Esy2 200000 Nfmm~2 Concrete model |parabola -rectangle
-~ i\ 2 h 2

asy2 500 mm~2fm v. 115 v.
Esx1 200000 Nfmm~2 S 0.01 v [ o ]

Esx2 200000 N/fmm~2

Run

Figure 3.11: Screenshot of the shell input window

In the geometry part, h is the height of the section, c1 and c2 represent the distance
between the bottom and top reinforcement cover and their corresponding edges as shown
in the section figure.

In the reinforcement part, Asx1 and Asx2 are the bottom and top reinforcement area in
the x-direction, while Asy1 and Asy2 are the bottom and top reinforcement area in the y-
direction. Esx1, Esx2, Esy1, and EsyZ2 are their respective modulus of elasticity.
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3. Column

8 Column Input — X
Forces Geometry Iteration

N 1500 k b mm n 1000

i 150 Kim h mm B 0.001

My im ot o mast 1000

o2 mm
Reinforcement Concrete

Asx1 942 mm~2 concrete model | parsbola - rectangle
A2 o2 rm2 fo Njmm 2

‘.

o] o]

*
h My N i 4
N  — Asy

o] M O

/"

Figure 3.12: Screenshot of the column input window

In the forces part, the value of the three section forces is inserted. The sign of forces and
moments follows the directions shown in the section figure. In the case of axial force,
compression has a negative value and tension has a positive value. The x-direction moment
(Mx) is positive when the bottom of the section is under tension and the top of the section
is under compression. The y-direction moment (M,) is positive when the right part of the
section is under tension and the left part of the section is under compression.

In the geometry part, b and h are the width and height of the section. cx1 and cx2
represent the distance between the bottom and top reinforcement and their corresponding
edges. In contrast, cyl and cy2 represent the distance between the right and left
reinforcement and their corresponding edge, as shown in the section figure.

In the reinforcement part, Asx1 and Asx2 are the bottom and top reinforcement areas,
while Asy1 and Asy2 are the right and left reinforcement areas. Esx1, Esx2, Esy1, and Esy2
are their respective modulus of elasticity.
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3.2.2 Output

When the user clicks the run button, the program calculates according to the inserted
values, and a new output window displays the results. The result windows for beams,
shells, and columns are presented below.

The window is divided into parts showing concrete, reinforcement, internal forces, and
iteration number results. A graphic representation of the results above is also displayed.

1. Beam
B Beam Output - O X
Concrete strain (£} distribution Concrete stress {oc) distribution
1 100
Concrete
Maximum strain (%) -3.43 B0 80
Maximum stress -17.0  Nfmm~2
] &
Utilization Ratio 0.98 4 4
q k)
0 0
Reinforcement
Asxl Asx2 2 2
(Bottom)  (Top)
Strain (%) 0352  -3.103 i i i . i i . ' . . . : , : . .
-35 30 25 20 -153 -10 05 @0 -175 -150 -125 -100 -75 50 25 0o
Strain %o (ec) Stress [oc)
Stress (Nfmm~2) -70.46 -434.78 N Convergence M Convergence
4000
Utilization Ratio 0.04 0.31
4500 =0
5000
Internal Forces 0
5500
N 7979.03 kN R
$ a0 £
= 30
M 471,14 kim
6500
-7000 0
=750
c 250
Iteration Number a0
L ®» ® ®» D & W ¢ B ®»® B o ®» B WM

67 teration teration

Figure 3.13: Screenshot of the beam output window

In the concrete part, the maximum strain and stress for concrete are displayed. The
utilization ratio is a strain ratio between the maximum concrete strain and the ultimate

strain (& max / € )-

In the reinforcement part, the strain and stress values for both bottom and top
reinforcements are shown. The utilization ratio is a strain ratio between the reinforcement

strain values and reinforcement strain limit (&, / &,4).
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The internal forces part shows the value of the internal forces reached after the iteration.
The number of iterations used to achieve convergence is displayed in the iteration number
part.

The graphs in the first row show the strain and stress distribution in concrete in the graphic
representation. The graphs in the second row present the convergence process of the force
and the moment during the iteration.

2. Shell
17 Shell Output — [m| X
Concrete principal strain (€1) distribution Concrete principal strain (£2) distribution
Concrete 100 10
) 0
Maximum strain {%5e) -0.786
p ® ]
EY EY
) T
Maximum stress -16.73 Nfmm~2
n 20
Qe 0.2 -0 -06 04 -0z on 1 4 6 8 0] 2 u 16
Strain %e (1} Strain %o (=2}
Concrete principal stress (ol) distribution Concrete principal stress (02} distribution
100 100
Reinforcement » ®
Asxl Asx2  Asyl Asy2 .
L L
(Bottom) (Top) (Bottom) (Top) = x =
Strain (%) 212 934 233 3.793 o o
-175 -150 -125 -100 =15 =50 -5 oo -004 -00z2 oon onz ond
Stress (N/mm”~2) 423.94 434.78 434.78 434.78 Stress (01) Stress (02)
MNx Convergence Ny Convergence MNxy Convergence
Utlization Ratio  0.21 093 023 0.3 00 [ o ¢ L
=500
000 ~
z z -1000 E -1000
Internal Forces 5 00 E 7 5w
Nx 4126.91  kNfm 1000 2000
3000 —2500
By 250.08 ST o 100 00 300 L] 100 00 300 L] 100 00 00
teration teration teration
Mxy -454.03 kMjm
Mx Convergence My Convergence Mxy Convergence
Mx -37.99 kidm/m [} y 0
_ 50
My 70.0 kim/m -50 _sg
E E g
Mxy 3.0 kMmjm g -100 g 0 g
= = =
= 50 = w0 =
. - 150
Iteration Number -200
:I) 1{'):) 2!;9 ):;»D :I) 5‘0 IIIX) L‘: 0 25!) 25‘0 3{;0 :I) 1{‘):) 2!;!) 1;0
331 teration teration teration

Figure 3.14: Screenshot of the shell output window

In the concrete part, the maximum strain and stress for concrete are presented. The
utilization ratio is the strain ratio between the maximum concrete strain and the ultimate

strain (&, max / €c)-
In the reinforcement part, the strain and stress values for the bottom and top

reinforcements in both x- and y- directions are presented. The utilization ratio is the strain
ratio between the reinforcement strain values and reinforcement strain limit

(& /] &,9)

The internal forces part shows the value of the internal forces reached after the iteration.
The number of iterations is shown in the iteration number part.
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The graphic representation is composed of four rows. The graphs in the first row display
the concrete strain in the principal directions. The graphs in the second row show the
concrete stress distribution in the principal directions. The third- and fourth-row graphs
display the convergence process of the forces and moments, respectively, during the
iteration process.

3. Column
B Column Qutput - O X
Concrete strain (£c) distribution Concrete stress (oc) distribution
I 1000
Concrete
Maximum strain (%)  -1.973 800 200
Maximum stress -19.83  Njmm~2
&0 60
Utiization Ratio 0,56 A A
k) )
20 20
Reinforcement
200 200
Tension Compression
Strain (%) 0.336 1.744 . i i i i \ N ——————
2.0 -15 =10 05 an o5 -20.0 <175 -15.0 -125 -10.0 75 50 25 Q0
Strain %e (zc) Stress [oc)
Stress (Mfmm~2) 67.15 -348.87 M Convergence Mx Convergence My Convergence
150 0
Utilization Ratio 0.03 0.17
400
14 B
-1000
3 26
Internal Forces
-1100
N -1499.43 kN _ 120 _
- E E
= S z
= 1200 £ 3
Mx 14284  kim 1o z
-1300 fr
100 0
My 29.99 kMNm
-1400 a0 18
H =15 80 16
Iteration Number 1300
0 1 1 6 B © 2 1 & B © 2 1 & &
e teration teration teration

Figure 3.15: Screenshot of the column output window

In the concrete part, the maximum strain and stress for concrete are presented. The
utilization ratio is a strain ratio between the maximum concrete strain (tension and

compression) and the ultimate strain (&, ax / €.).

In the reinforcement part, the maximum reinforcement strain values for compression and
tension are displayed. The utilization ratio is a strain ratio between the maximum

reinforcement strain values and reinforcement strain limit (& may / €uq)-
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The internal forces part shows the value of the internal forces reached after the iteration.
The number of iterations used to achieve convergence is shown in the iteration number
part.

The graphs in the first row show the strain and stress distribution in concrete. This
distribution does not necessarily follow the height of the column. As detailed in Appendix

E, the layer subdivision direction is at an angle (¢;) from the x-direction:
o, =arctan(M, / M,)

The graphs in the second row display the convergence process of the force and moments
during the iteration.

3.2.3 Exceptions

This section covers situations when the iteration program doesn’t converge and when a
non-numerical value is inserted.

If the program doesn’t converge, the iteration stops, and a dialog box, as shown in Figure
3.16, pops up.

B Mo Convergence ? >

Internal Forces did NOT converge with External Forces

Iteration Mumber 3

Figure 3.16: Screenshot of the no-convergence dialog box

If a non-numerical value is inserted, the program doesn’t run and a dialog box, as shown
in Figure 3.17, pops up.

B Mon-Numerical Input 7 >

A non - numerical value has been inserted

Figure 3.17: Screenshot of the dialog box when a non-numerical value is inserted
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4 Verification

Software verification is defined as a process of exercising a software system by using
various inputs to validate its behavior, discover bugs or defects, and improve the software’s
quality. Defects in a program can have many causes, such as mistakes in writing code,
wrong requirements, ambiguous instructions, etc.[6]

Software testing can be subdivided into four levels: unit testing, integration testing, system
testing, and acceptance testing [6]. However, the testing of this computer program is
implemented using a simplified approach subdivided into three parts:

1. Example with known results: an example is calculated using basic hand calculations
or an approved computer program.

2. Use of the program: the computer program is used to calculate the same example.

3. Comparing the results: the results from hand calculations and the program are
compared.

This method can have two possible outcomes:

1. Results from both methods are equal, which means the program is functioning as
expected. This outcome is a green light for the further development of the program.

2. Results from both methods are different, which means the program is not
functioning correctly. Therefore, the program needs to be rectified, and the
verification is rerun.

The computer program is designed to calculate shell sections for capacity control and lower
loads. With the appropriate modifications detailed in chapter 2.3.4, beams and columns
can also are calculated. The following verification examples are set up in order of
complexity.

The formulas for the design of concrete beams in EC-2.6 apply to concrete sections at
ultimate limit state (ULS) [2]. The computer program uses the stress-strain relationship
formulas presented in chapter 2.1 to calculate the internal forces and moments in a section.
These concrete and reinforcement stress-strain relationships are used to derive formulas
for calculating the internal forces and moments in a section. The computer program results
can thus be compared to exact hand calculation results. The derivation of the hand
calculation formulas is detailed in Appendix A.

4.1 Shells and beams at load capacity

The examples used in this section are first calculated by hand by using formulas for
obtaining the maximum capacity of the section. The results from the program are then
compared to the hand-calculated results, which are referred to as control results.
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The hand calculations and control results of the following examples are shown in Appendix

B and Appendix C.

4.1.1 Compression

/

Nx
Figure 4.1: Shell, compression in one direction
Input
Symbol Value Unit Symbol Value Unit
Nx -1700 | kN/m Asx1 0 | mm%/m
Ny 0 | kN/m Asx2 0 | mm?%/m
Nxy 0 | kN/m Asy1 0 | mm%/m
Mx 0 | kNm/m Asy2 0 | mm%/m
My 0 | kNm/m Esx1 200000 | N/mm?
Mxy 0 | kNm/m Esx2 200000 | N/mm?
Esy1 200000 | N/mm?
h 100 | mm Esy2 200000 | N/mm?2
C1 0| mm fyk 500 | N/mm?
C2 0| mm Ys 1.15
€ud 0.01
n variable
B variable concrete | parabola-
model | rectangle
max it. 1000 fex 30 | N/mm?
Yc 1.5
% 0

Table 4.1: Shell input, compression in one direction




Results

Concrete
B=0.001 B8=0.0001
Concrete Stress Iteration Stress Iteration
Layers (n) (N/mm?) number (N/mm?) number
10 -16.98 32 -17.00 100
30 -16.98 32 -17.00 100
100 -16.98 32 -17.00 100
1000 -16.98 32 -17.00 100
Control -17.00 -17.00
Concrete Strain Iteration Strain Iteration
Layers (n) (%o) number (%o) number
10 -1.938 32 -1.980 100
30 -1.938 32 -1.980 100
100 -1.938 32 -1.980 100
1000 -1.938 32 -1.980 100
Control -2.000 -2.000

Table 4.2: Shell concrete results, compression in one direction

Comments

- Convergence criterium (B): Both stress and strain values increase in accuracy as
the value of B decreases; however, lower values of 8 lead to an increase in the
number of iterations.

- Concrete layers (n): The number of concrete layers does not affect the results.
Since the only force acting on the section is a compressive force Nx, the stress and
strain values are the same for any number of subdivisions of concrete layers.

4.1.2 Tension

ﬂEI

/

Figure 4.2: Shell, tension in one direction

Nx
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Input

Symbol Value Unit Symbol Value Unit
Nx 500 | kN/m Asx1 580 | mm?2/m
Ny 0 | kN/m Asx2 580 | mm2/m
Nxy 0 | kN/m Asy1 0 | mm%/m
Mx 0 | kNm/m Asy2 0 | mm%/m
My 0 | kNm/m Esx1 200000 | N/mm?
My 0 | kNm/m Esx2 200000 | N/mm?
Esy1 200000 | N/mm?
h 100 | mm Esy2 200000 | N/mm?
C1 35 | mm fyk 500 | N/mm?2
C2 35| mm Ys 1.15
€ud 0.01
n variable
B variable concrete | parabola-
model | rectangle
max it. 1000 fex 30 | N/mm?
Yc 1.5
\% 0
Table 4.3: Shell input, tension in one direction
Results
Reinforcement
B=0.001 B=0.0001
Concrete Stress(N/mm?) Iteration Stress(N/mm?) Iteration
Layers (n) Sx1 Sx2 number Sx1 Sx2 number
10 431.03 431.03 2 431.03 431.03 2
30 431.03 431.03 2 431.03 431.03 2
100 431.03 431.03 2 431.03 431.03 2
1000 431.03 431.03 2 431.03 431.03 2
Control 431.03 431.03 431.03 431.03
Concrete Strain (%o) Iteration Strain(%o.) Iteration
Layers (n) Sx1 Sx2 | number Sx1 Sx2 number
10 2.155 2.155 2 2.155 2.155 2
30 2.155 2.155 2 2.155 2.155 2
100 2.155 2.155 2 2.155 2.155 2
1000 2.155 2.155 2 2.155 2.155 2
Control 2.155 2.155 2.155 2.155

Table 4.4: Shell reinforcement results, tension in one direction
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Comments

Convergence criterium (f): Both stress and strain values remain unchanged for

different values of S.

Concrete layers (n): The number of concrete layers does not affect the results.
Since the only force acting on the section is a tension force Nx, and the tensile
strength of concrete is assumed zero, the stress and strain values are the same for

any number of subdivisions of concrete layers.

4.1.3 Moment in one direction

¢ I
C
Figure 4.3: Shell, moment in one direction
Input

Symbol Value Unit Symbol Value Unit
Nx 0 | kN/m Asx1 3768 | mm%/m
Ny 0 | kN/m Asx2 0 | mm%/m
Nxy 0 | kN/m Asy1 0 | mm%/m
Mx 516.780 | kNm/m Asy2 0 | mm%/m
My 0 | kNm/m Esx1 200000 | N/mm?
Mxy 0 | kNm/m Esx2 200000 | N/mm?
Esy1 200000 | N/mm?
h 400 | mm Esy2 200000 | N/mm?
C1 35 | mm fyk 500 | N/mm?2

C2 0| mm Ys 1.15

€ud 0.01

n variable

B variable concrete | parabola-

model rectangle
max it. 1000 fox 30 | N/mm?

Yc 1.5

\% 0

Table 4.5: Shell input, moment in one direction




Results

Concrete
B=0.001 $=0.0001
Concrete Stress Iteration Stress Iteration
Layers (n) (N/mm?2) number (N/mm?) number
10 - 255 - 255
30 -17.00 283 -17.00 511
100 -17.00 260 -17.00 518
1000 -17.00 256 -17.00 515
Control -17.00 -17.00
Concrete Strain Iteration Strain Iteration
Layers (n) (%0) number (%o) number
10 - 255 - 255
30 -3.226 283 -3.373 511
100 -3.259 260 -3.396 518
1000 -3.299 256 -3.438 421
Control -3.500 -3.500

Table 4.6: Shell concrete results, moment in one direction

Reinforcement

B=0.001 $=0.0001
Concrete Stress Iteration Stress Iteration
Layers (n) (N/mm?2) number (N/mm?) number
10 - 255 - 255
30 434.78 283 434.78 511
100 434.78 260 434.78 518
1000 434.78 256 434.78 515
Control 434.78 434.78
Concrete . Iteration . Iteration
Strain Strain
Layers (n) number number
10 - 255 - 255
30 7.017 283 7.460 511
100 6.711 260 7.103 518
1000 6.684 256 7.073 515
Control 7.232 7.232

Table 4.7: Shell reinforcement results, moment in one direction

Comments

- Convergence criterium (B): The stress values in concrete and reinforcement are
unchanged for both values of 8 and equal to the control value. In contrast, the
strain values in both materials increase in accuracy as 8 decreases. The iteration
number increases as 8 decreases.
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- Concrete layers (n): For n equal to 10, the iteration doesn’t converge, which means
the concrete layer subdivision is not enough. In the other three concrete layer
numbers, the iteration converges, and the stress values for concrete and
reinforcement are unchanged and equal to the control value. The strain values for
concrete increase in accuracy as n increases. However, strain values for
reinforcement don’t have a uniform response to increase in n. However, it should
be noted that the maximum strain difference, which occurs for n=1000 and
B=0.001, the relative difference compared to the control value is 7.48%.

4.1.4 Moment and axial force in one direction

Moment and axial force can be combined in various ways. In the following cases, the choice
of combinations is based on examples similar to those presented in the book
‘Betongkonstruksjoner — Beregning og dimensjonering etter Eurocode2’ [7]. The following
examples represent various capacity extremes for a reinforced concrete section due to
fracture in concrete and high reinforcement strains. The hand calculations for this section
are presented in Appendix B.4.

CEI

C1I

Nx
My

Figure 4.4: Shell, moment and axial force in one direction
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Input

Symbol Value Unit Symbol Value Unit
Nx variable | kN/m Asx1 4910 | mm?%/m
Ny 0 | kN/m Asx2 4910 | mm?%/m
Nxy 0 | kN/m Asy1 0 | mm%/m
Mx variable | kNm/m Asy2 0 | mm%/m
My 0 | kNm/m Esx1 200000 | N/mm?2
My 0 | kNm/m Esx2 200000 | N/mm?

Esy1 200000 | N/mm?
h 400 | mm Esy2 200000 | N/mm?2
C1 40 | mm fyk 500 | N/mm?
C2 40 | mm Ys 1.15
€ud 0.03
n variable
B variable concrete | parabola-
model | rectangle
max it. 2000 fox 30 | N/mm?2
Yc 1.5
\% 0

Table 4.8: Shell input, moment and axial force in one direction

1. Compression fracture in concrete

Nx = -7983.240 kN
Mx = 471.606 kNm
Results
Concrete
B=0.001 B8=0.0001
Concrete Stress Iteration Stress Iteration
Layers (n) (N/mm?) number (N/mm?2) number
10 -17.00 70 -17.00 125
30 -17.00 68 -17.00 118
100 -17.00 67 -17.00 118
1000 -17.00 67 -17.00 118
Control -17.00 -17.00
Concrete Strain Iteration Strain Iteration
Layers (n) (%0) number (%o) number
10 -3.353 70 -3.404 125
30 -3.399 68 -3.446 118
100 -3.430 67 -3.478 118
1000 -3.444 67 -3.493 118
Control -3.500 -3.500

Table 4.9: Shell concrete results, case 1
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Reinforcement

B=0.001 B=0.0001
Concrete Stress(N/mm?) Tteration Stress(N/mm?) Tteration
Layers (n) number number
Sx1 Sx2 Sx1 Sx2
10 -68.49 -434.78 70 -68.02 -434.78 125
30 -70.25 -434.78 68 -69.83 -434.78 118
100 -70.46 -434.78 67 -70.03 -434.78 118
1000 -70.48 -434.78 67 -70.05 -434.78 118
Control -70.00 -434.78 -70.00 -434.78
Strain Iteration Strain Iteration
Concrete 0 0
Layers (n) (%o) number (%o) number
Sx1 Sx2 Sx1 Sx2
10 -0.342 -3.176 70 -0.340 -3.223 125
30 -0.351 -3.112 68 -0.349 -3.154 118
100 -0.352 -3.103 67 -0.350 -3.146 118
1000 -0.352 -3.102 67 -0.350 -3.145 118
Control -0.350 -3.150 -0.350 -3.150
Table 4.10: Shell reinforcement results, case 1
Comments

According to the hand calculations detailed in Appendix B.4.1, the whole section is under
compression, and the failure is due to compression fracture in concrete. As for
reinforcement, the top reinforcement yields while the bottom reinforcement does not.

Convergence criterium (B): The stress values for concrete and top reinforcement
are unchanged for both values of 8 and equal to the control value. The stress values
for the bottom reinforcement increase in accuracy as the value of 8 decreases,
except for n=10. The strain values for concrete and top reinforcement increase in
accuracy as B decreases. The strain values for bottom reinforcement have a similar
trend except for when n=10. The iteration number increases with lower S.

Concrete layers (n): The stress values for concrete and top reinforcement are
unchanged and equal to the control value for all values of n. The strain values for
concrete increase in accuracy as n increases. In contrast, strain values for
reinforcement don’t have a uniform response to the increase in n. However, it
should be noted that the maximum strain difference, which occurs in the bottom
reinforcement for n=10 and $=0.0001, the relative difference compared to the
control value is 2.86%.
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2. Compression fracture in concrete and yield strain in reinforcement

Nx = -3056.574 kN
Mx = 1012.053 kNm
Results
Concrete
B=0.001 B=0.0001
Concrete Stress Iteration Stress Iteration
Layers (n) (N/mm?) number (N/mm?2) number
10 -17.00 27 -17.00 76
30 -17.00 27 -17.00 38
100 -17.00 28 -17.00 40
1000 -17.00 27 -17.00 40
Control -17.00 -17.00
Concrete Strain Iteration Strain Iteration
Layers(n) (%o) number (%o) number
10 -3.215 27 -3.242 76
30 -3.388 27 -3.397 38
100 -3.461 28 -3.469 40
1000 -3.487 27 -3.497 40
Control -3.500 -3.500
Table 4.11: Shell concrete results, case 2
Reinforcement
B=0.001 B8=0.0001
Concrete Stress(N/mm?) Tteration Stress(N/mm?) Tteration
number number
Layers(n) sx1 Sx2 sx1 Sx2
10 434.68 -434.78 27 434.78 -434.78 76
30 434.52 -434.78 27 434.78 -434.78 38
100 434.46 -434.78 28 434.74 -434.78 40
1000 434.41 -434.78 27 434.74 -434.78 40
Control 434.78 -434.78 434.78 -434.78
Strain Iteration Strain Iteration
Concrete 0 0
Layers(n) (%o) number (%o) number
Sx1 Sx2 Sx1 Sx2
10 2.173 -2.898 27 2.196 -2.923 76
30 2.173 -2.864 27 2.174 -2.872 38
100 2.172 -2.863 28 2.174 -2.870 40
1000 2.172 -2.861 27 2.174 -2.870 40
Control 2.173 -2.870 2.173 -2.870

Table 4.12: Shell reinforcement results, case 2
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Comments

According to the hand calculations detailed in Appendix B.4.2, the failure is due to
compression fracture in concrete. The top reinforcement yields due to compression, while

the bottom reinforcement yields due to tension with a strain value 2.173. 10°.

- Convergence criterium (B): The stress values for concrete and reinforcement are
unchanged for both values of 8 and equal to the control value. The strain values for
concrete increase in accuracy as 3 decreases. In the case of strain in reinforcement,
bottom reinforcement values don’t have a uniform response to changes in 3, while
top reinforcement values increase in accuracy as 8 decreases. The iteration number
increases as 8 decreases.

- Concrete layers (n): The stress values for concrete and reinforcement are
unchanged and equal to the control value for all values of n. The strain values for
concrete increase in accuracy as n increases. Strain values for the bottom
reinforcement don’t have a uniform response to increase in n, while the strain
values for the top reinforcement increase in value as n increases. However, it should
be noted that in the maximum strain difference, which occurs in the bottom
reinforcement for n=10 and 8=0.0001, the relative difference compared to the
control value is 1.85%.

3. Compression fracture in concrete and double yield strain in reinforcement

Nx = -2039.995 kN
Mx = 965.340 kNm

Results
Concrete
B=0.001 | B=0.0001
Concrete Stress Iteration Stress Iteration
Layers(n) (N/mm?) number | (N/mm?) number
10 -17.00 165 - 280
30 -17.00 95 -17.00 393
100 -17.00 98 -17.00 349
1000 -17.00 96 -17.00 342
Control -17.00 -17.00
Concrete Strain Iteration Strain Iteration
Layers(n) (%0) number (%o) number
10 -3.287 165 - 280
30 -3.033 95 -3.381 393
100 -3.133 98 -3.421 349
1000 -3.163 96 -3.456 342
Control -3.500 -3.500

Table 4.13: Shell concrete results, case 3
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Reinforcement

8=0.001 8=0.0001
Concrete Stress(N/mm?) Iteration Stress(N/mm?) Iteration
number number
Layers(n) sx1 Sx2 sx1 Sx2
10 434.78 -434.78 165 - - 280
30 434.78 -434.78 95 434.78 -434.78 393
100 434.78 -434.78 98 434.78 -434.78 349
1000 434.78 -434.78 96 434.78 -434.78 342
Control 434.78 -434.78 434.78 -434.78
Strain Iteration Strain Iteration
Concrete 0 0
Layers(n) (%o) number (%o) number
Sx1 Sx2 Sx1 Sx2
10 5.563 -2.767 165 - - 280
30 4.334 -2.338 95 5.094 -2.582 393
100 4.350 -2.338 98 4.935 -2.534 349
1000 4.334 -2.333 96 4.922 -2.529 342
Control 5.000 -2.556 5.000 -2.556
Table 4.14: Shell reinforcement results, case 3
Comments

According to the hand calculations detailed in Appendix B.4.3, the failure is due to
compression fracture in concrete. The top reinforcement yields due to compression, while

the bottom reinforcement yields due to tension with a strain value 5.00 - 10°.

The iteration doesn’'t converge when n=10 and 5=0.0001.

- Convergence criterium (B): The stress values for concrete and reinforcement are
unchanged for both values of 8 and equal to the control value. The strain values for
concrete and reinforcement increase in accuracy as S decreases. The iteration

number increases as 8 decreases.

- Concrete layers (n): The stress values for concrete and reinforcement are
unchanged and equal to the control value for all values of n. The strain values for
concrete increase in accuracy as n increases. Strain values for both bottom and top
reinforcement don’t have a uniform response to increase in n. The maximum strain
difference occurs in the bottom reinforcement for n=30, n=1000, and 8=0.001; the
relative difference compared to the control value is 13.32%. This is a high relative
difference. However, when 8=0.0001, the results’ accuracy improves considerably.
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4. Compression fracture in concrete and high strain level in reinforcement

Nx

= -220.956 kN

Mx = 729.419 kNm

Results
Concrete
B=0.001 B=0.0001
Concrete Stress Iteration Stress Iteration
Layers(n) (N/mm?2) number | (N/mm?) number
10 -17.00 457 -17.00 619
30 -17.00 769 -17.00 1244
100 -17.00 643 -17.00 1045
1000 -17.00 621 -17.00 1010
Control -17.00 -17.00
f:;:::(trs SE:Z)' n Iterations SE;?)' n Iterations
10 -2.920 457 -2.933 619
30 -3.239 769 -3.279 1244
100 -3.368 643 -3.404 1045
1000 -3.449 621 -3.485 1010
Control -3.500 -3.500
Table 4.15: Shell concrete results, case 4
Reinforcement
p=0.001 B8=0.0001
Concrete Stress(N/mm?) Tteration Stress(N/mm?) Tteration
Layers(n) number number
Sx1 Sx2 Sx1 Sx2
10 434.78 -313.32 457 434.78 -314.07 619
30 434.78 -289.56 769 434.78 -290.25 1244
100 434.78 -288.32 643 434.78 -288.94 1045
1000 434.78 -288.19 621 434.78 -288.80 1010
Control 434.78 -288.89 434.78 -288.89
Strain Iteration Strain Iteration
Concrete 0 0
Layers(n) (%o) number (%o) number
Sx1 Sx2 Sx1 Sx2
10 20.080 -1.567 457 20.233 -1.570 619
30 15.750 -1.448 769 16.097 -1.451 1244
100 14.783 -1.442 643 15.058 -1.445 1045
1000 14.700 -1.441 621 14.962 -1.444 1010
Control 15.000 -1.444 15.000 -1.444

Table 4.16: Shell reinforcement results, case 4
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Comments

According to the hand calculations detailed in Appendix B.4.4, the failure is due to
compression fracture in concrete. The top reinforcement is under compression below yield
value, while the bottom reinforcement yields due to tension with a high strain value

1.50- 10°.

- Convergence criterium (B): The stress values for concrete and bottom
reinforcement are unchanged for both values of § and equal to the control value.
In contrast, the stress values for top reinforcement increase in accuracy as 8
decreases only when n has a high value of 100 or 1000. The strain value for concrete
increases in accuracy as 8 decreases. On the other hand, the strain values for
reinforcement increase in accuracy as 8 decreases only when the value on n is either
100 or 1000. The iteration number increases as 3 decreases.

- Concrete layers (n): The stress values for concrete and bottom reinforcement are
unchanged and equal to the control value for all n. In contrast, the stress values
for top reinforcement don’t have a uniform response to increase in n. The strain
values for concrete increase in accuracy as n increases. Strain values for both
bottom and top reinforcement for =0.0001 increase in accuracy as n increases,
while for 8=0.001, the response is not uniform.

4.1.5 Moment and axial force in two directions

The following is an example of calculating a shell element where all six sectional forces are
present. The shell is a part of a box girder bridge in reinforced concrete. The material
properties and sectional forces are taken from a FEM analysis [1].

The control calculations for this example are calculated by an iteration-method computer
program developed and approved by NTNU.

The example is subdivided into two parts:

- In the first part, the input data is obtained from a hand calculation design and run.
The result shows that the top reinforcement in the y-direction (Asy1 = 1241 mm?/m)
is over-dimensioned.

- In the second part, the top reinforcement in the y-direction is reduced (Asy: = 500
mm?/m), and the program is rerun.
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Figure 4.5: Shell, moment, and axial force in two directions

Input
Symbol Value Unit Symbol Value Unit
Nx 4127 | kN/m Asx1 5570 | mm2/m
Ny 250 | kN/m Asx2 5365 | mm?Z/m
Nxy -464 | kKN/m Asy1 1289 | mm?%/m
Mx -38 | kKNm/m Asy2 variable | mm2/m
My 70 | kKNm/m Esx1 200000 | N/mm?
My 3 | kNm/m Esx2 200000 | N/mm?2
Esy1 200000 | N/mm?
h 350 | mm Esy2 200000 | N/mm?2
C1 75 | mm fyk 500 | N/mm?2
C2 75 | mm Ys 1.15
€ud 0.01
n variable
B 0.001 concrete | parabola-
model | rectangle
max it. 2000 fox 65 | N/mm?2
Yc 1.5
\% 0

Table 4.17: Shell input, moment, and axial force in two directions
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1. Aspz = 1241 mm?%/m

Results
Concrete
Concrete Stress Iteration
Layers (n) (N/mm?) number
10 -9.50 367
30 -10.63 355
100 -11.07 355
1000 -11.25 354
Control -12.00 365
Concrete . Iteration
Layers (n) Strain (%) number
10 -0.427 367
30 -0.481 355
100 -0.502 355
1000 -0.511 354
Control -0.4 365
Table 4.18: Shell concrete result, case 1
Reinforcement
Concrete Stress (N/mm?) Iteration
number
Layers () g1 Sx2 Syl sy2
10 401.89 434.78 434.78 264.01 367
30 401.71 434.78 434.78 262.61 355
100 401.69 434.78 434.78 262.45 355
1000 401.69 434.78 434.78 262.44 354
Control 401 435 435 262 365
Concrete Strain (%o) Iteration
number
Layers (n) Sx1 sx2| syl Sy2
10 2.009 4.328 3.232 1.320 367
30 2.009 4.233 3.206 1.313 355
100 2.008 4.222 3.203 1.312 355
1000 2.008 4.221 3.203 1.312 354
Control 2.0 4.1 3.1 1.3 365
Table 4.19: Shell reinforcement results, case 1
Comments

- Concrete: The stress values for concrete increase in accuracy as the number of
concrete layers increases. In contrast, concrete strain values decrease in accuracy
as n increases. It should, however, be noted that the obtained strain values are
relatively accurate.
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- Reinforcement: The stress values of Sx2 and Sy1 are unchanged and equal to the
control value at yield stress. The stress values of SxI and Sy2 increase in
accuracy as n increases. The strain values of both bottom and top reinforcements
increase in accuracy as n increases.

2. As2 = 500 mm%/m

Results
Concrete
Concrete Stress Iteration
Layers (N/mm?) number
10 -11.75 314
30 -15.20 332
100 -16.73 331
1000 -17.38 331
Control -18 349
Concrete Strain (%) Iteration
Layers number
10 -0.353 314
30 -0.707 332
100 -0.786 331
1000 -0.821 331
Control -0.7 349
Table 4.20: Shell concrete results, case 2
Reinforcement
Iteration
Concrete Stress (N/mm?) Stress (N/mm?)
number
Layers Sx1 sx2 Syl Sy2
10 426.51 434.78 434.78 434.78 314
30 424.15 434.78 434.78 434.78 332
100 423.94 434.78 434.78 434.78 331
1000 423.93 434.78 434.78 434.78 331
Control 423 435 435 435 349
Concrete Strain (%o) Iteration
Layers number
Sx1 Sx2 Syl Sy2
10 2.132 10.126 2.168 4.063 314
30 2.121 9.410 2.319 3.815 332
100 2.120 9.340 2.334 3.793 331
1000 2.120 9.333 2.336 3.790 331
Control 2.1 9.2 2.2 3.7 349

Table 4.21: Shell reinforcement result, case 2
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Comments

- Concrete: The stress values of concrete increase in accuracy as the number of
concrete layers increases. In contrast, the concrete strain does not have a uniform
response to increase in n. However, it should be noted that the strain results for
concrete when n is higher than 10 are relatively accurate.

- Reinforcement: The stress values of Sx2, Sy1, and Sy2 are unchanged and equal
to the control value at yield stress. The stress value of Sx1 increases in accuracy
as n increases. The strain values of both bottom and top reinforcements increase
in accuracy as n increases.

4.2 Shells and beams below load capacity

The computer program is designed to give accurate results regarding the maximum
capacity of the section and when forces and moments below the maximum capacity are
applied to a section. To verify that, moments and forces lower than the capacity of the
section are inserted into the program, and the resulting strain values are used to calculate
the corresponding moments and forces by hand. These are then compared to the original
forces and moments. Examples of the hand calculations are presented in Appendix C.
The following verifications are executed for sections subjected only to moment in one
direction. This simplified method is implemented to verify the accuracy of the algorithm in
the program. The verification is executed for both concrete models used in the computer
program, the parabola-rectangle and bilinear models.
The results are presented in table form, where the strain values obtained from the program
are inserted into the second and the third column. The resulting moments (M) and forces
(N), as well as the difference to the original values (&n, dm) and the relative difference to
the actual values ( devn, devwm), are presented.

This verification will also compare the effect of the number of concrete layer subdivisions
(n) and the convergence criterium (B) on the result accuracy.

c1I

C

Mx

Figure 4.6: Shell, moment in one direction
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Input

Symbol Value Unit Symbol Value Unit
Nx 0 | kN/m Asx1 3768 | mm3/m
Ny 0 | kN/m Asx2 0 | mm%/m
Nxy 0 | kN/m Asy1 0 | mm%/m
Mx variable | kNm/m Asy2 0 | mm%/m
My 0 | kNm/m Esx1 200000 | N/mm?
My 0 | kNm/m Esx2 200000 | N/mm?
Esy1 200000 | N/mm?
h 400 | mm Esy2 200000 | N/mm?
C1 35 | mm fyk 500 | N/mm?2
C2 0| mm Ys 1.15
€ud 0.01
n variable
B variable concrete variable
model
max it. 1000 fex 30 | N/mm?
Yc 1.5
\% 0
Table 4.22: Shell input, load below capacity
Results
1.
x = 200 kNm
concrete model: parabola-rectangle
B=0.001
n Ec Es N ON devn M om devm Iteration
(compression) (tension) (kN) (kN) (kNm) (kNm) number
10 4,909157*10“ | 8.456347*10% | 123.62 | 123.62 - 183.75 16.25 | 8.10*102 3
107 5.560051*10% | 8.426155*10* | 12.79| 12.79 - 198.26 1.74 | 9.00*103 4
103 5.628869*10“ | 8.426000*10* 1.20 1.20 - 199.84 0.16 | 8.03*10* 4
104 5.635795*%10“ | 8.425993*10* 0.03 0.03 - 200.00 0.001 | 6.93*10° 4
10° 5.636490*%10% | 8.425993*10* 0.09 0.09 - 200.02 0.02 | 7.30*10°° 4
B8=0.0001
n &c €s N Oon devn M oM devm Iteration
(compression) (tension) (kN) (kN) (kNm) | (kNm) number
10 | 4.910125*%10% | 8.457463*10* | 123.59 | 123.59 - 183.78 | 16.22 | 8.10*1072 4
102 | 5.559494*10* | 8.425070*10* 12.87 | 12.87 - 198.25 1.75 | 9.00*1073 5
103 | 5.628247*10“ | 8.425908*10* 1.29 1.29 - 199.82 0.18 | 8.78*10* 5
10% | 5.635177*%10% | 8.425905*10“ | 0.121| 0.121 - 199.99 0.02 | 8.11*10°° 5
10> | 5.635870*10* | 8.425905*10“ | 0.004 | 0.004 - 200.00 0.00 | 1.40*10° 5

Table 4.23: Shell results, load below capacity, case 1
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2.

Mx = 350 kNm
concrete model: parabola-rectangle
B8=0.001
n Ec €s N Oon devn M Oom devm Iteration
(compression) (tension) (kN) (kN) (KNm) (kNm) number
10 | 9.230866*10% | 1.496565*10°3 | 203.34 | 203.34 - 324.75 25.25 | 7.21*107 6
102 | 1.043691*10°3 | 1.489687*103| 20.68 | 20.68 - 347.30 2.70 | 7.72*1073 5
103 | 1.056221*103 | 1.489616*1073 2.37 2.37 - 349.68 0.32 | 9.15*%10* 5
104 | 1.057479*103 | 1.489615*1073 0.54 0.54 - 349.92 0.08 | 2.32*10* 5
10° | 1.057605*103 | 1.489615*1073 0.35 0.35 - 349.95 0.06 | 1.63*10* 5
B=0.0001
n €c €s N Oon devn M Oom devm Iteration
(compression) (tension) (kN) (kN) (KNm) (kNm) number
10 | 9.231257*10% | 1.496574*103 | 203.30 | 203.30 - 324.76 | 25.24 | 7.21*107? 7
102 | 1.043957*103 | 1.489734*1073 20.35| 20.35 - 347.35 2.65 | 7.56*10°3 7
103 | 1.056482*103 | 1.489662*1073 2.04 2.04 - 349.73 0.27 | 7.64*10* 7
104 | 1.057738*103 | 1.489661*1073 0.21 0.21 - 349.97 | 0.028 | 8.13*10° 7
10° | 1.057863*103 | 1.489661*1073 0.03 0.03 - 350.00 0.00 | 1.33*%10° 7
Table 4.24: Shell results, load below capacity, case 2
3.
Mx = 200 kNm
concrete model: bilinear
B=0.001
n €c €s N Oon devn M Oom devm Iteration
(compression) (tension) (kN) (kN) (KNm) (kNm) number
10 | 6.905206*10“ | 8.659070*10% | 73.25| 73.25 - 189.35 10.65 | 5.32*10°2 3
102 | 7.665291*10% | 8.633115*10* 7.53 7.53 - 198.85 1.15 | 5.74*10-3 4
103 | 7.746059*10“ | 8.632344*10* 0.69 0.69 - 199.89 0.12 | 5.77*10* 3
104 | 7.754212*10% | 8.632261*10* 0.02 0.02 - 199.99 0.011 | 5.57*10° 3
10° | 7.755025*10% | 8.632256*10* 0.07 0.07 - 200.00 7*%10% | 3.60*10°° 3
f=0.0001
n Ec €s N Oon devn M oM devm Iteration
(compression) (tension) (kN) (kN) (KNm) (kNm) number
10 | 6.905206*10* | 8.659070*10* | 123.59 | 123.59 - 183.78 | 16.22 | 8.10*1072 3
102 | 7.665291*10* | 8.633115*10* 12.87 | 12.87 - 198.25 1.75 | 9.00*10-3 4
103 | 7.745680*%10* | 8.632733*10* 0.75 0.75 - 199.88 0.12 | 5.79*%10* 4
104 | 7.753757*10% | 8.632730*10* 0.08 0.08 - 199.99 0.01 | 5.79*10° 4
10° | 7.754565*%10% | 8.632730*%10* 0.01 0.01 - 200.00 | 0.001 | 5.80*10° 4

Table 4.25: Shell results, load below capacity, case 3
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4.

Mx = 350 kNm
concrete model: bilinear
B=0.001
n &c €s N ON devn M om devm Iteration
(compression) (tension) (kN) (kN) (kNm) (kNm) number
10 1.208411*103 | 1.515337*103 | 128.16 | 128.16 - 331.37 18.63 | 5.32*1072 3
102 1.341426*103 | 1.510795*%103 | 13.17| 13.17 - 347.99 2.01 | 5.74*10°3 4
103 1.355560*103 | 1.510660*103 1.21 1.21 - 349.80 0.20 | 5.77*10* 3
104 1.356987*103 | 1.510646*1073 0.04 0.04 - 349.98 0.02 | 5.56*10> 3
10° 1.357129*103 | 1.510645%*1073 0.12 0.12 - 350.00 0.00 | 3.6*10° 3
8=0.0001
n Ec €s N On devn M om devm Iteration
(compression) (tension) (kN) (kN) (kNm) (KNm) number
10 | 1.208411 *103 | 1.515337*103 | 128.16 | 128.16 - 331.37 18.63 | 5.32*10%2 3
102 | 1.341426*103 | 1.510795*103 13.17 | 13.17 - 347.99 2.01 | 5.74*1073 4
103 | 1.355494*103 | 1.510728*1073 1.32 1.32 - 349.80 0.20 | 5.79*10* 4
10% | 1.356907*103 | 1.510727*1073 0.13 0.13 - 349.98 0.02 | 5.83*10 4
10> | 1.357049*103 | 1.510728*1073 0.01 0.01 - 350.00 0.00 | 5.60*10° 4

Comments

Table 4.26: Shell results, load below capacity, case 4

- Convergence criterium (B): the value of 8 has a negligible effect on the accuracy of
the result. However, it should be noted that the values of B used are 103 and 104,
which are both relatively accurate convergence criteria. The iteration number
increases as the value of 8 decreases.

- Concrete layers (n): the accuracy of both forces and moments increases as the
value of n increases. It should be noted that for n=10 and 100, the obtained values
of the moments and especially the forces are very different from the original values.
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4.3 Columns at load capacity

The examples used in this section are first calculated by hand by using formulas for
obtaining the maximum capacity of the section. The results from the program are
compared to the hand-calculated results, which are referred to as control results. Due to
few available examples for calculating columns, one of the previously used cases with
moment and axial force in one direction is used.

4.3.1 Biaxial moment and axial force

The following example is taken from the book ‘Betongkonstruksjoner — Beregning og
dimensjonering etter Eurocode2’ [7]. The corresponding hand calculation is detailed in
Appendix E.

The result of the hand calculation is the value of the section’s moment capacity in x- and
y-direction.

Mrdx = 210 kNm

Mrdy 132 kNm

s MEgx NEg
Edy
[ O Or--1----
v \ ____i Cx1

ry
v

Figure 4.7: Column, axial force and biaxial moment
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Input

Table 4.29: Column results, case 2

58

Symbol Value Unit Symbol Value Unit
N -1500 | kN Asx1 942 | mm?
Mx variable | kNm Asx2 942 | mm?
My variable | kNm Asy1 0 | mm?

Asy2 0 | mm?
b 300 | mm Es 200000 | N/mm?
h 400 | mm fyk 500 | N/mm?2
Cx1 40 | mm Ys 1.15
Cx2 40 | mm €ud 0.03
Cy1 0| mm
concrete | parabola-
Cy2 0| mm
model rectangle
fok 35 | N/mm?
n variable Ye 1.5
B variable
max it. 1000
Table 4.27: Column input, biaxial moment and axial force
Results
1. Mx =210 kNm
My = 0 kNm
Convergence
Concrete
=0.001 =0. 1
Layers (n) B=0.00 B=0.000
10 Yes Yes
30 Yes Yes
100 Yes Yes
1000 Yes Yes
Table 4.28: Column results, case 1
2. Mx =0kNm
My = 132 kNm
Convergence
Concrete
=0. 1 =0. 1
Layers (n) B=0.00 B=0.000
10 Yes Yes
30 Yes Yes
100 Yes Yes
1000 Yes Yes




Comments

The program shows that the section has the moment and axial force capacity calculated
by hand. The solution converges for all values of concrete layer n and convergence

criterium .

4.3.2 Uniaxial moment and axial force

The following example is the same as the one presented in section 4.1.4, example 1. The
only difference is that the calculation is implemented by the algorithm version used to

calculate columns.

Input
Symbol Value Unit Symbol Value Unit
N -7983.240 | kN Asx1 4910 | mm?
Mx 471.606 | kNm Asx2 4910 | mm?
My 0 | kNm Asy1 0 | mm?
Asy2 0 | mm?
b 1000 | mm Es 200000 | N/mm?
h 400 | mm fyk 500 | N/mm?
Cx1 40 | mm Ys 1.15
Cx2 40 | mm €ud 0.03
Cy1 0| mm
concrete | parabola-
Cy2 0| mm
model rectangle
fek 30 | N/mm?
n variable Ye 1.5
B variable
max it. 1000
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Results

Concrete
B=0.001 B8=0.0001
Concrete Stress Iteration Stress Iteration
Layers (N/mm?2) number (N/mm?2) number
10 -17.00 9 -17.00 11
30 -17.00 46 -17.00 81
100 -17.00 60 -17.00 105
1000 -17.00 66 -17.00 116
Control -17.00 -17.00
Concrete Strain Iteration Strain Iteration
Layers (%0) number (%) number
10 -2.158 9 -2.160 11
30 -2.798 46 -2.824 81
100 -3.218 60 -3.257 105
1000 -3.421 66 -3.469 116
Control -3.500 -3.500

Table 4.31: Column concrete results, uniaxial moment and axial force

Reinforcement

B=0.001 B=0.0001
Concrete Max Stress Iteration Max Stress Iteration
Layers (N/mm?) number (N/mm?) number
10 -431.69 9 -431.91 11
30 -434.78 46 -434.78 81
100 -434.78 60 -434.78 105
1000 -434.78 66 -434.78 116
Control -434.78 -434.78
Concrete Max Strain Iteration Max Strain Iteration
Layers (%0) number (%o) number
10 -2.158 9 -2.160 11
30 -2.616 46 -2.640 81
100 -2.931 60 -2.966 105
1000 -3.083 66 -3.126 116
Control 3.150 -3.150

Table 4.32: Column reinforcement results, uniaxial moment and axial force

Comments

According to the hand calculations detailed in Appendix B.4.1, the whole section is under
compression, and the failure is due to compression fracture in concrete. As for
reinforcement, the top reinforcement yields while the bottom reinforcement does not. The
column algorithm displays only the maximum compressive strain and stress for concrete
and the maximum compressive and tensile strain and stress for reinforcement. The
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obtained values are not as accurate as those calculated by the shell and beam version of
the program.

- Convergence criterium (fB): The stress and strain values for both reinforcement and
concrete increase in accuracy as the value of 8 decreases. The iteration number
increases as 3 decreases.

- Concrete layers (n): The stress and strain values for both concrete and
reinforcement increase in accuracy as n increases. The iteration number increases
with n.
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5 Conclusion

The computer program developed in this thesis fulfills the expected results. It can perform
the capacity control for beams, shells, and columns.

The literature studies and theories represent the basis for the development of the program.
The comparison between known results and the results from the program shows that the
method used and its code implementation are correct. However, there is room for
improvement and optimization of the code.

The known results used in the verification of the program are hand calculations and results
from an approved iteration method program. The comparison with these known results
aims to test the program in general and the effect of the number of concrete layers n,
convergence criterium B on its accuracy.

For beams and shells at load capacity, the value of n should be at least 100. A more
accurate convergence criterium (8=0.0001) is needed to obtain satisfactory results in the
case of very high reinforcement strains. When calculating columns, the reinforcement is
also subdivided into n layers. Therefore, a high (n=103) subdivision number is needed to
obtain accurate results. When calculating with loads below capacity, layer subdivision has
a significant impact on the result accuracy. It is preferable to use a value of n of at least
103 to obtain relatively precise results.

Based on the testing, it can be stated that the accuracy of the results increases with n and
decreases as 8 increases. In the following discussion on the accuracy of the program, the
most accurate results obtained with n=103 and f=0.0001 are considered.

When comparing the results between hand calculations and the computer program, it can
be shown that they are very similar with some minor differences. The differences could be
caused by the fact that the program uses more decimal nhumbers than the corresponding
hand calculations.

When comparing the results with those from the approved iteration computer program,
the reinforcement stress and strain are nearly equal to the control results. In contrast, the
concrete strain and stress values show some minor differences. Lack of information about
the material models and general criteria used in the approved computer program makes it
difficult to comment on the cause of the differences. However, given the complexity of the
example, with six sectional forces and reinforcement in both directions, the comparison is
satisfactory.

The verification of the column results consists of two examples. The comparison with these
known results is satisfactory. However, more testing and comparisons need to be carried
out to ensure the accuracy of the method.

Based on the examples, the programs can accurately calculate beams, shells, and columns.
However, as a new program, it needs to be improved, tested with complicated examples,
and updated.
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A list of proposals for further development of the program follows:

Verification of the program with other programs that don’t implement the iteration
method and improving it accordingly.

Develop the program with an option to implement the effect of multiaxial effects of
the uniaxial stress-strain relationship of concrete. This would mean a reduced
compressive strength for cracked concrete.

Update the program such that it displays the utilization ratio in case of no-
convergence, giving the user a better understanding of the no-convergence causes.
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A. Internal forces and moments in a
reinforced concrete section

Based on the concrete and reinforcement models described in chapter 2, the derivation of
the formulas for calculating internal forces and moments when the strain distribution in a
reinforced concrete section is known is presented here.

© 0 O O

b
« >

Figure A.1: Strain distribution

A.1 Parabola - rectangle Concrete model
As described in chapter 2, the parabola-rectangle concrete model is an idealized model,
and the following formulas calculate the strain-stress relation.

A.1.1 Force and moment when 0<¢ <¢,

&

L)

o.=f, 1—[1— ] for 0<¢ <e¢,



Epg frem-mmmmmmmmmm ey

‘Jclz Eclz
Figure A.2: Strain distribution, Stress-strain relationship

The strain distribution across the compressed part of the concrete section and the stress-
strain relationship when 0 < g_ < g, is shown in Figure A.2.

Force Fewhen 0<¢ <¢g,

Based on the previously described stress-strain relations, the resulting force Fc can be
calculated by integrating the stress values across the compressed concrete section.

o (v.)=Fo - 1_£1_u}

‘952

x(n+1) g

n+1
_ . ) ( Yo K _
Fo=ble- (et /c(n + 1)[[1 £y ] 1

n+1 Ve
I:czbfcd' yc_ - be2 (l_yc"(}
2

0

This is a general formula for strains below or equal to the strain at reaching the
maximum strength (¢_, ). If the strain is equal to ¢_,, the formula can be simplified as:

If yC:yCZ :‘5}::‘9(:2: gCZZyCZ‘K



1
F=b-f. . 1
c cd yc2 [ n+1]

The coefficient n has a value of 2 for concrete strength class 50 and below. In that case,
the formula for the force Fc is further simplified:

For n=2: F =

c

WIN

b' fcd' yc2

Moment Mc when 0<¢ < ¢,

In order to calculate the resulting moment, first, the neutral axis of the parabolic shape
has to be found, as the formula for the moment is:

Mc = Fc Yy
The neutral axis of the compressed concrete section is calculated by:

Ye
[ oc(v)- vedy.

__0 Q
y= Ye _)(2)

[ o.(v.)dy.
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Y

0 0
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W) =f,| [y.ay.-[y|1-
0

2 2 n+1 1—)/(:7
_f Yo | 2| 1_yc-/c & 1 11
“12 K £ n+2 n+1| (n+2 n+1

The obtained results are difficult to simplify. However, when the strain value is ¢ ., the

c2/

expression can be simplified as:

If yC:yCZ :‘902802: ‘9c2=yc2'K

2):f, V- [1— 1 J

1 1 1
(1): fy- yczz' ( + J

2 n+l1 n+2

Furthermore, if the coefficient n=2, the expression can be simplified as:

2

(2): 5 fcd' Ye
5

(W) 2 fo Vo

The neutral axis of the compressed concrete section when the strain value is ¢_,and the
coefficient n=2, can be written as:

5 2

;W 12 fe Ve 5
(2) 2 f 8 c2
5' Y2

A.1.2 Force and moment when ¢, <¢ <¢_,
The following calculations represent the case when the strain is higher than ¢_, and

lower than the ultimate strain (&, )
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Figure A.3: Stress distribution, Stress-strain relationship

In the following calculations, concrete strain values will be assumed equal to the values
for

concrete classes C12 to C50 where ¢, is 2.00%o0 and ¢, is 3.5%o.

Force Fc when ¢, <& < ¢,

By using the formula for similar triangles, y ., = ;ycuz.

The resulting force is the sum of the force when 0 < ¢, < ¢, (calculated previously) and

the force when ¢, < &, < ¢

2+ The latter can be easily calculated as the stress is

constant and equal to f,.
The resulting force is:

2 4 3 17

FC = §b . f;:d : 7ycu2 + b ’ fcd ’ 7yCU2 = zbfcdyCUZ

Moment Mc when &, < ¢, < &,

The position of the neutral axis, where the force F_ acts, is calculated by the static

— A -y
formula: y = M , Which is equal to:

SA

y - 139 y
238 72

The resulting moment is:



139 £
294 CdyCUZ

A.2 Bilinear Concrete model

As described in chapter 2, the bilinear concrete model is an idealized model, and the
following formulas calculate the strain-stress relation.

A.2.1 Force and moment when 0< ¢, <¢,

& =Y. K o, =f = for 0<¢

2 s e e e e ol g L B e "

Y

Ve

: ] £
Ye3 £c3
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Figure A.4: Strain distribution, Stress-strain relationship
Force Fewhen O0<¢ < ¢,

Based on the previously described stress-strain relations, the resulting force Fc can be
calculated by integrating the stress values across the compressed concrete section.

& - K
Gc(yc)zfcd' < :fcd' yc—
8C3 <E'c3
Ye Ye y P
Fc:b'J‘O-c(yc)dyc:b'J.fcd < dyc
0 0 €c3
2 Ve
F. = bf, Y X
2¢e
0
2
Fobfyylox
2¢&,,

This is a general formula for strains below or equal to the strain at reaching the
maximum strength (¢_; ). If the strain is equal to ¢_;, the formula can be simplified as:

If yczyc3 :gc2803: gc3=yc3'K



The resulting force is:

1
Fczzb' fcd' Yes

Moment Mc when 0<¢ < ¢,

In order to calculate the resulting moment, first, the neutral axis position of the
compressed section has to be found.

y =2y
3 C

The moment M. is thus calculated as:

_lbﬁﬂij
3 ¢

c3

M =F - y-=

c

This is a general moment formula when 0 < g, < ¢_;. However, in the specific case when

the strain has value ¢_;, the expression is simplified, and the following expression is
obtained.

1 2
If y.=y,:y=

_bfcdyc3

2 _
= M =F .- y=
yc3 c c y 3

3

A.2.2 Force and moment when ¢, <¢ <¢,,
The following calculations represent the case when the strain is higher than ¢_; and

lower than the ultimate strain (&5 ), as shown in Figure A.5.

gC = yC " K o-c = f;:d for 8(:3 < gc < 8cu3
E- T
A A
T K b . L B T i
R e T s T i i i
: i i i
[ : : > jc i i > EC
fez Yous Ec3 Eeu3

Figure A.5: Strain distribution, Stress-strain relationship



In the following calculations, concrete strain values will be assumed equal to the values

for concrete classes C12 to C50, where ¢_; is 1.75%o0 and ¢_,; is 3.0%o.

Force Fc when ¢, <¢ <¢_,

1
By using the formula for similar triangles, y_ = Eyw.

The resulting force is the sum of the force when 0 < g, < ¢, (calculated previously) and
the force when ¢ < ¢, < ¢_,;. The latter can be easily calculated as the stress is

constant and equal to fcd.

1 3
Fc zzb fcd " Yes +bfcd ’ (ycu3 _yc3) :becdycu3

Moment Mc when ¢, < ¢ <¢_,

The neutral axis position, where the force F_ acts is calculated by the static formula:

)_/ = Mwhich is equal to:
DA
y=1y
- 18 cu3

The resulting moment is:

M = Ebf:cdy:UB

© 24



B. Hand calculations for capacity control of
beams

Examples 1 to 3 represent single forces or moments acting in one direction

Examples 4 to 7 represent combinations of forces and moments acting in one direction

B.1 Compression
N, _1.7- 10°N

X

— 17N/ mm’

o, =—*
A 10°°mm’

o.=f, > =¢,=0.002

C C

B.2 Tension

A =&= 500N/mm =1.15mm2/mm

° f, 434.78N/mm’

The reinforcement area is set to A, = 1.16mm2/mm = 116Omm2/m

Since concrete is assumed to have zero strength in tension, all the force is taken by the
reinforcement:

N, 5.0-10N

— 431.03N/mm’

* A 1160mm°

2
_ 431.03N/mm — 0.002155

GS
° E, 200000N/mm’

B.3 Moment in one direction

f > -
Yield strain: ¢, = lya _ 434.782N/mm’ _ 2.173- 10"

E,  200000N/mm’

Balanced reinforcement ratio:

3.5.10°

= & - =0.617
3.5-10° +2.173- 10

a,



176 4 -d b 1717.0.617. 365. 1000 2
A, =21 =21 _7128.2mm
’ fa 434.782

A = 3768mm’ < A, = 7128.2mm’, the section is under-reinforced

The reinforcement ratio of the section is:

“= vd s 17434.782 3768 - 0.3261
17 pb.oa 17.17.1000. 365
2 cd 21

Reinforcement strain:

1-« 1-0.3261
E = —- R —

3 g, = . 0.0035=7.232- 10 " <¢, =3.0- 10~
a 0.3261

Moment capacity of the section:

M,d=%. f-a. [1—% Jb- &
71703261 [1-22 . 0.3261|- 1000 365 - 516.780kNm
21 238

B.4 Moment and axial force in one direction

B.4.1 Compression fracture in concrete

Scuz fed
M / e *
Es2 W < g
M B 2
: < F.
h n' N N
= C1;: "‘ S1
W W _/
S 40 0.0035-3.5- 10" <, =2.17- 10~



o, =E. - &, =200000- 3.5- 10" = 70N/mm’

g$2=h‘cl-gcu2 300 4 0035 -3.15. 107 >, =217 10"
h 400

Gopp = Fy = 434.782N/mm’

FC:%- f,-h- b= ;Z 17- 400- 1000 = 5504.761kN

S =0, - A, =70 4910 = 343.700kN
S, =0, A,=434.782. 4910 = 2134.779kN

N=F. +S, +S, =5504.761+ 343.700 + 2134.779 = 7983.240kN

M =F, h_ 99 +S, Q—cz -5, Q—cl
2 238 2 2

M =5504.761- 11109 0.4 +2134.779(0.2 - 0.04) - 343.7(0.2 - 0.04)

M =471.606kNm

B.4.2 Compression fracture in concrete and yield in reinforcement

oid

-
P

- St

£y =6,y =2.173- 10

2
o = Fy = 434.782N/mm



-3
- 3.5. 10

= = — - 360 =222.104mm
3.5-10 +2.173- 10

_ad-c, _222.104-40

&, = Eeup = . 0.0035-2.870- 10 >¢, =2.17- 10"

°2 ad w2 222.104
2
Gopp = F,y = 434.782N/mm

F. =%- fy- ad- bzg- 17- 222.104 - 1000 = 3056.574kN

S, =0, - A, =434.782. 4910 = 2134.779kN

S, =0, A,=434.782. 4910 = 2134.779kN

N=F -5, +5, =3056.574 -2134.779 + 2134.779 = 3056.574kN

M=F

Cc

h_ 99 al+s,
2 238

M=3056.574[200—%- 222.104J1o3+2134.779. 320- 10"

M =1012.053kNm

B.4.3 Compression fracture in concrete and double yield strain in
reinforcement

/ ai c
W

£y =2%s, =5.0.10"

o = £y = 434.782N/mm’

> Si



-3
ad - B.i- 10 ;
3.5.10 +5.0- 10

3 360 =148.235mm

_ad-c, _148.235-40

&

s2 ad w2 148.235

. 0.0035=-2.556- 10 >g¢, =2.17- 10"

Gopy = F,y = 434.782N/mm’

F. =%- f, - ad- b:%- 17 148.235. 1000 = 2039.995kN

S =0, A,=434.782- 4910 =2134.779kN
S, =0, A,=434.782. 4910 = 2134.779kN

N=F -5, +5S, =2039.995-2134.779 + 2134.779 = 2039.995kN

M-F|D_22 alss, .
2 238

M = 2039.995[200 - %. 148.235J 107 +2134.779- 320- 10"
M = 965.340kNm

B.4.4 Compression fracture in concrete and high strain level in
reinforcement

fcd
7 c; @—F‘
od £sn Z
I ___________________ _‘j Sa

/ €z1 G4 > S
W

£, =1.5-10"

o = £y = 434.782N/mm’



3.5.10°

ad = > . 360 = 68.108mm
3.5.10° +1.5- 10
g, -G, _68108-40 435 _1444.10% <4, -2.17- 10°
od 68.108 r

., =E. - &, =200000- 1.444. 10" = 288.888N/mm’

/:CZE. f, - od- p=1/
21

1 - 17- 68.108 - 1000 = 937.295kN

S =0, - A, =434.782. 4910 =2134.779kN
S, =0, A,=288.888- 4910 = 1418.440kN

N=F -5 +5,=937.295-2134.779 + 1418.44 = 220.956kN

Mch(ﬁ—ﬁadJ +S, - %+S .

N| =

M=937.295[200—%- 68.108J 10 +2134.779- 160 10~ +1418.440 - 160

M =729.419kNm

- 10



C. Hand calculations for loads below the
capacity of beams

The formulas for calculating the resulting forces and moments from strain values in
concrete and reinforcements are obtained in Appendix A. The calculation process is

implemented in two Mathcad templates, one for each concrete model. An example of
each template is presented here.



C.1 Parabola-rectangle concrete model

M, =350 kN-m £.5:=0.002
A,:=3768 mm’ fy=17 "2
mm
b:=1000 mm
£.=1.489661.10 "
d:=365 mm
-3 e N
£,:=1.057863-10 E.:=2.10
mm
Eorce
E.+E. _
ko= ~(6.98.10%) 1
mim
=]
£ £ £
Fomfgrbe| =S4 =2 |l1-—=| —1]|=(1.123-10%) kN
k 3.k Ecr

Si=g..E.-A.=(1.123.10%) kN

dy=|F.—S|=0.032 kN



Ec
(e’ g\ 1_5 1] (1 1
£
eql=foye| Lo —52) ff1-Be] | —f2 L [1_1WI_(1104.10%) N
2 \k k £er 4 3] la 3
' 3
E E £
eq2i=foy|E 42 |[1- 5| _1||=(1.123.10%) N
3k Ecz mm

Vs =291 —98.341 mm
eq2

zi=d— [%_y,__m]: 311.774 mm

M.:=F_.Z=349.99 kN-m

M.:=5-2z=350 kN-m

-+ M,

M
My = =349.995 kN-m

8pi=|M,, —M,|=0.005 kN-m

EM
EIrEh-"M:: F =0.0000133

4



C.2 Bilinear concrete model

Input

M, :=350 kN-m =17 N

2
I

A.:=3768 mm"”
£.:=1.510728-10"

b:=1000 mm
d:=365 mm E:=2.10° N
mm
£.:=1.357049.10"°
f
£.3:=0.00175 E.:= “ =(9.714.10°) ”2
Erz mm
Eorce
E; N
n:= ° =20.588 o.=£.-E.=13.183
E,. mm
A
p=—r-=0.01 0,=£.-E.=302.146 N
b-d mm

0=\ (n-p)" +2-(n-p) - (n-p) =0.473

gd:=0.-d=172.721 mm

Fo=2e9 L (1.138-10°) kN
2

S:=0.-A,=(1.138.10°) kN

By:=|F.—5|=0.013 kN




Moment

z:=d-(1 —%-a)=3u?,426 mm
Mc:: FC-ZZ 349.996 KN-m

M,:=5-2z=350 kN-m

M. +M
- f; ® =349.998 kN-m

av
Sp:=|Ma,—M,| =0.002 kN-m

)
devy :=FM= 0.0000056

i



D. Hand calculation for capacity control of
columns

The following example is taken from the book ‘Betongkonstruksjoner — Beregning og

dimensjonering etter Eurocode2’. It is the capacity control of a section subjected to
biaxial moments and an axial force.

The section geometry and material data are presented below.

Asxd

Cy2 Cy1
O

i' frie Cx? Concrete B35:
ot 6|3

fy=19.8N/ mm’

Reinforcement B500C:
f,=434N/mm’

h y
b =300mm
h =400 mm
O 8] Or--1---- c.=C.,=C,=C,=40mm
J. \ ____i Cxi x1 x2 yl y2
e
Asxd
] b -
Design force and moments:
NEd =1500 kN Mde =150 kNm MEdy =30kNm

Reinforcement:
A=A, =3 314=942mm’

2
A, =A,,=2-314=628mm



The mechanical reinforcement ratios are calculated:

fiAs 500 2. 942

Wx = - = 0.224
f A 35. 300- 400
f, A ..
W= ks 500- 2- 628 _0.150
Y f A 35- 300- 400
Dimensionless axial force:
3
n— N, _ 1500- 10 _0.36
fckbh 35. 300- 400
1.3 G2
N
1.0 N 4.0 0.4
’ ~.7 0.9 ’
N2,
0s ;__\_\'\\’\}&{:\\‘\(D.s
P N e DN NN
§ 0.6 /sfi\c\\z\ X\K\\# 0.7
X NN \\-—-\i 0B

\Trn«(\
|
Iy
W%
/
I/
| /1 /
|
V/
|

Ll AL A A

0 0.05 0.10 0.15 0.20 0.25 0.3 0.35 0.40 0.45
MIbH'S

\

Figure D.1: m-n diagram

The dimensionless M-N diagram for d, = 0.10 in Figure D.1 gives:
Mgy =0.125 — M, =0.125. 35. 300 400" - 10 ° =210 kNm
My, =0.105 — M,, =0.105- 35- 400- 300" - 10 =132kNm

The capacity of the section is controlled by using the following formula from EC2-
5.8.9(4):



(MdeJ + MEdy < 1
MRdx MRdy

Fora=1:
15030 _57140.23-094<1
210 132

The column section has the capacity to support the design forces.

A graphic representation of the capacity curve is presented below:

MEeqgx

Y

Mgy MRy



E. Iteration method implementation for
columns

The column is a structure subjected to compression and uniaxial or biaxial bending. In
the case of uniaxial bending, it can be calculated by using beam calculation methods.
However, in the case of biaxial bending, beam calculation methods cannot be used.

cy2 Azxd

T {boo0% &) 3

Asy2

S

Ayt

Asil

F
Y

Figure E.1: Column section

In order to apply the iteration method to columns subjected to biaxial bending, the two
moments need to be combined.

My &

o

(8]

g

v

My

Figure E.2: Moment addition



The moment Ms acts about the s-axis. The s-axis is considered the new middle plane of
the section; its direction is at an angle «; with respect to the x-axis direction. Based on

the direction of the s-axis with respect to the diagonal of the section, the task can be
subdivided into four cases.

Case 1 Case 2 Case 3 Case 4

Figure E.3: Axis-s orieintation cases

Based on the four cases, the geometric details of the section, the concrete layer
directions and dimensions, and the reinforcement layers’ positions compared to the
concrete layer dispositions are obtained.

As a result, the task at hand can be summarized as a reinforced concrete section
subjected to one moment Ms and an axial force N, where all geometric data is known.
Such a task can be calculated by using the iteration method.

The calculations for the four cases are presented in detail in the following sections. In
each case, the concrete and reinforcement subdivisions with respect to the layer
distributions are approached separately.



E.1 Casel
a, 20

a, <0

Figure E.4: column section, case 1

E.1.1 Concrete
Once the angle ¢, is obtained, the height of the new section (perpendicular to the s-axis)

is defined as 2h,. Where :
h, =(h-h_)- cose,
As shown in Figure E.4, hcis the distance from the intersection of the s-axis and the

right/left edge to the top/bottom edge of the section:

hC:Q—Q- tang,
2 2

The concrete section is divided into n layers, and each layer has a thickness of AN :

_2. hZ
" n

Ah

The distance of each concrete layer from the axis s is obtained by:

:2hz. i+2hz- l_hZZZhZ. i+&—hz
n n 2 n n

ci



Where:

i : denomination of concrete layers, and can have values from 0 to n-1.

The width of the concrete layer varies with the distance from axis s.

For concrete layers within a distance hc - COS¢; from the axis, the concrete layer width
is constant and equal to:

b
b, = ", b
cosa, cosa,

When the concrete layers have a distance higher than h, - COSe,; from the axis, the
concrete layer width is obtained by:

1
b, =(h, —|z.)- [tano:1 + tanal]

cl

E.1.2 Reinforcement

The reinforcement is subdivided into the same layers used for concrete. Therefore, the
primary task is to find the position of reinforcement with respect to the layers. It should
be noted that the strain value within a layer is considered constant.

Based on the height of the concrete layers, their length in x- and y-direction are
obtained.

Ah
Ah, = — : horizontal length of the concrete layer.
Sing,
Ah .
Ahy = : vertical length of the concrete layer.
cosa,

Subsequently, the original reinforcement layers Asxi, Asx2, Asyz, and Asy: are subdivided
and matched with the corresponding concrete layers.

The first and last layer number where the reinforcements Asx:, Asx2, Asyz, and Asy: are
calculated is presented in the table below:



IFirst ILast
R L T S
Asx1F — Ah Asx1L — "Asx1F Ah
y X
Ao | PG|y D
Asx2F Ah Asx1L — "Asx2F Ah
y X
A5y1 i _ Cyl ] =] + L
AsylF — Ahx Asyl1L AsylF Ahy
Asyz i _ b- Cy2 j = + L
Asy2F Ahx Asy2L Asy2F Ahy

/ concrete layer number where a reinforcement layer begins.

First *

I, .+ + concrete layer number where a reinforcement layer finishes.

For example i, is the concrete layer number where the bottom reinforcement in x-

direction starts, while /,_,, is the last concrete layer number for that reinforcement

layer. In that way, it is possible to map the reinforcement layers, which are vertical or
horizontal, to an inclined concrete layer distribution.

The results of the calculations are decimals, while the layer numbers are integers.
Therefore, they are converted to integers. The choice of converting to integers as
opposed to rounding is to consider the fact that the number of the first layer is zero and
the last layer is n-1.

A similar approach is used for the other three cases, which are presented below.



E.2 Case 2
a, 20

a, >0

~
v

oq

\ ’_:‘ .

Figure E.5: Column section, case 2

E.2.1 Concrete

The angle between the axis s and y-axis (@, ) is calculated as: 90° — ¢, .

The height of the new section (perpendicular to the axis s) is defined as th . Where :
h,=(b-b.) - cosa,

As shown in Figure E.5, h_is the distance from the intersection of the s-axis and the

top/bottom edge to the right/left edge of the section:

/-,CZQ_Q. tana,
2 2

The concrete section is divided into n layers, and each layer has a thickness of AR :

2.h,
n

Ah

The distance of each concrete layer from the axis s is obtained by:

2h . 2h 1 2h . h
s =—=-i+—=%- —-h,=—%.j+*%-h,
n n 2 n



Where:

I : denomination of concrete layers, and can have values from 0 to n-1.

The width of the concrete layer varies with the distance from axis s.

For concrete layers within a distance of hc - COSa, from the axis, the concrete layer

width is constant and equal to:

h
bC = —/2 . 2 = h
cosa, cosa,

When the concrete layers have a distance higher than h_ - COSe, from the axis, the

concrete layer width is obtained by:

1
b, =(h, -|z])- [tanoz2 + tanaZJ

E.2.2 Reinforcement

Based on the height of the concrete layers, their length in the x- and y-direction are
calculated.

Ah

Ah, =
cosa,
Ah - 'Ah
Y sing,

Subsequently, the original reinforcement layers Asxz, Asx2, Asyz, and Asy: are subdivided
and matched with the corresponding concrete layers.

The first and last layer number for the reinforcement Asxz, Asx2, Asyz, and Asy: is
presented in the table below.



E.3 Case 3
a, <0

|a1| <0

IFirst ILast
Ao FasxiF = Ca Fasxit = lasir + b
SX SX SX
Ah, A,
Aoz Fasxar = N-Co Dpsxie = Tasxar + b
SX SX SX
AR, Ah,
Asyl i = i iAsylL = iAsylF + L
AsylF —
Ah, Ah,
Asy2 I b _ Cyz iAs 2L T iAsy2F + h
Asy2F y
Ah, Ah,
- b »
Ah,
«—>
he I 1
oy h

Figure E.6: Column section,

case 3




E.3.1 Concrete

Once the angle ¢, is obtained, the height of the new section (perpendicular to the s-axis)

is defined as 2hz. Since ¢, is negative, its absolute value is used in the following

calculations.

h, =(h-h,)- cos|a|

As shown in Figure E.6, hcis the distance from the intersection of the axis s and the
right/left edge to the top/bottom edge of the section:

h b
h. =—--=- tanjx
=53 e
The concrete is divided in n layers and each layer has a thickness of Ah :
2. h,
n

Ah

The distance of each concrete layer from the axis s is obtained by:

2h . 2h 1 2h . h
s =—=-i+—~%- =—-h,=—%.i+-—=%-h,
n n 2 n n

Where:

i : denomination of concrete layers, and can have values from 0 to n-1

The width of the concrete layer varies with the distance from axis s.

For concrete layers within a distance of hc . Cos|a1| from the axis, the concrete layer
width is constant and equal to:

b b

“cosle| © cosla]

(o}

When the concrete layers have a distance higher than hc . cos|a1| from the axis, the
concrete layer width is obtained by:
b, =(h, —|z.])- | tanje,| +

cl

tan|o, |



E.3.2 Reinforcement

Based on the height of the concrete layers, their length in the x- and y-direction are
obtained.

Ahx — A_h
sinja,|

Ah
AR, = COS|ar|

The original reinforcement layers Asxz, Asxz, Asy1, and Asyz, are subdivided and matched
with the corresponding concrete layers.

The first and last layer number for the reinforcement Asxi, Asxz, Asyz, and Asy: is
presented below.

IFirst ILast
A R L T S L
Asx1F A hy Asx1L Asx1F A hx
A, i = h-c, i _ N b
SX Asx1L Asx2F
Ah Ah,
T R Y S L
Asy1F
Ah, Ah,
Asyz i = CLZ iAsy2L = iAsy2F + L
Asy2F
Ah, Ah,




E.4 Case 4
a, <0

|a1| > 0

0]
Ah, 29

Figure E.7: Column section, case 4

E.4.1 Concrete
The angle between the axis s and y-axis (&, ) is calculated as: 90° — |a1|.

The height of the new section (perpendicular to the axis s) is defined as 2hz . Where :
h,=(b-b,)- cos|a,|
As shown in Figure E.7, h_is the distance from the intersection of the axis s and the

top/bottom edge to the right/left edge of the section:

h, = b_h. tan|a,|
2 2

The concrete section is divided into n layers, and each layer has a thickness of AM :

_2. hz
- n

Ah

The distance of each concrete layer from the axis s is obtained by:

ZC,.:2hZ- i+2hz- 1—hZ:2hZ- i+&—hZ
n n 2 n n




Where:

I : denomination of concrete layers, and can have values from 0 to n-1.

The width of the concrete layer varies with the distance from axis s.

For concrete layers within a distance of hc . Cos|a2| from the axis, the concrete layer
width is constant and equal to:

h
D,

" cosle,| 7 cosla)]

c

When the concrete layers have a distance higher than hc . Cos|a2| from the axis, the
concrete layer width is obtained by:
b, =(h, —|z.])- | tanje,|+

cl z

tan|a,|

E.4.2 Reinforcement

Based on the height of the concrete layers, their length in x- and y-direction are
obtained.

Y
- coS|a,|

X

Ah
AR, = sinla,|

Subsequently, the original reinforcement layers Asxi, Asx2, Asyz, and Asy: are subdivided
and matched with the corresponding concrete layers.

The first and last layer number for the reinforcement Asx:, Asxz, Asyz, and Asy: is
presented below.



I

Last

A ) . b
1 lnsxie = Lasxir H
X

) b
ASXZ Insxit = lasxar E
X

. h

Asyl IAsylL = IAsylF + AR
y

A . . h
o2 Lnsy2t = lasy2F m

y




	List of Figures
	List of Tables
	List of Symbols
	1 Introduction
	2 Theory
	2.1 Material Models
	2.1.1 Concrete
	2.1.2 Reinforcement Steel

	2.2 Design of shells
	2.2.1 Membrane Method
	2.2.2 Sandwich Method

	2.3 Iteration Method
	2.3.1 Derivation of the iteration method
	2.3.2 Iteration method procedure
	2.3.3 Utilization ratio
	2.3.4 Application of the iteration method


	3 Computer Program
	3.1 Description of the Program
	3.1.1 Step 1: External load vector R and the reinforcement amount
	3.1.2 Step 3: Middle-plane strains and curvatures
	3.1.3 Step 6: Concrete stress in principal directions
	3.1.4 Step 8: Reinforcement stress
	3.1.5 Step 10: Maximum relative difference
	3.1.6 Step 12: Updating concrete secant modulus

	3.2 User Manual
	3.2.1 Input
	3.2.2 Output
	3.2.3 Exceptions


	4 Verification
	4.1 Shells and beams at load capacity
	4.1.1 Compression
	4.1.2 Tension
	4.1.3 Moment in one direction
	4.1.4 Moment and axial force in one direction
	4.1.5 Moment and axial force in two directions

	4.2 Shells and beams below load capacity
	4.3 Columns at load capacity
	4.3.1 Biaxial moment and axial force
	4.3.2 Uniaxial moment  and axial force


	5 Conclusion
	References
	Appendices
	A. Internal forces and moments in a reinforced  concrete section
	A.1 Parabola – rectangle Concrete model
	A.1.1 Force and moment when
	A.1.2 Force and moment when

	A.2 Bilinear Concrete model
	A.2.1 Force and moment when
	A.2.2 Force and moment when


	B. Hand calculations for capacity control of beams
	B.1 Compression
	B.2 Tension
	B.3 Moment in one direction
	B.4 Moment and axial force in one direction
	B.4.1 Compression fracture in concrete
	B.4.2 Compression fracture in concrete and yield in reinforcement
	B.4.3 Compression fracture in concrete and double yield strain in reinforcement
	B.4.4 Compression fracture in concrete and high strain level in reinforcement


	C. Hand calculations for loads below the capacity of beams
	C.1 Parabola-rectangle concrete model
	C.2 Bilinear concrete model

	D.  Hand calculation for capacity control of columns
	E. Iteration method implementation for columns
	E.1 Case 1
	E.1.1 Concrete
	E.1.2 Reinforcement

	E.2  Case 2
	E.2.1 Concrete
	E.2.2 Reinforcement

	E.3 Case 3
	E.3.1 Concrete
	E.3.2 Reinforcement

	E.4 Case 4
	E.4.1 Concrete
	E.4.2 Reinforcement



