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SUMMARY: 
This thesis studies optimization of an aluminium girder for the Langenuen Suspension Bridge with respect to 
aerodynamic properties and buffeting response, and methods for vibration suppression during wind tunnel 
tests. A parameterization method was chosen for the design of the cross-sections to limit the possible design 
options. The girders were designed as symmetric closed box girders with a fixed width of the top deck. In 
order to describe the cross-sections with only one defining parameter, the height H of the girders, 
parameterizations of the cross-sections were based on a fixed torsion constant IT.  
      Eleven different cross-sections have been investigated for the bridge; five with IT = 26 m4 and six with IT = 
31 m4. The girder heights varied from H = 4.9 – 6.1 m and H = 5.5 – 7.0 m for the cross-sections with IT = 26 
m4 and IT = 31 m4, respectively. Cross-sectional properties were calculated with simplified methods based on 
effective thickness of a thin-walled cross-section. The results were implemented in finite element models of 
the bridge to extract modal properties. The aerodynamic properties of each cross-section were found by 
performing wind tunnel tests on section models. Actions were taken to suppress vortex induced vibrations of 
the section models during wind tunnel testing. Ultimately, calculations of stability limits and buffeting 
response were executed based on the modal and aerodynamic properties. 
      The critical wind velocity for all cross-sections varied from 81.06 m/s to 92.98 m/s, which was above the 
design critical wind velocity of 76 m/s. Multi-modal flutter was the instability mode for all sections.  
A machine learning algorithm was implemented to predict the aerodynamic derivatives for girder heights 
which were not tested in the wind tunnel. The predicted surfaces allow for prediction of stability limits of 
additional cross-sections without performing wind tunnel tests. The produced results had low prediction 
uncertainty when interpolating. 
      By evaluating the aerodynamic properties and buffeting response of the cross-sections, it was found that 
several of the proposed designs are interesting for further analysis. The recommended girders include H = 
5.2 - 5.8 m and H = 5.8 - 6.1 m for the cross-sections with IT = 26 m4 and IT = 31 m4, respectively. 
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Abstract

A suspension bridge over Langenuen is planned to achieve the goal of a ferry-
free coastal highway E39 along the western coast of Norway. The proposed
design of the bridge includes a main span length of 1220 m, which will make it
the second longest in Norway after the Hardanger Bridge. It has been suggested
that building the box girder in aluminium will be cost-effective compared to
the traditional steel box girder. Building the bridge in aluminium will also
stimulate the Norwegian aluminium industry. If this is realized, the bridge
will be the first of its kind. This thesis studies girder optimization of such
a bridge with respect to aerodynamic properties and buffeting response, and
methods for vibration suppression during wind tunnel tests.

A parameterization method was chosen for the design of the cross-sections
to limit the possible design options. The girders were designed as symmetric
closed box girders with a fixed width of the top deck. In order to describe the
cross-sections with only one defining parameter, the height H of the girders,
parameterizations of the cross-sections were based on a fixed torsion constant
IT .

Eleven different cross-sections have been investigated for the bridge; five
with IT = 26 m4 and six with IT = 31 m4. The girder heights varied from H
= 4.9 - 6.1 m and H = 5.5 - 7.0 m for the cross-sections with IT = 26 m4 and
IT = 31 m4, respectively. Analysing eleven different cross-sections allow for
comparison of the girders. Optimization of cross-sectional shape is more easily
and effectively done when several cross-sections are assessed. Girders without
promising results in the preliminary design phase can be omitted in later
studies. Cross-sectional properties were calculated with simplified methods
based on effective thickness of thin-walled cross-sections. The results were
implemented in finite element models of the bridge to extract modal properties.
The aerodynamic properties of each cross-section were found by performing
wind tunnel tests on section models. These tests were performed due to the
lack of analytical methods that provide results of the aerodynamic properties
of sufficient quality. Actions were taken to suppress vortex induced vibrations
of the section models during wind tunnel testing. This included instalment of
guide vanes and tuned mass dampers. These proved to be effective. Ultimately,
calculations of stability limits and buffeting response were executed based on
the modal and aerodynamic properties.

iii



The critical wind velocity for all cross-sections varied from 81.06 m/s to
92.98 m/s, which was above the design critical wind velocity of 76 m/s. Multi-
modal flutter was the instability mode for all sections, dominated by the first
torsional symmetric and the second vertical symmetric modes. The mounting
of guide vanes on the section models changed the instability mode for the
sections with H = 6.7 - 7.0 m and IT = 31 m4 from galloping to multi-modal
flutter. This caused a significant increase in critical wind velocity.

A machine learning algorithm was implemented to predict the aerodynamic
derivatives for girder heights which were not tested in the wind tunnel. This
was used as an interpolation method, thus, aerodynamic derivatives were only
predicted for heights betweenH = 4.9 - 6.1 m andH = 5.5 - 7.0 m for the cross-
sections with IT = 26 m4 and IT = 31 m4, respectively. The produced results
had low prediction uncertainty. The predicted surfaces allow for prediction
of stability limits of additional cross-sections without performing wind tunnel
tests.

The buffeting response calculations revealed that an increase of girder
height was not strictly concordant with a decrease in buffeting response.
Several factors were believed to affect the results, such as static coefficients,
aerodynamic derivatives and stiffness properties. For lateral and torsional dis-
placement response, the standard deviation was largest at the mid-span of the
bridge. It was largest at the quarter- and three-quarter-spans for the vertical
response.

By evaluating the aerodynamic properties and buffeting response of the
cross-sections, it was found that several of the proposed designs are interesting
for further analysis. The recommended girders include H = 5.2 - 5.8 m and
H = 5.8 - 6.1 m for the cross-sections with IT = 26 m4 and IT = 31 m4,
respectively.

The obtained results showed that further optimization of the cross-
sectional shape with respect to aerodynamic properties and stability limits
is possible. This includes reduction of IT to get lower streamlined girders or
changing the parameterization method such that material usage is reduced.
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Sammendrag

Det er planlagt å bygge en hengebro over Langenuen som en del av målsetnin-
gen om å bygge ferjefri E39 langs kysten av Vest-Norge. Det planlagte kon-
septet av broen inkluderer et hovedspenn på 1220 m, som vil gjøre den til den
nest lengste i Norge etter Hardangerbrua. Som et kostnadsreduserende tiltak
har det blitt foreslått å bygge brokassen i aluminium i stedet for stål, som
er det tradisjonelle valget. Bygging av brokassen i aluminium vil også stim-
ulere den norske aluminiumsindustrien. Hvis dette realiseres vil broen bli den
første langspennsbroen i verden som er bygget med aluminium. Denne mas-
teroppgaven undersøker optimalisering av tverrsnittet til en slik bro med tanke
på aerodynamiske egenskaper og buffetingrespons, altså turbulensindusert re-
spons. Metoder for å redusere virvelinduserte vibrasjoner i vindtunneltester er
også undersøkt.

En parameteriseringsmetode ble valgt for utforming av tverrsnitt slik at an-
tall muligheter ble redusert. Brokassene ble utformet som symmetriske, lukk-
ede kassetverrsnitt med konstant bredde på det øvre dekket. For å kunne
bestemme utformingen av tverrsnittene med kun en parameter, høyden H til
brokassene, ble parameteriseringene basert på konstant torsjonskonstant IT .

Elleve ulike tverrsnitt har blitt undersøkt for broen; fem med IT = 26
m4 og seks med IT = 31 m4. Kassehøydene varierte fra H = 4.9 - 6.1 m
og H = 5.5 - 7.0 m, for henholdsvis IT = 26 m4 og IT = 31 m4. Gjen-
nomføring av analyser for elleve ulike tverrsnitt muliggjør sammenligning av
de ulike brokassenes egenskaper. Optimalisering av tverrsnittsutforming blir
dermed enklere og mer effektivt. Tverrsnitt uten lovende resultater kan bli
utelatt for senere analyser. Tverrsnittsegenskaper ble funnet ved å benytte
effektiv tykkelse av tynnveggede tverrsnitt. Resultatene ble implementert i
elementmodeller av broen for å finne modale egenskaper. De aerodynamiske
egenskapene til hvert tverrsnitt ble funnet ved å gjennomføre vindtunneltester
på seksjonsmodeller. Testene ble gjennomført på grunn av mangelen på analyt-
iske metoder som gir de aerodynamiske egenskapene med tilstrekkelig kvalitet.
Det ble gjort tiltak for å redusere virvelinduserte svingninger av seksjonsmod-
ellene under vindtunneltestene. Dette inkluderte installering av ledeskovler og
svingningsdempere. Disse tiltakene viste seg å være effektive. Til slutt ble det
gjennomført beregning av stabilitetsgrenser og buffetingrespons basert på de
modale og aerodynamiske egenskapene.
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Den kritiske vindhastigheten for alle tverrsnittene varierte fra 81.06 m/s
til 92.98 m/s, som var over designkravet på 76 m/s. Flermodal flutter, kob-
ling av vertikale og torsjonelle svingemoder, viste seg å være instabilitets-
bevegelsen for alle tverrsnittene. Bevegelsen ble dominert av den første sym-
metriske torsjonsmoden og den andre symmetriske vertikalmoden. Installas-
jonen av ledeskovler på seksjonsmodellene endret instabilitetsbevegelsen for
tverrsnittene med H = 6.7 - 7.0 m og IT = 31 m4 fra galloping, vertikal
instabilitet, til flermodal flutter. Dette ga en markant økning i kritisk vind-
hastighet.

En maskinlæringsalgoritme ble implementert for å forutsi de aerodynam-
iske deriverte for kassehøyder som ikke ble testet i vindtunnelen. Dette ble
brukt som en interpolasjonsmetode, altså ble de aerodynamiske deriverte
bare forutsagt for høyder mellom H = 4.9 - 6.1 m og H = 5.5 - 7.0 m for
tverrsnittene med henholdsvis IT = 26 m4 og IT = 31 m4. Resultatene hadde
lav usikkerhet. Interpolasjonsflatene åpner for beregning av stabilitetsgrenser
for øvrige tverrsnitt uten å måtte gjennomføre vindtunneltester.

Beregningen av buffetingrespons avslørte at en økning i tverrsnittshøyde
ikke nødvendigvis førte til en reduksjon i buffetingrespons. Det er grunn til
å tro at flere parametere påvirket resultatene, blant annet statiske koeffisi-
enter, aerodynamiske deriverte og stivheten til tverrsnittene. For horisontal
og torsjonell deformasjonsrespons var standardavviket størst i midtspennet til
broen. Det var størst i vertikal retning rundt fjerdedels- og trefjerdelsspennet
til broen.

Ved evaluering av aerodynamiske egenskaper og buffetingrespons ble det
funnet at flere av de foreslåtte tverrsnittsutformingene egner seg godt for videre
analyse. De anbefalte tverrsnittene er H = 5.2 - 5.8 m og H = 5.8 - 6.1 m for
tverrsnittene med henholdsvis IT = 26 m4 og IT = 31 m4.

Resultatene viser at videre optimalisering av tverrsnittene med tanke på
aerodynamiske egenskaper og stabilitetsgrenser er mulig. Dette inkluderer re-
duksjon av torsjonskonstanten IT for å få lavere strømlinjede kasser eller å
endre parameteriseringsmetode slik at materialbruket reduseres.
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Chapter 1

Introduction

As part of the long-term goal of building a ferry-free highway E39 along the
western coast of Norway, several long-span suspension bridges are planned.
Today, travelling by car from Kristiansand to Trondheim, crossing the many
fjords requires ferry connections. Replacing these ferry connections with
bridges and tunnels will lead to a heavy reduction in travelling time and
improve the connection between cities along the highway.

One of the planned long-span bridges is Langenuen Suspension Bridge.
As a cost-saving measure, it has been proposed to build this bridge with a
box girder made out of aluminium instead of steel, which is the common
choice of material. Aluminium is more expensive than steel, thus, the price
of an aluminium girder will be increased compared to a steel girder. For a
suspension bridge, the self-weight is the main load. The density of aluminium
is lower than the density of steel, hence, the load on other structural elements
of the suspension bridge will be reduced if the girder is built in aluminium.
This will allow for reduced dimensions of other structural elements, which will
reduce the cost. The ambition is that the reduced cost of other structural
elements will outweigh the increased cost of an aluminium girder, and lead to
a reduction of total cost.

Norway has a prominent aluminium industry, and several aluminium plants
are located along the west coast of the country. Building a suspension bridge
with an aluminium girder will stimulate this industry. Even if a suspension
bridge with an aluminium girder might be more expensive than the steel girder
alternative, the choice of an aluminium girder will be advantageous for the local
industry. Successfully building a suspension bridge with aluminium might also
make aluminium competitive as a material for similar structures in the future.

Although aluminium is a popular choice of material in offshore structures,
no long-span suspension bridges have ever been built in aluminium. Feasib-
ility and cost analyses have been performed in the past years to validate if
aluminium is a competitive material compared to steel for these structures,
and the research is ongoing. One of the areas of concern is the aerodynamic
stability of the structures.
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2 Chapter 1: Introduction

The slenderness of long-span suspension bridges means that the dynamic
response might be critical for the design. Due to the reduction in self-weight
and stiffness of the bridge girder when replacing steel with aluminium, the chal-
lenge regarding aerodynamic stability increases. This thesis is a continuation
of work previously done. A master’s thesis written at NTNU in 2020 investig-
ated aerodynamic properties and stability limits of several cross-sections [1].
A parameterization which constrained the torsion constant IT to a constant
value was developed. This was done in order to produce models with as few
varying parameters as possible. By doing this, the influence of the remaining
varying parameters could be more easily studied. Four girders with torsion
constant IT = 31 m4 were found to have sufficient capacity regarding critical
wind velocity. It was therefore suggested to perform analyses for cross-sections
with a lower torsion constant in order to further optimize the design.

Progress has been made in the field of numerical estimation of the aero-
dynamic behaviour of a bridge girder, but it remains a challenge to obtain
results of acceptable quality. Therefore, wind tunnel testing of section models,
taut-strip models or full-bridge models is necessary to obtain reliable results.
The aerodynamic properties of a bridge girder are dependent on its shape.
Thus, to optimize the shape of a girder, several girders must be tested.

This thesis studies the aerodynamic properties and buffeting response of
an aluminium suspension bridge with respect to girder optimization. Eleven
girders are evaluated, five with torsion constant IT = 26 m4 and the six with
torsion constant IT = 31 m4 which were produced the year prior to this thesis.
The parameterization method developed in 2020 is adopted in this thesis. Wind
tunnel tests are conducted prior to the analyses, where actions are taken to
suppress vortex induced vibrations. Results from wind tunnel testing and finite
element modelling are used to numerically estimate the buffeting response
and flutter stability limit of each cross-section. The flutter stability limit of
each girder is compared to the design critical wind speed at the building site.
Aerodynamic properties of the tested girders are implemented in a machine
learning algorithm in order to predict the aerodynamic properties of untested
girders.

The theory needed for the calculations is presented in Chapter 2. A brief
summary of basic structural dynamics, bridge aerodynamics and a short in-
troduction to Gaussian process regression are among the subjects covered in
this chapter. Chapter 3 presents the crossing of Langenuen, different design
proposals and the box girder parameterization used in this thesis. The finite
element models used for calculating the modal properties of the bridge models
are presented in Chapter 4, along with the corresponding results. Production
of section models and the tests performed in the wind tunnel are described in
Chapter 5. The results from the wind tunnel tests are presented in Chapter 6.
This chapter also includes the calculated stability limits and discussions of the
obtained results. Conclusions of this thesis are presented in Chapter 7, along
with proposals for further work.



Chapter 2

Theory

The theory needed for this thesis is presented in this chapter, where bridge
aerodynamics is the area given the most attention.

2.1 Suspension bridges

Over the past centuries, the development of bridges has led to suspension
bridges covering spans up to almost 2000 m. Although these bridges are im-
pressive, the basic structural concepts behind them are quite simple. There are,
in general, four elements contributing to the main characteristics of the bridge,
namely the bridge deck, cable system, pylons and anchoring system. Effect-
ive load-carrying through tension in the cable system is one reason why cable
supported bridges are popular choices for crossing large spans. The pylons
are mostly subjected to axial compression due to the connection to the main
cables. Figure 2.1 shows the main components of a suspension bridge.

The bridge deck is the bridge component that is subjected to the largest
part of the external loads, which is why the deck must contribute with con-
siderable stiffness in the lateral, vertical and torsional directions. The design

Figure 2.1: A two-dimensional model of a typical suspension bridge, showing
its main components.

3



4 Chapter 2: Theory

of the cross-section will therefore be of importance. Axial stiffness is in most
traditional suspension bridges no concern since the transfer of load from the
deck to the main cables takes place without introducing axial forces in the
deck [2]. Most of the long-span suspension bridges built today are made with
either truss or closed box girders. The closed box design has superior torsional
stiffness, which is vital for instability phenomena like flutter. This is one of
the reasons why the closed box girder is considered the most modern design.

Long-span suspension bridges are normally characterized as slender con-
structions. This means that the dynamic response of the structure might be
critical for the design. Tacoma Narrows Bridge is one of the best known bridge
collapses [2]. Dynamic response from wind action was its reason for failure [3].
Natural frequencies and aerodynamic properties are therefore important sub-
jects when designing a bridge. The first eigenfrequencies of long-span bridges
are low, which makes them exposed to oscillations resulting from wind loading,
which is dominated by low frequencies [4]. To correctly determine the response
and stability limits of the bridge deck, the modal and aerodynamic proper-
ties of the bridge must be calculated. This is done using analytical methods
and model testing, where the aerodynamic properties of the cross-sections are
determined.

2.2 Basic structural dynamics
Displacements of a suspension bridge can be described using the equation of
motion for a multi degree of freedom (MDOF) system,

Mr̈(t) + Cṙ(t) + Kr(t) = q(t), (2.1)

where M, C and K are matrices for mass, damping and stiffness, respect-
ively. The displacement vector r contains the response of the structure, while
q represents the loading applied to the structure. An overdot indicates the
time derivative. By finding the non-trivial solutions of the matrix eigenvalue
problem, [

K− ω2
nM

]
φn = 0, (2.2)

the natural frequencies, ωn, and corresponding mode shapes, φn, can be found
[5]. The solution of the equation of motion is based on superposition,

r(t) =
N∑
n=1

φnηn(t) = Φη(t) (2.3)

where the mode shapes Φ =
[
φ1 φ2 ... φN

]
are weighted by time-

dependent functions ηn(t), also known as modal coordinates [5, 6]. N is
the number of degrees of freedom. The time-dependent weighting functions
can be found by generalizing the equation of motion using the acquired mode
shapes, such that the equation system becomes decoupled. Each equation can
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therefore be solved as a single degree of freedom (SDOF) system. Detailed
descriptions of this procedure is covered extensively in the literature, for
example [5]. This will not be further described in this thesis.

By applying the Fourier transform to the equation of motion, the rela-
tion between response R(ω) and load Q(ω) in the frequency domain can be
expressed with the frequency response function (FRF) H(ω) [7],

R(ω) = H(ω)Q(ω). (2.4)
The FRF is given as

H(ω) = 1
−ω2M + iωC + K , (2.5)

where ω is the angular frequency and i is the imaginary unit. The only com-
ponent preventing the FRF to increase towards infinity at a natural frequency
is the damping term. Resonance occurs when a structure is subjected to load-
ing with a frequency equal to one of the structure’s natural frequencies. This
causes large deformations.

2.2.1 Complex eigenvalue problem

When the generalized damping matrix is diagonal, each equation is solvable
as a damped SDOF problem, as explained above. However, in a general case,
the generalized damping matrix is not diagonal. Thus, the matrix eigenvalue
problem is expanded into the quadratic eigenvalue problem,

(λ2M + λC + K)ψ = 0, (2.6)

also referred to as the complex eigenvalue problem [5, 6]. The eigenvalues exist
as real-valued or complex conjugate pairs,

λn, λ̄n = −ζnωn ± iωnD, (2.7)

where
ωnD = ωn

√
1− ζ2

n (2.8)
is the damped natural frequency and ζn is the damping ratio of the nth mode.
The natural frequencies and damping ratios are related to the eigenvalues with
the following expressions:

ωn = |λn| (2.9)
and

ζn = −Re(λn)
|λn|

. (2.10)

For each pair of eigenvalues, there is an associated eigenvector. These vectors
are also separated into real and imaginary parts,

ψn, ψ̄n = φn ± iχn, (2.11)

where φn and χn are real-valued vectors with N elements.
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Figure 2.2: Displacement of a damped free vibration system. The dashed line
represents the decay in amplitude over time, while the peaks in each cycle are
denoted by un, where n are all positive integers.

2.2.2 Damping of free vibration

Figure 2.2 shows displacement of a typical damped free vibration system.
The peaks in each cycle of motion are denoted by un, where n are all posit-
ive integers. The dashed line represents the decay in amplitude. Logarithmic
decrement δ is defined as

δ = ln un
un+1

= 2πζ√
1− ζ2 . (2.12)

When ζ is small, the relation between ζ and δ can be approximated by

δ ≈ 2πζ. (2.13)

Damping ratio ζ is for most structures below 0.2 [5]. The dashed damping
curve is given by

ρ · e−ζωn∆t, (2.14)

where ρ can be approximated as u1 and ∆t = t - t0, where t0 is the time
corresponding to u1.

2.2.3 Tuned mass damper

In order to effectively damp out natural frequencies, a tuned mass damper
(TMD) can be installed. The TMD, also referred to as vibration absorber [5],
is installed to decrease the amplitude of vibrations. The device is designed as
an SDOF system consisting of a mass and a spring connected to the structure.
The idea is that the damper system is designed with an eigenfrequency close to
the frequency where vibration limitation is desired. Thus, when the structure
is excited, the vibration of the TMD will absorb energy such that vibrations of
the system are reduced. TMDs are effective for a certain frequency range. The
size of the frequency range will be dependent on the mass ratio, defined as the



2.3: Buffeting theory 7

mass of the damper divided by the mass of the structure. As the mass ratio
decreases, the operating frequency range becomes narrower [5, 8]. However,
there are practical limitations to the mass of the damper. The amount of
additional mass which can practically be added to the structure is usually no
more than 1-2% [9].

2.3 Buffeting theory

Buffeting forces are the wind forces caused by pressure fluctuations in the
oncoming flow [10]. These pressure fluctuations are known as turbulence. The
physical mechanism caused by buffeting on suspension bridges is vibration [2].
For a particular time and position in space, the instantaneous wind velocity
pressure is a stochastic process. The short-term statistics of this process are
assumed to be stationary and homogeneous. The main flow direction of the
wind is assumed perpendicular to the main span axis of the structure. Further
assumptions regarding the buffeting theory are [11]:

• Loads may be calculated from the instantaneous velocity pressure and
appropriate load coefficients obtained from static tests.
• Linearization of any fluctuating parts will render results with sufficient
accuracy.
• Structural displacements and rotations are small.

It is also assumed that the instantaneous wind velocity pressure is given by
Bernoulli’s equation

qU (t) = 1
2ρ [U(t)]2 , (2.15)

where ρ is the air density and U is the instantaneous wind velocity.
The total buffeting load on a structure qtot is a function of a time inde-

pendent mean static component q̄, a dynamic component due to turbulence
(Bq · v) and motion induced loads associated with the velocity (Cae · ṙ) and
displacement (Kae · r) of a structure

qtot(x, t) =

q̄y(x)
q̄z(x)
q̄θ(x)

+

qy(x, t)qz(x, t)
qθ(x, t)

 = q̄ + Bq · v + Cae · ṙ + Kae · r. (2.16)

The vector r =
[
ry rz rθ

]T
contains the structural displacement. The vector

v =
[
u w

]T
contains the turbulence components in the along-wind and the

vertical wind direction. Further are

q̄(x) =

q̄y(x)
q̄z(x)
q̄θ(x)

 = ρV 2B

2

(D/B)C̄D
C̄L
BC̄M

 = ρV 2B

2 · b̂q, (2.17)
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Figure 2.3: Total buffeting load on a structure where Vrel is the instantaneous
relative wind velocity and α is the angle of flow incidence.

Bq(x) = ρV B

2


2(D/B)C̄D

(
(D/B)C ′D − C̄L

)
2C̄L

(
C ′L + (D/B)C̄D

)
2BC̄M BC ′M

 = ρV B

2 B̂q, (2.18)

Cae(x) = −ρV B2


2(D/B)C̄D

(
(D/B)C ′D − C̄L

)
0

2C̄L
(
C ′L + (D/B)C̄D

)
0

2BC̄M BC ′M 0

 (2.19)

and

Kae(x) = ρV 2B

2

0 0 (D/B)C ′D
0 0 C ′L
0 0 BC ′M

 . (2.20)

The mean wind velocity is given as V . Bq, Cae and Kae are all functions of
CD(α), CL(α) and CM (α), which are the static coefficients of drag, lift and
moment, respectively. These coefficients are again functions of the angle of flow
incidence α corresponding to the instantaneous relative wind velocity Vrel, il-
lustrated in Figure 2.3. The prime on the coefficients indicates the derivative
with respect to α, and the overbar indicates the mean value of the coeffi-
cient. Further explanation of these coefficients are covered in the literature,
see for example [11–15]. Also shown in the figure are B and D, which are the
width and height of the cross-section, respectively, and qtot(x, t). The static
coefficients introduced in Equations 2.17 to 2.20 can be found by performing
quasi-steady wind tunnel tests. By slowly rotating the angle α and measuring
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the forces at the bridge section, the coefficients are found for different angles
using CD(α)

CL(α)
CM (α)

 = 2
ρV 2DL

 FD
(D/B)FL
(D/B2)M

 . (2.21)

FD and FL are the drag and lift forces, respectively, measured during the tests,
while M is the torsional moment.

The buffeting theory expands the FRF to be a function of Cae and Kae

H(ω) = 1
−ω2M + iω (C−Cae) + (K−Kae)

. (2.22)

The introduction of Cae prevents the generalized damping matrices from being
diagonalizable, such that the eigenvalues and eigenvectors resulting from the
flutter analyses become complex. Flutter is presented later in this chapter.

2.3.1 Buffeting response

Consideration of the flow induced part qb = Bq · v is sufficent for develop-
ment of a modal buffeting load [11]. The cross-spectral density matrix of the
generalized load is

S
b
(ω) =

∫ L

0

∫ L

0
ΦT (x1)Bq(x1)Sv(ω,∆x)BT

q (x2)Φ(x2)dx1dx2, (2.23)

where L is the length of the structure and Sv is the cross-spectral density
matrix of the turbulence components of the wind velocity

Sv =

Suu Suv Suw
Svu Svv Svw
Swu Swv Sww

 . (2.24)

As wind measuremens are not available for this bridge, the wind spectrum
must be estimated. The Norwegian Public Roads Administration (NPRA)
propose a procedure for this in Handbook N400 [16]. The wind spectrum is a
Kaimal spectrum [17], where the single point autospectral density is

Sn(ω) = σ2
n
xLn(z)
2πV

An
(1 + 1.5Anω̂n)5/3 , n = u, v, w (2.25)

where σn is the standard deviation of turbulence component n, xLn is the
integral length scale, the value of the coefficients An are given in N400 and ω̂n
is

ω̂n = ω xLn(z)
2πV . (2.26)

This procedure introduces the turbulence length scale Ln. These are meas-
ures of the average eddy size of the turbulence [14]. Estimation of this para-
meter can be done by several different methods, each producing different res-
ults [18]. Studies performed on the Hardanger Bridge concluded that the use
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of a turbulence length scale with a stationary wind model should be avoided,
due to the wide range of results [19, 20].

To avoid the use of the turbulence length scale, another Kaimal spectrum
is used [21]

Snω

2πσ2
n

= Anωz
(1 + 1.5Anωz)5/3 , ωz = ωz

2πV (2.27)

where z is the height above the ground. The cross-spectrum follows Daven-
port’s exponential format [22]

Cnm(ω,∆x) = exp
(
−Knm

ω∆x

2πV

)
(2.28)

where Knm are decay coefficients and the normalized cross-spectrum is defined
as [15]

Cnm(ω,∆x) = Snm(ω)√
Sn(ω)Sm(ω)

, (2.29)

where n,m = u, v, w.
The cross-spectral density of the modal response is found by using the

generalized FRF
Sη(ω) = H̃∗(ω)SQ̃b

(ω)H̃T (ω), (2.30)

where the superscript ∗ denotes the complex conjugate and a tilde above a
symbol refers to the modal quantity. Subsequently, the cross-spectral density
of the response is

Sr(ω) = ΦSη(ω)ΦT . (2.31)

The covariance matrix, containing the variances for each DOF and the
correlation between the DOFs, is given by

Covrr (x) =
∫ L

0
Sr(ω)dω =

 σ2
ry ρryrzσryσrz ρryrθσryσrθ

ρrzryσrzσry σ2
rz ρrzrθσrzσrθ

ρrθryσrθσry ρrθrzσrθσrz σ2
rθ

 , (2.32)

where ρij are the correlation coefficients

ρrr(x) = Covrr(x)
σri · σrj

, (2.33)

and σrirj are the standard deviation of the DOFs, with i, j = y, z, θ [7].

2.4 Aerodynamic derivatives

The theory of aerodynamic derivatives (ADs) is an extension of the buffeting
theory which includes frequency in the load description. This theory was first
developed by Theodorsen in 1935 [23] and later applied to the field of bridge
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aerodynamics in 1971 [24]. The frequency domain versions of Cae and Kae are
given as

Cae =

P1 P5 P2
H5 H1 H2
A5 A1 A2

 and Kae =

P4 P6 P3
H6 H4 H3
A6 A4 A3

 . (2.34)

The coefficients can be made non-dimensional by normalising Cae and Kae

with ρB2ωn/2 and ρB2ω2
n/2 respectively, where ωn is the in-wind resonance

frequency associated with mode n from which they have been extracted [11].
This results in

Cae = ρB2

2 · ωn · Ĉae and Kae = ρB2

2 · ω2
n · K̂ae (2.35)

where

Ĉae =

 P ∗1 P ∗5 BP ∗2
H∗5 H∗1 BH∗2
BA∗5 BA∗1 B2A∗2

 and K̂ae =

 P ∗4 P ∗6 BP ∗3
H∗6 H∗4 BH∗3
BA∗6 BA∗4 B2A∗3

 . (2.36)

It is the coefficients P ∗i , H∗i and A∗i , i = 1, 2, ..., 6 which are referred to as
aerodynamic derivatives. In bridge engineering, these are used to measure
motion-related aerodynamic damping, and detect possible aerodynamic coup-
ling between mechanical modes of the structural system [25]. P ∗i , H∗i and A∗i
are related to drag, heaving and torsional forces, respectively.

All 18 ADs are seen in relation to the self-excited forces for bridge decks.
The unsteady self-excited aerodynamic forces for a section in a single harmonic
motion are

qSey =1
2ρV

2B

(
KP ∗1

ṙy
V

+KP ∗2
Bṙθ
V

+K2P ∗3 rθ +K2P ∗4
ry
B

+KP ∗5
ṙz
V

+K2P ∗6
rz
B

)
qSez =1

2ρV
2B

(
KH∗1

ṙz
V

+KH∗2
Bṙθ
V

+K2H∗3rθ +K2H∗4
rz
B

+KH∗5
ṙy
V

+K2H∗6
ry
B

)
qSeθ =1

2ρV
2B2

(
KA∗1

ṙz
V

+KA∗2
Bṙθ
V

+K2A∗3rθ +K2A∗4
rz
B

+KA∗5
ṙy
V

+K2A∗6
ry
B

)
(2.37)

where K = V −1
red = Bω/V is the reduced frequency of motion and Vred is

reduced velocity [26].
The role of the aerodynamic derivatives and their influence on critical

velocities is a subject under research. It has been concluded that galloping
and torsional flutter only is possible for H∗1 > 0 and A∗2 > 0, respectively
[27]. In cases where these variables are negative, the self-excited forces will
cause positive aerodynamic damping. This dissipates energy from the system
[28]. An iteration method for flutter analysis, referred to as the step-by-step
analysis, has been presented for a better understanding of the influence of ADs
on coupled flutter [29]. Some of the results have been summarized, and are
presented in Table 2.1, which shows the influence of the ADs H∗1 , H∗3 , A∗1, A∗2
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Table 2.1: The influence of critical aerodynamic derivatives on coupled flutter
stability.

Derivative Stabilizing Destabilizing

A∗1 Low absolute values High absolute values
A∗2 Negative values Positive values
A∗3 Low absolute values High absolute values
H∗1 Negative values Positive values, low absolute values
H∗3 Low absolute values High absolute values

and A∗3. These ADs have been identified as the critical ADs [30]. It has been
concluded that A∗2, A∗1 and H∗3 are dominating for torsional flutter, while H∗1 ,
A∗1 and H∗3 are dominating vertical flutter, galloping. A∗1 has been identified as
the most critical aerodynamic derivative regarding coupled flutter instability
[31].

A drawback with ADs is that they only capture linear contribution [26].
This can be problematic when studying the self-excited drag forces mainly,
where the presence of higher-order terms have been observed [32].

2.4.1 Aerodynamic derivatives by Theodorsen

It has been suggested to compare the values of the ADs to those developed by
Theodorsen for a flat plate when discussing the limits of low and high absolute
values [30]. These ADs are given by


H∗1 A∗1
H∗2 A∗2
H∗3 A∗3
H∗4 A∗4

 =


−2πF V̂i −π

2FV̂i
π
2 (1 + F + 4GV̂i)V̂i −π

8 (1− F − 4GV̂i)V̂i
2π(FV̂i −G/4)V̂i π

2 (FV̂i −G/4)V̂i
π
2 (1 + 4GV̂i) π

2GV̂i

 , (2.38)

where
F

(
ω̂i
2

)
= J1 · (J1 + Y0) + Y1 · (Y1 − J0)

(J1 + Y0)2 + (Y1 − J0)2 (2.39)

G

(
ω̂i
2

)
= J1 · J0 + Y1 · Y0

(J1 + Y0)2 + (Y1 − J0)2 . (2.40)

Jn and Yn, n = 0, 1 are Bessel functions of first and second kind, respectively,
with order n. The ADs given by Theodorsen are not applicable for the bridge
decks designed in this thesis and should only be used as a comparison to the
results obtained in wind tunnel testing.

2.4.2 Identification of aerodynamic derivatives

There are several approaches to the identification of ADs for a suspension
bridge. As the power of modern computers increase, computational fluid dy-
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namics techniques become a more attractive tool in the computation of aero-
dynamic behaviour of bridge decks [33]. Although studies have shown com-
putational results in accordance with results from section models [34–37], it
remains a challenge to obtain results of acceptable quality. For example, dis-
crepancies in ADs for high reduced velocities have been reported [34]. There-
fore, to determine the ADs, wind tunnel testing is necessary to obtain reliable
results [26].

ADs can be identified by different methods from the forced vibration test
data. The forced vibration test is covered later in this chapter. One way to
determine the ADs is to study the phase angle between the self-excited forces
and the motion of the section [38, 39]. Another is to study how the complex
Fourier amplitudes of the self-excited forces are related to the ADs [40, 41].
However, uncertainties in the estimation of the phase angle [38, 42] or spectral
leakage caused by the frequency domain truncation [43] can result in significant
estimation error.

To eliminate these uncertainties a time domain method was developed [43].
In this method, the model for the self-excited forces is fitted to the time series
of the self excited forces by least squares. Further extension of this method
allows for consideration of a more complex motion [44]. Equation 2.37 can be
written on the more compact matrix form

qSe(t,K, V ) = XE, (2.41)

where

qSe =


qSe,y,1 qSe,z,1 qSe,θ,1
qSe,y,2 qSe,z,2 qSe,θ,2

...
...

...
qSe,y,n qSe,z,n qSe,θ,n

 , (2.42)

X =


ṙy,1 ṙz,1 ṙθ,1 ry,1 rz,1 rθ,1
ṙy,2 ṙz,2 ṙθ,2 ry,2 rz,2 rθ,2
...

...
...

...
...

...
ṙy,n ṙz,n ṙθ,n ry,n rz,n rθ,n

 (2.43)

and

E = 1
2ρV

2B



KyP
∗
1 /V KyH

∗
5/V BKyA

∗
5/V

KzP
∗
5 /V KzH

∗
1/V BKzA

∗
1/V

BKθP
∗
2 /V BKθH

∗
2/V B2KθA

∗
2/V

K2
yP
∗
4 /B K2

yH
∗
6/B K2

yA
∗
6

K2
zP
∗
6 /B K2

zH
∗
4/B K2

zA
∗
4

K2
θP
∗
3 K2

θH
∗
3 BK2

θA
∗
3


(2.44)

for n samples in the time series. By minimizing the sum of squares, E and
thus the ADs, can be found

E =
(
XTX

)−1
XTqSe. (2.45)
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Figure 2.4: Lock-in effect at vortex shedding frequencies.

2.5 Vortex shedding
Vortex shedding is oscillations of the bridge deck in mainly vertical or torsional
direction due to separation of the wind flow caused by the bridge deck. The
separation of wind causes forces qz and qθ on both sides of the deck, which
causes oscillations. Vortex shedding frequency fs is given by

fs = St · V
D
, (2.46)

where St is the Strouhal number. The Strouhal number measures the ratio
of inertial forces caused by a local acceleration of the wind flow to inertial
forces caused by acceleration due to change of position in the wind flow [45].
Vortex shedding is characterized as narrow banded, and resonance will occur
for every velocity where fs is equal to one of the eigenfrequencies in vertical
or torsional direction of the respective structure [11]. For velocities causing
these vibrations, a lock-in effect is normally observed. This means that for
a certain increase in velocity, the vibration will not change. In these ranges,
Equation 2.46 will not be valid. Vortex shedding will therefore be visible for
a range of velocities. This is shown in Figure 2.4.

The Scruton number of a structure is critical for the vortex shedding re-
sponse [46]. It is defined as

Sc = 2δm̃n

ρb2
ref

, (2.47)

where bref is the cross-wind width and m̃n is effective mass per unit length

m̃n = M̃n∫
L φ

2
n(x)dx, n = z, θ (2.48)

where M̃n is the modal mass and the mass moment of inertia from the ver-
tical and torsional still-air mode shapes, respectively. For increasing Scruton
numbers, vortex shedding response is reduced.

2.5.1 Guide vanes

Guide vanes installed at suspension bridges have proven to be an efficient way
of mitigating vortex shedding excitation [47]. The effect of guide vanes has
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Figure 2.5: Guide vanes mounted on cross-section.

also been observed for section models experiencing galloping. The objective
of the guide vanes is to prevent the separation of wind flow from causing
transverse forces on the bridge deck [48]. Bridge decks where galloping occurs
often experience what is known as full separation of flow, which means that
the wind flow is not reattached to the surface of the bridge deck. The guide
vanes reduce the amount of vortices under the bridge deck such that the wind
flow is reattached to the bridge deck faster. One of the bridges where the effect
of guide vanes has been proven is the Storebælt suspension bridge [49]. During
the last stages of construction, it was decided to design and manufacture guide
vanes to mitigate vortex induced vibrations (VIV) that could be of disturbance
for users of the bridge. With the aid of wind tunnel testing, guide vanes were
designed and installed at the bridge. After a period of 18 months, no vortex-
induced oscillations had been observed [49]. The same was observed at Osterøy
Bridge, where no vibrations were reported the year following the installation
of guide vanes [50]. Guide vanes have also been installed underneath the deck
at several other Norwegian suspension bridges, among others the Hardanger
Bridge [19] and the Bømla Bridge [51]. Figure 2.5 shows how the guide vanes
are mounted on a girder.

2.6 Motion induced instabilities

Instability phenomena are characterized as situations where a small increase
in loading will cause a large increase in structural response. These phenomena
will occur for bridges when the wind velocity reaches critical wind velocity Vcr,
similar to the traditional buckling phenomena, where the axial compression
force exceeds the critical load. Instabilities are mathematically defined by the
absolute value of the impedance function being equal to zero,∣∣∣det

(
Êη(ω, V )

)∣∣∣ = 0 (2.49)

where the impedance function is the inverse of the FRF

Êη(ω, V ) =
{

I− κae −
(
ω · diag

[ 1
ωn

])2
+ 2iω · diag

[ 1
ωn

]
· (ζ − ζae)

}
,

(2.50)
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where I is the identity matrix. The unstable effects are caused by changes to
ζae and κae, where these are the normalized modal quantities of aerodynamic
damping and stiffness, respectively. Each solution to the eigenvalue problem
represented in Equation 2.49 will contain a pair of ω and V . The values of
interest will always be the ones with the lowest critical wind velocity.

There are four different instability phenomena of interest for a long span
suspension bridge:
• Static divergence.
• Galloping.
• Dynamic stability limit in torsion.
• Flutter.

For all instability phenomena, the variable of interest is the vertical or torsional
displacement or both. The mathematical expressions for finding the critical
wind velocity and corresponding frequencies can be simplified by assuming
mode shapes where the dominant structural response is vertical or torsional.
Thus, the simplified impedance function is given by

Êη(ωr, Vcr) =
[
1 0
0 1

]
−
[
κae11 κae12

κae21 κae22

]
−
[
(ωr/ω1)2 0

0 (ωr/ω2)2

]

+2i
[
ωr/ω1 0

0 ωr/ω2

]
·
[
ζ1 − ζae11 −ζae12

−ζae21 ζ2 − ζae22

]
. (2.51)

The matrix entries are given by

κae11 = κaezz =ρB2

2m̃z

(
ωz(V )
ωz

)2
H∗4

∫
Lexp

φ2
zdx∫

L φ
2
zdx

(2.52a)

κae12 = κaezθ =ρB3

2m̃z

(
ωz(V )
ωz

)2
H∗3

∫
Lexp

φzφθdx∫
L φ

2
zdx

(2.52b)

κae22 = κaeθθ =ρB4

2m̃θ

(
ωθ(V )
ωθ

)2
A∗3

∫
Lexp

φ2
θdx∫

L φ
2
θdx

(2.52c)

κae21 = κaeθz =ρB3

2m̃θ

(
ωθ(V )
ωθ

)2
A∗4

∫
Lexp

φθφzdx∫
L φ

2
θdx

(2.52d)

ζae11 = ζaezz =ρB2

4m̃z

ωz(V )
ωz

H∗1

∫
Lexp

φ2
zdx∫

L φ
2
zdx

(2.52e)

ζae12 = ζaezθ =ρB3

4m̃z

ωz(V )
ωz

H∗2

∫
Lexp

φzφθdx∫
L φ

2
zdx

(2.52f)

ζae22 = ζaeθθ =ρB4

4m̃θ

ωθ(V )
ωθ

A∗2

∫
Lexp

φ2
θdx∫

L φ
2
θdx

(2.52g)

ζae21 = ζaeθz =ρB3

4m̃θ

ωθ(V )
ωθ

A∗1

∫
Lexp

φθφzdx∫
L φ

2
θdx

, (2.52h)
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where Lexp is the wind exposed length.

2.6.1 Static divergence

Since static divergence is a static stability problem, the corresponding fre-
quency ωr is equal to zero. Instability occurs because of lost torsional stiffness
as an effect of motion induced loading. The mode shape can be described with
a dominant structural response in torsional direction only,

φ2 ≈
[
0 0 φθ

]T
. (2.53)

Inserting these simplifications into the impedance function reduces the equa-
tion to

Êη(ωr = 0, Vcr) = 1− κaeθθ . (2.54)

It follows that instability for static divergence occurs when κaeθθ is equal
to 1. By inserting the quasi-static value for A∗3, the critical wind velocity for
static divergence can be expressed as

Vcr = B · ωθ ·

√√√√ 2m̃θ

ρB4C ′M
·
∫
L φ

2
θdx∫

Lexp
φ2
θdx

. (2.55)

2.6.2 Galloping

Galloping is a dynamic stability problem with the main structural response in
vertical direction. The mode shape describing the deformation is expressed as

φ1 ≈
[
0 φz 0

]T
, (2.56)

with a corresponding frequency ωr = ωz(Vcr). The impedance function is sim-
plified to

Êη(ωr, Vcr) = 1− κaezz − (ωr/ωz)2 + 2i(ζz − ζaezz)ωr/ωz. (2.57)

The equation contains both real and imaginary parts. By setting both parts
equal to zero, the frequency and damping properties corresponding to galloping
can be found,

ωr = ωz

(
1 + ρB2

2m̃z
H∗4

∫
Lexp

φ2
zdx∫

L φ
2
zdx

)−1/2

(2.58)

and

ζz = ζaezz = ρB2

4m̃z

ωr
ωz
H∗1

∫
Lexp

φ2
zdx∫

L φ
2
zdx

. (2.59)

A structure can only experience galloping instability if it has positive H∗1 -
values.
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2.6.3 Dynamic stability limit in torsion

The dynamic stability limit in torsion is similar to that of galloping, however
the dominant structural response is in torsional direction. The mode shape is
described in the same manner as static divergence,

φ2 ≈
[
0 0 φθ

]T
, (2.60)

but with a corresponding frequency ωr = ωθ(Vcr). The approach for deriving
resonance frequency and damping properties follows the same steps as for
galloping,

Êη(ωr, Vcr) = 1− κaeθθ − (ωr/ωθ)2 + 2i(ζθ − ζaeθθ)ωr/ωθ, (2.61)

where

ωr = ωθ

(
1 + ρB4

2m̃θ
A∗3

∫
Lexp

φ2
θdx∫

L φ
2
θdx

)−1/2

(2.62)

and

ζθ = ζaeθθ = ρB4

4m̃θ

ωr
ωθ
A∗2

∫
Lexp

φ2
θdx∫

L φ
2
θdx

. (2.63)

A structure can only experience dynamic instability in torsion if it has
positive A∗2-values.

2.6.4 Flutter

Contrary to the mentioned stability problems where there is only one direc-
tion with dominant response, flutter introduces a coupling between vertical
and torsional modes. The structural displacements rz and rθ connect via the
off-diagonal terms in the impedance function. Normally flutter happens for
vertical and torsional modes that are shape-wise similar, where the modes
previously used, Equations 2.56 and 2.60 are connected with a joint resonance
frequency

ωr = ωz(Vcr) = ωφ(Vcr). (2.64)

The coupling between modes makes the impedance function more math-
ematically complex, which is why it is preferable to rewrite the expression
as

Êη = Ê1 + Ê2 + 2i
(
Ê3 + Ê4

)
, (2.65)

where Ê1, Ê2, Ê3 and Ê4 are given as

Ê1 =
[
1− κaezz − (ωr/ωz)2 0

−κaeθz 0

]

Ê2 =
[
0 −κaezθ
0 1− κaeθθ − (ωr/ωθ)2

] Ê3 =
[
(ζz − ζaezz) · ωr/ωz 0
−ζaeθz · ωr/ωθ 0

]

Ê4 =
[
0 −ζaezθ · ωr/ωz
0 (ζθ − ζaeθθ) · ωr/ωθ

]. (2.66)
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The stability limit is found by calculating the determinant of the impedance
function and setting both the real and imaginary part to be equal to zero.

It is common to separate between bi-modal and multi-modal flutter calcu-
lations. Bi-modal flutter analysis include two still-air modes only, while multi-
modal include interaction between several vibration modes. It has been shown
that the inclusion of several modes in flutter analysis can be both stabilizing
and destabilizing. Which modes that couple in flutter motion is dependent on
the shape-wise similarity between the modes and the separation of the cor-
responding natural frequencies [52]. The shape-wise similarity between two
modes i and j is defined by

ψij =
∫
L φiφjdx∫
L φ

2
i dx

·
∫
L φjφidx∫
L φ

2
jdx

. (2.67)

The coefficient ψij is equal to one for a perfect match, while it is zero for
shape-wise dissimilar modes [53].

2.6.5 Calculation of critical wind velocity

Since the aerodynamic derivatives are dependent on frequency and wind ve-
locity, iterations are required to obtain the stability limits for the dynamic
instability motions.

In the analyses, complex eigenvalues and eigenmodes are calculated based
on the still-air mode shapes. The iteration procedure starts at an initial wind
velocity. It is repeated for changing velocities until the real part of one of the
complex eigenvalues is zero, meaning that there is no damping in this mode.
The critical wind velocity is found when the velocity increment is below a
specific tolerance level. Critical mode is the one with an eigenvalue with no
real part. The influence of the still-air modes can be found by investigating
the critical mode.

In this thesis, this method is referred to as complex flutter analysis, as the
method includes complex eigenvalues and eigenmodes. This is done in order
to separate between results of different solution methods.

2.6.6 Closed-form solution of flutter stability

Simplified solution methods of the flutter stability limit of cable supported
bridges are a valuable tool in the preliminary design phase. The strength of
these methods is their reduced computational time compared to less approx-
imate solutions. Several methods have been developed [54, 55]. In this thesis,
a method for estimating critical bi-modal flutter velocity with vertical and
torsional modes is used [53].

The method introduces the dimensionless coefficients

χz = ρB2

m̃z
χθ = ρB4

m̃θ
γ = ωθ

ωz
(2.68)
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to make expressions simpler, where ωn, n = z, θ are still-air natural frequencies.
Further are H∗3 , A∗1, A∗2 and A∗3 identified as the critical ADs in this solution
method. It is assumed that these can be approximated by polynomials which
provide a description of the self excited forces which is frequency-independent.
This is done by assuming

X∗i (K) = xi(1/K), i = 1, 2, 5
X∗i (K) = xi(1/K)2, i = 3, 4, 6

(2.69)

where X = P,H,A and x = p, h, a. Torsional motion is important for coupled
flutter as it generates large coupling forces compared to vertical motion. There-
fore, it is assumed that the critical frequency is on the torsional branch of the
solution. The critical frequency can thus be approximated by an uncoupled
system of equations.

Neglecting the torsion damping because it often is very low results in the
following expression for the critical velocity

Vcr,cf = Bωθ ·
√

2a2(γ2 − 1)
γ2Ω

, (2.70)

where
Ω = χzψzθh3a1 + χθa2a3. (2.71)

As the torsion damping is neglected, the estimated critical wind velocity is
expected to be lower than estimates done with the complex flutter analysis.
Given this closed-form equation for the prediction of critical wind velocity, the
influence of the ADs is more easily understood.

An iteration process is required for the closed-form solution. The ADs,
used to calculate the critical wind velocity, are extracted for a certain K. The
critical velocity corresponds to a specific value of K, which differs from the
K used initially. The calculation process must be repeated until the difference
between consecutive reduced frequencies is below a certain tolerance level.

2.7 Wind tunnel testing

Four approaches are available when assessing the response of long-span sus-
pension bridges [56]. Section modelling, taut-strip modelling and full-bridge
modelling are all applicable to the design phase, while full-scale measurements
are used in calibrating modelling approaches. Section modelling is the most
widely used method, as it can be performed in reasonably sized wind tunnels
at a low cost, on a large scale and in a short lead time [57].

Two methods are available to determine ADs from wind tunnel tests, forced
vibration and free vibration tests. In a free vibration test, the model is sus-
pended in springs. The movement is caused by initial conditions and mutual
interactions between the wind flow and model. In a forced vibration test, the
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movement is caused by forcing the model in harmonic oscillations. These can
be horizontal, vertical or torsional, or combinations of the three. Due to the
forcing motion of the latter approach, the free vibration tests are considered
to provide more realistic in-wind motion of the bridge deck, while ADs are
more easily obtained from the forced vibration tests [26].

2.7.1 Wind tunnel effects

The laboratory environment may have an effect on the obtained results and
should be considered [58]. Uncertainty analyses for the aerodynamic derivat-
ives obtained from wind tunnel testing can be included during the early stages
of bridge design [59]. An uncertainty analysis is not included in this thesis;
however, wind tunnel effects are discussed.

Compared to full-bridge modelling, which has to be on a small scale to fit
inside the wind tunnel, section models can be of large scale, typically between
1:25 and 1:100. In addition to modelling advantages on larger scale section
models, they are also less prone to aerodynamic scale effects [2].

The model sections placed in the wind tunnel will obstruct the wind flow,
causing what is known as the blockage effect. This obstruction will cause an
increase in wind velocity around the section models, causing the forces to
increase. However, for small blockage ratios, the effects of blockage will be
small. The blockage ratio is defined as S/C, where S is model projected area
normal to wind and C is the area of the wind tunnel [60]. Studies concluded
that for circular cylinders with a blockage ratio less than 6%, the effects of
blockage will be small [61]. Similar studies have been performed for bluff body
aerodynamics. For blockage ratios from 3-10%, almost identical results were
achieved [62]. The Strouhal number will also be independent of the ratio for
such blockage ratios.

Due to friction between the boundaries in the tunnel and the wind, wind
flow is disturbed close to the edges. The effect is called boundary layer flow.
In the wind tunnel at NTNU, this effect is relevant in a range of 200 mm from
the walls, floor and ceiling [63].

End plates are used in wind tunnel testing to secure a two-dimensional
wind flow across the whole model. It has been reported that if circular, these
end plates must have a diameter larger than 8.5 times the depth of the model
normal to the approaching wind flow [64]. By making models span the entire
width of the tunnel, the need for end plates is eliminated.

Dependency on Reynolds number should also be considered in the tests.
The Reynolds number is defined as the ratio of inertial forces to the viscous
forces,

Re = ρUD

µ
= UD

ν
, (2.72)

where µ and ν are the shear and kinematic viscosity of the fluid, respectively
[65]. By performing wind tunnel tests for different wind velocities, a depend-
ency on Reynolds number can be revealed.
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Cross-sectional details like railings can have a significant influence on the
results obtained from wind tunnel testing. In a test of a section model of the
Hardanger Bridge, the critical wind velocity for flutter instability increased
by 9.1 m/s due to the inclusion of bridge deck details. It was suggested that
all changes in design and details should be investigated to include the con-
sequences of these changes [66].

2.8 St. Venant torsion

For a thin-walled cross-section, the St. Venant torsion is the shear stress flow
in each plate element within the cross-section caused by a torsion moment
[67]. The theory of St. Venant torsion is based on the following assumptions
[68]:

• The material is elastic and Hooke’s law is valid.
• Deformations are small.
• The shape of the cross-section is unchanged during the deformation.
• The cross-section is free to warp.

For a closed, thin-walled cross-section, the torsion constant IT , can be
found by Bredt’s 2. formula,

IT = 4A2
m∮ ds
t

. (2.73)

The area within the centre line of the cross-section is denoted Am, and t is the
cross-sectional thickness.

2.9 Gaussian process regression

Gaussian process regression (GPR) is a data-driven method to predict beha-
viour in unmeasured regions and is a popular method of interpolation of spatial
data [69]. Due to the purely data-based regression, no model of the underlying
physics is necessary. Using the obtained results, referred to as training data,
the goal is to develop a function that predicts the outcome for all possible in-
put values [70, 71]. One of the approaches for finding this function is to give a
prior probability to possible functions. GPR is based on this approach, where
the Gaussian probability distribution is used to control the properties of the
desired function.

A prior Gaussian distribution of the function f(x) is defined

p(f) ∼ GP(m(x),K(x, x′)), (2.74)

where GP(·) denotes a Gaussian process. The properties of the function are
introduced through the applied mean m(x) and covariance K(x, x′) functions.
The mean is usually set to zero [70], while the covariance function describes
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the degree of correlation between two points x and x′ [72, 73]. One example
of a covariance model used is the squared exponential kernel,

K(x, x′) = σ2 · exp
(
−(x− x′)2

2L2

)
, (2.75)

where σ and L are hyperparameters. The squared exponential covariance func-
tion is a stationary function, dependent on x − x′ [70, 73]. It fulfills the as-
sumption that the correlation between two points decays with the distance
between the points [74].

To predict the value of f at points where there are no data X∗, the prior
distribution is conditioned on some observations y at locations X [75]. The
predicted value f∗ at the new location x∗ is described by [72]

E[f∗|y,X] = K(x∗,X)K(X,X)−1y, (2.76)

and

Cov[f∗|y,X] = K(x∗, x∗)−K(x∗,X)K(X,X)−1K(x∗,X)T . (2.77)

This result is the posterior distribution which is also Gaussian distributed.
The hyperparameter L is called the length scale and is related to the

smoothness of the function [72]. If the length scale is short, local relationships
between nearby points dominate the GPR [76]. Consequently, a too short
length scale increases the prediction uncertainty away from the data points
[70]. In contrast, if the length scale is large, global long-range relationships
between data points dominate the GPR. A too long length scale, therefore,
results in a slowly varying function with high prediction uncertainty, also near
data points.

After choosing a covariance model, the hyperparameters are determined
from the data points. They can be guessed but also trained to best fit the data.
This can be done by observing the log-likelihood of the data under the chosen
prior log(p(y|X, θ)), where θ is a vector of all hyperparameters. The larger
the log-likelihood, the better the data fit the model. Thus, by maximizing the
log-likelihood, the optimal hyperparameters are found [75].

GPR is effective in interpolation even when the data points are sparse. In
extrapolation however, the predictive power drastically deteriorates [77]. As
the distance between points increases, the correlation decreases, resulting in
an increased prediction uncertainty.





Chapter 3

Langenuen Suspension Bridge

The E39 Coastal Highway Route is the largest infrastructure project ever
planned in Norway. The long-term goal is to build a continuous highway
between Kristiansand and Trondheim [78]. If the goal is reached, the current
travelling time of 21 hours can be cut in half [79]. Today, E39 includes seven
ferry crossings, and each one of them must be replaced to reach the long-term
goal. Although some new technology must be developed to realize these cross-
ings, most of the technology needed already exists. Possible solutions include
tunnels, suspension bridges and floating bridges [80].

3.1 The fjord crossing

Langenuen Suspension Bridge will, after its completion, connect the two is-
lands Tysnes and Stord, in Western Norway. Three locations were considered
for the crossing before the southernmost option was decided on in September
2019 [81]. All three alternatives are shown in Figure 3.1. The choice of cross-
ing resulted in a main span length of 1220 m, which will make it the second

Figure 3.1: The three alternatives for crossing Langenuen [82].

25
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Figure 3.2: Illustration of Langenuen Suspension Bridge [82].

longest in Norway after the Hardanger Bridge [83]. The depth below sea level
is ca 500 m [84].

The proposed general arrangement of Langenuen Suspension Bridge is sim-
ilar to other suspension bridges, with the same main components as shown in
Figure 2.1. The pylons are A-shaped towers of concrete with a saddle eleva-
tion of about 200 m. An illustration of what this may look like is shown in
Figure 3.2.

In order to evaluate the results from the aerodynamic stability analysis, a
threshold for wind velocity was needed. This was estimated from the expected
mean wind velocity for the desired return period. For this suspension bridge,
the return period was set to 500 years. This resulted in a mean wind velocity
of 47.4 m/s. The design critical wind velocity was found by multiplying the
500-year mean wind velocity by a safety factor of 1.6 [16]. Thus, Vcr,d = 76
m/s [83].

3.2 Aluminium girder alternative
Aluminium has been introduced as a possible solution for long-span bridges to
reduce the cost of these structures. Several large aluminium structures exist,
and especially in the offshore industry have the advantages of aluminium been
utilized [83]. However, a long-span suspension bridge with a box girder made
of aluminium has never been built, which is why this subject has been invest-
igated heavily in previous years. The modulus of elasticity for aluminium is
E = 70 000 N/mm2 and the density ρ = 2700 kg/m3 [85], while the same
properties for steel are equal to 210 000 N/mm2 and 7850 kg/m3 [68].

The main argument for replacing steel with aluminium for the crossing of
Langenuen is the reduction in self-weight. Since the density of aluminium is
about one third of steel density, the self-weight of the bridge girder, which is
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the primary load for long-span bridges, will be heavily reduced. This reduction
in self-weight creates the opportunity of reducing the dimensions of the other
components of the bridge. Other advantages that aluminium introduces are
the lack of surface treatment needed due to its high resistance to corrosion,
the possibility of local production and assembly close to the construction site,
and the fact that aluminium is faster to fabricate than steel [86].

It is implied that there are some significant drawbacks to the concept
since a long-span bridge has never been built with aluminium. The stiffness of
aluminium is about one third of the stiffness of steel. Thus the dimensions of
the bridge girder must be increased. Aluminium is also more expensive than
steel, which might cause an aluminium bridge girder to be more expensive
than the steel alternative. Furthermore, the reduction of self-weight increases
the challenge regarding dynamic stability. The reduced bridge weight makes
the structure more prone to experience the instability phenomena described
in Chapter 2.

In the feasibility and cost analysis performed by Dr. techn. Olav Olsen,
several different aluminium concepts were suggested:

• Plate concept.
• Panel concept.
• Transverse panel concept.
• Inverted cable concept.

Langenuen Suspension Bridge with an aluminium box girder was the topic
of a master’s thesis written at NTNU in 2020 [1]. In that thesis, the panel
concept was chosen as the basis for girder shapes tested in the wind tunnel.
Later results showed that this design was problematic concerning local fatigue
and ultimate limit state. The concept being further investigated at the time
of writing this thesis was the transverse panel concept [83]. A principle sketch
of the transverse panel concept is shown in Figure 3.3, while the dimensions
of the top deck panel and bulkhead panels are shown in Figure 3.4.

3.2.1 Steel concept

Norconsult presented a steel concept in their preliminary design of the cross-
ing of Langenuen [82]. Their design was based on the crossing of Julsundet,
and the dimensions of the bridge girder are shown in Figure 3.5. The design
also included A-pylons more than 200 meters tall, which are relevant for the
aluminium concept as well.

3.3 Box girder parameterization

A parametric approach in designing the cross-sections was chosen to minimize
the number of variables that had to be changed for each cross-section. For
this type of box girder, seven points were enough to describe the cross-section
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Figure 3.3: Principle sketch of the transverse panel concept [83].

(a) Top deck panel. (b) Bulkhead panel.

Figure 3.4: Top panel and bulkhead panel dimensions for transverse panel
concept [83].

Figure 3.5: Sketch of a proposed cross-section of Langenuen Suspension
Bridge where the box girder is made of steel [82].
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Figure 3.6: The seven points which defines the box girder cross-section.
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Figure 3.7: The three points which defines the box girder cross-section when
it is made symmetric.

uniquely. These points are shown in Figure 3.6. Despite the suggestions of
a non-symmetric cross-section [82, 83], the cross-sections used in this thesis
were chosen to be symmetric. This, in addition to making point 1 the reference
point, reduced the number of points to be chosen to three, shown in Figure 3.7.
By constraining both the width and the inclination of the top deck of the box
girder, point 2 was fixed. The width and the inclination were set to 31 m and
3%, respectively. This complies with earlier proposals [82].

The last two points were chosen to follow a parameterization similar to the
one developed the year prior to this thesis [1]. Two parameters determined the
girder shapes; the height of the girder H and the angle below the edge on the
girder θ. The horizontal distance between points 2 and 3 was set to 0.4 ·H, and
the angle from that horizontal line to the plate between points 2 and 3 was
fixed to 30◦. This parameterization is shown in Figure 3.8. All seven points
were thus uniquely described by the two parameters H and θ.

3.3.1 Torsion constant

In order to narrow down the combinations of the two defining parameters
H and θ, the torsion constant was set to be a fixed parameter. The torsion
constant was estimated with Bredt’s 2. formula (Equation 2.73). This was
a simplification of the different concepts suggested, but the same procedure
applied by Dr. techn. Olav Olsen [83]. An effective wall thickness of 22.5 mm
was used, which was applied in this thesis as well. The choice of effective
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Figure 3.8: Parameterization of the box girder. All points are determined by
the two parameters H and θ.

thickness is discussed in Section 4.4.
The study from 2020 reported on four cross-sections with sufficient capacity

compared to the design critical wind velocity [1]. It was therefore decided to
investigate cross-sections with a lower torsion constant. The cross-sections
previously tested had a torsion constant of IT = 31 m4. For this thesis, cross-
sections with a torsion constant of IT = 26 m4 were produced.

A surface plot using the described parameterization was made to find com-
binations of H and θ which gave the desired torsion constant. The first value
of the torsion constant, which was above the chosen limit, was extracted. The
surface plot with the combinations of H and θ which gave IT = 26 m4 is shown
in Figure 3.9. As H increases and θ decreases, points 4 and 5 (Figure 3.6) cross
each other. This was defined as an invalid geometry, thus constraining the tor-
sion constant to zero.

The data points where IT = 26 m4 were extracted. A rational function was
fitted to these data points. This is shown in Figure 3.10. The function can be
interpreted as a constant torsion constant curve, since all points on the curve
give combinations of H and θ with approximately IT = 26 m4.

The purpose of the curve was to reduce the two defining parameters to one
defining parameter. The expression of the curve was

θ = 9.538H − 30.64
H − 4.451 . (3.1)

In this thesis, H was chosen as the defining parameter.

3.3.2 Girder shapes

It was chosen to investigate box girders with the same height as the three lowest
studied in 2020. These girders satisfied the critical wind velocity criterion. This
includes the heights 5.5, 5.8 and 6.1 m. To accommodate the industry’s interest
in lower box girders, girders with heights 4.9 and 5.2 m were also tested. This
resulted in the angle θ varying from 16.7◦ to 35.8◦, where the smallest angle
corresponds to the tallest girder. The cross-sectional shapes are presented in
Table 3.1.
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Figure 3.9: Surface plot of the torsion constant IT , as functions of the two
defining parameters H and θ. Grey stars indicate a torsion constant of 26 m4.
Invalid geometry resulted in a torsion constant equal to zero.
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Figure 3.10: Data points showing combinations of H and θ which give IT =
26m4. A rational function was fitted to the data points.
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Table 3.1: Girder shapes for the selected heights with torsion constant IT =
26 m4.

H [m] θ [◦] Girder shape

4.9 35.8
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The cross-sections produced in 2020 with IT = 31 m4 was tested again for
this thesis. Although the girder concept investigated in this thesis was different
from the girder concept investigated in 2020, the outer shapes of the girders
were not changed. These section models were, therefore, still relevant for this
thesis. The parameterization used to get IT = 31 m4 resulted in the following
relation of H and θ [1]:

θ = 2.1404H − 7.5532
0.2062H − 1 . (3.2)

It was produced six section models with this parameterization, with girder
heights from 5.5 to 7.0 meters. These girder shapes are presented in Table 3.2.
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Table 3.2: Girder shapes for the selected heights with torsion constant IT =
31 m4 [1].

H [m] θ [◦] Girder shape
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Chapter 4

Finite Element Analysis

Finite element analysis (FEA) is a method for numerical solution of field prob-
lems [87]. In this thesis, FEA is used to assess the box girders’ cross-sectional
properties and determine the modal properties of the structure. A brief ana-
lysis regarding the effective thickness is also included. The Abaqus [88] software
was used to perform the FEA.

4.1 Cross-sectional modelling

The cross-sections were modelled using a simplified cross-section with a con-
stant plate thickness of 22.5 mm. A mesh size of 5 mm and the Abaqus elements
WARP2D3 and WARP2D4 were used. These elements are 3- and 4-noded
two-dimensional warping elements, respectively. They allow for computation
of cross-sectional parameters, such as area A, second moments of area Iy, Iz
and torsion constant IT . As the cross-sections were designed with IT = 26
m4 and IT = 31 m4, the latter computation served as a check of what had
previously been calculated by Bredt’s second formula (Equation 2.73). The
results from the cross-sectional analysis are summed up in Table 4.1 for all
cross-sections.

4.2 Global element model

Dombu and Gjelstad [89] presented a parametric model of Langenuen Suspen-
sion Bridge in their master’s thesis in 2019. It was made as a parametric script
in Python [90]. This model was also used in 2020 [1], and it allows for find-
ing modal properties necessary to calculate the stability limits and buffeting
response of the bridge girder. The parametric design of the model heavily re-
duced the time needed for calculating the modal properties for all the different
bridge girders. The authors were grateful to use their model as a basis in this
thesis.

Figure 4.1 shows the global dimensions of the bridge. The parametric model

35
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Table 4.1: Area A, second moments of area Iy, Iz and torsion constant IT

for all cross-sections.

IT [m4] H [m] A [m2] Iy [m4] Iz [m4] IT [m4]

26 4.9 1.63 7.53 175 26.0
5.2 1.63 7.85 174 26.0
5.5 1.64 8.14 176 26.1
5.8 1.65 8.37 179 26.2
6.1 1.66 8.53 182 26.2

31 5.5 1.66 9.29 181 31.1
5.8 1.66 9.62 182 31.1
6.1 1.67 9.91 184 31.1
6.4 1.68 10.2 187 31.3
6.7 1.69 10.3 190 31.2
7.0 1.70 10.4 194 31.1

Figure 4.1: Global dimensions of Langenuen Bridge, used in the FEA.

was modified in order to represent the transverse panel concept from Dr. techn.
Olav Olsen, with hangers every 12 meters [83]. The x-axis was set along the
bridge with x = 0 in the centre of the bridge, while y-axis was lateral to the
bridge deck and the z-axis was in vertical direction.

The modelling approach utilized for the FEA of Langenuen Bridge was
the spine-beam approach. This approach has previously been used to model
several suspension bridges and has been proved to be efficient for assessment
of the global behaviour of long-span cable supported bridges [91]. The box
girder was modelled as a beam girder with one-dimensional elements in the
longitudinal direction. These were connected to the hangers with rigid connec-
tion elements. This approach is shown in Figure 4.2. The nodal coordinates of
the girder elements were given in the centre of the cross-section. Due to the
relatively small changes in centre coordinates for the different cross-sections,
these differences were neglected when creating the different models. Thus,
an identical geometry was used for all models. The calculated cross-sectional
parameters were implemented for the beam girder for each of the eleven mod-
els. Parameters for the other parts of the models are shown in Table 4.2. The
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Figure 4.2: The spine-beam approach replaces the box girder with beam and
connection elements.

Table 4.2: Cross-sectional parameters used in the FEA for all structural
elements of the model, excluding the girder. These parameters were identical
for all cross-sections.

Component Material A [m2] Iy = Iz [m4] IT [m4] E [GPa] ν ρ [kg/m3]

Main cables Steel 0.3257 0.0084 0.0169 200 0.3 7850
Hangers Steel 0.0017 2.2 · 10−7 4.4 · 10−7 210 0.3 7850
Pylons Concrete - - - 35 0.2 2400
Connection elements - 0.22 1000 1000 200 0.3 0
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Figure 4.3: Box girder elements which contributed to the added inertia.

pylons were simplified as constant quadratic hollow cross-sections, with outer
dimension equal to 5 meters and wall thickness equal to 1 meter. All section
properties for the pylons were automatically calculated by the geometric input.

Inertia properties for the beam girder and additional masses were added
independently of the section profiles. The contributions from each component
were calculated based on the cross-sections’ outer shape and a layer of 80 mm
asphalt layer as surface. Figure 4.3 shows a simplified drawing of the differ-
ent parts which were included when calculating additional inertia. Tables 4.3
and 4.4 list the contributions included for the different element models with IT
= 26 m4 and IT = 31 m4, respectively. The contributions from the bulkhead
panels were calculated using the dimensions from Figure 3.4b and considering
bulkheads every fourth meter. Since Bernoulli beam elements ignore additional
inertia added to the elements [92], the beam girder was modelled with B32
elements, 3-noded quadratic Timoshenko elements. Other parts of the model
were modelled using cubic Bernoulli elements, B33.

The pylons were clamped to the ground, fixing both translation and ro-
tation in all directions, while the main cables were pinned, which allowed
rotation. In order to allow some movement between the pylons and the bridge
girder, spring elements were used in both ends of the girder. Tie constraints
were applied where elements of different components met, meaning that no
relative motion was allowed between these elements [92].

Figure 4.4 shows the global element model. All eleven global element mod-
els are appended to this thesis. They are listed in Appendix A.

Step: stepModal
Mode        40: Value =   15.899     Freq =  0.63460     (cycles/time)

ODB: LN21_5500.odb    Abaqus/Standard 3DEXPERIENCE R2019x    Sat May 15 10:46:20 Vest−Europa (sommertid) 2021

X

Y

Z

Figure 4.4: Global element model of Langenuen Suspension Bridge.
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Table 4.3: Moments of inertia used in the FEA for the cross-sections with
IT = 26 m4. The orientation angle was 0◦ for all components.

Height Inertia Linear ey ez I11 I22
[m] component mass [kg/m] [m] [m] [kgm2/m] [kgm2/m]

4.9 Girder 4401 0 0 20331 472500
Bulkhead 1515 0 0 2644 31540
Asphalt 5580 0 2.23 2.976 446865
Hanger heads 32 ±15.5 1.95 0 0
Other equipment 400 0 0 0 0

5.2 Girder 4401 0 0 21195 469800
Bulkhead 1515 0 0 2905 30047
Asphalt 5580 0 2.22 2.976 446865
Hanger heads 32 ±15.5 1.95 0 0
Other equipment 400 0 0 0 0

5.5 Girder 4428 0 0 21978 475200
Bulkhead 1521 0 0 3155 29918
Asphalt 5580 0 2.22 2.976 446865
Hanger heads 32 ±15.5 1.95 0 0
Other equipment 400 0 0 0 0

5.8 Girder 4455 0 0 22599 483300
Bulkhead 1527 0 0 3372 30462
Asphalt 5580 0 2.23 2.976 446865
Hanger heads 32 ±15.5 1.96 0 0
Other equipment 400 0 0 0 0

6.1 Girder 4482 0 0 23031 491400
Bulkhead 1532 0 0 3533 31317
Asphalt 5580 0 2.23 2.976 446865
Hanger heads 32 ±15.5 1.96 0 0
Other equipment 400 0 0 0 0
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Table 4.4: Moments of inertia used in the FEA for the cross-sections with
IT = 31 m4. The orientation angle was 0◦ for all components.

Height Inertia Linear ey ez I11 I22
[m] component mass [kg/m] [m] [m] [kgm2/m] [kgm2/m]

5.5 Girder 4482 0 0 25083 488700
Bulkhead 1669 0 0 3652 34265
Asphalt 5580 0 2.43 2.976 446865
Hanger heads 32 ±15.5 2.15 0 0
Other equipment 400 0 0 0 0

5.8 Girder 4482 0 0 25974 491400
Bulkhead 1671 0 0 3959 33465
Asphalt 5580 0 2.42 2.976 446865
Hanger heads 32 ±15.5 2.15 0 0
Other equipment 400 0 0 0 0

6.1 Girder 4509 0 0 26757 496800
Bulkhead 1677 0 0 4244 33465
Asphalt 5580 0 2.43 2.976 446865
Hanger heads 32 ±15.5 2.15 0 0
Other equipment 400 0 0 0 0

6.4 Girder 4536 0 0 27405 504900
Bulkhead 1683 0 0 4487 34360
Asphalt 5580 0 2.43 2.976 446865
Hanger heads 32 ±15.5 2.16 0 0
Other equipment 400 0 0 0 0

6.7 Girder 4563 0 0 27810 513000
Bulkhead 1687 0 0 4663 35300
Asphalt 5580 0 2.44 2.976 446865
Hanger heads 32 ±15.5 2.16 0 0
Other equipment 400 0 0 0 0

7.0 Girder 4590 0 0 27972 523800
Bulkhead 1690 0 0 4746 36259
Asphalt 5580 0 2.44 2.976 446865
Hanger heads 32 ±15.5 2.17 0 0
Other equipment 400 0 0 0 0
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4.3 Modal properties

A modal step was performed on each of the global element models. One hun-
dred modes were extracted with their corresponding natural frequencies. Mode
shapes determined to be less relevant for the global response of the girder
included modes dominated by oscillations of cables and towers. These were
excluded for most of the analyses. Each mode shape was described as either
horizontal (H), vertical (V) or torsional (T), as well as symmetric (S) or asym-
metric (A). This description complied with the motion of the girder. The nat-
ural frequencies of the first symmetric and asymmetric motion, in each of the
three directions, are listed in Table 4.5 for all cross-sections.

A list of the first 15 most relevant natural frequencies for all girders can be
found in Appendix B. Along with the natural frequencies is a visualization of
the mode shapes in three directions. When choosing the most relevant torsional
mode shapes, similar mode shapes with almost the same natural frequencies
were observed for symmetric and asymmetric shapes. The modes with the
largest excitation were chosen as the most relevant modes.

The first 15 most relevant mode shapes of the global element model are
shown in Figure B.1. This figure shows the result of the FEA of the cross-
section with H = 5.5 m and IT = 26 m4. Mode shapes for other cross-sections
were similar.

Natural frequencies of similar modes for different girder heights were com-
pared. This was done by plotting the natural frequencies against the height
for both parameterizations. This is shown in Figure 4.5. The measurement
points are indicated by a circle. Lines between measurement points are not
an interpolation. They give information of which frequencies that have similar

Table 4.5: Natural frequencies in Hz for the first horizontal, vertical and
torsional modes, both symmetric and asymmetric, for all models.

IT H Description of mode
[m4] [m] 1HS 1HA 1VS 1VA 1TS 1TA

26 4.9 0.0573 0.1442 0.1439 0.1095 0.4148 0.4756
5.2 0.0573 0.1438 0.1442 0.1096 0.4142 0.4756
5.5 0.0574 0.1443 0.1444 0.1097 0.4141 0.4758
5.8 0.0575 0.1450 0.1446 0.1098 0.4139 0.4758
6.1 0.0576 0.1457 0.1447 0.1098 0.4135 0.4753

31 5.5 0.0577 0.1450 0.1452 0.1100 0.4239 0.5072
5.8 0.0577 0.1453 0.1455 0.1101 0.4236 0.5070
6.1 0.0578 0.1457 0.1457 0.1102 0.4234 0.5071
6.4 0.0579 0.1464 0.1459 0.1103 0.4230 0.5069
6.7 0.0580 0.1471 0.1459 0.1103 0.4222 0.5054
7.0 0.0581 0.1481 0.1460 0.1104 0.4214 0.5037
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Figure 4.5: Comparison of natural frequencies of the first 15 most relevant
modes. Colour specific lines are not to be interpreted as interpolations.

mode shapes and the direction of that mode shape.
The figures show that the natural frequencies varied little between heights

within the same parameterization. Natural frequencies related to the hori-
zontal and vertical motion had a slight increase in value as the cross-section
height increased. The trend was opposite for natural frequencies related to tor-
sional motion, which had a slight decrease as the cross-section height increased.
These trends were more prevalent for higher natural frequencies. Natural fre-
quencies for the cross-sections with IT = 26 m4 were, in general, lower than
natural frequencies for the cross-sections with IT = 31 m4, for girders with
the same height.

The percentage increase between the girders with the lowest and highest
natural frequencies was calculated to quantify the difference between the nat-
ural frequencies. This was done for the first 15 most relevant mode shapes
for both parameterizations. Table 4.6 lists these values. The increase was no
higher than 2.28%, 3.30% and 0.71% for the horizontal, vertical and torsional
directions, respectively. In the vertical direction, the percentage increase ten-
ded to increase as the natural frequency increased. The exception was the
mode 2VS.

The modal properties of the cross-sections with IT = 31 m4 were compared
to the results from 2020 [1] to investigate discrepancies as a result of the change
of design concept. For vertical and torsional mode shapes, the differences in
modal properties were minor. The changes in design led to larger differences
for the horizontal modes. Eigenfrequencies were reduced, especially for higher
frequencies.

4.4 Effective thickness of transverse panel concept
The effective thickness of 22.5 mm was the same thickness chosen by Dr. techn.
Olav Olsen for the sandwich panel concept. Due to the change in design to the
transverse panel concept, simple analyses regarding the axial stiffness of the
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Table 4.6: The percentage increase between the girders with the lowest and
highest natural frequencies of the first 15 most relevant mode shapes for both
parameterizations.

Direction Description IT = 26 m4 [%] IT = 31 m4 [%]

Horizontal 1HS 0.49 0.78
1HA 1.33 2.14
2HS 1.42 2.28
2HA 1.23 1.90

Vertical 1VA 0.28 0.29
1VS 0.53 0.54
2VS 0.10 0.08
2VA 1.12 1.14
3VS 1.49 1.52
3VA 2.07 2.05
4VS 2.52 2.47
4VA 2.95 2.85
5VS 3.30 3.16

Torsional 1TS 0.31 0.57
1TA 0.12 0.71

top panel were conducted. Tests were performed with different placement of
load and boundary conditions. This allowed for axial stiffness calculations in
the longitudinal and transverse directions. The top deck panel was modelled in
Abaqus using shell elements with varying thickness, following the dimensions
from Figure 3.4a. The section models were 4×4 meters.

Boundary conditions and loading are shown in Figures 4.6 and 4.7 for
investigation of axial stiffness in the longitudinal and transverse directions,
respectively. For both cases, deformation was allowed in the loading direction
only. Pressure load was applied at one end of the section model, while the

Z

Y

X

(a) Unloaded.

Z

Y

X

(b) Loaded.

Figure 4.6: Placement of boundary conditions and load, in order to invest-
igate axial stiffness in longitudinal direction.
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Figure 4.7: Placement of boundary conditions and load, in order to invest-
igate axial stiffness in transverse direction.

opposite end was fixed in all directions.
The test with loading in longitudinal direction revealed an effective thick-

ness of 38.1 mm, while the transverse loading resulted in effective thickness
equal to 29.4 mm. The stiffness was lower in the transverse direction, but the
calculated effective thickness of 29.4 mm was larger than the thickness used in
calculations for the torsion constant. Reaction forces and deformations used
in the calculations of effective thickness are given in Appendix C.

The effective thickness of 22.5 mm was conservative for the top panel
regarding axial stiffness. This does not guarantee that the choice of torsion
constant was conservative. However, Dr. techn. Olav Olsen analysed a section
of the transverse panel concept with an outer shape equal to the girder with
H = 5.5 m and IT = 31 m4. The torsion constant was found to be 40.6 m4,
considerably larger than the torsion constant used in this thesis [83].

The simplification with effective thickness and the resulting cross-sectional
properties was an uncertainty when calculating the modal properties. In or-
der to find the structural properties of the cross-sections more accurately,
finite element models of the sections covering a certain span would have been
needed, which is what Dr. techn. Olav Olsen did in their report. Although
more accurate, this was not included in this thesis as a time-saving measure.
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Wind Tunnel Testing

The experiments presented in this thesis were conducted in the wind tunnel
at the fluid mechanics laboratory at NTNU. The processes of producing the
section models and performing the tests are described in this chapter.

5.1 Section models

The girders chosen and described in Chapter 3 were produced in a scale of
1:70. In order to achieve section models that were both stiff and light, the
material Divinycell H was used, which provided these properties [93]. Each
section was made out of two plates of Divinycell, which were glued together.
The assembled sections were milled to the desired cross-section shapes. Before
assembly, each plate was milled such that an aluminium pipe could be placed
inside the models. The aluminium pipes provided extra stiffness to the models.
The pipes had an outer diameter of 50 mm, and a wall thickness of 1 mm.
In addition, two extra cylinders were carved out of the plates as a weight
reduction measure. Figure 5.1 shows one of the models during and after the
milling process.

(a) Milling of section model. (b) Finished section model.

Figure 5.1: Cross-section model during and after milling.

45
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(a) Tuned mass damper. (b) Adjustment opening.

Figure 5.2: Tuned mass damper mounted in a section model.

A TMD was placed in the section models with IT = 26 m4. The damper
was built out of a roll of coins connected to a cylindrical timberpiece with
a rod. The operating frequency range of the damper could be changed by
adjusting the distance from the timberpiece to the coin-mass. The mass ratio
of the TMD was 2%. In the top part of the section model, above the TMD,
an opening was milled in the section models. This enabled adjustment of the
TMD. The TMD is shown in Figure 5.2. Coarse tuning of the damper resulted
in a default distance between the timberpiece and the nearest part of the
coin-mass of 6 cm. This corresponded to a natural frequency of about 12.5 Hz.

The milling process was performed by a CNC milling machine. The ma-
chine used Matlab [94] codes written by our supervisor to produce the section
shapes. The input for this code was the coordinates for the seven points which
defined the cross-section (Figure 3.6). The process was guided by Gøran Lor-
aas.

5.1.1 Modelling details and guide vanes

Fences were added to the section models in order to increase the reliability of
the results. The fences used in this thesis were produced in 2020 for testing
of cross-sections with IT = 31 m4 [1]. These were also milled by the CNC
machine.

Guide vanes were designed based on drawings provided by NPRA and
previously designed guide vanes for a section model of the Hardanger Bridge.
Figure 5.3 shows one of the sections designed in SolidWorks [95]. The guide
vanes were 3D-printed, limiting the thickness of the elements to be no smaller
than 1 mm. The total length of one element was 295 mm, while the centre
distance between each vertical plate was 42.14 mm. Five different designs
were made for the guide vanes, such that the angle of the inclined parts was
approximately equal to θ for each cross-section. The angles used were 17◦, 20◦,
25◦, 31◦ and 36◦. For each bridge section model, a total of 18 guide vanes were
used, nine on each side.
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Figure 5.3: 3D-drawing of a guide vane.

(a) Section model clamped to a load cell.
The load cell was bolted to an actuator.

(b) Full section model mounted. The air
outlet is seen in the back.

Figure 5.4: Mounting of a section model in the wind tunnel.

To investigate the effect of the guide vanes, the cross-sections produced
the year prior to this thesis [1] were tested with the inclusion of guide vanes.

5.2 Experimental setup

The rig was a forced vibration rig, similar to a setup developed at the Depart-
ment of Structural Engineering at NTNU in 2017. It was designed to move a
section model in arbitrary motion. Consequently, real bridge motion is more
easily imitated, thus reducing the drawbacks of the forced vibration test com-
pared to the free vibration test. It was reported on excellent performance of
the rig setup [26].

The movement in the forced vibration setup was caused by two 3-DOF
actuators. Two linear motion slides allowed for movement of ±100 mm in the
horizontal and vertical directions, while servo motors drove torsional motion
of ±90 degrees. Bolted to the actuators were load cells. They measured three
forces and three moments at each end of the section model. The section models
were clamped to the load cell in each end. This setup is shown in Figure 5.4a.

The wind tunnel was a low-speed closed-loop, driven by a 220 kW fan
[96]. Its test area was 2.7 m wide, 1.8 m high and 11.1 m long. The height of
the test area allowed for section models to be placed outside the area where
friction between the air and the boundaries affected the wind velocity. Hence,
boundary layer flow on the floor and in the ceiling was not an issue in the
experiments. The section models were made to span the entire width of the
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Table 5.1: Tests performed on every cross-section in the wind tunnel. Wind
speeds were approximate.

Purpose Motion Wind speed [m/s] Amplitude

Vortex shedding None 0-13 None
Damping Free decay 0 None
Static coefficients Angular steps 0, 6, 8, 10 8◦
ADs Horizontal harmonic 0, 6, 8 20 mm
ADs Vertical harmonic 0, 6, 8 10 mm
ADs Torsional harmonic 0, 6, 8 1◦

test area, which excluded the need for end plates. As the length of the section
models was 2.7 m, the boundary layer effect on the walls of the test area was
considered negligible.

Thin plates with circular holes were mounted around the load cells to min-
imize the openings in the wind tunnel. This was done to secure two-dimensional
wind flow by preventing wind from flowing in or out of the tunnel. The plates
can be seen in Figure 5.4b. They were created thin enough not to reduce the
test area, which minimized disturbances of the wind flow.

The blockage ratio was calculated to 5.6% for the tallest section model.
Thus, no actions were taken to account for blockage effects.

5.3 Test description

For each section model, four different test types were performed. The tests
performed on the section models are summed up in Table 5.1.

Vortex shedding tests were conducted in order to discover wind velocities
where VIV occurred. The wind speed was gradually increased while monitoring
the movement of the model. No forced motion was prescribed to the model
during the vortex shedding tests. Wind speeds where significant vibrations
were observed were avoided in the following tests.

Free decay tests were performed to investigate the damping properties of
each section model. The movement of the model was initiated by knocking on
the top deck in still-air.

Quasi-steady tests were necessary to identify static coefficients. The tests
were conducted by slowly rotating the section model about its length axis and
monitoring the resulting forces. These tests were performed for several wind
speeds in order to investigate a possible dependency on Reynolds number. The
amplitude of the torsional rotation was eight degrees. The motion history of
this test is shown in Figure 5.5.

Tests with a harmonic motion of the section models were performed in
three different directions; horizontal, vertical and torsional. The purpose was
to identify the aerodynamic derivatives for each model. Similar to the quasi-
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Figure 5.5: Quasi-steady motion history used in the wind tunnel for the
purpose of estimating static coefficients.

steady tests, the harmonic vibration tests were performed for different wind
speeds, including a still-air test. The still-air tests were performed in order
to subtract inertia forces from the calculations. Thus, the wind forces were
isolated. The time series of the harmonic movements included movement with
several different frequencies to acquire results for a broader band of reduced
frequencies. These frequencies were 0.25, 0.50, 0.77, 1.1, 1.4, 1.7, 2.0 and 2.5 Hz.
The motion histories of the harmonic vibration tests are shown in Figure 5.6.
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(a) Horizontal motion.
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(b) Vertical motion.
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(c) Torsional motion.

Figure 5.6: Harmonic motion histories used in the wind tunnel for the pur-
pose of estimating ADs.





Chapter 6

Results and Discussion

Processed results from the wind tunnel tests are presented in this chapter.
Gaussian process regression has been utilized to predict the behaviour of aero-
dynamic derivatives in areas without data points. Stability limit calculations
have been performed on all cross-sections to estimate the critical wind velocity
of each cross-section. The buffeting response was calculated at three locations
on the bridge. Matlab scripts provided by our supervisors aided the analyses.
Discussion of results is included.

6.1 Vortex induced vibrations

Vortex induced vibrations were observed for some of the section models, espe-
cially those with lower girder heights. Wind speed, vertical forces, and stand-
ard deviation of vertical forces and normalized lateral forces of all sections are
seen in Appendix D. The plots for the cross-sections with IT = 31 m4 include
the forces measured both with and without guide vanes installed, where the
latter results are from the tests performed in 2020 [1]. Instalment of guide
vanes was seen to be effective for all cross-sections with IT = 31 m4, except
the girder with H = 5.5 m. For all other girders, VIV was reduced compared
to the results from 2020. The results showed that VIV was a more significant
problem for the cross-sections with IT = 31 m4, particularly the two lowest
girders. Lower cross-sections were less streamlined than taller cross-sections,
which likely led to larger transverse forces due to the separation of wind flow.
This explains the larger presence of VIV observed for the lower girders. The
reason for the relatively small vibrations observed for the cross-sections with
IT = 26 m4 was likely the instalment of TMDs. Since the TMDs were installed
in the sections with IT = 26 m4 only, their influence could be observed. It is
believed that this influence was significant, which is supported by the observa-
tions done during free decay tests. The influence of the TMDs should only be
considered for the section models and not the full scale bridge design. A full-
scale TMD design for the Langenuen Suspension bridge is far more complex
than the simple installation made for the section models. In most cases, the
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Figure 6.1: Measured forces during the free decay test of a section model
and the estimated corresponding damping curve.

Table 6.1: Damping ratio and logarithmic decrement of section models es-
timated from the free decay tests in the wind tunnel.

IT [m4] H [m] δ [-] ζ [%]

26 4.9 0.0565 0.90
5.2 0.0415 0.66
5.5 0.0369 0.59
5.8 0.0333 0.53
6.1 0.0364 0.58

31 5.5 0.0158 0.25
5.8 0.0175 0.28
6.1 0.0206 0.33
6.4 0.0195 0.31
6.7 0.0183 0.29
7.0 0.0210 0.33

actions taken to suppress VIV in the wind tunnel were considered effective.
The later tests were performed successfully for all section models by varying

the wind speed such that VIV was avoided. The gathered data was considered
to be of a quality that was satisfactory for further analyses.

Figure 6.1 shows a part of a time series from the free decay test of one sec-
tion model, with the estimated damping curve plotted along with the measured
forces. The theory presented for estimation of damping properties based on
displacement measurements is valid for forces as well. Thus, damping prop-
erties of the section models were extracted. The logarithmic decrement and
damping ratio of all section models are listed in Table 6.1.

Some uncertainty was related to the estimation of these parameters since
the time series chosen varied between cross-sections. Decreasing or increasing
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the part of the time series used to estimate the damping properties would
have led to small changes in the results. Nevertheless, the section models with
TMDs installed had a larger damping ratio than those without TMDs. The
logarithmic decrement was the only parameter in the equation for Scruton
number, which differed significantly for the section models. Therefore, the
Scruton number of the cross-sections without TMDs was lower than that of the
cross-sections with TMDs. This result partially explained the more significant
VIV problem observed for the section models with IT = 31 m4.

The Scruton number was estimated for the girder with H = 5.5 m and
IT = 31 m4 for both the section model and the global bridge model. This
was the cross-section where the greatest VIV-problem was observed. For the
bridge, ζ was assumed to be equal to 0.5%. The calculated Scruton number
was equal to 7.25 and 30.30 for the section model and the bridge, respectively.
The higher Scruton number calculated for the bridge means that the vibrations
observed in the wind tunnel are less likely to occur for the bridge. Calculations
were performed for the other cross-sections as well, where the same trend was
observed.

6.2 Static coefficients

The static coefficients were obtained with the quasi-steady test displayed in
Figure 5.5. Figures 6.2 and 6.3 display the static coefficients of the cross-
sections with IT = 26 m4 and IT = 31 m4, respectively. The coefficients of
drag, lift and moment were plotted as functions of the flow of incidence α,
with a maximal inclination of eight degrees. All coefficients were plotted for
three different wind speeds. The wind speeds varied for each model to avoid
VIV.

There were some differences for the considered section models, but the
static coefficient curves were shape-wise similar for different heights. The drag
coefficients showed a close to parabolic behaviour, while the lift and moment
coefficients were close to linear functions. There were some disturbances to the
linearity, especially for the lift coefficients at α ≈ 0, and these disturbances
became more significant for taller cross-sections.

The lift coefficient was negative for all sections when the flow of incidence
was below zero. For a specific positive value of α, the lift coefficient got positive.
This value varied between cross-sections, but it increased when the height
increased. The reason for the negative lift coefficient is the same effect that
causes positive lift for airfoils. Lift is caused when a solid object in a fluid
deflects the flow around it. The cross-sectional shape of the bridge girder
and the relative angle to the flow α causes the flow to deflect from its original
path. When the flow is curved in one direction, lift is generated in the opposite
direction. The net curvature was upwards at α = 0, causing the lift force to
act downwards, defined as negative lift. At some point, α got so large that the
flow was deflected the other way around the section models. The net curvature
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-8 -6 -4 -2 0 2 4 6 8
0.65

0.7

0.75

0.8

0.85

0.9

0.95

-8 -6 -4 -2 0 2 4 6 8
-0.8

-0.6

-0.4

-0.2

0

0.2

-8 -6 -4 -2 0 2 4 6 8
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V=10.1

V=8.4

V=6.4

(d) H = 5.8 m.
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Figure 6.2: Static coefficients measured at three different wind speeds for
the cross-sections parameterized with IT = 26 m4.
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(b) H = 5.8 m.
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Figure 6.3: Static coefficients measured at three different wind speeds for
the cross-sections parameterized with IT = 31 m4.
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was changed from upwards to downwards; thus, the direction of the lift force
changed to act upwards, defined as positive lift [97–99].

The static coefficients used in the analyses were extracted for α = 0. The
drag coefficients decreased for taller girders, varying from 0.95 to 0.59. In
general, the lift coefficients became more negative for taller girders, from -0.16
to -0.34. CM was slightly above zero for all sections, varying from 0.01 to 0.04.

Some differences for different wind velocities were observed, which implied
a dependency on Reynolds number. This was most clear for CD, where the
parabolic shapes showed shifts for different wind velocities. The dependency
on Reynolds number meant that results from the wind tunnel tests could not
be scaled up to higher velocities without introducing uncertainty. Differences
were also observed for CL and CM of taller section models, where minor dis-
crepancies were seen when α was close to zero degrees.

6.3 Aerodynamic derivatives

The harmonic tests displayed in Figure 5.6 resulted in 16 data points of all 18
ADs for each cross-section. These data points are plotted against its reduced
frequency K in Appendix E. For each of the ADs, a third-degree polyno-
mial was fitted to the data points. The polynomials are also plotted in the
figures. Outside the area of experimental observations, the polynomials were
constrained to a constant value. This limitation was applied to avoid prediction
of the ADs in areas where no data points had been observed.

The fitted polynomials of both parameterizations were plotted against each
other to illustrate how the ADs varied between cross-sections. This is shown
in Figures 6.4 and 6.5 for the cross-sections with IT = 26 m4 and IT = 31 m4,
respectively.

The shape of the polynomial functions of A∗1, identified as the most critical
AD regarding coupled flutter, changed as the height increased. The polyno-
mials were almost linear or downward-sloping parabolas for the lower girder
heights. Higher girders had upward-sloping parabolic functions of A∗1. This
tendency was visible for both parameterizations. Despite these differences, the
values of A∗1 were similar for all cross-sections when K was larger than 0.5.

Changes in the polynomial shapes were also observed for H∗3 . The poly-
nomials were linear or slightly upward-sloping parabolic functions for the
lower girders, while the functions were downward-sloping parabolas for higher
girders. This was seen for girder heights equal to 6.4 - 7.0 m with IT = 31 m4,
and for heights 5.8 - 6.1 m with IT = 26 m4. This type of development, where
the shape of the polynomial changed for higher girders, was visible for other
ADs as well, including the other critical ADs; A∗2, A∗3 and H∗1 .

H∗1 was negative for all girder heights with a torsion constant IT = 26 m4.
The only exception was H = 6.1 m for low values of K, where H∗1 was slightly
positive. A change in the polynomial shape of H = 5.8 - 6.1 m was observed.
This change was also present for the taller cross-sections with IT = 31 m4, but
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Figure 6.4: Comparison of ADs of the cross-sections parameterized with
IT = 26 m4.
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Figure 6.5: Comparison of ADs of the cross-sections parameterized with
IT = 31 m4.
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the values differed compared to the values of the cross-sections with IT = 26
m4. For H = 6.7 - 7.0 m, H∗1 attained larger positive values for low reduced
frequencies. Galloping occurs for H∗1 > 0 only, meaning that galloping might
occur for these cross-sections. Compared to the results from 2020, the positive
values of H∗1 were reduced for the cross-sections with H = 6.7 and 7.0 m.

The results of A∗2 were similar to the results of H∗1 . A∗2 was positive for H
= 6.4 - 7.0 m with IT = 31 m4 when K was low. It was also positive for H
= 6.1 m with IT = 26 m4 for low reduced frequencies. Positive values of A∗2
is destabilizing regarding coupled flutter stability, and dynamic instability in
torsion can only occur for positive A∗2-values.

A∗1, A∗3 and H∗3 have either stabilizing or destabilizing effects on flutter
stability depending on their absolute values. The fitted polynomials of all
ADs are plotted in Appendix F along with the ADs given by Theodorsen for
flat plates as a comparison to what can be regarded as high or low absolute
values. For A∗1, the polynomials obtained from wind tunnel testing attained
lower absolute values than A∗1 given by Theodorsen for all section models. The
AD polynomials had therefore a more stabilizing effect than the one provided
for flat plates. The same results were observed for A∗3 and H∗3 , although not
for the entire range of reduced frequencies. For K ≈ 1, the polynomials of A∗3
and H∗3 for all section models attained values similar to, or above the ones
given by Teodorsen. However, for lower reduced frequencies, the polynomials
obtained from wind tunnel testing had lower absolute values than Theodorsen
ADs, and therefore a more stabilizing effect.

From the plots in Appendix E, it is seen that there was a larger amount of
scatter in the obtained data points related to drag (P ∗1 - P ∗6 ) than for the heav-
ing (H∗1 - H∗6 ) and torsional (A∗1 - A∗6) derivatives. This was likely because ADs
only capture linear contributions. Drag coefficients were not linear functions,
which can be observed for the static drag coefficients in Figures 6.2 and 6.3.
Since the lift and moment coefficients had a more linear tendency, the corres-
ponding ADs’ scatter was less than for drag. The critical ADs, A∗1-A∗3, H∗1 and
H∗3 had only small amounts of scatter. Other than for the coefficients related
to drag, the polynomials captured the trend of the obtained data. Therefore,
it was believed that the fitted polynomials represented the behaviour of the
critical ADs well in the range where data points were gathered.

For some of the drag derivatives, the trend of the measured data developed
differently at different wind velocities. This has also been observed previously
[1, 100], and implied a dependency on Reynolds number, which caused uncer-
tainty in the results due to the same scaling effect mentioned in Section 6.2.
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6.4 Gaussian process regression

GPR was implemented on the ADs with height H and reduced frequency
K as varying parameters. The squared exponential function was used as the
covariance function. This read

K

([
∆K
∆H

])
= σ2

p · exp

−1
2

[
∆K
∆H

]T [
L−2

1 0
0 L−2

2

] [
∆K
∆H

]+ σ2
n, (6.1)

where θ =
[
σp L1 L2 σn

]
are hyperparameters.

Initially, the upper bound of all hyperparameters was set to 10, while
the lower bound of all hyperparameters was set to 0. Some ADs experienced
large amount of scatter, the most prevalent being P ∗1 for both parameteriz-
ations. The predicted surfaces of this AD were dominated by local relations
between nearby points, due to L1 being low. To prevent the local relations
from being too dominant, the lower bound of L1 was changed to 0.1 for all
cross-sections. Thus, the lower and upper bound were θlb =

[
0 0.1 0 0

]
and θub =

[
10 10 10 10

]
, respectively. The hyperparameters were trained

to best fit the data by maximizing the log-likelihood. All hyperparameters
calculated in the GPR are listed in Appendix G.

The predicted surfaces and the prediction uncertainties were plotted for
both parameterizations. For the cross-section with IT = 26 m4, Figures 6.6
and 6.7 show the predicted surfaces and the prediction uncertainties, respect-
ively. For the cross-section with IT = 31 m4, Figures 6.8 and 6.9 show the
predicted surfaces and the prediction uncertainties, respectively. The z-axes of
the uncertainty plots are labelled by the AD the uncertainty belongs to.

Most of the predicted surfaces were smooth. Least smooth were the surfaces
predicted for P ∗1 , where local relations dominated. This was reflected by L1,
which, as seen in Tables G.1 and G.2, attained the lowest values for P ∗1 . The
prediction uncertainties of P ∗1 were affected by the low values of L1, as they
varied noticeably between heights with and without data.

Disregarding P ∗1 , the prediction uncertainty of all ADs was most prominent
in the region whereH was small andK was large, for the cross-sections with IT
= 26 m4. The reason became clear when studying the data points in Figure 6.6.
There were no data points in that region. GPR is effective in interpolation even
when the data points are sparse, just as it was in the region where both H
and K are large. However, in extrapolation, the predictive power deteriorates.

The same effect was seen for the cross-sections with IT = 31 m4. In Fig-
ure 6.8, data points for the largest values of K were situated at the lowest and
tallest heights. In many cases, this resulted in larger uncertainties for large
values of K and heights from 6.0 - 6.5 m. This can for example be seen for H∗2
in Figure 6.9. However, the area with no data points was less prevalent than
for the cross-sections with IT = 26 m4. Thus, if the predicted surface did not
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Figure 6.6: Surface predicted by GPR of the measurement points from the
AD analysis of the cross-section with IT = 26 m4.
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Figure 6.7: Prediction uncertainty by GPR of the predicted surface from the
ADs of the cross-section with IT = 26 m4. The label on the z-axis indicate
which AD the prediction uncertainty belongs to.
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Figure 6.8: Surface predicted by GPR of the measurement points from the
AD analysis of the cross-section with IT = 31 m4.
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Figure 6.9: Prediction uncertainty by GPR of the predicted surface from the
ADs of the cross-section with IT = 31 m4. The label on the z-axis indicate
which AD the prediction uncertainty belongs to.
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capture local relations well, as for P ∗4 , the uncertainty would not necessarily
follow this trend.

Prediction of ADs allow for stability calculations of cross-sections without
performing wind tunnel tests. Estimated ADs can be extracted for any desired
height in the range of tested heights. This can also be done for the static
coefficients by predicting their behaviour in a similar manner. Thus, after a
FEA, all inputs needed for flutter and buffeting analyses are known. Doing
a flutter analysis with the predicted ADs for new cross-sections, followed by
wind tunnel testing of corresponding section models, will serve as the best test
of the quality of the results from the GPR. This was not in the scope of this
thesis; thus, the quality of the surfaces predicted by GPR is discussed based
on the smoothness of surfaces and the prediction uncertainty.

The ADs were predicted satisfactorily, considering the smoothness of the
predicted surface and the low prediction uncertainty. For most ADs, both
global and local relations were well preserved. ADs related to drag experienced
dependency on Reynolds number to a greater extent than those related to
heaving and torsion. This influenced the predicted surfaces, which, in some
cases, could not retain both global and local relations as well.

6.5 Stability limits

The results from the wind tunnel tests and the FEA were used to calculate
critical wind velocities Vcr for each cross-section. Calculations were performed
with the complex flutter analysis. Several mode combinations were tested; the
50 first modes, the first 15 of the most relevant modes, and different com-
binations of symmetric and asymmetric mode shapes. Critical wind velocity
of each mode combination for all cross-sections is listed in Appendix H. The
mode combination with the lowest critical wind velocity for each cross-section
is listed in Table 6.2.

It is seen that all section models fulfilled the design criterion Vcr,d = 76 m/s
for critical wind velocity. The calculations also showed that the critical mode
combination was the same for all cross-sections; the three first symmetrical
vertical mode shapes, along with the first symmetrical torsional mode shape.

The tables in Appendix H show that the mode combinations which in-
cluded the first 50 still-air modes resulted in critical wind velocities lower
than the values listed in Table 6.2, for all cross-sections. The reason for ig-
noring these results when deciding the critical wind velocities was uncertainty
related to these results. As mentioned in Section 4.2, tie constraints were ap-
plied between the connection elements and the hanger elements. Thus, no
rotation was allowed between these elements. Some rotation would have been
more realistic. Therefore, mode shapes that included large excitations in cables
and hangers might have led to unrealistic contributions in the stability calcu-
lations. However, most of the sections passed the critical wind velocity design
criterion of 76 m/s even with the 50 first modes included. The exceptions were
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Table 6.2: Critical wind velocities of the critical mode combination for all
cross-sections.

IT [m4] H [m] Mode combination Critical wind velocity Vcr [m/s]

26 4.9 1-3VS, 1TS 90.56
5.2 1-3VS, 1TS 85.30
5.5 1-3VS, 1TS 91.69
5.8 1-3VS, 1TS 92.98
6.1 1-3VS, 1TS 85.65

31 5.5 1-3VS, 1TS 86.98
5.8 1-3VS, 1TS 88.27
6.1 1-3VS, 1TS 90.17
6.4 1-3VS, 1TS 90.34
6.7 1-3VS, 1TS 81.06
7.0 1-3VS, 1TS 82.04

H = 5.5 m with IT = 26 m4 and H = 7.0 m with IT = 31 m4. For the lat-
ter model, the complex critical mode when combining all still-air modes was
dominated by large cable excitation in the side-spans and was therefore not
relevant for the global response of the bridge girder.

For the section model with H = 5.5 m and IT = 26 m4, the mode com-
binations with the first 50 modes and the first 15 most relevant modes showed
considerably lower stability limits than the other combinations. For these mode
combinations, the critical mode was dominated by the second symmetric hori-
zontal mode. This was believed to have been caused by the polynomials fitted
to the drag-related ADs. The reduced frequencies corresponding to these wind
velocities were outside the range of obtained data. The uncertainty in these
results was therefore considerably increased. This was the main reason for ex-
cluding these combinations when determining the critical mode combination.
Additional uncertainty was related to the scatter in data points and the pos-
sible dependency on Reynolds number mentioned in Section 6.3. Due to the
considerable uncertainty related to these critical wind velocities and the fact
that the results deviated heavily from the other cross-sections, it was decided
that they were not relevant for the assessment of stability limits.

Critical in-wind eigenfrequency ωcr, critical reduced wind velocity Vcr,red
and critical reduced frequency Kcr of all cross-sections are presented in
Table 6.3. The values showed that the calculated critical wind velocities cor-
responded to reduced frequencies which were within the range of obtained
data.

Knowing the reduced frequencies of the calculated critical velocities resul-
ted in an easier comparison of the results between different girders. Approx-
imate values of the ADs taken from Figures 6.4 and 6.5 were used to explain
differences and similarities in the results. Similarities of the critical wind ve-
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Table 6.3: Critical in-wind eigenfrequency, critical reduced velocity and crit-
ical reduced frequency of all cross-sections.

IT [m4] H [m] ωcr [rad/s] Vcr,red Kcr

26 4.9 2.31 1.12 0.89
5.2 2.23 1.09 0.92
5.5 2.19 1.18 0.85
5.8 2.21 1.18 0.85
6.1 2.28 1.05 0.95

31 5.5 2.24 1.10 0.91
5.8 2.22 1.12 0.89
6.1 2.22 1.13 0.88
6.4 2.24 1.12 0.89
6.7 2.33 0.96 1.04
7.0 2.34 0.96 1.04
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Figure 6.10: Estimated critical wind velocity of all cross-sections compared
with the design critical wind velocity of Vcr,d = 76 m/s. The line between
estimated points is not to be interpreted as an interpolation.

locities could partly be explained by investigating A∗1, identified as the most
critical AD regarding coupled flutter instability. The plots of A∗1 showed only
minor variations between the cross-sections for relevant reduced frequencies.
The same was seen for A∗2 and A∗3. Larger differences were observed for the crit-
ical ADs related to heaving. These ADs were therefore more likely to explain
differences between cross-sections than the torsional derivatives.

It was observed that the highest critical wind velocities were found for
the cross-sections with IT = 26 m4. The explanation is likely to be the men-
tioned differences in aerodynamic derivatives, and therefore slightly better
aerodynamic properties for the cross-sections with IT = 26 m4. The differ-
ences between critical wind velocities were however small.

The critical wind velocities listed in Table 6.2 were above the design crit-
ical wind velocity Vcr,d = 76 m/s. This is plotted in Figure 6.10 for both
parameterizations. The line between estimated critical wind velocities indic-
ates the development of the critical wind velocity and is not to be interpreted
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Figure 6.11: Comparison of stability limits for the cross-sections with IT

= 31 m4, with and without guide vanes. Tests without guide vanes were
performed in 2020 [1] and tests with guide vanes were performed for this thesis.
The line between estimated points is not to be interpreted as an interpolation.

as an interpolation. The trend was slightly increasing until a certain height,
where the critical wind velocity estimate decreased. This happened at H =
6.1 m and H = 6.7 m for the cross-sections with IT = 26 m4 and IT = 31
m4, respectively. The exception from this trend was H = 5.2 m with IT =
26 m4. This cross-section had an estimated critical wind velocity which was
94.2% and 93.0% of that of the cross-sections with H = 4.9 m and H = 5.5
m, respectively.

The critical wind velocity estimates of the cross-sections with IT = 31
m4 were compared with estimates from the previous study [1]. This is shown
in Figure 6.11. For the four lower cross-sections, the critical wind velocity
estimates were slightly larger when the cross-sections were tested with guide
vanes. The cross-sections with guide vanes had an estimated critical wind
velocity that was 1.7 - 5.2% larger than those without guide vanes. This may
indicate that the guide vanes had a small contribution to the flutter stability.
However, the finite element models used when estimating the critical wind
velocity had minor differences compared to the models used in 2020. Thus,
conclusions of the influence of guide vanes on flutter stability for these cross-
sections can not be deduced.

Cross-sections with H = 6.7 and H = 7.0 m had an increase in estimated
critical wind velocity of 67% and 102%, respectively. It is not likely that these
large increases can be explained by the relatively small changes applied to
the finite element models. Without guide vanes, the motion instability was
galloping while it was multi-modal flutter with guide vanes. The guide vanes
successfully managed to prevent the separation of wind flow from causing
transverse forces on the section models large enough to cause galloping. This
changed the critical motion instability to multi-modal flutter, which had an
estimated critical wind velocity above the design critical wind velocity. The
result was that all girders with IT = 31 m4 passed the critical wind velocity
criterion.

Figures 6.12 and 6.13 show Argand diagrams for the instability modes of
cross-sections with IT = 26 m4 and IT = 31 m4, respectively. The diagrams
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(b) H = 5.2 m.
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(c) H = 5.5 m.
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(d) H = 5.8 m.
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(e) H = 6.1 m.

Figure 6.12: Argand diagrams of instability modes of the cross-sections para-
meterized with IT = 26 m4.
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(b) H = 5.8 m.
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(c) H = 6.1 m.
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(d) H = 6.4 m.
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(e) H = 6.7 m.
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Figure 6.13: Argand diagrams of instability modes of the cross-sections para-
meterized with IT = 31 m4.
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Figure 6.14: Bar diagrams visualizing the contributions from the included
still-air modes in the critical instability mode for all cross-sections.

show the contributions of the included still-air modes in the critical complex
mode. The non-horizontal direction of the contributions in the diagrams shows
that their values were complex. This was interpreted as shifts between the
modes, causing complex modes where the deformation pattern was not fixed.
The changing pattern occurs due to energy transfer between still-air modes
[101].

The absolute values of the still-air mode contributions in the complex in-
stability modes are shown as bar diagrams in Figure 6.14 for both paramet-
erizations. The first symmetrical torsional mode and the second symmetrical
vertical mode were the two modes that contributed the most to the instability
modes. This is also visualized by the size of the arrows in the Argand diagrams.
A greater contribution from the second vertical mode than the first vertical
mode was also reported for the Hardanger Bridge [52].

To better understand the contributions from the still-air modes, the shape-
wise similarities of modes were checked for all cross-sections. The similarities
of the first, second and third vertical symmetric modes to the first torsional
symmetric mode were 0.39 - 0.40, 0.59 and 0.01 - 0.02, respectively. Thus, the
second symmetric vertical mode is expected to contribute more in the flutter
mode than the first and third. This complied with the results.

Figures 6.15 and 6.16 show the damped eigenfrequency and damping ratio
of the different modes, for the cross-sections with IT = 26 m4 and IT = 31 m4,
respectively. The legend entries in the plots were named based on the still-air
mode that dominated the complex modes. They should not be interpreted as
pure torsional or vertical modes since all the complex modes were affected by
several still-air modes. Damping ratio equal to zero determined the critical
mode. There are only small differences in the plots. This was expected, as the
instability modes were multi-modal flutter with contributions from the same
still-air modes for all cross-sections. However, for the tallest cross-sections, the
damping ratio of the vertical modes started to decrease as the wind velocity
increased. This was most visible for H = 6.7 - 7.0 m with IT = 31 m4, but
was also observed for H = 6.1 m with IT = 26 m4. This was likely due to
the already discussed differences for H∗1 between the cross-sections. A similar
development of the damping ratio of vertical modes was observed in 2020 for



72 Chapter 6: Results and Discussion

the cross-section with H = 6.4 m [1]. It was suggested that this indicated a
transition from multi-modal flutter to galloping, since galloping was observed
for the two tallest girders.
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(d) H = 5.8 m.
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(e) H = 6.1 m.

Figure 6.15: Damping ratio and damped eigenfrequency for the cross-
sections parameterized with IT = 26 m4.
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(b) H = 5.8 m.
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(c) H = 6.1 m.
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(d) H = 6.4 m.
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(e) H = 6.7 m.
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(f) H = 7.0 m.

Figure 6.16: Damping ratio and eigenfrequency for the cross-sections para-
meterized with IT = 31 m4.

6.5.1 Closed-form solution

The same inputs used in the complex flutter analysis were used in the closed-
form solution of the bi-modal flutter analysis. This included ADs and static
coefficients from the wind tunnel tests and the results from the FEA.

The iteration process described for the closed-form solution was used, and
the critical wind velocity was calculated by Equation 2.70. The tolerance level
of two consecutive reduced frequencies was ε = 10−4. Critical wind velocities
Vcr,cf and corresponding critical reduced frequencies Kcr,cf found with this
method are listed in Table 6.4. A logical statement is listed, which indicates
if Kcr,cf was in the range of the observed data of K. Lastly, the critical wind
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Table 6.4: The critical wind velocity Vcr,cf calculated with the closed-form
solution with modes 2VS and 1TS. The reduced frequency which corresponds
to the critical wind velocity is listed as Kcr,cf . It is listed whether or not
Kcr,cf is in range of the reduced frequencies where there were observed data.
Lastly, the critical wind velocity from the complex flutter analysis Vcr with
modes 2VS and 1TS is listed for comparison.

IT [m4] H [m] Vcr,cf Kcr,cf In range Vcr

26 4.9 91.66 0.99 False 113.23
5.2 88.71 1.03 False 102.35
5.5 94.74 0.97 True 106.57
5.8 95.56 0.97 True 106.94
6.1 86.00 1.08 True 100.52

31 5.5 90.66 1.04 True 100.26
5.8 90.32 1.05 True 102.86
6.1 92.58 1.03 True 104.13
6.4 89.05 1.08 True 104.46
6.7 65.11 1.48 False 92.82
7.0 88.66 1.09 True 91.24

velocity from the complex flutter analysis Vcr is listed for comparison. The
results correspond to the mode combination with the first symmetric torsional
mode (1TS) and the second vertical symmetric mode (2VS). For all cross-
sections, these modes had a shape-wise similarity of ψzθ = 0.59.

If Kcr,cf was not in range, the solution of the closed-form analysis had not
converged in an area where data points described the AD functions. It had
converged in the area where the functions were constrained to a constant value.
This made uncertainties of these results too large for them to be considered
as critical wind velocities. The two lowest cross-sections with IT = 26 m4

converged just outside the region of measured K, while the cross-section with
H = 6.7 m and IT = 31 m4 converged further away from the measured reduced
frequencies. Thus, uncertainties were larger for the latter, which was the only
cross-section with a critical wind velocity from the closed-form solution below
the design critical wind velocity.

For all cross-sections where the critical frequency was in range, Vcr,cf was
higher than the design critical wind velocity Vcr,d = 76 m/s. The critical wind
velocity from the closed-form solution was lower than the critical wind velocity
from the complex analysis Vcr. This was expected, as the torsion damping was
neglected. The closed-form critical wind velocities were from 85.2% - 97.2% of
the critical wind velocities from the complex flutter analyses.

The cross-section with H = 6.1 m and IT = 26 m4 had a critical wind
velocity from the closed-form solution which was 9.2% and 10.0% lower than
the critical wind velocities for the cross-section with H = 5.5 m and 5.8 m,
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respectively. This was likely the result of a larger value of h3 for the section
with H = 6.1 m. The other parameters a1, a2 and a3 were similar for all these
cross-sections. The absolute value of Ω (Equation 2.71) was therefore larger
for H = 6.1 m, resulting in a lower critical wind velocity. This effect of h3 is
in compliance with Table 2.1.

Results from the complex flutter analysis, both with the critical mode
combination and with modes 2VS and 1TS, showed a decrease in critical wind
velocity for the cross-section with H = 5.2 m and IT = 26 m4 compared to the
two nearby cross-sections. The results from the closed-form solution complied
with these results, as the cross-section had a critical wind velocity Vcr,cf which
was 96.8% and 93.6% of that of the cross-sections with H = 4.9 m and H =
5.5 m, respectively.

The three other bi-modal mode combinations analysed with the complex
flutter analysis (Appendix H) were also analysed with the closed-form method.
This resulted in critical wind velocities which were larger than for the mode
combination with 2VS and 1TS.

6.6 Buffeting response

The buffeting response of the bridge deck was calculated by a method similar
to the one described in N400 [16]. The single-point autospectra were calculated
by Equation 2.27, which did not include the turbulence length scale. All the
still-air modes from Abaqus were included in the calculations, and the mean
wind velocity was set to 30 m/s, perpendicular to the length axis of the bridge.

The autospectral densities of each cross-section were studied in the lateral,
vertical and torsional directions. This was done at three locations along the
bridge; at the quarter-span ( xL = 0.25), at the half-span ( xL = 0.50) and at the
three-quarter-span ( xL = 0.75). The correlation coefficients and autospectral
density plots at these locations are shown in Appendix I. Figures 6.17 and 6.18
show the buffeting response at half-span for the cross-sections parameterized
with IT = 26 m4 and IT = 31 m4, respectively.

The autospectral densities indicate frequencies that dominate the response.
The peaks in the spectral densities can thus be related to the natural frequen-
cies of the system, listed in Appendix B. Since Figures 6.17 and 6.18 show the
spectral density at the half-span, the asymmetric mode shapes were expected
not to be visible, as they have little to no excitation at this location. This
complied with the autospectral densities.

All the natural frequencies related to symmetric motion from the tables
in Appendix B were found as peaks in Figures 6.17 and 6.18. Some addi-
tional peaks were found in the spectra of lateral and torsional motion. The
natural frequencies related to the symmetric lateral motion were found in the
autospectrum for torsional motion and vice versa. The horizontal motion in
torsional mode shapes was seen in the table and was therefore expected. Al-
though not visible in the tables in Appendix B, closer evaluation of the mode
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Figure 6.17: Autospectral densities of the buffeting response in three dir-
ections at the half-span, for the cross-sections parameterized with IT = 26
m4.
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Figure 6.18: Autospectral densities of the buffeting response in three dir-
ections at the half-span, for the cross-sections parameterized with IT = 31
m4.



78 Chapter 6: Results and Discussion

shapes revealed that the horizontal modes had a torsional contribution. The
peaks at the lateral eigenfrequencies observed in the torsional spectra were
therefore reasonable. At the frequency of mode 1TS (2.60 - 2.66 rad/s), two
peaks were found in the autospectral densities of the torsional direction. This
complied with observations from the FEA. As mentioned in Section 4.3, two
modes with similar motion were found, where one had less excitation than the
other, only separated by about 0.08 rad/s. This explained the two peaks. This
was also the case at the frequency of mode 1TA, where two peaks are visible
in the spectral density plots at the quarter-span and the three-quarter-span
in Appendix I.

The peaks in the autospectra at the quarter-span and the three-quarter-
span from Appendix I corresponded well to the natural frequencies and mode
shapes from Appendix B. Most of the asymmetric mode shapes were visible
as peaks in these plots. Exceptions were modes with little or no excitation
at these locations, for example 2VA and 2HA. The mode 2HA had a natural
frequency of about 3.37 rad/s. There were no peaks at this frequency in the
spectral densities at the quarter-span and the three-quarter-span, as expected.

At all three locations, a peak was found in the autospectrum for both the
lateral and torsional directions, at a frequency of about 1.53 rad/s. At the half-
span, there was a peak at 3.29 rad/s in the lateral direction. Neither of these
frequencies corresponded to any of the natural frequencies in Appendix B. Os-
cillation of the main cables, which led to excitation of the girder, was believed
to cause these peaks. Such modes were found in the FEA but not included as
the most relevant mode shapes for the global response of the girder.

The autospectral densities were similar for all cross-sections with the same
parameterization. This was expected, since the differences in natural frequen-
cies were small. Larger peaks in the autospectral density of the lateral response
were observed for the cross-section with H = 5.5 m and IT = 26 m4 than for
the other cross-sections. The reason for these observations was likely the poly-
nomials fitted to the drag-related ADs, which also caused low stability limits
when including horizontal mode shapes in the complex flutter analysis for this
cross-section.

The differences of spectral densities within the same parameterization were
most prominent in the vertical direction, as seen in Figures 6.17 and 6.18.
Since the variance of the response is the integral of the spectral density, this
difference was expected to be seen in the plots of the standard deviation of
the displacement response.

The standard deviation of the displacement response in the lateral, vertical
and torsional directions for both parameterizations are shown in Figure 6.19.
Lateral displacement and torsional rotation had the largest standard deviation
in the center of the bridge deck at x = 0, while the standard deviation in the
vertical direction was largest for x close to the quarter- and three-quarter-
spans. This was likely due to the lack of a symmetric vertical mode shape
with only one half-wave. Thus, the first vertical mode shape has little contri-
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Figure 6.19: The standard deviation of the displacement response in the
lateral, vertical and torsional directions, for all cross-sections.

bution to vertical displacement at x = 0. This shape of the standard deviation
curve for vertical response has been observed previously, for example for the
Lysefjord Bridge [102].

The largest standard deviation in lateral direction σy = 0.61 m was ob-
served for H = 4.9 m with IT = 26 m4. The lowest value was equal to 0.49
m for H = 7.0 m with IT = 31 m4, which was a reduction of 19.7% from the
maximum value. In the vertical direction, the standard deviation was smaller
than in the lateral direction for all cross-sections. The largest value of σz was
found to be 0.42 m for H = 5.2 m with IT = 26 m4, while σz was smallest for
H = 7.0 m with IT = 31 m4, equal to 0.18 m. This was a reduction of 57.1%
compared to the largest value, thus a much larger reduction than for lateral
displacement. The results of the standard deviation in the torsional direction
were similar to the results of the lateral direction. The standard deviation was
largest for H = 4.9 m with IT = 26 m4 and smallest for H = 7.0 m with IT =
31 m4, where σθ was 0.24◦ and 0.18◦, respectively. Thus, a reduction of 25%.

The results showed that the standard deviation of displacements, espe-
cially in the lateral direction, was not strictly decreasing as the girder height
increased. Although Iy and Iz increased as the girder height increased, these
changes mainly contributed to the differences in modal properties. It is seen
in Section 4.3 that these differences were small. Therefore, the main contrib-
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Figure 6.20: Normalized static forces for all cross-sections.

utors to the differences in standard deviation were likely the static coefficients
included in Bq, and the ADs included in Cae and Kae.

The static coefficients CD, CL and CM were multiplied with H, B and B2,
respectively, and plotted in Figure 6.20. This was done to compare the drag,
lift and torsional wind forces acting on the different cross-sections. The plots of
the normalized drag forces supported the explanation that the large standard
deviation in lateral displacement response for H = 4.9 m with IT = 26 m4

partly was caused by the large drag coefficient. The static drag coefficient at
α = 0 was largest for H = 4.9 m with IT = 26 m4, CD = 0.95. It was smallest
for H = 7.0 m with IT = 31 m4, CD = 0.59. The other sections with IT =
26 m4 had little variation in normalized drag forces and standard deviation in
the lateral direction. It was also observed that the cross-section with H = 6.1
m, which had the largest σy of the sections with IT = 31 m4, had the largest
normalized drag forces of these sections.

The same pattern was not observed for the normalized lift and moment
forces. If this was the case, H = 4.9 m with IT = 26 m4 should have been the
cross-section with the largest standard deviation in the vertical direction.

For vertical displacement, a much larger relative difference in standard
deviation was observed between the largest and smallest value. One of the
reasons was likely the larger variation of Iy than of Iz between the cross-
sections, seen in Table 4.1. Iy for H = 7.0 m with IT = 31 m4 was 138.1% of
Iy for H = 4.9 m with IT = 26 m4. The difference of Iz was only 110.8%.

Another observation from σz was that some of the girders with IT = 31
m4 had a larger standard deviation than the girders with the same height and
IT = 26 m4. This was the case for girders with H = 5.8 m. The girder with
IT = 31 m4 and the girder with IT = 26 m4 had σz equal to 0.41 m and
0.30 m, respectively. A combination of several factors was believed to be the
explanation behind this observation. The derivative of the static lift coefficient
C

′
L was larger for the girder with IT = 31 m4 than for the girder with IT =

26 m4. Thus, the buffeting lift force became larger. However, if this was the
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only explanation, the cross-section with H = 5.5 m and IT = 31 m4 would
have had larger σz than the cross-section with H = 5.8 m and IT = 31 m4,
since C ′

L was smaller for the latter cross-section. Another possible contribution
to this observation was the differences in H∗1 , contributing to the damping of
vertical modes. For the girders with H = 5.8 m, H∗1 was more negative with
IT = 26 m4 than with IT = 31 m4, when K was larger than 0.75. Thus, the
aerodynamic damping of vertical motion was larger for the section with IT =
26 m4 in this range of K.

The correlation coefficients in Appendix I are measures of the linear de-
pendency between the response in different directions [6]. When comparing the
values of the coefficients, only the absolute values were studied. The coefficients
ρyz and ρzθ were in general low, usually lower than 0.2 and 0.3, respectively.
For all cross-sections except H = 7.0 m with IT = 31 m4, ρyz was lower than
ρzθ. The absolute value of ρyθ was 0.5 - 0.6 for all cross-sections. The coef-
ficients were largest at the half-span. This was true for all coefficients and
cross-sections.

The cross-sections with IT = 31 m4 experienced a significant increase of
ρyz for the three tallest cross-sections. It was largest at half-span for the cross-

section with H = 7.0, where
∣∣∣∣ρyz| xL=0.5

H=7.0m

∣∣∣∣ = 0.35. The cross-sections with IT
= 26 m4 also experienced an increase of ρyz for the two tallest cross-sections,
but this increase was smaller than that of the cross-sections with IT = 31 m4.
The increase occurred between H = 5.5 - 5.8 m, whereas for the cross-sections
with IT = 31 m4, the increase was gradual from H = 6.1 m.

For any given cross-section, ρrr at the quarter- and three-quarter-spans
were close to identical. The maximum increase or decrease of any entry was
0.1%. This was expected due to symmetry.

The low correlation between lateral and vertical response is regarded
as positive when evaluating the cross-sections. Large correlation coefficients
would have meant significant displacements in both directions simultaneously,
which would cause bending about both axes.

6.7 Further discussions

When comparing the quality of different cross-sections, one can not only con-
sider displacements and critical wind velocities. The stresses are also import-
ant. Since the distance from the cross-sectional neutral axis is further away
from the top and bottom of the girder for the taller cross-sections, the stresses
they experience might be higher than what the lower cross-sections experience.
Detailed calculations regarding the standard deviation of the moment for the
cross-sections were not in the scope of this thesis. However, the elastic moment
capacities about the y-axis of all cross-sections are listed in Table 6.5. These
results confirmed that moments of the same magnitude cause higher stresses
in the taller cross-sections than for the lower ones. Stress calculations will also
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Table 6.5: Elastic moment capacity MRk,el of all cross-sections. The calcu-
lations were based on the simplified cross-sections with effective thickness t =
22.5 mm.

IT [m4] H [m] MRk,el [MNm]

26 4.9 652.6
5.2 605.3
5.5 567.3
5.8 532.5
6.1 499.1

31 5.5 693.4
5.8 649.6
6.1 612.1
6.4 580.8
6.7 543.9
7.0 511.8

be essential for fatigue, which was problematic for the sandwich panel concept.
For further analyses of the produced models, it would be preferable to focus

on the cross-sections made with IT = 26 m4. The material usage is slightly
lower for these cross-sections, although the differences are small between cross-
sections due to the fixed width of the girders. The main argument for choosing
the cross-sections with lower IT is that girders with the same height can be
designed with a more streamlined shape. Thus, the aerodynamic properties of
the girders can be improved. From the industry’s interest in lower box girders,
it is reasonable to avoid the tallest girder. The reason for this interest is the
desire to reduce stresses in the girders, which is seen by the elastic moment
capacities in Table 6.5. The box girder with H = 4.9 m should be avoided due
to large drag forces and the buffeting response in the lateral direction. The
critical wind velocity showed an unexpected drop for the section with H = 5.2
m. H = 5.8 m had a lower standard deviation than H = 5.5 m in vertical and
torsional directions. In addition, some uncertainty was related to the stability
limits for H = 5.5 m when lateral modes were included in the calculations.
The cross-section with H = 5.8 m and IT = 26 m4 may therefore be the best
option, but the girders with height equal to 5.2 and 5.5 m are also considered
as possible designs.

In the study of girders with torsion constant IT = 31 m4, it was suggested
that the girder with H = 6.1 m was the best alternative due to the experienced
VIV for the lower girders. The calculations of Scruton numbers implied that
these vibrations are less likely to occur for the entire bridge. Thus, the girder
with H = 5.8 m is therefore recommended for further analyses, along with
the girder with H = 6.1 m. The three lowest girders had similar results from
the buffeting response analysis. H = 6.1 m had the largest standard deviation
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in lateral response, but lower than the two other alternatives in vertical and
torsional response. The girder with H = 6.1 m had slightly higher critical
wind velocity. The cross-section with H = 5.5 m was not of the recommended
cross-sections as it might be considered to be too bluff.

Analyses of a cross-section parameterized with IT = 31 m4 revealed that
the simplified method used to calculate the torsion constant underestimated
the value of this parameter. It showed that the transverse panel concept with
a cross-section parameterized with IT = 31 m4 had a torsion constant of IT =
40.9 m4 [83]. The same simplified method used to make cross-sections with IT
= 31 m4 was used to make cross-sections with IT = 26 m4. Thus, a transverse
panel concept girder with an outer shape equal to one cross-section with IT =
26 m4 will likely have a torsion constant larger than IT = 26 m4.

The flutter analyses of the cross-sections with IT = 26 m4 resulted in
estimations of critical wind velocities 12.2 - 22.3% above the design critical
wind velocity. This implies that the torsion constant, which was reduced from
IT = 31 m4 to IT = 26 m4, can be further reduced.

Prior to the wind tunnel tests performed in the spring of 2021, a new wind
tunnel was mounted in the fluid mechanics laboratory at NTNU. This meant
that the test performed for this thesis, and the tests performed in 2020, were
executed in different wind tunnels. Both the test area, and the achievable wind
speeds of the two wind tunnels were similar. Any other discrepancies of the
two wind tunnels were not accounted for in this thesis.





Chapter 7

Conclusions

A dynamic analysis of different cross-sections for an aluminium design of Lan-
genuen Suspension Bridge with a main span length of 1220 m has been per-
formed in this thesis. This has been a continuation of work previously done for
the crossing of Langenuen. The main focuses have been aerodynamic stability
and buffeting response of the bridge deck, and suppression of vortex induced
vibrations during wind tunnel tests. In order to describe the cross-sections with
only one defining parameter, the height H of the girders, parameterizations of
the cross-sections were based on a fixed torsion constant IT . Eleven different
cross-sections have been investigated for the bridge; five with IT = 26 m4 and
six with IT = 31 m4. Wind tunnel tests were performed on section models
to extract aerodynamic properties of the cross-sections, and suppression of
vortex induced vibrations in the wind tunnel was given special consideration.
Mechanical properties of the cross-sections were implemented in a parametric
model of the bridge to extract modal properties. The global design was based
on the transverse panel concept developed by Dr. techn. Olav Olsen in their
cost and feasibility analysis of an aluminium bridge for the fjord crossing. Sta-
bility calculations were performed with a complex eigenvalue analysis, which
allowed for multi-modal flutter instability. A closed-form solution method for
bi-modal flutter instability was introduced as comparison.

All eleven bridge decks, H = 4.9 - 6.1 m with IT = 26 m4 and H =
5.5 - 7.0 m with IT = 31 m4, passed the design criterion of critical wind
velocity of 76 m/s. The critical instability mode was multi-modal flutter for
all cross-sections. The main contributors to the instability modes were the first
symmetric torsional and the second symmetric vertical still-air modes. For the
cross-sections with IT = 26 m4, the critical wind velocities were 85.30 - 92.98
m/s. The critical wind velocities were 81.06 - 90.34 m/s for the cross-sections
with IT = 31 m4.

Compared to results from 2020, where the sections with IT = 31 m4 were
tested without the instalment of guide vanes, the two tallest cross-sections
showed a significant increase in critical wind velocity. This increase was from
48.60 to 81.06 and 40.63 m/s to 82.04 m/s for the cross-sections with H = 6.7
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m and H = 7.0 m, respectively. It is believed that the guide vanes prevented
full separation of the wind flow, such that the flow was reattached to the bridge
deck. This explains the change in instability mode from galloping, which was
observed in 2020, to multi-modal flutter. This conclusion is supported by the
aerodynamic derivative H∗1 , which had negative values for a larger range of
reduced frequencies for H = 6.7 - 7.0 m this year than the previous results.

The closed-form solution method resulted in lower critical wind velocities
compared to the results of the complex eigenvalue analysis. This was expected
as this method neglected the torsion damping of the structure. The critical
wind velocities estimated by the closed-form approach were 85.2% - 97.2% of
the critical wind velocities estimated with the complex eigenvalue analysis.
For three of the cross-sections, the solution did not converge in the range of
observed data. The remaining eight cross-sections all had a higher critical wind
velocity than the design critical wind velocity.

The instalment of guide vanes and tuned mass dampers in order to suppress
vortex induced vibrations were effective. The exception was the girder with H
= 5.5 m and IT = 31 m4, where little to no effect of the guide vanes was seen.
Vibrations observed during the wind tunnel tests were significantly smaller
for the cross-sections where tuned mass dampers were installed. During the
processing of the free decay tests, it was observed that these cross-sections
had larger damping ratios. The tuned mass dampers were only designed for
application in the wind tunnel tests, and conclusions of the effect for full scale
design should therefore not be drawn.

The aerodynamic properties of the cross-sections were successfully found
during the wind tunnel tests. It is believed that the polynomials fitted to the
aerodynamic derivatives represented the behaviour of the properties well in
the range of measured reduced frequencies. The exceptions are some of the
drag-related aerodynamic derivatives, mainly P ∗1 , where a large amount of
scatter and dependency on Reynolds number was observed. Reynolds number
dependency was seen for some static coefficients as well, but only with minor
differences between different wind velocities. In general, the obtained data
from wind tunnel tests was believed to be of satisfying quality.

Gaussian process regression was implemented on each aerodynamic de-
rivative. Interpolated surfaces were predicted, for which the prediction un-
certainty was low, in general. The predicted surfaces managed to describe
the trends from the measured data points. The most significant uncertainties
were seen for the aerodynamic derivatives related to drag, and especially P ∗1 .
Increasing the lower bound of the hyperparameter L1 might reduce the un-
certainty in areas between data points but increase the uncertainty in areas
where there are data points. The prediction uncertainty was large when ex-
trapolating, as expected, due to a rapid deterioration of predictive power in
extrapolation.

The peaks in the autospectral density plots complied with the natural
frequencies from the finite element analysis. It revealed coupling of lateral
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and torsional movements. Some modes classified as less relevant for the global
response of the girder were identified as peaks in the autospectral densities.
All cross-sections with the same torsion constant had similar autospectral
densities, as expected due to the similarities of natural frequencies.

The standard deviation of the displacement response in the vertical direc-
tion was smaller than in the lateral direction. The differences between cross-
sections were affected by the static coefficients, aerodynamic derivatives and
stiffness properties. However, taller girder height did not necessarily result in a
smaller standard deviation of the response. For lateral and torsional response,
the maximum standard deviation was at the mid-span of the bridge, while
it was largest near the quarter- and three-quarter-spans of the bridge for the
vertical response.

Based on the aerodynamic properties and stability limits of the cross-
sections, several of the tested girders are relevant for further analysis of the
bridge, both cross-sections with IT = 26 m4 and IT = 31 m4. Due to the results
obtained in this thesis, further recommended cross-sections include H = 5.2 -
5.8 m and H = 5.8 - 6.1 m with IT = 26 m4 and IT = 31 m4, respectively. It
is suggested that the cross-section with H = 5.8 m and IT = 26 m4 may be
the best option.

As all girders had a critical wind velocity above the design critical wind
velocity, further optimization of cross-sections is possible. It is believed that a
lower torsion constant is possible. This will allow for streamlined girders which
are lower than the girders produced with IT = 26 m4 and IT = 31 m4. Girder
with lower torsion constants can be produced with a similar parameterization
as the already produced girders. Optimization of the cross-section can also be
done with a new parameterization.

7.1 Further work

The surfaces predicted in the Gaussian process regression may be used to find
predicted aerodynamic derivatives for heights not studied in this thesis. This
will allow for stability limit calculations of cross-sections without doing wind
tunnel tests. If cross-sections in the predicted area are produced and tested,
the accuracy of the predicted surfaced could be evaluated. The regions where
the development of the estimated critical wind velocity changes are of special
interest. This occurs between H = 5.8 - 6.1 m and H = 6.4 - 6.7 m for the
cross-sections with IT = 26 m4 and IT = 31 m4, respectively. Also interesting
is the area around H = 5.2 m with IT = 26 m4 where the development of the
critical wind velocity was unexpected.

Investigation of cross-sections with a lower torsion constant is possible with
respect to aerodynamic stability. This will allow for streamlined girders which
are lower than the already produced cross-sections. Changing the parameter-
ization method is also a possible solution for optimization of the cross-section.
An asymmetric girder has been suggested by previous reports, and could there-
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fore be investigated with regards to aerodynamic stability and buffeting re-
sponse.

Wind tunnel testing of section models with wind flow in both directions is
possible. The symmetric cross-sections tested in this thesis had an asymmetric
railing configuration. Thus, the results from wind flow in the opposite direction
could vary from the results presented in this thesis. If asymmetrical sections are
produced, wind tunnel testing with wind flow in both directions is of interest.

Due to the simplification of the cross-sections as thin-walled, which was
deemed as conservative, a closer evaluation of the transverse panel concept
could be useful. Accurate calculations of the cross-sectional properties could
allow for further optimization of the cross-sectional shape.

The girder behaviour with regard to other areas can be investigated. In
particular will stress calculations from dynamic response be important. Static
analyses of the different cross-sections will also be decisive for design of the
girder shape.

Studies of a stabilization plate have shown that the critical wind velocity of
the bridge can be increased with such an instalment [103]. The plate is a thin
vertical box mounted at the centre of the top deck of the girder. This is in use
as a control measure on several long-span bridges, including the Akashi Kaikyo
Bridge [104] and the Runyang Bridge [105]. The influence of such a stabilizer
on the critical wind velocity can be studied for Langenuen Suspension Bridge.



Bibliography

[1] D. K. Bang and E. Ekern, ‘Aerodynamic stability of a suspension bridge
with an aluminum girder: Wind tunnel testing and numerical predic-
tions,’ Master’s thesis, NTNU, Jun. 2020.

[2] N. J. Gimsing and C. T. Georgakis, Cable Supported Bridges: Concept
and Design, Third Edition. Wiley, 2012.

[3] Y. Ge and H. Tanaka, ‘Long-span bridge aerodynamics,’ in Advanced
Structural Wind Engineering, Y. Tamura and A. Kareem, Eds., First
Edition, Springer, 2013, pp. 85–120.

[4] M. Brorsen, ‘Wind structure and wind loading,’ DCE Lecture notes
No. 12, Department of Civil Engineering, Aalborg University, 2007.

[5] A. K. Chopra, Dynamics of Structures, Fifth Edition. Pearson, 2017.
[6] G. Müller, Compendium of lecture notes for structural dynamics, Tech-

nical University of Munich, 2020.
[7] D. E. Newland, An Introduction to Random Vibrations, Spectral &

Wavelet Analysis, Third Edition. Dover Publications, 1993.
[8] G. Bekdaş and S. M. Nigdeli, ‘Mass ratio factor for optimum tuned

mass damper strategies,’ International Journal of Mechanical Sciences,
vol. 71, pp. 68–84, 2013.

[9] K. C. S. Kwok and B. Samali, ‘Performance of tuned mass dampers
under wind loads,’ Engineering Structures, vol. 17, pp. 655–667, 1995.

[10] C. Mannini, ‘Flutter vulnerability assessment of flexible bridges,’ Ph.D.
dissertation, Technische Universität Carolo-Wilhelmina zu Braunsch-
weig and University of Florence, 2006.

[11] E. N. Strømmen, Theory of Bridge Aerodynamics, Second Edition.
Springer, 2010.

[12] R. G. J. Flay, ‘Bluff body aerodynamics,’ in Advanced Structural Wind
Engineering, Y. Tamura and A. Kareem, Eds., First Edition, Springer,
2013, pp. 59–84.

[13] T. Stathopoulos and C. C. Baniotopoulos, Wind Effects on Buildings
and Design of Wind-Sensitive Structures, First Edition. Springer, 2007.

89



[14] E. Simiu and R. H. Scanlan, Wind Effects on Structures: Fundamentals
and Applications to Design, Third Edition. Wiley, 1996.

[15] C. Dyrbye and S. O. Hansen, Wind Loads on Structures, First Edition.
Wiley, 1997.

[16] Norwegian Public Roads Administration, Bridge Projecting Handbook
N400 (in Norwegian), 2015.

[17] J. C. Kaimal, J. C. J. Wyngaard, Y. Izumi and O. R. Coté, ‘Special
characteristics of surface-layer turbulence,’ Quarterly Journal of the
Royal Meteorological Society, vol. 98, pp. 563–589, 1972.

[18] G. Solari and G. Piccardo, ‘Probabilistic 3-D turbulence modeling
for gust buffeting of structures,’ Probabilistic Engineering Mechanics,
vol. 16, pp. 73–86, 2001.

[19] A. Fenerci, O. Øiseth and A. Rønnquist, ‘Long-term monitoring of wind
field characteristics and dynamic response of a long-span suspension
bridge in complex terrain,’ Engineering Structures, vol. 147, pp. 269–
284, 2017.

[20] A. Fenerci and O. Øiseth, ‘Strong wind characteristics and dynamic
response of a long-span suspension bridge during a storm,’ Journal of
Wind Engineering & Industrial Aerodynamics, vol. 172, pp. 116–138,
2018.

[21] A. Fenerci and O. Øiseth, ‘Measured buffeting response of a long-span
suspension bridge compared with numerical predictions based on design
wind spectra,’ Journal of Structural Engineering, vol. 143, p. 04 017 131,
2017.

[22] A. G. Davenport, ‘The spectrum of horizontal gustiness near the ground
in high winds,’ Quarterly Journal of the Royal Meteorological Society,
vol. 87, pp. 194–211, 1961.

[23] T. Theodorsen,General theory of aerodynamic instability and the mech-
anism of flutter, NACA Report No. 496, Washington DC, 1935.

[24] R. H. Scanlan and J. J. Tomko, ‘Airfoil and bridge deck flutter derivat-
ives,’ Journal of the Engineering Mechanics Division, vol. 97, pp. 1717–
1737, 1971.

[25] R. H. Scanlan, ‘Wind dynamics of long-span bridges,’ in Aerodynamics
Of Large Bridges, A. Larsen, Ed., First Edition, Balkema, 1992, pp. 47–
57.

[26] B. Siedziako, O. Øiseth and A. Rønnquist, ‘An enhanced forced vi-
bration rig for wind tunnel testing of bridge deck section models in
arbitrary motion,’ Journal of Wind Engineering & Industrial Aerody-
namics, vol. 164, pp. 152–163, 2017.

90



[27] X. Chen, ‘Improved understanding of bimodal coupled bridge flut-
ter based on closed-form solutions,’ Journal of Structural Engineering,
vol. 133, pp. 22–31, 2007.

[28] A. G. Davenport, ‘The treatment of wind loading on tall buildings,’ in
Tall Buildings: The Proceedings of a Symposium on Tall Buildings with
Particular Reference to Shear Wall Structures, Held in the Department
of Civil Engineering, University of Southampton, A. Coull and B. S.
Smith, Eds., First Edition, Pergamon Press, 1967, pp. 3–45.

[29] M. Matsumoto, Y. Kobayashi and H. Shirato, ‘The influence of aerody-
namic derivatives on flutter,’ Journal of Wind Engineering & Industrial
Aerodynamics, vol. 60, pp. 227–239, 1996.

[30] C. A. Trein and H. Shirato, ‘Coupled flutter stability from the unsteady
pressure characteristics point of view,’ Journal of Wind Engineering &
Industrial Aerodynamics, vol. 99, pp. 114–122, 2011.

[31] M. Matsumoto, K. Okubo, Y. Ito, H. Matsumyia and G. Kim, ‘The
complex branch characteristics of coupled flutter,’ Journal of Wind
Engineering & Industrial Aerodynamics, vol. 96, pp. 1843–1855, 2008.

[32] F. Xu, T. Wu, X. Ying and A. Kareem, ‘Higher-order self-excited drag
forces on bridge decks,’ Journal of Engineering Mechanics, vol. 142,
p. 06 015 007, 2016.

[33] L. Patruno, ‘Accuracy of numerically evaluated flutter derivatives of
bridge deck sections using RANS: Effects on the flutter onset velocity,’
Engineering Structures, vol. 89, pp. 49–65, 2015.

[34] T. A. Helgedalsrud, Y. Bazilevs, A. Korobenko, K. M. Mathisen and
O. A. Øiseth, ‘Using ALE-VMS to compute aerodynamic derivatives of
bridge sections,’ Computers and fluids, vol. 179, pp. 820–832, 2019.

[35] L. Huang, H. Liao, B. Wang and Y. Li, ‘Numerical simulation for aero-
dynamic derivatives of bridge deck,’ Simulation Modelling Practice and
Theory, vol. 17, pp. 719–729, 2009.

[36] M. W. Sarwar, T. Ishihara, K. Shimada, Y. Yamasaki and T. Ikeda,
‘Prediction of aerodynamic characteristics of a box girder bridge section
using LES turbulence model,’ Journal of Wind Engineering & Indus-
trial Aerodynamics, vol. 96, pp. 1895–1911, 2008.

[37] Z.-w. Zhu, M. Gu and Z.-q. Chen, ‘Wind tunnel and CFD study on iden-
tification of flutter derivatives of a long-span self-anchored suspension
bridge,’ Computer-Aided Civil and Infrastructure Engineering, vol. 22,
pp. 541–554, 2007.

[38] C. Neuhaus, S. Roesler, R. Höffer, M. Hortmanns and W. Zahlten,
‘Identification of 18 flutter derivatives by forced vibration tests - a
new experimental rig,’ in Proceedings of the 5th European and African
Conference on Wind Engineering, Vancouver, Jul. 2015.

91



[39] M. Matsumoto, N. Shiraishi, H. Shirato, K. Shigetaka and Y. Niihara,
‘Aerodynamic derivatives of coupled/hybrid flutter of fundamental
structural sections,’ Journal of Wind Engineering & Industrial Aero-
dynamics, vol. 49, pp. 575–584, 1993.

[40] Z. Q. Chen, X. D. Yu, G. Yang and B. F. Spencer, ‘Wind-induced self-
excited loads on bridges,’ Journal of Structural Engineering, vol. 131,
pp. 1783–1793, 2005.

[41] Q. C. Li, ‘Measuring flutter derivatives for bridge sectional models in
water channel,’ Journal of Engineering Mechanics, vol. 121, pp. 90–101,
1995.

[42] B. Cao and P. P. Sarkar, ‘Identification of rational functions using
two-degree-of-freedom model by forced vibration method,’ Engineering
Structures, vol. 43, pp. 21–30, 2012.

[43] Y. Han, S. Liu, J. X. Hu, C. S. Cai, J. Zhang and Z. Chen, ‘Experi-
mental study on aerodynamic derivatives of a bridge cross-section un-
der different traffic flows,’ Journal of Wind Engineering & Industrial
Aerodynamics, vol. 133, pp. 250–262, 2014.

[44] B. Siedziako, O. Øiseth and N. E. A. Rønnquist, ‘Identification of
aerodynamic properties of bridge decks in arbitrary motion,’ in Spe-
cial Topics in Structural Dynamics, Volume 6: Proceedings of the 34th
IMAC, A Conference and Exposition on Structural Dynamics 2016, D.
Di Miao, P. Tarazaga and P. Castellini, Eds., First Edition, Springer,
2016, pp. 79–85.

[45] N. D. Katopodes, Free-Surface Flow: Environmental fluid mechanics,
First Edition. Butterworth-Heinemann, 2019.

[46] S. O. Hansen, ‘Vortex-induced vibrations of structures,’ in Structural
Engineers World Congress, Bangalore, Nov. 2007.

[47] A. Larsen and A. Wall, ‘Shaping of bridge box girders to avoid vortex
shedding response,’ Journal of Wind Engineering & Industrial Aerody-
namics, vol. 104-106, pp. 159–165, 2012.

[48] A. Larsen and G. L. Larose, ‘Dynamic wind effects on suspension and
cable-stayed bridges,’ Journal of Sound and Vibration, vol. 334, pp. 2–
28, 2015.

[49] A. Larsen, S. Esdahl, J. E. Andersen and T. Vejrum, ‘Storebælt suspen-
sion bridge - vortex shedding excitation and mitigation by guide vanes,’
Journal of Wind Engineering & Industrial Aerodynamics, vol. 88,
pp. 283–296, 2000.

[50] B. Isaksen, E. Strømmen and K. Gjerding-Smith, ‘Suppression of vortex
shedding vibrations at Osterøy suspension bridge,’ in Proceedings of the
fourth Symposium on Strait Crossings, Bergen, Sep. 2001, pp. 99–105.

92



[51] S. O. Hansen, R. G. Srouji, B. Isaksen and K. Berntsen, ‘Vortex-induced
vibrations of streamlined single box girder bridge decks,’ in 14th Inter-
national Conference on Wind Engineering, Porto Alegre, Jun. 2015.

[52] O. Øiseth, A. Rönnquist and R. Sigbjörnsson, ‘Simplified prediction
of wind-induced response and stability limit of slender long-span sus-
pension bridges, based on modified quasi-steady theory: A case study,’
Journal of Wind Engineering & Industrial Aerodynamics, vol. 98,
pp. 730–741, 2010.

[53] O. Øiseth and R. Sigbjörnsson, ‘An alternative analytical approach to
prediction of flutter stability limits of cable supported bridges,’ Journal
of Sound and Vibration, vol. 330, pp. 2784–2800, 2011.

[54] A. Selberg, ‘Oscillation and aerodynamic stability of suspension bridges,’
Acta Polytechnica Scandinavia Civil Engineering and Building Con-
struction Series, vol. 13, 1961.

[55] G. Vairo, ‘A simple analytical approach to the aeroelastic stability
problem of long-span cable-stayed bridges,’ International Journal for
Computational Methods in Engineering Science and Mechanics, vol. 11,
pp. 1–19, 2011.

[56] R. H. Scanlan, N. P. Jones and O. Lorendeaux, ‘Comparison of taut-
strip and section-model-based approaches in long-span bridge aero-
dynamics,’ Journal of Wind Engineering & Industrial Aerodynamics,
vol. 72, pp. 275–287, 1997.

[57] R. L. Wardlaw, ‘Sectional versus full model wind tunnel testing of
bridge road decks,’ Proceedings of the Indian Academy of Sciences Sec-
tion C: Engineering Sciences, vol. 3, pp. 177–198, 1980.

[58] L. Caracoglia, P. P. Sarkar, F. L. Haan, H. Sato and J. Murakoshi,
‘Comparative and sensitivity study of flutter derivatives of selected
bridge deck sections, part 2: Implications on the aerodynamic stability
of long-span bridges,’ Engineering Structures, vol. 31, pp. 2194–2202,
2009.

[59] P. P. Sarkar, L. Caracoglia, F. L. Haan, H. Sato and J. Murakoshi,
‘Comparative and sensitivity study of flutter derivatives of selected
bridge deck sections, part 1: Analysis of inter-laboratory experimental
data,’ Engineering Structures, vol. 31, pp. 158–169, 2009.

[60] K. Takeda and M. Kato, ‘Wind tunnel blockage effects on drag coef-
ficient and wind-induced vibration,’ Journal of Wind Engineering &
Industrial Aerodynamics, vol. 42, pp. 897–908, 1992.

[61] G. S. West and C. J. Apelt, ‘The effects of tunnel blockage and aspect
ratio on the mean flow past a circular cylinder with Reynolds numbers
between between 104 and 105,’ Journal of Fluid Mechanics, vol. 114,
pp. 361–377, 1982.

93



[62] C.-K. Choi and D. Kwon, ‘Wind tunnel blockage effects on aerodynamic
behavior of bluff body,’ Wind and Structures, vol. 1, pp. 351–364, 1998.

[63] S. B. Aas and S. E. Horg, ‘Wind tunnel testing of bridge decks,’ Mas-
ter’s thesis, NTNU, Jun. 2016.

[64] Y. Kubo, M. Miyazaki and K. Kato, ‘Effects of end plates and blockage
of structural members on drag forces,’ Journal of Wind Engineering &
Industrial Aerodynamics, vol. 32, pp. 329–342, 1989.

[65] H. J. Spurk and N. Aksel, Fluid Mechanics, Second Edition. Springer,
2008.

[66] B. Siedziako and O. Øiseth, ‘On the importance of cross-sectional de-
tails in the wind tunnel testing of bridge deck section models,’ Procedia
Engineering, vol. 199, pp. 3145–3151, 2017.

[67] E. N. Strømmen, Structural Mechanics: The Theory of Structural Mech-
anics for Civil, Structural and Mechanical Engineers, First Edition.
Springer, 2020.

[68] P. K. Larsen, Dimensjonering av stålkonstruksjoner, Second Edition.
Fagbokforlaget, 2010.

[69] M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging,
First Edition. Springer, 1999.

[70] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Ma-
chine Learning, First Edition. The MIT Press, 2006.

[71] M. Heinonen, ‘Learning with spectral kernels,’ Seminar, Department of
Computer Science, Aalto University, 2017.

[72] Ø. W. Petersen, ‘A (very short) introduction to gaussian process regres-
sion,’ Seminar, Department of Structural Engineering, NTNU, 2021.

[73] C. Archambeau, ‘Gaussian processes for regression,’ Lecture 1c, De-
partment of Computer Science, University College London, 2008.

[74] E. Schulz, M. Speekenbrink and A. Krause, ‘A tutorial on Gaussian pro-
cess regression: Modelling, exploring, and exploiting functions,’ Journal
of Mathematical Psychology, vol. 85, pp. 1–16, 2018.

[75] R. Garnett, ‘Gaussian process regression,’ Lecture 9, Department of
Computer Science and Engineering, Washington University in St.
Louis, 2015.

[76] Y. Ding, R. Kondor and J. Eskreis-Winkler, ‘Multiresolution kernel
approximation for gaussian process regression,’ in Advances in Neural
Information Processing Systems, Long Beach, Dec. 2017.

[77] R. Planas, N. Oune and R. Bostanabad, ‘Evolutionary gaussian pro-
cesses,’ Journal of Mechanical Design, vol. 143, p. 111 703, 2021.

[78] Norwegian Public Roads Administration, The Coastal Highway Route
E39, Oct. 2019.

94



[79] Norwegian Public Roads Administration, The Coastal Highway Route
E39: Benefits for passenger cars, Oct. 2019.

[80] Norwegian Public Roads Administration, The Coastal Highway Route
E39: Choice of technology for fjord crossings, Mar. 2015.

[81] Norwegian Public Roads Administration, No er det bestemt kor lan-
genuen skal kryssast, Sep. 2019. [Online]. Available: https : / / www .
vegvesen . no / Europaveg / e39stordos / nyhetsarkiv / no - er - det -
bestemt-kor-langenuen-skal-kryssast.

[82] Norconsult, Bru over Langenuen og Søreidsvika - Skisseprosjekt, Mar.
2020.

[83] Dr. techn. Olav Olsen, Langenuen suspension bridge: Aluminium bridge
girder alternative, Jun. 2020.

[84] K. K. Dunham, ‘Coastal Highway Route E39 - extreme crossings,’
Transportation Research Procedia, vol. 14, pp. 494–498, 2016.

[85] Standard Norge, Eurocode 9: Design of aluminium structures. Part 1-1:
General structural rules, May 2007.

[86] G. A. Alison, ‘Evaluation of seven aluminum highway bridges after two
to three decades of service,’ Transportation Research Record, vol. 950,
1984.

[87] R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and
Applications of Finite Element Analysis, Fourth Edition. Wiley, 2002.

[88] Dassault Systémes Simulia Corporation, Abaqus, 2018.
[89] M. V. Dombu and M. Gjelstad, ‘Parametric modelling of a suspension

bridge with an aluminium girder,’ Master’s thesis, NTNU, Jun. 2019.
[90] Python Software Foundation, Python version 3.8.5, 2020.
[91] S. Bas, N. M. Apaydin and N. Catbas, ‘Considerations for finite ele-

ment modeling of the Bosphorus Suspension Bridge,’ in Istanbul Bridge
Conference, Istanbul, Aug. 2016.

[92] M. Smith, Abaqus analysis user’s guide, version 6.14, Dassault Sys-
témes Simulia Corporation, 2014.

[93] DIAB Group, Divinycell H: Technical manual, Oct. 2010.
[94] The Mathworks, Inc.,MATLAB version 9.7.0.1190202 (R2019b), 2019.
[95] Dassault Systémes SolidWorks Corporation, SOLIDWORKS 2021,

2021.
[96] L. Li and R. J. Hearst, ‘The influence of freestream turbulence on the

temporal pressure distribution and lift of an airfoil,’ Journal of Wind
Engineering & Industrial Aerodynamics, vol. 209, p. 104 456, 2021.

95

https://www.vegvesen.no/Europaveg/e39stordos/nyhetsarkiv/no-er-det-bestemt-kor-langenuen-skal-kryssast
https://www.vegvesen.no/Europaveg/e39stordos/nyhetsarkiv/no-er-det-bestemt-kor-langenuen-skal-kryssast
https://www.vegvesen.no/Europaveg/e39stordos/nyhetsarkiv/no-er-det-bestemt-kor-langenuen-skal-kryssast


[97] E. Torenbeek and H. Wittenberg, Flight Physics: Essentials of Aero-
nautical Disciplines and Technology, with Historical Notes, First Edi-
tion. Springer, 2009.

[98] H. Babinsky, ‘How do wings work?’ Physics Education, vol. 38, pp. 497–
503, 2003.

[99] J. Aguilar-Cabello, P. Gutierrez-Castillo, L. Parras, C. del Pino and E.
Sanmiguel-Rojas, ‘On the onset of negative lift in a symmetric airfoil
at very small angles of attack,’ Physics of Fluids, vol. 32, p. 055 107,
2020.

[100] D. F. Castellon, A. Fenerci and O. Øiseth, ‘A comparative study of
wind-induced dynamic response models of long-span bridges using ar-
tificial neural networks, support vector regression and buffeting the-
ory,’ Journal of Wind Engineering & Industrial Aerodynamics, vol. 209,
p. 104 484, 2021.

[101] H. Ahmadian, G. M. L. Gladwell and F. Ismail, ‘Extracting real modes
form complex measured modes,’ in Proceedings of the 13th International
Modal Analysis Conference, Nashville, Feb. 1995.

[102] E. Cheynet, J. B. Jakobsen and J. Snæbjörnsson, ‘Buffeting response
of a suspension bridge in complex terrain,’ Engineering structures,
vol. 128, pp. 474–487, 2016.

[103] H. Tang, Y. Li and K. M. Shum, ‘Flutter performance and aerodynamic
mechanism of plate with central stabilizer at large angles of attack,’
Advances in Structural Engineering, vol. 21, pp. 335–346, 2018.

[104] T. Miyata and K. Yamaguchi, ‘Aerodynamics of wind effects on the
Akashi Kaikyo Bridge,’ Journal of Wind Engineering & Industrial
Aerodynamics, vol. 48, pp. 287–315, 1993.

[105] Y.-J. Ge, ‘Aerodynamic challenge and limitation in long-span cable-
supported bridges,’ in Advances in Civil, Environmental, and Materials
Research (ACEM16), Jeju Island, Aug. 2016.

96



Appendix A

List of Electronic
Attachments

Eleven Python scripts which generate global finite element models in Abaqus
are appended. These are listed in Table A.1.

Table A.1: The electronic attachments appended to this thesis. These are
Python scripts which generate finite element models in Abaqus.

IT [m4] H [m] Filename

26 4.9 Langenuen21_4900.py
5.2 Langenuen21_5200.py
5.5 Langenuen21_5500.py
5.8 Langenuen21_5800.py
6.1 Langenuen21_6100.py

31 5.5 Langenuen20_5500.py
5.8 Langenuen20_5800.py
6.1 Langenuen20_6100.py
6.4 Langenuen20_6400.py
6.7 Langenuen20_6700.py
7.0 Langenuen20_7000.py

97





Appendix B

Modal Analysis

The results from the modal finite element analysis are presented in this ap-
pendix. The first 15 most relevant mode shapes for the global response of
the girder are shown for each cross-section. Non-relevant mode shapes include
modes which are dominated by oscillations of cables and towers. Each mode
shape is described as either horizontal (H), vertical (V) or torsional (T), as
well as symmetric (S) or asymmetric (A). In Figure B.1, the first 15 most
relevant mode shapes from the global element model are shown for the cross-
section with H = 5.5 m and IT = 26 m4. The natural frequency of each mode
is included in the tables in this appendix, both in rad/s and Hz. The results
from the cross-sections with IT = 26 m4 are presented in Tables B.1 to B.5,
while the results from the cross-sections with IT = 31 m4 are presented in
Tables B.6 to B.11.
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Figure B.1: The 15 first most relevant mode shapes for the global response
of the girder from the finite element analysis of the cross-section with H =
5.5 m and IT = 26 m4.
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B.1 Torsion constant IT = 26 m4

Table B.1: Modal properties of the cross section with H = 4.9 m and IT =
26 m4.

Mode Abaqus Frequency Displacement
nr. [rad/s] [Hz] Lateral Vertical Torsional

1HS 1 0.3603 0.0573
1VA 2 0.6880 0.1095
1VS 3 0.9042 0.1439
1HA 4 0.9059 0.1442
2VS 5 1.3274 0.2113
2VA 6 1.3678 0.2177
2HS 12 1.8010 0.2866
3VS 13 1.8214 0.2899
3VA 14 2.2670 0.3608
1TS 27 2.6060 0.4148
4VS 28 2.8013 0.4458
1TA 31 2.9881 0.4756
2HA 34 3.3630 0.5352
4VA 36 3.3851 0.5388
5VS 41 4.0429 0.6434

Table B.2: Modal properties of the cross section with H = 5.2 m and IT =
26 m4.

Mode Abaqus Frequency Displacement
nr. [rad/s] [Hz] Lateral Vertical Torsional

1HS 1 0.3600 0.0573
1VA 2 0.6886 0.1096
1HA 3 0.9037 0.1438
1VS 4 0.9059 0.1442
2VS 5 1.3285 0.2114
2VA 6 1.3731 0.2185
2HS 12 1.7964 0.2859
3VS 13 1.8307 0.2914
3VA 16 2.2831 0.3634
1TS 27 2.6025 0.4142
4VS 28 2.8252 0.4497
1TA 31 2.9881 0.4756
2HA 35 3.3567 0.5342
4VA 36 3.4192 0.5442
5VS 41 4.0885 0.6507
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Table B.3: Modal properties of the cross section with H = 5.5 m and IT =
26 m4.

Mode Abaqus Frequency Displacement
nr. [rad/s] [Hz] Lateral Vertical Torsional

1HS 1 0.3604 0.0574
1VA 2 0.6892 0.1097
1HA 3 0.9066 0.1443
1VS 4 0.9073 0.1444
2VS 5 1.3287 0.2115
2VA 6 1.3775 0.2192
2HS 12 1.8025 0.2869
3VS 13 1.8385 0.2926
3VA 16 2.2966 0.3655
1TS 27 2.6019 0.4141
4VS 28 2.8456 0.4529
1TA 31 2.9895 0.4758
2HA 35 3.3667 0.5358
4VA 36 3.4479 0.5488
5VS 41 4.1270 0.6568

Table B.4: Modal properties of the cross section with H = 5.8 m and IT =
26 m4.

Mode Abaqus Frequency Displacement
nr. [rad/s] [Hz] Lateral Vertical Torsional

1HS 1 0.3611 0.0575
1VA 2 0.6896 0.1098
1VS 3 0.9083 0.1446
1HA 4 0.9112 0.1450
2VS 5 1.3287 0.2115
2VA 6 1.3809 0.2198
2HS 12 1.8123 0.2884
3VS 13 1.8445 0.2936
3VA 16 2.3070 0.3672
1TS 27 2.6005 0.4139
4VS 29 2.8613 0.4554
1TA 31 2.9897 0.4758
2HA 35 3.3825 0.5383
4VA 36 3.4701 0.5523
5VS 41 4.1567 0.6616
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Table B.5: Modal properties of the cross section with H = 6.1 m and IT =
26 m4.

Mode Abaqus Frequency Displacement
nr. [rad/s] [Hz] Lateral Vertical Torsional

1HS 1 0.3617 0.0576
1VA 2 0.6899 0.1098
1VS 3 0.9090 0.1447
1HA 4 0.9158 0.1457
2VS 5 1.3285 0.2114
2VA 6 1.3831 0.2201
2HS 12 1.8219 0.2900
3VS 13 1.8485 0.2942
3VA 16 2.3140 0.3683
1TS 27 2.5981 0.4135
4VS 29 2.8717 0.4570
1TA 31 2.9861 0.4753
2HA 35 3.3978 0.5408
4VA 36 3.4849 0.5546
5VS 41 4.1765 0.6647
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B.2 Torsion constant IT = 31 m4

Table B.6: Modal properties of the cross section with H = 5.5 m and IT =
31 m4.

Mode Abaqus Frequency Displacement
nr. [rad/s] [Hz] Lateral Vertical Torsional

1HS 1 0.3624 0.0577
1VA 2 0.6913 0.1100
1HA 3 0.9111 0.1450
1VS 4 0.9123 0.1452
2VS 5 1.3277 0.2113
2VA 6 1.3939 0.2218
2HS 12 1.8138 0.2887
3VS 13 1.8677 0.2973
3VA 19 2.3478 0.3737
1TS 27 2.6632 0.4239
4VS 30 2.9211 0.4649
1TA 32 3.1871 0.5072
2HA 34 3.3845 0.5387
4VA 36 3.5543 0.5657
5VS 42 4.2689 0.6794

Table B.7: Modal properties of the cross section with H = 5.8 m and IT =
31 m4.

Mode Abaqus Frequency Displacement
nr. [rad/s] [Hz] Lateral Vertical Torsional

1HS 1 0.3626 0.0577
1VA 2 0.6920 0.1101
1HA 3 0.9128 0.1453
1VS 4 0.9140 0.1455
2VS 5 1.3286 0.2115
2VA 6 1.3991 0.2227
2HS 12 1.8174 0.2892
3VS 13 1.8770 0.2987
3VA 19 2.3631 0.3761
1TS 27 2.6617 0.4236
4VS 30 2.9444 0.4686
1TA 32 3.1853 0.5070
2HA 34 3.3902 0.5396
4VA 36 3.5870 0.5709
5VS 43 4.3131 0.6864
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Table B.8: Modal properties of the cross section with H = 6.1 m and IT =
31 m4.

Mode Abaqus Frequency Displacement
nr. [rad/s] [Hz] Lateral Vertical Torsional

1HS 1 0.3630 0.0578
1VA 2 0.6925 0.1102
1VS 3 0.9153 0.1457
1HA 4 0.9155 0.1457
2VS 5 1.3287 0.2115
2VA 6 1.4033 0.2233
2HS 12 1.8233 0.2902
3VS 13 1.8844 0.2999
3VA 19 2.3758 0.3781
1TS 27 2.6603 0.4234
4VS 30 2.9634 0.4716
1TA 32 3.1859 0.5071
2HA 35 3.3997 0.5411
4VA 36 3.6137 0.5751
5VS 43 4.3482 0.6920

Table B.9: Modal properties of the cross section with H = 6.4 m and IT =
31 m4.

Mode Abaqus Frequency Displacement
nr. [rad/s] [Hz] Lateral Vertical Torsional

1HS 1 0.3637 0.0579
1VA 2 0.6930 0.1103
1VS 3 0.9166 0.1459
1HA 4 0.9200 0.1464
2VS 5 1.3288 0.2115
2VA 6 1.4074 0.2240
2HS 12 1.8328 0.2917
3VS 13 1.8918 0.3011
3VA 20 2.3884 0.3801
1TS 27 2.6577 0.4230
4VS 30 2.9822 0.4746
1TA 32 3.1847 0.5069
2HA 35 3.4147 0.5435
4VA 36 3.6400 0.5793
5VS 43 4.3831 0.6976
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Table B.10: Modal properties of the cross section with H = 6.7 m and IT

= 31 m4.

Mode Abaqus Frequency Displacement
nr. [rad/s] [Hz] Lateral Vertical Torsional

1HS 1 0.3643 0.0580
1VA 2 0.6932 0.1103
1VS 3 0.9168 0.1459
1HA 4 0.9244 0.1471
2VS 5 1.3284 0.2114
2VA 6 1.4086 0.2242
2HS 12 1.8423 0.2932
3VS 13 1.8940 0.3014
3VA 20 2.3921 0.3807
1TS 27 2.6530 0.4222
4VS 30 2.9877 0.4755
1TA 32 3.1753 0.5054
2HA 35 3.4294 0.5458
4VA 36 3.6478 0.5806
5VS 43 4.3935 0.6992

Table B.11: Modal properties of the cross section with H = 7.0 m and IT

= 31 m4.

Mode Abaqus Frequency Displacement
nr. [rad/s] [Hz] Lateral Vertical Torsional

1HS 1 0.3652 0.0581
1VA 2 0.6934 0.1104
1VS 3 0.9171 0.1460
1HA 4 0.9306 0.1481
2VS 5 1.3280 0.2114
2VA 6 1.4099 0.2244
2HS 12 1.8552 0.2953
3VS 13 1.8961 0.3018
3VA 20 2.3959 0.3813
1TS 27 2.6480 0.4214
4VS 30 2.9933 0.4764
1TA 32 3.1645 0.5037
2HA 35 3.4489 0.5489
4VA 36 3.6556 0.5818
5VS 43 4.4039 0.7009



Appendix C

Axial Stiffness of Transverse
Panel Concept

Values from the calculations of the effective thickness in longitudinal and
transverse direction are presented in this appendix. Elasticity modulus E and
original length L0 were 70 000 MPa and 4000 mm, respectively. Table C.1
lists values from the calculation of axial stiffness in the longitudinal direction.
Table C.2 lists values from the calculation of axial stiffness in the transverse
direction.

C.1 Longitudinal direction

Table C.1: Axial stiffness in the longitudinal direction.

Reaction forces Deformation Effective area Effective
N [N] ∆L [mm] A = NL0

E∆L [mm2] thickness t [mm]

16448.9 6.16 · 10−3 152587.2 38.1

C.2 Transverse direction

Table C.2: Axial stiffness in the transverse direction.

Reaction forces Deformation Effective area Effective
N [N] ∆L [mm] A = NL0

E∆L [mm2] thickness t [mm]

588000 0.2857 117605.9 29.4
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Appendix D

Vortex Induced Vibrations

The plots from the vortex induced vibration (VIV) tests are presented in this
appendix. Figures D.1 to D.5 show the results for the cross-sections with IT =
26 m4, while Figures D.6 to D.11 show the results for the cross-sections with
IT = 31 m4.

D.1 Torsion constant IT = 26 m4
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Figure D.1: Result of the VIV test for the cross-section with H = 4.9 m and
IT = 26 m4.
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Figure D.2: Result of the VIV test for the cross-section with H = 5.2 m and
IT = 26 m4.
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(b) Standard deviation of vertical and normalized lateral forces.

Figure D.3: Result of the VIV test for the cross-section with H = 5.5 m and
IT = 26 m4.
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(b) Standard deviation of vertical and normalized lateral forces.

Figure D.4: Result of the VIV test for the cross-section with H = 5.8 m and
IT = 26 m4.
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Figure D.5: Result of the VIV test for the cross-section with H = 6.1 m and
IT = 26 m4.
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D.2 Torsion constant IT = 31 m4
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(b) Standard deviation of vertical and normalized lateral forces. Tests without guide vanes
were performed the year prior to this thesis [1].

Figure D.6: Result of the VIV test for the cross-section with H = 5.5 m and
IT = 31 m4.
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(b) Standard deviation of vertical and normalized lateral forces. Tests without guide vanes
were performed the year prior to this thesis [1].

Figure D.7: Result of the VIV test for the cross-section with H = 5.8 m and
IT = 31 m4.
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(b) Standard deviation of vertical and normalized lateral forces. Tests without guide vanes
were performed the year prior to this thesis [1].

Figure D.8: Result of the VIV test for the cross-section with H = 6.1 m and
IT = 31 m4.
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were performed the year prior to this thesis [1].

Figure D.9: Result of the VIV test for the cross-section with H = 6.4 m and
IT = 31 m4.
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(b) Standard deviation of vertical and normalized lateral forces. Tests without guide vanes
were performed the year prior to this thesis [1].

Figure D.10: Result of the VIV test for the cross-section with H = 6.7 m
and IT = 31 m4.
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were performed the year prior to this thesis [1].

Figure D.11: Result of the VIV test for the cross-section with H = 7.0 m
and IT = 31 m4.



Appendix E

Aerodynamic Derivatives

All 18 aerodynamic derivatives (ADs) for every cross-section are presented in
this appendix. A third degree polynomial was fitted to the data points from
the wind tunnel tests. The fitted curve was constrained to a constant value
outside the range of the experimental observations. ADs were plotted against
the reduced frequency K.

Figures E.1 to E.5 show the ADs for the cross-sections parameterized with
IT = 26 m4, while Figures E.6 to E.11 show ADs for the cross-sections para-
meterized with IT = 31 m4.
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E.1 Torsion constant IT = 26 m4
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Figure E.1: ADs for the cross-section of height H = 4.9 m, parameterized
with IT = 26 m4.
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Figure E.2: ADs for the cross-section of height H = 5.2 m, parameterized
with IT = 26 m4.
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Figure E.3: ADs for the cross-section of height H = 5.5 m, parameterized
with IT = 26 m4.



E.1: Torsion constant IT = 26 m4 119

0 0.5 1 1.5

-0.4

-0.3

-0.2

-0.1

0

0 0.5 1 1.5
-0.25

-0.2

-0.15

0 0.5 1 1.5
-0.3

-0.2

-0.1

0

0.1

0 0.5 1 1.5

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5
-4

-3.5

-3

-2.5

-2

0 0.5 1 1.5
1

2

3

4

0 0.5 1 1.5
-0.1

-0.08

-0.06

-0.04

0 0.5 1 1.5
-1

-0.95

-0.9

-0.85

0 0.5 1 1.5
-0.25

-0.2

-0.15

-0.1

Data points Fitted curve

0 0.5 1 1.5

-0.06

-0.05

-0.04

-0.03

-0.02

0 0.5 1 1.5

-0.04

-0.03

-0.02

-0.01

0

0 0.5 1 1.5

-0.18

-0.16

-0.14

-0.12

0 0.5 1 1.5

-0.1

-0.05

0

0.05

0.1

0 0.5 1 1.5

-1

-0.5

0

0 0.5 1 1.5

2

2.5

3

3.5

0 0.5 1 1.5

-0.01

0

0.01

0.02

0.03

0 0.5 1 1.5

-0.08

-0.06

-0.04

-0.02

0 0.5 1 1.5

0.9

0.95

1

Figure E.4: ADs for the cross-section of height H = 5.8 m, parameterized
with IT = 26 m4.
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Figure E.5: ADs for the cross-section of height H = 6.1 m, parameterized
with IT = 26 m4.
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E.2 Torsion constant IT = 31 m4
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Figure E.6: ADs for the cross-section of height H = 5.5 m, parameterized
with IT = 31 m4.
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Figure E.7: ADs for the cross-section of height H = 5.8 m, parameterized
with IT = 31 m4.
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Figure E.8: ADs for the cross-section of height H = 6.1 m, parameterized
with IT = 31 m4.
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Figure E.9: ADs for the cross-section of height H = 6.4 m, parameterized
with IT = 31 m4.
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Figure E.10: ADs for the cross-section of height H = 6.7 m, parameterized
with IT = 31 m4.
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Figure E.11: ADs for the cross-section of height H = 7.0 m, parameterized
with IT = 31 m4.



Appendix F

Theodorsen Aerodynamic
Derivatives

The aerodynamic derivatives (ADs) developed by Theodorsen [23] are com-
pared to the polynomials which were fitted to the data points from the wind
tunnel tests of ADs in this appendix. Figures F.1 to F.5 show the ADs for the
cross-sections parameterized with IT = 26 m4, while Figures F.6 to F.11 show
ADs for the cross-sections parameterized with IT = 31 m4.
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F.1 Torsion constant IT = 26 m4
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Figure F.1: Comparison of the ADs developed by Theodorsen and the poly-
nomial which was fitted to the data points from the wind tunnel tests for the
cross-section of height H = 4.9 m, parameterized with IT = 26 m4.
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Figure F.2: Comparison of the ADs developed by Theodorsen and the poly-
nomial which was fitted to the data points from the wind tunnel tests for the
cross-section of height H = 5.2 m, parameterized with IT = 26 m4.
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Figure F.3: Comparison of the ADs developed by Theodorsen and the poly-
nomial which was fitted to the data points from the wind tunnel tests for the
cross-section of height H = 5.5 m, parameterized with IT = 26 m4.
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Figure F.4: Comparison of the ADs developed by Theodorsen and the poly-
nomial which was fitted to the data points from the wind tunnel tests for the
cross-section of height H = 5.8 m, parameterized with IT = 26 m4.
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Figure F.5: Comparison of the ADs developed by Theodorsen and the poly-
nomial which was fitted to the data points from the wind tunnel tests for the
cross-section of height H = 6.1 m, parameterized with IT = 26 m4.
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F.2 Torsion constant IT = 31 m4
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Figure F.6: Comparison of the ADs developed by Theodorsen and the poly-
nomial which was fitted to the data points from the wind tunnel tests for the
cross-section of height H = 5.5 m, parameterized with IT = 31 m4.
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Figure F.7: Comparison of the ADs developed by Theodorsen and the poly-
nomial which was fitted to the data points from the wind tunnel tests for the
cross-section of height H = 5.8 m, parameterized with IT = 31 m4.
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Figure F.8: Comparison of the ADs developed by Theodorsen and the poly-
nomial which was fitted to the data points from the wind tunnel tests for the
cross-section of height H = 6.1 m, parameterized with IT = 31 m4.
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Figure F.9: Comparison of the ADs developed by Theodorsen and the poly-
nomial which was fitted to the data points from the wind tunnel tests for the
cross-section of height H = 6.4 m, parameterized with IT = 31 m4.
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Figure F.10: Comparison of the ADs developed by Theodorsen and the
polynomial which was fitted to the data points from the wind tunnel tests for
the cross-section of height H = 6.7 m, parameterized with IT = 31 m4.
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Figure F.11: Comparison of the ADs developed by Theodorsen and the
polynomial which was fitted to the data points from the wind tunnel tests for
the cross-section of height H = 7.0 m, parameterized with IT = 31 m4.



Appendix G

Gaussian Process Regression

The hyperparameters calculated by Gaussian process regression (GPR) are
presented in this appendix. Four hyperparameters θ =

[
σp L1 L2 σn

]
were

calculated for all ADs in the GPR. The lower and upper bound were θlb =[
0 0.1 0 0

]
and θub =

[
10 10 10 10

]
, respectively. Table G.1 lists the

hyperparameters for the cross-sections with IT = 26 m4 and Table G.2 lists
the hyperparameters for the cross-sections with IT = 31 m4.

139
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G.1 Torsion constant IT = 26 m4

Table G.1: Hyperparameters calculated by GPR for the cross-sections with
IT = 26 m4.

AD σp L1 L2 σn

KP ∗1 0.2509 0.1007 0.6924 0.1265
KP ∗2 0.0974 0.5015 3.1861 0.0494
K2P ∗3 0.1200 0.4350 3.7385 0.0139
K2P ∗4 0.0207 0.8721 0.4058 0.0080
KP ∗5 0.1303 0.3504 2.1111 0.0271
K2P ∗6 0.0243 0.2299 0.5946 0.0103
KH∗1 3.0585 0.6765 0.7920 0.3968
KH∗2 2.1946 0.4335 0.5847 0.3319
K2H∗3 2.4383 0.6857 0.6335 0.1604
K2H∗4 0.8323 0.4476 0.4379 0.0985
KH∗5 0.3490 0.3710 0.8773 0.0569
K2H∗6 0.1110 0.3419 0.3578 0.0329
KA∗1 0.6866 1.0852 0.9006 0.0356
KA∗2 0.2910 0.5231 0.6325 0.0500
K2A∗3 0.6582 1.3953 0.6880 0.0171
K2A∗4 0.0381 0.4763 0.3358 0.0102
KA∗5 0.1071 2.0396 1.1734 0.0078
K2A∗6 0.0584 1.6347 1.5230 0.0082
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G.2 Torsion constant IT = 31 m4

Table G.2: Hyperparameters calculated by GPR for the cross-sections with
IT = 31 m4.

AD σp L1 L2 σn

KP ∗1 0.3380 0.1000 0.8319 0.0665
KP ∗2 0.1284 0.2139 0.9174 0.0487
K2P ∗3 0.1438 0.7689 0.7927 0.0221
K2P ∗4 0.2561 1.0657 9.2469 0.0176
KP ∗5 0.1676 0.8637 0.9147 0.0452
K2P ∗6 0.1267 0.8452 1.2852 0.0168
KH∗1 2.7654 0.7436 0.4376 0.4642
KH∗2 3.0065 0.3716 0.5185 0.5431
K2H∗3 2.7133 0.8012 0.5047 0.2593
K2H∗4 1.1143 0.6392 0.3396 0.1761
KH∗5 0.4583 0.7205 0.6391 0.0950
K2H∗6 0.1829 0.3121 0.3998 0.0534
KA∗1 0.6085 1.8090 0.5275 0.0469
KA∗2 0.2923 0.7056 0.4523 0.0583
K2A∗3 0.6264 1.5881 0.6307 0.0309
K2A∗4 0.0534 0.7566 0.2773 0.0200
KA∗5 0.0691 0.2687 0.5891 0.0141
K2A∗6 0.0633 1.3569 1.0513 0.0184





Appendix H

Stability Limit Calculations

Combinations of modes for each cross-section used in the stability limits cal-
culations are presented with the corresponding critical wind speed Vcr in this
appendix. Results from the cross-sections with IT = 26 m4 are presented in
Tables H.1 to H.5, while results from the cross-sections with IT = 31 m4 are
shown in Tables H.6 to H.11.
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H.1 Torsion constant IT = 26 m4

Table H.1: Calculated stability limits for the cross-section with H = 4.9 m
and IT = 26 m4.

Mode combination Abaqus no. Critical wind speed Vcr [m/s]

1-50 1-50 79.40
1-2HS, 1-2HA, 1-5VS, 1-6, 12-14, 27-28 90.54
1-4VA, 1TS, 1TA 31, 34, 36, 41

Symmetric combinations

1-5VS, 1TS 3, 5, 13, 27-28, 41 90.60
1-4VS, 1TS 3, 5, 13, 27-28 90.60
1-3VS, 1TS 3, 5, 13, 27 90.56
1-2VS, 1TS 3, 5, 27 91.90
2VS, 1TS 5, 27 113.23
1VS, 1TS 3, 27 137.22

Asymmetric combinations

1-4VA, 1TA 2, 6, 14, 31, 36 112.94
1-3VA, 1TA 2, 6, 14, 31 112.94
1-2VA, 1TA 2, 6, 31 112.94
2VA, 1TA 6, 31 186.94
1VA, 1TA 2, 31 112.94
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Table H.2: Calculated stability limits for the cross-section with H = 5.2 m
and IT = 26 m4.

Mode combination Abaqus no. Critical wind speed Vcr [m/s]

1-50 1-50 79.54
1-2HS, 1-2HA, 1-5VS, 1-6, 12-13, 16 85.75
1-4VA, 1TS, 1TA 27-28, 31, 35-36, 41

Symmetric combinations

1-5VS, 1TS 4-5, 13, 27-28, 41 85.32
1-4VS, 1TS 4-5, 13, 27-28 85.32
1-3VS, 1TS 4-5, 13, 27 85.30
1-2VS, 1TS 4-5, 27 86.63
2VS, 1TS 5, 27 102.35
1VS, 1TS 4, 27 123.78

Asymmetric combinations

1-4VA, 1TA 2, 6, 16, 31, 36 116.77
1-3VA, 1TA 2, 6, 16, 31 116.77
1-2VA, 1TA 2, 6, 31 116.77
2VA, 1TA 6, 31 > 200
1VA, 1TA 2, 31 116.77
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Table H.3: Calculated stability limits for the cross-section with H = 5.5 m
and IT = 26 m4.

Mode combination Abaqus no. Critical wind speed Vcr [m/s]

1-50 1-50 37.96
1-2HS, 1-2HA, 1-5VS, 1-6, 12-13, 16 38.02
1-4VA, 1TS, 1TA 27-28, 31, 35-36, 41

Symmetric combinations

1-5VS, 1TS 4-5, 13, 27-28, 41 91.71
1-4VS, 1TS 4-5, 13, 27-28 91.71
1-3VS, 1TS 4-5, 13, 27 91.69
1-2VS, 1TS 4-5, 27 92.88
2VS, 1TS 5, 27 106.57
1VS, 1TS 4, 27 125.97

Asymmetric combinations

1-4VA, 1TA 2, 6, 16, 31, 36 121.87
1-3VA, 1TA 2, 6, 16, 31 121.87
1-2VA, 1TA 2, 6, 31 121.87
2VA, 1TA 6, 31 > 200
1VA, 1TA 2, 31 121.87
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Table H.4: Calculated stability limits for the cross-section with H = 5.8 m
and IT = 26 m4.

Mode combination Abaqus no. Critical wind speed Vcr [m/s]

1-50 1-50 86.42
1-2HS, 1-2HA, 1-5VS, 1-6, 12-13, 16, 27 93.39
1-4VA, 1TS, 1TA 29, 31, 35-36, 41

Symmetric combinations

1-5VS, 1TS 3, 5, 13, 27, 29, 41 93.00
1-4VS, 1TS 3, 5, 13, 27, 29 93.00
1-3VS, 1TS 3, 5, 13, 27 92.98
1-2VS, 1TS 3, 5, 27 93.80
2VS, 1TS 5, 27 106.94
1VS, 1TS 3, 27 124.68

Asymmetric combinations

1-4VA, 1TA 2, 6, 16, 31, 36 117.47
1-3VA, 1TA 2, 6, 16, 31 117.47
1-2VA, 1TA 2, 6, 31 117.47
2VA, 1TA 6, 31 > 200
1VA, 1TA 2, 31 117.47
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Table H.5: Calculated stability limits for the cross-section with H = 6.1 m
and IT = 26 m4.

Mode combination Abaqus no. Critical wind speed Vcr [m/s]

1-50 1-50 77.86
1-2HS, 1-2HA, 1-5VS, 1-6, 12-13, 16, 27 85.89
1-4VA, 1TS, 1TA 29, 31, 35-36, 41

Symmetric combinations

1-5VS, 1TS 3, 5, 13, 27, 29, 41 85.67
1-4VS, 1TS 3, 5, 13, 27, 29 85.67
1-3VS, 1TS 3, 5, 13, 27 85.65
1-2VS, 1TS 3, 5, 27 86.51
2VS, 1TS 5, 27 100.52
1VS, 1TS 3, 27 112.35

Asymmetric combinations

1-4VA, 1TA 2, 6, 16, 31, 36 106.42
1-3VA, 1TA 2, 6, 16, 31 106.42
1-2VA, 1TA 2, 6, 31 106.42
2VA, 1TA 6, 31 153.54
1VA, 1TA 2, 31 106.42
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H.2 Torsion constant IT = 31 m4

Table H.6: Calculated stability limits for the cross-section with H = 5.5 m
and IT = 31 m4.

Mode combination Abaqus no. Critical wind speed Vcr [m/s]

1-50 1-50 85.03
1-2HS, 1-2HA, 1-5VS, 1-6, 12-13, 19, 27 87.18
1-4VA, 1TS, 1TA 30, 32, 34, 36, 42

Symmetric combinations

1-5VS, 1TS 4-5, 13, 27, 30, 42 87.00
1-4VS, 1TS 4-5, 13, 27, 30 87.00
1-3VS, 1TS 4-5, 13, 27 86.98
1-2VS, 1TS 4-5, 27 87.86
2VS, 1TS 5, 27 100.26
1VS, 1TS 4, 27 119.07

Asymmetric combinations

1-4VA, 1TA 2, 6, 19, 32, 36 117.35
1-3VA, 1TA 2, 6, 19, 32 117.35
1-2VA, 1TA 2, 6, 32 117.35
2VA, 1TA 6, 32 > 200
1VA, 1TA 2, 32 117.37
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Table H.7: Calculated stability limits for the cross-section with H = 5.8 m
and IT = 31 m4.

Mode combination Abaqus no. Critical wind speed Vcr [m/s]

1-50 1-50 86.34
1-2HS, 1-2HA, 1-5VS, 1-6, 12-13, 19, 27 88.47
1-4VA, 1TS, 1TA 30, 32, 34, 36, 43

Symmetric combinations

1-5VS, 1TS 4-5, 13, 27, 30, 43 88.27
1-4VS, 1TS 4-5, 13, 27, 30 88.27
1-3VS, 1TS 4-5, 13, 27 88.27
1-2VS, 1TS 4-5, 27 89.42
2VS, 1TS 5, 27 102.86
1VS, 1TS 4, 27 121.42

Asymmetric combinations

1-4VA, 1TA 2, 6, 19, 32, 36 121.59
1-3VA, 1TA 2, 6, 19, 32 121.59
1-2VA, 1TA 2, 6, 32 121.59
2VA, 1TA 6, 32 > 200
1VA, 1TA 2, 32 121.61
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Table H.8: Calculated stability limits for the cross-section with H = 6.1 m
and IT = 31 m4.

Mode combination Abaqus no. Critical wind speed Vcr [m/s]

1-50 1-50 87.88
1-2HS, 1-2HA, 1-5VS, 1-6, 12-13, 19, 27 90.50
1-4VA, 1TS, 1TA 30, 32, 35-36, 43

Symmetric combinations

1-5VS, 1TS 3, 5, 13, 27, 30, 43 90.19
1-4VS, 1TS 3, 5, 13, 27, 30 90.19
1-3VS, 1TS 3, 5, 13, 27 90.17
1-2VS, 1TS 3, 5, 27 91.10
2VS, 1TS 5, 27 104.13
1VS, 1TS 3, 27 122.47

Asymmetric combinations

1-4VA, 1TA 2, 6, 19, 32, 36 121.34
1-3VA, 1TA 2, 6, 19, 32 121.34
1-2VA, 1TA 2, 6, 32 121.34
2VA, 1TA 6, 32 > 200
1VA, 1TA 2, 32 121.36
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Table H.9: Calculated stability limits for the cross-section with H = 6.4 m
and IT = 31 m4.

Mode combination Abaqus no. Critical wind speed Vcr [m/s]

1-50 1-50 87.31
1-2HS, 1-2HA, 1-5VS, 1-6, 12-13, 20, 27 90.65
1-4VA, 1TS, 1TA 30, 32, 35-36, 43

Symmetric combinations

1-5VS, 1TS 3, 5, 13, 27, 30, 43 90.36
1-4VS, 1TS 3, 5, 13, 27, 30 90.34
1-3VS, 1TS 3, 5, 13, 27 90.34
1-2VS, 1TS 3, 5, 27 91.01
2VS, 1TS 5, 27 104.46
1VS, 1TS 3, 27 115.91

Asymmetric combinations

1-4VA, 1TA 2, 6, 20, 32, 36 115.97
1-3VA, 1TA 2, 6, 20, 32 115.97
1-2VA, 1TA 2, 6, 32 115.97
2VA, 1TA 6, 32 164.21
1VA, 1TA 2, 32 115.99
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Table H.10: Calculated stability limits for the cross-section with H = 6.7 m
and IT = 31 m4.

Mode combination Abaqus no. Critical wind speed Vcr [m/s]

1-50 1-50 77.51
1-2HS, 1-2HA, 1-5VS, 1-6, 12-13, 20, 27 81.36
1-4VA, 1TS, 1TA 30, 32, 35-36, 43

Symmetric combinations

1-5VS, 1TS 3, 5, 13, 27, 30, 43 81.08
1-4VS, 1TS 3, 5, 13, 27, 30 81.08
1-3VS, 1TS 3, 5, 13, 27 81.06
1-2VS, 1TS 3, 5, 27 81.69
2VS, 1TS 5, 27 92.82
1VS, 1TS 3, 27 100.17

Asymmetric combinations

1-4VA, 1TA 2, 6, 20, 32, 36 101.36
1-3VA, 1TA 2, 6, 20, 32 101.36
1-2VA, 1TA 2, 6, 32 101.36
2VA, 1TA 6, 32 129.27
1VA, 1TA 2, 32 101.36
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Table H.11: Calculated stability limits for the cross-section with H = 7.0 m
and IT = 31 m4.

Mode combination Abaqus no. Critical wind speed Vcr [m/s]

1-50 1-50 66.63
1-2HS, 1-2HA, 1-5VS, 1-6, 12-13, 20, 27 82.10
1-4VA, 1TS, 1TA 30, 32, 35-36, 43

Symmetric combinations

1-5VS, 1TS 3, 5, 13, 27, 30, 43 82.04
1-4VS, 1TS 3, 5, 13, 27, 30 82.04
1-3VS, 1TS 3, 5, 13, 27 82.04
1-2VS, 1TS 3, 5, 27 82.49
2VS, 1TS 5, 27 91.24
1VS, 1TS 3, 27 97.43

Asymmetric combinations

1-4VA, 1TA 2, 6, 20, 32, 36 83.70
1-3VA, 1TA 2, 6, 20, 32 83.70
1-2VA, 1TA 2, 6, 32 83.70
2VA, 1TA 6, 32 120.89
1VA, 1TA 2, 32 83.70



Appendix I

Buffeting Response

Buffeting response plots are presented in this appendix. The response has
been calculated at three different points along the bridge; the quarter-span
( xL = 0.25), the half-span ( xL = 0.50) and the three-quarter-span ( xL = 0.75).
The calculated correlation coefficients (Equation 2.33) are given for all eleven
cross-sections at the three locations. Figures I.1 to I.3 show the autospectral
density of the buffeting response for the cross-sections parameterized with IT
= 26 m4, and Figures I.4 to I.6 show the autospectral density of buffeting
response for the cross-sections parameterized with IT = 31 m4.
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I.1 Torsion constant IT = 26 m4

The correlation coefficients from the buffeting analyses of the cross-sections
with IT = 26 m4 were:

ρ|
x
L

=0.25
H=4.9m =

 1.0000 −0.0513 0.6495
−0.0513 1.0000 −0.2269
0.6495 −0.2269 1.0000


∣∣∣∣∣∣∣
x
L

=0.25

H=4.9m

(I.1a)

ρ|
x
L

=0.50
H=4.9m =

 1.0000 −0.1197 0.6964
−0.1197 1.0000 −0.3059
0.6964 −0.3059 1.0000


∣∣∣∣∣∣∣
x
L

=0.50

H=4.9m

(I.1b)

ρ|
x
L

=0.75
H=4.9m =

 1.0000 −0.0514 0.6500
−0.0514 1.0000 −0.2268
0.6500 −0.2268 1.0000


∣∣∣∣∣∣∣
x
L

=0.75

H=4.9m

, (I.1c)

ρ|
x
L

=0.25
H=5.2m =

 1.0000 −0.0473 0.5698
−0.0473 1.0000 −0.2159
0.5698 −0.2159 1.0000


∣∣∣∣∣∣∣
x
L

=0.25

H=5.2m

(I.2a)

ρ|
x
L

=0.50
H=5.2m =

 1.0000 −0.1070 0.6121
−0.1070 1.0000 −0.2831
0.6121 −0.2831 1.0000


∣∣∣∣∣∣∣
x
L

=0.50

H=5.2m

(I.2b)

ρ|
x
L

=0.75
H=5.2m =

 1.0000 −0.0474 0.5703
−0.0474 1.0000 −0.2158
0.5703 −0.2158 1.0000


∣∣∣∣∣∣∣
x
L

=0.75

H=5.2m

, (I.2c)

ρ|
x
L

=0.25
H=5.5m =

 1.0000 −0.0347 0.4995
−0.0347 1.0000 −0.1980
0.4995 −0.1980 1.0000


∣∣∣∣∣∣∣
x
L

=0.25

H=5.5m

(I.3a)

ρ|
x
L

=0.50
H=5.5m =

 1.0000 −0.1015 0.5959
−0.1015 1.0000 −0.2542
0.5959 −0.2542 1.0000


∣∣∣∣∣∣∣
x
L

=0.50

H=5.5m

(I.3b)

ρ|
x
L

=0.75
H=5.5m =

 1.0000 −0.0347 0.5001
−0.0347 1.0000 −0.1979
0.5001 −0.1979 1.0000


∣∣∣∣∣∣∣
x
L

=0.75

H=5.5m

, (I.3c)



I.1: Torsion constant IT = 26 m4 157

ρ|
x
L

=0.25
H=5.8m =

 1.0000 −0.0842 0.6022
−0.0842 1.0000 −0.2071
0.6022 −0.2071 1.0000


∣∣∣∣∣∣∣
x
L

=0.25

H=5.8m

(I.4a)

ρ|
x
L

=0.50
H=5.8m =

 1.0000 −0.1887 0.6494
−0.1887 1.0000 −0.3252
0.6494 −0.3252 1.0000


∣∣∣∣∣∣∣
x
L

=0.50

H=5.8m

(I.4b)

ρ|
x
L

=0.75
H=5.8m =

 1.0000 −0.0843 0.6028
−0.0843 1.0000 −0.2070
0.6028 −0.2070 1.0000


∣∣∣∣∣∣∣
x
L

=0.75

H=5.8m

, (I.4c)

ρ|
x
L

=0.25
H=6.1m =

 1.0000 −0.0818 0.5522
−0.0818 1.0000 −0.2047
0.5522 −0.2047 1.0000


∣∣∣∣∣∣∣
x
L

=0.25

H=6.1m

(I.5a)

ρ|
x
L

=0.50
H=6.1m =

 1.0000 −0.1896 0.5906
−0.1896 1.0000 −0.3085
0.5906 −0.3085 1.0000


∣∣∣∣∣∣∣
x
L

=0.50

H=6.1m

(I.5b)

ρ|
x
L

=0.75
H=6.1m =

 1.0000 −0.0818 0.5527
−0.0818 1.0000 −0.2046
0.5527 −0.2046 1.0000


∣∣∣∣∣∣∣
x
L

=0.75

H=6.1m

. (I.5c)



158 Appendix I: Buffeting Response

1 2 3 4 5 6
10

-8

10
-6

10
-4

10
-2

10
0

10
2

H = 4.9 m

H = 5.2 m

H = 5.5 m

H = 5.8 m

H = 6.1 m

(a) Lateral direction.

1 2 3 4 5 6
10

-8

10
-6

10
-4

10
-2

10
0

H = 4.9 m

H = 5.2 m

H = 5.5 m

H = 5.8 m

H = 6.1 m

(b) Vertical direction.

1 2 3 4 5 6
10

-10

10
-8

10
-6

10
-4

H = 4.9 m

H = 5.2 m

H = 5.5 m

H = 5.8 m

H = 6.1 m

(c) Torsional direction.

Figure I.1: Autospectral densities of the buffeting response in three directions
at the quarter-span for the cross-sections parameterized with IT = 26 m4.
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Figure I.2: Autospectral densities of the buffeting response in three directions
at the half-span for the cross-sections parameterized with IT = 26 m4.
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Figure I.3: Autospectral densities of the buffeting response in three directions
at the three-quarter-span for the cross-sections parameterized with IT = 26
m4.
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I.2 Torsion constant IT = 31 m4

The correlation coefficients from the buffeting analyses of the cross-sections
with IT = 31 m4 were:
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Figure I.4: Autospectral densities of the buffeting response in three directions
at the quarter-span for the cross-sections parameterized with IT = 31 m4.
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Figure I.5: Autospectral densities of the buffeting response in three directions
at the half-span for the cross-sections parameterized with IT = 31 m4.
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Figure I.6: Autospectral densities of the buffeting response in three directions
at the three-quarter-span for the cross-sections parameterized with IT = 31
m4.
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