NTNU

Norwegian University of Science and Technology

Master’s thesis

Faculty of Engineering

Department of Structural Engineering

Camilla By Kampenes

Long-Span Brettstapel Roof
Structures

A Parametric Design Approach

Master’s thesis in Civil and Environmental Engineering
Supervisor: Marcin Luczkowski
Co-supervisor: Anders Rgnnquist

June 2021

@ NTNU

Norwegian University of
Science and Technology

NORSK MASSIVTRE

Camilla By Kampenes

Long-Span Brettstapel Roof Structures

A Parametric Design Approach

Master’s thesis in Civil and Environmental Engineering
Supervisor: Marcin Luczkowski

Co-supervisor: Anders Rgnnquist

June 2021

Norwegian University of Science and Technology

Faculty of Engineering
Department of Structural Engineering

@ NTNU

Kunnskap for en bedre verden

Department of Structural Engineering ACCESSIBILITY
Faculty of Engineering
NTNU - Norwegian University of Science and Technology

Open

MASTER THESIS 2021

SUBJECT AREA: DATE: NO. OF PAGES:
Structural Engineering 10.06.2021 67 + 59
TITLE:

Long-Span Brettstapel Roof Structures: A Parametric Design Approach

Langspente takkonstruksjoner av Brettstapel: En parametrisk design-tilneserming

BY:

Camilla By Kampenes

SUMMARY:

Background: Timber has gained popularity as a structural material in recent years, due to increased focus on
climate change and its eco-friendly credentials. In an age where digitalization permeates the building
industry, knowledge on how to model the complex material is pivotal, and research on this topic is still
required. Massive timber has emerged in the industry as a way to expand timber's structural applications.
However, the compound elements further complicate the digital modeling process.

Objective: This study is a twofold investigation of (1) how Norsk Massivtre's massive timber element, the
Brettstapel, can be utilized for long-span roof structures exceeding 20 meters, (2) how timber in general, and
massive timber in particular, can be investigated in the digital environment.

Method: Norsk Massivtre's Brettstapel, and long-span roof structures involving the Brettstapel, are modeled
and analyzed using parametric design tools and traditional CAD software. The investigated roof structures
are the pitched and flat under-spanned roofs, the folded W-roof, and a pitched roof with Brettstapel beams. A
theoretical comparison between the Brettstapel and cross-laminated timber (CLT) is conducted to elucidate
Brettstapel's potential as a material for roof plates.

Results: A digital model of the Brettstapel with FEM 3D solid elements give a satisfactory simulation of its
behavior. Simplified parametric models, using FEM shell elements, indicate a potential for the long-span roof
structures. Taking limitations and sources of error into account, the under-spanned structures seem most
promising. Compared to CLT, the Brettstapel has advantages regarding the second moment of inertia and
rolling shear.

Conclusion: The results indicate that the anisotropy and geometric complexity of massive timber must be
taken into account through volumetric FEM-modeling to provide accurate results. The parametric
environment can be utilized to provide information regarding geometry and structural potential. However, the
parametric models are too limited to give detailed structural information. The findings in this study can be
useful both for future research and the commercial industry.

RESPONSIBLE TEACHER:
Marcin Luczkowski

CARRIED OUT AT:
Department of Structural Engineering, Norwegian University of Science and Technology

Abstract

Background: Timber has gained popularity as a structural material in re-
cent years, due to increased focus on climate change and its eco-friendly
credentials. In an age where digitalization permeates the building industry,
knowledge on how to model the complex material is pivotal, and research on
this topic is still required. Massive timber has emerged in the industry as
a way to expand timber’s structural applications. However, the compound
elements further complicate the digital modeling process.

Objective: This study is a twofold investigation of (1) how Norsk Massivtre’s
massive timber element, the Brettstapel, can be utilized for long-span roof
structures exceeding 20 meters, (2) how timber in general, and massive timber
in particular, can be investigated in the digital environment.

Method: Norsk Massivtre’s Brettstapel, and long-span roof structures in-
volving the Brettstapel, are modeled and analyzed using parametric design
tools and traditional CAD software. The investigated roof structures are the
pitched and flat under-spanned roofs, the folded W-roof, and a pitched roof
with Brettstapel beams. A theoretical comparison between the Brettstapel
and cross-laminated timber (CLT) is conducted to elucidate Brettstapel’s
potential as a material for roof plates.

Results: A digital model of the Brettstapel with FEM 3D solid elements
give a satisfactory simulation of its behavior. Simplified parametric mod-
els, using FEM shell elements, indicate a potential for the long-span roof
structures. Taking limitations and sources of error into account, the under-
spanned structures seem most promising. Compared to CLT, the Brettstapel
has advantages regarding the second moment of inertia and rolling shear.

Conclusion: The results indicate that the anisotropy and geometric complex-
ity of massive timber must be taken into account through volumetric FEM-
modeling to provide accurate results. The parametric environment can be
utilized to provide information regarding geometry and structural potential.
However, the parametric models are too limited to give detailed structural
information. The findings in this study can be useful both for future research
and the commercial industry.

Keywords: Massive timber, Brettstapel, Parametric design

Sammendrag

Bakgrunn: Tre har gkt i popularitet som et konstruksjonsmateriale de siste
arene, pa grunn av et gkt fokus pa klimaendringer og materialets status
som miljevennlig. I en tid hvor digitalisering gjennomsyrer byggebransjen er
kunnskap om hvordan det komplekse materialet kan modelleres avgjgrende,
og forskning pa dette omradet kreves fremdeles. Massivtre apner for bruk
av tre til flere konstruktive formal. Men, de sammensatte tre-elementene
kompliserer den digitale modelleringsprosessen ytterligere.

Formal: Denne studien er en todelt undersgkelse av (1) hvordan Norsk Mas-
sivtres kantstilte massivtre-element, ”Brettstapel”, kan utnyttes til a skape
takkonstruksjoner med lange spenn over 20 meter, (2) hvordan tre generelt,
og massivtre spesielt, kan bli modellert og utforsket digitalt.

Metode: Norsk Massivtres Brettstapel element, og ulike takkonstruksjoner
bestaende av denne, er modellert og analysert ved hjelp av parametrisk
design-verktgy og tradisjonelle CAD-programmer. De utforskede takkon-
struksjonene er som fglger: skra og flate underspente tak, foldede W-tak og
skratak med Brettstapel-bjelker. En teoretisk sammenligning av Brettstapel
og kryss-laminert tre (CLT) er gjennomfert for a fa kunnskap om Brettstapel’s
potensiale som materiale for takplater.

Resultat: En digital modell av Brettstapel med FEM 3D solide elementer gir
en tilfredsstillende simulering av responsen. Forenklede parametriske mod-
eller, ved bruk av FEM skall-elementer, indikerer et potensiale for takkon-
struksjonene med lange spenn. Ved a ta begrensninger og feilkilder med i
betraktningen, er det de underspente takkonstruksjonene som virker mest
lovende. Sammenlignet med CLT har Brettstapel fordeler i forhold til annet
arealmoment og rulleskjeer.

Konklusjon: Resultatene indikerer at massivtres anisotropi og geometriske
kompleksitet ma tas i betraktning gjennom volumetrisk FEM-modellering
for a gi ngyaktige resultater. Hjelpemidler innen parametrisk design kan
utnyttes til a gi informasjon om geometri og konstruktivt potensiale. Men,
de parametriske modellene er for forenklede til a gi detaljert konstruktiv
informasjon. Resultatene i denne studien kan veaere nyttige for bade fremtidig
forskning og for den kommersielle industrien.

Preface

This paper is a Master’s thesis written for the Department of Structural
Engineering at the Norwegian University of Science and Technology (NTNU)
in Trondheim, Norway. It is part of the program Civil and Environmental
Engineering, with a specialization in structural engineering and conceptual
design. The thesis was written in the spring of 2021.

First of all, I would like to express my sincere gratitude to my supervisor,
Marcin Luczkowski, who has provided support, motivation and helpful ideas
throughout the process of this thesis. I would like to thank Arild Qvergaard
and Norsk Massivtre for an interesting topic, and valuable insight in the
firm’s practice and products.

A special thanks to Matthias Stracke and Ole Morten Braathen at
Bollinger+Grohmann Oslo, who gave invaluable help on figuring out the

topic of this thesis. A big thanks to Anders Rgnnquist who has motivated
me to specialize in conceptual structural design at NTNU.

Trondheim, June 2021

Camilla By Kampenes

List of Figures

1.1

1.2

2.1

2.2

2.3
24

2.5
2.6
2.7
2.8

2.9
2.10

2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

2.20

2.21

Innovative massive timber structures: (1) Treet, Bergen (2)
Theatre Vidy-Lausanne, Lausanne [1], (3) research project by

Robeller et al.[2] 1
The under-spanned CLT roof of Flyinge Ridhus 2
Brettstapel element from Norsk Massivtre and connection of

two elements, from the SINTEF technical approval [7] 4
Relation between stress and strains for an orthotropic material

9] . . 5
Notation system in timber theory [9] 5

Linear elastic properties for spruce, presented by Dahl in his
doctoral thesis [11]. E and G are given in MPa, p is in kg/m> 6
Examples of engineered timber plate materials: (1) CLT, (2)

LVL, (3) plywood 6
[llustrations of stress situations for a 5-layered CLT panel [12]
Stress components showing: (1) normal shear, (2) rolling shear
CLT: Rolling shear failure occuring in a perpendicular layer
under normal bending [14] oL 8
(1) Flyinge Ridhus, Sweden (2) Timber lab at TU Graz, Austria 9
(1) Polonceau under-spanned pitched roof design from 1840,

oo

(2) flat under-spanned beam from Limtreboka [17] 10
Principle of (a) stabilizing (positive) camber, and (b) destabi-
lizing (negative) camber, from Limtreboka [17] 10

NLT roof structures by StructureCraft. From upper left: (1)
and (2) Samuel Brighouse School Atrium, (3) and (4) Tsingtao

Pearl Visitor Centre. From StructureCraft’s website 11
Visualization of 1D beam, 2D shell and 3D solid elements [18] 12
Parametric design in Rhino/Grasshopper/Karamba3D 13
Karamba3D tool line in the Grasshopper environment 14
An ongoing Galapagos optimization 14
(1) Heydar Aliyev Centre, Azerbaijan (2) Hungerburg Station,
Austria (3) Kunsthaus Graz, Austria 15
Theoretical springs for lamellas in Brettstapel elements, from

Nils Ivar Bovim’s Excel application [23] 17
Geometry of the tested elements from Kristiansen and Lgvbrgtte’s
master’s thesis [23] oL o L 17
Roof structure of TU Graz timber lab. Figures from Bulajic’s
thesis [24] L 19

Folded roof structures, figure from [26] 19

2.22

2.23

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

4.20
4.21

4.22
4.23

Analyses showing stress concentration and deflection for small
and large L/H-ratios, from Fjelde and Aakre’s thesis [26]
Analyses showing stress concentration and deflection for a W-
roof supported with beams at its outer edges, from Fjelde and
Aakre’s thesis [26]o L
Code in Karamba3D/Grasshopper and model in Rhino. De-
tailed code is presented in Appendix B
Inputs and code in Grasshopper generating the geometry of
oneelement
Karamba analysis components and visualization in Rhino . . .
Bovim’s springs [23], repetition of figure 2.18
Code and modeled breps in Grasshopper/Rhino. Detailed
code is presented in Appendix C
Separate lamellas obtained from Grasshopper
Engineering constants assigned the timber lamellas in Abaqus
(1) Element from physical tests [23], (2) cylindrical coordinate
systems in Abaqus, (3) cylindrical coordinate system for one
lamella in Abaqus
(1) Boundary conditions for the physical test element [23], (2)
Simulation of BCs in Abaqus
Deformation visualization of a 4.4m element loaded at the middle
Cut of the analyzed Abaqus model, visualizing the stress dis-
tribution Lo
Cut of the analyzed Abaqus model, visualizing the strain dis-
tribution L
Principal stress distribution of (1) FEM 3D solid model in
Abaqus, (2) FEM shell model in Karamba3D
Code and model of the under-spanned pitched roof in Rhi-
no/Grasshopper/Karamba3D. Detailed code is presented in
Appendix D
Geometry of steel trusses L.
(1) compression rods, (2) tension cables 1, (3) tension cables 2
Deflection comparison for 20m and 30m span widths
Comparison of principal stresses for 20m and 30m span widths
Code and model of under-spanned flat roof in Rhino/Grasshop-
per/Karamba3D. Detailed code is presented in Appendix E . .
Geometry of steel trusses
Geometry inspiration, TU Graz timber lab roof, from Bulajic’s
master’s thesis [24]o
(1) compression rods, (2) tension cables 1, (3) tension cables 2
Deflection comparison for 20m and 30m span widths

20

21
25
26
27
28

29
30

31

32
32

35
35
36
38
39
39
40
41

42
42

43
44

4.24
4.25

4.26
4.27

4.28
4.29
4.30

4.31
4.32
4.33
5.1

5.2
6.1

Al
B.1
B.2
B.3
B.4
B.5
B.6
B.7
C.1
C.2

C.3

C4
C.5
C.6
C.7
C.8

C.9

Comparison of principal stresses for 20m and 30m span widths 46
Code and model of the folded W-roof model in Rhino/Grasshop-
per/Karamba3D. Detailed code is presented in Appendix F . . 47

Support settings 48
Support points for the folded W-roof (1) without cantilevers

and (2) with 2m cantilevers L. 48
Deflection comparison for 20m and 30m span widths 49
Comparison of principal stresses for 20m and 30m span widths 50

Code and model of the pitched roof with Brettstapel beams in
Rhino/Grasshopper/Karamba3D. Detailed code is presented

in Appendix G 51
Deflection comparison for 20m and 30m span widths 52
Comparison of principal stresses for 20m and 30m span widths 53
Code for the EC5 utilization checks 54
V-shaped spacious compression rods of (1) Flyinge Ridhus,

and (2) TU Graz timber lab 56
Unfavorable load situation, likely to cause rolling shear 58
Cut of the analyzed Abaqus model, revealing jumps in stress

and strain between lamellas 60
PV information by PFEIFER [27) iv
Code in Karamba/Grasshopper v
Code for lamella elements and joints v
Code for screw elements vi
Code for loads and supports vi
Script from component C# PointséLines ix
Script from component C'# EndScrewLines X
Script from component C# SplitLinesIn2 xi
Grasshopper code creating breps for Abaqus xii
Parametric input, script component C'# ScrewLines, and screw

details xii
Codes for middle and half end lamellas’ breps. Similar recycled

coding and scriptso xiii
Codes for screws” breps L. xiii
Codes for load plates’ breps Xiv
Brep and check for closed breps xiv
Script from component C'# ScrewlLines xvi

Script from component C# ScrewCenterséfLines. This script
component is used in slightly different versions for the three
lamella codeso Xix
Script from component C# LineGeometryScrews xxi

C.10 Script from component C# MidpointLoadPlate xxii

C.11 Script from component C# FEdgeLoadPlate xxii

C.12 Script from component C# GetLamellas xxiii
C.13 Script from component C# IsClosed xxiii
D.1 Code for the under-spanned pitched roof model in Karamba3D xxiv
D.2 Inputs and code creating roof meshes and truss geometry . . . xxiv
D.3 Truss members’ settings 0L XXV
D.4 Code for shells and support conditions XXV
D.5 Load settings XXVi
D.6 Assembly, analysis and vizualisation XXVi
D.7 Code for Eurocode 5 timber checks XxVii
D.8 Eurocode 3 steel checks and global buckling analysis xXxVvii
D.9 Resulting utilizations and global buckling load factor, and fit-

ness script for Galapagos xXxViii
D.10 Script from component C# RoofCreator XXX
D.11 Script from component C# TrussGeometry xxxii
D.12 Script from component C# Fitness script xxxiii
E.1 Code for the under-spanned flat roof model in Karamba3D . . xxxiv
E.2 Inputs, curved shell geometry code, and mesh code XXXV
E.3 Shell settings L XXXV
E.4 Truss geometry code and truss members’ settings XXXV
E.5 Load settings o XXXV
E.6 Support settings XXXVi
E.7 Assembly, analysis and visualization XXXVi
E.8 Code for Eurocode 5 timber checks XXXVii
E.9 Eurocode 3 steel checks and global buckling analysis XxxXVii
E.10 Resulting utilizations and global buckling load factor, and fit-

ness script for Galapagoso xxxviil
E.11 Script from component C# TrussGeometry xli
E.12 Script from component C# Fitness script xlii
F.1 Code for the folded W-roof model in Karamba3D xliii
F.2 Input, component C# Folded W-roof Geometry and mesh . . . xliii
F.3 Shell settings with optimized Brettstapel height h xliv
F.4 Load and support settings xliv
F.5 Assembly, analysis and visualization xlv
F.6 Code for Eurocode 5 timber checks xlv

F.7 Global buckling analysis and script for deflection utilization . xlvi
F.8 Resulting utilizations and global buckling load factor, and fit-

ness script for Galapagos xlvi
F.9 Script from component C# Folded W-roof Geometry xlvii
F.10 Script from component C# Support Points xlviii

F.11 Script from component C# Fitness script xlix

G.1 Code for the pitched roof with Brettstapel beams model in

Karamba3D 1
G.2 Input, meshes and beam settings 1
G.3 Shell settings li
G.4 Support and load settings li
G.5 Assembly, analysis and visualizations lii
G.6 Code for Eurocode 5 timber checks for shells lii
G.7 Code for Eurocode 5 timber checks for beams liii
G.8 Global buckling analysis liii
G.9 Resulting utilizations and global buckling load factor, and fit-

ness script for Galapagos liv
G.10 Script from component C# RoofCreator v
G.11 Script from component C# Roof Angle lvi
G.12 Script from component C# beamZlocation lvi
G.13 Script from component C# BeamGeometry lvii
G.14 Script from component C# Fitness Script lviii
H.1 Script from component C# Utilizations of Brettstapel Shell

(EC5) . . lix

H.2 Script from component C# Check for combined M+N (EC5) . Ix

H.3 Script from component C# Utilizations of Brettstapel Beams
(EC5) . . Ixi

H.4 Script from component C# Check for axial buckling (EC5) . . Ixii

List of Tables

2.1

3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Obtained results from Kristiansen and L@vbrgtte’s master’s

thesis 18

................................... 24
Test situations 27
Deflection results: FEM Model with Beam Elements (mm) . . 33
Deflection results: FEM Model with 3D Solid Elements (mm) 34
Brettstapel material properties for FEM shells 37
Comparison of maximum stresses (N/mm?) 37
Results for the Under-spanned Pitched Roof 40
Results for the Under-spanned Flat Roof 44
Results for the Folded W-Roof 48

Results for the Pitched Roof with Brettstapel Beams 52

Contents

1 Introduction

2 Background
2.1 Timber
2.1.1 The Brettstapel
2.1.2 Orthotropic Material Properties
2.1.3 Massive Timber Plate Materials
2.1.4 Brettstapel vs Plate Materials
2.1.5 Under-spanned Timber Roofs
2.2 Finite Element Method (FEM)
2.3 Parametric Design Tools
2.4 Related Work oo
2.4.1 Norsk Massivtre’s Brettstapel
2.4.2 Under-spanned Roofs
243 Folded Roofs

3 Research Method

4 Implementation and Results
4.1 Norsk Massivtre’s Brettstapel Model
4.1.1 FEM Model with Beam Elements
4.1.2 FEM Model with 3D Solid Elements
413 Results.
4.2 Brettstapel Material Properties for FEM Shells
421 Results.
4.3 FEM Shell Model: Under-spanned Pitched Roof
431 Results.
4.4 FEM Shell Model: Under-spanned Flat Roof
441 Results.
4.5 FEM Shell Model: Folded W-Roof
451 Results.
4.6 FEM Shell Model: Pitched Roof with Brettstapel Beams . . .
46.1 Results.
4.7 EC5 Timber Utilization

5 Discussion
5.1 Norsk Massivtre’s Brettstapel Model
5.2 FEM Shell Models of Roof Structures
5.2.1 Under-spanned roofs

5.2.2 Folded W-Roof 57
5.2.3 Pitched Roof with Brettstapel Beams 58
6 Limitations and Sources of Error 59
7 Conclusion 61
8 Future Work 64
References i
Appendix iv
Appendix A PFEIFER PV information iv
Appendix B Code and Scripts: FEM Model with Beam Ele-
ments v
Appendix C Code and Scripts: FEM Model with 3D Solid El-
ements xii
Appendix D Code and Scripts: Under-spanned Pitched Roofxxiv
Appendix E Code and Scripts: Under-spanned Flat Roof xxxiv
Appendix F Code and Scripts: Folded W-roof xliii
Appendix G Code and Scripts: Pitched Roof with Brettstapel
Beams 1

Appendix H

Scripts: EC5 Timber Utilization lix

1 Introduction

In the building industry, timber has in the recent years gained popularity
as a structural material. Increased focus on climate change and the mate-
rial’s eco-friendly credentials explain this development. The emergence of
massive timber has further increased the structural applications of the mate-
rial, hence current use involves high rise buildings, thin shell structures and
other complex geometries. Digitalization of timber is highly relevant in the
current digital age. However, the material has a complex structure which
makes it harder to model than other isotropic structural materials like steel
and concrete.

Figure 1.1: Innovative massive timber structures: (1) Treet, Bergen (2) Theatre Vidy-
Lausanne, Lausanne [1], (3) research project by Robeller et al.[2]

The idea of this thesis emerged from the collaboration between the engineer-
ing firm Bollinger+Grohmann and the massive timber manufacturer Norsk
Massivtre. They have a common interest in investigating how a massive
timber element, the Brettstapel, can be used for long-span roof structures.
Norsk Massivtre plan to build a new production facility with a roof span
beyond 20 meters, preferably with their Brettstapel elements. Today, the
Brettstapel can span up to approximately 10 meters, and supporting struc-
tures are necessary. Norsk Massivtre were initially inspired by the pitched,
under-spanned roof structure of Flyinge Ridhus in Sweden, depicted in figure
1.2. The timber roof of Flyinge Ridhus is made of cross-laminated timber
(CLT), and the initial aim of this study was to investigate if Norsk Mas-
sivtre’s Brettstapel elements can be used for such a structure. However, the
scope of this thesis is widened to explore Norsk Massivtre’s Brettstapel for
several types of roof structures to achieve long spans exceeding 20 meters,
and to explore how parametric design can be utilized for the purpose of in-
vestigating these structures. Since the roof structure of Flyinge Ridhus is
made of CLT, it is central to compare Brettstapel and CLT. The comparison

is based on literature and structural mechanics of the materials.

Figure 1.2: The under-spanned CLT roof of Flyinge Ridhus

Digital tools involving different forms of the finite element method (FEM)
are used in this study, with different levels of detail involved. The challenge
of how to simplify complex massive timber in the digital environment, in a
way that produce a satisfying level of accuracy and enables fast analyses, is
explored.

The study contributes to research on digital modeling and structural analysis
of massive timber. The results are useful for Norsk Massivtre, but also for
other manufacturers, structural engineers and architects handling massive
timber, and especially the Brettstapel. The model descriptions, scripts and
visual codes may be useful for future research on similar topics, hence these
are included in the Appendix.

2 Background

2.1 Timber

Timber is an ancient building material which has had an upswing the recent
years due to increased focus on climate change and its eco-friendly creden-
tials. Timber is aesthetically pleasant, easy to work with and prefabricate,
eco-friendly if sustainable deforestation is conducted, and has high local avail-
ability [3]. It has the capacity of absorbing C'O, and retain it as long as it is
a living material [3]. The increased interest has led to new engineered timber
products, Brettstapel being one of them, which again has led to new struc-
tural possibilities. From traditional beam and post frame structures with
solid timber, today’s innovative products and solutions make it possible to
create long-span timber plate structures. In this chapter, important aspects
of timber’s structural behavior, and some of the recent innovations within
timber roofs, are introduced.

2.1.1 The Brettstapel

The German term Brettstapel emerged in the 1970s, describing massive wood
elements of parallel softwood lamellas connected with timber dowels or steel
connectors [4]. What identifies the Brettstapel is the alignment of all wood
fibres in one direction, causing high strength and stiffness in this direction.
The laminating effect causes higher stiffness than for separate lamellas, and
it diminish the critical effect of defects [5]. In addition to being eco-friendly,
the Brettstapel element has been proven useful for several structural ap-
plications, such as replacing concrete or masonry floors in industrial build-
ings, post stressed decks for bridges (Stresslam) and large truss formations
[4][6]. Brettstapel elements create one of the most structurally efficient pan-
els for timber shear walls and floor diapraghms [4]. Today, Brettstapel has
many names. DowelLam (DLT) describes stacked timber elements connected
by timber dowels, creating elements with timber parts only. This is prob-
ably the most common reference when using the term Brettstapel today.
Nail-laminated timber (NLT') describes stacked timber elements connected
by nails. In America and Canada, the material is commonly used for mid-
rise warehouse and industrial structures, and they have gained the label of
"fire-resisting floors” [4], eliminating old beliefs of timber being unfit for
construction due to fire hazard.

The Brettstapel element from Norsk Massivtre is described in the SINTEF
Technical Approval document from 2020 [7]. The element consist of nine
lamellas of 46mm width, screwed together horizontally with 5-8mm screws.
The width of an element is 414mm. The height of the elements varies from
95-220 mm. The lamellas are made of solid timber of strength class C14,
T15 and T22. In a plate structure, the elements are connected to each
other by 8mm screws of 400mm length, 200mm into each element. The
connections are repeated for every 0.8m length. Today, lamellas longer than
4,5m are extended using butt joints. Due to the complication of modeling
and calculating such joints, finger joints are assumed in this thesis. This may
be incorporated by Norsk Massivtre as a production method in the future
[8]. The current use of these elements is mainly floor and roof structures
spanning up to 10m, for domestic buildings and cabins in Nordic climate.

=N
N

=
D)
£ =

— Skjeteskrue

/

NSV

AW

)

"))
=7

ﬁ\
N
))

="
W,

=7
)
W=7

\

W=7
N\
N7

A

\

1

\

Ky \
95-220 mm

Figure 2.1: Brettstapel element from Norsk Massivtre and connection of two elements,
from the SINTEF technical approval [7]

2.1.2 Orthotropic Material Properties

Timber is an orthotropic material, which is a type of anisotropic material.
Orthotropy means that it has three mutually orthonormal planes of symme-
try [9]. Several parameters are needed to make a detailed model, which are
not included in the strength class information. Figure 2.2 shows the rela-
tion between stress and strains for an orthotropic material, and hence the
required parameters [9].

€11
€22
€33
V23
V31
Y12

Figure 2.2: Relation between stress and strains for an orthotropic material [9]

sym.

The notations are defined as follows:

"E; is the Young’s modulus along axis i, G;j is the shear modulus in direction
J on the plane whose normal is in direction i, and v;; is the Poisson’s ratio
that corresponds to a contraction in direction j when an extension is applied

in direction i.” [10]

In timber theory, the axial relations are notated as L, R and T, which de-
scribes the longitudinal, rotational and tangential (circumferencial) direc-
tions. L = 1, R = 2 and T = 3 when translating onto the 1,2,3 axis system

0
1

Gz

[9]. The notation system is visualized in figure 2.3.

yi2)

Figure 2.3: Notation system in timber theory [9]

In his doctoral thesis [11], Kristian B. Dahl has assembled a set of linear
elastic parameters for the softwood type spruce, see figure 2.4. These are

A1)

J11
022
033
023
031
12

average values from a range of different spruce species, obtained from several
research references. This set of values represent the most realistic values
obtainable for modeling a spruce lamella at this time. These parameters are
used for each lamella in the models of the Brettstapel element described in
ch. 4.1. Details of the different spruce types resulting in these average values
can be found in Dahl’s thesis [11].

Ew Err Err GLr Grr Grr Vir Vir Vir p
10991 716 435 682 693 49 0.42 0.48 0.50 390

Figure 2.4: Linear elastic properties for spruce, presented by Dahl in his doctoral thesis
[11]. E and G are given in MPa, p is in kg/m?

2.1.3 Massive Timber Plate Materials

Massive timber plate materials, also known as engineered timber plate mate-
rials, are a popular choice for plate structures such as walls, floors and roofs.
Common materials are cross-laminated timber (CLT), laminated veneer lum-
ber (LVL) and plywood. CLT consist of glued layers of solid timber lamellas,
where every other layer is rotated 90 degrees to one another. LVL consist
of thin layers of wood glued together in the same direction,while plywood
consist of glued thin wood layers oriented 90 degrees to one another.

Figure 2.5: Examples of engineered timber plate materials: (1) CLT, (2) LVL, (3) plywood

Due to a wide range of research and literature being available for CLT, it
is chosen as the plate material compared to Brettstapel in this thesis. The
aim is to get a clearer picture of Brettstapel’s potential as a material for
plate structures. CLT was developed in the mid-1990s in Switzerland [12],
and today, over 1 million m?® are produced across the globe each year [13].
CLT structures are about 30% lighter than those of steel and concrete frames
[13]. In 2016, Moholt Student Housing in Trondheim reached a height of 28m
and consists of nine stories, where CLT is the main bearing structure [13].

Mjgstarnet in Brumunddal in Norway, built in 2019, reaches the height of 81
meters, where CLT is the secondary structure [13].

CLT has the capability of spanning in two directions, which provides stabil-
ity, strength and stiffness properties in-plane and out-of-plane [14]. Two-way
span enables load transfer to all four supporting walls and decreases deforma-
tion [14]. The moment of inertia and elastic modulus are based on the lamella
layers spanning in the specific direction only, while across-grain layers are as-
sumed unstressed and neglected [12], see figure 2.6. The loads are transferred
between the lamellas through rolling shear [12], hence this strength property
is of great importance for the performance of CLT. Rolling shear occurs when
both stress components are perpendicular to grain, see figure 2.7. This stress
situations is present for perpendicular layers under normal bending [12], see
figure 2.8. Since rolling shear is the weakest strength property of timber,
and CLT is exposed when subject to bending in both directions, this is the
critical failure mechanism for CLT.

D-m
A
-0 —kayerb———— A
W Layer 4 —&— | & z
= €4 T
RO IR Layer3
. e
o > Layer 2 v "
< Layer =
¢ Om
(a)
Gm
A
-0 Layer 5 S
- ~, layera | e Az
5 64 I
) G Layer 3
€
NG 2
e—— o
. ‘ Layer 1 B —
v Om
(b) |

Figure 2.6: Illustrations of stress situations for a 5-layered CLT panel [12]

Figure 2.8: CLT: Rolling shear failure occuring in a perpendicular layer under normal
bending [14]

2.1.4 Brettstapel vs Plate Materials

There are plausible advantages of using Brettstapel elements for timber
roofs, compared to engineered timber plate materials. Norsk Massivtre’s
Brettstapel element is connected by screws only, and no glue is used in pro-
duction or construction [7]. This makes the element easy to deconstruct and
recycle, which gives it an environmental advantage. Mechanically connected
elements also has the advantage of strength and stiffness being indepen-
dent of adhesion properties, in contrast to glued-laminated timber (GLT).
This enables utility of low-grade timber, and eliminates the extensive pre-
thicknessing processes needed for production of GLT [15]. The use of adhe-
sives in GLT causes toxic gas emission and is harmful to the environment
[?]. The production process of mechanically fastened elements is overall less
complex and needs less unique equiment and facilities, and the elements can
be assembled on-site [15].

In a report about Brettstapel’s potential in Britain, Dauksta claims that
the two-way capacity of CLT is under-utilized in many situations, and that
the Brettstapel can be a rational alternative in these cases [4]. He states
that when the two-way capactiy is not necessary and unused, up to 40% of
the material capacity might be wasted, and the material over-priced [4]. If
the two-way spanning capacity is necessary, it has been proven achievable

for DowelLLam elements, by the use of reinforcement screws, which has been
done for transverse cantilevers [16]. This method is transferable to Norsk
Massivtre’s Brettstapel, where screws are already implemented. Dauksta
states that Brettstapel panels can span further than CLT with equivalent
thickness, and that Brettstapel shear walls can carry up to twice the load
compared to CLT.

2.1.5 Under-spanned Timber Roofs

Figure 2.9: (1) Flyinge Ridhus, Sweden (2) Timber lab at TU Graz, Austria

Hybrid structural systems utilize the fact that different materials have differ-
ent strengths and limitations. In the case of the under-spanned timber roof,
a under-spanning support truss system of steel stiffens the roof structure
with tension cables and compression rods. Under-spanned timber roofs can
be created as pitched or flat. The intent of the transverse tension cables is to
uptake stresses at the roof ends and prevent outward and downward move-
ment. For a flat roof, the initial vertical deformation, called the camber, is
important. If the camber is positive, it results in compressive forces acting
against applied loads, creating a self-stabilizing effect and increasing stiff-
ness. If negative, the camber creates tension stresses and is destructive for
the system’s stiffness [17]. The principles are explained in figure 2.11. The
camber should be at least 1./200 [17]. Hence, a curved geometry of the flat
roof can be a good solution. The modern timber lab at Graz University of
Technology in Austria, built in 1996, is a good reference for this kind of roof
structure, see figure 2.9. This solution might be material efficient compared
to the pitched roof solution of e.g. Flyinge Ridhus. Both roof structures are
made of CLT.

As nail-laminated timber (NLT) are Brettstapel elements connected by nails,
it is highly comparable with Norsk Massivtre’s elements. The Canadian
company StructureCraft specialize in timber and hybrid-timber structures,

Figure 2.10: (1) Polonceau under-spanned pitched roof design from 1840, (2) flat under-
spanned beam from Limtreboka [17]

Oppriss Snitt Kraftpolygon i A

stag

stag strekkband

opplegg | \ s
vert. bjelkeakse y
strekkband | % A
A P,
(a) Positiv overhgyde (forbindelse over oppleggsniva) 1 f P : stabiliserende
.\
l strekkband
opplegg |
: N\ stag T
A vert. bjelkeakse I S
: A
| A F,
(b) Negativ overhgyde (forbindelse under oppleggsniva) s PZ: destabiliserende

Figure 2.11: Principle of (a) stabilizing (positive) camber, and (b) destabilizing (negative)
camber, from Limtreboka [17]

and several underspanned NLT-roof structures can be found on their website,
such as Samuel Brighouse School Atrium and Tsingtao Pearl Visitor Centre,
depicted in figure 2.12. These projects prove that it is possible to build
under-spanned roofs with mechanically connected Brettstapel elements.

10

Figure 2.12: NLT roof structures by StructureCraft. From upper left: (1) and (2) Samuel
Brighouse School Atrium, (3) and (4) Tsingtao Pearl Visitor Centre. From Structure-
Craft’s website

2.2 Finite Element Method (FEM)

This chapter gives a short introduction to the Finite Element Method (FEM),
and explains the most important principles for this thesis. FEM is an approx-
imate numerical method, used in the field of structural engineering as a way
of calculating strength and stiffness response in a structural member. The
member is divided into a finite number of elements, where each element has a
number of nodes with degrees of freedom (DOFs). There are different types
of elements that can be assigned to the structural member. The choice of
element type is important to get a good result, and depend on the member’s
structural purpose, load situation and geometry. Three element types are
used in this thesis, which assign very different properties to the structural
members. These are 1D beam elements, 2D shell elements and 3D (volu-
metric) solid elements. Depending on the element type, a number of nodes
are assigned, and the DOF's per node enables movement and rotation at the
location of the node. If linear FE elements are chosen, nodes are located
at the element corners only. If quadratic FE elements are used, nodes are
additionally placed at the middle of the edges, between corners. This allows
for curvature and better interaction between two neighboring elements. The
geometric division of the structural member into FE elements is called the
mesh, and is of big importance for how stresses and strains are transferred

11

within the model, and thus for the accuracy of the results.

=111

X, u

a) one-dimensional - 11 dofs b) two-dimensional - 242 dofs

€) three-dimensional - 3993 dofs

Figure 2.13: Visualization of 1D beam, 2D shell and 3D solid elements [18]

The FEM beam element is represented by line geometry, and enables
deformation in directions perpendicular to its axis. The beam geometry is
simplified into a line with nodes at its ends, and possibly along the line. The
FEM shell element is represented by surface geometry with nodes located
at its corners, and possibly along its edges. The characteristic property of
a shell is its combination of in-plane action, so-called membrane action, and
out-of-plane action, bending [18]. The shell elements are often used to model
curved plate structures [18]. The FEM 3D solid element is a volumetric
element, which geometry opens for modeling more detailed shapes, material
properties and boundary conditions. Details about movement and curvature
in all three directions enables more accurate information about the response
than for the beam and shell elements. However, in the digital environment,
the volumetric elements require longer computation time. Thus the beam
and shell elements are often a necessary simplification for analysis of large
structures.

12

2.3 Parametric Design Tools

aaaaaaaaaaaaaaaaaaa

|0 000 00
@ 06H 00 0

RSk L R P (XY
Sl el §lh e RO

Perspective Top Front Right

+
Dlena Clnear Croint ZAmia Clcen Clint Clrerp Cltan (auad Clknot Cvertex £ project - Disable

Figure 2.14: Parametric design in Rhino/Grasshopper /Karamba3D

Computer-aided design (CAD) software became commercially available in
the 1980 [19], enabling designers to make digital models and analyze them
with regards to different performance criteria. In traditional CAD-programs,
changes and modifications must be done manually, which can be time-consuming
for large structures. This is not preferred when dealing with complex geom-
etry, especially in the early stage of design where it is beneficial to evaluate
different variations simultaneously. Parametric design describes a design pro-
cess based on algorithmic thinking constrained by parameters and rules [19].
The terms parametric design and algorithmic design, or algorithm-aided de-
sign (AAD), are frequently used i parallel [19]. Parametric design introduce
flexible tools that allow for multiple designs to be changed and reevaluated
faster than traditional CAD-software can offer. The user can go beyond the
design options offered by CAD-programs, and make customized tools based
on visual coding and scripted algorithms. The parametric design approach
originally emerged in architecture as a way of generate geometric models [19].
Grasshopper is an algorithm editor released in 2009 as a free plug-in for the
CAD-software Rhinoceros, commonly referred to as Rhino [20]. It enables
the creation and control of three-dimensional parametric models. Due to its
accessibility and constant improvement, Grasshopper has become a widely
used design and research tool for Architects [20]. A need for applications
that evaluate non-geometric aspects, such as building physics and struc-
tural performance, became apparent, and would enable multi-disciplinary
collaboration within the parametric environment. This led to the parametric

13

finite element program Karamba3D [21], which is a plug-in for Grasshop-
per, developed by Clemens Preisinger in collaboration with the structural
engineering firm Bollinger+Grohmann [22]. Karamba3D provides a set of
components that enable structural analyses of the parametric Grasshopper

Paams Maths Sets Vector Curve Suface Mesh Intersect Transfom Display Kangaroo? | Karambe3D | pC2021

Z (8]

wWE T o &
2 RIo | HH
3 6B =

Figure 2.15: Karamba3D tool line in the Grasshopper environment

Optimization of the model is available through the Grasshopper plugin Gala-
pagos. Galapagos needs a singular or multiple input parameters, which is
called genomes. These must be sliders, and are the parameters that get op-
timized. The Galapagos algorithm optimize with regards to a optimization
criteria, called fitness. This must be a number, which the user sets to be
minimized or maximized. Galapagos is a type of generative optimization.
That means that it runs a first analysis with many different values of the
genomes, and then the second analysis is based on combinations of values
from the first to get better results. And then this is repeated until the process
is interrupted. The results can be viewed while it runs.

Options Solvers Record

@ Start Solver - 9 Stop Salver @@@ @]

0 12 3 4

Display @IO O O E‘ Reinstate

toooooo0 W IO W
R e ——
toooeoo.0 W T I
tooooo00 CEE I T W T
L I S E—

Figure 2.16: An ongoing Galapagos optimization

With all these tools together, the user can create geometry and structures
from optimization based on shape criteria, structural performance, cost, en-

14

vironmental criteria, or a combination of these. The parametric environment
unlocks wider exploration options within limited time, easier collaboration
between planners due to the interdisciplinary interface, and creativity in form
of self-programming. Figure 2.17 shows some examples of structures where
parametric design tools have played an important role.

Figure 2.17: (1) Heydar Aliyev Centre, Azerbaijan (2) Hungerburg Station, Austria (3)
Kunsthaus Graz, Austria

15

2.4 Related Work

2.4.1 Norsk Massivtre’s Brettstapel

Other than Norsk Massivtre’s own documentation, research on mechanically
connected Brettstapel elements are limited. For the purpose of building tra-
ditional floors and roofs with Norsk Massivtre’s Brettstapel elements within
the spans of 10m, design tables are available in the SINTEF Technical Ap-
proval from 2020 [7]. For the complex roof structures explored in this thesis,
these tables are insufficient, but they give an idea of the achievable span
lengths and proves the necessity of supporting structures.

Nils Ivar Bovim has made a FEM Excel application specifically for calculating
Brettstapel elements from Norsk Massivtre. This application is described
in the master’s thesis of Kristiansen and Legvbrette [23]. Based on input
parameters, this application calculates the deflection of up to five connected
elements. The lamellas are modeled as simply supported beams connected by
screws, and point loads can be placed on up to ten selected lamellas. What
is interesting about this application is how different springs are modeled to
demonstrate interactive behaviors between lamellas (see figure 2.18). Spring
1, with spring stiffness K1, simulates the effect of the screws’ connection
between lamellas, where gliding can occur. Spring 3 (K3) simulates the
lamellas’ rotational behavior. Spring 2 (K2) simulates the bending stiffness
of a simply supported lamella, which is not relevant in software where bending
stiffness is considered in other ways. Stiffness K1 can be derived from table
7.1 in EC5 and depend on the screw diameter and timber density [29]. K3

is calculated as s,

In their master’s thesis, Kristiansen and Lgvbrgtte [23] conduct physical
tests of Brettstapel elements of 3m and 4.4m length. Lamellas of a mix of
strength class C18 and C24 are used for the elements. They test the elements
with point load P at (1) the middle, (2) the edge, and (3) the joint for three
connected elements. Each test is done with three different samples, maximum
deflections are collected and averages are calculated. For the tests of load P
at the middle, the maximum deflection values are theoretically corrected due
to rotation of the lamellas, which the test facilitators view as an error [23].
Both the maximum deflection values and the corrected values are presented
in their results. For the tests of load P at the edge and joints, the results of

16

T

LSRR R

Figure 2.18: Theoretical springs for lamellas in Brettstapel elements, from Nils Ivar
Bovim’s Excel application [23]

maximum deflections are presented in graphs only, and the values read from
these graphs might differ from the real results.

In this thesis, Bovim’s theory of the springs is used to make a model of
the Brettstapel element in Karamba3D. The test results from Kristiansen
and Lgvbrgtte’s thesis are used for comparison and validation of the digital
models. The corrected deflection values are used for the load P at middle
tests. This is due to uncertainties of which values are the realistic ones,
and the fact that the digital models are not subject to any rotation error.
The reference thesis is written in 2010, ten years prior to the latest SINTEF
technical approval [7], and strength classes C18 and C24 are replaced by C14,
T15 and T22. The geometry of the test samples is slightly different from the
currently produced, having a half lamella on each side, see figure 2.19. When
creating a FE model with 3D solid elements, the geometry is made as similar
to the tested elements as possible, for comparison reasons. Table 2.1 presents
the obtained deflection results, which are used for comparison in this thesis.

170

45

Figure 2.19: Geometry of the tested elements from Kristiansen and Lovbrgtte’s master’s
thesis [23]

17

Table 2.1: Obtained results from Kristiansen and Lgvbrgtte’s master’s thesis

| | L | Deflection (mm) |

1 BRETTSTAPEL

P at middle 3m 2.17
P at middle 4.4m 5.84
P at edge 3m 5.70
P at edge 4.4m 11.10
3 CONNECTED BRETTSTAPEL

P at middle 3m 1.65
P at joint 3m 1.63

2.4.2 Under-spanned Roofs

Literature of research on under-spanned timber roofs is scarce. However,
one reference has been very useful for the understanding of the structure
type. In his master’s thesis, Bulajic [24] has studied under-spanned CLT
structures for long-span industrial and communal buildings, and analyzed
different truss geometries using CAD-software RFEM. He explores the tran-
sition from an under-spanned beam to an under-spanned plate, where spa-
cious under-spanning proves necessary to assure stability both in and out of
plane. Only flat roofs are considered in the thesis. Bulajic concludes that the
most influential parameters for the roof’s stiffness and strength is the stiff-
ness of the tension cables, the height of the support structure, the number
of compression elements, and the connections. Increased tension capacity of
the cables and increased height of the truss system contribute to decrease
the deflection. An increased number of compression rods decreases bending
stresses in the timber. When the compression rods are pin-connected to the
timber, they are only subjected to compression, and the timber will experi-
ence the largest bending of the scenarios. When using a rigid connection, the
steel rods experience bending stresses and the system will be stiffer. Hence,
the timber is subjected to less bending stress, but larger cross-sections are
required for the steel rods. To find another way around this, Bulajic test the
use of steel rods assembled in a V-shape. The V-shape proves to stiffen the
system and distribute the compressive stresses. Spacious V-shapes are imple-
mented for several structures depicted in figure 2.9 and 2.12. The timber lab
at TU Graz, from figure 2.9, is investigated as a case study in Bulajic’s the-
sis. Figure 2.20 shows the geometry. The slightly curved under-spanned roof
creates a span of approximately 20m, which makes this structural solution

18

very interesting.

Ansicht

- L
:
e .
Detail C Detail AN o
N
:

Draufsicht

Figure 2.20: Roof structure of TU Graz timber lab. Figures from Bulajic’s thesis [24]
In this thesis, Bulajic’s [24] knowledge of under-spanned systems is used when

investigating different structural designs of under-spanned roof structures
with Norsk Massivtre’s Brettstapel elements as roof plates.

2.4.3 Folded Roofs

Figure 2.21: Folded roof structures, figure from [26]

Folded structures introduce a way of increasing stiffness without any support
structure. It integrates the structural performance of a slab, a plate and a
truss into one surface-active structure, creating architecturally interesting
spaces while being the main load-bearing system [25]. Folded plate struc-
tures originated in concrete, and had a period of time where the lightweight
material of fiber-reinforced plastic was explored for the geometry [25]. The
emergence of engineered timber plate made it possible to create folded timber
structures. The obtained references of folded timber roofs during literature
search for this study are built with different kinds of thin glue-laminated
wood panels, such as Plywood, CLT and Glulam [25][1]. For these reference
structures, the walls are also folded and contributes to the structural system.

In their Master’s thesis, Fjelde and Aakre [26] writes about folded concrete
plate structures, where they analyze stress concentration and behavior of

19

different folded roof structures subjected to uniformly distributed load. They
investigate the behavior and response of the V-shaped roof, composed by two
roof plates. They find that the ratio between the length L and roof height
H is of big importance. For a structure with small L/H ratio, loads are
carried in both directions and local bending moments in the longitudinal
direction are prominent, while for a structure with large L/H ratio, loads
are carried mainly in one direction and the structure acts similar to a beam,
with tension stresses in the bottom and compression stresses in the top [26].
Both the stress response and deflections are very different for large changes
in ratio. Figure 2.22 shows analyses carried out by Fjelde and Aakre for two
different ratios. Both structures has a roof height of 2.44m, and the lengths
are respectively 15m and 35m. They found that in the case of 35m length, the
stresses in points @ and b can, with good accuracy, be calculated using beam
theory. This means, for V-shaped roofs with large L./H ratio, loads are carried
mainly in the transverse direction and the roof plate can be categorized as
a one-way plate [26]. They conclude that a ratio of approximately L > 4H
ensures one-way spanning plate behavior. For shorter lengths, the stiffness in
the longitudinal and transverse direction are approaching each other, evoking
a two-way spanning behavior.

=-1.0 +0.000e+00
; B 1isseror
21328101

c

s20
g5
& B3
hA x

| _BECEEEE e
[TNTToRTE Se RS St

oD
NPT
e

NRAREASH!
ERERTIER N
EE Sy

o

|_LRENN

1

2

3]

a
-5.823e+
-6.987e+01

8.152e.

1

1

1

Dot n bt
ZREELINE

©n
=z
o
[S
c
&

CEn
coowy 3
2 AFQ
b1

P B
g pa D DAIN DL N

v sy,
NGO LoNE
BERRABD

ENToTT T Tl

Figure 2.22: Analyses showing stress concentration and deflection for small and large L/H-
ratios, from Fjelde and Aakre’s thesis [26]

For a V-shaped 2D frame, moment rigid connections at the top and supports
gives the highest stiffness compared to other connection types [26]. Bend-
ing stress in the top point a is critical for all lengths [26]. Increased height
increases the critical bending stress, hence the height should be optimized.
Thus, utilizing moment rigid connections along the edges and top of the 3D
V-shaped structure reduces the critical bending stress in the top, and also
contribute to the longitudinal beam behavior which causes the one-way span-

20

ning behavior [26]. When the V-shaped structure is acting as a beam, the
positive effect of cantilevers can be utilized to reduce stresses at the middle
length and stiffen the structure [26]. The cantilever’s optimal length, re-
garding stress concentration at the supporting point and end deflection, can
be approximated using beam theory [26]. Further on, the W-shaped roof is
investigated. This folded roof structure contains several V-shapes in a row.
All the combined V-shape structures’ edges are prohibited from horizontal
displacement due to the geometry. Ensuring moment rigid connections be-
tween the V-shapes contributes to stiffness in the transversal direction of
the V-shape [26]. A W-shaped roof supported at its outer edges has small
deformations, where the largest occur at the middle of the roof plates [26].

S, Max. Principal (Abs)

SNEG, (fraction = -1.0)

(Avg: 75%)
+1.953e+01
+1.512e+01
+1.071e+01
+6.306e+00
+1.898e+00
-2.509e+00
-6.917e+00
-1.133e+01
-1.573e+01
-2.014e+01
-2.455e+01
-2.896e+01
-3.336e+01

U, u3
+0.000e+00
~1.490e+00

-1.192e+01
-1.341e401
-1.490e+01
-1.639%e+01
-1.788e+01

Figure 2.23: Analyses showing stress concentration and deflection for a W-roof supported
with beams at its outer edges, from Fjelde and Aakre’s thesis [26]

Norsk Massivtre’s Brettstapel is investigated for W-shaped folded roofs in
this thesis. Obtained reference structures of folded timber roofs has been
made with massive timber plate materials, and no folded roofs with Brettstapel
elements have been found. The folded geometry subject to vertical loading
makes the material susceptible to stresses in all direction, which timber plate
materials are better suited to handle than the Brettstapel. In addition, to
obtain the highest stiffness, moment rigid connections are required at the
outer short edges of the roof. This is hard to achieve in reality. However, it
is interesting to investigate the folded structure type for the Brettstapel, and
analyses is conducted and described in ch. 4.5. To utilize the folded struc-
ture type for the Brettstapel, the gained knowledge about when the plates

21

work as one-way and two-way plates is of importance, since the Brettstapel
element mainly spans in one direction. Hence, a ratio where L > 4H per
V-shape will be applied to evoke the one-way spanning effect. It is also taken
into consideration that the critical bending stress at the top point depend on
the roof height. Cantilevers in the longitudinal direction of V-shapes will be
utilized to decrease critical bending stresses and deflections.

22

3 Research Method

Main research question:

How can Norsk Massivtre’s Brettstapel element be used for long-span roof
structures, to achieve spans exceeding 20 meters?

Research questions:

1. How can the complexity of the Brettstapel massive timber element be
successfully simplified to model the behavior?

2. How can the parametric environment be utilized to investigate the
Brettstapel element for long-span roof structures?

3. What kinds of structures and spans are plausible to achieve with Norsk
Massivtre’s Brettstapel element?

4. In what ways does the Brettstapel introduce advantages and disadvan-
tages for long-span roofs, compared to timber plate materials?

The first issue confronted in the process is how to establish a detailed model
of the Brettstapel element, which accurately simulate the behavior of the
Brettstapel even though it is simplified. Different software programs are used
to create models, which are tested and compared to deflection results from
Kristiansen and Lgvbrette’s physical experiments [23]. When a Brettstapel
model with small deviations is achieved, it is used to see how a even more
simplified FE shell element model behaves in comparison. Simplified mate-
rial properties for the Brettstapel is obtained by making the shell model
experience the same deflections as in Kristiansen and Lgvbrgtte’s exper-
iments. Stress and deflection distributions are compared to the accurate
Brettstapel model, to make sure the behavior is simulated similarly in the
shell model. The obtained simplified Brettstapel material properties are used
for models of different roof structures, where the Brettstapel roof plates are
modeled as FEM shells. Steel truss members are modeled as FEM beams,
with truss characteristics. The different roof structures are investigated for
spans between 20 and 30 meters, by structural analysis and optimization
with Karamba3D and Galapagos. A component for Eurocode 3 steel checks
is already established in Karamba3D, which includes checks for local buck-
ling. This is used for the steel element in the under-spanned roof structures.

23

A code for Eurocode 5 timber utilization checks is created and explained in
ch. 4.7. A theoretical comparison between Brettstapel and plate materials
is done in ch. 2, based on literature. In ch. 5, this theory is discussed with
regards to the results.

For the simplified FE shell element roof structures, the following applies if
not otherwise stated:

Table 3.1

] ‘ Comment ‘

Uniformly distributed load | 5.5 kN/m?* | Snow load + extra roof
weight. Applied in global z-
direction

Boundary conditions One long edge restrained ver-
tically, the other restrained
against translation in all 3 di-

rections

Analysis type AnalyzeThll | Karamba3D component, sec-
ond order theory for small de-
flections

Deflection limit criteria W /200 W = span width

Utilization checks EC3, EC5 | EC3: Karamba3dD compo-
nent, EC5 explained in ch.
4.7

Global buckling analysis Global buckling load fac-

tor checked with Karamba3D
component Buckling Modes

24

4 Implementation and Results

This chapter describes the processes and models introduced in ch. 3 in depth.
The description of the implementations are followed by the corresponding
results. Discussion of the results are provided in ch. 5.

4.1 Norsk Massivtre’s Brettstapel Model

4.1.1 FEM Model with Beam Elements

The first attempt to make a detailed model is done with AAD-tool Karamba3D
in the Grasshopper environment. The lamellas and screws are modeled with
FE beam elements. Codes and scripts can be found in Appendix B.

Figure 4.1: Code in Karamba3D/Grasshopper and model in Rhino. Detailed code is
presented in Appendix B

The model has a set of parametric inputs, which are the height of the ele-
ment, h (cm), length L (m), width W (m) and point load P (kN). Since the
purpose of this model is to perform analyses for comparison with the real
tests from Kristiansen and Lgvbrgtte’s master’s thesis [23], the height is set
to 17cm, P = 5 kN, the length varies between 3m and 4.4m, the width varies
between one element (0.460m) and three connected elements (1.334m). The
reason for varying units is that different Karamba3D components requires
different unit inputs. The model is made as similar to the real test ele-
ments as possible. There are eight middle lamellas and one half lamella on
each side. Double screws are located 400mm from ends, and otherwise sin-
gle screws are located with 800mm distance. The scripted component C#
PointséfLines generates the geometry of the model, see figure 4.2. The out-

25

puts are lines for lamellas and screws, support points, one midpoint and one
point on the edge lamella (appearing at the joint for connected elements).
These are the points where the point load is applied for the different situa-
tions. The Karamba component ”"Line to Beam” is used to construct beam
elements from the lamella and screw lines, and assignes cross-sectional and
material properties. The diameter of the screws is scripted to add 8mm if
the width exceeds one element. This is to include the extra screws that con-
nect the multiple elements. To implement Bovim’s springs [23], the screws
are cut in half by the script component C# SplitLinesIn2. Spring stiffness
K1 is assigned at the middle of each screw, while K3 is assigned at each
screw end (in the center of each lamella). This is done with the Karamba3D
component ”Beam-Joints”, where the user can remove restraints and then
add customized stiffness to simulate desired spring conditions. The torsional
stiffness GJ, which is needed to calculate K3, is taken as the average of
Kristiansen and Lgvbrgtte’s test results, 2.677E10 Nmm?2. The loads ap-
plied to the model are gravity (self-weight) and point load P. Points at x=0
are restrained in the z-direction, while points at x=L are restrained against
translation in all three directions. Finally, all elements, loads, supports and
joints are assembled in the Karamba component ”Model Assembly”.

out
MiddleLamellaLines

HalfsideLamellaLines

ScrewlLines

C# Points&Lines

T~

Figure 4.2: Inputs and code in Grasshopper generating the geometry of one element

26

Figure 4.3: Karamba analysis components and visualization in Rhino

The assembled model is analyzed with the Karamba3D component ”Ana-
lyze”, using first order theory for small deflections. From this analysis, the
maximum deflection is derived. Results are visualized by the components
"Model View” and "Beam View”, see figure 4.3. The tested situations are
presented in table 4.1. Spring stiffness K1 simulates the gliding behavior
between lamellas, and spring stiffness K3 simulates the lamellas’ rotational
behavior. Spring stiffness K2 is not included in the model. See figure 4.4 and
ch. 2.4.1 for further explanation. Results are presented in ch. 4.1.3.

Table 4.1: Test situations

| | a | b | c | d
K1 X
K3 X

Figure

27

of figure 2.18

repetition

Figure 4.4: Bovim’s springs [23],

28

4.1.2 FEM Model with 3D Solid Elements

The software program Abaqus is used for the second attempt to make an
accurate model of the Brettstapel. In Abaqus, the Brettstapel is modeled
with FEM 3D solid (volumetric) elements, which allows for more detailed
behavior information than the beam elements.

Figure 4.5: Code and modeled breps in Grasshopper/Rhino. Detailed code is presented
in Appendix C

The input to Abaqus are ”breps”, short for boundary representations, ex-
ported from a parametric Grasshopper model. These breps are designed to
achieve the best possible mesh in Abaqus. The Brettstapel element’s ge-
ometry is created to simulate the exact test samples from Kristiansen and
Lovbrette’s tests [23]. This means eight lamellas of full height, with one half
lamella at each side, double screws located 400mm from ends, and otherwise
every other screw located at the upper and lower part of the element with
800mm distance. To simulate the boundary conditions from the tests, see
figure 4.9(1), the element is shortened 75mm at each side to locate the sup-
port at the middle of the supporting steel plate. The lamellas’ geometry is
first created as a flat surfaces. Circles are extracted at screws’ locations, with
diamter of 8mm, and the surface is divided by lines. These lines go through
all screw holes both horsisontally and vertically, and divides the height of
the element in two. In addition, vertical divisions are made h/4 from the
screw holes. This geometry will create a satisfactory mesh around the holes.
The surface geometry is assigned to multiple planes for the middle lamellas,
and a single plane for the half side lamellas, and extruded by the width of
one lamella. The screws’ breps are created similarly, from planes for each
lamella, extruded by the width. They are divided in four parts by horizontal
and vertical lines through their midpoint. Two steel plate breps are created
at midspan, one at the middle and one at the edge, with the purpose of

29

easily locate where to assign load in Abaqus. Some additional divisions for
the lamellas are made to optimize the mesh around the plates. A script is
made to extract breps for each lamella in Grasshopper, so that they can be
exported separately. The code and scripts from the Grasshopper model can
be found in Appendix C.

Figure 4.6: Separate lamellas obtained from Grasshopper

The breps are baked into Rhino and exported in SAT format. The tim-
ber lamellas, screws and plates are exported separately. When imported to
Abaqus, the different breps in one import are combined into a single part,
where solids are merged, while dividing lines are retained. The breps in
Grasshopper have the unit meters. Abaqus is dimensionless, so applied loads
and material properties must be consistent with the imported units. For
this case, applied pressure load must be of the value kN/m?, and material
properties must be of units kN and m. Steel properties for the screws and
plates are assigned as E = 210 000 000 kN /m?, Poisson’s ratio v = 0.3 and
density p = 78.5 kN/m3. Orthotropic timber properties for the lamellas are
explained in ch. 2.3. Cylindrical coordinate orientations are assigned every
lamella, see figure 4.8. Here, R is the radial coordinate axis and T is the
circumferential axis. The cylindrical orientation axis has a different num-
bering than the traditional 1,2 and 3 axes for timber, and this is carefully
considered when assigning engineering constants for the timber material. See
figure 4.8(3) for the cylindrical directions for one lamella. This means, 1 =
R, 2 = T and 3 = L. The corresponding, assigned engineering constants are
presented in figure 4.7, where E- and G-values are given in kN/m?.

Data

E1 E2 E3 Nui2 Nul3 Nu23 G12 G13 G23
1 716000 435000 10991000 0.5 0.05 0.03 48000 682000 693000

Figure 4.7: Engineering constants assigned the timber lamellas in Abaqus

30

Figure 4.8: (1) Element from physical tests [23], (2) cylindrical coordinate systems in
Abaqus, (3) cylindrical coordinate system for one lamella in Abaqus

Equal mesh settings are given to every part, to ensure proper interaction. Ap-
proximate global size of the mesh is chosen as 0.025, with 20-node quadratic
brick elements (C3D20R) and reduced integration. For the screws and tim-
ber to interact, surfaces of each hole and the corresponding screw are tied
together with the Constraints function. This means, the timber and screws
are interacting as if glued together and no friction is present, which is a
simplification. An important part of simulating the real behavior is the con-
tact between lamellas. Between two lamella surfaces, it will occur pressure
contact in the normal direction and friction contact in the tangential direc-
tion. Both contact types are created in Abaqus with the tool Interaction
Properties. The normal behavior’s contact interaction is chosen as ”hard”
contact. For the tangential behavior, the penalty formulation is chosen and
a friction coefficient of 0.4 is assigned. Due to the contact behavior, non-
linear analysis is required. In the step settings, the initial step is chosen as
0.001 and number of increments as 100 000. Loads and boundary conditions
are assigned, and analyses can be conducted. Pressure load corresponding
to a point load of 5kN is assigned to the plate in addition to gravity load.
Boundary conditions (BCs) are assigned for the mesh vertices along the line
corresponding to the middle of the real support, see figure 4.9. As mentioned
earlier, the element is shortened 75mm at each end for BCs to mimic the ex-
periments’ BCs. One edge is restrained against vertical movement, while the
other end is restrained against translation in all three directions. Ideally, the
ends should be able to lift. Efforts were made to simulate supporting steel
plates with friction contact, but this solution proved to be difficult and made
analysis running time increase significantly.

31

Figure 4.9: (1) Boundary conditions for the physical test element [23], (2) Simulation of
BCs in Abaqus

Analyses are carried out, and the results are read from the lowest point of the
element, as for the physical tests conducted by Kristiansen and Lgvbrgtte
[23]. This is done by use of the Free Body Cuts tool in Results. Due to
time-consuming modeling and analyses, the FEM 3D solid elements model is
only tested for the single Brettstapel, not for three connected Brettstapels.
Results are presented in ch. 4.1.3.

U, Magnitude
+5.913e-03
+5.420e-03
+4.927e-03
+4.435e-03
+3.942e-03
+3.449e-03
+2.956e-03
+2.464e-03
+1.971e-03

+1.478e-03
+9.855e-04
+4.927e-04
+0.000e+00

Figure 4.10: Deformation visualization of a 4.4m element loaded at the middle

32

4.1.3 Results

FEM Model with Beam Elements

The deflection results from the FEM beam model in Karamba3D is presented
in table 4.2. Test situation d is compared to results from physical experiments
conducted by Kristiansen and Lgvbrgtte [23], and the percentage deviations
between these are noted diff. The test situations a-d are explained in ch.
4.1.1.

Table 4.2: Deflection results: FEM Model with Beam Elements (mm)

FEM Beam Model
Test situations

a ‘ b ‘ c ‘ d Physical tests | diff
1 BRETTSTAPEL | \ \ \ \ \
P at midpoint
L =3m 3.80 | 380 | 3.44 | 3.35 2.17 54%
L = 4.4m 8.59 | 8.44 | 8.00 | 7.89 5.84 35%
P at edge
L =3m 744 [731] 653 | 6.45 5.70 13%
L = 4.4m 16.04 | 15.89 | 13.84 | 13.75 11.1 24%
3 CONNECTED
BRETTSTAPEL
P at midpoint
L = 3m | 3.05 | 2.88 | 2.38 | 2.17 | 1.65 | 32%
P at joint
L = 3m | 307 [290 | 241 | 2.21 | 1.63 | 36%

The obtained deflection results show that the model is too flexible in all load
situations. Implementation of Bovim’s springs [23] does not contribute to a
better result in this model. Deflections closest to the physical test results are
gained in the situation without springs. The size of the deviations leaves no
pattern or consistency if comparing load at midpoint and at edge for each
length. This makes it hard to predict the accuracy for other lengths.

33

FEM Model with 3D Solid Elements

The FEM model with 3D solid elements is only tested for one Brettstapel,
not for three connected.

Table 4.3: Deflection results: FEM Model with 3D Solid Elements (mm)

] ‘ FE Solid Model ‘ Physical tests ‘ diff ‘

P at midpoint

L =3m 2.08 2.17 -4%
L =4.4m 5.81 5.84 -1%
P at edge

L =3m 5.144 5.70 -10%
L =4.4m 11.56 11.10 4%

The Abaqus FEM 3D solid model simulate the element’s behavior to a sat-
isfactory degree when compared to the physical test results from Kristiansen
and Levbrotte [23]. The model behaves stiffer than the Brettstapel in the
physical tests, however, the deviations are within an acceptable range. The
4.4m element subjected to edge loading indicate a more flexible behavior than
for the physical tests, in contrast to the other results. This is unexpected,
and a good explanation is not found. However, the size of the deviations are
consistent, meaning that the 3m element give the biggest deviations for both
load cases.

Even though the deformations depicted in figure 4.10 seem continuous, a cut
through the middle reveals that the stresses and strains have a jump between
the lamellas. This is shown in figure 4.11 and 4.12. Hence, the behavior
does not fully meet the essential assumption of elastic theory, which is linear
relations between the stress and strain components. Taking into account the
assembly method of the Brettstapel, where the lamellas are connected with
screws for every 0.8m, these jumps are expected. Since the results indicate
that the model simulate the model of the Brettstapel successfully, this is
assumed to be valid for the physical Brettstapel.

34

=, MaxhFrincipal

(Ava:725%)
+4.431e+03
+3.983e+03
+3.535e+023
+3.086e+03
+2.638e+03
+2.189e403
+1.741e+03
+1.292e+03
+8.441e+4+02
+3.957e+02
-5.272e+01
-5.011e+402
-9.495e+02

Figure 4.11: Cut of the analyzed Abaqus model, visualizing the stress distribution

E, Max. Principal

(Avg: 75%)
+4.898e-03
+4.484e-03
+4.069e-03
+3.655e-03
+3.241e-03
+2.827e-03
+2.412e-03

+1.998e-03
+1.584e-03
+1.170e-03
+7.553e-04
+3.410e-04
-7.324e-05

Figure 4.12: Cut of the analyzed Abaqus model, visualizing the strain distribution

35

4.2 Brettstapel Material Properties for FEM Shells

The FEM 3D solid model, described in 4.1.2, is assumed to give a correct
picture of the distribution of stresses, due to a satisfactory simulation of de-
formation. To create a simplified FEM shell model, material parameters are
obtained by evoking the desired deflection, and the shell’s behavior is com-
pared to the behavior of the FEM 3D solid model. Brettstapels of length
3 and 4.4 meters are modeled as shells, and assigned material properties.
These properties are optimized with Galapagos to give the deflection from
the physical tests conducted by Kristiansen and Lgvbrette [23]. First, the
shell model is assigned orthotropic material properties. Due to a limit in
Karamba3D, prohibiting shear modulus G to be lower than E/3 or higher
than E/2, it is problematic to attain a satisfactory set of orthotropic proper-
ties. Therefore, isotropic material properties are chosen and optimized. The
properties are optimized for the two lengths, and the values for the shortest
length are chosen, to be conservative. The values are presented in table 4.4.
These properties are then assigned to the shell models of both lengths. The
maximum compressive stress in x-direction at the top layers, and the maxi-
mum tensile stress in the bottom layers, are compared to those in the FEM
3D solid model in table 4.5. Due to the shells’ disability to compress, the
compressive stress in the top layer of the FEM 3D solid model is read from
an area outside of the compressed part under the load. Figure 4.13 shows
the difference in detail level and stress distribution.

ncard 3DEXPERIENCE|

Figure 4.13: Principal stress distribution of (1) FEM 3D solid model in Abaqus, (2) FEM
shell model in Karamba3D

36

4.2.1 Results

Table 4.4: Brettstapel material properties for FEM shells

E | 845 kN/cm?
G | 420 kN/cem?
p | 3.9kN/m3

Table 4.5: Comparison of maximum stresses (N/mm?)

| [FEM 3D Solid Model | FEM Shell Model |

L = 3m

Compression, upper layer 3.84 2.09
Tension, lower layer 3.59 2.09
L =4.4m

Compression, upper layer 3.85 3.13
Tension, lower layer 4.43 3.13

The resulting stresses from the FEM shell model deviates from those of the
FEM 3D solid model, which is expected since the shell is simplified compared
to the solid Abaqus model. It becomes clear that the solid model is able to
give realistic varying stress values for tension and compression in the bottom
and top of the element, while these are the same absolute values for the shell
model. This is expected, since the FE shell elements are flat, and there is
a singular amount of elements in the z-direction. The FE 3D solid elements
are volumetric and stacked in the z-direction, which allows for information
about compression and elongation in this direction.

37

4.3 FEM Shell Model: Under-spanned Pitched Roof

Figure 4.14: Code and model of the under-spanned pitched roof in Rhino/Grasshop-
per/Karamba3D. Detailed code is presented in Appendix D

The famous Polonceau roof design is used as inspiration for the under-
spanned pitched roof. The model is created in Karamba3D, where the
Brettstapel roof plates are modeled with FE shell elements, and the truss
members are modeled with FE beam elements, limited with axial loading
only. The truss geometry is created in the scripted component TrussGeom-
etry, with the geometry depicted in figure 4.15 as basis. The location of the
connection points are decided by the parameter lowpointX, with an angle of
half the roof angle. Each roof plate is supported by four compression rods
with spans spanX and spanY. The truss geometry is optimized with Gala-
pagos, where input parameters are lowpointX, spanX and spanY, and the
fitness criteria is minimized deflection. In the TrussGeometry component,
the points’ nearest mesh vertices at the roof shell is found, and the points
are assigned these specific locations. Thus, to optimize the geometry suf-
ficiently, a fine mesh is required. The truss geometry optimization is done
for a span width W of 20 meters. It is then fixed as a ratio of the span
width. The optimized values are as follows: lowpointX = 0.67*W /2, spanX
= 1.3m and spanY = 1lm. From investigation of reference structures pre-
sented by Bulajic [24], it seems reasonable to set the span between trusses
as 3m. This value is used for all situations. The structure length L is 40m
for all situations. The structure is subjected to a uniformly distributed load
of 5.5kN/m?, simulating snow load and additional roofing material weight.
Material properties for the Brettstapel, as explained in ch. 4.2, are assigned
to the roof shells. The two lines of points for which z=0 are assigned support
properties. For one line, all points are restrained against vertical movement,

38

while for the other line, all points are restrained against translation in all
three directions. The connection between the two roof shells are by default
moment rigid.

H .
‘ spanY
- i el
i
, leowpoi;\tx “tan(%) ;
e s it e

(towpointX-3pan¥z)- cosc)
e

Jmpo\:ntx + Spank/a) - cos ()

Figure 4.15: Geometry of steel trusses

Based on the model characteristics listed in table 3.1 and Brettstapel prop-
erties explained in ch. 4.1.6, a second Galapagos optimization is done for
span widths of 20, 22, 24, 26, 28 and 30 meters. The input parameters are
the roof height H, the Brettstapel height h, and the three different steel cross
sections for ”compression rods”, "tension cables 1”7 and ”tension cables 27,
see figure 4.16. The optimization fitness is based on an algorithm returning
the following product:

Fitness = structure’s mass * (1 - timber utilization) * (1 - steel utilization)
* (1 - deflection utilization)

This value is set to be minimized in the Galapagos algorithm. Hence, the
structure is optimized for all utilizations at the same time, while reaching for

a low mass. The code and scripts from this model can be found in Appendix
D.

Figure 4.16: (1) compression rods, (2) tension cables 1, (3) tension cables 2

39

4.3.1 Results

Table 4.6 present the results of the optimized structures. Here, W is the roof
span, H is the roof height, and h is the height of the Brettstapel. GBLF
stands for Global Buckling Load Factor. Deflection is utilized with the lim-
iting criteria W/200. Information about the PV steel cross sections are de-
scribed in Appendix A in a table from Pfeifer [27]. RB steel cross sections
have the same diameter as mentioned in the name [28].

Table 4.6: Results for the Under-spanned Pitched Roof

Optimal steel cross sections Utilization
Compression Tension Tension Mass
W (m)| H(m)| h (cm) rods cables1 cables 2 |Deflection Timber Steel | GBLF | (kg)

20 4 13 RB 48 PV 360 PV 300 0,96 0,91 0,9997 | 2,77 | 58779
22 4 15 RB 52 PV 420 PV 360 0,96 0,87 0,9 2,84 | 73818
24 5 16 RB 63 PV 420 PV 360 0,995 0,9997 0,9 2,78 | 87582
26 6 17 RB 60 PV 360 PV 360 0,976 0,93 0,980 2,86 | 98320
28 7 19 RB 70 PV 360 PV 360 0,93 0,92 0,96 3,2 119271
30 7 21 RB 63 PV 420 PV 560 0,75 0,75 0,9990 | 3,53 [139357

The optimized structures for the different spans are highly utilized for all
criteria: deflection, timber and steel. For the 30m span, deflection and timber
has a significantly lower utilization. Steel tends to being the critical criterion,
but the differences are small for most spans. The Brettstapel height h is not
maximized for any span widths, which leaves potential.

Figure 4.17: Deflection comparison for 20m and 30m span widths

A comparison is done between the shortest and longest span investigated,
respectively 20 and 30 meters, see figure 4.17. The deflection distribution
along the width of the structure seems consistent for the two spans. The dis-
tributions of the principal stresses also seem consistent for the two spans, see
figure 4.18. Here, the red color represent compression, and the blue tension,
in the corresponding layers of the shell. The biggest stress concentrations

40

occur at the lower part of the roof shells, due to the open span, and over
the compression rods, due to punching behavior of the steel members and
changing bending stress situation over these supports. For the 30m span,
these areas have a denser stress concentration than for the 20m span. This
is expected, since the span between supports are larger for the 30m span,
but it also indicates that the optimized truss geometry, which were found for
the 20m span, might not be optimal for the 30m span. This structure would
perhaps benefit from other values of spanX and spanY.

20m 30m
UPPER LAYER UPPER LAYER

W

LOWER LAYER LOWER LAYER

WS W

Figure 4.18: Comparison of principal stresses for 20m and 30m span widths

41

4.4 FEM Shell Model: Under-spanned Flat Roof

Figure 4.19: Code and model of under-spanned flat roof in Rhino/Grasshop-
per/Karamba3D. Detailed code is presented in Appendix E

Figure 4.20: Geometry of steel trusses

The flat, or slightly curved, roof is supported by a truss system inspired by
the TU Graz timber lab, see figure 4.21. The truss geometry consist of double
tension cables spanning from roof ends to two lower connection points, from
where eight compression rods form two double V-shapes. The lower connec-
tion points are connected by a horizontal tension cable. The truss geometry
is created in an algorithm scripted in the component TrussGeometry, and de-
picted in figure 4.20. The parameters spanX and spanY are optimized with
Galapagos, with regards to minimized deflection. This optimization is done
for the span width W of 20m, and then fixed as a ratio of the span width, so
the geometry is consistent when W changes. The optimized values of spanX
= 0.21*W/2 and spanY = 2.3m. The heights H1 and H2 is not included in
the optimization. The curved shape of the timber is in reality made from
pre-tensioning of the steel cables, while in Karamba3D, it is created as an
arc with no initial stress. This makes the height parameters difficult to opti-
mize correctly in the model. Therefore, H1 and H2 is set using the geometry

42

of TU Graz [24] as a reference. H1 is set as 1.7m and H2 as 1.0m for the
span width of 20m, and set as a ratio of the span width. The span between
trusses is set to 3m, and the structure length L is 40m for all situations. As
explained in ch. 2.3, the initial camber should be at least L/200 [17]. For
spans of 20-30m, this will be maximum 150mm.

Ansicht
9,66
- 6,60
Detail B /7 ™
i _APA
—)
Detail C Detal AN~ o
r\\
Draufsicht
T,
atd
i 5,00 | 4,80 i 4,80 | 5,00 |

r T T T 1

Figure 4.21: Geometry inspiration, TU Graz timber lab roof, from Bulajic’s master’s thesis
[24]

Based on the model characteristics listed in table 3.1 and Brettstapel proper-
ties explained in ch. 4.1.6, a second optimization is done for span widths 20,
22,24, 26, 28 and 30 meters. Here, the input parameters are the Brettstapel
height h and steel cross sections for ”compression rods”, ”tension cables 1”
and "tension cables 2”7, see figure 4.22. The optimization fitness is based on
an algorithm returning the following product, which is set to be minimized
in Galapagos:

Fitness = structure’s mass * (1 - timber utilization) * (1 - steel utilization)
* (1 - deflection utilization)

Hence, the structure is optimized for all utilizations at the same time, and

also reaching for a low mass. Code and scripts for this model can be found
in Appendix E.

43

Figure 4.22: (1) compression rods, (2) tension cables 1, (3) tension cables 2

4.4.1 Results

Table 4.7 present the results of the optimized structures. Here, W is the roof
span and h is the Brettstapel height. GBLF stands for Global Buckling Load
Factor. Deflection is utilized with the limiting criteria W/200. Information
about the PV steel cross sections are described in Appendix A in a table from
Pfeifer [27]. RB steel cross sections have the same diameter as mentioned in
the name [28].

Table 4.7: Results for the Under-spanned Flat Roof

Steel cross sections Utilization
Compression Tension Tension Mass
W (m)| h (cm) rods cables 1 cables 2 |Deflection Timber Steel GBLF (kg)

20 14 RB 52 PV 360 PV 360 0,63 0,53 0,9994 2,75 57802
22 13 RB 53 PV 420 PV 420 0,97 0,91 0,96 1,72 62310
24 15 RB 63 PV 300 PV 490 0,97 0,84 0,87 1,93 73716
26 19 RB 55 PV 360 PV 640 0,58 0,45 0,997 3,17 96652
28 19 RB 60 PV 490 PV 560 0,67 0,58 0,996 2,47 109668
30 19 RB 63 PV 490 PV 560 0,78 0,7 0,97 2,04 117628

The optimized structures for the different spans have a varying utilization
distribution between deflection and steel. Steel is the prominent critical
utilization criterion. The utilization for timber is varying significantly. The
Brettstapel height h is not maximized for any span widths, which leaves
potential. The optimized ratio of spanX, 0.21%W /2 corresponds to 2.1m
for the 20m span, while this value is 4.8m for the TU Graz timber lab roof
structure of similar span.

44

Figure 4.23: Deflection comparison for 20m and 30m span widths

Deflections and distribution of principal stresses are compared between the
optimized structures of 20m and 30m span widths. In figure 4.23 of the 30m
span width, it becomes apparent that the algorithm in TrussGeometry has
not been successful in assigning the compression rods’ points to the mesh, and
it seems odd. The mesh could be too coarse, but a more probable error is the
scripted algorithm. In the algorithm, points are first created with a height
close to the maximum height, and then the closest mesh vertices are found
and assigned to the points instead. This process clearly does not work well
in all situations. This can affect the results in the sense that the structures
are not ideally optimized. Comparison of stress distributions is shown in
figure 4.24. Here, the red color represent compression, and the blue tension,
in the corresponding layers of the shell. For both spans, the unsupported
parts of the roof plate experience dense stress concentrations. The stress
concentration over compression rods are different for the two spans. For
the 30m span, dense stress concentrations appear over the compression rods
at both ends of the structure. This is probably because of the scripted
algorithm, which locates the outer trusses in a distance from the edges. For
the 30m span, this space is too big, likely due to the fixed value of the center
distance, which does not add up to the length. The reason for the difference
between the 20m and 30m span is plausibly due to the strange assignment
of the compression rods. This has likely affected the trusses’ geometry in the
y-direction as well.

45

20m 30m
UPPER LAYER UPPER LAYER

N LN

LOWER LAYER LOWER LAYER

Figure 4.24: Comparison of principal stresses for 20m and 30m span widths

46

4.5 FEM Shell Model: Folded W-Roof

Figure 4.25: Code and model of the folded W-roof model in Rhino/Grasshop-
per/Karamba3D. Detailed code is presented in Appendix F

A shell model is created for the folded W-roof. As explained in ch. 2.3.3, mo-
ment rigid connections at the tops and supports provide the highest stiffness
and contribute to one-way spanning behavior [26]. The default boundary
conditions between shells are rigid connections. The outer edges, meaning
the short edges of the rectangle, are moment rigid. In addition, one of these
edges is restrained against vertical translation, while the other against trans-
lation in all three directions. The points supported by walls on the long edges
are supported vertically along one edge, and restrained against translation
in all three directions along the other. This is visualized in figure 4.26. Can-
tilevers, if included, span outwards from the points along the long edges at
both sides, to gain stiffness of the structure, see figure 4.27. As explained in
ch. 2.5.4, the ratio between the length and height of the V-shapes are within
the criteria L > 4H. The length adjusts from the length of each V-shape,
but is approximately 40m. The orange Assembly-component in figure 4.25
points out that some points have doubly assigned support. This is due to
the shells being restrained by each other in addition to supports.

Based on the model characteristics listed in table 3.1 and Brettstapel prop-
erties explained in ch. 4.1.6, the structure is optimized for the span widths
of 20, 22, 24, 26, 28 and 30 meters. The optimized parameters are the roof
height H, height of the Brettstapel h, span width of the V-shapes w, and
length of cantilevers lc. The optimization fitness is based on an algorithm
returning the following product, set to be minimized in Galapagos:

Fitness = structure’s mass * (1 - timber utilization) * (1 - deflection utiliza-
tion)

The code and scripts from this model can be found in Appendix F.

47

Figure 4.26: Support settings

Figure 4.27: Support points for the folded W-roof (1) without cantilevers and (2) with 2m
cantilevers

4.5.1 Results

Table 4.8 present the results of the optimized structures. Here, W is the roof
span, equal to the length of the short edge of the rectangle, w is the span
of each V-shape, H is the roof height, h is the Brettstapel height and lc is
the cantilever length on each side. GBLF stands for Global Buckling Load
Factor. Deflection is utilized with the limiting criteria W /200.

Table 4.8: Results for the Folded W-Roof

W (m)
20
22
24
26
28
30

w (m)

5,2

5.4
4,1
4.4
4,7

H (m)
2,4
1,3
1,2
1,8
1,3
3,8

h {cm)
11
16
21
12
21
12

Utilization

lc (m) | Deflection Timber
1 0,70 0,99
0 0,88 0,98
0 0,998 0,997
1 0,79 0,99
1 0,996 0,98
1 0,87 0,9994

GBLF
7,7
22,8
36
17
a8
5,4

Mass

(kg)
53432
61892
92923
71498
125572
120441

48

The structure is utilized for timber for most of the spans, but deflection is
also highly utilized. Cantilevers are short, and not implemented for every
optimization. The span per V-shape w is consistent for the different length,
varying around 4-5 m. The roof height H is below half the V-span for all
situations except for the 30m span. Both the roof height H and Brettstapel
height h are varying significantly with no clear pattern. Since the spans only
vary with 2m, a clearer pattern was expected. If the optimizations had run
longer, maybe a clearer pattern would emerge.

Figure 4.28: Deflection comparison for 20m and 30m span widths

The deflection distribution for the 20m and 30m span widths seems consis-
tent. The support conditions clearly affects the ends of the structures, where
the restrained end experience a contraction, while the end allowed to move
in the x-direction makes the structure looses stiffness and is elongated. In
reality, this combination of boundary conditions will not occur, and the free-
dom of movement would be shared between the ends. This situation also
affects the stress distributions. The freer edge is subject to denser stress
concentrations, as expected, while the contracted edge has gained stiffness
and experience less stress. Otherwise, the distribution of stresses appear to
be consistent between the two span widths. Here, the red color represent
compression, and the blue tension, in the corresponding layers of the shell.

49

20m

\

UPPER LAYER

\

LOWER LAYER

30m

UPPER LAYER

LOWER LAYER

Figure 4.29: Comparison of principal stresses for 20m and 30m span widths

50

4.6 FEM Shell Model: Pitched Roof with Brettstapel
Beams

Figure 4.30: Code and model of the pitched roof with Brettstapel beams in Rhino/-
Grasshopper /Karamba3D. Detailed code is presented in Appendix G

A Karamba3D model is created to investigate a long-span roof consisting
of Brettstapel elements only. The pitched roof is supported by transversal
Brettstapel beams. The beams are thought to penetrate the roof shells so
that one roof plate lamella is interrupted by a beam lamella, and this repeats
for every other lamella for each beam.

Firstly, the x-location of the beams are found through Galapagos optimiza-
tion with minimized deflection as fitness criteria. This is done only for 20m
span width, and a ratio of the width is set, so it is consistent for all spans.
The optimized x-location is 0.5*W /2. The span between beams is set to 3m,
and the structure length L is 40m for all situations.

Based on the model characteristics listed in table 3.1 and Brettstapel proper-
ties explained in ch. 4.1.6, a second optimization is conducted, where input
parameters are the roof height, the Brettstapel height of the roof shells, and
the number of beam lamellas. The optimization is carried out for the span
widths of 20, 22, 24, 26, 28 and 30 meters. It becomes clear early on that the
beams need the maximum height of 22cm. Hence, this value is set, and not a
genome for optimization. The optimization fitness is based on an algorithm
returning the following product, which is set to be minimized:

Fitness = structure’s mass * (1 - timber shell utilization) * (1 - timber beam
utilization) * (1 - deflection utilization)

The code and scripts from this model can be found in Appendix G.

51

4.6.1 Results

Table 4.9 present the results of the optimized structures. Here, W is the roof
span, H is the roof height and h is the Brettstapel height of the roof plate.
GBLF stands for Global Buckling Load Factor. Deflection is utilized with
the limiting criteria W/200.

Table 4.9: Results for the Pitched Roof with Brettstapel Beams

Utilization
nr of Brettstapel Brettstapel
W {m}| H{(m} | h(cm)} | lamellas | Deflection roof beams GBLF | Mass (kg)
20 5 12 9 0,67 0,88 0,99 1,1 46697
22 6 13 11 0,75 0,95 0,95 1,02 57030
24 8 15 14 0,66 0,93 0,96 1,18 76116
26 10 22 18 0,25 0,51 0,998 2,5 125064
28 10 22 20 0,25 0,55 0,993 2,1 132459
30 10 22 28 0,28 0,65 0,97 1,7 | 145292

For this structure, the Brettstapel beams is the weakest part. It provide the
critical utilization for all spans. The utilization of the Brettstapel roof varies
significantly. The deflection utilization also varies significantly, and is very
low for spans from 26 to 30 meters. This seems to be in conjunction with the
Brettstapel beams increasing in width, as the number of lamellas increases.
Hence, the structure is stiffened far beyond necessary to avoid buckling of the
beams, and the beams are heavily reinforced while still reaching maximum
utilization. There is a notable increase in mass and Brettstapel height of the
roof between span widths 24m and 26m.

Figure 4.31: Deflection comparison for 20m and 30m span widths

Deflection and stress distribution is compared for the span widths 20m and
30m. The roof is notably stiffer for the 30m span, see figure 4.31. The stress

52

distributions are consistent between the two spans, with the highest stress
concentrations at the lower span and over the beam connections. Here, the
red color represent compression, and the blue tension, in the corresponding
layers of the shell. At one end, stresses over the beam connections are notably
larger. This is because the beams are distributed along the 40m length of the
roof, with a fixed center distance of 3m. This results in a larger outer area
without support at one end, hence the outer beam supports a larger area.

20m 30m
UPPER LAYER UPPER LAYER
.
LOWER LAYER LOWER LAYER

AJLY

Figure 4.32: Comparison of principal stresses for 20m and 30m span widths

33

4.7 EC5 Timber Utilization

In the absence of a component for Eurocode 5 timber utilization checks,
scripts are created to validate the timber roofs and other timber members
in the FEM shell roof models. Utilizations are calculated in accordance
with NS-EN 1995-1-1:2004+A1:2008 +NA:2010: Design of timber struc-
tures [29]. In one scripted component, utilization for bending, shear and
tension and compression in grain direction are calculated in accordance with
§6.1.2, §6.1.4, §6.1.6 and §6.1.7. These checks are based on the maximum
values from the analysis, obtained through the Karamba3D component Shell
Forces. A separate component calculate the utilization of combined bending
and axial stress according to §6.2.3 and §6.2.4, by iterating through values
of moments and axial force for every mesh vertex. The maximum utilization
value is outputted. It is inserted to the first component, which collects all
utilization values and outputs the largest one, which is used for optimiza-
tion with Galapagos. For beams, axial buckling is checked in a similar way,
according to §6.3.2.

Timber strength class C14 is used for comparing strength parameters, in ac-
cordance with Norsk Massivtre’s present material use [7]. Component scripts
can be found in Appendix H.

Figure 4.33: Code for the EC5 utilization checks

o4

5 Discussion

5.1 Norsk Massivtre’s Brettstapel Model

The FEM model with 3D solid elements gives a satisfactory simulation
of the Brettstapel’s behavior. All deviations are within a range of 10%, and
deviations for the mid-load case are within 4%. There is a consistency in
the deviation size between the two lengths. The model is stiffer than the
physically tested Brettstapel for most load situations, and a possible reason
is that the assigned boundary conditions in the model restrain the edges
from lifting at any point. This should become evident for the situation of
edge loading, where the ability to lift on one side would increase the torsion
effect, and thus deflection at the opposite side. This effect can be seen for the
3m element, where the deflection is 10% lower than for the physically tested
Brettstapel. However, for the 4.4m element, the edge load situation indicate
a more flexible behavior, which is surprising and inconsistent with the 3m
length. The models have been created with the exact same principles, and
a good explanation for this change in behavior is not found. There might
be an undiscovered error in the model. With more time and resources, it is
possible to make the FEM 3D solid model even more detailed and accurate.

The accuracy of the FEM beam model, on the other hand, seem randomly
distributed for the tested situations, and is not satisfactory. A plausible
reason for the low accuracy is that the FEM beam elements are not able to
model the anisotropic material behavior. The volumetric solid elements are
better suited for this purpose, which is evident in the results. Another reason
for the poor achievement of the beam model could be the simplification of
the screws’ numerical model. For the physically tested elements, screws were
located in the upper and lower part of the lamellas, while in the FEM beam
model, which is modeled with beam elements with nodes along one axis, all
screws are located in the middle. With regards to the springs in the beam
model, the value of spring stiffness K1 is taken from EC5, and may be meant
for one screw connecting two components, while the real screws go through
multiple lamellas.

95

5.2 FEM Shell Models of Roof Structures

5.2.1 Under-spanned roofs

For the two under-spanned roof structures investigated in this study, the
Brettstapel roof does not reach its maximum utilization more than once,
and for this situation, deflection and steel are also reaching their limit. The
Brettstapel height is not maximized for any situation. As Bulajic [24] con-
cluded in his thesis, the tension capacity of the cables is one of the most
influential parameters for the under-spanned roof structures. This is clear
in the results, where the tension cables have the biggest cross section for all
optimized situations but one. The flat under-spanned solution results in a
lower mass for every optimized span width compared to the pitched solution.
This makes it more cost-effective. There is, however, an important aspect to
take into account. The two structures will uptake snow load very differently
if built at the same location. The flat roof will pile up more snow than the
pitched when subjected to the same snow situation. This is an important
structural design aspect in Norway, and is considered in the shape coefficient
for snow load calculations. However, this is not taken into account in the
FEM shell models, and must be considered in a later phase. It is likely to in-
crease the cross sections of the Brettstapel roof and steel members, and hence
decrease the differences in mass between the flat and pitched under-spanned
roofs. An error of the algorithm locating the compression rods are present
for the 30m span of the flat roofs, and might affect the results for more
spans. For both the pitched and flat under-spanned roofs, the Brettstapel is
subjected to load perpendicular to grain, which prevents rolling shear failure.

Figure 5.1: V-shaped spacious compression rods of (1) Flyinge Ridhus, and (2) TU Graz
timber lab

56

For the pitched roof structure of Flyinge Ridhus, the V-shaped compression
rods’ span in x- and y-direction are relatively small compared to V-shape
span of TU Graz timber lab. This is visualized in figure 5.1. Even though
the roofs have different shapes, both are made of CLT, and the compression
rods has the same structural application. Therefore, it is surprising that the
spans are so different. For both the modeled under-spanned structures in this
study, the V-shape spans are optimized as relatively small. The optimized
span for the flat roof is 2.1m for the 20m span, while it is 4.8m for the TU
Graz timber lab. A possible reason for the larger spans of the TU Graz
lab is that the slenderness of CLT is considered. With larger spans of the
V-shapes, the stresses are distributed to a larger area, which contribute to
avoid rolling shear and punching failure. However, a smaller span increase
the supporting reaction forces in the vertical direction, which is beneficial.
Similar small spans are used in StructureCraft’s NLT roof structure of Samuel
Brighouse School Atrium, shown in figure 2.12, which proved it is possible for
mechanically laminated Brettstapel, and strengthens the assumption that it
is a beneficial solution.

5.2.2 Folded W-Roof

For the folded W-roof structure, both the roof height and the Brettstapel
height vary significantly for the different spans, with no clear pattern. Since
the spans only vary with 2m, a clearer pattern was expected. If the optimiza-
tions had run longer, perhaps a clearer pattern would emerge. A weakness
of the folded W-roof is that the stiffness rely on moment rigid connections
at multiple locations. Completely moment rigid connections is a theoret-
ical simplification that is impossible to achieve in reality. Even close-to-
rigid connections will require a large number of screws in the case of the
Brettstapel, and a satisfactory solution is not guaranteed. Another concern
for the folded roof is how the Brettstapel is tilted at an angle relative to the
loads, as depicted in figure 5.2. This can affect the strength and stiffness
of the Brettstapel, and evoke the rolling shear behavior, as explained in ch.
2.1.3. Since the Brettstapel roof plates are simplified as FEM shells with
isotropic material properties, the characteristics of the Brettstapel geometry,
composition and structural properties are not taken into account. Hence, the
hypothesis of the unfavorable load situation is not tested, and it is unclear
how the Brettstapel would respond to such a load situation. To validate the
folded W-roof structure for the Brettstapel, further investigations should be
conducted.

57

Figure 5.2: Unfavorable load situation, likely to cause rolling shear

5.2.3 Pitched Roof with Brettstapel Beams

For the span widths of 20 and 22 meters, the pitched roof with Brettstapel
beams provide the lowest mass compared to all other long-span structures
analyzed in this study. For these spans, it also provides a low Brettstapel
height compared to the under-spanned structures. For this structure, the
optimized larger spans, from 26m to 30m, provide a very large mass, due
to big cross sections of the Brettstapel roof plates and beams. Due to the
increased cross sections, the deflection utilization decreases significantly when
the span increases. This is to avoid buckling of the beams and keep the timber
beam utilization under 1. For the 30m span width, 28 lamellas is needed for
the beams, which means 1.28m, for every 3m. The lamellas are thought
to penetrate the roof plates in a way that create stiff connections, which is
hard to achieve in reality with screws. If the connections were changed, the
beams are likely to buckle sooner, and the structure would be weaker than
the results indicate. A large number of penetrating lamellas will decrease the
performance and stiffness of both the Brettstapel roof plate and beams.

This analysis considers Brettstapel beams only, and does it according to
SINTEF technical approval from 2020 [7]. Here, the maximum height is
22cm. The structure would perform better, and decrease the number of
lamellas, if the beams could increase the height beyond this. Other types of
beams could also be an option to solve this issue, but the Brettstapel-only
concept would be lost.

o8

6 Limitations and Sources of Error

The basis of physical data for comparison of the Brettstapel models is limited.
Kristiansen and Lgvbrgtte mention an assumed error due to twisting of the
lamellas during drying [23]. This could affect the results that are the only
basis of comparison for the models. The error could also be a reason for the
deviating result of the 4.4m edge-loaded Brettstapel.

A possible source of error for the FEM 3D solid model is the assigned mesh,
with regards to element settings and the constructed geometry. Throughout
the modeling process, it became apparent that this has a great impact on
the numerical solution of the model. Another possible source of error is
the assigned friction coefficient. The value of 0.4 is set without testing other
values. A third source of error is the simplified numerical model of the screws.
The model is plausible to achieve higher accuracy if the screws are modeled
with its threaded geometry, and if the connection between timber and screws
are not simplified to be rigid. This is likely to impact the model to be stiffer
than the physically tested Brettstapel.

The Brettstapel roof plates are simplified with FEM shell elements in the
long-span roof models. Results in ch. 4.2, and figure 4.13, shows differences
between the FEM 3D solid model and the FEM shell model for a 3m element.
Compared to the volumetric FEM solid elements, the flat shell elements are
not able to model behavior of contraction and elongation within the model
in the z-direction. In the same way, the changing behavior throughout the
height of the lamellas, due to the anisotropy, is not accounted for in the shell
model. In addition, the shells are assigned isotropic properties, which is a
further simplification of the complex material. The Brettstapel’s dissimilar
properties in the two in-plane directions are not taken into account. Hence,
the Brettstapel is analyzed as a plate material with elastic behavior. A cut
through the middle of the analyzed FEM solid model reveals that the stresses
and strains have a jump between the lamellas. Since the results indicate that
the model simulate the Brettstapel successfully, this is assumed to be valid for
the physical Brettstapel. Hence, linear relations between the stress and strain
components does not exist across the lamellas, which means the Brettstapel
does not behave fully elastic.

29

S, Max.Principal E, Max. Principal
(Avg:25%) = (Avg: 75%)

4 4310003 A +4.898e-03
39836403 | +4.484e-03
+3:5356+03 +4.069¢-03
+3.0868+03 ! +3.655¢-03
+2.638e403 i +3.241e-03
+2.189e 403 1 +2.827e-03
+1.741e+03 ! +2.412e-03
+1.292e+03 +1.998e-03
+8.441e+02 +1.584e-03
+3.957e+02 L +1.170e-03
-5.272e+01 +7.553e-04
-5.011e+02 +3.410e-04
-9.495e+02 -7.324e-05

Figure 6.1: Cut of the analyzed Abaqus model, revealing jumps in stress and strain between
lamellas

To be able to analyze the Brettstapel as FEM shell models, it is necessary to
have more knowledge about its structural response. This should be gathered
through experimental tests and analytical investigations. Since the FEM
3D solid model proves a lack of continuity of stresses and strains, FEM
shell models is not able to model the behavior. These models are likely to
provide better results for massive timber elements that are glue-connected,
which provides a higher continuity between the lamellas. More research on
the Brettstapel could lead to establishing equations for post-processing of
FEM shell models. In that way, the benefits of the parametric environment,
such as flexibility of exploring different cases, and geometric and structural
optimization, can be utilized for Brettstapel structures beyond the conceptual
stage.

The Galapagos optimizations are not run indefinitely, but stopped after a
limited amount of time. Hence, the presented optimized parameters may not
be the absolute best options. This is plausibly a reason why the maximum
utilization sometimes switch between different utilization criteria for different
spans of the same model, and clear patterns are absent.

A concern arising during the optimization process of the under-spanned
roofs, is how the steel optimization leads to over-dimensioning in some cases.
Through investigation of the structures post-optimization, it appeared that
lower steel dimensions could be used. It became evident that increasing
the cross section of the tension rods stiffens the structure and ”force” the
compression rods to withstand larger compressive stresses, which leads to a
higher utilization. Hence, the diameter of the tension cables are increased
beyond the necessary. This side effect of the optimization leads to larger
mass and a higher cost. However, with the goal of achieving utilization as
close to 1 as possible, this is the outcome.

60

7 Conclusion

Research Question 1

How can the complexity of the Brettstapel massive timber element be success-
fully simplified to model the behavior?

The FEM 3D solid elements model, thoroughly described in ch. 4.1.2, is able
to simulate the behavior of the Brettstapel massive timber element with sat-
isfactory results. The results contribute to validate the orthotropic properties
presented by Dahl [11] for a spruce lamella. It also validates the modeled
contact behaviors for stacked spruce lamellas, which are "hard” normal con-
tact and tangential contact with penalty friction coefficient of 0.4. The model
demonstrates in general that modeling timber with volumetric solid elements
with orthotropic material properties in a cylindrical coordinate axis system
is a successful method. A higher level of details is assumed to give even more
accurate results, and depends on the time and resources available for the
user. The findings provide a guide on how stacked, screw-laminated massive
timber elements can be modeled digitally, which can be valuable for future
research when physical experiments are unattainable.

The FEM beam and shell elements do not achieve an accurate model of the
Brettstapel, which is evident in the results presented in ch. 4.1.3 and 4.2.1.
The discontinuous response, due to the complex geometry and assembly, is
not properly accounted for in the beam and shell models.

Research Question 2

How can the parametric environment be utilized to investigate the Brettstapel
element for long-span roof structures?

The parametric environment provides the opportunity to investigate the per-
formance of multiple versions of a structure in a short amount of time, and
to optimize the structure based on specific criteria. These are benefits when
investigating several structures for different spans, as for the Brettstapel.
Modeling each structure with the different spans in traditional CAD-software
is cumbersome in comparison. However, if the models are too detailed, the
benefits of fast modifications and analyses are lost. The parametric environ-
ment works very well for analyzing and optimizing geometry. For a thorough
structural analysis, detailed material data and analytical equations for sim-

61

plified models are required, which is not yet established for the Brettstapel.
As described in the previous chapter, the lack of continuity of stresses and
strains between the lamellas can only be modeled properly if the lamellas
are modeled as separate solids. If proper post-processing equations are es-
tablished for the Brettstapel in the future, FEM shell structures and hence
the parametric environment can be utilized for more accurate information.
As of today, the parametric environment can provide information about the
potential of the long-span roof structrures, but must be investigated in more
detail.

Research Question 3

What kinds of structures and spans are plausible to achieve with Norsk Mas-
sivtre’s Brettstapel element?

The FEM shell analyses indicate that Brettstapel has potential for long-span
under-spanned roofs. The Brettstapel roof plate is not fully utilized for any
optimized spans. The under-spanned flat roof results in a lower mass for
every span compared to the pitched roof. However, the roof shape affects
the snow uptake, which is not accounted for in the models. This is likely to
influence the results and decrease the differences. The optimized FEM shell
structures of the under-spanned roofs indicate that small spans for V-shaped
compression rods are the best structural solution. It is assumed that the
required cross sections of the steel members, hence the mass, and construction
implications will be decisive for if the under-spanned Brettstapel roofs are
practical. These areas are not studied in this thesis, but can be considered
in future research.

The shell models shows potential for the folded W-roofs. However, the angle
of the Brettstapel relative to the loads, and how this can evoke rolling shear,
is a concern that is not taken into account in the model. In addition, the
structure depend on moment rigid connections to be successful, which is hard
to achieve in reality.

The pitched roof with Brettstapel beams has potential for spans between
20 and 24 meters. It provides the lowest mass for 20m and 22m spans,
compared to all other long-span structures analyzed in this study. According
to the results from the FEM shell model, the structure reaches its limit at
24m span width. This structure depend on rigid beam connections, which are
hard to achieve in reality and will affect the actual structural achievement.

62

The results of all the long-span roof structure models are limited, due to the
simplified FEM shell elements, and the simplified isotropic material proper-
ties. The shell models do not take the Brettstapel’s assembly or orthotropy
into account, which affects the structural properties in all directions.

Research Question 4

In what ways does the Brettstapel introduce advantages and disadvantages for
long-span roofs, compared to timber plate materials?

Structures of large spans are susceptible to big bending moments, and hence
benefit from cross sections providing a large moment of inertia. For CLT, the
effective moment of inertia is based on the layers spanning in the specified
direction only, which means that almost half of the cross section is neglected
in the calculation [12]. In contrast, Brettstapel utilizes the whole cross sec-
tion. The assembly of the Brettstapel makes sure it will have one stress
component parallel to grain during bending, hence it is not susceptible to
rolling shear failure, in contrast to CLT. However, when tilted and subject to
load at an angle, this is no longer the case. Hence, the Brettstapel provides
an advantage, but only when subjected to loads perpendicular to grain. For
roofs of complex shapes, where the two-way spanning capacity is necessary,
engineered timber plate materials will be a better solution, but for simple
rectangular bearing geometry, there are reasons to believe the Brettstapel is
a good solution.

63

8 Future Work

The following points include suggestions for future research relevant to this
study:

- Create FEM 3D solid models of the roof structures presented in this study,
to compare the simplifed FEM shell models and FEM 3D solid models and
evaluate the accuracy of the results

- Further investigate digital modeling of massive wood elements

- Conduct more physical tests of Norsk Massivtre’s Brettstapel element, to
gain a larger data basis

- In general gain more knowledge about the Brettstapel to establish post-
processing equations

- Continue investigating the potential of Brettstapel compared to massive
timber plate materials such as CLT, for long-span roof structures. Compare
CLT and Brettstapel with digital models or physical tests. Explore when the
two-way spanning capacity of CLT is necessary

- Investigate connections and other details for the under-spanned roof struc-
tures

64

References

1]

2]

C. Robeller, Y. Weinard, <Doppeltes Faltwerk - Standfest gefiigt>,
TEC21, nr. 22, June, 2017.

C. Robeller, M. Konakovic, M. Dedijer, M. Pauly, Y. Weinand, «Double-
layered timber plate shells, International Journal of Space Structures,
vol. 32, nr. 3, Dec, 2017. DOI: 10.1177/0266351117742853

H. Stamatopoulos, «TKT4211: Timber Structures 1, Lecture 1: Material
properties of wood>, Jan, 2020.

D. Dauksta, <Brettstapel: Brettstapel production in other parts
of the world; adapting techniques for utilisation of homegrown
timbers in Britain>, Woodknowledge Wales, Machynlleth, Wales.
2014. [Online]. URL: http://woodknowledge.wales/wp-content/
uploads/2017/02/Brettstapel-Sept-2014.pdf

S. Thelandersson, H. J. Larsen, Timber Engineering. England: John Wi-
ley and Son, 2003.

J. Henderson, <Brettstapel: An Investigation into the Properties and
Merits of Brettstapel Constructions, Master’s Thesis, Department of Ar-
chitecture and Building Design, University of Strathclyde, Glascow, 2009.

H. B Skogstad, <Teknisk Godkjenning>, SINTEF, Bekkestua, Norge,
2498, 17.03.2020.

A. Overgaard, personal communication, January 28 2021

K. A. Malo, «<NTNU TKT 4212 Timber Structures Lecture notes:
Anisotropy in Wooden Materialss>, 2020.

[10] Wikipedia, <«Orthotropic material>, at Wikipedia, 2020. URL:

https://en.wikipedia.org/wiki/Orthotropicmaterial, Read: 02.05.2021.

[11] K.B. Dahl, «Mechanical properties of clear wood from Norway spruces,

Doctoral Thesis, Department of Structural Engineering, Norwegian Uni-
versity of Science and Technology, Trondheim, 2009.

[12] R. Harris, <«Cross laminated timbers, in Wood Compos-
ites, Elsevier Ltd, 2015, ch. 8, p. 141-167. [online]. Available:
http://dx.doi.org/10.1016/B978-1-78242-454-3.00008-1

[13] K. Ostapska, «<CLT Introductions, Lecture PowerPoint, Sep, 2020.

[14] H. Sharifnia, D. P. Hindman, <Effect of manufacturing parameters on
mechanical properties of southern yellow pine cross laminated timberss,
Construction and Building Materials, nr. 156, p.314-320, Dec. 2017, DOI:
10.1016/j.conbuildmat.2017.08.122

[15] M. Derikvand, H. Jiao, N. Kotlarewski, et al. <Bending performance
of nail-laminated timber constructed of fast-grown plantation eucalypts,
Eur. J. Wood Prod., 77, 421-437 (2019). https://doi.org/10.1007/s00107-
019-01408-9

[16] StructureCraft, «Design and Profile Guide: Dowel Laminated Timber;
the All Wood Mass Timber Panels, 4. March 2019, [Online|. Accessible
at: https://structurecraft.com/blog/dlt-design-guide

[17] Norske Limtreprodusenters Forening, <Saltakstoler og underspente
bjelkers, in Limtreboka, Norway: Norske Limtreprodusenters Forening,
2015, ch. 3.5, p. 46-49

[18] K. Bell, 715.2 The Shell Problem”, in An engineering approach to Fi-
nite Element Analysis of linear structural mechanics problems, 1. edition,
Bergen, Norway: Fagbokforlaget, 2014, ch. 15.2, p. 507-518

[19] I. Caetano, L. Santos, and A. Leitao, «Computational design in architec-
ture:Defining parametric, generative, andalgorithmic designs, Frontiers
of Architectural Research, vol. 9, nr. 2, p. 287-300, June, 2020. URL:
https://doi.org/10.1016/j.foar.2019.12.008

[20] M. Ericson, <Review: Grasshopper Algorithmic Modeling for
Rhinoceros 5>, JSAH, vol. 76, nr. 4, p. 580-583, Dec, 2017. URL:
https://doi.org/10.1525/jsah.2017.76.4.580

[21] C. Preisinger, M. Heimrath, <Karamba—A Toolkit for Parametric

Structural Designs, Structural Engineering International, vol. 24, issue
2, p. 217-221, 2014. DOI: 10.2749/101686614X13830790993483

i

[22] C. Preisinger, <Linking Structure and Parametric Geometrys, Archi-
tectural Design, vol. 83, p. 110-113, 2013. DOI: 10.1002/ad.1564.

[23] H. Kristiansen, O. Lgvbrgtte, <Testing of solid wood elements produced
by Norsk Massivtre AS, and verifying method for calculations, Master’s
Thesis, Norwegian University of Life Sciences, As, 2010.

[24] N. Bulajic, «Underspanned CLT structures for the application of large-
span industrial and communal buildings>, Master’s Thesis, Institute of
Timber Engineering and Wood Technology, Graz University of Technol-
ogy, Graz, 2014.

[25] C. Robeller, <Integral Mechanical Attachment for Timber Folded Plate
Structuress, Doctoral Thesis, School of Architecture, Civil and Environ-

mental Engineering, Ecole polytechnique fédérale de Lausanne, Lausanne,
2015.

[26] A. H. Fjelde, H. P. Aakre, <Foldede Formers Funksjonalitet - Kon-
septuell Design av Foldede Platekonstruksjoner i Betong>, Master’s The-
sis, Department of Structural Engineering ,Norwegian University of Sci-
ence and Technology, Trondheim, 2017.

[27] Pfeifer, «<European Technical Assessment ETA-11/0160 PFEIFER Wire
Ropes>, Pfeifer, Berlin, Germany, 21.11.2018

[28] Dlubal Software Inc., <Cross-Section Properties>, dlubal.com,
https://www.dlubal.com/en/cross-section-properties/series-rb-
continental-steel

[29] Eurocode 5: Design of timber structures - Part 1-1: General Common

rules and rules for buildings, NS-EN 1995-1-1:20044+A1:2008+NA:2010,
2010.

il

Appendix

A PFEIFER PV information

Page 14 of European Technical A it Deutsches
ETA-11/0160 of 21 November 2018 Institut

English translation prepared by DIBt Bautechnik

dy = Bolzendurchnesser / pin dianeter

—
é::' de A B c @ E F ~ L
mm mm mm mm mm mm mm e mm
PV 40 21 2 35 3] 3 55 57] 168
PV B0 26 116 L] r:d 4“4 m =] 36 208
PVen n 37 82 20 4 i BB a5 248
PV115 k- 153 B0 102 58 9 Ell 52 280
PV 150 40 176 -] 118 B4 108 g8 B0 320
PV 185 45 187 7 13 3 120 110 (] 3R
PV 240 50 220 a5 145 83 133 123 76 400
PV 300 55 291 a4 160] 146 140 85 440
PV 360 60 263 102 174 28 158 153 a2 480
PV 420 &5 285 111 188 108 173 -] 100 520
] 70 308 119 203 118 186 178 107 560
[PvEE0 75 320 128 218 128 199 195 114 500
PV B4D B0 351 136 232 138 212 208 121 B40
[Pv7a0 3 arz 145 247 1482 220 129 530
PVEID 90 3965 15 261 153 233 136 20
PVS10 3 416 82 278 TN 253 144 750
PV 1010 100 438 170 290 1m2 265 263 151 8O0
PV 1110 105 458 179 5 182 278 276 158 B0
FV1220 110 AR4 B7 e 1687 202 286 1‘5_‘ B8g
PVI340 15 51 156 a4 202 306 299 174 990
PV1450 120 532 204 8 207 il anz 180 960
PV1580 125 £55 213 363 217 332 325 187 1000
PViTao 130 577 221 a7 =27 348 338 153 1040
PV1BED 135 5 230 92 237 358 as1 186 1080
PV2000 140 B21 238 406 247 an 364 204 1120
PY2150 145 Bad 247 421 261 385 3687 =m 1160
PV2300 150 [:val 255 435 m 338 400 27 1200
FY2450 185] 264 450 281 411 415 224 1240
T T O T 7 3
—
PFEIFER — Wire Hop::sr
PFEIFER - Seil-Zuggli it B
PV Type 700 Open Spelter Socket Anhang D1
PV Typ 700 Gabelseilhilse

Figure A.1: PV information by PFEIFER [27]

B Code and Scripts: FEM Model with Beam
Elements

Figure B.1: Code in Karamba/Grasshopper

Figure B.2: Code for lamella elements and joints

{ageqweiey) weag o} sur] |, agequeiey) uweg o} su] |, (agequesey) wesg o3 sury |, (@ gvqweiey) weag of suy]

Evaryznal
Everyanaz

TamEEES: speoq

Type of Load:

(agequeiey) uonoes s
(aEequmEIey) uoyDeS s5013

2u| sauluids 3

Figure B.3: Code for screw elements

dnin
uomng

u - [ageq ueaey) uonoses

Tux yioddns

Sau | MADSPU] #3

3
©

oS 4>
(LITE Y

Figure B.4: Code for loads and supports

Script Editor

c# Script component: C# Pointsé&Lines

i

™

=

G
G

@

100
101
102
103
104

108
109
110
111
112
113
114

118
119

/// <summary>
/// This class will be instantiated on demand by the Script component.
/// </summary>

public class Script Instance : GH ScriptInstance

{

{

//Non-parametric input
double b = 0.046€;
double s = 0.8;

List<Point3d> pointgrid = PointGrid(w, L, b, s);
List<Line> screwlines = yLines(pointgrid);

Point3d midpoint = MidPoint (pointgrid, L, W, b);
Point3d edgepoint = new Point3d(L / 2, 8 * b, 0);
pointgrid.add (midpoint) ;
pointgrid.add(edgepoint);

List<Line> lamellalines = xLines(pointgrid);

//Dividing lamellalines into middle and half side ones
List<Line> midlamellalines = new List<Line>();
List<Line> sidelamellalines = new List<Line>();

if (W == 0.460)
{
foreach (Line 1 in lamellalines)

{

{
sidelamellalines.Add(1);
}

{
midlamellalines.Add (1) ;
}
}
}
if (W == 1.334)
{
foreach (Line 1 in lamellalines)

{

{
sidelamellalines Add(1);
}

{
midlamellalines.Add(1);
}

}

List<Point3d> suppts0 = PointsAtX (pointgrid, 0);
List<Point3d> supptslL = PointsAtX (pointgrid, L);

//output

Middlelamellalines = midlamellalines;
HalfsideLamellalines = sidelamellalines;
Screwlines = screwlines;

SupportPtsl = suppts0;

SupportPtsL = supptsL;

Midpoint = midpoint;

Edgepoint = edgepoint;

vil

if (1.PointAtLength(0).Y == || 1.PointAtLength(0).¥ > 0.4)

if (1.PointAtLength(0).Y != 0 && l.PointAtLength(0).Y < 0.4)

if (1.PointAtLength(0).Y == || 1.PointAtLength(0).¥ > 1.28)

if (l1.PointAtLength(0).Y != 0 && l.PointAtLength(0).¥Y < 1.28)

> x

private void RunScript (double W, double L, ref object MiddleLamellaLines, ref object HalfsideLamellaLin

120

121

122 List<Point3d> PointGrid(double W, double L, double b, double s)
123 {

124 List<Point3d> pointgrid = new List<Point3d>();
125

126 int nrlamelas = (int) Math.Floor(w / b):

127 for (int 1 = 0; i < nrlamelas; i++)

128 {

129 Point3d p0 = new Point3d(0, i * b, 0);

130 Point3d pL = new Point3d(L, i * b, 0);

131 Point3d pl = new Point3d(0.4, i * b, 0):

132 Point3d p2 = new Point3d(L - 0.4, i * b, 0);
133 pointgrid.Add (p0);

134 pointgrid.Add(pL);

135 pointgrid.Add(pl);

136 pointgrid.Add(p2)

137 double restspan = p2.X - pl.X;

138 int § = 1;

139 if (restspan > s)

140 {

141 while (restspan > s)

142 {

143 Point3d p = new Point3d(pl.X + j * s, i * b, 0);
144 pointgrid.Add(p);

145 restspan = restspan - S;

146 =73+ 1;

147 }

148 }

149 }

150 return pointgrid;

151 }

152

153

154 Point3d MidPoint(List < Point3d > PointGrid, double L, double W, double b)
155 {

156 List<Point3d> midpoints = new List<Point3d>():
157 int nrlamelas = (int) Math.Floor(W / b);

158 for (int lamela = 0; lamela < nrlamelas; lamela++)
159 {

160 Point3d pM = new Point3d(L / 2, lamela * b, 0);
16l midpoints.Add (pM);

162 }

163 int MidPtNr = midpoints.Count / 2;

164 return midpoints[MidPtNr];

165 }

166

167

168 List<Line> xLines (List < Point3d > pointgrid)
169 {

170 List<Line> xlines = new List<Line>();

171 List<double> yvalues = new List<double>():

172 foreach (Point3d p in pointgrid)

173 {

174 bool ans = yvalues.Contains(p.Y);

175 if (ans == false)

176 {

177 yvalues.Rdd (p.Y):

178 }

179 }

180 foreach (double yval in yvalues)

181 {

182 List<Point3d> yptlist = new List<Point3d>():
183 foreach (Point3d p in pointgrid)

18 {

185 if (p.Y¥ == yval)

186 {

187 yptlist.Add(p):

188 }

189 }

190 List<double> xvalues = new List<double>();
191 foreach (Point3d p in yptlist)

192 {

193 bool ans = xvalues.Contains(p.X);

194 if (ans == false)

195 {

196 xvalues.Add(p.X);

197 }

198 }

189 xvalues.Sort();

200 double xmax = xvalues.Count;

201 for (int i = 0; 1 < xmax - 1; 1i++)

202 {

203 Point3d spt = new Point3d(xvalues[i], yval, 0);
204 Point3d ept = new Point3d(xvalues[i + 1], yval, 0);
205 Line 1 = new Line(spt, ept);

206 xlines.Add (1)

207 }

208 }

209 return xlines;

210 } viii

Cache

List<Line> yLines(List < Point3d > pointgrid)

{

}

List<Point3d> PointsAtX(List < Point3d > PointGrid, double xval)

{

}

List<Line> ylines = new List<Line>();
List<double> xvalues = new List<double>(};
foreach (Point3d p in pointgrid)
{

bool ans = xvalues.Contains(p.Y);

if (ans == false)

{

xvalues.Add(p.X);
}
}
foreach (double xval in xvalues)

{

List<Point3d> xptlist = new List<Point3d>();

foreach (Point3d p in pointgrid)
{

if (p.X == xval)

{

xptlist.Add(p);

}
}
List<double> yvalues = new List<double>();
foreach (Point3d p in xptlist)
{

bool ans = yvalues.Contains(p.Y);

if (ans == false)

{

yvalues.Add(p.¥Y):

}
}
yvalues.Sort();
double ymax = yvalues.Count;
for (int i = 0; i < ymax - 1; i++)
{

Point3d spt = new Point3d(xval, yvalues[i],
Point3d ept = new Point3d(xval, yvalues[i + 1],

Line 1 = new Line(spt, ept);
ylines.Add (1) ;
}
}

return ylines;

List<Point3d> pointsatx = new List<Point3d>();

foreach (Point3d p in PointGrid)
{
if (p.X == xzVal)
pointsatx.2dd(p) ;
}

return pointsatx;

Becover from cache

0):

0);

OK

Figure B.5: Script from component C# PointséLines

Script Editor X
C# Script component: C# EndScrewiines ’ :[El @ A |'D“
1 &
12

13

14

15 /// <summary>

16 /// This class will be instantiated on demand by the Script component.

17 [/ </summary>

18 | o public class Script Instance : GH ScriptInstance

19

20 | ®

35

36 | @

49

50

55 | o private void RunScript (List<Line> ScrewLines, double L, ref object FirstLines, ref object MiddleLines)
56 {

57

58 List<Line> endlines = new List<Line>();

59 List<Line> firstlines = new List<Line>();

60 List<Line>» middlelines = new List<Line>{();

61l

62 foreach (Line 1 in ScrewlLines)

63 {

64 Point3d spt = new Point3d(l.PointAtLength(0));

65 if (spt.X == |l spt.X == 1)

[19] {

67 endlines.add(l):

(] }

69 if (spt.X == 0.4 || spt.X == L - 0.4)

70 {

71 firstlines.rdd (1) ;

72 }

73 if (spt.X > 0.4 && spt.X < L - 0.4)

T4 {

75 middlelines.Add (1) ;

76 }

77 }

78

79

80 //output

81 FirstLines = firstlines;

82 MiddleLines = middlelines;

83 [|| 12

g4 v
< >

Pcostan e .

Figure B.6: Script from component C# EndScrewLines

Script Editor

C# Script component: C# SplitLinesin2

=

S wm-do

Jdoooy oo

O wm o n

o oo oo

/// <summary>

/// This class will be instantiated on demand by the Script component.
/// </summary>

public class Script Instance : GH ScriptInstance

{

{
List<Line> splitScrewLines = SplitY¥YLinesIn2 (Screwlines);

List<Line> every2nd = GetEvery2ndline (splitScrewlines, 0);
List<Line> every2nd2 = GetEvery2ndLine (splitScrewlines, 1);

//output
Every2nd = every2nd;
Every2nd2 = every2nd2;

List<Line> SplitY¥LinesIn2(List<Line> lines)
{
List<Line> splitlines = new List<Line>();
foreach (Line 1 in lines)
{
double len = l.Length;
Point3d spt = 1.PointAtLength(0);
Point3d ept = 1.PointAtLength(len);
Point3d mpt = new Point3d(spt.X, spt.Y + len / 2, 0);
Line 11 = new Line(spt, mpt);
Line 12 = new Line(mpt, ept);
splitlines.add(11);
splitlines.Add(12);
H
return splitlines;

}

List<Line> GetEvery2ndLine (List<Line> lines, int start)
{

double nr = lines.Count;

List<Line> every2nd = new List<Line>();

for (int i = start; i < nr; i =1 + 2)

{

every2nd.Add(lines[i]);
H
return every2nd;

Cache Recover from cache

Figure B.7: Script from component C# SplitLinesIn2

private void RunScript(List<Line> ScrewLines, ref object Every2nd, ref object Every2nd2)

6
>
12

I

C Code and Scripts: FEM Model with 3D
Solid Elements

Figure C.2: Parametric input, script component C# ScrewLines, and screw details

xil

Figure C.3: Codes for middle and half end lamellas’ breps. Similar recycled coding and
scripts

Figure C.4: Codes for screws’ breps

xiil

(]
-
o
[
©
]
]
=
£
o
o
z
=
*
¥}
)
-
L
e
T
]
]
5
[l
o
-
w
I
[v]

Figure C.5: Codes for load plates’ breps

=

C]
|
=

@
9
3
[v]

-]

C# |sClose:

Figure C.6: Brep and check for closed breps

Xiv

Script Editor

C# Script component: C# ScrewLines

1

12
13
14

o o o oy
@ 3 & w

/// <summary>
/// This class will be instantiated on demand by the Script component.
/1 </summary>

o public class Script_Instance : GH_ScriptInstance

» [EiTiey Fnciiond

= private void RunScript(double W, double L, double h, ref cbject ScrewlLines)
{

//Non-parametric input
double b = 0.046;
double s = 0.8;

List<Point3d> pointgrid = PointGrid(W, L, b, s, h);
List<Line> screwlines = yLines(pointgrid, h);

//output
Screwlines = screwlines;

}
s =

5 List<Point3d> PointGrid(double W, double L, double b, double s, double h)
{
List<Point3d> pointgrid = new List<Point3d>();
int nrlamelas = (int) Math.Floor (W / b);
List<Line> ylines = new List<Line>();
for (int i = 0; i < nrlamelas; i++)
{
//screws 0.4m from ends (upper and lower part):
Point3d p0l = new Point3d(0.4, i * b, h / 4);
Point3d pl2 = new Point3d(0.4, i * b, -h / 4);
Point3d pLl = new Point3d(L - 0.4, 1 * b, h / 4);
Point3d plL2 = new Point3d(L - 0.4, i * b, -h / 4);
pointgrid.Add(p01);
pointgrid.add(p02);
pointgrid.Add (pLl);
pointgrid.add(pL2);
//Screws with distance 0.8m, every second at upper and lower part:
double restspan = pLl1.X - p0l.X;
for (int j = 1; restspan > s5; j++)
{
if (22 ==20)
{
Point3d p = new Point3d(p0l.X + J * s, 1 * b, h / 4);
pointgrid.Add(p);
}
if (3 %2 !=10)
{
Point3d p = new Point3d(p0l.X + j * 5, 1 * b, -h / 4);
pointgrid.Add (p);
}
restspan = restspan - s;
}
}
return pointgrid;

}

XV

o
S

108
109
110
111
112
113
114
115
116
117
118
119
120
121

C

Cache

List<Line> yLines(List<Point3d> pointgrid, double h)
{
List<Line> ylines = new List<Line>();
List<double> xvalues = new List<double>():
List<double> zvalues = new List<double>():
zvalues.Add(h / 4);
zvalues. Bdd(-h / 4);
//Creating list of xvalues
foreach (Point3d p in pointgrid)
{
bool ans = xvalues.Contains(p.Y);
if (ans == false)
{
xvalues.Add (p.X);
}
H

//Collecting all points
foreach (double xzwval in
{
List<Point3d> xptlist
foreach (Point3d p in
{
if (p.X == xval)
{
xptlist.add(p);
}
}

with same xvalue in list xptlist
xvalues)

= new List<Point3d>();
pointgrid)

//For same x-value: creating lines between points with same z-value
foreach (double zwval in zvalues)

{

List<Point3d> zptlist = new List<Point3d>();

foreach (Point3d pt
{
if (pt.Z == zwval)
{

zptlist.Add (pt)

}
}
zptlist.sort();
for (int i = 0; i <

{

in xptlist)

zptlist.Count - 1; i++)

Line 1 = new Line(zptlist[i], zptlist[i + 11);

ylines.add (1)
}
}
H
return ylines;
}

Recaver from cache

oK

Figure C.7: Script from component C# ScrewLines

XVl

Script Editor

€4 Sciipt component: C# ScrewCenters8Lines

[l

o oo oo

W@ o

70

100
101
102
103
104
105
106
107
108
109
110

pmie

/// <summary>

/// This class will be instantiated on demand by the Script component.
/// </summary>

public class Script Instance : GH_ScriptInstance

{

private void RunScript(List<Line> ScrewLines, double h, double L, ref object Screwcenters,

{

List<double> xvals = new List<double>();
List<Point3d> pointgrid = new List<Point3d>();
List<Point3d> screwcenters = new List<Point3d>();
List<Line> lines = new List<Line>();

foreach (Line 1 in ScrewlLines)
{
Point3d spt = 1.PointAtLength(0);
if (spt.Y == 0)
{
//Rdding all points at screws and on both sides (for dividing lines):
Point3d centerpt = new Point3d(spt.X, 0, spt.Z);
screwcenters.Add (centerpt) ;
Point3d pl = new Point3d(spt.X, 0, h / 2);
Point3d p2 = new Point3d(spt.X, 0, -h / 2);
pointgrid.add(pl);
pointgrid.add(p2);

Point3d p3 = new Point3d(spt.X - h / 4, 0, h / 2);
Point3d pd4 = new Point3d(spt.X - h / 4, 0, -h / 2);
pointgrid.add(p3);
pointgrid.add(pd);
Point3d p5 = new Point3d(spt.X + h / 4, 0, h / 2);
Point3d pé = new Point3d(spt.X + h / 4, 0, -h / 2);

pointgrid.Add(p5);
pointgrid.add(pé);

}

//Rdding end points:

Point3d p0l = new Point3d(0.075, 0, h / 2);
Point3d p02 = new Point3d(0.075, 0, -h / 2);
pointgrid.Add(p0l1);

pointgrid.Add(p02);

Point3d pLl = new Point3d(L - 0.075, 0, h / 2);
Point3d pl2 = new Point3d(L - 0.075, 0, -h / 2);
pointgrid.Add(pLl);

pointgrid.add(pL2);

//hdding points for dividing lines at z=0:
Point3d p0 = new Point3d(0, 0, 0);
Point3d pL = new Point3d(L, 0, 0);:
pointgrid.Add(p0);

pointgrid.add(pL);

//Adding points on sides of load plates:

Point3d ptl = new Point3d(L / 2 - 0.02, 0, h / 2);
Point3d pt2 = new Point3d(L / 2 - 0.02, 0, -h / 2);
pointgrid.Add(ptl):
pointgrid.2dd(pt2);

Point3d pt3 = new Point3d(L
Point3d pt4 = new Point3d(L
pointgrid.add(pt3);
pointgrid.Add(pt4);

=]
[
=}

h / 2);
. -h /[2):

~N N~
[SEN)
+ +
o o
S
=]

xXvii

v

o

6

>
SR

ref object Line

111

113
114
115
116
117
118
119
120
121
122
123

124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

149
150
151
152
153

159
160
161
162
163
164
165
lgé
167
168
169
170
171
172

List<Line> xlines = xLines(pointgrid);
foreach (Line 1 in xlines)
{
lines.Add (1) ;
}

List<Line> zlines = zLines (pointgrid);
foreach (Line 1 in zlines)
{
lines.add (1) ;
}

//output
Screwcenters = screwcenters;

LineGeometry = lines;

List<Line> xLines(List < Point3d > pointgrid)

{

List<Line> xlines = new List<Line>():

List<double> zvalues = new List<double>();

foreach (Point3d p in pointgrid)
{
bool ans = zvalues.Contains(p.Z);
if (ans == false)
{
zvalues.Add(p.Z);
}
H
foreach (double zval in zvalues)

{

List<Point3d> zptlist = new List<Point3d>();

foreach (Point3d p in pointgrid)
{
if (p.2 == zval)
{
zptlist.add(p);
}
}

List<double> xvalues = new List<double>();

foreach (Point3d p in zptlist)
{
bool ans = xvalues.Contains(p.X);
if (ans == false)
{
xvalues. Add(p.X);
}
}
xvalues.Sort();
double xmax = xvalues.Count;
for (int i = 0; i < xmax - 1; i++)

{

Point3d spt = new Point3dixvalues[i],

0, zval);

Point3d ept = new Point3d(xvalues[i + 1], 0, zval):

Line 1 = new Line(spt, ept);
xlines.Rdd (1) ;
}
H

return xlines;

Xviil

174 List<Line> zLines(List < Point3d > pointgrid)
1175 {
176 List<Line> zlines = new List<Line>();
177 List<double> xvalues = new List<double>();
178 foreach (Point3d p in pointgrid)
178 {
180 bool ans = xvalues.Contains(p.Z);
181 if (ans == false)
182 {
183 xvalues.hdd(p.X) ;
184 }
185 }
186 foreach (double xval in xvalues)
187 {
188 List<Point3d> xptlist = new List<Point3d>();
189 foreach (Point3d p in pointgrid)
190 {
191 if (p.X == xval)
192 {
193 xptlist.Add(p);
154 }
195 }
196 List<double> zvalues = new List<double>();
197 foreach (Point3d p in xptlist)
198 {
199 bool ans = zvalues.Contains(p.Z2);
200 if (ans == false)
201 {
202 zvalues.RAdd (p.E);
203 }
204 }
205 zvalues.Sort();
206 double zmax = zvalues.Count;
207 for (int 1 = 0; 1 < zmax - 1; i++)
208 {
209 Point3d spt = new Point3d(xval, 0, zvalues[i]);
210 Point3d ept = new Point3d(xval, 0, zvalues[i + 1]1);
211 Line 1 = new Line(spt, ept):
212 zlines . Add(1);
213 }
214 }
215 return zlines;
21 & 1
[«
Cache Recover from cache

Figure C.8: Script from component C# ScrewCenterséLines. This script
used in slightly different versions for the three lamella codes

Xix

component is

Script Editor

C# Script component: C# LineGeometryScrews

=

1

12

13

14

15 /// <summary>

16 /// This class will be instantiated on demand by the Script component.
17 /// </summary>

18 public class Script_Instance : GH ScriptInstance
19 {

20

35

36

49

50

55 private void RunScript(List<Line> ScrewLines, double h, double L, ref object LineGeometry)
56 {

57

58 List<double> xvals = new List<double>();

59 List<Point3d> pointgrid = new List<Point3d>();
60 List<Line>» lines = new List<Line>();

6l

62 //Center-, upper- and lower points for each screwline (for vertical lines)
63 foreach (Line 1 in ScrewLines)

64 {

65 Point3d pt = l.PointAtLength(0);

66 bool ans = xvals.Contains (pt.X):

67 if (ans == false)

68 {

69 xvals.Add(pt.X);

70 Point3d centerp = new Point3d(pt.X, 0, pt.Z);
71 Point3d ptl = new Point3d(pt.X, 0, h / 2);
712 Point3d pt2 = new Point3d(pt.X, 0, -h / 2);
73 pointgrid.Add (centerp);

74 pointgrid.add(ptl);

75 pointgrid.add(pt2);

16

17 }

78 }

79

80 //outer points for horizontal lines:

81 Point3d sptupper = new Point3d(0, 0, h / 4);
82 Point3d eptupper = new Point3d(L, 0, h / 4);
83 Point3d sptlower = new Point3d(0, 0, -h / 4);
84 Point3d eptlower = new Point3d(L, 0, -h / 4);
85 pointgrid.Add (sptupper);

86 pointgrid.Add (eptupper);

87 pointgrid.add(sptlower);

88 pointgrid.Add (eptlower);

89

90

91 List<Line> xlines = xLines(pointgrid);

92 foreach (Line 1 in xlines)

93 {

94 lines.Add (1) ;

95 }

96

97 List<Line> zlines = zLines (pointgrid);

98 foreach (Line 1 in zlines)

99 {

100 lines.Add(1);

101 }

102

103

104 //output

105 LineGeometry = lines;

106 | |1}

107

XX

> 1 >

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
105

Cache

List<Line> xLines(List < Point3d > pointgrid)

{

}

List<Line> xlines = new List<Line>();
List<double> zvalues = new List<double>():
foreach (Point3d p in pointgrid)

{

bool ans = zvalues.Contains(p.Z);

if (ans == false)
{

zvalues.Add(p.2);

}
}

foreach (double zval in zvalues)

{

List<Point3d> zptlist = new List<Point3d>();
foreach (Point3d p in pointgrid)

{
if (p.z == zval)
{
zptlist.Add (p)
}
}

List<double> xvalues = new List<double>();
foreach (Point3d p in zptlist)

{

bool ans = xvalues.Contains(p.X):
if (ans == false)

{

xvalues.Add (p.¥) ;

}
}

xvalues.Sort();

double xmax = xvalues.Count;
for (int i = 0; i < xmax - 1; i+4)

{

Point3d spt = new Point3d(xvalues[i], 0, zval);
Point3d ept = new Point3d(xvalues[i + 1], 0, zval);
Line 1 = new Line(spt, ept);

xlines.Rdd (1)
}
}

return xlines;

List<Line> zLines(List < Point3d > pointgrid)

{

List<Line> zlines = new List<Line>();
List<double> xvalues = new List<double>();
foreach (Point3d p in pointgrid)

{

bool ans = xvalues.Contains(p.Z);

if (ans == false)
{
xvalues. add(p.X)
}
}

foreach (double xval in xvalues)

List<Point3d> zptlist = new List<Point3d>():
foreach (Point3d p in pointgrid)

{
if (p.X == xval)
{
xptlist.Add (p)
}
}

List<double> zvalues = new List<double>();
foreach (Point3d p in =zptlist)

{

bocl ans = zvalues.Contains (p.2);
if (ans == false)

{

zvalues.Add (p.2);

}
}

zvalues.Sort();

double zmax = zvalues.Count;
for (int i = 0; 1 < zmax - 1; i++)

{

Point3d spt = new Point3d(xval, 0, zvalues[il):
Point3d ept = new Point3d(xval, 0, zvalues[i + 1]);
Line 1 = new Line(spt, ept);

zlines.Add(1);
}
}

return zlines;

Recover from cache

OK

>

Figure C.9:

Script from component C# LineGeometryScrews

poel

Script Editor

€4 Script component: C# MidpointLoadPlate

/// <summary>

/// This class will be instantiated on demand by the Script component.
/// </summary>

public class Script_Instance : GH ScriptInstance

DII"

private void RunScript(double L, double W, double h, ref object brep)
{

Point3d midpoint = new Point3d(L / 2, W / 2, h);

Point3d cornerl = new Point3d(midpoint.X - 0.02, midpoint.Y - 0.023, h / 2);
BoundingBox box = new BoundingBox (cornerl, cormer2);

Brep plate = Brep.CreateFromBox (box);

//output
brep = plate:

}
// <Custom additional code>

// </custom additional code>

Recover flom cache

Point3d corner2 = new Point3d(midpoint.X + 0.02, midpoint.¥ + 0.023, h / 2 + 0.01);

o

6

>
12 =

Figure C.10: Script from component C# MidpointLoadPlate

Script Editor

€4 Script component: C# EdgeloadPlate

12

]«

/// <summary>

/// This class will be instantiated on demand by the Script component.
/// </summary>

public class Script_Instance : GH ScriptInstance

private void Runscript(double L, double W, double h, ref object brep)

Point3d cornerl = new Point3d(L / 2 + 0.02, W - 0.046, h / 2 + 0.01);
Point3d corner2 = new Point3d(L / 2 - 0.02, W - 2 * 0.046, h / 2);
BoundingBox box = new BoundingBox(cornerl, corner2):

Brep plate = Brep.CreateFromBox (box) ;

//output
brep = plate;

}
// <Custom additional code>

// </Custom additional code>

Cache Recoverfrom cache

ot

6

>
I x

OK

Figure C.11: Script from component C# EdgeLoadPlate

xxii

Script Editor X

Cg Seript component: C# GetLamellai B E e A ‘D‘

1 S

12

13

14

15 /// <summary>

16 /// This class will be instantiated on demand by the Script component.

17 /// </summary>

18 public class Script Instance : GH ScriptInstance

19 {

20

35

36

49

50 =

ss private void RunScript(List<Brep> breps, int lamellanr, ref object lamellaBreps)

56 {

57

58 List<Brep> lambreps = new List<Brep>();

59

60 double b = 0.046;

61 double h = 0.17;

62

63 //collecting all breps in the given lamella

64 foreach (Brep brep in breps)

65 {

e BoundingBox bbox = brep.GetBoundingBox (true);

67 Point3d cornerpt = bbox.Corner (true, true, true);

68 Point3d ptl = new Point3d(cornerpt.X + 0.01, lamellanz * b + 0.01, 0);

9 Point3d pt2 = new Point3d(cornerpt.X + 0.01, lamellanr * b + 0.01, h / 2);

70 Point3d pt3 = new Point3d(cornerpt.X + 0.01, lamellanr * b + 0.01, -h / 2);

71 bool ansl = brep.IsPointInside(ptl, 0.001, false);:

72 bool ans2 = brep.IsPointInside(pt2, 0.001, false);

73 bool ans3 = brep.IsPointInside(pt3, 0.001, false);

74 if (ansl == true || ans2 == true || ans3 == true)

75 {

76 lambreps.Add (brep) ;

77 }

78 }

79

80 //output

81 lamellaBreps = lambreps;

82 }

83 | |

84 \% // <Custom additional code> ¥

< >
=i Recover from cache [o]

Figure C.12: Script from component C# GetLamellai

Script Editor X

€4 Script component: C# IsClosed B H @ A ‘»lj‘

T =

12

13

14

15 /// <summary>

16 /// This class will be instantiated on demand by the Script component.

17 /// </summary>

18 | @ public class Script_Imstance : GH_ScriptInstance

19 {

20

35

36

49

50

ss private void RunScript (Brep Brep, ref cbject ClosedBrep)

56

57

s8 bool brepclosed = BrepClosed(Brep) ;

59

60 ClosedBrep = brepclosed;

61 }

62 | [

5 | ¢ |

64

65 bool BrepClosed (Brep brep)

66 {

67 bool ans = brep.IsSolid;

8 return ans;

e | | 1}

w0 | § P

71| |y

i‘
@

Recover from cache

0K

Figure C.13: Script from component C# IsClosed

xx1il

D Code and Scripts: Under-spanned Pitched
Roof

Figure D.1: Code for the under-spanned pitched roof model in Karamba3D

Figure D.2: Inputs and code creating roof meshes and truss geometry

XXiv

5
-
5 2
2 E
5 5
3 E
-
£

coMpRESEION
¢ Aona »

=| cross Section Range Select:
ity Element (Karamba3D)

jon Selector (Karamba3D)

Figure D.4: Code for shells and support conditions

XXV

(gl
—
[}
m
©
o
=
£
o
i
G
=
v
-
)
o
-

Loads (Karamba3 Dﬂ

Orientation —
e Type of Load:
Generation

- .

Type of Load _Grewty I
—_—
MeshLoad Const I

Figure D.5: Load settings

Figure D.6: Assembly, analysis and vizualisation

XXV

TIMBER UTILIZATION

-m,num P

w.u:o:a D

‘iv

Check for Buckling

Figure D.8: Eurocode 3 steel checks and global buckling analysis

XXVvil

i 0.927273

n.su:lsn

i 0. 8TaTYG .

n.suns L

Ii 2.BEL145 b

Figure D.9: Resulting utilizations and global buckling load factor, and fitness script for
Galapagos

XXViii

Script Editor X

C4 Script component: C# RoofCreator EH® A |E4‘

T &

12

13

14

15 /// <summary>

16 /// This class will be instantiated on demand by the Script component.

17 /// </summary>

18 public class Script Instance : GH ScriptInstance

19 {

20 J

35

36

49

s0 |9 [

55 private void RunScript(double W, double H, double L, int meshNr, ref cbject Meshl, Mesh2)

56 {

57

58 double mid = W / 2;

59

60 //Geometry edge points

61 Point3d el = new Point3d(0, 0, 0),

62 Point3d e2 = new Point3d(w, 0, 0):

63 Point3d e3 = new Point3d(0, L, 0);

64 Point3d ed4 = new Point3d(wW, L, 0).

65 Point3d ml = new Point3d(mid, 0, H):

66 Point3d m2 = new Point3d(mid, L, H);

67

68

69 //Create Brep from the two roof surfaces

70 Brep brepl = new Brep();

71 Brep brep2 = new Brep();

72

73 brepl = Rhino.Geometry.Brep.CreateFromCornerPoints(el, &3, m2, ml, 0.01);

74 brep2 = Rhino.Geometry.Brep.CreateFromCornerPoints(e2, €4, m2, ml, 0.01);

75

76

77 //Create ONE mesh from Brep, variable mesh grid (input)

78 Mesh[] meshl;

79 Mesh[] mesh2;

80 MeshingParameters mp = new MeshingParameters();

81 mp.GridMinCount = meshNr;

82 meshl = Rhino.Geometry.Mesh.CreateFromBrep (brepl, mp);

83 mesh2 = Rhino.Geometry.Mesh.CreateFromBrep (brep2, mp);

84

85

86 // outputs

87 Meshl = meshl;

88 Mesh2 = mesh2;

89 | | 1}

S0

91 // <Custom additicnal code>

92 T v

1< >
Cache Recover from cache OK

Figure D.10: Script from component C# RoofCreator

XXIX

Script Editor

G

Script component: C# TrussGeometry

1

12
13
14
15
16
17
18
19
20
39
36
49
50
55
56
57
58
59

@ o o
SN AW O

=

=== N R R [RN R S I R - - M- N AP - N
FOoOWwmdome Wl oo

@ @ ;oo
& (s W

@ @ o
© o

D oD W oW WD
DM EWR o

w0
v}

100
101
102
103
104
105
106
107
108

1/
117
117

<summary>
This class will be instantiated on demand by the Script component.
</summary>

o public class Script Instance : GH ScriptInstance

g

==/

E private void RunScript (double cc, List<Point3d> meshvertices, double alpha, double H, double W, double L, dc
{

List<Line> compressionlines = new List<Line>();
List<Line> tensionlines = new List<Line>():
List<Point3d> pointsbelowroof = new List<Point3d>();

if (spanY > cc)
{
spanY = cc;

}

double nrofyvals = (L - 2) / cc;
List<double> ylist = new List<double>();
for (int i = 0; i < nrofyvals; i++)
{
double yval = 1.5 + 1 * cc;
ylist.add(yval);
}

foreach (double yval in ylist)
{
double lowestpointX = 1;
foreach (Point3d p in meshvertices)
{
if (p.2 == 0)
{
lowestpointX = p.X;
}
}

//Defining y1, y21 and y22

Point3d yvalPoint = new Point3d(lowestpointX, yval, 0);
Point3d ylpoint = ClosestMeshVertix(yvalPoint, meshvertices);
double yl = ylpoint.Y;

double y21 = yl + spany / 2;

double y22 = yl - span¥ / 2;

//Creating list of all y2 points for one truss geometry
List<Point3d> allyZpoints = Createy2PointList(yl, y21, y22, meshvertices,

//Defining y2points as mesh vertices

List<Point3d> y2pointsfinal = new List<Point3d>();

foreach (Point3d y2point in ally2points)

{
Point3d vertixpoint = ClosestMeshvVertix (y2point, meshwvertices);
y2pointsfinal.Add (vertixpoint);

}

//Creating point below roof

Point3d pointbelowroof = CreatePointBelowRoof (alpha, H, yl, lowestpointX,
pointsbelowroof.Add (pointbelowroof) ;

XXX

v

h’

®

>
3] x

H, alpha, W, lowestpointX, low

lowpointX) ;

//Creating truss lines
List<Line> trusslines = CreateTrussGeometry(pointbelowroof, y2pointsfinal);
foreach (Line 1 in trusslines)
{
if (Math.Abs(l.PointAtlength(0).¥ - 1l.PointAtLength(l.Length).X) < 3)
{

compressionlines.&dd (1) ;

}
if (Math.BAbs(l.PointAtLength(0).X - 1.PointAtLength(l.Length).X) > 3)
{

tensionlines.Add(1);

}
4

//output

CompressionlLines = compressionlines;
TensionLines = tensionlines;
PointsBelowRoof = pointsbelowroof;

Point3d ClosestMeshVertix (Point3d point, List<Point3d> meshvertices)
{

double dist = 3;

Point3d closestpoint = new Point3d(0, 0, 0);

foreach (Point3d wertexpt in meshvertices)
{
double specdist = vertexpt.DistanceTo(point);
if (specdist < dist)
{
dist = specdist;
closestpoint = vertexpt;
}
}

return closestpoint;

List<Point3d> Createy2PointList(double yl, double y21, double y22, List<Point3d> meshvertices, double H, dou

{
List<Point3d>» pointlist = new List<Point3d>();

Point3d comppointll = new Point3d(0, 0, 0);

Point3d comppointl2 = new Point3d(0, 0, 0);

Point3d comppoint2l = new Point3d(0, 0, 0);

Point3d comppoint22 = new Point3d(0, 0, 0);

if (lowestpointxX > 0)

{
comppointll = new Point3d(lowestpointX® - (lowpointX - span¥ / 2) * Math.Cos(alpha), y21, (lowpointX
comppointl2 = new Point3d(lowestpointX - (lowpointX + spanX / 2) * Math.Cos(alpha), y21, (lowpointX
comppoint2l = new Point3d(lowestpoint® - (lowpointX - span¥ / 2) * Math.Cos(alpha), y22, (lowpointX
comppoint22 = new Point3d(lowestpointX - (lowpointX + spanX / 2) * Math.Cos(alpha), y22, (lowpointX

]

if (lowestpointX == 0)

{
comppointll = new Point3d((lowpointX - spanX / 2) * Math.Cos(alpha), y21, (lowpointX - spanX
comppointl2 = new Point3d((lowpointX + spanX / 2) * Math.Cos(alpha), y21, (lowpointX + spanX
comppoint2l = new Point3d((lowpointX - spanX / 2) * Math.Cos(alpha), v22, (lowpointX - spanX
comppoint22 = new Point3d((lowpointX + spanX / 2) * Math.Cos(alpha), ¥22, (lowpointX + spanX

XXx1

S
(SRS
EEE Y

SE
SE

+ 1

Math
Math
Matkh
Math

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

88
189
190
191
192
193
194
195
196
197
188
1939
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

Cache

Point3d cl = new Point3d(w / 2, y21, H):
Point3d ¢2 = new Point3d(w / 2, y22, H);
Point3d dl = new Point3d(lowestpointX, y21, 0);
Point3d d2 = new Point3d(lowestpointX, y22, 0);
pointlist.Add (comppointll);

pointlist.Add (comppointl2);

pointlist.Add (comppoint21);

pointlist.Add (comppoint22);

pointlist.Add(cl);

pointlist.Add(c2);

pointlist.Aadd(dl);

pointlist.Add(d2);

return pointlist;

Point3d CreatePointBelowRoof (double alpha, double H, double yl, double lowestpointX, double lowpointX)
{
Point3d b = new Point3d(0, 0, 0):
if (lowestpointX > 0)
{
b = new Point3d(lowestpointX - lowpointX, yl, lowpointX * Math.Tan(alpha / 2)):
}

if (lowestpointx == 0)
{

b = new Point3d(lowpointX, yl, lowpointX * Math.Tan(alpha / 2));
}

return b;

List<Line> CreateTrussGeometry(Point3d pointbelowroof, List<Point3d> y2points)
{
List<Line> linelist = new List<Line>{();
foreach (Point3d y2point in y2Zpoints)
{
Line 1 = new Line (pointbelowroof, y2point);
linelist.Add(1);
}

return linelist;

Recover from cache

OK

Figure D.11: Script from component C# TrussGeometry

XxXxil

Script compenent: C# Fitness script b

=

@A@

| <

/// <summary>
/// This class will be instantiated on demand by the Script component.
/// </summary>

B public class Script_Instance : GH_ScriptInstance

{

o private void RunScript(double mass, double utilTimber, double utilDefl, double utilSteel, double maxUtilizat
{

double Fitness = 0;

if (maxvUtilization >= 1.2)
{
Fitness = 1000000;
}
if (maxUtilization >= 1 && maxUtilization < 1.2)

{
Fitness = 200000;

}
if (maxUtilization < 1)
{
Fitness = mass * (1 - utilTimber) * (1 - utilDefl) * (1 - utilSteel);
}

//output
fitness = Fitness;
}

B // <Custom additional code>

// </Custom additional code>

Cache Recover from cache oK

Figure D.12: Script from component C# Fitness script

XxXx1ii

E Code and Scripts: Under-spanned Flat Roof

Figure E.2: Inputs, curved shell geometry code, and mesh code

XXXIV

=
i

Material Properties (Karamba
ba3D)]
esh to Shell (Karamba3D)

Cross Section (Kar:

Orientation

=

o

o

=

E =

E o

H ?

S 2

s s

= g

S ¥

- Py
]
©
s

Type of Load |

[ooy [

Generation

Type of Load

—————————|
MeshLoad Const | |

Figure E.5: Load settings

XXXV

[surror]
z

L (0.701822,
0.164526}

Support (Karambas3|
ba3D

CHlLineSupportl
Support (Karai

conditions Conditions

)
£

uc.unsﬂ

Figure E.7: Assembly, analysis and visualization

XXXVI

List Item

.n.u.w b

qo 55337667 5

3
3 E
H -

Sort List

Figure E.8: Code for Eurocode 5 timber checks

1

Sort List

COMPRESSION
q RODS P
l'
1
J TENSION CABLES |
2

Utilization of Elem ents (Karamba3D)

Check for Buckling

—

Buckling Modes (Karamba3D),

Figure E.9: Eurocode 3 steel checks and global buckling analysis

XXXVii

n.inus
D.77l!l b

umu

Figure E.10: Resulting utilizations and global buckling load factor, and fitness script for
Galapagos

XXXVIil

Script Editor

G

Script component: C# TrussGeometry

1

12
13
14
15
16
17
18
i)
20
35
36
49
50
55
56

[R N]
W PSS L®mAdaW e WD O W o -

=9 - 2 3
R P TN

@ o 2 4
— o w o

® oo o
[GRCYRES)

W WO WW WD oo o
Vs WK 2 oW o

w0
&

w0 W
w oo

100
101
102
103
104
105
1086
107
108
109
110
111
112
113
114
11s
116
117
118
119
120
121
122
123
124

B

/// <summary>
/// This class will be instantiated on demand by the Script component.
/// </summary>

0 public class Script Instance : GH ScriptInstance

DII"

private void RunScript(double cc, List<Point3d> meshvertices, double H2, double H1, double W, double L, dout
{

List<Line> compressionlines = new List<Line>():
List<Line> tensionlinesl = new List<Line>();
List<Line> tensionlines2 = new List<Line>();
List<Point3d> Allpointsbelowroof = new List<Point3d>():

List<double> Yspans = new List<double>();

double nrofyvals = (L - 2) / cc;
List<double> ylist = new List<double>();
for (int i = 0; i < nrofyvals; i++)

double yval = 2 + 1 * cec;
ylist.add(yval);
}

foreach (double ywal in ylist)

double lowestpointX = 1;
foreach (Point3d p in meshwvertices)
{

if (p.2 = 0)

{

lowestpointX = p.X;

}

}

Point3d yvalPoint = new Point3d(lowestpointX, yval, 0):

//Defining ylpoint as mesh vertix

Point3d ylpoint = ClosestMeshVertix(yvalPoint, meshvertices);
double yl = ylpoint.¥;

double y21 = yl - spany / 2;

double y22 = yl + spanY / 2;

//Creating list of all y2 points for cone (half) of the truss geometry

List<Point3d>» ally2Zpoints = Createy2PointList(yl, y21, y22, meshvertices, H1, H2, W, span¥);

//Defining y2points as mesh vertices

List<Point3d> y2pointsfinal = new List<Point3d>():

foreach (Point3d y2point in ally2points)

{
Point3d vertixpoint = ClosestMeshVertix (y2point, meshvertices);
y2pointsfinal.Add (vertizxpoint) ;

}

//Creating points below roof, and tension line between them

List<Point3d> pointsbelowrcof = CreatePointBelowRoof (W, H1, H2, yl, spanX):
Line horisontaltensionline = new Line(pointsbelowrocof[0], pointsbelowroof([1]);
tensionlines2.Add (horisontaltensionline);

//Creating truss lines
List<Line> trusslines = CreateTrussGeometry(pointsbelowroof, y2pointsfinal);
foreach (Line 1 in trusslines)
{
if (Math.Bbs(l.PointAtLength(0).X - l.PointAtLength(l.Length).X) < 3}

{

compressionlines.Add(1l);

1
if (Math.Bbs(l.PointAtLength(0).X - l.PointAtLength(l.Length).X) > 3)
{
tensionlinesl.Rdd(1);
}

XXXIX

i f
> x

125

126

127 //output

128 CompressionLines = compressionlines;

129 TensionlLinesl = tensionlinesl;

130 TensionLines? = tensionlines2;

131 }

L5

133

134

135 Point3d ClosestMeshVertix (Point3d point, List<Point3d> meshvertices)
136 {

137 double dist = 3;

138 Point3d clesestpoint = new Point3d(0, 0, 0);

139

140 foreach (Point3d vertexpt in meshvertices)

141 {

142 double specdist = vertexpt.DistanceTo(point);

143 if (specdist < dist)

144 {

145 dist = specdist;

146 closestpoint = vertexpt;

147 }

148 }

149 return closestpoint;

150 }

151

L5

153 List<Point3d> ClosestSideMeshvertices(Point3d point, List<Point3d> meshvertices)
154 {

155 List«Point3d> sidepoints = new List<Point3d>():

156

157 double dist = 3;

158 Point3d clesestpoint = new Point3d(0, 0, 0);

159

160 foreach (Point3d vertexpt in meshvertices)

1lel {

162 if (vertexpt.X == point.X && vertexpt != point)

163 {

164 double specdist = vertexpt.DistanceTo(point);

165 if (specdist < dist)

166 {

167 dist = specdist;

168 }

169 }

17 }

17 Point3d sidepointl = new Point3d(point.X, point.¥Y + dist, point.z);
172 Point3d sidepoint2 = new Point3d(point.X, point.Y - dist, point.Z):
173 sidepoints.Add (sidepointl);

174 sidepoints.RAdd(sidepoint2) ;

175 return sidepoints;

176 }

177

178

179 List<Point3d> Createy2PointList (double yl, double y21, double y22, List<Point3d> meshwertices, double H, dou
180 {

181 List<Point3d> pointlist = new List<Point3d>():

182

183 Point3d all = new Point3d(W / 2 - spanX, y21, h - 0.1);
184 Point3d al2 = new Point3d(W / 2 - spanX, ¥22, h - 0.1);
185 Point3d a2l = new Point3d(W / 2, y21, h);

186 Point3d a22 = new Point3d(W / 2, y22, h):

187 Point3d a3l = new Point3d(W / 2 + spanX, y21, h - 0.1);
188 Point3d a32 = new Point3d(W / 2 + spanX, y22, h - 0.1);
189 Point3d cll = new Point3d(0, y2l1, 0);

190 Point3d ¢l2 = new Point3d (0, y22, 0);

191 Point3d c21 = new Point3d(W, y2l1, 0);

192 Point3d c¢22 = new Point3d(W, y22, 0);

193 pointlist.add(all);

194 pointlist.Add(al2);

195 pointlist.Add(a2l):

196 pointlist.add(a22);

197 pointlist.Add(a3l);

198 pointlist.Add(a32):

199 pointlist.add(cll);

200 pointlist.Add(cl2);

201 pointlist.Add(c21):

202 pointlist.add(c22);

203 return pointlist;

204 }

xl

S o

(SN
[=l=1
w @ d o

)
==1
o

[SRC N}
[y
Mo

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

IKs

Cache

List<Point3d> CreatePointBelowRoof (double W, double H, double h, double yl, double spanx)
{
. List«<Point3d> pointsbelowroof = new List<Point3d>():
List<Point3d> pointsbelowroof = new List<Point3d>();
Point3d bl = new Point3d(W / 2 - spanX / 2, yl, —(H - h));
Point3d b2 = new Point3d(W / 2 + spanX / 2, yvl1, —(H - h)):
pointsbelowroof.Add (bl);
pointsbelowroof.2dd (b2);
return pointsbelowroof;

List<Line> CreateTrussGeometry(List<Point3d> pointsbelowroof, List<Point3d> y2points)
{
List<Line> linelist = new List<Line>();
Line 11 = new Line(pointsbelowrcof[0], y2Zpoints[é]);
Line 12 = new Line(pointsbelowroof[0], ¥2Zpoints[71);
Line 13 = new Line(pointsbelowroof[0], yZpoints[0]1);
Line 14 = new Line(pointsbelowrcof[0], y2Zpoints[1]);
Line 15 = new Line(pointsbelowrcof[0], v2points[2]);
Line 16 = new Line(pointsbelowrocof[0], yZpoints[3]1);
Line 17 = new Line (pointsbelowrcof[1l], yZpoints[8]);
Line 18 = new Line(pointsbelowrcof[1l], yZpoints[9]);
Line 1% = new Line(pointsbelowroof[1], w2points[4]);
Line 110 = new Line (pointsbelowroof[l], y2points[5]);
Line 111 = new Line(pointsbelowroof[l], y2points[2]):
Line 112 = new Line(pointsbelowroof[l], y2points[3]);
linelist.Add(11);
linelist.Add(12);
linelist.Add(13);
linelist.add(14);
linelist.Add(15);
}
)
)

linelist.Rdd(16
linelist.add (17
linelist.Add (18
linelist.RAdd(19);
linelist.Add(110);
linelist.Add(111);
linelist.Add(112):
return linelist;

Recover from cache

Figure E.11: Script from component C# TrussGeometry

xli

Script Editor

C# Script compenent: C# Fitness script

=

o ald)

1

12
13
14
15
16
17
18
19
20
35
36
49
50
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
74
15
16
77
78
79
80
81

<

/// <summary>

/// This class will be instantiated on demand by the Script component.
/// </summary>

public class Script Instance : GH ScriptInstance

{

=7

double Fitness = 0;

if (maxUtilization >= 1.2)

‘ Fitness = 1000000;

J?.f (maxUtilization >= 1 && maxUtilization < 1.2)

! Fitness = 200000;

if (maxUtilization < 1)

‘ Fitness = mass * (1 - utilTimber) * (1 - utilDefl) * (1 - utilSteel);
}

//output
fitness = Fitness;
}

// <Custom additional code>

// </Custom additional code>

Cache Recover from cache

private void RunScript(double mass, double utilTimber, double utilDefl, double utilSteel, double maxUtilizat
{

OK

Figure E.12: Script from component C# Fitness script

xlii

F Code and Scripts: Folded W-roof

Figure F.1: Code for the folded W-roof model in Karamba3D

m etry]

C# Folded W-roof Geo

[—
d 3

-]

=
q o

=

=

Settings (Custom)

Deconstruc

Figure F.2: Input, component C# Folded W-roof Geometry and mesh

xliii

Eequieie)) [[2Ys 0} ysay

BCWRIE)]) UORIRS SS04D

Tnman.-.m_mv: sanJadoid |euarey

Brettstapel

%
2
3
2
2l

Figure F.3: Shell settings with optimized Brettstapel height h

agequese)) speo]

spujog 3seddng ¢

(agrquesey) yaoddng

(s equeaey) jioddng

(Qg vqueaey) poddng

Figure F.4: Load and support settings

xliv

Assemble Model (Karamba3D)

0 €2.712558

Figure F.5: Assembly, analysis and visualization

TIMBER UTILIZATION

Figure F.6: Code for Eurocode 5 timber checks

xlv

Buckling Modes (Karam ba3 D)

Figure F.7: Global buckling analysis and script for deflection utilization

D.ssa'.rsl !

‘il

D.ssa'.rsl !

i
i)

Figure F.8: Resulting utilizations and global buckling load factor, and fitness script for
Galapagos

xlvi

Script Editor X

C4 Script component: C# Folded W-roof Geometry P @ A |D|

14 "

15 /// <summary>

16 /// This class will be instantiated on demand by the Script component.

17 /// </summary>

18 public class Script Instance : GH ScriptInstance

19 {

20

35

36

49

50

55 private void RunScript(double w, double h, double 1, double L, double lc, ref object Breps)

56 {

57

58 List<Brep> breps = new List<Brep>();

59 List<Mesh> meshes = new List<Mesh>():

60

61 double nrofvs = L / w;

62 for (int i = 0; i < nrofvs;i++)

63 {

64 //Roof plates leaning in one direction incl. cantilevers

65 Point3d pl = new Point3d(w * i, -1lc, 0);

66 Point3d p2 = new Point3d(w * i, 1 + 1lc, 0);

67 Point3d p3 = new Point3d(pl.X + w / 2, 1 + 1lc, h);

68 Point3d p4 = new Point3d(pl.X + w / 2, -1lc, h);

69 Brep brepl = new Brep();

70 brepl = Rhino.Geometry.Brep.CreateFromCornerPoints(pl, p2, p3, pd4, 0.01);

71 breps.Add(brepl);

T2

e //Roof plates leaning in the other direction

74 Point3d p5 = new Point3d(pl.Xx + w / 2, 1 + 1c, h);

75 Point3d p6é = new Point3d(pl.X + w / 2, -lc, h);

76 Point3d p7 = new Point3d(p5.X + w / 2, -1lc, 0);:

17 Point3d p8 = new Point3d(p5.X + w / 2, 1 + 1lc, 0);

78

78 Brep brep2 = new Brep():

80 brep2 = Rhino.Geometry.Brep.CreateFromCornerPoints(p3, pé, p7, p8, 0.01);

81 breps.add(brep2);

82 }

83

84 //output

85 Breps = breps;

86 //Meshes = meshes;

87 } N

IEs >
Cache Recover from cache OK

Figure F.9: Script from component C# Folded W-roof Geometry

xlvii

Script Editor

C# Script component: C# Support Points

P E® A

36 | @

49

50

55 | B private void RunScript(List<Point3d> meshvertices, double L, double 1,
56 {

57

58 List<Point3d> outeredgepoints = new List<Point3d>();
59 List<Point3d> othersupppoints = new List<Point3d>():
60 List<Point3d> edgepoints = new List<Point3d>():
61

62 foreach (Point3d meshpt in meshvertices)

63 {

64 if (meshpt.Z == 0)

€5 {

66 if (meshpt.Y¥ >= 0 && meshpt.Y <= 1)

67 {

68 if (meshpt.X || meshpt.X == L)

€9 {

70 outeredgepoints.hdd (meshpt) ;

71 }

72 else

73 {

74 othersupppoints.2dd (meshpt) ;

e }

76 }

77 }

78 }

79

80 outeredgepoints.Sort();

51 Point3d outerminpt = outeredgepoints[0];

82 Point3d outermaxpt = outeredgepoints[outeredgepoints.Count - 1];
83

84 foreach (Point3d p in othersupppoints)

85 {

86 if (p.¥ == outerminpt.¥ || p.¥ == outermaxpt.y)
87 {

88 edgepoints.Add(p):

89 }

90 }

91

g2 //output

93 Outeredgepoints = outeredgepoints;

94 Edgepoints = edgepoints;

95 }

Cache Recover from cache

s 1 x

ref object Outeredgepoints, ref objec

Figure F.10: Script from component C# Support Points

xlviii

Script Editor X

c# Script compenent: C# Fitness script ’ :El @ A [E

12
13
14
15
16
17
18
e
20
35
36
49
50
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

4
75
76
77
78

80
81

1Ks

/// <summary>
/// This class will be instantiated on demand by the Script component.
/// </summary>

o public class Script Instance : GH ScriptInstance

{

E private void RunScript(double mass, double utilTimber, double utilDefl, double maxUtilization, ref object fi
{

double Fitness = 0;

if (maxUtilization >= 1.2)

! Fitness = 1000000;

if (maxUtilization »>= 1 && maxUtilization < 1.2)
{ Fitness = 200000;

J!.f (maxUtilization < 1)

{
Fitness = mass * (1 - utilTimber):;
}
//output
fitness = Fitness;
Lk
E // <custom additional code>

// </Custom additional code>

Cache Recover from cache OK

Figure F.11: Script from component C# Fitness script

xlix

G Code and Scripts: Pitched Roof with Brettstapel
Beams

Figure G.1: Code for the pitched roof with Brettstapel beams model in Karamba3D

Figure G.2: Input, meshes and beam settings

CHAHGE OF LOCAL ORIENTATION FOR MESH

Sheil Ganst N

Figure G.3: Shell settings

C#LineSuppor

g S

Vector X'

Figure G.4: Support and load settings

T 42,741299

Figure G.5: Assembly, analysis and visualizations

UTILZATION OF TIMBER SHELLS

Absolute

Sort List

Absolute
Sort List

Figure G.7: Code for Eurocode 5 timber checks for beams

Check for Buckling

(o]
m
S
k-]
=
©
i
S
2
v
@
S
0
=
o
=
=
J
3
&

Figure G.8: Global buckling analysis

liii

iI
'i 0.973087 h
Iil

'i 0.973087 b

1.134525 b

Figure G.9: Resulting utilizations and global buckling load factor, and fitness script for
Galapagos

liv

Script Editor X

“1‘ Script component: C# RoofCreator ’ :E @ A |D‘

19 { =

20 2|

35

36 | =

49

50 | @ [/*e)

55 | @ private void RunScript{double W, double H, double L, int meshNr, ref object Meshl, ref object Mesh2)

56 {

57

58 double mid = w / 2;

59

€0 //Geometry edge points

61 Point3d el = new Point3d(0, 0, 0):

62 Point3d &2 = new Point3d(w, 0, 0);

63 Point3d 3 = new Point3d(0, L, 0);

64 Point3d e4 = new Point3d(W, L, 0):

65 Point3d ml = new Point3d(mid, 0, H):

66 Point3d m2 = new Point3d(mid, L, H)’

67

€8

€9 //Create Brep from the two roof surfaces

70 Brep brepl = new Brep();

71 Brep brep2 = new Brep();:

72

13 brepl = Rhino.Geometry.Brep.CreateFromCornerPoints(el, e3, m2, ml, 0.01);

74 brep2 = Rhino.Geometry.Brep.CreateFromCornerPoints(e2, e4, m2, ml, 0.01);

S

76

77 //Create ONE mesh from Brep, variable mesh grid (input)

78 Mesh[] meshl;

79 Mesh[] mesh2;

80 MeshingParameters mp = new MeshingParameters():

81 mp.GridMinCount = meshNr;

82 meshl = BRhino.Geometry.Mesh.CreateFromBrep (brepl, mp);

83 mesh2 = Rhino.Geometry.Mesh.CreateFromBrep (brep2, mp):

24

85

86 // outputs

87 Meshl = meshl;

88 Mesh2 = meshZ2;

89 | |}

S0

91 | & // <Custom additional code>

92 v

< >
Cache Recover from cache OK

Figure G.10: Script from component C# RoofCreator

lv

Script Editor

G

Script compenent: C# Roof Angle

1

12
13
14
15
16
17
18
e
20
35
36
49
50
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

<

/// <summary>

/// This class will be instantiated on demand by the Script component.
/// </summary>

public class Script Instance : GH ScriptInstance

{

private void RunScript(double H, double W, ref object alpha)
{
double span = W / 2;
double a = Math.Atan(H / span);
alpha = a;
}
// <custom additional code>

// </Custom additional code>

Cache Recover from cache

i}
6
>
> 13 *

OK

Figure G.11: Script from component C# Roof Angle

Script Editor

G

Script component: C# beamZlocation

1

12
13
14
15
16
17
18
19
20
35
36
49
50
55
56
S
58
59
60
61
62
63
64
65
66
67

IKs

=]

/// <summary>

/// This class will be instantiated on demand by the Script component.
/// </summary>

public class Script Instance : GH ScriptInstance

private void RunScript(double angle, double beamxXlocation, ref object beamZlocation)
{

double beamzlocation = Math.Tan(angle) * beamXlocation;
//output
beamZlocation = beamzlocation;

}

// <custom additional code>

// </Custom additional code>

Cache Recover from cache

u
0
>
> 1]

Figure G.12: Script from component C# beamZlocation

Ivi

Script Editor

Gt

Scipt component: C# BeamGeometry

H

/// <summary>

/// This class will be instantiated on demand by the Script component.
[/ </summary>

public class Script Instance : GH ScriptInstance

{

{

double nrofbeams = (L - 2) / ccs

//Defining points for the for-loop

Point3d startptl = new Point3d(0, 0, 0);

Point3d endptl = new Point3d(0, 0, 0);

Point3d startpt = new Point3d(0, 0, 0):

Point3d endpt = new Point3d(0, 0, 0);

//Lists to collect end points of beams

List<Point3d> startpoints = new List<Point3d>();

List<Point3d> endpoints = new List<Point3d>();

for (int i = 0; i < nrofbeams; i++)

{
//Establishing end points of beams (must be placed at mesh vertices later)
startptl = new Point3d(beamXlocation, 1 + i * cc, H / 2);
endptl = new Point3d(W - beamXlocation, 1 + i % ¢cc, H / 2);
//Relocating these points to shell mesh vertices, adding to lists
startpt = ClosestMeshVertix(startptl, meshvertices);
startpoints.2dd(startpt);
endpt = ClosestMeshVertix(endptl, meshvertices);
endpoints.Add(endpt);

}

//Creating lines between start- and endpoints of same y-value
List<Line> beamlines = BeamLines(startpoints, endpoints);

//output
Beamlines = beamlines;
beamlength = beamlines[0].Length;

Point3d ClosestMeshVertix (Point3d point, List<Point3d>» meshvertices)
{

double dist = 3;

Point3d closestpoint = new Point3di(0, 0, 0);

foreach (Point3d vertexpt in meshvertices)
{
double specdist = vertexpt.DistanceTo(point):
if (specdist < dist)
{
dist = specdist;
closestpoint = vertexpt;
}
}
return closestpoint;

H

List<Line> BeamLines (List<Point3d> startpoints, List<Point3d> endpoints)
{
List<Line> beamlines = new List<Line>();
foreach (Point3d startpt in startpoints)
{
foreach (Point3d endpt in endpoints)
{
if (endpt.¥ == startpt.¥)
{
Line 1 = new Line(startpt, endpt):
beamlines.Rdd (1) ;
}
}
}

return beamlines;

Cache Recover from cache

private void RunScript (double H, double W, double L, List<Point3d> meshvertices, double beamXlocation,

>
> I3 x

objec

0K

Figure G.13: Script from component C# BeamGeometry

Ivii

Script Editor X

€4 Script component: C# Fitness script ” :El @ A @‘

59

oo oy
oo O e W PO

R N e)
o

-
W R

[
Do ;e

@ -
= o w o

/// <summary>
/// This class will be instantiated on demand by the Script component.
/// </summary>

= public class Script Instance : GH ScriptInstance

{

=2

=] private void RunScript (double mass, double utilTimberShell, double utilTimberBeam, double utilDeflection, do
{

double Fitness = 0;

if (maxUtilization >= 1.2)

f Fitness = 1000000;

;f (maxUtilization »>= 1 && maxUtilization < 1.2)

‘ Fitness = 200000;

J!.f (maxUtilization < 1)

{ Fitness = mass * (1 - utilTimberShell) * (1 - utilTimberBeam) * (1 - utilbDeflection);
}

//output
fitness = Fitness;

}

// <Custom additional code>

// </Custom additional code>

Cache Recover from cache OK

Figure G.14: Script from component C# Fitness Script

lviii

H Scripts: EC5 Timber Utilization

Seript Editor X

Cg Sciipt component: C# Utilizations of Brettstapel Shell (EC5) » :EI @ A |'|:]'

1 ~
12
13
14
15 /// <summary>

16 /// This class will be instantiated on demand by the Script component.
17 /// </summary>

18 public class Script Instance : GH ScriptInstance

19 {

20
35
36
49
50
55 private void RunScript(double h, double W, double MEd, double NEd ¢, double NEd t, double VEd, double Combir
56 {

57
58 //INPUT SPECIFICS:

59 //strength parameters [N/mm~2]

60 //c/s and geometry parameters [mm]
61 //loads [kN]

62 //deformation [mm]

63

o
S

double b = 1000; //Calculating per lm width

//Changing input units to mm:
h=nh * 10;
W =W * 1000;

S oo

//EC5 DESIGN PARAMETERS
double kmods = 0.9; //NS-EN 1895-1-1 Table 3.1
double yM = 1.25; //NS-EN 1995-1-1 Table NA.2.3
double ksys = 1.1; //NS-EN 19%5-1-1 §6.6

TdJJdJda oo oo
W W R

double kcr = 0.67; //NS-EN 1995-1-1 NA.G.1.7
76
77
78 //STRENGTH PROPERTIES
79 double fmyk = 14; //strength class Cl14
80 double fcOk = 16; //strength class C1l4
81 double ft0k = 7.2; //strength class Cl4
8 double fvk = 3.0; //strength class Cl14
] double fmyd = ksys * fmyk * kmods / yM;
84 double fc0d = ksys * fcOk * kmods / yM;
85 double ftOd = ksys * ft0k * kmods / yM;
86 double fvd = ksys * fvk * kmods / yM;
87 double sigma t0d = NEd t * Math.Pow(10, 3) / (b * h);
88 double sigma c0d = NEd ¢ * Math.Pow(10, 3) / (b * h);
89 double sigma myd = & * MEd * Math.Pow(10, 6) / (b * Math.Pow(h, 2));
90 double tau d = 3 * VEd * Math.Pow (10, 3) / (2 % ker * b * h);
91
92
93 //UTILIZATIONS
94 //Tension
95 double Nt_ut = sigma t0d / ft0d; //NS-EN 1995-1-1 §6.1.2
96 //Compression
97 double Nc_ut = sigma_c0d / £c0d; //NS-EN 1995-1-1 §6.1.4
98 //Bending
99 double M ut = sigma myd / fmyd; //NS-EN 1855-1-1 §6.1.6
100 //Shear
101 double V_ut = tau d / fvd; //NS-EN 1995-1-1 §6.1.7
102
103 //max utilization value:
104 List<double> utilvalues = new List<double>();
105 utilvalues.Add (Nt_ut);
106 utilvalues.Add (Nc_ut);
107 utilvalues.Add(M_ut);
108 utilvalues.Add(V_ut);
109 utilvalues.Add (CombinedMN util);
110 utilvalues.Sort();
111 double maxutilvalue = utilvalues([utilvalues.Count - 117
112
113
114 / /OUTPUT
115 maxUtilization = maxutilvalue;
116 Nt_util = Nt_ut;
117 Nc_util = Nc_ut;
118 M_util = M_ut;
119 V_util = v_ut;
120 }
121
122 // <Custom additional code>
123 v
I« lix >
Cache Recover from cache 0K

Figure H.1: Script from component C# Utilizations of Brettstapel Shell (EC5)

Script Editor X
€y Sciipt component: C# Check for combined M+N (EC5) P> E® A ‘D|
1 &
12

13

14

15 /// <summary>

16 /// This class will be instantiated on demand by the Script component.

17 /1] </summary>

18 public class Script_Instance : GH ScriptInstance

19 {

20

35

36

49

50

55 private void RunScript(double h, List<double> MEd, List<double> NEd, ref object CombinedMN maxutil)
56 {

57

58 //INPUT SPECIFICS:

59 //strength parameters [N/mm*2]

60 //c/s and geometry parameters [mm]

61 //loads [kN]

62

63 double b = 1000; //Calculating per 1m width

64

65 //Changing input units to mm:

66 h=h* 10;

67

68 //EC5 DESIGN PARAMETERS

69 double kmods = 0.9; //NS-EN 1995-1-1 Table 3.1

70 double yM = 1.25; //NS-EN 1995-1-1 Table NA.2.3

71 double ksys = 1.1; //NS-EN 1995-1-1 §6.6

12

7

74 //STRENGTH PROPERTIES

75 double fmyk = 14; //strength class Cl4

76 double fcOk = 16; //strength class Cl4

77 double ftOk = 7.2; //strength class Cl4

78 double fmyd = ksys * fmyk * kmods / yM;

79 double fc0d = ksys * fcOk * kmods / yM;

80 double ft0d = ksys * ftOk * kmods / yM:

81

82 //Creating list of tension and compression NEd-values, and attached MEd-values in separate lists
83 List<double> NEd_compression = new List<double>():

84 List<double> MEdc_attached = new List<double>();

85 List<double> NEA_tension = new List<double>();

86 List<double> MEdt_attached = new List<double>();

87 for (int j = 0; j < NEd.Count; j++)

88 {

89 if (NEA[J] < 0)

90 {

91 NEd_compression.2dd(Math.Abs(NEA[j1));

92 MEdc_attached.Rdd (MEA[]]):

93 }

94 else

95 {

96 NEd_tension.Add (Math.2bs (NEA[{1)) 7

97 MEdt_attached.Add(MEA[]]);

98 }

99 }

100

101

102 List<double> MN utilizations = new List<double>():

103

104 //Utilization for combined bending and compression //NS-EN 1995-1-1 §6.2.4
105 //+ Utilization for axial buckling //NS-EN 1995-1-1 §6.3.2

106 for (int j = 0; j < NEd compression.Count; j++)

107 {

108 double sigma_c0dj = NEd_compression[j] * Math.Pow(10, 3) / (b * h);
109 double sigma mydj = 6 * MEdc_attached[j] * Math.Pow(10, 6) / (b * Math.Pow(h, 2)):
110 //UTILIZATIONS

111 //combined bending + compression

112 double MN ut = Math.Pow((sigma_c0dj / fc0d), 2) + sigma mydj / fmyd:
113 MN utilizations.Add(MN ut);

114 }

115

116 //Check for combined bending and tension //NS-EN 1995-1-1 §6.2.3

117 for (int j = 0; j < NEd_tension.Count; j++)

118 {

119 double sigma_t0dj = NEd_tension[j] / (b * h):

120 double sigma mydj = € * MEdt_attached[j] / (b * Math.Pow(h, 2));
121 //UTILIZATION

122 //Combined bending + tension

123 double MN ut = sigma t0dj / £t0d + sigma mydj / fmyd;

124 MN_utilizations.Add(MN_ut);

125 1

126

127 MN utilizations.Sort();

128 double MN maxutil = MN_utilizations[MN utilizations.Count - 1];

129

130

131 //OUTPUT

132 CombinedMN maxutil = MN maxutil;

133| |)

134

135 // <Custom additional code>

136 v

<
Cache Recoverfrom cache

>

Figure H.2: Script from componentl@# Check for combined M+N (EC5)

Script Editor

€4 Script component: C# Utilizations of Brettstapel Beams (EC5)

i
0
>
> | x

I
12

13

14

15 /// <summary>

16 /// This class will be instantiated on demand by the Script component.
17 /// </summary>

18 public class Script Instance : GH Scriptlnstance

19 {

20

35

36

149

s0 |4 | 75

55 private void RunScript(double h, double NEd_c, double NEd t, double VEd, double MEdy, double MEdz, double Cc
56 {

57

58 //INPUT SPECIFICS:

59 //strength parameters [N/mm~2]

€0 //c/s and geometry parameters [mm]

61 //loads [kN]

62 //deformation [mm]

63

€4 double b = 1000; //Calculating per Im width

65

66 //Changing input units to mm:

67 h=h* 10;

68

69 //EC5 DESIGN PARAMETERS

70 double kmods = 0.9; //NS-EN 1995-1-1 Table 3.1

71 double yM = 1.25; //NS-EN 1%95-1-1 Table NA.2.3

72 double ksys = 1.1; //NS-EN 1995-1-1 §6.6

73 double kcr = 0.67; //NS-EN 1995-1-1 NA.6.1.7

74 double km = 0.7; //NS-EN 18%5-1-1 §6.1.6(2)

75

76

77 //STRENGTH PROPERTIES

78 double fmk = 14; //strength class Cl4

79 double fcOk = 16; //strength class cl4

80 double ftOk = 7.2; //strength class Cl4

81 double fvk = 3.0; //strength class Cl4

82 double fmd = ksys * fmk * kmods / yM;

83 double fcOd = ksys * fcOk * kmods / yM;

84 double ft0d = ksys * ftOk * kmods / yM; h
85 double fvd = ksys * fvk * kmods / yM;

86 double sigma_t0d = NEd t * Math.Pow(10, 3) / (b * h);

87 double sigma_c0d = NEd_c * Math.Pow(10, 3) / (b * h);

88 double sigma myd = 6 * MEdy * Math.Pow(10, 6) / (b * Math.Pow(h, 2)):
89 double sigma mzd = 6 * MEdz * Math.Pow(10, 6) / (h * Math.Pow(b, 2)):
90 double tau d = 3 * VEd * Math.Pow(1l0, 3) / (2 * kcr * b * h);

91

92

83 //UTILIZATIONS

94 //Tension

95 double Nt_ut = sigma_t0d / ft0d; //NS-EN 1995-1-1 §6.1.2

96 //Compression

97 double Nc_ut = sigma c0d / fc0d; //NS-EN 1985-1-1 §6.1.4

98 //Bending

99 double M utl = sigma myd / fmd + km * sigma_mzd / fmd; //NS-EN 1995-1-1 §6.1.6
100 double M ut2 = km * sigma myd / fmd + sigma mzd / fmd; //NS-EN 1955-1-1 §6.1.6
101 double M ut = 0;

102 if (M utl > M ut2)

103 {

104 M ut = M utl;

105 }

106 else

107 {

108 M ut = M ut2;

109 }

110 //shear

111 double V_ut = tau d / fvd; //NS-EN 1995-1-1 §6.1.7

112

113 //max utilization value:

114 List<double> utilvalues = new List<double>();

115 utilvalues.2dd (Nt_ut);

116 utilvalues.Add (Nc_ut);

117 utilvalues.add (M _ut);

118 utilvalues.Add (V_ut);

119 utilvalues.Add (CombinedMN util);

120 utilvalues.Add (AzialBuckling util);

121 utilvalues.Sort();

122 double maxutilvalue = utilvalues[utilvalues.Count - 1];

123

124

125 //OUTPUT

126 maxUtilization = maxutilvalue;

127 Nt_util = Nt_ut;

128 Ne_util = Ne_ut:

129 M util = M_ut;

130 V_util = V_ut;

131 }

132

133 // <Custom additional code>

134 v
1< >

Cache

Recover from cache

= —

Figure H.3: Script from component C# Utilizations of Brettstapel Beams (EC5)

Ixi

Script Editor X

C Script component: C# Check for axial buckling (EC5) P EH® A ‘4:}‘

17 /// </summary> T‘

18 public class Script Instance : GH ScriptInstance

19 {

20

&

36

49

50

55 private void RunScript(double h, double b, double beamlength, List<double> MEdy, List<double> MEdz, List<dou

56 {

57

58 //INPUT SPECIFICS:

59 //strength parameters [N/mm~2]

60 //c/s and geometry parameters [mm]

61 //loads [kN]

62

63 //Changing input units to mm:

64 h=h* 10;

€5 b=>b * 10;

€6 double L = beamlength * 1000;

67

68 //EC5 DESIGN PARAMETERS

€69 double kmods = 0.9; //NS-EN 1895-1-1 Table 3.1

70 double yM = 1.25; //NS-EN 1%95-1-1 Table NA.Z2.3

71 double ksys = 1.1; //NS-EN 1995-1-1 §6.6

T2 double km = 0.7; //NS-EN 1995-1-1 §6.1.6(2)

73

74 //STRENGTH PROPERTIES

15 double fmk = 14; //strength class Cl4

76 double fcOk = 16; //strength class C14

77 double E_005 = 4700; //strength class Cl4

718 double fmd = ksys * fmk * kmods / yM;

79 double fcld = ksys * fcOk * kmods / yM;

80

81 //Bxial buckling (NS-EN 1995-1-1 §6.3.2)

g2 double Lk = L * 0.5; //Assuming moment rigid connections (simplification)

83 double iy = Math.Sqrt((b * Math.Pow(h, 3) / 12) / (b * h)}:

84 double iz = Math.Sgrt((h * Math.Pow(b, 3) / 12) / (b * h))}:

85 double lamda y = Lk / iy;

86 double lamda_z = Lk / iz;

87 double lamda_rely = lamda_y / Math.PI * Math.Sqgrt(fcOk / E_005);

a8 double lamda relz = lamda z / Math.PT * Math.Sqrt(fc0k / E_005);

89 double beta ¢ = 0.2;

90 double ky = 0.5 * (1 + beta_c * (lamda_rely - 0.3) + Math.Pow(lamda_rely, 2));

91 double kz = 0.5 * (1 + beta_c * (lamda_relz - 0.3) + Math.Pow(lamda_relz, 2));

92 //Instability factors:

93 double kcy = 1 / (ky + Math.Sgrt(Math.Pow(ky, 2) - Math.Pow(lamda rely, 2)));

94 double kcz = 1 / (kz + Math.Sgrt(Math.Pow(kz, 2) - Math.Pow(lamda relz, 2)));

95 //utilizations:

96 List<double> BB _utilizations = new List<double>();

97 for (int i = 0; i < MEdy.Count; i++)

98 {

99 double sigma_c0d = NEd[i] * Math.Pow(10, 3) / (b * h);

100 double sigma myd = 6 * MEdy[i] * Math.Pow (10, 6) / (b * Math.Pow(h, 2));

101 double sigma mzd = 6 * MEdz[i] * Math.Pow(10, 6) / (h * Math.Pow(b, 2));

102 double AB_utill = sigma_c0d / (kcy * fc0d) + sigma myd / fmd + km * sigma_mzd / fmd;

103 double BB util2 = sigma_c0d / (kcy * fc0d) + km * sigma_myd / fmd + sigma_mzd / fmd;

104 double AB_util;

105 if (AB utill > AB util2)

106 {

107 BB_util = BAB_utill;

108 }

109 else

110 {

111 BB_util = AB_util2;

112 }

113 BB utilizations.Add(RB_util);

114 }

115

116

117 AB utilizations.Sort();

118 double AB_maxutil = AB utilizations[AB_utilizations.Count - 1];

119

120

121 //QUTPUT

122 RExialBuckling maxutil = AB_maxutil;

123 }

124

125 // <Custom additional code>

126

< >
Cache Recover from cache OK

Figure H.4: Script from component C# Check for azial buckling (EC5)

Ixii

Camilla By Kampenes

Long-Span Brettstapel Roof Structures: A Parametric Design Approach

@ NTNU

NORSK MASSIVTRE

Norwegian University of
Science and Technology

