
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

M
ichael H

oyer
System

 Identification and M
achine Learning

Michael Hoyer

System Identification and Machine
Learning

Master’s thesis in Engineering and ICT
Supervisor: Martin Ludvigsen
Co-supervisor: Svein Ivar Sagatun, Øystein Barth Utbjoe

June 2021

M
as

te
r’s

 th
es

is

Michael Hoyer

System Identification and Machine
Learning

Master’s thesis in Engineering and ICT
Supervisor: Martin Ludvigsen
Co-supervisor: Svein Ivar Sagatun, Øystein Barth Utbjoe
June 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

Project description

Problem Description and Background

Equinor is planning full-scale testing of crawler robots in its operation in 2021. The
robots will perform inspection and light maintenance autonomously. The goal is
to limit the exposure of workers to harmful environments and to enable NNM (Not
Normally Manned) and UN (UnManned) operational models for new fields.

Autonomous systems rely on simulations for much of their verification process. Models
describing robots and its surrounding (i.e. the installation) are at the core of these
simulations. Establishing good models for a robot can be challenging, as it may require
extensive domain knowledge full scale testing. Methods that can aid in this process is
therefore of significant value for robot operators.

System Identification (SI) is in many ways similar to regression analysis and machine
learning (ML). Recent years have brought many advances in software tooling and
hardware that aid in machine learning applications. Due to the similarities between
machine learning and system identification, it is likely that these advances also will
benefit the latter.

Objective

This thesis aims to test parameter estimation with SI for mechanical systems, focusing
on UUVs that have known model-structures. It shall answer if methods and tools from
ML can be used to improve the performance of SI.

SI shall be done with simulations and real measurements of an UUV moving in a basin.
All results will be discussed with regards to accuracy, computational performance,
and in-accuracies in the model structure. Literature studies will be conducted on the

i

following topics a) SI and parameter estimation applied to mechanical systems with a
focus on UUV and b) the use of ML for SI – included is a study of relevant ML software
and hardware for SI.

Scope of Work

1. The candidate shall perform a literature study on system identification (SI) and
parameter estimation applied to mechanical systems with a focus on UUV

2. The candidate shall perform a literature study on the use of machine learning
(ML) for SI and in particular applied to mechanical systems – included is a study
of relevant ML software tooling for SI.

3. Methods and analysis

(a) The candidate shall implement amathematical model of the UUV for testing
and simulation of the SI methods described below.

(b) The candidate shall develop and test (based on experimental and simulated
data) at least one selected ML based SI method for parameter estimation

(c) The candidate shall estimate parameters of an UUV experimentally, using
experimentally acquired data.

(d) Results from (b), (c) and (d) shall be evaluated and compared using selected
metrics.

4. Experimental work

(a) The experiment shall be conducted at the NTNU facility MC-lab.

(b) The experiment shall consist of the following: the vehicle moves uncon-
strained in the basin and receives input from its thrusters. The vehicles
degrees of freedom shall be exited both in isolation and in combination,
such that cross-coupling terms become active. Its pose shall be measured
with an Qualisys camera measurement system. Angular velocity and linear
acceleration shall be measured through an onboard IMU.

(c) Analysis and discussion of the suitability of the resulting data from the
experiment

Format and Formalities

The report shall be written in English and edited as a research report including

ii

• A project plan defining the objective and scope of work

• Background theory on

– Mathematical models of interest

– Parameter estimation methods

– Relevant ML software tooling

– Selected SI algorithms

• Description of method including

– Detailed plan and documentation of the experiment

– Data processing and analysis

– Implementation of algorithms

• Results

• Discussion

• Conclusion including a proposal for further work.

Source code and datasets from the experiment shall be provided on GitHub. It is
supposed that the Department of Marine Technology, NTNU, and Equinor can use the
results freely in its research work, unless otherwise agreed upon, by referring to the
student’s work. The thesis should be submitted within June 10.

Supervisors: Martin Ludvigsen (NTNU) Svein Ivar Sagatun (Equinor) Øystein Barth
Utbjoe (Equinor)

iii

Summary

Simulation is becoming more important for the development of robots due to cost
savings and its key role in validation of autonomous systems. This sparks the need
for cheap and accurate models of the robots that are to be simulated. Many classes of
moving robots have well established equations that model their movements accurately,
but the system specific parameters they depend on are often based on educated guesses
or expensive experiments. Unmanned underwater vehicles (UUVs) is one of those
classes. Their importance in sub-sea operations only keep growing, as breakthroughs
in price and usability make them suitable to more and more applications. The research
of this thesis is motivated by the need for better methods to estimate parameters of
moving robots models, focusing on UUVs as example platform.

In this thesis techniques from system identification and machine learning are used
to estimate UUV model parameters based on simulations and measurements of the
Beluga UUV. The measurements are gathered using internal and external sensors of
high quality, covering pose and velocity in all six degrees of freedom. Background
theory on UUV modelling and system identification is presented, as well as a technical
overview of Beluga UUV. The chosen method is able to identify the UUV parameters
from simulations in reduced dimensionality cases.

iv

Sammendrag

Simulering har blitt viktigere for utviklingen av roboter på grunn av kostnadsbespar-
elser og dens avgjørende rolle i valideringen av autonome systemer. Dette øker behovet
for billige og presise modeller av robotene som skal simuleres. Mange typer roboter
har godt etablerte ligninger som beskriver bevegelsene deres, men de systemavhengige
parameterne som disse ligningene er avhengige av velges ofte ved gjetting eller dyre
eksperimenter. Ubemannede undervannsroboter (UUV) er en av robottypene dette
gjelder for. Disse blir stadig vekk viktigere for undervassoperasjoner, siden gjennom-
brudd i pris og brukervennlighet har gjort dem aktuelle for flere og flere oppgaver.
Denne masteroppgaven er motivert av behovet for bedre metoder til estimering av
parametere til bevegelige roboters modeller, og fokuserer på UUVer som testplattform.

I denne mastergraden brukes metoder fra systemidentifikasjon og maskinlæring til å
estimere UUV modellparametere basert på simuleringer og målinger av UUVen Beluga.
Målingene er samlet ved bruk av interne og eksterne sensorer av høy kvalitet, som sam-
men dekker alle tilstander i Belugas seks frihetsgrader. Bakgrunnsteori om matematisk
modellering av UUVer og systemidentifikasjon presenteres, samt en teknisk gjennom-
gang av Beluga. Den valgte systemidentifikasjonsmetoden er i stand til å identifisere
UUV parametere fra simuleringer i tilfeller med redusert antall frihetsgrader.

v

Preface

This Master’s thesis is the final part of my M.Sc. in Engineering and ICT, with a special-
ization in Marine Cybernetics. It is written at the Department of Marine Technology
at the Norwegian University of Science and Technology during the spring of 2021.

I want to thank my supervisors Martin Ludvigsen, Svein Ivar Sagatun and Øystein
Utbjoe for their guidance, insights and helpful feedback along the way. This thesis
would not have been possible without them. I also want to thank my friends from
Vortex for their companionship and comradely support in getting Beluga ready for
diving.

vi

Contents

Summary iv

Sammendrag v

1 Introduction 2

1.1 Motivation . 2

1.2 Related Work . 3

1.3 Contributions . 4

1.4 Thesis Structure . 4

2 Modeling of Unmanned Underwater Vehicles 5

2.1 Kinematics . 5

2.1.1 Reference Frames . 6

2.1.2 Notation . 6

2.1.3 Quaternions . 7

2.1.4 Kinematic Equation . 7

2.2 Kinetics . 8

2.2.1 Hydrostatics . 8

2.2.2 Rigid-body Kinetics . 9

vii

2.2.3 Hydrodynamics . 10

2.3 Equations of Motion . 12

2.3.1 Full Model . 12

2.3.2 Diagonal Model . 13

2.3.3 Linear Diagonal Model . 14

2.3.4 Non-linear Surge Model . 14

2.3.5 Linear Surge Model . 15

3 System Identification 16

3.1 Machine Learning and Regression . 16

3.2 Data Recording and Preprocessing . 17

3.3 Model Structure . 18

3.4 Overfit and underfit . 18

3.5 Parameter Estimation . 19

3.5.1 Minimizing Prediction Errors 20

3.5.2 Evaluation Metrics . 20

3.5.3 Optimization Methods . 21

3.5.4 Multi-Objective Optimization 21

3.5.5 Population methods . 22

3.5.6 Running Performance Metric 23

3.5.7 NSGA-II . 24

3.6 Model Validation . 26

3.7 Other Parameter Estimation Methods 27

4 Beluga UUV 28

viii

4.1 Overview . 28

4.2 Propulsion System . 29

4.3 Sensors . 31

4.4 Hardware issues . 31

5 The Experiment 33

5.1 The Experiments Objective in a SI Context 33

5.2 Experiment Facilities . 34

5.2.1 Marine Cybernetics Laboratory 34

5.3 Experiment Design . 35

5.3.1 Measurements . 35

5.3.2 Movement patterns . 36

5.4 Measurement Evaluation and Preprocessing 38

5.4.1 Error Sources and Measurement Noise 38

5.4.2 Measurement Synchronization 38

5.4.3 Quaternions . 39

5.4.4 Measurement Quality Checks 39

6 System Identification of UUV Models 40

6.1 Model Predictions . 40

6.2 Multi-Objective Optimization . 41

6.2.1 Objective Function . 41

6.2.2 Optimization with NSGA-II 41

6.2.3 Decision Making . 42

6.3 Identification using Simulated Measurements 42

ix

6.4 Software Tooling and Implementation 43

7 Results 45

7.1 Beluga Time Series . 45

7.2 Measurement Quality Checks . 53

7.3 Identification on Surge Models using Simulated Measurements 58

7.4 Identification on Surge Models using Real Measurements 64

7.5 Visualization of the Objective Function 67

7.6 Computation Time Analysis . 69

8 Discussion 70

8.1 Beluga Measurements . 70

8.2 SI Using Simulated Measurements . 71

8.3 SI Using Real Measurements . 72

8.4 Computational Performance . 73

9 Conclusion and Further Work 75

9.1 Conclusion . 75

9.2 Proposal for Further Work . 75

A Statistical Describtions 77

References 89

x

List of Tables

2.1 Vectors describing motion of marine vehicles in 6DOF 6

2.2 Number of parameters required in the full model 13

2.3 Number of parameters required in the diagonal model 13

2.4 Number of parameters required in the low-velocity linear diagonal model 14

2.5 Number of parameters required in the non-linear surge model 14

2.6 Number of parameters required in the linear surge model 15

5.1 Measured and estimated states . 36

5.2 Predefined tests . 37

6.1 Used parameters for NSGA-II.𝑚 is the number of parameters in 𝜽 . . 42

7.1 Metadata about recordings . 46

7.2 Statistical description of 𝝉 , 𝝂 and 𝜼 in surge-1 50

7.3 Statistical description of 𝝉 , 𝝂 and 𝜼 in sway-1 51

7.4 Statistical description of 𝝉 , 𝝂 and 𝜼 in heave-1 52

7.5 Chosen and estimated parameters for different models and 𝝉 58

7.6 Estimated parameters from Beluga measurements using linear and
non-linear surge models. The true parameters are unknown. 64

xi

A.1 Statistical description of 𝝉 , 𝝂 and 𝜼 in yaw-1 78

A.2 Statistical description of 𝝉 , 𝝂 and 𝜼 in heave_surge-1 79

A.3 Statistical description of 𝝉 , 𝝂 and 𝜼 in surge_sway-1 80

A.4 Statistical description of 𝝉 , 𝝂 and 𝜼 in random-1 81

A.5 Statistical description of 𝝉 , 𝝂 and 𝜼 in random-2 82

A.6 Statistical description of 𝝉 , 𝝂 and 𝜼 in random-3 83

A.7 Statistical description of 𝝉 , 𝝂 and 𝜼 in random-4 84

A.8 Statistical description of 𝝉 , 𝝂 and 𝜼 in random-5 85

A.9 Statistical description of 𝝉 , 𝝂 and 𝜼 in random-6 86

A.10 Statistical description of 𝝉 , 𝝂 and 𝜼 in random-7 87

A.11 Statistical description of 𝝉 , 𝝂 and 𝜼 in random-8 88

xii

List of Figures

3.1 Overfit and underfit. Source: towardsdatascience.com 19

3.2 NSGA-II procedure . 24

3.3 Illustration of rolling forecasting origin split. Blue marks the training
set, and red the validation set. The iteration number is marked by the
y-axis and the samples are along the x-axis. 26

4.1 Beluga . 29

4.2 Illustration of Belugas propulsion system 29

4.3 T200 thrust ranges at different voltages. The direction of thrust changes
at 1500 PWM. 30

4.4 Illustration of Beluga propulsion software stack 31

4.5 Beluga as it was during the experiment 32

5.1 Picture of MC-lab . 34

5.2 Beluga during recording of random movements 36

5.3 Sketch of mission FSM . 37

6.1 Different 𝝉 used for simulation . 43

7.1 https://github.com/michoy/system_identification 45

7.2 Overview of movements in surge test 47

xiii

https://github.com/michoy/system_identification

7.3 Overview of movements in sway test 48

7.4 Overview of movements in heave tests 49

7.5 Integration check for surge position in surge test 54

7.6 Derivation check for surge velocity in surge test 54

7.7 Integration check for yaw angle in surge test 55

7.8 Integration check for sway position in sway test 55

7.9 Derivation check for sway velocity in sway test 56

7.10 Integration check for yaw angle in sway test 56

7.11 Integration check for heave position in heave tests 57

7.12 Derivation check for heave velocity in heave tests 57

7.13 Comparison between simulated y and estimated ŷ using the linear
surge model and 𝝉 = 𝑋𝑡𝑟𝑖𝑝𝑙𝑒_𝑟𝑎𝑚𝑝 . 59

7.14 Comparison between simulated y and estimated ŷ using the linear
surge model and 𝝉 = 𝑋𝑚𝑎𝑛𝑦_𝑠𝑖𝑛𝑒 . 60

7.15 Comparison from between simulated y and estimated ŷ using the
non-linear surge model and 𝝉 = 𝑋𝑡𝑟𝑖𝑝𝑙𝑒_𝑟𝑎𝑚𝑝 61

7.16 Comparison from between simulated y and estimated ŷ using the
non-linear surge model and 𝝉 = 𝑋𝑚𝑎𝑛𝑦_𝑠𝑖𝑛𝑒 , run 1 62

7.17 Comparison from between simulated y and estimated ŷ using the
non-linear surge model and 𝝉 = 𝑋𝑚𝑎𝑛𝑦_𝑠𝑖𝑛𝑒 , run 2 63

7.18 Fit between measured position and velocity in surge together with
model predictions with linear surge model 65

7.19 Fit between measured position and velocity in surge together with
model predictions with non-linear surge model 66

7.20 Topology of f𝐸𝑜𝑀 around 𝜽 ∗ for different 𝝉 . 𝜽 ∗ is marked with a black
star . 68

7.21 Computation time of 𝑛 calls of predict 69

xiv

Nomenclature

ASE Analytical and Semi-Empirical method

AUV Autonomous Underwater Vehicle

CB Center of Buoyancy

CG Center of Gravity

CO Center of Origin

DOF Degree(s) Of Freedom

DP Dynamic Positioning

DVL Doppler Velocity Los

EKF Extended Kalman Filter

ESC Electronic Speed Controller

FSM Finite State Machine

IMU Inertial Measurement Unit

MAE Mean Absolute Error

MCU Micro Controller Unit

ML Machine Learning

MSE Mean Squared Error

NED North-East-Down coordinate frame

NSGA Non-dominated Sorting Genetic Algorithm

PWM Pulse Width Modulation

ROS Robot Operating System

xv

ROV Remotely Operated Vehicle

SBC Single Board Computer

SDK Software Development Kit

SI System Identification

SLAM Simultaneous Localization And Mapping

SMAPE Symmetric Mean Absolute Percentage Error

UUV Unmanned Underwater Vehicle

1

Chapter 1

Introduction

1.1 Motivation

Realistic simulations of robots have become increasingly important in the robot devel-
opment process. Factors driving this trend are 1) the ability to do concept verification
without (often expensive) physical hardware and 2) the increased options for solving
problems, such as answering "what-if" questions and doing verification of autonomous
systems (Žlajpah (2008)). Simulated copies of real robots are referred to as digital
twins. The usefulness of a digital twin is directly dependent on how well it achieves
the application depended requirements to realism. Therefore, digital twins need good
models of the robots they describe. So far in this project, no robot suppliers that provide
satisfactory simulation models have been identified. This is a challenge for digital
twins. While work is currently being done by DNV-GL (2020) attempting to solve the
issue, it is still in its early days, and its success is yet to be determined. However, there
are existing methods that estimate these models directly today.

System identification is the process of estimating models of a system based on input and
output. It is not a new field (Psichogios and Ungar (1992)), but it has seen an increased
interest in recent years (Fan et al. (2019)). The field is closely related to regression
analysis, which is an important part of machine learning. Many of the methods that
are today referred to as the classical methods of machine learning have been used in
system identification for several decades. Their overall similarity becomes apparent
when considering that both fields share a common goal: creating good models of
systems based on data collected from them. Machine learning has enjoyed much
attention this decade, and there is a rich ecosystem of software and literature available

2

on the subject. The field of system identification does not share the same benefits.
However, since the two fields are so closely related, it should be possible to apply
recent machine learning advancements to system identification.

The robot-inspired models from Fossen (2011) are well-established for describing
unmanned underwater vehicles (UUVs) and ships. Both simulation and control of
seagoing vehicles is usually done using them, since the models are intuitive and
easy to implement. They do however depend on many hydrodynamic parameters
that are specific to each vehicle, and these have proven very difficult to come by -
especially for UUVs. Analytical derivation of them is almost impossible in realistic
cases, and experimental methods are complicated and expensive (Conte et al. (2004)).
The estimation error in using experimental methods is up to 50% for some parameters
(Caccia et al. (2000)). Much of the estimation difficulties stem from the fact that UUVs
operate in non-linear environments and often have highly coupled degrees of freedom
(DOFs). System identification has shown potential as a method for estimating UUVs
hydrodynamic parameters (Holven (2018)) and is investigated further in this thesis.

1.2 Related Work

Eidsvik and Schjølberg (2016) and Holven (2018) both looked into hydrodynamic
parameter estimation for UUVs in their thesis. Eidsvik covers much ground on ex-
perimental work, while Holven also looks into system identification. Cardenas and
de Barros (2019) combine an analytical and semi-empirical estimation method (ASE)
with a parameter estimator based on the extended Kalman filter (EKF) and applies the
method to a non-linear model of an autonomous underwater vehicle (AUV).

There is a richer literature available on parameter estimation for ship models. Fossen
et al. (1996) use an off-line EKF utilizing two measurement series in parallel to estimate
the parameters of a dynamic positioning (DP) ship model based on full-scale sea trials.
Support vector machines, a method popularized by the advent of machine learning
this decade, is used by Zhang and Zou (2013) to estimate hydrodynamic coefficients
from captive model tests. Dai et al. (2019) uses evolutionary algorithms to estimate
coupled hydrodynamic terms of ships heave and pitch motion.

The more general problem of parameter estimation for state-space models has been
investigated by Kantas et al. (2015), who survey applications of particle methods
for parameter estimation of non-linear non-Gaussian state-space models. Pillonetto
et al. (2014) identify mathematical tools and concepts that have been developed in the
machine learning community, that they want to make available to the to the control

3

community. They focus kernel based regulation and its connections to Bayesian
estimation of Gaussian processes.

1.3 Contributions

In this thesis system identification is applied to UUV models, using techniques from
the machine learning community. The focus is on parameter estimation of UUVs
mass and damping terms for movements in surge direction. Identification is tested on
both simulated and real measurements. The main contributions of this thesis can be
summarized as

• acquisition of high quality measurements of an UUVs position, orientation, linear
velocity and angular velocity during various maneuvers

• applied system identification to parameter estimation for UUV models using the
prediction-error minimizing approach and the multi-objective genetic algorithm
NSGA-II for optimization.

1.4 Thesis Structure

Background theory on modeling of UUVs and system identification is presented in
chapter 2 and 3. Chapter 4 gives a technical overview of Beluga UUV, with a focus
on its thrust delivery system. Explanations on the how measurements of Beluga are
gathered experimentally are given in chapter 5. The chosen system identification
method is described in chapter 6. Results and their discussion are presented in chapter
7 and 8. Chapter 9 contains the conclusion and proposals for further work.

4

Chapter 2

Modeling of Unmanned
Underwater Vehicles

Unmanned Underwater Vehicles (UUV) are robotic vehicles that can operate under
water without a human occupant. The class can be divided into two subcategories:
Autonomous Underwater Vehicles (AUV) and Remotely Operated Vehicles (ROV).
AUVs carry out missions without human interference. They are mostly used for
bathymetric surveys (Paull et al. (2014)), but companies are working on expanding their
use cases to inspection of subsea installations and light intervention tasks (Liljeback
and Mills (2017), Midthassel (2021)). ROVs carry out missions while being controlled
by a human operator. They are usually connected to a surface ship, which follows
them for the entire mission. ROVs are typically used for inspections and interventions.
The line between AUV and ROVs is becomming blurred, as some AUVs are starting to
support operations in semi-autonomous and ROV modes (Stinger (2021)).

A common approach to modelling UUVs is to split the task into kinematics and kinetics.

2.1 Kinematics

The study of kinematics treats the geometrical aspects of motion. It focuses solely on
motions themselves, ignoring the source that caused them. The following subsections
present an overview of kinematics relevant to UUVs based upon the work in Fossen
(2011).

5

Parameter Combined Linear Angular
NED position 𝜼 = [𝒑𝑛

𝑛𝑏
, 𝒒𝑛

𝑏
]𝑇 𝒑𝑛

𝑛𝑏
= [𝑥,𝑦, 𝑧]𝑇 𝒒𝑛

𝑏
= [𝜂, 𝜖1, 𝜖2, 𝜖3]𝑇

BODY velocity 𝝂 = [v𝑏
𝑛𝑏
,𝝎𝑏

𝑛𝑏
]𝑇 v𝑏

𝑛𝑏
= [𝑢, 𝑣,𝑤]𝑇 𝝎𝑏

𝑛𝑏
= [𝑝, 𝑞, 𝑟]𝑇

BODY force 𝝉 = [𝒇𝑏
𝑏
,𝒎𝑏

𝑏
]𝑇 𝒇𝑏

𝑏
= [𝑋,𝑌, 𝑍]𝑇 𝒎𝑏

𝑏
= [𝐾,𝑀, 𝑁]𝑇

Table 2.1: Vectors describing motion of marine vehicles in 6DOF

2.1.1 Reference Frames

Reference frames are an important element to kinematics. These are coordinate systems
used to describe motion relative to various geometrical points. Movement only makes
sense when it is described relative to something else. There are two reference frames
commonly used when modelling UUVs: NED and BODY.

The North-East-Down (NED) frame is a inertial reference frame that is defined tangen-
tial to earths surface. Its x-axis points towards north, the y-axis points towards east
and the z-axis points towards earths center. The coordinate origin is usually defined
by where the UUVs system is initiated. NED is used as a global reference frame for
slow moving vessels that do not move very far along the frame, where the curvature
of the earth would start to have an impact.

BODY frame is fixed to the body of the vehicle of interest. Its x-axis is defined along
the bodies longitudinal axis, the y-axis is defined along the lateral axis and the z-axis is
normal to the others, directed from bottom to top. The BODY frames motion is defined
relative to the inertial reference frame. Its coordinate origin is defined by the Center
of Origin (CO). BODY is used to describe a vehicles pose relative to the inertial frame.

2.1.2 Notation

Vectors describing a UUVs motion in SNAME notation are conveniently presented in
table 2.1. Its contents can be explained as

• 𝒑𝑛
𝑛𝑏

- position of the point CO in BODY with respect to NED expressed in NED

• 𝒒𝑛
𝑏
- orientation of BODY with respect to NED expressed in NED

• 𝝂𝑛
𝑛𝑏

- linear velocity of BODY with respect to NED expressed in BODY

• 𝝎𝑛
𝑛𝑏

angular velocity of BODY with respect to NED expressed in BODY

• 𝒇𝑏
𝑏
force with line of action through the point CO in BODY expressed in NED

• 𝒎𝑏
𝑏
moment about the point CO in BODY expressed in NED

6

2.1.3 Quaternions

There are two different representations used to describe a vehicles orientation: Euler
angles and Unit quaternions. Euler angles are more intuitive, but unit quaternions are
more robust and computationally faster. A common issue that arises when using Euler
angles, is that rotation matrices contain representation singularities for certain angels.
This is often referred to as gimbal lock. Unit quaternions avoid this issue by using a
fourth parameter to describe orientation.

Quaternions are defined as
q = [𝜂, 𝜖1, 𝜖2, 𝜖3]𝑇 (2.1)

where 𝜖1, 𝜖2 and 𝜖3 influence an axis of rotation and 𝜂 influences the amount of rotation
around that axis.

When talking about quaternions in the context of representing orientation, one usually
refers to unit quaternions. These are quaternions which satisfy the constraint q𝑇 q = 1,
meaning their length must be equal to one. It is important to ensure that the unit
constraint is satisfied during numerical integration involving quaternions. This can be
done by performing simple normalization after each integration step.

2.1.4 Kinematic Equation

The kinematic equation of an UUV model describes the transformation between BODY
and NED and can be expressed differently depending on whether Euler angles or
unit quaternions are used to represent orientation. The kinematic equation using
quaternions is expressed as

¤𝜼 = J𝑞 (𝜼) (𝝂𝑟 + 𝝂𝑐) (2.2)

where 𝝂𝑟 is the vehicles velocity relative to ocean current, 𝝂𝑐 is the ocean currents
velocity and J𝑞 (𝜼) defines the transformation from BODY to NED given by

J𝑞 (𝜼) =

R𝑛
𝑏
(q) 03𝑥3

04𝑥3 T𝑞 (q)

 (2.3)

where R𝑛
𝑏
(q) is the linear velocity transform and T𝑞 (q) is the angular velocity trans-

form.

7

2.2 Kinetics

The study of kinetics treats forces and how they cause motions. For modeling UUVs one
has to study their hydrostatics, rigid-body kinetics and hydrodynamics. The following
is based upon the work of Fossen (2011) and Faltinsen (1993).

2.2.1 Hydrostatics

Hydrostatic forces in the context of UUVs are referred to as restoring forces. The
name stems from the face that the forces tend to restore vehicles to their steady-state
orientation. The UUVs restoring forces stem from buoyancy due to displaced water f𝑛

𝑏

and gravity working on the rigid-body mass f𝑛𝑔 . The forces can simply be expressed in
NED as

f𝑛
𝑏
= −[0, 0, 𝐵]𝑇

f𝑛𝑔 = [0, 0,𝑊]𝑇
(2.4)

Since we desire to express the equations of motion in BODY, we need to rotate the
vectors in equation 2.4 from NED to BODY

f𝑏
𝑏
= −R𝑇 (q𝑛

𝑏
)f𝑛
𝑏

f𝑏𝑔 = R𝑇 (q𝑛
𝑏
)f𝑛𝑔

(2.5)

There are two important geometrical points needed to describe the restoring forces:
Center of Buoyancy (CB) and Center of Gravity (CG). CB is the point through which
f𝑏
𝑏
acts and CG is the point through which f𝑏𝑔 acts. The vectors defining these to points

with respect to CO are r𝑏𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]𝑇 , 𝑖 ∈ {𝑏,𝑔}. The moments caused by buoyancy
and gravity can then be expressed as

m𝑏
𝑏
= r𝑏

𝑏
× f𝑏

𝑏

m𝑏
𝑔 = r𝑏𝑔 × f𝑏𝑔

(2.6)

Combining all of the above the restoring forces in BODY can be expressed as

𝑔(𝜼) = −

f𝑏𝑔 + f𝑏

𝑏

m𝑏
𝑏
+m𝑏

𝑔

 = −


R𝑇 (q𝑛
𝑏
) (f𝑛

𝑏
+ f𝑛𝑔)

r𝑏
𝑏
× R𝑇 (q𝑛

𝑏
)f𝑛
𝑏
+ r𝑏𝑔 × R𝑇 (q𝑛

𝑏
)f𝑛𝑔

 (2.7)

8

2.2.2 Rigid-body Kinetics

A UUVs rigid-body kinetics are found by applying Newton’s second law and Euler’s
first and second axioms.

The rigid-body kinetics can be expressed in vectorial form as

M𝑅𝐵 ¤𝝂 + C𝑅𝐵 (𝝂)𝝂 = 𝝉𝑅𝐵 (2.8)

where M𝑅𝐵 is the rigid-body system inertia matrix, C𝑅𝐵 is the coriolis-centripetal
matrix and 𝝉𝑅𝐵 = [𝑋,𝑌, 𝑍, 𝐾,𝑀, 𝑁] is a generalized vector of external forces and
moments.

The rigid-body system inertia matrixM𝑅𝐵 has a unique parameterization given by

M𝑅𝐵 =


𝑚I3𝑥3 −𝑚S(r𝑏𝑔)

𝑚S(r𝑏𝑔) I𝑏
𝑏



=



𝑚 0 0 0 𝑚𝑧𝑔 −𝑚𝑦𝑔
0 𝑚 0 −𝑚𝑧𝑔 0 𝑚𝑥𝑔

0 0 𝑚 𝑚𝑦𝑔 −𝑚𝑥𝑔 0

0 −𝑚𝑧𝑔 𝑚𝑦𝑔 𝐼𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
𝑚𝑧𝑔 0 −𝑚𝑥𝑔 −𝐼𝑦𝑥 𝐼𝑦 −𝐼𝑦𝑧
−𝑚𝑦𝑔 𝑚𝑥𝑔 0 −𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧



(2.9)

where I3𝑥3 is the identity matrix,𝑚 is the vehicles mass, S is the cross-product operator
and I𝑏

𝑏
is the inertia dyadic.

The coriolis and centripetal matrix C𝑅𝐵 does not have a unique parameterization.
According to Theorem 3.2 in Fossen (2011) it can always be represented such that C𝑅𝐵

is skew-symmetric, which has advantages when designing non-linear controllers. One
such parameterization is the linear velocity-independent parameterization, which is
advantageous in environments where currents can be assumed to be irrotational.

C𝑅𝐵 (𝝂) =


𝑚S(𝝎𝑏
𝑛𝑏
) −𝑚S(𝝎𝑏

𝑛𝑏
)S(r𝑏𝑔)

𝑚S(r𝑏𝑔)S(𝝎𝑏
𝑛𝑏
) −S(I𝑏

𝑏
𝝎𝑏
𝑛𝑏
)

 (2.10)

9

2.2.3 Hydrodynamics

2.2.3.1 Hydrodynamic Inertia and Coriolis effect

The hydrodynamic system inertia matrixM𝐴, also referred to as the added mass matrix,
describes the effects caused by water that is forced to move by the UUV. It is expressed
as

M𝐴 = −

A11 A12

A21 A22

 = −



𝑋 ¤𝑢 𝑋 ¤𝑣 𝑋 ¤𝑤 𝑋 ¤𝑝 𝑋 ¤𝑞 𝑋 ¤𝑟

𝑌 ¤𝑢 𝑌¤𝑣 𝑌 ¤𝑤 𝑌 ¤𝑝 𝑌 ¤𝑞 𝑌¤𝑟

𝑍 ¤𝑢 𝑍 ¤𝑣 𝑍 ¤𝑤 𝑍 ¤𝑝 𝑍 ¤𝑞 𝑍 ¤𝑟

𝐾 ¤𝑢 𝐾 ¤𝑣 𝐾 ¤𝑤 𝐾 ¤𝑝 𝐾 ¤𝑞 𝐾 ¤𝑟

𝑀 ¤𝑢 𝑀 ¤𝑣 𝑀 ¤𝑤 𝑀 ¤𝑝 𝑀 ¤𝑞 𝑀 ¤𝑟

𝑁 ¤𝑢 𝑁 ¤𝑣 𝑁 ¤𝑤 𝑁 ¤𝑝 𝑁 ¤𝑞 𝑁 ¤𝑟


(2.11)

where 𝑋 ¤𝑣 is the added mass force X along the x-axis due to an acceleration ¤𝑣 in the y
direction. The other elements of the latter matrix are to be interpreted in the same
way.

The hydrodynamic coriolis–centripetal matrix C𝐴 (𝜈), also referred to as the added
mass coriolis matrix, can be expressed as

C𝐴 (𝜈) =


03𝑥3 −S(A11v𝑏𝑛𝑏 + A12𝝎𝑏
𝑛𝑏

−S(A11v𝑏𝑛𝑏 + A12𝝎𝑏
𝑛𝑏

−S(A21v𝑏𝑛𝑏 + A22𝝎𝑏
𝑛𝑏

 (2.12)

and is thus only dependent on 𝜈 and M𝐴.

M𝐴 can be simplified by assuming port-starboard symmetry of the UUV. This assump-
tion is often reasonable. The resulting matrix is

M𝐴 = −

A11 A12

A21 A22

 = −



𝑋 ¤𝑢 0 𝑋 ¤𝑤 0 𝑋 ¤𝑞 0

0 𝑌¤𝑣 0 𝑌 ¤𝑝 0 𝑌¤𝑟

𝑍 ¤𝑢 0 𝑍 ¤𝑤 0 𝑍 ¤𝑞 0

0 𝐾 ¤𝑣 0 𝐾 ¤𝑝 0 𝐾 ¤𝑟

𝑀 ¤𝑢 0 𝑀 ¤𝑤 0 𝑀 ¤𝑞 0

0 𝑁 ¤𝑣 0 𝑁 ¤𝑝 0 𝑁 ¤𝑟


(2.13)

Assuming symmetry in three planes (port-starboard, fore-aft, top-bottom) allows

10

simplifying M𝐴 to a diagonal matrix

M𝐴 = −𝑑𝑖𝑎𝑔{𝑋 ¤𝑢, 𝑌¤𝑣, 𝑍 ¤𝑤, 𝐾 ¤𝑝 , 𝑀 ¤𝑞, 𝑁 ¤𝑟 } (2.14)

2.2.3.2 Hydrodynamic Damping

Damping of marine vehicles is caused by several effects. These are potential damping,
skin friction, wave drift damping, damping due to vortex shedding and lifting forces.

It is difficult to separate these effects in practice. Therefore, it is convenient to write
total hydrodynamic damping as the sum of a linear and a non-linear part

D(𝝂𝑟) = D𝐿 + D𝑁𝐿 (2.15)

where D𝐿 describes the linear damping effects and D𝑁𝐿 describes those that are non-
linear damping effects. It is assumed that these two parts may be superimposed.

The linear damping matrixD𝐿 includes effects from potential damping and skin friction.
It is a full 6𝑥6 matrix written as

D𝐿 =



𝑋𝑢 𝑋𝑣 𝑋𝑤 𝑋𝑝 𝑋𝑞 𝑋𝑟

𝑌𝑢 𝑌𝑣 𝑌𝑤 𝑌𝑝 𝑌𝑞 𝑌𝑟

𝑍𝑢 𝑍𝑣 𝑍𝑤 𝑍𝑝 𝑍𝑞 𝑍𝑟

𝐾𝑢 𝐾𝑣 𝐾𝑤 𝐾𝑝 𝐾𝑞 𝐾𝑟

𝑀𝑢 𝑀𝑣 𝑀𝑤 𝑀𝑝 𝑀𝑞 𝑀𝑟

𝑁𝑢 𝑁𝑣 𝑁𝑤 𝑁𝑝 𝑁𝑞 𝑁𝑟


(2.16)

Non-linear damping D𝑁𝐿 includes effects from wave drift damping, vortex shedding
and lifting forces. One way model it is by using only a quadratic term, neglecting
all terms with an higher order than two. This approximation is described as rough
by Fossen (2011), but was found to be very accurate by Morrison and Yoerger (1993).

11

Quadratic damping can be written as

D𝑁𝐿 (𝝂𝑟)𝝂𝑟 =



|𝝂𝑟 |𝑇D𝑛1𝝂𝑟

|𝝂𝑟 |𝑇D𝑛2𝝂𝑟

|𝝂𝑟 |𝑇D𝑛3𝝂𝑟

|𝝂𝑟 |𝑇D𝑛4𝝂𝑟

|𝝂𝑟 |𝑇D𝑛5𝝂𝑟

|𝝂𝑟 |𝑇D𝑛6𝝂𝑟


(2.17)

where 𝐷𝑖 are diagonal 6𝑥6 matrices.

If a vehicle performs non-coupled motion, one may assume a diagonal damping struc-
ture. This simplifies the damping matrices to

D𝐿 = −𝑑𝑖𝑎𝑔{𝑋𝑢, 𝑌𝑣, 𝑍𝑤, 𝐾𝑝 , 𝑀𝑞, 𝑁𝑟 }

D𝑁𝐿 = −𝑑𝑖𝑎𝑔{𝑋 |𝑢 |𝑢 |𝑢𝑟 |, 𝑌 |𝑣 |𝑣 |𝑣𝑟 |, 𝑍 |𝑤 |𝑤 |𝑤𝑟 |, 𝐾 |𝑝 |𝑝 |𝑝 |, 𝑀 |𝑞 |𝑞 |𝑞 |, 𝑁 |𝑟 |𝑟 |𝑟 |}
(2.18)

At very low velocities the damping matrix can be modeled with only linear effects.

D(𝝂𝑟) = D𝐿 (2.19)

2.3 Equations of Motion

The theory from this chapter can be used to make equations of motion, or models,
that describe the movement of UUVs. Different equations of motions can be made
based on what assumptions one chooses to make. This section lists a few convenient
possibilities. For each model the assumptions, equations and the number of required
parameters are given.

2.3.1 Full Model

The most complete model without any simplification is given by

¤𝜼 = 𝐽𝑞 (𝜼) (𝝂𝑟 + 𝝂𝑐)

(M𝑅𝐵 +M𝐴) ¤𝝂𝑟 + (C𝑅𝐵 (𝝂𝑟) + C𝐴 (𝝂𝑟))𝝂𝑟 + (D𝐿 + D𝑁𝐿 (𝝂𝑟))𝝂𝑟 + g(𝜼) = 𝝉
(2.20)

12

where 𝜽 = [M𝐴,D𝐿,D𝑁𝐿]𝑇 has to be estimated. Assuming no symmetries and normal
velocity the number of required parameters is shown in Table 2.2.

Equation 2.20 can be simplified to a more convenient representation if one assumes
no current in the vehicles environment. Since this simplification does not affect the
offline model estimation, but improves notational brevity, it will be used from here on
out. The simplification allows expressing the equations of motion as

¤𝜼 = 𝐽𝑞 (𝜼)𝝂

(M𝑅𝐵 +M𝐴) ¤𝝂 + (C𝑅𝐵 (𝝂) + C𝐴 (𝝂))𝝂 + (D𝐿 + D𝑁𝐿 (𝝂))𝝂 + g(𝜼) = 𝝉
(2.21)

M𝐴 D𝐿 D𝑁𝐿 total
36 36 36 108

Table 2.2: Number of parameters required in the full model

2.3.2 Diagonal Model

Assumptions

• Port-starboard symmetry

• Fore-aft symmetry

• bottom-top symmetry

• decoupled motion

The model keeps the structure of equation 2.21. M𝐴 is given by equation 2.14, D𝐿 and
D𝑁𝐿 by equation 2.18. The resulting parameters are given in table 2.3.

¤𝜼 = 𝐽𝑞 (𝜼)𝝂

(M𝑅𝐵 +M𝐴) ¤𝝂 + (C𝑅𝐵 (𝝂) + C𝐴 (𝝂))𝝂 + (D𝐿 + D𝑁𝐿 (𝝂))𝝂 + g(𝜼) = 𝝉

M𝐴 D𝐿 D𝑁𝐿 total
6 6 6 18

Table 2.3: Number of parameters required in the diagonal model

13

2.3.3 Linear Diagonal Model

Assumptions

• UUV moves with low velocity

• Port-starboard symmetry

• Fore-aft symmetry

• Top-bottom symmetry

• Decoupled motion

¤𝜼 = 𝐽𝑞 (𝜼)𝝂

(M𝑅𝐵 +M𝐴) ¤𝝂 + D𝐿𝝂 + g(𝜼) = 𝝉

M𝐴 D𝐿 D𝑁𝐿 total
6 6 0 12

Table 2.4: Number of parameters required in the low-velocity linear diagonal model

2.3.4 Non-linear Surge Model

Assumptions

• Only surge movement

• Neutral orientation

¤𝑥 = 𝑢

(𝑚𝑅𝐵 +𝑚𝐴) ¤𝑢 + 𝑑𝐿𝑢 + 𝑑𝑁𝐿𝑢
2 = 𝑋

M𝐴 D𝐿 D𝑁𝐿 total
1 1 1 3

Table 2.5: Number of parameters required in the non-linear surge model

14

2.3.5 Linear Surge Model

Assumptions

• Only surge movement

• Neutral orientation

• UUV moves with low velocity

¤𝑥 = 𝑢

(𝑚𝑅𝐵 +𝑚𝐴) ¤𝑢 + 𝑑𝐿𝑢 = 𝑋

M𝐴 D𝐿 D𝑁𝐿 total
1 1 0 2

Table 2.6: Number of parameters required in the linear surge model

15

Chapter 3

System Identification

Ljung (1987) defined system identification (SI) as dealing with the problem of building
mathematical models of dynamical systems based on observed data from the system.
The data referred to usually consists of given input to the system and the measured
output.

The process of system identification can be split into three parts: 1) gathering the
required data, 2) finding a suitable model structure and 3) estimating its parameters.
After these steps are completed, the result should be validated. If the results are
satisfactory, the task is completed. If not, the three steps should be revisited until the
desired performance is achieved. The whole procedure is called the system identification
loop.

3.1 Machine Learning and Regression

Machine learning is concerned with algorithms that can learn from data. It has been
around for several decades, but it has seen an increase in interest over the last few
years. Recent advances in big data and cloud computing have made it a viable solution
to many problems, and it is today used across many different industries, including the
maritime sector. (Dobrkovic et al. (2015))

Machine learning can be divided into supervised learning, unsupervised learning and
reinforcement learning. Reinforcement learning is about making an agent learn how
to best behave in an environment through trial and error. Unsupervised learning
is learning where the data is not labeled. Its goal is to identify patterns in the data.

16

Supervised learning is learning where data is available, and associated outcomes are
known. It includes the subcategory regression.

Regression analysis is concerned with finding a model that best describes the relation-
ship between a target variable and one or more predictor variables. It can be applied
to numerous problems, ranging from predicting future stock prices to forecasting
city districts’ demand for taxis in a given hour. Regression analysis can generally be
split into three parts: 1) preprocessing of data, 2) selection of model structure, and 3)
optimization - just like system identification.

Regression analysis is the part of machine learning that in many ways is similar to
system identification. Both fields have the goal of discovering the model that best
describes a system based on measurements of the system. In both procedures, one first
selects a suitable model-structure and then finds optimal parameters for it, such that
the model optimally aligns with the system’s measurements.

3.2 Data Recording and Preprocessing

When doing regression, it is essential to gather informative data about the system of
interest. Informative data can be defined as data that allows discrimination between
any two different models in the set of candidate models (Ljung (1987)). The concept of
informative data is closely tied to persistent excitation. Boyd and Sastry (1986) proved
that a signal is persistently exciting if its spectrum is concentrated on 𝑘 ≥ 𝑀 lines,
where𝑀 is the number of unknown parameters.

It is crucial to SI that the measurements Z must excite all DOFs sufficiently, i.e. that
the experiment is persistently exciting. This includes measurements of each DOF in
isolation, as well as coupled DOFs together. For UUVs common potentially coupled
DOFs are

• surge, pitch and heave

• surge, sway and yaw

• sway, roll and heave

Each of these may be predominantly coupled in only two of the three DOFs.

Gathering required data is commonly done through a specifically designed identifica-
tion experiment. This experiment allows the user to choose exactly what inputs are
given to the system, and to carefully record the systems response to those inputs. The

17

collected data set is referred to as Z. The goal of the experiment is to extract as much
information about the system as possible. Good system identification is only possible
if the experiment is informative enough. The task of designing good experiments that
provide the required information about a system is referred to as experiment design.

The next step after the data is recorded is getting familiar with the data at hand. It
is clear from the definition of machine learning that independent of what method is
used, the result will depend heavily on the quality of the available data. Most data
sets suffer from imperfections, such as missing data, incorrect data, or wrong formats.
Each of these issues have to be discovered before they can be addressed. The second
step is preprocessing. In this step, the data is prepared to be used in machine learning.
Issues discovered in data exploration get corrected here to the extent possible.

3.3 Model Structure

Model structures define a parameterized structure, that given a set of parameters and
input produces an output. A suitable model structure has the potential to accurately de-
scribe the system of interest. Finding it is the most difficult part of system identification
according to Ljung (1987).

Many industries have well-established model structures for their use cases, such as
the equations of motion for ships and underwater vehicles presented in Fossen (2011)
are in the maritime sector. The availability of model structures can be a significant
asset when doing system identification.

Model structures have varying degrees of physical interpretability. Those that cannot
be directly linked to the physics of the system, are referred to as black box models.
Models that have clear links to the physics are called white box, and those that fall
somewhere in between are referred to as grey box. (Ljung (1987))

3.4 Overfit and underfit

When doing regression there are two phenomena one often encounters: overfit and
underfit. Figure 3.1 shows a visual representation of both. Overfit occurs when models
become too specialized for the training data. They learn small patterns that only exist
in that particular data set and thus perform badly when applied to new ones. Underfit
is the opposite of overfit. In this case, the model fails to learn enough about the training
data and produces bad predictions. When doing regression, it is important to strike

18

Figure 3.1: Overfit and underfit. Source: towardsdatascience.com

the right balance between overfitting and underfitting. This is especially important
when the sample size is small. (Chapelle et al. (2002))

3.5 Parameter Estimation

Once a candidate model structure is found, its parameters have to be estimated. This
is done through optimization, which Brunton and Kutz (2019) call the corner stone of
regression and machine learning.

The process of optimization can be split into two steps. The first step is creating
a objective function that, given a set of parameters, quantifies the model error. The
second step is then to find those parameters that minimize the objective function.
Mathematically it can be expressed as

𝜽 ∗ = argmin
𝜽 ∈D𝑀

𝑓 (𝜽 ,Z) (3.1)

where 𝐷𝑀 is the design space of possible parameters for the chosen model structure, 𝑓
is the objective function, Z is the supplied data and 𝜽 ∗ is a solution or a minimizer. A
vector of parameters is referred to as a design point and can be written

𝜽 = [𝜃1, 𝜃2, .., 𝜃𝑀]𝑇 (3.2)

where each 𝜃𝑖 is a design variable. (Kochenderfer and Wheeler (2019))

A common challenge for optimization methods is the existence of local extrema. These
are extrema in a local space containing them, but they are not the extrema in the entire
design space. The latter point es referred to as a global extrema. Most optimization
methods cannot know if they have found a local or global extremum. This is a problem
since the latter is usually of most interest. A common approach to alleviating this issue

19

is to ensure good initial guesses of the parameters. (Ljung (1987))

3.5.1 Minimizing Prediction Errors

Objective functions should quantify how well a selected model describes the observed
data. One way to achieve this is by looking at prediction errors between the observed
data and the models predictions. This can be expressed as

𝜖 (𝑡, 𝜽) = 𝑦 (𝑡) − 𝑦 (𝑡 |𝜽) (3.3)

where 𝑦 (𝑡) is observed data from 𝑍 and 𝑦 (𝑡 |𝜃) is a model prediction. The objective
function can then be defined in terms of the prediction error 𝜖 (𝑡, 𝜃) and an evaluation
metric 𝜆

𝑓 (𝜽 ,Z) = 𝜆(𝜖 (𝑡, 𝜽)) (3.4)

3.5.2 Evaluation Metrics

There are many different evaluation metrics available that have their own advantages
and issues. Examples of evaluation metrics aremean squared error (MSE),mean absolute
error (MAE) and symmetric mean absolute percentage error (SMAPE). Mean squared
error is defined as

𝜆𝑀𝑆𝐸 =
1
𝑁

𝑁∑
𝑡=1

𝜖 (𝑡, 𝜽)2 (3.5)

It heavily penalizes predictions that are far off the true value. This incentives close fits
to the true values, but can cause problems if the measurements are noisy or contain
outliers. Mean absolute error is defined as

𝜆𝑀𝐴𝐸 =
1
𝑁

𝑁∑
𝑡=1

|𝜖 (𝑡, 𝜽) | (3.6)

It is not as sensitive to noise and outliers, but it is more prone to underfitting. It also
tends to induce sparsity into design points, which can result in models with fewer
terms that are easier to interpret (Brunton and Kutz (2019). SMAPE is defined as

𝜆𝑆𝑀𝐴𝑃𝐸 =
100%
𝑁

𝑁∑
𝑡=1

|𝜖 (𝑡, 𝜽) |
1
2 (|𝑦 (𝑡) | + |𝑦 (𝑡, 𝜽) |)

(3.7)

This metric is independent of scale and can thus compare model performances across
different data sets. Its drawback is that its errors will blow up if 𝑦 approaches zero, as
there will be a division by zero. (Hyndman and Koehler (2006))

20

3.5.3 Optimization Methods

Optimization methods find the maxima or minima of functions. Many different such
methods exist, and just as with the evaluation metrics, they have different advantages
and drawbacks. Optimization methods can roughly be categorized as either gradient-
based, direct or stochastic. They can also be distinguished on whether they work for
single-objective or multi-objective objective functions.

Gradient-based methods rely on derivatives of the objective function to traverse along
its surface until a local minimum is reached. The always use the first order derivative,
and sometimes also the second order derivative. Direct methods rely on non-derivative
information about the objective function to reach local minima. There are many
different direct methods using various criteria about the objective function for their
descent. Stochastic methods use randomness to strategically explore larger portions of
D𝑀 . This increases the chances of finding the global minium, or at least better local
minima.

3.5.4 Multi-Objective Optimization

Single-objective optimization concerns itself with objective functions compute only
a single objective, while multi-objective optimization deals with objective functions
with multiple objectives. Multi-objective optimization introduces additional challenges
compared to single-objective. Having multiple objectives often requires making trade-
off between them during optimization, meaning that the design point that minimizes
one objective might perform poorly in other objectives. A common example of this
can be in engineering, where a tradeoff between cost, performance and time-to-market
has to be made. Deciding on good tradeoffs between objectives can be challenging and
it is often easier to use Pareto optimality.

A solution is Pareto optimal if no objective can be improved upon without worsening
another one. In most problems there is not one single Pareto optimal point, but rather
a set of them. This set is called the Pareto frontier. A common approach to multi-
objective optimization is to first compute the Pareto frontier and then selecting a design
point from there based on some additional criteria. One method for performing such
selection is through hypervolume based knee point detection, which is characterized by
that a small improvement in one objective will cause a large deteriation in antoher.
The method in described in more detail in Dai et al. (2019).

Pareto optimality can also be described in terms of dominace. One design point 𝜽 1 is

21

1 f u n c t i o n g e n e t i c _ a l g o r i t hm (f , R , n_gen_max)
2 whi l e t e rm i n a t i o n c r i t e r i o n not s a t i s f i e d
3 P = s e l e c t (f , R)
4 Q = empty_se t ()
5 f o r p1 , p2 in P
6 add (Q , c r o s s o v e r (p1 , p2))
7 R = mutate (Q)
8 r e t u r n p a r e t o _ f r o n t i e r (f , R)

Listing 3.1: Genetic algorithm

said to dominate another 𝜽 2, iff

𝑓𝑖 (𝜽 1) ≤ 𝑓𝑖 (𝜽 2),∀𝑖 ∈ [0, 1, ..,𝑚]

𝑓𝑖 (𝜽 1) < 𝑓𝑖 (𝜽 2), ∃𝑖 ∈ [0, 1, ..,𝑚]
(3.8)

for a objective function 𝑓 with𝑚 objectives. The Pareto frontier is thus defined as the
set of design points that are not dominated by any other points in the design space, i.e.
the non-dominated (ND) design points.

3.5.5 Population methods

Population methods simultaneously optimize a set of design points, instead of only
focusing on one point. Each design point is referred to as an individual, and the set of
all individuals is called the population. Information can be shared between individuals
to improve the global optimization. Most population methods are stochastic and it is
often easy to parallelize their computation. A common form of population methods
are genetic algorithms. These take inspiration from natures natural selection. Each
individuals design point is represented as its chromosome. The algorithm then iterates
through generations, where only the fittest, i.e. best performing, individuals are selected
as parents to pass on their genes to the offspring. The next next generation is then
created through the genetic operations crossover and mutation.

Listing 3.1 shows a basic implementation of a genetic algorithm, where 𝑅 is the
population, 𝑃 is the set of parent individuals and 𝑄 is the set of generated offspring.
Different options are available for the population methods subroutines selection,
crossover and mutation. A short description on a few options is given below.

Selection is the task deciding on which individuals from 𝑃 should be chosen to generate
offspring. Tournament selection consists of choosing 𝑘 random individuals from 𝑃

and selecting the fittest of them. The process is repeated until enough offspring is

22

generated. Tournament selection with 𝑘 = 2 is also known as binary tournament
selection.

Crossover is about deciding how chromosomes, i.e. design points, of two parents should
be combined in offspring. Simulated binary crossover uses probability distributions
that are centered around the parents design points to choose the offspring’s design
points. A parameter 𝜂𝑐 influences the distributions spread. A small 𝜂𝑐 (around 1-5)
will give a wide spread, allowing the algorithm to explore more of the design space
around the parents. A larger 𝜂𝑐 will reduce the spread, which leads to offspring’s that
contain design points close to one of their parents. A more detailed explanation of of
simulated binary crossover is given by its creators in Deb et al. (1995).

Mutation allows genetic algorithms to explore more of the state space by creating
random alterations in the design points of offspring. The probability of a mutation
occurring is commonly set to 1/𝑚, where𝑚 is the number of elements in the design
points. Polynomial mutation uses the same probability distribution as simulated binary
crossover to generate altered design points. Its spread is also controlled by a parameter
𝜂.

A termination criterion is required to decide when the optimization should end. The
number of generations is commonly used as criteria, but this has the drawback of not
utilizing any information on the current state of the optimization.

3.5.6 Running Performance Metric

Blank and Deb (2020b) recently proposed a running performance metric that can be
used to quantify a genetic algorithms performance over time. The metric is useful both
for visualization of performance as well as as a termination criterion. It is based on the
realization that most genetic algorithms have two distinct phases: the convergence
phase C𝐸 and the diversity creation phase C𝐷 . During C𝐸 the algorithm converges
towards extrema, i.e. its best estimates improve rapidly. During C𝐷 the best estimates
no longer improve significantly, but the diversity of the ND set increases. Ideally, the
optimization should terminate when both C𝐸 and C𝐷 have finished and the algorithm
has stopped improving its result.

Performance during C𝐸 is described using the normalized change in the objective
space of two points 𝑧∗ and 𝑧𝑛𝑎𝑑 . The ideal point 𝑧∗ is defined as the minimal objective
value for all design variables in ND. Opposite to the ideal point is the nadir point
𝑧𝑛𝑎𝑑 , which consists of the maximum objective values of the design variables in ND.
A performance metric is found by investigating the maximum normalized change of

23

Figure 3.2: NSGA-II procedure

these points, defined as

Δ𝑡−1,𝑡z∗ =
𝑚max
𝑖

𝑧∗𝑖 (𝑡 − 1) − 𝑧∗𝑖 (𝑡)
𝑧𝑛𝑎𝑑
𝑖

(𝑡) − 𝑧∗
𝑖
(𝑡)

Δ𝑡−1,𝑡z𝑛𝑎𝑑 =
𝑚max
𝑖

𝑧𝑛𝑎𝑑𝑖 (𝑡 − 1) − 𝑧𝑛𝑎𝑑𝑖 (𝑡)
𝑧𝑛𝑎𝑑
𝑖

(𝑡) − 𝑧∗
𝑖
(𝑡)

(3.9)

where𝑚 is the number of design variables and 𝑡 is the generation.

The performance during C𝐷 is quantified using the smallest distance ∅𝑡 from a design
point in 𝑃𝑡−1 to 𝑃𝑡 . Normalization is done using 𝑧∗ and 𝑧𝑛𝑎𝑑 at time t. This must be
considered when visualizing the running metric, since every previously calculated ∅
needs to be recalculated to fit the new normalization.

A termination criterion using Δ𝑡−1,𝑡z∗, Δ𝑡−1,𝑡z𝑛𝑎𝑑 and ∅𝑡 can now be defined as

max(Δ𝑡−1,𝑡z∗,Δ𝑡−2,𝑡−1z∗, ..,Δ𝑡−𝑤,𝑡−𝑤+1z∗) < 𝜖

max(Δ𝑡−1,𝑡z𝑛𝑎𝑑 ,Δ𝑡−2,𝑡−1z𝑛𝑎𝑑 , ..,Δ𝑡−𝑤,𝑡−𝑤+1z𝑛𝑎𝑑) < 𝜖

max(∅𝑡 ,∅𝑡−1, ..,∅𝑡−𝑤) < 𝜖

(3.10)

where𝑤 is a lookback distance, 𝜖 is a termination threshold and 𝑡 is the generation.

3.5.7 NSGA-II

Deb et al. (2002) presents a modified version of an genetic algorithm called the Non-
dominated Sorting Genetic Algorithm II (NSGA-II). It improves upon the classic genetic

24

1 f u n c t i o n s e l e c t (f , R)
2 max_n_parents = s i z e (R) / 2
3 F = non_domina ted_sor t (f , Rt)
4 P = empty_se t ()
5 f o r F i i n F
6 i f s i z e (P) + s i z e (F i) <= max_n_parents
7 add (P , F i)
8 e l s e
9 c r owd i n g _ d i s t a n c e _ s o r t (F i)
10 add (P , F i [1 : (max_n_parents − s i z e (P)]
11 break
12 r e t u r n P
13
14 f u n c t i o n nsga2 (f , R , n_gen_max)
15 f o r g en e r a t i o n in 1 : n_gen_max
16 P = s e l e c t (f , R)
17 Q = empty_se t ()
18 f o r p1 , p2 in P
19 add (Q , c r o s s o v e r (p1 , p2))
20 R = union (P , mutate (Q))
21 r e t u r n p a r e t o _ f r o n t i e r (f , R)

Listing 3.2: NSGA-II

algorithm by offering 1) better performance through the use of elitism, 2) time com-
plexity of O(𝑀𝑁 2) compared to the other genetic algorithms O(𝑀𝑁 3) (where 𝑀 is
the number of objectives and 𝑁 is population size) and 3) not requiring tuning of the
sharing parameter due to the use of a crowded-comparison approach.

NSGA-II distinguishes itself from other genetic algorithms on how it 1) selects individ-
uals from a population and 2) creates new populations. The selection is done by first
sorting individuals from the population 𝑅𝑡 into fronts 𝐹𝑖 based on how many other
individuals dominate them. The least dominated fronts are then put into the next
parent population 𝑃𝑡+1, until a front 𝐹𝑥 does not fully fit within the size limit of 𝑃𝑡+1.
Crowding distance sorting is then performed on 𝐹𝑥 and the individuals with the most
distance to neighbors in the objective space are selected to fill the remaining places
in 𝑃𝑡+1. The remaining individuals in 𝐹𝑥 as well as the remaining fronts 𝐹 [𝑥+1:] are
rejected. 𝑃𝑡+1 is then used to generate an offspring generation 𝑄𝑡+1 through ordinary
crossover and mutation. Note that 𝑄𝑡+1 is only half the size of the original population
𝑅𝑡 . The next population 𝑅𝑡+1 is created as the union of 𝑃𝑡+1 and 𝑄𝑡+1. This introduces
elitism by ensuring that the best individuals are kept throughout the generations.
Listing 3.2 and figure 3.2 show the selection process of NSGA-II.

25

Figure 3.3: Illustration of rolling forecasting origin split. Blue marks the training set,
and red the validation set. The iteration number is marked by the y-axis and the
samples are along the x-axis.

3.6 Model Validation

After a model is created, it has to be validated. This process ensures that a model is not
overfitted to patterns in the data that do not generalize into deployment. Validation
allows higher certainty about a models performance when faced with new data during
deployment. The most common validation technique is cross-validation. It works by
first splitting the available data into a training and a test set. Training data is used
for training the model, while test data is used to evaluate the models performance.
It is important to never use data from the test set when adjusting or optimizing the
model, as it would invalidate the evaluation. The test set is further split into subsets,
but different methods split it in different ways. The names of cross-validation methods
are used inconsistently, but the ideas remain the same. The following two methods are
based on definitions by Brunton and Kutz (2019) and Hyndman and Koehler (2006).

K-fold cross-validation splits the training set into a validation set and a new, smaller
training set. The training set is then further split into 𝑘 subsets, from which 𝑘 models
are created. The performance of these 𝑘 models is evaluated on the validation set. One
can then choose to use the model with the best validation performance, or take the
average across all models.

Evaluation on a rolling forecasting origin is a method well suited for time dependent
data. The split is illustrated in figure 3.3. It works by initially selecting the earliest
samples as a training set and using adjacent samples for validation. In the following
iteration additional samples are added to the training set, and a new validation set is
created from adjacent samples. The process is repeated until all available training data
is in use. The methods name stems from the forecasting origin of the validation set
that "rolls" forward for each iteration. An important property of the rolling forecasting
origin is that it does not break time dependencies as the validation set always trails
the training set.

26

3.7 Other Parameter Estimation Methods

System identification is only one of the methods used for parameter estimation of
UUVs. Other methods can broadly by categorized as experimental, numerical and
empirical.

Experimental parameter estimation methods are the most similar to system identi-
fication. They revolve around using carefully designed experiments to record mea-
surements of the vehicle (or a scale model of it) in controlled environments. Examples
are constant velocity or acceleration based tests (Newman (2018)) and free decay tests
(Faltinsen (1993)).

Numerical methods use computers to approximate hydrodynamic forces acting around
a CAD model. Since Navier-Stokes equation cannot be numerically computed for real
life applications yet, numerical methods rely on simplifications to arrive at results.
A common numerical method today is strip theory (Fossen and Øyvind N. Smogeli
(2004)).

Empirical methods find hydrodynamic parameters by approximating the vehicle by
geometrical shapes with known hydrodynamic properties. A list containing added
mass and damping coefficients for such known shapes can be found in DVL-GL (2011).

27

Chapter 4

Beluga UUV

4.1 Overview

Beluga is a UUV developed by students at Vortex NTNU. It was designed and build
between autumn 2020 and spring 2021, originally meant to compete at the annual
RoboSub competition is San Diego. It is build around an aluminum frame, which
gives it great flexibility in terms of equipment change, but also leads to Belugas quite
complicated shape. Through Vortex’s contact with the Norwegian maritime industry
the organization has been able to equip Beluga with industry-level sensors of high
quality. The UUV weights 25.36 kg and at the time of testing had a slightly negative
netto buoyancy. Figure 4.1 shows Beluga seen from above.

28

Figure 4.1: Beluga

4.2 Propulsion System

Beluga has eight thrusters placed along the its wings, as can be seen in figure 4.1. Four
thrusters operate in the vertical plane and four in the horizontal plane. Those in the
vertical plane are placed further in front and in the back than the vertical ones, and
they are oriented in 45 deg angles towards the x-axis.

Belugas thrusters are controlled by two 4-in-1 KISS electronic speed controllers (ESC),
which receive commands from a Adafruit PCA9685 PWM board, that in turn is con-
trolled from a Nvidia Xavier AGX over an I2C connection. The speed controllers are
not centered and therefore require an offset to be applied their commanded PWM
signal. Each ESC has an input range of 1100 to 1900, where 1500 means no thrust.

Nvidia Jetson AGX
Xavier

(main computer)
I2C

Adafruit PCA9685
(PWM board)

Two KISS 4- in-1
speed controllers

PWM signal

Batteries power

Eight Blue
Robotics T200

thrusters

Figure 4.2: Illustration of Belugas propulsion system

29

1100 1200 1300 1400 1500 1600 1700 1800 1900
PWM

0

10

20

30

40

50

60

70
Ne

wt
on

18 V
16 V
14 V
12 V

Figure 4.3: T200 thrust ranges at different voltages. The direction of thrust changes at
1500 PWM.

All thrusters are powered by two batteries that supply between 16.7 and 14 Volts
depending on charge state. Peak current supply is 160 Ampere. Delivered thrust by
each thruster varies depending on the direction thrust is given in. Delivered thrust
also depends on the supplied voltage level, as shown in figure 4.3. Maximum thrust at
16V is 51.4N forwards and 39.2N backwards. At 14V this reduces to 44.1N forwards
and 34.5N backwards. The difference in maximum thrust given by a voltage change of
2V is thus 7N forwards and 5N backwards. These changes occur while the batteries
are well within their operational range and are significant when delivering strong
thrusts. Note that figure 4.3 does not show a precise measurement for a voltage supply
of 16.7V, which the batteries supply when fully charged.

The software stack running the propulsion system is illustrated in figure 4.4. The stack
is made up of four nodes: Joystick Guidance, Thrust Allocator, Thruster Interface and
PCA9685 Driver. Joystick Guidance receives inputs from a joystick and mapps them to
a 6DOF desired thurst 𝝉𝐸𝑁𝑈 = [𝑋,𝑌, 𝑍, 𝐾,𝑀, 𝑁]𝑇 . Due to legacy reasons the software
operates with a East North Up (ENU) frame instead of the more common NED frame.
Thrust Allocator receives 𝝉𝐸𝑁𝑈 and calculates what thrust will be required by each
thruster to achieve it. This is done using a thruster allocation matrix such as described
in Fossen (2011). Measurements of each thrusters position and orientation in relation

30

Joystick guidance Thrust Allocatordesired thrust

Thruster InterfacePCA9685 Driver desired PWM

thruster forces

Figure 4.4: Illustration of Beluga propulsion software stack

to CO are needed to create the thruster allocation matrix. The resulting thruster forces
are then sent to the thruster interface, which is responsible for mapping desired forces
to desired PWM signals. This mapping is illustrated in figure 4.3, and is as mentioned
earlier depended on the voltage level of the batteries. Finally, the desired PWM is
recieved by the PCA9685 Driver. This node adds offsets to each signal before sending
them to the PCA9685 by I2C communication. These offsets are manually tuned.

4.3 Sensors

Beluga is equipped with an IMU, a DVL and a voltage measurement sensor. Both IMU
and DVL are industry-level sensor, which both provide reliable measurements of high
quality. The IMU is a stim300 IMU by Sensonor and the DVL is a DVL1000 by Nortek.
Belugas system voltage is measured with a power sense module from Blue Robotics.

4.4 Hardware issues

Belugas construction is not completed yet and its shell is not attached. This results
in hydrodynamic properties that will be hard to model using analytical, empirical or
numerical methods. Figure 4.5 shows Beluga UUV as it was used during the experiment
described in chapter 5.

Belugas buoyancy installation is not in place yet and consists of many individual
buoyancy elements that are attached to the main frame using zip-ties. The elements
can move slightly back and forth around their mounting position. One of the 3d printed
mounts for Belugas main electronics housing broke during initial testing. Duct tape

31

Figure 4.5: Beluga as it was during the experiment

and zip-ties where instead used to keep the housing in place. This allowed for some
movement of the housing as well as the sonar mounted on top during operation.

32

Chapter 5

The Experiment

This chapter covers an experiment for model estimation of an UUV using SI. Beluga
UUV is used as testing platform. The experiment is conducted at NTNUs Marine
Cybernetics laboratory (MC-lab).

5.1 The Experiments Objective in a SI Context

The goal of this experiment is to estimate parameters 𝜽 of a UUV model through
system identification methods, where 𝜽 is given by

𝜽 =


M𝐴

D𝐿

D𝑁𝐿


(5.1)

To gather the necessary measurements of the system, the UUV is excited in different
ways while its response to various thrusts 𝝉 is measured. The measured states are

y =


𝜼

v𝑏
𝑛𝑏

𝝎𝑏
𝑛𝑏


(5.2)

33

Figure 5.1: Picture of MC-lab

5.2 Experiment Facilities

5.2.1 Marine Cybernetics Laboratory

NTNUs Marine Cybernetics laboratory (MC-lab) is a 40m x 6,45m x 1,5m basin located
at Tyholt in Trondheim. It is operated by the Department of Marine Technology and
mainly used by master students and phd-candidates. The laboratory is equipped with
a 6DOF real-time positioning system capable of detecting submerged objects. Figure
5.1 shows the basing photographed from the entry corner.

The 6DOF real-time positioning system is provided by Qualisys. It consists of Oqus
Qualisys infra-red cameras, of which 3 cameras are above surface and 6 are below
surface. These are used to detect small ball-shaped infra-red reflectors are attached to
the object of interest during operation. Qualisys Track Manager (QTM) software is
used to find accurate position measurements by comparing the reflectors positions
across the cameras. The update frequency of pose measurements can be set between
100 Hz and 500 Hz. Mounting points for the cameras can be seen as grey structures
along the basin side and on the carriage in figure 5.1. Ultraviolet is emitted below
the surface to enhance measurements subsea measurements. Outside light should be
reduced as much as possible to reduce interference. The six underwater cameras cover
a limited volume that about 4 meters long, 2 meters wide and as deep as the basin. The
space available for testing is limited by that volume.

Pose measurements from QTM can achieve millimeter precision if the system is set

34

up well and calibrated. A calibration is valid for 6 hours, but good results can be
expected for the duration of a day. The position of the reflectors on the object of
interest is important for QTMs estimate stability. Bad placement of the reflectors can
cause QTM to lose track of the objects pose frequently and sometimes reinitialize the
objects orientation incorrectly. For example, QTM might reinitialize an object upside
down. For optimal stability the reflectors should be placed in several planes and in an
asymmetrical layout. There have to be at least three reflectors attached to the object
for QTM to create measurements, but using more reflectors increases QTMs stability.

An objects CO can be defined in relation to the reflectors in several ways. One method
is to define CO position in relation to one of the reflectors. CO orientation can defined
by aligning the x-axis and y-axis with lines between two and two reflectors.

QTMs measurements are published in real-time to a ROS-network by a driver written
by the folks at KTH (KTH (2020)). The driver includes a Kalman filter for calculating
linear and angular velocity. More information on QTM its set up at MC-lab can be
found on the labs official website of Marine Technology (2021).

5.3 Experiment Design

5.3.1 Measurements

Good measurements are essential to successful system identification. In this experi-
ment, pose, velocity and thrust are the main states of interest. Through various sensors
the UUVs position and velocity are measured. Three sensors are used to measure
position and velocity. These are the MC-lab QTM system, Belugas IMU and Belugas
DVL. QTM is used for position and orientation, IMU for angular velocity and DVL for
linear velocity. Belugas thrust output is estimated based on known characteristics of
the thruster and supplied voltage in any moment. The complete list of measured and
estimated states is given in Table 5.1. The measurements are stored in compressed bag
files using bzip2 for compression.

Custom 3d printed mounts are used to attach eight infra-red reflectors to Belugas
frame in an asymmetrical layout. Three reflectors are attached to the drone in an
L-shape, where the orthogonal lines are perpendicular to the x- and y-axis. These
reflectors are used to set up CO correctly in QTM. The ceiling lights of MC-lab are
turned off during measurements, such that interference from surface lights is kept to
a minimum. The ultraviolet lighting of the pool during testing can be seen in figure
5.2. The system is calibrated once a day. Properties of QTMs frame of reference are

35

Figure 5.2: Beluga during recording of random movements

defined during calibration. It is set up using ENU as orientation and origin placed on
the basin floor.

5.3.2 Movement patterns

There are two categories of movement patterns: random movements by human op-
erator control and predefined velocity tests using FSMs and Belugas control system.
Predefined velocity tests are used to isolate single DOFs and coupled terms. Belugas
control system is used to achieve desired motions and velocities, while FSMs are used
to control the order in which tasks are executed. During random movements Beluga is
controlled by joystick while its control system is set to either depth hold or open loop.
The primary goal during random tests is to excite all DOFs and combinations of DOFs
sufficiently.

State Source
Pose 𝜼 Measured with QTM

Linear velocity 𝝂𝑛
𝑛𝑏

Measured with DVL
Angular velocity 𝝎𝑛

𝑛𝑏
Measured with IMU

Delivered thrust 𝝉 Estimated with procedure described in Chapter 4
Desired thrust Output from software system
System voltage Measured with voltage sensor

Thruster PWM signals Output from software system

Table 5.1: Measured and estimated states

36

Start velocity controller

Go to test starting
position

More
tests?

yes

Start Finish

no

Go to test starting
position

Monitor position and
time

Figure 5.3: Sketch of mission FSM

The FSM used for predefined tests is illustrated in figure 5.3. It consist of a series of
tests, where each test is a series of four states: 1) go to pose, 2) set velocity, 3) monitor
and 4) go to pose. The first and fourth state uses the LOS-guided controller to reach the
proximity of a desired pose. Once it is close enough, it switches to the DP controller
for accurate positioning. The second state simply gives the velocity controller a target
velocity. The third state monitors if Beluga is within the boundaries the operational
volume and check if a timeout has occurred. The operational volume is defined as
𝑥 ∈ [−2, 2], 𝑦 ∈ [−0.85, 0.85], 𝑧 ∈ [0.4, 1.05], where the z-axis is positive upwards and
zero is on the basin floor. Timeouts occur after 15 or 20 seconds depending on the test.
A different series of tests is used depending on what DOF or DOFs is excited. Table 5.2
shows all predefined tests.

Due to problems with the controller working against Belugas strong restoring forces,

DOF(s) Velocities
surge ± 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3𝑚/𝑠
sway ± 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3𝑚/𝑠
heave ± 0.05, 0.1 and 0.15𝑚/𝑠
yaw ± 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5 and 0.6 𝑟𝑎𝑑/𝑠

surge and sway both at ± 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3𝑚/𝑠
surge and heave heave ± 0.05, 0.1 and 0.15𝑚/𝑠 and surge at ± 0.1 and 0.2𝑚/𝑠

Table 5.2: Predefined tests

37

roll and pitch are not tested in predefined tests and have to be sufficiently excited in
by operator control.

5.4 Measurement Evaluation and Preprocessing

5.4.1 Error Sources and Measurement Noise

Effects that pollute the measurements are

• water currents caused by moving through it

• ground and surface effects

• voltage spikes caused by quick changes in thrust

• thrust estimate skew caused by tuning of ESCs

• variations in physical properties caused by slack in mounting of physical parts

• buoyancy elements soaking up water

• measurement noise and bias

5.4.2 Measurement Synchronization

Belugas measurements are not recorded at synchronized timesteps due to the dis-
tributed architecture of Belugas software system. Therefore all measurements must
be synchronized before further usage. This can be done through linear interpolation.
First, a function is created for each feature that best fits its values. That function is then
used to get values for the feature at timesteps it has not been measured at. All features
are recreated with the same synchronized sampling frequency. For this project, all
features were recreated with sampling frequencies of 10 Hz. These recreated features
are approximations, but since the system at hand changes slowly and the sampling
frequencies are relatively high, it is assumed that the introduced error is negligible.
Different start and end times of measurement nodes are addressed by deleting all
measurements from times where not all nodes are available.

38

5.4.3 Quaternions

QTM changes the signs of quaternions q𝑛
𝑏
when Beluga crosses orientations of 180°,

eg. when yaw transitions from 179° to −179°. This causes problems both when derivat-
ing 𝜼 and when comparing 𝜼 to an integrated 𝝂 . The change of sings causes large
spikes during derivation and mismatches between integrated values, as they do not
contain this change of signs. These issues are prevented by removing the sign changes
introduced by QTM.

Quaternions are great for robust and computationally inexpensive rotations, but they
are not as intuitive to understand as Euler angles. Therefore, orientations q𝑛

𝑏
are

mapped to Euler angles and added to the dataset. The zyx rotation sequence is used
for the mapping, following the convention used in Fossen (2011).

5.4.4 Measurement Quality Checks

Measurement quality is checked with integration and derivation tests. 𝝂 is integrated
and compared to 𝜼. 𝜼 is derivated and compared to 𝝂 . Errors between calculated and
measured values are defined as 𝑒𝑟𝑟𝑜𝑟 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 . Measurements that
show clear deficiencies in these tests are cut such that the bad parts are removed. The
resulting datasets are stored as csv files.

Descriptive statistics are calculated for each measurement of each test. These contain
the number of datapoints 𝑁 , mean value 𝜇, standard deviation 𝜎 , minimum value and
maximum value.

39

Chapter 6

System Identification of UUV
Models

The system identification method used in this thesis is based on prediction error
minimization from section 3.5.1, but extended to multiple dimensions. It consists of
two steps:

Step 1 Define an objective function f𝐸𝑜𝑀 (𝜽 ,𝝉𝑧, y𝑧) based on the error between mea-
sured states y𝑧 and predicted states y𝐸𝑜𝑀 (𝜽 ,𝝉𝑧).

Step 2Minimize fEoM with the goal of finding the parameters 𝜽̂ that best explain the
measurements y𝑧 given the input 𝝉𝑧 .

6.1 Model Predictions

The predictions, i.e. simulations, 𝒚̂𝐸𝑜𝑀 are generated through numerical integration of
the equations of motion from section 2.3. 𝒚̂𝐸𝑜𝑀 is a time series taking the form

𝒚̂𝐸𝑜𝑀 =


𝜼̂(1), . . . , 𝜼̂(𝑁)

𝝂̂ (1), . . . , 𝝂̂ (𝑁)

 (6.1)

where 𝜼 and 𝝂 are the states defines in table 2.1. The numerical integration is done
using the forward Euler method given by

𝒚̂𝐸𝑜𝑀 (𝑡) = 𝒚̂𝐸𝑜𝑀 (𝑡 − 1) + ℎ ∗ ¤𝒚𝐸𝑜𝑀 (𝑡 − 1) (6.2)

40

where ℎ is a timestep set to 0.1. If 𝒚𝐸𝑜𝑀 contains quaternions, these are normalized at
each timestep (see section 2.1.3). The function ¤𝒚𝐸𝑜𝑀 is selected based on which UUV
model is used for parameter estimation and takes the shape

¤𝒚𝐸𝑜𝑀 =


¤𝜼

¤𝝂

 (6.3)

where the corresponding ¤𝜼 and ¤𝝂 can be found in section 2.3. They take parameters 𝜽
and a vector of inputs 𝝉𝑧 (𝑡) as arguments.

6.2 Multi-Objective Optimization

6.2.1 Objective Function

The objective function f𝐸𝑜𝑀 is defined as

f𝐸𝑜𝑀 (𝜽 ,𝝉𝑧, y𝑧) = 𝝀𝑀𝐴𝐸 (y𝑧 − ŷ𝐸𝑜𝑀)

=
1
𝑁

𝑁∑
𝑡=1

𝑎𝑏𝑠 [y𝑧 (𝑡) − ŷ𝐸𝑜𝑀 (𝑡, 𝜽 ,𝝉𝑧, y𝑧 (0))]
(6.4)

where y𝑧 are measurements of the UUVs states from an experiment dataset Z, 𝝉𝑧 is
the series of inputs given during the same experiment and 𝑁 is the length of Z. ŷ𝐸𝑜𝑀
is a state prediction scheme presented in section 6.1, which has parameters 𝜽 . 𝑎𝑏𝑠 is
absolute value applied element-wise.

The function uses mean absolute error as evaluation metric due to its sparsity-inducing
properties described in Brunton and Kutz (2019).

6.2.2 Optimization with NSGA-II

f𝐸𝑜𝑀 is optimized using NSGA-II, which is explained in section 3.5.7. Initial sampling is
done randomly. Selection from the parent population 𝑃 is done with binary tournament
selection. Crossover is done using simulated binary crossover. Mutation is implemented
as a poynomial mutation, where the probability of mutation is inversely proportional
with the number of design variables. The algorithms is terminated based on the running
performance metric. This metric is saved during execution and used for visualization
of the algorithms performance post-optimization. The population size is set to increase
with the number of parameters. All used parameters can be found in table 6.1.

41

Selection pressure 2
Crossover eta 15
Mutation eta 15

Mutation probability 1/𝑚
Population size 10𝑚

Table 6.1: Used parameters for NSGA-II.𝑚 is the number of parameters in 𝜽

6.2.3 Decision Making

After optimization is done and a Pareto front is attained, a decision has to be made
about which design point one chooses to trust the most. Knee points simplify the task
by reducing the selection from the entire Pareto front down to one or more knee points
that are more likely to be correct. The procedure for finding knee points is taken from
Blank and Deb (2020a).

6.3 Identification using Simulated Measurements

The method for creating predictions ŷ𝐸𝑜𝑀 is also used to create simulated, i.e. synthetic,
measurements based on a chosen design point 𝜽 ∗. This is useful for testing different
system identification schemes, as the best estimate 𝜽̂ can be compared to the chosen
design point. The simulation can be closely linked to identification, making it easy to
swiftly test system identification for different models and parameters.

The identification scheme described so far remains largely the same, but with an
additional step 0 added at the beginning. The step consists of creating simulated
measurements y𝑠𝑖𝑚 using the procedure described in section 6.1, a chosen series of
inputs 𝝉𝑠𝑖𝑚 and vector of parameters 𝜽 ∗. The length of 𝝉𝑠𝑖𝑚 determines the length of
the measurement series y𝑠𝑖𝑚 .

The objective function in step 1 is now given by

f𝐸𝑜𝑀 (𝜽 ,𝝉𝑠𝑖𝑚, y𝑠𝑖𝑚) = 𝝀𝑀𝐴𝐸 (y𝑠𝑖𝑚 − ŷ𝐸𝑜𝑀 (𝑡, 𝜽 ,𝝉𝑠𝑖𝑚)) (6.5)

Two different ramp functions and sinusoidal functions are used as 𝝉𝑠𝑖𝑚 . They can be
seen in figure 6.1. Each 𝝉𝑠𝑖𝑚 is chosen to represent realistic maneuvers. The inputs are
used in simulations restricted to surge, and therefore follow the naming convention 𝑋
from table 2.1. 𝑋𝑠𝑖𝑛𝑔𝑙𝑒_𝑟𝑎𝑚𝑝 ramps up to a forward thrust of 30 newton, lead by and
followed by a 10 second period of zero thrust. 𝑋𝑡𝑟𝑖𝑝𝑙𝑒_𝑟𝑎𝑚𝑝 contains three ramps of

42

0

20

40

60
Th

ru
st

 (N
)

X_single_ramp
X_triple_ramp

0 20 40 60 80 100
Time (s)

50

0

50

Th
ru

st
 (N

)

X_single_sin
X_many_sin

Figure 6.1: Different 𝝉 used for simulation

increasing force; first 10𝑁 , then 30𝑁 and finally 60𝑁 . Periods of zero thrust surround
all ramps. The sinusoidal functions are chosen as

𝑋𝑠𝑖𝑛 =

𝑒∑
𝑖=1

𝐴𝑖𝑠𝑖𝑛(
2𝜋
𝑃𝑖
𝑡) (6.6)

where 𝑒 is the number of contributing sinusoidal functions. 𝑋𝑠𝑖𝑛𝑔𝑙𝑒_𝑠𝑖𝑛 has only a
single contributing function, with 𝐴 = 60 and 𝑃 = 5. 𝑋𝑚𝑎𝑛𝑦_𝑠𝑖𝑛 has contributions
from 10 functions. There share the amplitude 𝐴 = 10, but have different periods
𝑃 = [1, 11, 21, 31, 41, 51, 61, 71, 81, 91]. Both 𝑋𝑠𝑖𝑛𝑔𝑙𝑒_𝑠𝑖𝑛 and 𝑋𝑚𝑎𝑛𝑦_𝑠𝑖𝑛 are 100 seconds
long.

6.4 Software Tooling and Implementation

Python is used as implementation language for parameter estimation. Its rich ecosys-
tem of packages make it easy to a popular choice for tasks where work on data is
important. The implementation of NSGA-II from Pymoo (Blank and Deb (2020a)) is
used for optimization.

43

Pythons slow performance is an issue when doing computationally expensive tasks,
such as optimization. Just-in-time (JIT) compilation is used to alleviate this issue
and improve computational performance. This works by compiling python code at
runtime. This introduces a time penalty each time a function is first called, as it has to
be compiled. Subsequent calls however execute significantly faster.

JIT is implemented through the package Numba, which is presented in Lam et al. (2015).
Numba uses LLVM to compile specially decorated python function. The package only
supports a subset of pythons functionality, which includes most of the python standard
library and Numpy. Polymorphism is not supported.

The implementation is set up s.t. all design points from a generation are available at the
same time. This enables user-defined parallelization of the computation. Numba has
straightforward parallelization support through a decorator argument and a special
range function for parallelization of for loops.

If the 𝜽 used for the prediction 𝒚̂𝐸𝑜𝑀 contains unrealistic values, it can cause the
prediction to become unstable. A limit is imposed on ¤𝒚𝐸𝑜𝑀 during numerical integration
to prevent computational issues with number overflows. The limit set to 10𝑚/𝑠 and
10𝑟𝑎𝑑/𝑠 for Beluga, as any values approaching this magnitude are clearly impossible
during ordinary operation.

44

Chapter 7

Results

7.1 Beluga Time Series

The measurements of Beluga are split into 14 tests. Table 7.1 shows a list of all tests
along with their duration, bag file size and descriptions of their content. There are in
total 3 hours, 14 minutes and 32 seconds of measurements. Approximately 2 hours of
this is recordings of random movements, and the reaming 1 hour 15 minutes is isolated
tests. All measurements are available through the Github repository at the link in
figure 7.1. This includes raw data in .bag file format and preprocessed data as .csv files.

Three of the 14 tests are described in more detail in this chapter: surge-1, sway-1 and
heave-1. Figure 7.2, 7.3 and 7.4 give overviews of the main DOFs timeseries from all
three tests. Tables 7.2, 7.3 and 7.4 show statistical description of all measured quantities.
Statistical descriptions of the remaining tests can be found in appendix A.

Figure 7.1: https://github.com/michoy/system_identification

45

https://github.com/michoy/system_identification

Name Duration Size Description

surge-1 13 min 16 sec 35.2 MB Surge at ± 0.05, 0.1, 0.15, 0.2, 0.25
and 0.3𝑚/𝑠

sway-1 13 min 18 sec 35.6 MB Sway at ± 0.05, 0.1, 0.15, 0.2, 0.25 and
0.3𝑚/𝑠

heave-1 4 min 23 sec 11.8 MB Heave at ± 0.05, 0.1 and 0.15𝑚/𝑠

yaw-1 10 min 59 sec 29.3 MB Yaw at ± 0.1, 0.15, 0.2, 0.25, 0.3, 0.4,
0.5 and 0.6 𝑟𝑎𝑑/𝑠

surge-sway-1 19 min 35 sec 52.9 MB Surge and sway at ± 0.05, 0.1, 0.15,
0.2, 0.25 and 0.3𝑚/𝑠

surge-heave-1 14 min 19 sec 38.7 MB Heave at ± 0.05, 0.1 and 0.15𝑚/𝑠 and
surge at ± 0.1 and 0.2𝑚/𝑠

random-1 11 min 6 sec 30.5 MB Various movements with depth hold
assistance

random-2 9 min 58 sec 27.1 MB Various movements with depth hold
assistance

random-3 16 min 46 sec 45.6 MB Various movements with depth hold
assistance

random-4 9 min 58 sec 26.9 MB Various movements with depth hold
assistance

random-5 6 min 11 sec 16.6 MB Various movements with depth hold
assistance

random-6 19 min 19 sec 52.0 MB Various movements with depth hold
assistance

random-7 19 min 58 sec 52.4 MB Various movements without depth
hold assistance

random-8 25 min 8 sec 65.1 MB Various movements without depth
hold assistance

Table 7.1: Metadata about recordings

46

1

0

1

2

3

Su
rg

e
po

sit
io

n
(m

)

0.2

0.0

0.2

Su
rg

e
ve

lo
cit

y
(m

/s
)

100

0

100

Ya
w

an
gl

e
(d

eg
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (minutes)

20

0

20

Th
ru

st
 (N

)

Figure 7.2: Overview of movements in surge test

47

1

0

1

2

X
po

sit
io

n
(m

)

0.3

0.2

0.1

0.0

0.1

0.2

Su
rg

e
ve

lo
cit

y
(m

/s
)

180

90

0

90

180

Ya
w

an
gl

e
(d

eg
)

0 1 2 3 4 5 6 7 8 9 10 11
Time (minutes)

0

10

20

Th
ru

st
 (N

)

Figure 7.3: Overview of movements in sway test

48

0.0

0.2

0.4

0.6

0.8

He
av

e
po

sit
io

n
(m

)

0.1

0.0

0.1

He
av

e
ve

lo
cit

y
(m

/s
)

2

0

2

Pi
tc

h
an

gl
e

(d
eg

)

0 1 2 3
Time (minutes)

40

20

0

20

Th
ru

st
 (N

)

Figure 7.4: Overview of movements in heave tests

49

N mean std median min max

force_x 7961 3.37 9.08 2.16 -30.35 29.27
force_y 7961 -0.08 1.49 -0.07 -8.31 8.37
force_z 7961 -4.91 2.29 -5.20 -23.14 2.59
torque_x 7961 -0.06 0.14 0.00 -0.56 0.20
torque_y 7961 0.06 0.13 0.00 -0.24 0.37
torque_z 7961 0.16 1.49 0.30 -15.88 13.29
surge_vel 7961 0.04 0.11 0.02 -0.31 0.27
sway_vel 7961 0.00 0.02 0.00 -0.07 0.12
heave_vel 7961 0.00 0.01 -0.00 -0.08 0.06
roll_vel 7961 -0.00 0.02 -0.00 -0.08 0.08
pitch_vel 7961 0.00 0.02 -0.00 -0.09 0.08
yaw_vel 7961 -0.03 0.18 -0.00 -0.91 0.77
position_x 7961 -0.49 1.18 -0.93 -1.66 3.02
position_y 7961 -0.10 0.19 -0.02 -1.10 0.47
position_Z 7961 0.44 0.06 0.44 0.27 0.70
roll 7961 0.04 0.04 0.03 -0.04 0.13
pitch 7961 0.04 0.05 0.03 -0.09 0.15
yaw 7961 -14.26 10.13 -21.90 -25.32 6.32

Table 7.2: Statistical description of 𝝉 , 𝝂 and 𝜼 in surge-1

50

N mean std median min max

force_x 6601 3.73 5.52 0.06 -3.26 26.59
force_y 6601 -1.47 8.85 -0.32 -36.30 23.67
force_z 6601 -5.40 1.86 -5.71 -14.40 -0.04
torque_x 6601 -0.03 0.11 0.00 -0.33 0.41
torque_y 6601 0.05 0.12 0.00 -0.17 0.39
torque_z 6601 0.41 1.34 0.38 -13.74 10.86
surge_vel 6601 0.04 0.06 0.01 -0.05 0.21
sway_vel 6601 -0.01 0.08 0.00 -0.29 0.20
heave_vel 6601 0.00 0.01 -0.00 -0.04 0.05
roll_vel 6601 0.00 0.02 -0.00 -0.13 0.12
pitch_vel 6601 0.00 0.02 0.00 -0.09 0.07
yaw_vel 6601 -0.01 0.17 0.00 -0.83 0.60
position_x 6601 -0.61 1.03 -0.99 -1.61 2.33
position_y 6601 -0.17 0.24 -0.04 -0.98 0.22
position_Z 6601 0.45 0.05 0.44 0.31 0.60
roll 6601 0.04 0.05 0.02 -0.04 0.14
pitch 6601 0.03 0.04 0.03 -0.04 0.18
yaw 6601 0.06 2.10 1.20 -3.90 3.36

Table 7.3: Statistical description of 𝝉 , 𝝂 and 𝜼 in sway-1

51

N mean std median min max

force_x 2629.00 0.13 2.86 -0.22 -5.30 24.68
force_y 2629.00 -0.70 1.25 -0.30 -7.17 5.00
force_z 2629.00 -5.89 6.87 -6.39 -42.10 32.46
torque_x 2629.00 -0.25 0.14 -0.30 -0.64 0.16
torque_y 2629.00 -0.01 0.04 -0.01 -0.22 0.13
torque_z 2629.00 0.16 1.26 0.06 -6.58 10.54
surge_vel 2629.00 0.00 0.03 0.00 -0.14 0.22
sway_vel 2629.00 -0.00 0.02 -0.00 -0.14 0.14
heave_vel 2629.00 -0.00 0.06 -0.01 -0.14 0.18
roll_vel 2629.00 -0.00 0.03 -0.00 -0.14 0.15
pitch_vel 2629.00 0.00 0.01 0.00 -0.05 0.10
yaw_vel 2629.00 -0.02 0.09 -0.00 -0.73 0.38
position_x 2629.00 0.05 0.15 0.01 -0.03 0.86
position_y 2629.00 -0.02 0.14 -0.00 -0.72 0.23
position_Z 2629.00 0.34 0.27 0.33 -0.11 0.79
roll 2629.00 0.08 0.03 0.08 -0.03 0.18
pitch 2629.00 0.00 0.02 -0.00 -0.04 0.08
yaw 2629.00 -6.13 0.77 -6.30 -6.49 -2.14

Table 7.4: Statistical description of 𝝉 , 𝝂 and 𝜼 in heave-1

52

7.2 Measurement Quality Checks

Quality checks are performed on the main DOFs of measurements in tests surge-1,
sway-1 and heave-1. The checks are plotted such that the measured timeseries is
plotted together with the integrated or deviated timeseries in the top plot, and the
error between them is plotted below. In cases where angles and checked, both the
normalized and the continuous angle are plotted. Normalization is done st. every angle
is [−180, 180). Figure 7.5, 7.6 and 7.7 show checks for surge position, surge velcity and
yaw angle for the surge test. Figure 7.8, 7.9 and 7.10 show position along x-axis of the
inertial frame, sway velocity and yaw angle for the sway test. Figure 7.11 and 7.12
show heave position and heave velocity for the heave test.

Overall the checks show small errors in most cases. The deviated checks are very
smooth, seldom containing spikes. Noticable exceptions are in figure 7.6 at the five
minute mark and after the eleventh minute. Figure 7.11 indicates that DVL measure-
ments in heave velocity have a bias towards upwards velocity. Figure 7.12 shows
unrealistic DVL measurements at the 30 seconds mark as well as the 1 minute 20
seconds mark. Figure 7.9 shows strange DVL measurements in sway at 3.5, 4.5 and 10
minutes, noticeably all occurring when the acceleration quickly changes from high to
low. Figure 7.7 indicates a slight bias towards lower yaw angles.

53

1

0

1

2

3

Su
rg

e
po

sit
io

n
(m

) measured
integrated

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (minutes)

1.00

0.75

0.50

0.25

0.00

Er
ro

r (
m

)

Figure 7.5: Integration check for surge position in surge test

0.4

0.2

0.0

0.2

0.4

Su
rg

e
ve

lo
cit

y
(m

/s
)

measured
derivated

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (minutes)

0.4

0.2

0.0

0.2

0.4

Er
ro

r (
m

/s
)

Figure 7.6: Derivation check for surge velocity in surge test

54

100
0
100

Ya
w

no
rm

. (
de

g)

measured
integrated

1000

0

Ya
w

(d
eg

) measured
integrated

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (minutes)

0

20

Er
ro

r (
de

g)

Figure 7.7: Integration check for yaw angle in surge test

1

0

1

2

X
po

sit
io

n
(m

)

measured
integrated

0 1 2 3 4 5 6 7 8 9 10 11
Time (minutes)

0.6

0.4

0.2

0.0

Er
ro

r (
m

)

Figure 7.8: Integration check for sway position in sway test

55

0.3
0.2
0.1

0.0
0.1
0.2

Sw
ay

 v
el

oc
ity

 (m
/s

)

measured
derivated

0 1 2 3 4 5 6 7 8 9 10 11
Time (minutes)

0.10
0.05

0.00
0.05
0.10
0.15

Er
ro

r (
m

/s
)

Figure 7.9: Derivation check for sway velocity in sway test

180

0

180

Ya
w

no
rm

. (
de

g)

measured
integrated

200

0

200

Ya
w

(d
eg

) measured
integrated

0 1 2 3 4 5 6 7 8 9 10 11
Time (minutes)

5

0

Er
ro

r (
de

g)

Figure 7.10: Integration check for yaw angle in sway test

56

0.5

0.0

0.5

He
av

e
po

st
iio

n
(m

) measured
integrated

0 1 2 3
Time (minutes)

0.0

0.2

0.4

0.6

Er
ro

r (
m

)

Figure 7.11: Integration check for heave position in heave tests

0.1

0.0

0.1

0.2

He
av

e
ve

lo
cit

y
(m

/s
) measured

derivated

0 1 2 3
Time (minutes)

0.05

0.00

0.05

Er
ro

r (
m

/s
)

Figure 7.12: Derivation check for heave velocity in heave tests

57

7.3 Identification on Surge Models using Simulated
Measurements

Simulated measurements using a chosen 𝜽 ∗ are used to test the identification scheme
(chapter 6) for the linear and non-linear surge models (section 2.3) and two different
inputs𝝉 . Table 7.6 presents the estimated parameters𝜽 compared to the true parameters
𝜽 ∗. Figure 7.13 and 7.14 show the fit of predictions ŷ to the simulated y for the linear
surge model and inputs 𝝉 = 𝑋𝑡𝑟𝑖𝑝𝑙𝑒_𝑟𝑎𝑚𝑝 and 𝝉 = 𝑋𝑚𝑎𝑛𝑦_𝑠𝑖𝑛𝑒 (from section 6.3). Figure
7.15 shows the same for the non-linear model and input 𝝉 = 𝑋𝑡𝑟𝑖𝑝𝑙𝑒_𝑟𝑎𝑚𝑝 . Figure
7.16 and 7.17 show results from two different runs using the non-linear model and
𝝉 = 𝑋𝑚𝑎𝑛𝑦_𝑠𝑖𝑛𝑒 as input. All estimates represents open-loop (no controller) response
and use the knee point chosen from the final non-dominated set.

Both estimates using the linear model are very good and find the exact parameters
that where used in the simulation. The non-linear model is clearly more difficult to
estimate. None of the identifications where able to find 𝜽 ∗. Run 1 using 𝝉 = 𝑋𝑚𝑎𝑛𝑦_𝑠𝑖𝑛𝑒

performed best, finding the correct damping parameters 𝜽 ∗
𝑑
and 𝜽 ∗

𝑑_𝑛𝑙 , but missing the
mass 𝜽 ∗

𝑚 by 36𝑘𝑔. Even if the correct 𝜽 ∗ was not found, the predictions ŷ produced
by the different 𝜽 are visually very close to the true y. The difference in 𝜽 between
non-linear many-sine runs 1 and 2 is worth noting.

Model and 𝝉 𝜽 ∗
𝑚 𝜽𝑚 𝜽 ∗

𝑑
𝜽𝑑 𝜽 ∗

𝑑_𝑛𝑙 𝜽𝑑_𝑛𝑙

Linear triple ramp 60 59.999 20 20.000 - -
Linear many sine 60 60.122 20 19.998 - -

Non-linear triple ramp 60 94.841 20 15.872 2 4.911
Non-linear many sine, run 1 60 96.101 20 20.536 2 2.0486
Non-linear many sine, run 2 60 114.904 20 25.534 2 0.679

Table 7.5: Chosen and estimated parameters for different models and 𝝉

58

0

25

50

75

100

Su
rg

e
Po

sit
io

n
(m

) y
y_hat

0

1

2

3

Su
rg

e
Ve

lo
cit

y
(m

/s
) y

y_hat

0 30 60 90
Time (s)

0

20

40

60

Th
ru

st
 (N

)

Figure 7.13: Comparison between simulated y and estimated ŷ using the linear surge
model and 𝝉 = 𝑋𝑡𝑟𝑖𝑝𝑙𝑒_𝑟𝑎𝑚𝑝

59

0.0

2.5

5.0

7.5

Su
rg

e
Po

sit
io

n
(m

)

y
y_hat

1

0

1

2

Su
rg

e
Ve

lo
cit

y
(m

/s
) y

y_hat

0 30 60 90
Time (s)

0

50

Th
ru

st
 (N

)

Figure 7.14: Comparison between simulated y and estimated ŷ using the linear surge
model and 𝝉 = 𝑋𝑚𝑎𝑛𝑦_𝑠𝑖𝑛𝑒

60

0

20

40

60

80

Su
rg

e
Po

sit
io

n
(m

) y
y_hat

0

1

2

Su
rg

e
Ve

lo
cit

y
(m

/s
) y

y_hat

0 30 60 90
Time (s)

0

20

40

60

Th
ru

st
 (N

)

Figure 7.15: Comparison from between simulated y and estimated ŷ using the non-
linear surge model and 𝝉 = 𝑋𝑡𝑟𝑖𝑝𝑙𝑒_𝑟𝑎𝑚𝑝

61

0

2

4

6

8

Su
rg

e
Po

sit
io

n
(m

)

y
y_hat

1

0

1

2

Su
rg

e
Ve

lo
cit

y
(m

/s
) y

y_hat

0 30 60 90
Time (s)

0

50

Th
ru

st
 (N

)

Figure 7.16: Comparison from between simulated y and estimated ŷ using the non-
linear surge model and 𝝉 = 𝑋𝑚𝑎𝑛𝑦_𝑠𝑖𝑛𝑒 , run 1

62

0

2

4

6

8

Su
rg

e
Po

sit
io

n
(m

)

y
y_hat

1

0

1

2

Su
rg

e
Ve

lo
cit

y
(m

/s
) y

y_hat

0 30 60 90
Time (s)

0

50

Th
ru

st
 (N

)

Figure 7.17: Comparison from between simulated y and estimated ŷ using the non-
linear surge model and 𝝉 = 𝑋𝑚𝑎𝑛𝑦_𝑠𝑖𝑛𝑒 , run 2

63

7.4 Identification on Surge Models using Real Mea-
surements

Measurements from the surge tests are used to estimated Belugas hydrodynamic param-
eters for the linear and non-linear surge models from section 2.3. Only measurements
between the 7. and 11. minute are used, s.t. no rotations or bad measurements are
included. Figure 7.18 and 7.19 show a comparison between measurements y and model
predictions ŷ for the linear and non-linear models respectively. The corresponding
estimated 𝜽 are shown in table 7.6. In each case the knee point is used to chose 𝜽 from
the non-dominated set.

The linear and non-linear estimates gave quite different 𝜽𝑚 , but rather similar 𝜽𝑑 . It
is clear from figure 7.18 and 7.19 that both model predictions ŷ have similar shapes
that follow the topology of y. Predictions in velocity are more box-shaped than the
measurements, and quite similar the input thrust 𝝉 . Velocity estimates of the non-linear
model estimate have more rounded edges, making them slightly more similar to the
measurements. Both estimates have very good fit at velocities close to zero and worse
fit at higher velocities.

Model 𝜽𝑚 𝜽𝑑 𝜽𝑑_𝑛𝑙

Linear surge model 26.949 115.898 -
Non-linear surge model 96.869 118.187 0.867

Table 7.6: Estimated parameters from Beluga measurements using linear and non-linear
surge models. The true parameters are unknown.

64

2

1

0

1

Su
rg

e
Po

sit
io

n
(m

)

y
y_hat

0.2

0.1

0.0

0.1

0.2

Su
rg

e
Ve

lo
cit

y
(m

/s
)

y
y_hat

0 30 60 90 120 150 180 210 240
Time (s)

20

0

20

Th
ru

st
 (N

)

Figure 7.18: Fit between measured position and velocity in surge together with model
predictions with linear surge model

65

2

1

0

1

Su
rg

e
Po

sit
io

n
(m

)

y
y_hat

0.2

0.1

0.0

0.1

0.2

Su
rg

e
Ve

lo
cit

y
(m

/s
)

y
y_hat

0 30 60 90 120 150 180 210 240
Time (s)

20

0

20

Th
ru

st
 (N

)

Figure 7.19: Fit between measured position and velocity in surge together with model
predictions with non-linear surge model

66

7.5 Visualization of the Objective Function

Figure 7.20 visualizes the topology of f𝐸𝑜𝑀 for the two dimensional linear surge model
and for two inputs 𝑋𝑠𝑖𝑛𝑔𝑙𝑒_𝑟𝑎𝑚𝑝 and 𝑋𝑡𝑟𝑖𝑝𝑙𝑒_𝑟𝑎𝑚𝑝 (inputs explained in figure 6.1). The
EoM of the linear surge model is used since it is easy to visualize thanks to only having
two parameters, mass 𝜽𝑚 and damping 𝜽𝑑 . 𝜽𝑚 is plotted along the x-axis and 𝜽𝑑 along
the y-axis. The color of the plot is a gradient given by

𝑧 =

𝑚∑
𝑖=1

f𝑖 (7.1)

where𝑚 is the number of objectives in f𝐸𝑜𝑀 , f is given by equation 6.4 and the subscript
𝐸𝑜𝑀 is removed for notational brevity. Both simulations are made using 𝜃 ∗𝑚 = 60 and
𝜃 ∗
𝑑
= 20.

There is a clear line on which all the lowest objectve values lie. The line is however
not even, but instead contains many small islands of local minima. 𝝉 = 𝑋𝑠𝑖𝑛𝑔𝑙𝑒_𝑠𝑖𝑛𝑒

prodces a more horizontal line in f𝐸𝑜𝑀 compared to 𝝉 = 𝑋𝑠𝑖𝑛𝑔𝑙𝑒_𝑟𝑎𝑚𝑝 , indicating that
the former causes f𝐸𝑜𝑀 to be less sensitive to different masses 𝜽𝑚 .

67

20 40 60 80 100 120
theta_m

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

th
et

a_
d

0.033

0.075

0.168

0.378

0.850

1.912

4.302

9.680

21.780

(a) 𝝉 = 𝑋𝑠𝑖𝑛𝑔𝑙𝑒_𝑟𝑎𝑚𝑝

20 40 60 80 100 120
theta_m

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

th
et

a_
d

0.015

0.033

0.075

0.168

0.378

0.850

1.912

4.302

9.680

21.780

(b) 𝝉 = 𝑋𝑠𝑖𝑛𝑔𝑙𝑒_𝑠𝑖𝑛𝑒

Figure 7.20: Topology of f𝐸𝑜𝑀 around 𝜽 ∗ for different 𝝉 . 𝜽 ∗ is marked with a black star

68

7.6 Computation Time Analysis

Figure 7.21 shows how many seconds it took to compute ŷ𝐸𝑜𝑀 𝑛 times. EoF from linear
surge model are used and the length of each ŷ𝐸𝑜𝑀 is 5 minutes, i.e. 3000 timesteps.
The computation is performed without JIT, with JIT and with JIT and parallelization.
Special care was taken to ensure that no JIT compiled code was cached between tests.

JIT gave substantial performance benefits, while parallelized code actually performed
worse than non-parallelized code. Computation without JIT performes better for few
repetitions, but is significantly slower for 100 or more repetitions.

30

31

32

No jit Jit Jit parallel
0

1

2

3

4

Ti
m

e
(s

)

n=1
n=10
n=100
n=1000

Figure 7.21: Computation time of 𝑛 calls of predict

69

Chapter 8

Discussion

8.1 Beluga Measurements

The measurements cover most DOFs in isolation, as well as commonly coupled terms.
The only exceptions are tests requiring roll and pitch velocity to be controlled. These
are omitted due to the controllers struggle with maintaining constant velocities in
these DOFs. The struggle is caused by Beluga being very stable around the x- and
y-axis, forcing the controller to give large inputs which must vary greatly and even
change direction depending on how Beluga is rotated.

The very smooth positional derivatives indicate high quality position measurements
with almost no noise. The fact that all positional derivatives are usable, and sometimes
even more reasonable than velocities directly measured with other sensors, is quite
remarkable. This is well illustrated in figure 7.9 and 7.12, where the derivatives are
smoother than the velocity measurements in some places.

Figure 7.11 indicates a measurement bias in heave velocity. Since there is apparent
bias visible in surge and sway velocity from figures 7.5 and 7.8, this cannot be caused
be a sensor misalignment and is more likely caused by a bad configuration of the DVL,
such as for example a bad configuration of the gravitational constant.

The DVL measurements behave strange during sudden changes in heave and sway
velocity in figures 7.12 and 7.9. At 30 seconds and 1 min 20 seconds in figure 7.12 DVL
measurements freeze for a few seconds. The strange measurements might be caused
by the DVL operating near the lower limit of its operating altitude.

70

Figure 7.7 and 7.10 both indicate a bias in measured angular yaw velocity. In the sway
tests the direction of drift changes at the six minute mark. This is because Beluga
starts moving in the opposite direction. Two possible causes for this error are a) a
misalignment of the IMU around Belugas x-axis or y-axis or b) a poor calibration
of the IMU. A possible solution is to estimate the misalignment and correct for it in
post-processing by doing a static transform on all IMU measurements.

8.2 SI Using Simulated Measurements

NSGA-II performs well for linear two dimensions and estimates parameters 𝜽 that are
almost identical to those used for simulating measurements. This is illustrated by the
perfect match between y and ŷ for the two dimensional linear models in figure 7.14
and the closeness between 𝜽 and 𝜽 ∗ for the linear models in table 7.5. The algorithm
is clearly able to avoid local minima and converge to the true pareto frontier.

The situation changes when a non-linear third dimension is included. This is illustrated
by the imperfect fit for the three dimensional non-linear models in figures 7.13, 7.16
and 7.17, as well as the differences between 𝜽 and 𝜽 ∗ in table 7.5. 𝜽 for the non-
linear models is approximately 30% off in mass for both 𝝉 and 25% off in damping for
𝝉 = 𝑋𝑡𝑟𝑖𝑝𝑙𝑒_𝑟𝑎𝑚𝑝 .

A common denominator for all 𝜽 in table 7.5 is their tendency to have better estimates
for damping than mass. This can be explained by the objective functions higher
sensitivity to damping than mass, as pointed out in section 7.5.

Even if the estimated parameters 𝜽 from the non-linear models are not fully equal to
the true parameters 𝜽 ∗, the visual fit in figures 7.13, 7.16 and 7.17 is still quite good.
Figure 7.20 shows that, for two dimensional models, there are lines in f𝐸𝑜𝑀 along
which both objective values are low. This implies that parameter estimates along these
lines will give a good prediction fit, even if the parameter estimates are far off the true
values. It seems reasonable that this phenomena may extend to higher dimensions. In
that case it would be a fundamental challenge to the method presented in this thesis,
as there would clearly be many design points that can produce similar predictions
to those of the true parameters. In other words, there might be many local minima
present in f𝐸𝑜𝑀 that correspond to small objective values. A possible explanation for
the struggles with higher non-linear dimensions is thus, that NSGA-II converges to
non-dominated sets of local minima instead of the true pareto front.

The local minima explanation is strengthened by the different estimates between run
1 and 2 of the non-linear many-sine estimations in table 7.5 and figures 7.16 and 7.17.

71

Since the initial population for the genetic algorithm is selected randomly, it can find
different local minima from run to run. For successful optimization it depends on at
least one design point being generated in proximity of the true 𝜽 during initialization,
or having a random mutation that achieves the same in one of its generations. This
condition is clearly fulfilled for the two dimensional linear model, but the introduction
of more design dimensions will likely lower the chances of this happening significantly.
A noteworthy observation is that if the algorithm is able to find the correct parameters,
it almost always does. However, if it is not able to do so, its result tends to vary from
one run to another.

Issues with fitting measurements to non-linear state space models are nothing new.
Kantas et al. (2015) points out that non-linear state-space models are notoriously
difficult to fit data to.

A better result might be achieved by helping the algorithm get out of, or pass, local
minima. This can be achieved by using a larger population size or increasing the
mutation rate. Limiting factors for the former are memory size and computation time.
On the utilized computer this constrained the population size to 10 000, since it only
has 8 GB of RAM. Another option is to run the optimization multiple times, and select
the solution which achieved the best fit. This increases the odds of finding a good
estimate, because the initial population of NSGA-II is chosen randomly.

8.3 SI Using Real Measurements

The estimation scheme is able to find parameters using the proposed method. It is
clear that both estimated linear and non-linear model predictions follow the measure-
ments topology, and that the estimated parameters are partly able to describe the true
behaviour. However, neither of the estimated models are able to precisely describe the
measurements. This indicates that either the model structure is unfit to describe the
physical behaviour of Beluga, or the estimated parameters are not ideal.

The model structures used to create predictions ŷ assume that Beluga only moves
one dimension, but Beluga has six degrees of freedom in the measurements. The
overview of the measurements from the surge test (fig. 7.2) show that there is still
some movement in yaw during the minutes used for estimation, even if the controller
keeps it stable. The means that Beluga does not travel in a perfect straight line, which
the model assumes it does. This deviation will certainly introduce some error, but
since both the linear and the non-linear model are able to mimic the measurements
topology, is seems unlikely that the problem is entirely caused by the faults in the

72

model structure.

NSGA-II might face the same problemswith regards to local minima as in the simulation
based tests from section 8.2. There are certainly similarities between the estimates
made based on Belugas measurements to the findings from estimations using simulated
measurements. In both cases ŷ has the same topology as y, but fails to get a good fit
at negative and positive peaks. The similarity suggests that NSGA-II has the same
problem for real measurements as for simulated measurements, where it converges to
a non-dominated set with design points in local minima instead of the true pareto set.

The task of estimation of hydrodynamic coefficients for UUVs is difficult and the
author has found any reference to a solution to this. Estimates involve a high degree of
uncertainty no matter which method is used, and it is common that parameters have
up to 50% errors even for expensive experimental methods (Eidsvik and Schjølberg
(2016)). System identification has shown promise as being more efficient for solving
the problem, but many of its newer methods do not yet live up to the expectations
(Kantas et al. (2015)). Belugas complicated shape makes estimation using analytical,
empirical and numeric methods difficult, which leaves experimental identification and
by system identification as options.

The fact that added mass and damping is frequency dependent adds considerable error
to the estimates, since it is neglected by the models from Fossen (2011). This inherent
simplification of the physics of the vehicles environment make errors added mass
estimates less impacting, as the model structure is not aiming for perfect description of
the physics to begin with. The frequency dependency also has to be considered in the
way inputs are given to the UUV, as excitation at different frequencies will produce
different coefficients for added mass and damping.

8.4 Computational Performance

The substantial performance benefits for JIT are expected, as the algorithm involves
many numerical operations and nested loops. Pythons performance in these cases
is known to be poor, and Numba advertises their significant performance gains in
these exact areas. The much slower performance of JIT compared to no-JIT for 1 to
10 executions is caused by the time taken to compile during the first execution. After
the code has compiled, the lower computational load for each successive execution
becomes apparent.

Overhead of parallelization outweighs its benefits in this case. Creating threads is
computationally demanding, and in this case the performance benefits from having

73

multiple threads calculating objective functions are not enough to make up for the time
lost in thread creation. Parallelization would have performed better if a) the objective
function was computationally more demanding or 2) a set pool of threads was used
during optimization, removing the need to create new threads for every individual in
the population.

74

Chapter 9

Conclusion and Further Work

9.1 Conclusion

In this thesis the parameters of an UUV where estimated using a machine learning
approach. A literature review was conducted on parameter estimation methods ap-
plied to UUVs, with emphasis on methods that utilize machine learning techniques.
An experiment was conducted to gather full-state measurements of an UUV during
various maneuvers. The measurements quality was investigated and discussed. A
system identification scheme using prediction errors and a genetic algorithm for multi-
objective optimization was used to estimate UUV parameters. The scheme was applied
to both simulated and real measurements of a UUV. Parameters where found in both
cases and their correctness was discussed with regards to accuracy and computational
performance.

9.2 Proposal for Further Work

There are several interesting directions to explore for further work. One of them is the
use of different optimization methods. NSGA-III is a development of NSGA-II meant
to perform better for higher dimensional optimization problems (Deb and Jain (2014)).
Some papers point out that NSGA-III in many cases has issues with convergence
and propose improved versions. Two examples of this are Yuan et al. (2014) and Cui
et al. (2019), which both focus on making better tradeoffs between convergence and
diversity.

75

Another direction is to further investigate the properties of the proposed method. It
would be interesting to visualize the effect non-linearities have the objective function,
and howmuch complexity it adds to compared to the addition of new design dimensions.
The SI methods robustness can be investigated by adding noise and bias to the simulated
measurements. Using larger population sizes should increase the chances of the
optimization converging to the global mimimum. This can be tested by moving the
computation to cloud-based services, where high-end CPUs and largememories remove
the bottlenecks present in consumer grade PCs.

The measurements gathered from Beluga UUV can also be used as data for entirely
different system identification approaches. Many traditional methods exists, such as
the extended Kalman filter or the least squares method. Other interesting approaches
could be kernel-based, such as the one by Zhang and Zou (2013).

76

Appendix A

Statistical Describtions

77

Table A.1: Statistical description of 𝝉 , 𝝂 and 𝜼 in yaw-1

N mean std median min max

force_x 6597.00 -0.25 2.34 -0.43 -6.06 26.84
force_y 6597.00 -0.58 1.12 -0.46 -6.62 6.19
force_z 6597.00 -6.52 2.37 -6.91 -14.81 7.51
torque_x 6597.00 -0.17 0.17 -0.25 -0.55 0.44
torque_y 6597.00 -0.01 0.05 -0.02 -0.23 0.32
torque_z 6597.00 0.17 2.57 0.23 -17.43 13.77
surge_vel 6597.00 0.00 0.02 -0.00 -0.08 0.20
sway_vel 6597.00 -0.00 0.01 -0.00 -0.07 0.09
heave_vel 6597.00 -0.00 0.02 -0.00 -0.04 0.07
roll_vel 6597.00 -0.00 0.02 -0.00 -0.10 0.10
pitch_vel 6597.00 0.00 0.02 0.00 -0.05 0.10
yaw_vel 6597.00 -0.01 0.27 0.00 -0.80 0.78
position_x 6597.00 0.01 0.20 0.03 -1.60 0.19
position_y 6597.00 -0.00 0.05 0.00 -0.40 0.10
position_Z 6597.00 0.46 0.08 0.46 -0.00 0.60
roll 6597.00 0.07 0.04 0.08 -0.06 0.17
pitch 6597.00 0.02 0.04 0.00 -0.08 0.15
yaw 6597.00 -4.73 6.65 -6.34 -15.69 8.02

78

Table A.2: Statistical description of 𝝉 , 𝝂 and 𝜼 in heave_surge-1

N mean std median min max

force_x 8596.00 2.31 7.78 -0.28 -20.57 28.83
force_y 8596.00 -0.13 1.58 -0.09 -8.05 10.46
force_z 8596.00 -5.54 6.99 -6.42 -41.23 20.04
torque_x 8596.00 -0.10 0.17 0.00 -0.64 0.33
torque_y 8596.00 0.06 0.15 0.00 -0.45 0.54
torque_z 8596.00 0.28 1.74 0.27 -17.03 17.77
surge_vel 8596.00 0.03 0.08 0.00 -0.21 0.26
sway_vel 8596.00 0.00 0.02 0.00 -0.10 0.15
heave_vel 8596.00 -0.00 0.05 -0.01 -0.13 0.17
roll_vel 8596.00 -0.00 0.03 -0.00 -0.16 0.24
pitch_vel 8596.00 0.00 0.02 0.00 -0.09 0.14
yaw_vel 8596.00 -0.01 0.18 0.00 -0.93 0.82
position_x 8596.00 -1.03 0.70 -1.43 -1.65 1.88
position_y 8596.00 -0.04 0.14 -0.01 -0.66 0.36
position_Z 8596.00 0.38 0.23 0.42 -0.14 0.79
roll 8596.00 0.05 0.04 0.05 -0.11 0.23
pitch 8596.00 0.04 0.05 0.04 -0.08 0.23
yaw 8596.00 -6.76 5.25 -9.47 -12.99 6.33

79

Table A.3: Statistical description of 𝝉 , 𝝂 and 𝜼 in surge_sway-1

N mean std median min max

force_x 11753.00 5.19 7.55 3.90 -25.74 32.04
force_y 11753.00 -0.96 8.44 -0.26 -36.71 36.55
force_z 11753.00 -5.24 1.78 -5.17 -16.12 -0.00
torque_x 11753.00 -0.08 0.16 0.00 -0.48 0.52
torque_y 11753.00 0.03 0.14 0.00 -0.27 0.45
torque_z 11753.00 0.27 1.56 0.16 -14.55 18.22
surge_vel 11753.00 0.06 0.09 0.05 -0.25 0.26
sway_vel 11753.00 -0.00 0.07 0.00 -0.24 0.26
heave_vel 11753.00 0.00 0.01 -0.00 -0.09 0.13
roll_vel 11753.00 0.00 0.02 -0.00 -0.16 0.12
pitch_vel 11753.00 0.00 0.02 0.00 -0.10 0.16
yaw_vel 11753.00 0.00 0.19 0.00 -0.80 0.84
position_x 11753.00 -0.42 1.23 -0.87 -1.71 2.65
position_y 11753.00 -0.02 0.26 -0.01 -1.05 0.89
position_Z 11753.00 0.45 0.06 0.45 0.33 0.92
roll 11753.00 0.05 0.04 0.06 -0.07 0.15
pitch 11753.00 0.02 0.04 0.02 -0.07 0.15
yaw 11753.00 2.98 1.75 2.84 -0.17 6.32

80

Table A.4: Statistical description of 𝝉 , 𝝂 and 𝜼 in random-1

N mean std median min max

force_x 3001.00 13.21 18.21 16.14 -39.19 47.74
force_y 3001.00 0.63 23.42 0.00 -54.12 40.27
force_z 3001.00 -4.56 7.15 -5.06 -47.66 37.82
torque_x 3001.00 0.00 1.87 0.01 -24.69 24.64
torque_y 3001.00 0.04 0.85 -0.01 -2.27 13.49
torque_z 3001.00 -0.29 4.84 0.10 -29.54 19.64
surge_vel 3001.00 0.12 0.14 0.13 -0.27 0.39
sway_vel 3001.00 0.00 0.16 0.01 -0.33 0.29
heave_vel 3001.00 -0.01 0.03 -0.01 -0.19 0.18
roll_vel 3001.00 0.00 0.19 0.00 -1.94 1.95
pitch_vel 3001.00 0.01 0.07 0.00 -0.30 0.65
yaw_vel 3001.00 -0.07 0.42 -0.12 -1.33 1.46
position_x 3001.00 -0.18 0.68 -0.12 -1.85 1.62
position_y 3001.00 -0.15 0.50 -0.13 -1.52 0.87
position_Z 3001.00 0.29 0.10 0.31 -0.34 0.47
roll 3001.00 0.05 0.19 0.06 -2.18 1.40
pitch 3001.00 0.05 0.09 0.04 -1.23 0.40
yaw 3001.00 -14.12 5.64 -14.71 -23.46 -0.00

81

Table A.5: Statistical description of 𝝉 , 𝝂 and 𝜼 in random-2

N mean std median min max

force_x 5980.00 6.68 16.51 -0.09 -41.42 62.32
force_y 5980.00 1.01 12.39 0.11 -59.75 54.20
force_z 5980.00 -4.50 7.55 -4.37 -65.62 66.46
torque_x 5980.00 0.06 2.37 0.01 -26.64 26.46
torque_y 5980.00 0.18 6.53 -0.02 -25.93 28.15
torque_z 5980.00 0.43 5.48 0.02 -30.63 28.90
surge_vel 5980.00 0.08 0.13 0.05 -0.41 0.46
sway_vel 5980.00 0.02 0.08 0.01 -0.48 0.35
heave_vel 5980.00 -0.00 0.04 -0.00 -0.31 0.33
roll_vel 5980.00 -0.01 0.28 0.00 -2.39 2.14
pitch_vel 5980.00 0.02 0.22 0.01 -0.89 1.15
yaw_vel 5980.00 0.02 0.44 0.01 -1.67 1.58
position_x 5980.00 0.11 0.57 0.10 -1.14 2.15
position_y 5980.00 0.17 0.41 0.17 -1.05 1.42
position_Z 5980.00 0.21 0.13 0.22 -0.26 0.56
roll 5980.00 -3.56 3.10 -5.70 -9.10 1.98
pitch 5980.00 -0.03 0.32 -0.00 -1.53 1.55
yaw 5980.00 2.95 4.32 3.45 -9.30 12.57

82

Table A.6: Statistical description of 𝝉 , 𝝂 and 𝜼 in random-3

N mean std median min max

force_x 10065.00 4.19 16.52 -0.61 -71.02 59.74
force_y 10065.00 -0.56 16.74 -0.64 -60.75 58.94
force_z 10065.00 -5.50 7.40 -5.25 -75.01 62.10
torque_x 10065.00 0.10 2.84 0.01 -26.28 26.28
torque_y 10065.00 1.14 6.09 -0.01 -25.80 26.79
torque_z 10065.00 0.38 5.48 0.04 -30.11 29.96
surge_vel 10065.00 0.05 0.12 0.03 -0.41 0.43
sway_vel 10065.00 0.00 0.11 0.01 -0.35 0.42
heave_vel 10065.00 -0.00 0.04 0.00 -0.45 0.33
roll_vel 10065.00 0.03 0.33 0.01 -2.07 2.21
pitch_vel 10065.00 0.03 0.24 0.01 -1.09 1.41
yaw_vel 10065.00 0.02 0.40 -0.01 -1.73 1.57
position_x 10065.00 0.11 0.65 0.06 -1.70 1.95
position_y 10065.00 0.08 0.44 0.12 -1.50 1.08
position_Z 10065.00 0.26 0.10 0.26 -0.15 0.60
roll 10065.00 4.55 6.30 0.08 -6.50 20.34
pitch 10065.00 -0.02 0.27 -0.00 -1.54 1.43
yaw 10065.00 -0.31 5.82 -1.07 -11.49 19.34

83

Table A.7: Statistical description of 𝝉 , 𝝂 and 𝜼 in random-4

N mean std median min max

force_x 5981.00 6.79 15.21 0.02 -59.46 58.09
force_y 5981.00 -1.74 17.16 -0.50 -60.99 46.57
force_z 5981.00 -5.75 8.33 -5.26 -67.78 61.56
torque_x 5981.00 -0.04 1.93 0.01 -25.05 24.34
torque_y 5981.00 1.06 6.42 -0.00 -26.49 27.36
torque_z 5981.00 0.12 5.59 0.01 -30.34 29.73
surge_vel 5981.00 0.06 0.11 0.04 -0.30 0.41
sway_vel 5981.00 -0.00 0.11 0.00 -0.34 0.30
heave_vel 5981.00 -0.01 0.04 -0.00 -0.25 0.28
roll_vel 5981.00 0.03 0.27 0.01 -2.84 1.44
pitch_vel 5981.00 0.02 0.24 0.01 -1.47 1.24
yaw_vel 5981.00 -0.01 0.41 -0.02 -1.72 1.80
position_x 5981.00 0.12 0.50 0.21 -1.17 1.34
position_y 5981.00 0.17 0.34 0.18 -0.84 1.06
position_Z 5981.00 0.17 0.10 0.16 -0.13 0.58
roll 5981.00 -0.05 0.43 -0.02 -2.75 2.02
pitch 5981.00 -0.03 0.31 -0.01 -1.52 1.27
yaw 5981.00 -14.19 7.84 -18.28 -23.90 3.26

84

Table A.8: Statistical description of 𝝉 , 𝝂 and 𝜼 in random-5

N mean std median min max

force_x 3710.00 8.02 16.21 3.22 -64.99 55.08
force_y 3710.00 -4.03 15.86 -0.61 -60.06 41.72
force_z 3710.00 -8.19 5.89 -7.51 -65.73 55.15
torque_x 3710.00 -0.53 6.06 0.01 -25.05 25.05
torque_y 3710.00 -0.92 3.07 -0.03 -22.00 17.24
torque_z 3710.00 0.40 9.04 0.04 -30.82 30.79
surge_vel 3710.00 0.08 0.11 0.07 -0.45 0.45
sway_vel 3710.00 -0.01 0.09 -0.01 -0.52 0.27
heave_vel 3710.00 -0.01 0.03 -0.01 -0.20 0.20
roll_vel 3710.00 -0.06 0.60 0.00 -3.13 3.22
pitch_vel 3710.00 0.03 0.17 0.01 -0.84 1.11
yaw_vel 3710.00 0.02 0.54 -0.01 -1.91 1.74
position_x 3710.00 -0.12 0.53 -0.21 -1.30 1.22
position_y 3710.00 0.16 0.36 0.23 -1.11 0.88
position_Z 3710.00 0.10 0.11 0.10 -0.22 0.48
roll 3710.00 -13.92 11.80 -12.55 -31.69 7.31
pitch 3710.00 0.00 0.22 0.01 -1.51 1.44
yaw 3710.00 9.20 6.92 9.90 -3.26 22.07

85

Table A.9: Statistical description of 𝝉 , 𝝂 and 𝜼 in random-6

N mean std median min max

force_x 11556.00 13.55 20.34 14.11 -61.28 60.86
force_y 11556.00 -0.71 17.13 -0.04 -60.12 61.28
force_z 11556.00 -5.53 7.10 -5.91 -68.05 66.72
torque_x 11556.00 -0.14 2.62 0.01 -27.04 26.93
torque_y 11556.00 0.31 6.49 -0.01 -28.56 28.63
torque_z 11556.00 0.31 6.87 0.00 -30.14 29.99
surge_vel 11556.00 0.11 0.15 0.11 -0.56 0.63
sway_vel 11556.00 0.01 0.09 0.01 -0.32 0.34
heave_vel 11556.00 -0.00 0.04 -0.00 -0.30 0.31
roll_vel 11556.00 0.00 0.30 0.01 -3.26 2.01
pitch_vel 11556.00 0.02 0.30 0.01 -1.43 1.95
yaw_vel 11556.00 0.02 0.51 0.01 -1.83 1.83
position_x 11556.00 -0.02 0.58 0.01 -1.58 2.17
position_y 11556.00 0.17 0.46 0.16 -1.41 1.31
position_Z 11556.00 0.17 0.12 0.15 -0.47 0.53
roll 11556.00 -16.02 8.33 -12.70 -26.66 1.21
pitch 11556.00 -0.01 0.24 -0.00 -1.37 1.46
yaw 11556.00 11.14 7.21 12.75 -5.62 22.82

86

Table A.10: Statistical description of 𝝉 , 𝝂 and 𝜼 in random-7

N mean std median min max

force_x 11981.00 6.27 15.90 0.00 -60.00 60.00
force_y 11981.00 -1.40 12.47 0.00 -60.00 60.00
force_z 11981.00 -5.92 20.45 0.00 -60.00 60.00
torque_x 11981.00 0.20 3.29 0.00 -25.58 25.65
torque_y 11981.00 1.41 6.05 0.00 -25.81 27.15
torque_z 11981.00 0.48 5.32 0.00 -30.00 30.00
surge_vel 11981.00 0.06 0.11 0.03 -0.38 0.40
sway_vel 11981.00 0.00 0.07 0.00 -0.48 0.39
heave_vel 11981.00 -0.01 0.08 0.01 -0.49 0.35
roll_vel 11981.00 0.03 0.33 0.02 -2.89 3.29
pitch_vel 11981.00 0.01 0.25 0.01 -1.46 1.16
yaw_vel 11981.00 0.04 0.39 -0.00 -1.68 1.65
position_x 11981.00 0.08 0.53 0.08 -1.42 1.57
position_y 11981.00 0.20 0.33 0.24 -1.01 1.13
position_Z 11981.00 0.19 0.16 0.19 -0.38 0.70
roll 11981.00 9.02 7.63 12.42 -1.24 19.79
pitch 11981.00 -0.06 0.33 -0.03 -1.55 1.55
yaw 11981.00 24.68 12.26 25.43 -2.28 45.04

87

Table A.11: Statistical description of 𝝉 , 𝝂 and 𝜼 in random-8

N mean std median min max

force_x 15056.00 8.84 19.28 0.00 -60.00 60.00
force_y 15056.00 -1.03 13.16 -0.00 -60.00 60.00
force_z 15056.00 -5.74 17.70 -0.00 -60.00 60.00
torque_x 15056.00 0.06 2.11 0.00 -25.05 25.05
torque_y 15056.00 1.17 4.86 -0.00 -25.55 26.05
torque_z 15056.00 0.34 5.88 -0.00 -30.00 30.00
surge_vel 15056.00 0.07 0.12 0.05 -0.45 0.44
sway_vel 15056.00 0.00 0.07 0.01 -0.43 0.33
heave_vel 15056.00 0.00 0.07 0.01 -0.33 0.33
roll_vel 15056.00 0.03 0.27 0.00 -1.95 2.46
pitch_vel 15056.00 0.02 0.20 0.01 -1.12 1.54
yaw_vel 15056.00 0.01 0.44 -0.00 -2.01 1.94
position_x 15056.00 0.22 0.60 0.22 -1.68 2.14
position_y 15056.00 0.05 0.37 0.04 -1.29 1.09
position_Z 15056.00 0.21 0.16 0.21 -0.51 0.67
roll 15056.00 -16.86 3.75 -18.80 -25.50 0.23
pitch 15056.00 -0.05 0.25 -0.02 -1.49 1.40
yaw 15056.00 -10.60 6.58 -12.26 -27.88 4.22

88

References

Blank, J. and Deb, K. (2020a). Pymoo: Multi-objective optimization in python, IEEE
Access 8: 89497–89509.

Blank, J. and Deb, K. (2020b). A running performance metric and termination criterion
for evaluating evolutionary multi- and many-objective optimization algorithms,
2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8.

Boyd, S. and Sastry, S. S. (1986). Necessary and sufficient conditions for parameter
convergence in adaptive control, Automatica 22(6): 629–639.

Brunton, S. L. and Kutz, J. N. (2019). Data-Driven Science and Engineering: Machine
Learning, Dynamical Systems, and Control.

Caccia, M., Indiveri, G. and Veruggio, G. (2000). Modeling and identification of open-
frame variable configuration unmanned underwater vehicles, IEEE Journal of Oceanic
Engineering 25(2): 227–240.

Cardenas, P. and de Barros, E. A. (2019). Estimation of auv hydrodynamic coefficients
using analytical and system identification approaches, IEEE Journal of Oceanic
Engineering 45(4): 1157–1176.

Chapelle, O., Vapnik, V. and Bengio, Y. (2002). Model selection for small sample
regression, Machine Learning 48(1): 9–23.

Conte, G., Zanoli, S., Scaradozzi, D. and Conti, A. (2004). Evaluation of hydrodynamics
parameters of a uuv. a preliminary study, First International Symposium on Control,
Communications and Signal Processing, 2004., IEEE, pp. 545–548.

Cui, Z., Chang, Y., Zhang, J., Cai, X. and Zhang, W. (2019). Improved nsga-iii with
selection-and-elimination operator, Swarm and Evolutionary Computation 49: 23–33.

Dai, Y., Cheng, R., Yao, X. and Liu, L. (2019). Hydrodynamic coefficients identification
of pitch and heave using multi-objective evolutionary algorithm, Ocean Engineering
171: 33–48.

89

Deb, K., Agrawal, R. B. et al. (1995). Simulated binary crossover for continuous search
space, Complex systems 9(2): 115–148.

Deb, K. and Jain, H. (2014). An evolutionary many-objective optimization algorithm us-
ing reference-point-based nondominated sorting approach, part i: Solving problems
with box constraints, IEEE Transactions on Evolutionary Computation 18(4): 577–601.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). A fast and elitist multiob-
jective genetic algorithm: Nsga-ii, IEEE Transactions on Evolutionary Computation
6(2): 182–197.

DNV-GL (2020). Open simulation platform.
URL: https://www.dnvgl.com/feature/open-simulation-platform-osp.html

Dobrkovic, A., Iacob, M.-E. and van Hillegersberg, J. (2015). Using machine learning for
unsupervised maritime waypoint discovery from streaming ais data, Proceedings of
the 15th International Conference on Knowledge Technologies and Data-driven Business,
p. 16.

DVL-GL (2011). Dnv-rp-h103: Modelling and analysis of marine operations.
URL: https://rules.dnv.com/docs/pdf/DNVPM/codes/docs/2011-04/RP-H103.pdf

Eidsvik, O. A. N. and Schjølberg, I. (2016). Determination of hydrodynamic parameters
for remotely operated vehicles, ASME 2016 35th International Conference on Ocean,
Offshore and Arctic Engineering.

Faltinsen, O. (1993). Sea loads on ships and offshore structures, Vol. 1, Cambridge
university press.

Fan, X., Li, J., Li, X., Zhong, Y. and Cao, J. (2019). Applying deep neural networks to
the detection and space parameter estimation of compact binary coalescence with
a network of gravitational wave detectors, SCIENCE CHINA Physics, Mechanics &
Astronomy 62(6): 969512.

Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control:
Fossen/Handbook of Marine Craft Hydrodynamics and Motion Control.

Fossen, T. I., Sagatun, S. I. and Sørensen, A. J. (1996). Identification of dynamically
positioned ships, Control Engineering Practice 4(3): 369–376.

Fossen, T. I. and Øyvind N. Smogeli (2004). Nonlinear time-domain strip theory
formulation for low-speed manoeuvring and station-keeping,Modeling Identification
and Control 25(4): 201–221.

Holven, E. B. (2018). Control system for rov minerva 2.

90

Hyndman, R. J. and Koehler, A. B. (2006). Another look at measures of forecast accuracy,
International Journal of Forecasting 22(4): 679–688.

Kantas, N., Doucet, A., Singh, S. S., Maciejowski, J., Chopin, N. et al. (2015). On
particle methods for parameter estimation in state-space models, Statistical science
30(3): 328–351.

Kochenderfer, M. J. and Wheeler, T. A. (2019). Algorithms for optimization, Mit Press.

KTH (2020).
URL: https://github.com/KTH-SML/motion_capture_system

Lam, S. K., Pitrou, A. and Seibert, S. (2015). Numba: A llvm-based python jit compiler,
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC,
LLVM ’15, Association for Computing Machinery, New York, NY, USA.
URL: https://doi.org/10.1145/2833157.2833162

Liljeback, P. and Mills, R. (2017). Eelume: A flexible and subsea resident imr vehicle,
OCEANS 2017 - Aberdeen, pp. 1–4.

Ljung, L. (1987). System Identification: Theory for the User.

Midthassel, L. (2021). Remora.
URL: mithal.no

Morrison, A. and Yoerger, D. (1993). Determination of the hydrodynamic parameters
of an underwater vehicle during small scale, nonuniform, 1-dimensional translation,
Proceedings of OCEANS ’93.

Newman, J. N. (2018). Marine hydrodynamics, The MIT press.

of Marine Technology, N. D. (2021).
URL: https://www.ntnu.edu/imt/lab/cybernetics

Paull, L., Saeedi, S., Seto, M. and Li, H. (2014). Auv navigation and localization: A
review, IEEE Journal of Oceanic Engineering 39(1): 131–149.

Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G. and Ljung, L. (2014). Kernel
methods in system identification, machine learning and function estimation: A
survey, Automatica 50(3): 657–682.

Psichogios, D. C. and Ungar, L. H. (1992). A hybrid neural network-first principles
approach to process modeling, AIChE Journal 38(10): 1499–1511.

Stinger (2021).
URL: stinger.no

91

Yuan, Y., Xu, H. and Wang, B. (2014). An improved nsga-iii procedure for evolutionary
many-objective optimization, Proceedings of the 2014 annual conference on genetic
and evolutionary computation, pp. 661–668.

Zhang, X.-G. and Zou, Z.-J. (2013). Estimation of the hydrodynamic coefficients from
captive model test results by using support vector machines, Ocean Engineering
73: 25–31.

Žlajpah, L. (2008). Simulation in robotics, Mathematics and Computers in Simula-
tion 79(4): 879 – 897. 5th Vienna International Conference on Mathematical Mod-
elling/Workshop on Scientific Computing in Electronic Engineering of the 2006
International Conference on Computational Science/Structural Dynamical Systems:
Computational Aspects.
URL: http://www.sciencedirect.com/science/article/pii/S0378475408001183

92

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

M
ichael H

oyer
System

 Identification and M
achine Learning

Michael Hoyer

System Identification and Machine
Learning

Master’s thesis in Engineering and ICT
Supervisor: Martin Ludvigsen
Co-supervisor: Svein Ivar Sagatun, Øystein Barth Utbjoe

June 2021

M
as

te
r’s

 th
es

is

	Summary
	Sammendrag
	Introduction
	Motivation
	Related Work
	Contributions
	Thesis Structure

	Modeling of Unmanned Underwater Vehicles
	Kinematics
	Reference Frames
	Notation
	Quaternions
	Kinematic Equation

	Kinetics
	Hydrostatics
	Rigid-body Kinetics
	Hydrodynamics

	Equations of Motion
	Full Model
	Diagonal Model
	Linear Diagonal Model
	Non-linear Surge Model
	Linear Surge Model

	System Identification
	Machine Learning and Regression
	Data Recording and Preprocessing
	Model Structure
	Overfit and underfit
	Parameter Estimation
	Minimizing Prediction Errors
	Evaluation Metrics
	Optimization Methods
	Multi-Objective Optimization
	Population methods
	Running Performance Metric
	NSGA-II

	Model Validation
	Other Parameter Estimation Methods

	Beluga UUV
	Overview
	Propulsion System
	Sensors
	Hardware issues

	The Experiment
	The Experiments Objective in a SI Context
	Experiment Facilities
	Marine Cybernetics Laboratory

	Experiment Design
	Measurements
	Movement patterns

	Measurement Evaluation and Preprocessing
	Error Sources and Measurement Noise
	Measurement Synchronization
	Quaternions
	Measurement Quality Checks

	System Identification of UUV Models
	Model Predictions
	Multi-Objective Optimization
	Objective Function
	Optimization with NSGA-II
	Decision Making

	Identification using Simulated Measurements
	Software Tooling and Implementation

	Results
	Beluga Time Series
	Measurement Quality Checks
	Identification on Surge Models using Simulated Measurements
	Identification on Surge Models using Real Measurements
	Visualization of the Objective Function
	Computation Time Analysis

	Discussion
	Beluga Measurements
	SI Using Simulated Measurements
	SI Using Real Measurements
	Computational Performance

	Conclusion and Further Work
	Conclusion
	Proposal for Further Work

	Statistical Describtions
	References

