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Summary

Mooring line failure due to fatigue and corrosion is a problem the offshore industry is facing. Multi-
ple line failure in a permanent mooring system has an annual frequency of around 3 x 10−3 and most
failures happen well within the mooring chains’ design-life. Determining remaining fatigue life of a
mooring system by conventional methods have proven to be an accurate but also tedious process. How-
ever, artificial Neural Networks have shown to produce both quick and accurate results in engineering.
This thesis focuses on demonstrating the feasibility of predicting stress fields around corrosion pits by
using generative adversarial networks. Generative adversarial networks have proven to be able to gen-
erate images that look very realistic to the human eye and this thesis examines their ability to recreate
finite element analysis results.

To train a machine learning model was two data sets of stress fields were created using finite element
modeling in ANSYS APDL, one were the target was a gray scale image of the stress field in the surface
of pits and one where the target was the stress field 1 mm below the surface. Both data sets uses a gray
scale image of the pits surface topology as an input. The element analysis was done on pits with a tension
of 1 MPa, and the 3D model of the pits were made from surface topology images of corrosion pits in
mooring chains. The first principal stress in both the surface and 1 mm below the surface was used to
generate gray scale images where the pixel vales represented stress in the particular location.

The GAN model proposed by Isola et al. (2017) was used as a basis when developing a machine learning
model that generate accurate images of the stress fields. To optimize the model for finding the peak
stresses in the image was generator loss function experimented with and changed to include root mean
squared error. To reduce the training time and computational time of the model was the size of the model
reduced. The reduction was done after experimenting with different model sizes.

The result of this thesis is the python program ”Generate images.py” that uses two trained machine
learning models to predict stress fields around pits. The program accuracy is investigated by analysing
1000 pit images that were not used in the training and comparing the result with results finite element
analysis. It is concluded that the program is able to accurately predict the stress fields in the surface and
1 mm below the surface in and around corrosion pits with depth ranging from 0 mm to 12 mm.
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Sammendrag
Brudd i ankerkjettinger grunnet korrosjon og utmatting er et problem offshorenæringen møter. Brudd i
flere kjettinger i permanent oppankrede systemer har vist seg å ha en årlig frekvens på omtrent 3 x 10−3

og de fleste bruddene skjer godt innenfor kjettingens design liv. Å bruke konvensjonelle metoder til å
avgjøre gjenværende levetid i kjettinger har vist seg å være en nøyaktig, men også tidkrevende prosess.
Derimot har maskinlæring vist seg å gi både raske og nøyaktige resultater innenfor ingeniørfag. Denne
oppgaven setter søkelys på å demonstrere mulighetene for å anslå spenning rundt en korrosjonsgrop ved
å bruke ”generative adversarial networks”. Det har blitt vist at ”Generative adversarial networks” klarer
å generere bilder som ser svært realistiske ut, og denne oppgaven undersøker om de klarer å gjenskape
resultater funnet ved elementmetode.

To datasett ble skapt ved å bruke elementmodelering i ANSYS APDL. Et der målet er et gråskalabilde
av spenningsfeltet i overflaten av en grop og et der målet er spenningsfeltet 1 mm under gropen. Begge
datasettene bruker et gråskala bilde av gropens topologi som input. Elementmetode analyse ble gjen-
nomført med plant strekk av 1 MPa. Topologibilder fra korrosjon i ankerkjettinger ble brukt da 3D mod-
eller av gropene ble laget. Spenningen i overflaten og 1 mm under ble brukt til å generere gråskalabildene
der pikselverdiene representerte spenningen i lokasjonen pikselen representerte.

GAN modellen lagt frem av Isola et al. (2017) ble brukt som grunnlag under utviklingen av maskinlæring-
modellen som skulle generere bildene av spenningsfeltet. For å optimalisere nettverket for å finne høyeste
spenning ble det eksperimentert med tapsfunksjonen brukt i maskinlæringen. For å redusere utregningsti-
den i nettverket ble det også eksperimentert med forskjellige modellstørrelser, og størrelsen på nettverket
ble halvert.

Resultatet fra denne oppgaven er Python-programmet ”Generate images.py” som bruker to trenede mod-
eller til å anslå spenningsfeltene rundt en grop. Programmets nøyaktighet er så undersøkt ved å analysere
1000 groper som ikke ble brukt til å trene modellen. Det er konkludert med at programmet er svært
nøyaktig når det anslår spenninger i overflaten og 1 mm under overflaten rundt korrosjons groper med
dybde mellom 0 mm og 12 mm.
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Preface

This thesis concludes my master’s degree in Marine Technology at NTNU and is a part of the Sintef
life-more project. The work done in this thesis is based on a model presented by Isola et al. (2017). A
Tensorflow code is used with several changes made such that the model fits the problem presented in the
thesis.

Another student, Håkon K. Pettersen, has worked on the same problem in their thesis, and the sub-
ject has been discussed regularly. A result of this may be that some decisions are similar between the
two theses. However, the theses themselves are written separately from each other.

The work in this thesis has been performed in the following way. The finite element modeling was
performed early in the semester, and the method from the project thesis was used to develop 3D models
for analysis. Extracting the stress from the nodes under the surface proved to be a challenge, however,
Håkon K. Pettersen found the method of defining parts, which made the process easy. Running FEM on
thousands of corrosion pits was time-consuming, and a total of two weeks of computational time was
used to develop the data sets used in machine learning. Handling thousands of images of pits, stress
fields, STL models and FEM models proved to be challenging, and some time has been wasted as the
pits have been oriented differently before and after the FEM analysis.

The process of developing the machine learning algorithm consisted of trying multiple different meth-
ods to solve the problem. A lot of time has gone into trial and error with different machine learning
frameworks, and three different pix2pix versions have been used. When the desired framework was
found, multiple experiments were performed with different batch sizes, loss functions, and model archi-
tecture. When the final training and generator type were chosen, the two final models trained fast, and
”Generate images.py” was developed using many of the functions used when training.

Signed:
Henrik Heien
10.06.21 Trondheim

iii



Acknowledgements
I want to show my gratitude to my supervisor Sigmund Kyrre Ås and co-supervisor, Marius Andersen,
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Chapter 1
Introduction

1.1 Mooring line failures

Recent offshore industry studies have found that fatigue is one of the primary reasons for offshore moor-
ing failure. Fontaine et al. (2014), studied a total of 107 reported failures in a total of 72 mooring chains.
Figure 1.1 shows the distribution of different types of failures found in the study. We can observe that
most of the failures result from either fatigue, corrosion, or a combination of the two.

Figure 1.1: The distribution of different failures.(Fontaine et al., 2014)

These reasons have also lead to the failure of mooring chains occurring long before the end of theory de-
sign life. Fontaine et al. (2014) found that over a third of all failures happened within the first three years
of fatigue life. Ma et al. (2013) studied 23 mooring chain failures between 2000 and 2011 and found that
50% of the failures happened within the first three years of life. This high infant mortality of the systems
is a reason for concern in the offshore industry. The annual frequency of failure for a mooring system
was extensive in both Fontaine et al. (2014) and Ma et al. (2013). They conclude with annual rates of
multiple line failure per facility to be around 3.5 x 10−3 and 3.0 x 10−3 respectfully. This rate of failure
is high compared to other accident scenarios for FPSOs and other moored offshore structures. Ma et al.
(2013) discusses the types of mooring system components that fail more often. The paper concludes that
the chain failure accounts for 50% of the failures, followed by connector and wire. The relatively high
failure rate of permanent mooring systems raises a concern in the offshore industry, and fatigue analysis
plays an essential role in the mooring design.

Determining the fatigue life of the mooring chain is challenging. Today’s practice is to inspect mooring
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chains with remotely operated vehicles and build 3D models of damaged components. The finite element
method is then applied to the model to find the stresses in the component. This method is time-consuming
and tedious and still includes the possibility that failure may occur in an element not chosen for further
analysis.

Therefore, is there a considerable upside in developing a faster method to determine mooring chains’
fatigue life. Machine learning models have recently proven themselves to find accurate results in multi-
ple engineering practices. The possibility of using machine learning to find peak stresses in a mooring
link chain is therefore very interesting.

1.2 Hypothesis

The hypothesis of this thesis is that one may utilize machine learning to calculate the remaining lifetime
in a mooring chain link. To investigate this will images of corrosion pits in a mooring chain used to try
to estimate peak stresses in single pits.

1.2.1 Calculating peak stresses

We may find the stress concentration factor for each pit, by multiplying the locational SCF with the
geometrical SCF. The stress will vary over the surface of a mooring chain link in tension. The tension
depends on the amplitude of the tension and the angle between the links. Figure 1.2 shows the stress
field on the surface of a mooring chain found by Kim et al. (2019). The stress field may vary between
mooring chain types.

Figure 1.2: Stress field of mooring chain

With a large change in the surface topology, such as a corrosion pit, should one expect higher stresses.
Determining the stress is often done with a finite element model. If we would like to determine the
surface stress of the complete mooring chain link, are we required to model all surface pits with the fem
model.

2
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Figure 1.3: Stress field in pit

1.2.2 Goal

The goal of this thesis is to develop a program that uses machine learning models to find the stresses in
and around a pit such that the stresses may be used to calculate the fatigue life of a mooring chain. A
less complicated model will be valued more than a complicated one with the same accuracy.
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Chapter 2
Relevant Literature

2.1 Literature on fatigue and mooring chains

Fracture mechanics have been studied for a long time. We find the Linear Elastic Fracture Mechanics
(LEFM) in fracture mechanics, which is the fracture’s basic theory. This theory was originated by Griffith
(1921) and finalized by Irwin (1957). With this method, quantification of stress fields can be done
analytically. The crack growth behavior can be evaluated by applying analytical methods based on
numerical approximations or the FEM. However, the estimation of fatigue life for notched components
has not been studied until recently.

2.1.1 The modeling of Mooring chains

Bergara et al. (2020) provides a detailed explanation of the calculations of stress intensity factors and
relevant sources. The article compares SIF found on a chain using the analytical solutions with SIF
found using Abaqus’s FEM software. The article shows the validity of the analytical solution for simple
geometries. However, the results could not be reproduced for more complex geometries as f.ex. mooring
chains. The paper also describes a methodology for calculating SIF for mooring chains with semicircular
and straight cracks.

Figure 2.1: FEM modeling done by Bergara et al. (2020)

Gemiland et al. (2021) proposes a method for numerical modeling of mooring chains. The paper shows
that the explicit modeling approach should be utilized for the accurate assessment of mooring chains.
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This method provides the most realistic response and reduces the computational cost. There is also no
convergence problems.

2.1.2 Superposition of stress fields

Paul JR and Faucett (1962) investigates how two stress-raising notches are placed in the region of max-
imum influence affect each other. The result they present strongly indicates that multiplication of the
theoretical stress concentration factors for the individual notches will give the superposed theoretical
stress concentration factor in cases where stresses are linearly related. This may be used when two
corrosion pits are located close to each other.

2.2 Machine learning in engineering

Using machine learning to fast and accurately predict values that are hard and time-consuming to find
using conventional methods has a huge potential.

M.K. et al. (2010) used the application of an artificial neural network to predict the corrosion of alu-
mina plates. By using four different networks were they able to predict four different values using the
same input data. The networks used in the paper were small compared to others, having between 9 and
12 nodes each. A data set of 226 samples was used for training and validation, and 62 samples were
used to test the networks. The algorithms proved very accurate, and they predicted both the maximum
notch diameter and pith depth with small errors. The paper shows that ANNs can predict the results of
complex processes with relative ease.

Ok et al. (2007) used machine learning to develop an empirical formula describing localized pitting
corrosion’s effects on the ultimate strength of unstained plates. The pitting corrosion patterns were mod-
eled as a simplified rectangular shape where the nearest individual pits were grouped and classified.
These classes were pits on a single edge, pits in the center, and pits on both edges. To perform the
machine learning was, four parameters used as inputs. These were the plate slenderness parameter, the
ratio between pit length and plate length, the ratio between pit breadth and plate length, and lastly, the
ratio between pit depth and plate thickness. The study used more than 3000 epochs, which lead to an
accurate ANN-based empirical formula. The model that consisted of only one hidden layer was used in
machine learning. This was done because one layer has proven to be sufficiently accurate and demanding
less training data. An issue that is presented in this study is overtraining. This is a problem where the
algorithm learns the data by heart rather than learning the data set the trend. To prevent over-training
was cross-validation used to stop the training at an appropriate time. A total of 265 non-linear FEM
analysis was used, and the total number of epochs was set to 5000. However, the cross-validation ends
the learning after 100 epochs with similar results.

2.2.1 Pix2pix paper

Isola et al. (2017) developed a method of generating one image from another using general adversarial
networks. The network is very robust and able to solve different problems. In the paper are areal pho-
tographs translated to maps, black and white images translated to color images, and images of scenery in
daylight translated to the scenery at night. The idea of an image to image translation with color images
is to translate one 3 dimensional matrix into another. When grayscale images are used is this problem
more similar to 2-dimensional matrices. This method is therefore very relevant to the problem in this
thesis. The authors have published their source code in multiple formats and the code has been regularly
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2.3 Result from project thesis

updated after the publishing of the paper.

The r

2.3 Result from project thesis

The project thesis done as a study preceding this master thesis showed that a convolutional neural net-
work is able to use images of surface topology to predict the SCF 0.5 mm under ellipsoid notches. The
network architecture used to predict the SCF is found inTable 2.1.

Table 2.1: Model architecture in project thesis

Layer Attributes Activation function
Input Layer 150x150 Pixels −

2D Convolutional 200 Filters of (3× 3) ReLU
Flatten

Dense 1 64 Nodes ReLU
Dense 2 64 Nodes ReLU
Output 1 node Linear

The model was trained on surface images and a corresponding SCF found using a finite element analysis.
In Figure 2.2 are the predicted SCF plotted against the actual SCF.

Figure 2.2: Results from project thesis

2.4 Conclusion from literature study

With the results from the project thesis, we can conclude that finding a single value using a convolutional
neural network is promising. However, we may be able to predict whole stress fields by using a more
advanced method like the image to image translation presented in Isola et al. (2017). Therefore will the
model architecture proposed by Isola et al. (2017) be used as a basis when performing image to image
translation with pit depths and stress fields. We may also conclude that it is possible to obtain accurate
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results without having large data sets or complex networks.

The result from the project thesis may also be used as a sign that a convolutional neural network may be
sufficient when estimating peak stresses in a pit. This will be kept in mind while trying to predict the
stress field around a pit.
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Chapter 3
Basic theory

3.1 Fatigue and Fracture design

There is always a possibility that cracks and defects are present in large-scale structures. These are either
weld defects, fatigue cracks, or other types of damage. The influence on material strength from these
defects may be significant and should be taken into account. The compendium in fatigue and fracture
design, Berge and Ås (2017), provides excellent information on the subject of fatigue and fracture.

3.1.1 Pit corrosion

Corrosion is known to affect the durability of steel negatively by reducing the cross-section area of the
structure. Extremely localized corrosion may form small holes in the structure. This phenomenon is
referred to as pitting corrosion and may lead to high peak stresses. In this project are the pits from this
type of corrosion investigated.

3.1.2 Peak stresses

At structural discontinuities under applied stresses will stress concentrations occur. These discontinuities
may be cutouts, welds, notches, or corrosion pits. The relationship between the stresses at these locations
and the structure’s nominal stresses is the stress concentration factor (SCF). This indicates that knowing
the nominal stress in a structure and the SCF is enough to estimate the peak stress in a structure. Therefore
is the relevant SCFs very relevant to know.

3.1.3 First principal stress

The 1st principal stress gives you the value of stress that is normal to the plane in which the shear stress
is zero. The 1st principal stress helps you understand the maximum tensile stress induced in part due to
the loading conditions.

3.1.4 General Applications

Sharp notches with stress concentrations higher than five have been shown to behave like cracks when
subjected to fatigue loading. This is because cracks will initiate in sharp notches during the first cycles,
and the crack will grow from there if the stress is high enough. The cracks will not grow if the nominal
stress is not over a certain threshold. This is similar to the behavior of cracks in the threshold region.
With this in mind, we can assume a critical distance ac ahead of the notch where the crack will either
stop growing or continue to grow until failure. This critical crack length can be found by Equation 3.2.

9



Chapter 3. Basic theory

∆σ(r) =
∆Kth√

2πr
= ∆S

√
a

2r
(3.1)

ac =
a0
2

=
1

2π

(
∆Kth

∆Sl

)2

(3.2)

Here Kth and Sl is the long crack threshold and the smooth specimen fatigue limit. These are often
found in the literature. This criterion for non-propagating cracks has been verified for various materials
and geometries ranging from sharp to blunt notches. The approach is referred to as the theory of critical
distances or notch mechanics. This is illustrated in Figure 3.1. The stress at the critical distance a0

2 is
found by either analytical methods or by FEM and compared to the fatigue limit. While ∆σ(a02 ) < ∆Sl
will there be no propagation of the considered crack, which implies a safe component. Knowing the
stress at this location is, therefore highly useful.

In all following analysis is the parameter a02 considered to be 1 mm.

Figure 3.1: Critical distance approach illustrated by Berge and Ås (2017)
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3.2 Basic Theory Machine Learning

Machine learning is a part of artificial intelligence and is the study of computer algorithms that auto-
matically improve themselves through experience. A machine learning algorithm builds a model based
on sample data, called ”training data”, to make predictions or decisions without being explicitly pro-
grammed to do so. A machine learning algorithm can find patterns in data sets with many parameters
and predict a result.

In this section will the theory behind the machine learning used in this thesis be explained

3.2.1 Types of machine learning

Machine learning problems are often split into two types, classification, and regression. Classification
models are models that output discrete variables, which may be used to sort things into categories, while
regression models produce a continuous output variable. A classification model may be used to predict
if it is going to rain or not, while a regression model may be used to predict how much it is going to rain.

In classification problems, we distinguish between binary and multi-class classification. Binary classifi-
cation means we only have two categories, and in multi-class, we have more. This thesis only discusses
using a binary classification used and the theory behind classification, focusing on the binary problems.

3.2.2 Artificial Neural Networks

The artificial neural network (ANN) is inspired by the biological neural network found in human brains.
Like the human brain, it is based on a collection of connected units called neurons. The connections
transmit signals between neurons, just like the synapses in the human brain. When a neuron receives a
signal will it process the signal and then signal the neurons connected to it. In an artificial neural network
are these signals real numbers are a function of the sum of the input signals to the node. (Mahanta, 2017)

3.2.3 Neurons

The neuron is the smallest entity in machine learning. Each artificial neuron has one or more inputs
and produces a single output, and can send the output to multiple other neurons. The inputs may be the
feature values of a sample of external data, such as images or documents, or the outputs of other neurons.

To find the output of the neuron are all the inputs weighted and summed. The input is a real number
which is then multiplied with a weight and then is a bias term to this sum. This weighted sum is some-
times called the activation. This weighted sum is then passed through an activation function to produce
the output. The initial inputs are external data, such as images and documents. (Mahanta, 2017)

3.2.4 layers

The neurons are structured into layers. There are many different types of layers with various features.
One layer type may be well suited for image classification, and another may be well suited for regression.
In the following sub-section will the layer types used in the experiments done in this thesis be described.
(Mahanta, 2017)

Dense layer

The dense layer is the most frequently used neural network layer. In a dense layer is every input summed
in the node and weighted by a weight function, generally followed by a non-linear activation function.
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The dense layer stores information into 1-dimensional arrays, which are easy to handle but may lose
information when dealing with images.

Figure 3.2: The structure of dense layers, illustrated by Wikipedia (2020)

Convolutional Layers

Convolutional layers are used when analyzing images. Using each pixel value and its placement in
regards to other pixel values is the algorithm able to classify different types of animals, numbers, and
more. In contrast to the dense layer will CNN’s construct a layer that keeps the information between
neighboring pixels, and instead of using weights and biases for each node, is a filter looking at a set of
pixels. in Figure 3.3 is this illustrated. The filter, K, is multiplied with the matrix containing the value of
all pixels. The filter is adjusted when training the model.

Figure 3.3: The convolutional layer illustrated by Nikhil (2020)

A parameter to note when using the Convolutional layers is the stride. Stride is a parameter of the neural
network’s filter that modifies movement over the image. For example, if a neural network’s stride is set
to 1, the filter will move one pixel, or unit, at a time.

Figure 3.4: Effects of stride on convolutional layer

Padding is also a term relevant to convolutional neural networks. Padding refers to the number of pixels
added to an image when the kernel of a CNN is processing it. For example, if the padding in a CNN is
set to zero, every pixel value added will be of value zero.

On the other hand we have the zero-padding, which is adding a border with the value zero around the
borders of the layer. If the zero-padding is set to one, will a one-pixel border be added to the image with
a pixel value of zero.
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Figure 3.5: Example matrix with zero-padding

Transposed convolutional layer

Transposed convolutional networks are designed to allow for trainable upsampling, and a transposed
convolutional layer produces an output feature map that is larger than the input layer. Like the convo-
lutional layer, is the transposed convolutional layer also defined by padding and stride. It treats them as
values that hypothetically were carried out on the output to generate the input. If you take the output
and carry out a standard convolution with stride and padding defined, it will cause the spatial dimension
same as that of the input.

A combination of convolutional and transposed convolutional layers is often used in encoder/decoders.
Encoder/decoders use convolutional layers to downsample layers before utilizing transposed convolu-
tional layers to up sample. To calculate the output layers of the two layers, may we use Table 3.1.

Table 3.1: Comparison between standard and transposed convolutional layer

Comparison
Conv Type Operation Zero Insertions Padding Stride Output Size
Standard Downsampling 0 p s (i + 2p− k)/s + 1

Transposed Upsampling (s− 1) (k− p− 1) 1 (i− 1)∗ s + k− 2p

Pooling layers

Convolutional networks may include pooling layers to streamline the underlying computation. Pooling
layers reduce the layer’s dimensions by clustering the outputs from groups of neurons at one layer into a
single neuron in the next layer. Local pooling combines small sets, typically 2 x 2. Global pooling acts
on all the neurons of the convolutional layer. In addition, pooling may compute a max or an average.
Max pooling uses the maximum value from a group of neurons at the previous layer. Average pooling
ruses the average value from each of a cluster of neurons at the prior layer. (Singh, 2020)

Concatenate layer

The concatenate layer is used to connect a list of inputs. The inputs should be tensors of the exact
dimensions except for the concatenation axis. Typically this means that the tensor has the same width
and height and concatenate in depth. This results in the concatenate layer outputting one tensor with the
same height and width as the two input tensors and a depth of the sum of the depths in the two inputs.
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Figure 3.6: Concatenate layer illustrated by Adalogou (2020)

3.2.5 Generative adversarial networks

A generative adversarial network, GAN, is a machine learning framework designed by Ian Goodfellow
and his colleagues in 2014. GANs contain two separate networks where one generates images, the
generator and the discriminator, which tries to differentiate the generated images from real ones. We
can guide the generator towards generating real-looking images by using the discriminator’s ability to
distinguish between the images as a measure of how well the generator performs. The architecture of a
GAN network is illustrated in Figure 3.7.(Developers)

Figure 3.7: Example of GAN diagram illustrated by Google.

Generator

As mentioned is the generator the part of the GAN that creates new images from the input images. The
goal of the generator is to make the discriminator classify its output as real. The generator is not trained
to minimize the distance to a specific image but rather to fool the discriminator.

The generator is typically based on a convolutional neural network and uses filters to determine what
is in the image and where it is.

Discriminator

The discriminator in a GAN is a binary classifier. The discriminator tries to differentiate between the
data created by the generator and the ground truth output. There may be any form of network architecture.

The discriminator will train alongside the generator and improve its ability to distinguish between au-
thentic and generated images. The training involves classifying both original and generated data. The
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discriminator loss penalizes the discriminator for classifying the images. The discriminator weights are
updated through backpropagation, just as another artificial neural network.

3.2.6 Activation functions

As mentioned in subsection 3.2.2 will the input values of a node be multiplied with their weight and
summed. This sum is referred to as the activation of the node. This activation is then transformed with
an activation function. The result of this function is the node output. A linear activation is known as the
simplest of the activation functions. With this function, no transformation is applied, and the function
returns the same value as the input. A model with this activation function is quickly trained. However, it
cannot learn complex mapping functions. Therefore more complex functions are often used. Three non-
linear functions are widely used. These are the older Sigmoid function and hyperbolic tangent function
and the newer rectified linear activation function. Sigmoid and hyperbolic tangent functions mainly were
used through the 1990s before the rectified linear function was introduced by Hahnloser et al. (2000).

ReLU

The Rectified Linear activation function, ReLU for short, is one of the most simple activation functions.
The function will output the input directly if the input is positive and zero if the information is negative.
The function is listed in Equation 3.3, and as a graph in Figure 3.8.

f(x) =

{
x if x ≥ 0

0 if x < 0
(3.3)

Models using this activation function are often fast and accurate. This is why the ReLU activation
function is the default activation function for many types of neural networks. There are many advantages
to this activation function. However, the dying ReLU problem is one to have in mind when designing
the network. The ReLU neurons may sometimes be pushed into states where they output 0 for virtually
all inputs. This leads to no gradients flowing backward, and the neuron gets ”stuck” in an inactive
state.(learning mastery, 2020)
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Figure 3.8: The Rectified Linear activation function

To correct the dying ReLU problem was the Leaky ReLU activation function introduced. The activation
function have a slope f(x) = ax where x is negative. Here 0 < a� 1.
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Figure 3.9: Leaky Relu

Sigmoid Activation

The sigmoid activation function is an S-shaped activation function that squeezes all values in between 0
and 1. The function is not centered around zero which may in some instances be a problem.

S(x) =
1

1 + e−x
(3.4)

Figure 3.10: Sigmoid activation function

Tanh

The activation function is similar shaped to the sigmoid function, with outputs between -1 and 1. As we
can observe in Figure 3.11 is the function zero centered. This overcomes the non-zero centering issue
of the sigmoid function, this leads to a faster convergence than the sigmoid function and is therefore
preferred.

f(x) = tanh(x) (3.5)
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Figure 3.11: Tanh activation function

3.2.7 Loss functions used in regression problems

When the network has given an output, is it compared with the target value. A loss function gives a value
for how good the network has performed. This loss function may calculate the accuracy of classification
or the error of the regression. (Parmar, 2018)

In this subsection will some of the possible loss functions available when doing regression be discussed.

MAE

The mean Absolute error loss function is listed in Equation 3.6. The loss function is common in machine
learning, however, it handles outliers very poorly.

L(y, ŷ) =
1

N

N∑
i=0

| (y − ŷi) | (3.6)

MSE

The mean square error loss function is listed in Equation 3.7. This loss function weighs larger errors
more heavily than Mean Absolute Error and is thus sensitive to outliers. This loss function may also be
referred to as L2, while MAE is referred to as L1.

L(y, ŷ) =
1

N

N∑
i=0

(y − ŷi)2 (3.7)

RMSE

Root mean square error is the standard deviation of the errors which occur when a prediction is made on
a data set. This very similar to MSE. However, the root of the value is considered while determining the
accuracy of the model.

L(y, ŷ) =

√√√√ 1

N

N∑
i=0

(y − ŷi)2 (3.8)
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Pseudo-Huber Loss

The Huber loss combines MSE and MAE. The loss function uses MAE is larger than a predetermined
value and MSE otherwise. This makes the Huber loss function more robust than MSE for outliers.
However, this does not guaranty a perfect loss function.

ε =

{
|y − ŷ|, if |y − ŷ| ≥ α
(y − ŷ)2, otherwise

(3.9)

3.2.8 Loss functions used for classification

Because of the discrete values, while solving classification problems, do we need other loss functions.
The loss function uses the probability that the classification networks outputs and compares it with the
label. Several different loss functions are used when solving classification problems. However, the most
commons are the cross-entropy and the sigmoid cross-entropy.

Cross-Entropy

Cross-Entropy measures the performance of a classification model by giving a probability value between
0 and 1. The cross-entropy loss increases as the predicted probability diverge from the actual label. This
means that if a model predicts a probability of 0.95 while the label is one will the loss be small. On the
other hand, if the model predicts a probability of 0.2, will the loss be substantial.

In binary cases is Equation 3.10 used to calculate Cross-Entropy loss. Here p is the predicted proba-
bility and y is the binary indicator.

L = −(y · log(p) + (1− y) · log(1− p)) (3.10)

Sigmoid Cross-Entropy

The sigmoid cross-entropy is the cross-entropy loss function that is run through the sigmoid activation
function.

3.2.9 Optimizers

An optimizer updates the model in response to the output of the loss function. Optimizers assist in
minimizing the loss function. There are several different optimizers used in machine learning. The
goal of an optimizer is to reduce the losses in the network. When the network’s loss is calculated is an
optimizer used to update the neurons’ attributes in the network.

Stochastic Gradient descent

Stochastic gradient descent optimizers, SGD, are the most basic and most used optimization algorithm.
The method is heavily used both in linear regression and classification problems.

Gradient descent is a first-order optimization algorithm that depends on the first-order derivative of a
loss function.

Momentum

Momentum is a method that accelerates SGD in the relevant direction and dampens oscillations. This is
done by adding a fraction of the last vector to update the weights.
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Momentum optimizing is best illustrated as a ball running down a hill. The ball accumulates momentum
as it rolls down, just as the momentum term increases for dimensions whose gradients point in the same
directions and reduces updates for dimensions whose slopes change direction. The momentum optim-
imzer results in faster convergence and reduced oscillations. The disadvantage of this method is that the
hyperparameter needs to be selected manually and accurately.

RMS-Prop

RMS-Prop keeps the moving average of the squared gradients for each weight and divides the slope by
the mean square’s square root. The update rule looks like this Equation 3.11.

E
[
g2
]
t

= 0.9E
[
g2
]
t−1

+ 0.1g2t
θt+1 = θt − η√

E[g2]t+ε
gt

(3.11)

The optimizer creator, Geoffrey Hinton, suggests γ = 0.9, with a good default for η as 0.001. (Bushaev,
2018)

ADAM - Adaptive moment estimation

Adam(Adaptive moment estimation) computes adaptive learning rates for each parameter. The method
stores an exponentially decaying average of past squared gradients vt like RMS Prop. Adam stores an
exponentially decaying average of past gradients mt, which is similar but not equal to the momentum
optimizer. If the momentum optimizer is viewed as a ball running down a slope is the Adam optimizer
closer to behaving as a heavy ball with friction. The friction makes it easier for the optimizer to stop in
the flat minimum and not oscillate around the minimum. mt and vt is found as follows. (Katba)

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t

(3.12)

3.2.10 Normalization

Normalization is a part of the prepossessing of input data. The goal of the process is to have all values be
on a standard scale without losing their accuracy. When normalization is not used are often the largest
values more influential to the model than the small ones.

3.2.11 Backpropagation

In machine learning, is backpropagation referring to a process used as a method of training. With the
backpropagation is loss from the loss functions and the gradients from the optimizers used to update the
trainable parameters of the network. (McGonagle et al., 2020)

3.2.12 Epochs

The total number of epochs is defined as the number of times one input is run through the machine
learning model. Having many epochs means that machine learning may train more on the same sample.
Balancing the number of epochs is therefore highly important. Too few epochs will not train the model
sufficiently, and too many epochs will overtrain the model. An over-trained model has learned the data
set ”by heart” and will not be as adaptable as a not over-trained model.
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3.2.13 Batch Size

The batch size refers to the number of training images used in one iteration. Having a small batch size
reduces required memory. However, a larger batch size may decrease computational time.

3.2.14 UINT gray scale images

The UINT8 and UINT16 png data types will be referenced to several times in this thesis. UINT refers
to the unsigned integer value used in each pixel. The pixel value represent the colour in the pixel where
0 is black and the max value is white. UINT8 and UINT16 differs from each other as UINT8 uses 8-bit
pixels and UINT16 uses 16-bit pixels. The 16-bit requires more storage space but have a higher max
value. The max values in UINT8 is 255 and max value in UINT16 is 65536.
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4.1 Creating Data set

To develop a data set that could be used to train a machine learning model was a considerable number
of FEM analysis done, outputting stress in the surface and 1 mm below the surface. In this section is the
process of developing the data sets used for machine learning described.

4.1.1 Data set of pits

Marius Andersen provided a data set containing over 63000 .png images representing the topology of
pits in mooring chains. The images are the result of laser scans of mooring chains. The images of the pits
are located such that the stress is in the image x-direction. The pit depth distribution of all the images is
shown in Figure 4.1. From the original 63000 images are 4000 chosen at random and used when making
data sets.
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Figure 4.1: Distribution of pit depths

4.1.2 Creating Geometry

A Matlab script provided by Sigmund K. Ås was modified and used to create STL geometries of the
240x240 px topology images provided by Marius Andersen. The parameters used to create the geome-
tries are listed in Table 4.1. The STL files created are 60x60x50 mm3 with pits with a max depth of
11.9 mm.

21



Chapter 4. Method

Table 4.1: Pixel values used in input images

Parameter Value
Pixel width 0.25 mm

Pixel height 0.25 mm

Pixel depth 0.047 · Vpixel mm

Changed input images

Because the data set of scanned pits in mooring chains was observed to have relatively small peak
stresses, was this method updated. To help make the training of the model more diverse was 1000
pits scaled up with a factor of two, and 1000 scaled up with a factor of three. Because of the upscaling
of the images were the images provided by Marius Andersen adjusted. The data format of the images
was changed from UINT8 to UINT16 and the pixel value of the images was changed such that the value
of the pixel represents the depth at that particular point in µm. This means that a pixel value of 1000
represents 1 mm and the deepest pit possible to represent with UINT 16 will be 65.536 mm. This was
chosen to make the pixel values more intuitive and easy to use.

Because the machine learning method needs the size of the input images to be dividable by two are
the input images also scaled to the size 256x256px. The properties of each pixel listed in Table 4.2.

Table 4.2: Values used when converting image to STL

Parameter Value
Pixel width 0.234 mm

Pixel height 0.234 mm

Pixel depth Vpixel µm

(a) Image of PIT

(b) STL FILE

Figure 4.2: STL conversion

4.1.3 Meshing

The ANSYS program ICEM-CFD is used to prepare the STL for FEM analysis. The repair geometry
function is used to create a volume of the faceted geometry. This tool automatically closes gaps between
boundary edges using the best fit possible. To make the most accurate model possible, is tolerance set
to 0.001 in this process, which is 1

10 of the default setting. ICEM-CFD easily differentiates the edges
from each other, and each edge may be defined as a part. First, is the surface containing the pit defined
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as a part., then is a copy of the part made and translated 1 mm down. With the defined parts, it is easy to
select and export stress in specific locations. Lastly is the structure meshed by tetrahedral elements. The
element type and material properties are defined later when the model is analyzed in ANSYS. The mesh
size is chosen to vary between 1 mm at the surface and 10 mm at the bottom of the model. The varying
mesh is to reduce computational time while still maintaining accuracy and preserve the surface topology.
Lastly is the meshed structure exported as an .in file, which is used in ANSYS.

While preparing the model for meshing, the record script function in ICEM-CFD was used, and a re-
play script was created. The script is used when running the program in batch mode and lets us mesh
one STL file after another. The whole process takes around 200 s to complete per STL file.

The replay script is found with the attached files, however running the replay script on another com-
puter may be difficult. Therefore is a detailed walk-through of the procedure of preparing the STL file
for FEM analysis is found in Appendix C.

(a) STL-File in ICEM-CFD (b) Finished meshed model

Figure 4.3: Model in ICEM-CFD

4.1.4 FEM-Analysis and output

The elements and parts are imported to Ansys APDL with the .in file. All elements are then given the
same material parameters and element type. A temperature of 0 °C is defined for the whole system.

The Element type used in this analysis is SOLID185, an eight-node element where each node has three
degrees of freedom. SOLID185 Structural Solid is suitable for modeling general 3-D solid structures.
It allows for prism, tetrahedral, and pyramid degenerations when used in irregular regions. Various el-
ement technologies such as B-bar uniformly reduced integration and enhanced strains are supported.
When meshing the structure are the elements are given a prism shape. (ANSYS)

Table 4.3: Material properties used in FEM analysis

Parameter Value
E module 200 GPa

Poisson’s ratio 0.3 [-]

In APDL are boundary conditions and loads applied. The analysis takes about 100 s to complete.
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Table 4.4: Applied boundary condition

Location BC
(0,y,z) u=0
(x,y,0) v=0
(x,y,0) w=0

Figure 4.4: Illustration of load and BC

(a) Meshed model in APDL (b) Meshed model with applied pressure

Figure 4.5: Model in ANSYS

The first principle stress in the surface and 1 mm nodes are collected after the analysis is finished. A
Matlab script uses the node X and Y coordinates and stress to make a 256x256 matrix with columns and
rows corresponding to the X and Y coordinate and cell value with the average stress of the nodes in the
area. The cell values are then multiplied by 1000 and saved as a 16-bit grayscale .png. These images are
illustrated in Figure 4.7a and Figure 4.7b. The pixel value in these images are scaled to have the largest
values be white and the lowest to be black. This is done to show the different values of stress. The stress
is multiplied by 1000 to maintain accuracy of 0.001 when saving the value as an integer.
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Figure 4.6: Stress on surface

(a) Stress surface (b) Stress 1mm below surface

Figure 4.7: Stress-images

4.1.5 Batch mode

To generate a large data set is it necessary to automate the process of developing stress images. The Mat-
lab script Generate data.m is designed to do this. The algorithm of this program is found in algorithm 1.

Algorithm 1: Algorithm for crating data set

for i← first stl file to last stl file do
STL Filename← num2str(i) + ”.stl” ;
if STL Filename is file then

Copy STL-filename to ”STL-FILE” ;
run ICEM-CFD batch mode ;
run ANSYS APDL batch mode ;
if Results files exist then

Make image of stress field in surface ;
Make image of stress filed 1mm below surface ;
Copy Result files to archive folder;
Delete Result files ;

Delete ”STL-FILE” ;
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4.1.6 Data set for training

Because of the extra images is the data set shuffled before it is split into the validation, test, and training
groups. The surface data set contains a total of 3586 images, while the data set with stresses 1 mm below
the surface consist of 2816 images. Compared to the complete pit data set is the pit depth distributions
in both data sets shifted towards the deeper pits. The two data sets will be referred to as the surface and
subsurface data set.
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Figure 4.8: Surface data set distribution
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Figure 4.9: Subsurface data set distribution

4.1.7 Validation data set

In addition to the training data set is a validation data set created. This data set consists of 1000 pits.
These pits will not be used in the training process and are only used to test the finished models.
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Figure 4.10: Validation data set distribution
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4.2 Method for Image to image translation

Previous experiments found that a convolutional neural network can predict the peak stresses in a pit
accurately. Finding stress fields, however, hasn’t been done previously. To do this does is one matrix of
depths to be translated into a matrix of stresses. Isola et al. (2017) developed a machine learning algo-
rithm able to translate one picture to another. The model is very versatile and can solve problems ranging
from colorizing images to making maps from satellite images. Because of the model’s versatility, we are
hoping that the code may be used to estimate stresses in and around a pit.

The pix2pix model will be presented in this section, along with the changes that have been made to
the model.

4.2.1 Code type

There are several pix2pix versions available for use, with the program written in different languages and
using different libraries. Before deciding on the python version using the Tensorflow library was the Lua
language using the torch library and python using Pytorch library tested. The choice fell on the code
using the Tensorflow library. This code was chosen as it easy to read and make the necessary changes.
The original code can be found and downloaded from GitHub1.

4.2.2 Data set

To group input and output images, are they combined into one image. This is done with combine images.m,
which is found with the attached files. The input image is placed in the A position, and the output is
placed in the B. The input image is scaled from 240x240 to 256x256, and the pixel values are scaled.
The resulting image is a 512x256 .png image with datatype UINT16.

Figure 4.11: Combined Data

This is done with both data sets described in subsection 4.1.6 before the images are shuffled. Then are
the data set split into three parts, training, validation, and test data sets. The validation and test data sets
each contain 100 images, and the remaining images are in the training data set.

4.2.3 Preprocessing

The data set is preprocessed for each epoch. The original program uses a function they refer to as random
jitter for preprocessing. Random jitter is a concept where each image is scaled up to 286x286 px and then

1https://github.com/affinelayer/pix2pix-tensorflow
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crops a random patch of 256x256 pixels of the image to use for training. Because all pits are centered in
the images, will this not be done in the experiments. There will be no random jitter, and the whole image
is used for training.

The original preprocessing process also includes a random rotation of the image. Because the images
show stress in plane tension in the x-direction, this is also not done in these experiments. However, a
feature that flips 50% of the images horizontally is kept. This is because of the plane tension in the
x-direction that will give similar stress fields if the pit is mirrored in the x-direction.

4.2.4 Generator architecture

The Tensorflow library handles data in the generator as tenors of rank 3. Shapes of tensors are referred
to as (width, height, depth) where the depth in the image represents the number of channels in the image.
The original model is built to handle RGB images that uses three channels, one for each color. The
number of channels in the input and output layer is reduced to 1. This results from the training being
done on gray scale images rather than three channel RGB images. The input and output layers have the
shape (256,256,1).

Figure 4.12: Rank of tensors illustrated by G. Yalçın (2020)

The model analyzes the images by reducing the width and height of the tensor while increasing the depth
until the width and height of the tensor are 1. Then the process is reversed such that the width and height
of the layers increase to the original size. This process is illustrated as encoder-decoder in Figure 4.13.
The downsizing finds ”what” is in the image, and the upsizing finds where it is.

To give the generator a means to keep information from the original image, skip connections are added.
This gives the U-net shape shown in Figure 4.13. Specifically, skip connections are added between layer
i and layer n -i, where n is the total number of layers. Each skip connection concatenates all channels
at layer i with those at layer n -i. The skip connections use the leaky ReLU activation function between
each other.

The original generator uses filters with size 4x4 and a stride length of 2 in all convolutional and transpose
convolutions layers. The whole generator architecture is listed in Table 4.5.
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Figure 4.13: Architecture principle illustrated by Isola et al. (2017)

Table 4.5: Generator architecture

Layer Input Shape Output Shape Layers Layer type Sends to Receives from
1 (256,256,1) (256,256,1) 64 Input - -
2 (256,256,1) (128,128,64) 128 Convolutional 23 -
3 (128,128,64) (64,64,128) 256 Convolutional 21 -
4 (64,64,128) (32,32,256) 512 Convolutional 19 -
5 (32,32,256) (16,16,512) 512 Convolutional 17 -
6 (16,16,512) (8,8,512) 512 Convolutional 15 -
7 (8,8,512) (4,4,512) 512 Convolutional 13 -
8 (4,4,512) (2,2,512) 512 Convolutional 11 -
9 (2,2,512) (1,1,512) 512 Convolutional - -
10 (1,1,512) (2,2,512) 512 Convolutional - -
11 (2,2,512) (2,2,1024) - Concatenate - 8
12 (2,2,1024) (4,4,512) 512 Transpose Convolutional - -
13 (4,4,512) (4,4,1024) - Concatenate - 7
14 (4,4,1024) (8,8,512) 512 Transpose Convolutional - -
15 (8,8,512) (8,8,1024) - Concatenate - 6
16 (8,8,1024) (16,16,512) 512 Transpose Convolutional - -
17 (16,16,512) (16,16,1024) - Concatenate - 5
18 (16,16,1024) (32,32,256) 256 Transpose Convolutional - -
19 (32,32,256) (32,32,512) - Concatenate - 4
20 (32,32,512) (64,64,128) 128 Transpose Convolutional - -
21 (64,64,128) (64,64,256) - Concatenate - 3
22 (64,64,256) (128,128,64) 64 Transpose Convolutional - -
23 (128,128,64) (128,128,128) - Concatenate - 2
24 (128,128,128) (256,256,1) 1 Transpose Convolutional - -

4.2.5 Discriminator

The discriminator is a Patch GAN network. It has two input layers, one using the generator’s input image
and one with either the target image or the generated image. Each input is a (256,256,1) tensor, and the
two are concatenated together into a (256,256,2) tensor.

The output of the model is a (30,30,1) tensor containing values between 0 and 1, where values close
to 0 indicate produced images and values close to 1 indicate target images.

As discussed in section 3.2.5 will the discriminator try and distinguish real images from the generated
images. The discriminator helps the model find the most real-looking images. Blurry-looking images
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will not be accepted by the discriminator, which leads the generator to avoid producing blurry images.

Table 4.6: Discriminator Architecture

HENI
Input 1 Shape Input 2 shape
(256,256,1) (256,256,1)

Concatenate
Layer Input Shape Output Shape Filters Layer Type

1 (256,256,2) (128,128,64) 64 Sequential
2 (128,128,64) (64,64,128) 128 Sequential
3 (64,64,128) (32,32,256) 256 Sequential
4 (32,32,256) (34,34,256) - Zero Padding
5 (34,34,256) (31,31,512) 512 Convolutional
6 (31,31,512) (33,33,512) - Zero Padding
7 (33,33,512) (30,30,1) 1 Convolutional

The architecture has shown to produce accurate results and we will therefor keep the architecture as it is.

4.2.6 Activation functions

Between the layers are leaky ReLU between the convolutional layers. The last layer uses the hyperbolic
tangent as activation function. The last activation function makes sure the output values are between -1
and 1, which fits well with the normalization used. As the two activation functions are widely used and
work well with the training, no other activation function is looked into.

4.2.7 Loss functions

Generator loss

The loss function of the pix2pix can be found in Equation 4.1. The loss function consists of two parts, the
mean absolute error(λLL1(G)) and the generator error (LcGAN ). The generator loss is a two-dimensional
variant of the sigmoid cross-entropy that uses the discriminator output to score the generator’s perfor-
mance.

G∗ = arg min
G

max
D
LcGAN (G,D) + λLL1(G). (4.1)

λ is a value used to weigh the MAE loss, and the original model uses λ = 100. The loss function has
shown to give very accurate results, however, it may not be the perfect choice when estimating the stress
field around a corrosion pit. We may observe in Figure 4.7 that the average value of the stress fields
images are dominated by the area around the pit. This may reduce the models’ ability to estimate the
highest peak stresses.

To investigate the impact of the loss function are several models are trained, and the accuracy of the
models are analyzed. This process is described in subsection 4.3.1.

Discriminator loss

The discriminator uses the sigmoid cross entropy as its loss function when classifying between the real
and generated images. The loss function evaluates the two outputs from the discriminator by comparing
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the result from the target image with a (30,30,1) tensor of all ones and the generated image with a
tensor of the same size containing all zeros. This has proven to be a very effective means of training the
discriminator and will not be changed.

4.2.8 Optimizers

The code uses the mini-batch SGD and the application of the ADAM optimizer to update both the image
generator and the discriminator. The learning rate is set to 0.0002 and momentum parameters of β1 = 0.5
and β2 = 0.999.

Because the ADAMS optimizer has been shown to give fast convergence, will there be made no changes
to the optimizer.

4.2.9 Batch Size in the model

As discussed in subsection 3.2.13, will a larger batch size lessen the learning time of the machine learning
model. However, the pix2pix paper suggests a batch size between 1 and 10. This is due to the fact that
larger batch sizes have been shown to give poorer results. To save computational time will a batch size
of 4 be used when experimenting with different models and then use a batch size of 1 when training the
final models. Because multiple models are going to be trained, is the reduction in computational while
still maintaining accuracy important. The batch size of 4 will give us an idea of how the different models
differ from each other and not take up too much time.

4.2.10 Normalization

Because the hyperbolic tangent activation function is used as the activation function before the output
layer, do we need to normalize the data set to fit between -1 and 1. As a consequence of this do we need
to normalize the data. The original model uses Equation 4.2 to do this. However, to fit the 16-bit pixel
value is Equation 4.3 a better option.

VNorm =
VOriginal

255
2

− 1 (4.2)

VNorm =
VOriginal

216

2

− 1 (4.3)

This way of normalization will include all possible values of UINT16. However, we may observe that
the pit depths used in the model range from 0 to 18 mm. This means that the maximum possible input
value is 18000. Therefore may the normalization of Equation 4.4 be a better option when training on this
specific data set. On the other hand is an adaptable model desired, and using Equation 4.4 will limit the
models’ ability to analyze deeper pits.

VNorm =
VOriginal

18000
2

− 1 (4.4)

4.2.11 Training the model

Computer resources

The training is done in the web-based python notebook google Colaboratory, colab for short, which is
a product from Google Research. When running code in Google colab is the code executed in a virtual
machine private to the account running. Google colab is chosen as the environment to train the models in
as they give their users access to GPUs, TPUs, and high RAM computers. The GPUs available in Colab
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often include Nvidia K80s, T4s, P4s, and P100s.

One thing to keep in mind is that virtual machines are deleted when idle for a while, which may re-
sult in the termination of the code running.

Machine learning algorithm

The machine learning algorithm used is the one presented by Isola et al. (2017). Algorithm 2 shows how
the training is performed. The whole script may be found online in google colab2.

Algorithm 2: Algorithm for Machine learning

for epoch← 1 to end do
Start timer;
Generate and show example image;
for image← 1 to end do

predicted image← generator(input image);
real discriminator output← discriminator(target image);
predicted discriminator output← discriminator(predicted image);
discriminator loss← calculate discriminator loss(real discriminator loss,predicted

discriminator loss);
generator loss(predicted discriminator output,generated image, target image) ;
calculate generator gradients ;
calculate discriminator gradients;
update generator;
update discriminator;

if modulus(Epoch,20) == 0 then
Save checkpoint;

End timer ;
Print time ;

2https://colab.research.google.com/drive/1Wl462lHNyoYAp2tliSd-9m1JoQ0_SliU?usp=
sharing
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4.3 Experimentation with the machine learning method

Due to the limited experience with machine learning, it is deemed necessary to experiment with model
parameters. To find the best way of training a model was a number of models trained. During this process
was three different error functions used and three different model sizes.

The normalization of the model is not experimented with. This is because we want the model to be
as adaptable as possible. Lowering the max values used in the normalization will limit what kind of pits
we may use in the model.

To compare the different trained models is MAE, MSE, and the value and location of the peak stress
for the same 100 images in the test data sets used as a reference. MSE and MAE give us an idea of how
similar the images are to each other, however, we are most interested in the errors in peak stresses.

4.3.1 Loss function

As described in subsection 4.2.7 will the loss function define what we are looking for when training. As
discussed in subsection 1.2.2 are we most interested in predicting the highest SCF accurately. Isola et al.
(2017) states that models trained with loss functions not using a generator loss term usually produce
results that have indistinct edges and look blurry. Because of this is the generator loss term kept and not
adjusted. To find the best option for loss function is three models trained, one using MAE, one using
MSE, and one using the RMSE.

Pseudo-Huber loss and the adaptive loss functions are not experimented with. This is because the loss
function is complicated and challenging to implement and scale with generator loss.
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Figure 4.14: Accuracy of surface model trained with MAE
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Figure 4.15: Accuracy of subsurface model trained with MAE

MSE loss function

As discussed in subsection 4.2.7 are we interested in including MSE in the loss function rather than
MAE. However, finding an appropriate λ value proved to be a challenge. Four models were trained with
λ ∈ [0.1, 1, 10, 100]. The best result was found when using λ = 10. Still, the results were not very
accurate. Because the best result didn’t come while training on either λ = 0.1 or λ = 100 we will
not continue experimenting with the value of λ. There is also not necessary to train a model with the
subsurface data set as that data set has shown to train a model that performs poorer than the surface data
set.

Because we did not achieve good results with the surface data set is it no point in training a model
with the more challenging subsurface data set, and this is not done.
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Figure 4.16: Accuracy of surface model trained with MSE

Root Mean Square Error

Lastly was a model trained with RMSE as the loss function. This was done because no appropriate λ
was found when experimenting with MSE, and the model produced no accurate results. RMSE will be
in scale with the original loss function while still weighting the outliers heavily. As the loss function is
in scale with MAE is λ set to 100.
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Figure 4.17: Accuracy of surface model trained with RMSE

Because the predicted images from the training proved accurate, is a model trained on the subsurface
data set.
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Figure 4.18: Accuracy of subsurface model trained with RMSE

4.3.2 Experiments with model architecture

The pix2pix architecture is extensive and designed to handle very complex images with a lot of details.
The large model causes the training to be time-consuming, and the checkpoint files large, over 500MB
each. The images used in the experiments in this thesis are not as complex or detailed as those used in
Isola et al. (2017), and we should thus examine if we may reduce the size of the model. We continue
using the RMSE loss when training the model.

Removing trainable parameters may reduce the accuracy of the model. However, a smaller model also
reduces the chance of overfitting the model. This process aims to find how we can reduce the size of the
model while still having the model predicting sufficiently accurate results.

To examine the use of a smaller model was two different reductions were proposed. One where the
center layers, 9,10,11 and 12 from Table 4.5, were removed, and one where the CNN strides were in-
creases from 2 to 4. The RMSE model trained in the previous chapter was used as a reference to measure
how the reduction of the model affects the results, storage use, and time consumption. To judge the
models on similar grounds will a batch size of 4 be used when training the models.
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4.3 Experimentation with the machine learning method

Model with center layers removed

By removing the four center layers the model, we remove 8704 trainable nodes and 1536 filters. This
results in the file containing the model data being reduced to 366MB. That the layers with the smallest
dimensions have are (4,4,512). As discussed in subsection 4.2.4 may removing the middle layers restrict
the models’ ability to find ”what” is in the image.

Each epoch takes 70 seconds when training the reduced model, which reduces the 85 seconds it took
to train the original model. As predicted does the reduced model saves some computational time and
predicates the value and placement of SCF accurately. We may observe that the model gives some higher
MSE and MAE losses than the original model. However, the reduction of the model size shows some
potential.

To experiment further was another experiment performed with a model where six layers were removed.
The model did not produce good results and thus was no more experimentation done on models with
center layers removed.
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Figure 4.19: Accuracy for model with middle layer removed

Using stride length of 4

Another method of reducing the model size is to increase the stride length in the convolutional layers
when up and downsizing. Doubling the stride length from 2 to 4 will cause the downsizing to reduce the
layer to 1

16 of the size of the previous, and the number of layers in the model architecture becomes half
the number of the original architecture.

A stride of 4 means that each 4x4 filter will only influence each pixel once. This results in the pre-
dicted image being visually split into squares of 4x4 pixels. Figure 4.20 shows how the image is split
into chunks. To try and solve this issue was an experiment was performed using 8x8 filters. This model
with larger filters performed worse than the model with 4x4 filters, and 4x4 filters were accepted as the
best choice.

The model uses 25 seconds per epoch which is very fast compared to the previously trained models.
As we may observe in the loss plots in Figure 4.21 will the model also gives very accurate results.
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(a) Scaled Ground Truth (b) Scaled Predicted Image

Figure 4.20: Comparison between predicted image and ground truth with stride = 4
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Figure 4.21: Accuracy for model with stride 4

4.3.3 Conclusions from experiments

Loss functions

The L1 and RMSE model perform very similar. However, we observe that the RMSE model performs
just slightly better when estimating the value and location of the highest stress value. This becomes
especially clear when training the model on the subsurface dataset. On the other hand, the model trained
with MAE loss function performs better overall with lower MSE and MAE values. Because we value
the accuracy of the highest stress concentration factor the most, will we use Equation 4.5 as loss function
when training the final model.

G∗ = arg min
G

max
D
LcGAN (G,D) + λ

√
LL2(G). (4.5)

Generator architecture

The model estimates accurate results with the smaller model architectures. Using four as the stride length
decreased the training time and the size of model checkpoints substantially and is a good option for use
in the final model. Removing the four layers in the middle of the architecture also predicted accurate
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results and reduced the model by just over 100MB. Therefore will a combination of the two reductions
be used in the final model. The stride length will still be four, and the two center layers will also be
removed. Removing the two center layers with the double stride length will give us the same center layer
size as the experiments with four removed center layers. The final model file size is 48MB, which is a
90% reduction from the original model size.
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4.4 Training final models

With the knowledge gained from the experiments detailed in section 4.3 are we training two final models.
One trained on the surface stress and one trained on the stress 1mm below the surface. The batch size
used to train the final models are 1, and the model is trained for 300 epochs. However, the objective of
this training is to find the best possible result, and we, therefore, observe the training carefully. If the
model performs very well and then begins performing worse, we may end the training early.

Because of the smaller batch size is the training slower than when doing the experiments, and each
epoch takes 55s.

4.4.1 Final model architecture

The final model architecture is listed in Table 4.7. The number of layers has been halved, and 4928
trainable filters are removed from the original model.

Table 4.7: Final model Generator Architecture

Layer Input Size Output Size Filters Layer type Sends to Receives from
1 (256,256,1) (256,256,1) - Input - -
2 (256,256,1) (64,64,64) 128 Convolutional 9 -
3 (64,64,64) (16,16,128) 256 Convolutional 7 -
4 (16,16,128) (4,4,256) 512 Convolutional - -
5 (4,4,256) (4,4,512) - Concatenate - -
6 (4,4,512) (16,16,128) 128 Transpose Convolutional - -
7 (16,16,128) (16,16,256) - Concatenate - 3
8 (16,16,256) (64,64,64) 64 Transpose Convolutional - -
9 (64,64,64) (64,64,128) - Concatenate - 2
10 (64,64,128) (256,256,1) 1 Transpose Convolutional - -

4.4.2 Plots of accuracy of after training the final models

The plots of accuracy for the 100 test images show that the final models are very accurate. To further test
the models, will the validation data set be used.
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Figure 4.22: Accuracy of final surface model
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Figure 4.23: Accuracy of final subsurface model

4.4.3 Using the trained models

After completing the training of the models, are we interested in being able to use them to predict
images. To do this do we need to load the trained models and use them to generate images. Two methods
of sharing the models are developed, one that may be run locally and one that may be run on Google
colab.

Checkpoint files

During the training, checkpoints are stored. Checkpoints capture the exact value of all parameters used
by a model. The checkpoints contain the weights biases and filter values from both generator and dis-
criminator and are therefore large files. However, the checkpoints do not contain any description of the
computation defined by the model and are therefore only useful when source code that will use the saved
parameter values is available.

The checkpoints from the finished trained models are used when developing the python program Gener-
ate images.py. This script loads the checkpoint files from the trained model and analyzes all images in a
selected input folder.

To facilitate for analyzing single images instead of the type described in subsection 4.2.2 is the data
set loader from the training program adjusted to import 256x256px images instead of 512x256px. To
maintain the input pits number or name is the data set loader is adjusted to import the input images in
alphabetical order. By collecting an alphabetical list of png files in the input folder, are we able to give
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the predicted images names that correspond with the input image.

Algorithm 3: Algorithm for creating images with final model
input : Input Data path, Surface model path, surface-1mm model path, Result path
output: Surface stress images, Surface-1mm stress images

Initialize model architecture;
Filenames← Image names in input folder;

Create a surface folder in result path;
Load surface model file ;
i← 1 ;

for All images in the input folder do
Generate image ;
Generated image name← ”Predicted image”+Filename(i);
Save Generated image as Generated image name in surface folder;
i← i+1

Create surface-1mm folder in result path;
i← 1;
for All images in input folder do

Generate image ;
Generated image name← ”Predicted image”+Filename(i);
Save Generated image as Generated image name in surface-1mm folder ;
i← i+1

Tensorflow model

The whole model may also be saved as a TensorFlow file. By using a single command, may the model
with the associated weights and biases be loaded. The saved model requires much less space and does
not require the original architecture to analyze the images. However, this method has proven difficult to
run on systems without GPU when the model has been trained on GPU.

The trained models may be found on google drive 3. The folder also contains input images and their
corresponding stress images. A notebook designed to run the models are found in google colab 4.

3https://drive.google.com/drive/folders/1V1A87veYLSmBJSJL16pRpnfnRR1W_0Ot?usp=
sharing

4https://colab.research.google.com/drive/1qywXADDKr7MIdkWFA6GK4jNJWcFo9Csp?usp=
sharing
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Chapter 5
Results and discussion

5.1 Results

The result of this thesis is the finished models and the scripts described in subsection 4.4.3. To analyze
the accuracy of the models was the Generate images.py program used to analyze the validation data set.
The result from the validation data set. The program is run locally without a GPU, which produces ten
images per second. Considering that one mooring chain link often have 2000 pits will it take 200s to
complete an analysis of one mooring link.

Generate images.py and the validation data set may be found with the attached files.

5.1.1 Example images

To get an understanding of how the generated images look are some images scaled. The ground truth
images are scaled such that the highest value is completely white and their lowest value is black. The
corresponding predicted image is scaled with the same parameters as the ground truth. The images
illustrated in Figure 5.1 are chosen at random and do not represent any particularly good or poor result.

5.1.2 Accuracy and loss for the validation data

To understand how the complete validation data set performs, may we look at both models’ mean error
and variance. This may be found at Table 5.1.

Table 5.1: Mean error and Variance

- Surface Surface-1mm
Mean error 0.0080 0.0056
Variance 5.7572 · 10−5 4.6614 · 10−5

To get a picture of the accuracy of the model may we look at the MAE and the predicted peak stresses of
the validation data.
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Input Ground Truth Predicted Ground Truth Predicted
Image Surface Surface Surface -1 mm Surface -1 mm

Figure 5.1: Example results from the models
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Figure 5.2: Difference between the value of actual and predicted peak stress
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Figure 5.3: MAE of the validation data set
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Figure 5.4: Distance between predicted and actual highest stress
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5.2 Discussion of results

The result presented in this thesis suggests that machine learning and general adversarial networks may
be used to emulate FEM results. However, the results are also quite limited. Both models presented in
the results are trained and tested on pits with max depths smaller than 12 mm and peak stresses with
SCF smaller than 1.5. The inaccuracy observed has been rather small, and utilizing a safety factor when
calculating will make the error negligible. Still, we want to discuss the results and their inaccuracies.

5.2.1 Causes of errors

To investigate what causes the models to be less accurate are histograms made where losses are put into
context with pit dimensions and predicted stress. The plots may be found in Appendix B. The plots
reveal that the model is not as accurate when estimating the SCF value for deeper pits and the peak stress
location for small pits. This is especially clear with the model trained on stresses 1 mm below the surface.
In this model, we may observe very accurate results in pits with depth shorter than 5 mm and accurate
but not as accurate results pits between 5 mm and 12 mm. The loss in accuracy when finding SCF in
deeper pits is most likely because the data set used has been dominated by small pits. The distance error
in more shallow pits is most likely because the stresses are so small that a pixel outside of the pit just
happens to have a larger value. The two errors are very well summed up in the plots where predicted
SCF is plotted against the errors. We see high SCF give poorer results for peak stress value and low SCF
give poor results for peak stress location.

5.2.2 Comparing result to other models

The focus of this thesis has been to build a network that is effective and still accurate. The result of this
has been the pixelated images we may observe in Figure 5.1. If we compare the images with Figure 5.5 is
it clear that both the full-size model and the model with removed center layers produce smoother images.
However, when judging the model by MAE and value and location of SCF is the better models not as
obvious. To better understand how the reduction of the model affected the results was a full-size model
trained with a batch size of 1 and 300 epochs. The model then used the validation data set to generate
images. Accuracy plots from the model may be found in Appendix A. A comparison of the plots shows
that the accuracy of the reduced model is not worse than the full-size model, even though the images are
not as clear.

(a) Ground Truth (b) Prediction Full size model (c) Prediction model w.o. 4 layers

Figure 5.5: Output of other models

Discriminator loss

The images not looking authentic may be a result of the discriminator not producing large enough losses.
This may result from λ not being fine tuned when using RMSE or that the discriminator cannot distin-
guish between real or fake images.
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5.2.3 Generality and accuracy

As discussed in subsection 4.2.10 may the normalization of the model not be the best fit when training
on the data sets presented in this thesis. Another source of inaccuracy may be the pixel values used in the
images. The pixel values may have been scaled such that the deepest pit had the highest possible value
in the input image, and the highest possible value represented the highest SCF in the target image. This
could have helped with the accuracy of the model. However, it would have limited the generality of the
model.

In this thesis has a general model valued higher than the absolute accuracy of the model. This may
have lead to more inaccurate results. This has been chosen as the model architecture may be used in later
research. As the model is sufficiently accurate to prove the concept has the choice of a general model
proved to be well.

5.2.4 Distance under surface

The value of a0 was chose to be 1 mm. The results predicting stress 1 mm below the surface have shown
to be not as accurate as the stress in the surface. This may come from the fact that the stresses 1 mm
below the notch is not as sensitive to the notch geometry, and a more appropriate value for this may be
0.5 mm.

5.2.5 Predicting complete stress field

The necessity of predicting the complete stress field around the pit should be discussed. The models
presented in this thesis have been able to predict stress fields around a pit very accurately. However, the
model is large and time-consuming to train. Furthermore, we only need the highest stress to calculate the
fatigue limit of a component as described in subsection 3.1.4. Predicting the complete stress field may
be an overly complicated solution to the problem. Simple convolutional networks are shown to be able
to predict peak stresses in ellipsoid notches and 0.5 mm under the notch.

On the other hand, may the stress field around the pit be very useful if pits are located close to each
other. If we may use a superposition approach to the stress-fields, as Paul JR and Faucett (1962) pre-
sented, could the stress fields be placed on top of each other, and total peak stress may be found.
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Chapter 6
Conclusion and further work

6.1 Conclusion

Two generative adversarial networks have been trained on data sets developed using finite element anal-
ysis. The data set contain images of pit topology and stress both in the surface and 1 mm below the
surface. The results presented in section 5.1 suggest that using generative adversarial networks is a very
promising approach for approximating finite element method results. The models presented in this thesis
are in pits in plane stress with depths larger than 1 mm and smaller than 12 mm able to accurately predict
the value and location of the peak stresses.

Numerous models were trained to experiment with the models loss function and architecture. When
training the last model, the loss function is RMSE because the nominal stress dominates the stress im-
ages, and RMSE weighs outliers heavily.

The model size was reduced by increasing the stride used in the convolutional layers in the generator
and removing two layers from the center of the model. The reduction of the model lead to the images
looking less authentic while still maintaining good accuracy. The reduction of model size was success-
ful. The smaller model needs less time to train and less storage space while producing accurate results
as the full-size model. The model reduction shows that a smaller model is able to perform just as well
as a larger one, yet it is still uncertain if the smaller model is a better choice than the original size when
analyzing more diverse data sets.

The combination of changing model architecture and loss function may have led to the generator er-
ror not being weighed heavily enough. The generator has produced images that do not look like target
images. Still, it is concluded that the images are still sufficiently accurate.

This thesis aims to design a model that may be trained on more diverse data sets. Consequently, the
pixel values used in the input and target chosen to be as general as possible. The image parameters are
found in Table 6.1. These pixel values give the user a precision within 10−3 mm in the input image and
10−3 for SCF in the output image. The UINT16 datatype limits the input to a max depth of 65.536 mm
and output to max SCF of 65.536, which is acceptable.

49



Chapter 6. Conclusion and further work

Table 6.1: Pixel parameters

Parameter Value
Pixel width 0.234 mm

Pixel height 0.234 mm

Pixel value Input Depth in µm

Pixel value Target SCF ×10−3

The training script is available online in Google colab1 and may be used to solve similar problems. The
two trained models developed in this thesis are available in the attached program generate images.py and
online in Google colab2.

1https://colab.research.google.com/drive/1Wl462lHNyoYAp2tliSd-9m1JoQ0_SliU?usp=
sharing

2https://colab.research.google.com/drive/1qywXADDKr7MIdkWFA6GK4jNJWcFo9Csp?usp=
sharing
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6.2 Further work

This section contains the author’s recommendation for further investigation of the application of machine
learning when analyzing corrosion pits.

Before initiating any further work, is it necessary to decide if the whole stress field is needed when
analyzing single pits or if the peak stress is sufficient. If it is desired that the whole stress field around the
pit is desirable, should the application of the superposition principle of pit stress fields be investigated. If
a superposition principle may be used, then the result for a whole mooring chain link could be produced
quickly.

As the data sets used when training the models have been small, a more diverse data set should be
developed. The data set should contain deeper pits that may give larger peak stresses. This may help
the model be more robust and diverse such that model that can handle deeper pits and more significant
stresses.

With a more diverse data set may the generator proposed in this thesis be inadequate. Therefore, further
work should investigate the model architecture and if the small model is large enough to solve more
diverse problems.
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G. Yalçın, O., 2020. Mastering tensorflow tensors in 5 easy steps.

Gemiland, G., Reed, P., Sobey, A., 2021. Selection of appropriate numerical models for modelling the
stresses in mooring chains. Marine Structures 75.

Griffith, A., 1921. The phenomena of rupture and flow in solids. Philosophical Transaction of the Royal
Society of London 221, 163–198.

Hahnloser, R.H.R., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Sebstian, H., 2000. Digital selection
and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 406, 947–951.

Irwin, G., 1957. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech.
24, 361–364.

Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A., 2017. Image-to-image translation with conditional adversarial
networks. CVPR .

Katba, C., . Code4pa: Deep learning neural networks to address the opioid epidemic.

Kim, Y., Kim, M.S., Park, M.J., 2019. Fatigue analysis on the mooring chain of a spread moored fpso
considering the opb and ipb. International Journal of Naval Architecture and Oncean Engineering .

Ma, K., Duggal, A., P, S., L’Hostis, D., Shu, H., 2013. A historical review on integrity issues of perma-
nent mooring systems. Offshore technology conference OTC , 14.

Mahanta, J., 2017. Introduction to neural networks, advantages and applications.

53



learning mastery, M., 2020. MS Windows NT a gentle introduction to the rectified linear activation
function.

McGonagle, J., Shalkouski, G., Williams, Christophe rand Hsu, A., Khim, J., Miller, A., 2020. Backpro-
pogation.

M.K., C., R.G., B., N., N.B., 2010. Modeling the environmental dependence of pit growth using neural
network approaches. Corrosion Science 52, 3070–3077.

Nikhil, T., 2020. Why use concolutional layers.

Ok, D., Pu, Y., Incecik, A., 2007. Artificial neural networks and their application to assessment of
ultimate strength of plates with pitting corrosion. Ocean Engineering 34, 2222–2230.

Parmar, R., 2018. Common loss functions in machine learning.

Paul JR, F.W.P., Faucett, T.R., 1962. The superposition of stress concentration factors. Journal of
engineering for industry 5, 129–132.

Singh, R., 2020. Wavelet scattering network -just to begin.

Wikipedia, 2020. Artificial neural networks.

54



Appendix A
Results full size model

A.1 Results

Table A.1: Mean error and Variance

- Surface Surface-1mm
Mean error 0.0158 0.0049
Variance 1.856 · 10−4 4.3954 · 10−5

A.1.1 Loss plots for full size model
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Figure A.1: True peak stress plotted against predicted full size model
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Figure A.2: Mean average error in full size model
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Figure A.3: Distance error in full size model
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Appendix B
Error patterns final model

B.1 SCF value error
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Figure B.1: SCF error VS max pit depth
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Figure B.2: SCF error VS pit area
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Figure B.3: SCF error vs pit volume
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Figure B.4: SCF error VS predicted SCF
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B.2 SCF Distance error
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Figure B.5: Distance error VS max pit depths
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Figure B.6: Distance error VS pit area
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Figure B.7: Distance error VS pit volume
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Figure B.8: Distance error VS predicted max SCF
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Appendix C
ICEM CFD
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Meshing STL file in ICEM-CFD 
Importing  

• Click “Change working dir” and select desired directory 

• Click “Import Geometry”-“Faceted”-“STL” and select 

desired file 

 

 

 

 

 

 

• Check “Surfaces” box and solid simple display to 

visualize the model 

 

Repairing geometry 
• Select the repair geometry tool

 
• Select tolerance and feature angle to filter by.  

• Check both “filter points” and” filter curves” to mitigate the risk of having 

unnecessary lines and points in your model. 

• Click “OK”  

 

Creating Parts 
 

• Right click on “Parts”in the model list 

• Select “Create Part” 

• Click on “Create part by selection”  

• Click on the desired surface and confirm by 

clicking middle button 

• Write part name  

• Click OK 
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Translating part  
• Select the transform geometry tool 

 

• Select part to transform with the “select geometry” button 

• Select Translate geometry (key=m) 

• Check “copy” box to keep the original part 

• Select the desired offset  

• Click Apply 

 

Mesh 
• Select “Global mesh setup” 

 

• Check “curvature/proximity based refinement” box 

• Select max element size and min Element size  

• Click ok 

 

 

 

• Select Compute mesh 

 
• Select mesh type and mesh method 

• Click “Compute”  
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Smooth Mesh 
• If the mesh is not looking good smooth the mesh with “Smooth mesh globally tool”  

 

• The element quality is 

shown in the lower right corner 

 

• Select the smoothing parameters  

• Click OK  

• Check mesh quality 

 

 

 

 

Export model 
• Select “Write/view input file”  

 

• Select advanced options 

• Change volume elements from defined to “all”  

• Click “Create Atribute and parameter file”  

• Click OK. 
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