
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e 
Te

ch
no

lo
gy

Håkon Kvalvåg Pettersen

Towards Remaining Life Assessment
by use of Conditional  Adversarial
Networks

Master’s thesis in Marine Techonolgy
Supervisor: Sigmund Kyrre Ås
Co-supervisor: Marius Andersen

June 2021

M
as

te
r’s

 th
es

is





Håkon Kvalvåg Pettersen

Towards Remaining Life Assessment by
use of Conditional  Adversarial
Networks

Master’s thesis in Marine Techonolgy
Supervisor: Sigmund Kyrre Ås
Co-supervisor: Marius Andersen
June 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology





Preface

This thesis summarizes the work performed in TMR4930 Marine Technology -
Master’s Thesis at the Norwegian University of Science and Technology (NTNU),
and is the final delivery for a Master of Science degree within Marine Structures.
The work is a continuation of the project thesis written in the Autumn of 2020,
and was carried out from January to June 2021.

The motivation for this thesis was to investigate the use of state-of-the-art machine
learning algorithms to assess the fatigue life of mooring chains. The approach eval-
uates the stress concentrations caused by pitting corrosion by use of a conditional
generative adversarial network. The neural network used an image representing the
pit geometry as an input and generated an output containing the resulting stress
concentration factor at a critical distance.

Similar topic has been investigated in another master thesis by a fellow student,
Henrik Heien. Through joint supervision, different approaches were openly dis-
cussed. However, this present work has been written in its entirety by H̊akon
Kvalv̊ag Pettersen.

It should be mentioned that writing this Master’s thesis under the COVID-19
pandemic has been challenging. Guidance meetings were held online throughout
the semester, thanks to the supervisors’ flexibility, making it easier to seek guidance
when local restrictions prevented physical meetings.

The reader is expected to have knowledge of basic fatigue theory and what factors
within the marine industry affect the fatigue performance. It is also beneficial to
have a basic understanding of machine learning theory. However, relevant machine
learning theory will be explained in order to assist the readers to understand the
basics concepts and understand the approach of this thesis. A good foundation of
linear algebra and calculus is advantageous.
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Abstract

Statistics show numerous mooring lines failure has occurred in early life, well within
design life. Mooring chain failure accounted for up to 50 % of total failures, where
fatigue was one of the main drivers for failure. To detect and avoid possible failures,
inspection by use of, e.g., remotely operated vehicles (ROVs) is commonly done.
Combining these inspections with a machine learning algorithm that can process 3D
scans can provide fast, efficient, and accurat predictd on the condition of mooring
chains without the need for finite element analysis. This would welcome a reduction
in operational cost and possibly provide more insight than by today’s standard
approach.

This thesis presents a method of using a conditional generative adversarial net-
work (cGAN) in remaining life assessment of corroded mooring chains. The con-
structed neural network is based on the existing image-to-image translation net-
work Pix2Pix. The constructed network translated a gray-scale image of a single pit
surface to the corresponding stress field image containing the stress concentration
factor (SCF) at a critical distance of L/2 = 0.5 mm.

In order to train and test the performance of the neural network, a procedure of
creating a finite element model that could obtain the stresses at the critical distance
for many different pit geometries was established. This procedure used an artificial
sub surface, identical to the pitted surface, to obtain these stresses.

The constructed neural network provided promising results for use in the fatigue
assessment of corroded mooring chains. The network’s generator was able to gen-
erate real-looking stress field images that are similar to the true stress field images.
The prediction error in the maximum SCF in the generated images was low and
was most likely to be overestimated. By introducing an additional loss function, a
maximum value loss, for the generator, the prediction error decreased. However,
with the maximum loss, the SCFs were more likely to be underestimated. Hence,
the network trained without the additional loss should be used for further fatigue
assessments.

iii



Sammendrag

Statistikk viser at fler-tallige tap av forankringsliner har skjedd tidlig i den de-
signede levetiden. Forankringsliner av kjetting var ansvarlige for opptil 50 % av
alle tap, hvor utmatting var en av hoved̊arsakene for disse tapene. For å oppdage
og unng̊a mulig tap, er det vanlig å bruke fjernstyrte undervannsfarekoster (ROV).
Ved å kombinere disse inspeksjonene med en maskinlærings algoritme som kan anal-
ysere 3D skanninger, kan gi en rask, effektive og sikker prediksjon p̊a tilstanden
til kjetting løkker uten behovet for endelige elementmetode analyser. Dette vil
redusere kostnader og mulig gi bedre innsikt enn dagens metode tilbyr.

Denne avhandlingen presenterer en metode hvor et betinget opponent-genererende
nettverk (cGAN) kan bli brukt i evalueringen av gjenværende levetid for korroderte
kjettingløkker. Det etablerte nettverket er basert p̊a det eksisterende bilde-til-bilde
transformasjons nettverket Pix2Pix. Det etablert nettverket transformerte ett gr̊a-
skala bilde av overflaten til én enkel korrosjonsgrop til ett spenningsfelt bilde som
representerer spenningskonsentrasjonen (SCF) i en kritisk distanse p̊a L/2 = 0.5
mm.

For å b̊ade trene og teste ytelsen til det nevrale nettverk, ble det etablert en
prosedyre for å lage en endelig elementmodell som kan finne spenningen i den kri-
tiske distansen for mange forskjellige korrosjonsgrop-geometrier. Denne prosedyren
brukte en syntetisk overflate plassert under den faktiske overflate. Den syntetiske
overflaten ar identisk med den faktisk, og for å oppn̊a spenningene p̊a den kritiske
distansen.

Det etablerte nevrale nettverket ga lovende resultat for bruk i utmattings evaluerin-
gen av korroderte kjetting løkker. Nettverkets generator klarte å genere bilder som
b̊ade ser ekte ut og ligner p̊a de faktiske bildene av spenningskonsentrajon. Feilen
i maksimum spenningskonsetrasjon i de generete bilden var lav, og verdien av
spenningen ville mest sannsynlig bli overestimert. Denne feilen ble lavere ved å in-
trodusere en ekstra m̊alfunksjon, en maksimum verdi m̊alfunksjon. Med den ekstra
m̊alfunksjonen ville spenningen mest sannsynlig bli underestimert. Derfor burde
nettverket trent uten den esktra m̊alfunksjonen blir brukt for videre utmattings
evalueringer.

iv
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Chapter 1
Introduction

1.1 Background and Motivation

Mooring lines are essential for stationary units like FPSOs, FSOs, offshore wind
farms, and other floating constructions. To safely be kept stationary at the desired
location for a design life of 20-30 years, the mooring lines have to withstand harsh
environments and degradation mechanisms such as corrosion and fatigue. Failure
of one or more lines could be catastrophic, resulting in oil spills, risk of casualties,
and increase costs. Thus, to prevent failures, substantial quality requirements are
needed. In terms of fatigue design, a safe life approach is made to sufficiently design
the mooring lines against fatigue failure.

Statistics shows that numerous mooring line failures have occurred in early life,
well within design life. Over 90% of failures occurred within the first 13 years
[1]. Chains, connectors, and wire ropes were the three most common components
causing these failures, pointing to pitting corrosion and fatigue as two main drivers.
In a study by Fontaine et al. [2] a set 107 mooring line failure was investigated,
in which 46% of failure event was associated with chains. Investigations of these
chain failures clearly indicated that fatigue and corrosion accounts for 56% of failure
events, see Figure 1.1.

1



1. INTRODUCTION 2

Figure 1.1: Causes of failure event on chains in mooring lines [2]

To better understand the mechanism causing the high rate of failures, especially in
mooring chains, joint industry projects (JIPs) have been conducted. Studies on the
effects of corrosion on the fatigue life of chains clearly show that pitting corrosion
and corrosion in general, reduces fatigue life and thus, increases the probability
of failure [3]. Monitoring the condition of the chains requires frequent inspections
with remotely operated vehicles (ROVs). Such inspections are costly, takes time,
and do not always provide the best pictures of the structural condition. For new
industries such as offshore wind, a cost reduction is crucial to be profitable.

Therefore, a solution that provides fast and accurate information is highly wel-
comed. The use of machine learning has rapidly increased over the last decade.
It has proven to provide accurate results from, e.g., image recognition and regres-
sion problems. Combining a machine learning algorithm with inspection data in
the form of a 3D scan, such as LifeMoor and Karken Robotics Inc. is doing, can
ultimately provide accurate predictions on corroded mooring chains’ conditions.

1.2 Literature Review
The following section provides an overview of relevant research in the fields of cor-
rosion effects on mooring chains, machine learning in general, and machine learning
in structural mechanics. In addition, relevant work within machine learning for the
approach of this thesis is described.

1.2.1 Corrosion on Mooring Chains
The integrity of mooring lines is of high relevance for the industry. The topic has
been studied in several joint industry projects (JIPs) in order to understand and
clarify the mechanisms and impact of conditions affecting the mooring lines. One
of such is Mooring Integrity JIP Phase 1 & 2 [4, 5], where the first phase identified
the factors that influence the integrity and the challenges for the industry— point-
ing out corrosion in pitting corrosion alongside fatigue as two critical factors. In
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the second phase, further investigations of these factors were conducted. Investiga-
tions in Seawater Corrosion of Ropes & Chains (SCORCH) JIP examined pitting
corrosion effects on mooring chains [6] and corrosion in mooring lines[7]. Further-
more, experimentally testing the residual strength of severely corroded chains, as
seen in Figure 1.2, showed good results[8]. Even with significant material loss due
to pitting corrosion, the residual strength was found to be 80-90 % of minimum
breaking load, showcasing that the condition is not as bad as first thought. Fur-
ther, the Finite Element Analysis of Residual Strength (Chain FEARS) JIP [9]
was initiated to examine finite element analysis (FEA) performance in assessing
the same corroded chains as in the SCORCH JIP.

Figure 1.2: Pitting corrosion on mooring chain[8]

The effect of pitting corrosion on the fatigue life was investigated under the Fatigue
of Corroded Chains (FoCCs) JIP. In fatigue assessment of corroded mooring chains,
it is crucial to model the chains correctly. Using a uniform thickness reduction may
not accurately display the effects of local corrosion on fatigue life. Thus, a study of
pitting corrosion effects on fatigue of mooring chains was conducted by Baker et al.
[3]. A fatigue test of two pits with different root radius placed at the outer crown
and one pit placed at the inner bend was performed to showcase FEA’s applicability
in assessing fatigue life. In addition, this study demonstrated the performance of
simulated damage. The finite element models, FE models, were established using
a 3D scan of the chains to create a model close to those tested. However, the
surface condition of the chain is rather smooth, forcing the failure at machined
pits. The results show that FEA is a reliable method for assessing fatigue life, as
the estimated crack initiation point coincides with failure location from the fatigue
test. The estimated initiation point was represented by the location of the highest
stress concentration factor (SCF). By looking at the local stresses, it was evident
that fatigue was dominated by material properties rather than the application of
the steel, e.i. the fatigue curve for steel freely corroded in seawater- B1 in DNV-GL
RP C203 [10], fit better than the curve for studless chains in DNV OS-E301 [11].
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To summarize, the ability to characterize the local stresses in failure locations may
enhance the interpretations of the condition of corroded chains.

In terms of fatigue, pit geometry can be considered a geometry defect rather than
a chemical process. Based on this, an investigation of finite fatigue life for notched
specimens is of interest. Susmel and Taylor [12] came up with a methodology to
predict the fatigue lifetime, e.i., finite life, of notched components. The method
utilized the linear stress field in close vicinity of the assumed crack initiation point
under variable amplitude uniaxial/multiaxial fatigue loading, alongside a Modified
Wöhler Curve Method in the plane of maximum variance for the resolved shear
stress. The theory of critical distance (TCD) imposed as a material parameter. By
use of 124 tests, the methodology showed to be accurate under both constant and
variable amplitude loading. It should be noted that the determination of damage
sum is the most critical part of the approach and has to be done a priori, by, e.g.,
experiments.

1.2.2 Machine Learning and Structural Mechs
Machine learning (ML) is a powerful tool that can be applied to numerous problems
as long as the algorithm is correctly trained. In later years, researches have started
to used ML in engineering problems. Combining real-life tests, finite element anal-
ysis, and machine learning can significantly reduce the time consumption compared
to the standard approach. Another benefit is that ML can find relationships that
previously were hard to establish due to the complexity of the problem. In the
following, some examples of machine learning used within the field of fatigue and
degradation are presented.

Motivating the application of machine learning based on FEA, Ok et al. [13] used
an artificial neural network (ANN) to predict the ultimate strength of an unstiff-
ened plate with localized pitting corrosion. From the analysis of more than 256
non-linear finite element models, four parameters were identified as the most weak-
ening; plate slenderness, pit width, length, and depth. These four parameters were
therefore used as input to the neural network. With only one hidden layer, the rea-
sonably small network generated an empirical formula for the ultimate strength,
which showed good accuracy. Moreover, the number of neurons in the hidden layer
had little effect on the accuracy of the network, which indicates that a single-layered
network is trained well with a small data set.

In general, obtaining a data set that represents the phenomenons of investiga-
tion is crucial. Cottis et al. [14] investigated the reduction of corrosion data. It
demonstrates the complexity of modeling the effect of corrosion. As much as ten
parameters affect the corrosion behavior, and a small data set compared to the
input dimension yields inaccurate predictions. The authors point out that neural
networks (NNs) cannot accurately predict conditions far away from the training
points. Moreover, there should be a data point in each corner of the hypercube
produced by the inputs. In reality, some parameters are more significant than
others. Thus a reduction of the input space can be made.
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Fathalla et al. [15] used ANN in combination with FEA to predict the remaining life
of cracked concrete bridges. The study highlights important aspects of modeling
and creating the data set in which neural networks are trained and tested on.
The networks can only predict reasonable results for cases it has been trained on.
Thus, unrealistic or unexpected crack patterns had to be included in the data
set. Somewhat logical phenomenons like symmetric crack patterns, which have the
same fatigue life, were not learned by the network itself. Including these effects
improved the network’s ability to predict the remaining fatigue life. In addition,
the procedure presented in the paper is inspiring on how to create sufficient training
data and how to find the essential parameters for fatigue analysis.

Image recognition can be used to determine the type of damage or categorize how
badly a structure is damaged. Gao and Mosalam [16] used a convolutional neural
network (CNN) with transfer learning for binary classification of component type
and spalling condition of concrete structures. The network also classified damage
level and damage type, with three and four classes, respectively. Figure 1.3 shows
a prediction of the trained network with a classification activation map. Using a
pre-trained network able to detect low-level features, a limited data set of 2000
pre-labeled images could be used to capture more abstract and high-level features
for the damage conditions. By retraining the last two layers of the convolutional
layers, the network yielded quite good results.

(a) Component type (b) Spalling condition (c) Damage level (d) Damage type

Figure 1.3: Prediction examples of the Image-Based Structural Damage Recognition
network[16]

Regarding mooring line failure, a deep neural network, in the form of a CNN, was
used to detect failures[17]. By using the vessel position, an image of the vessel
position was created. To include the environmental data, the 6-degree-of-freedom
accelerations were added to the images. With these images, the network could
classify whether the mooring lines were intact or damage, with high accuracy (over
99 %). The data set was created using numerical models and simulations covering
a year of environmental loads. However, the study only used information about
the vessel movements and did not include any information about the mooring lines’
condition. Thus, it can only predict if lines are damage, act on it after the failure
has occurred. To prevent the loss of one or more lines, a neural network that can
predict the conditions of the mooring lines is useful.
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1.2.3 Image-to-Image Translation
In recent years the use of generative modeling has become popular and proven to
provide good results. A variety of approaches have been taken. Some examples
are Fully Visablle Belief Network, such as PixelCNN [18], Variational Autoendo-
cers [19], Boltzmann Machines, and Generative Adversarial Network (GAN). The
latter has some advantages; it can produce samples in parallel, are asymptotically
consistent, and does not require Markov chains, and thus, simplifies the training
procedure. GANs were first described by Goodfellow et al. [20] in the paper Gen-
erative Adversarial Networks. The network comprises of two models, namely a
generator, generating samples, and a discriminator trying to distinguish the gener-
ated samples from the true sample. These two models are trained in an adversarial
game, based and game theory.

As the name suggests, GANs can generate samples such as images. These images
are generated without any input. However, for this present thesis, it is wanted
that a network can predict or generate samples based on an input sample. Thus,
using a conditional GAN is effective. In these networks, the generated sample is
conditioned on an input sample. One such network is the Pix2Pix network created
by Isola et al. [21] in 2016 and later review in 2018. The network takes an input
image, e.g., grayscale image or aerial photo, and generates an output image with
color and a map respectively, see Figure 1.4. The network is not limited to finding
the mapping from input to output image. It learns loss adapted to the specific
tasks, e.i., when translating a grayscale to color, it finds a different loss than that
of translating aerial photo to a map. As a positive consequence, the network is
applicable for various problems and could be useful for this thesis. The network
and its structure will be further explained in section 3.6

(a) Gray scale to color translation (b) Aerial photo to map

Figure 1.4: Pix2Pix generated examples[21]

1.3 Objectives
This Master’s thesis aims to investigate the use of machine learning in the assess-
ment of remaining life assessment of pitting corroded mooring chains. Today’s
standard approach is time-consuming and often requires finite element analysis
to investigate the reduction in fatigue life due to corrosion thoroughly. Machine



7 1.4 CONTRIBUTIONS

learning, especially with deep neural networks, can drastically decrease time con-
sumption and remove the need for FEA.

Furthermore, the thesis aims to develop a conditional generative adversarial net-
work based on the Pix2Pix network architecture. The network should perform
image-to-image translation, which takes the pit-surface elevation as an input im-
age. Based on this input, the desired output of the neural network is a stress field
image containing the stress concentration factor at a critical distance of 0.5 mm
below the pitted surface.

In order to generate an accurate output image, the network has to be trained on
a data set. Thus, the present thesis introduces a method of creating a large data
set that contains grayscale images of the stress concentration factors at a critical
distance. Lastly, the thesis only describes the applicability for cGANs in fatigue
assessment and describes how such a network can be trained to obtain good results.
Therefore, the implementation of a neural network as an end-to-end application is
not within the scope of this thesis.

1.4 Contributions
The main contributions of this Master’s thesis can be summarized as follows:

• Describing a method for creating a data base which contains grayscale images
of the stress concentration factors at a critical distance using finite element
analysis.

• A method on how to use image-to-image translation in fatigue assessment.

• Create a neural network that accurately can produce a grayscale image of
stress concentration below the surface of corrosion pits form mooring chains.

1.5 Thesis Outline
This thesis is organized as follows:

• Chapter 2 givens an introduction to relevant fatigue theory to understand
and motive the choices made during creation of data set.

• Chapter 3 describes machine learning theory in general and the theory be-
hind GANs and cGANs. In addition, specifics regarding the Pix2Pix network
is presented here.

• Chapter 4 describes the method of creating a data set. The chapter de-
scribes how the finite element model was created.

• Chapter 5 describes the implementation of the neural network, and how it
was put together. The training procedure is described.
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• Chapter 6 presents the result from training and testing the neural network.
Furthermore, the time consumption of the finite element model is presented.

• Chapter 7 discusses the results and choice made when creating the FE
model.

• Chapter 8 concludes based on the results and discussion. Lastly, recom-
mendations for further work is given.



Chapter 2
Fatigue

This chapter will present relevant fatigue theory as well as phenomena that affect
fatigue performance. It will serve as a foundation for the decisions made throughout
the development of a FE model and data collection process. Finally, a method for
predicting the reduction in fatigue life is provided to motivate the usage of critical
distance in fatigue analysis.

2.1 General Concept of Fatigue
Fatigue damages occur in structural components due to cyclic loading over time.
These loads may be well below yield stress. Thus, the damage may not be di-
rectly observable, but microscopic damage accumulates in such a manner that the
macroscopic cracks occur, and the material loses its ability to carry loads.

Fatigue damage can be divided into three stages, with corresponding number of
cycles; the crack initation stage, Ni, the crack growth stages, Ng, and final failure.
The total numbers of cycles before failure, e.i. fatigue life, is:

N = Ni +Ng (2.1)

The crack initiation stage is often difficult to describe, and models describing this
stage are often limited to the material. The characteristic of this stage is that
the slip bands take place within a few grains at the surface, causing intrusion and
extrusion on the surface. Thus, the crack is initiated by slip bands. In the crack
growth stage, the growth depends on material properties. It has a higher growth
rate compared to the initiation stage [22].

9
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2.2 Stress-Life Approach
When assessing the fatigue life, it is often convenient to look at the stress-life curve,
known as the S-N curve. The S-N curve or Wöhler curve was postulated by the
German railway engineer August Wöhler, who was among the first to find a relation
between the fatigue resistance in a material and the stress amplitude of cyclic stress
acting on the material [23].

The S-N curve is established by plotting the stress range, ∆S, against the number
of cycles before failure, N . As N may by high, say 107, the curve is often plotted
in a log-log format, see Figure 2.1.

Figure 2.1: Typical S-N curve, stress amplitude versus cycles to failure on log-log format,
adapted from [23]. The horizontal and vertical axis shows cycles to failure and the stress
amplitude respectively. Region I is the low-cycle region, where as Region II is the high-
cycle region. The last region, Region 3 is the fatigue limit region.

In the low-cycle region, Region I in Figure 2.1, strain and stress exceed the elastic
properties of the material, and Hookes law is no longer valid. Under these stresses
and strains, the whole section undergoes macroscopic plastic deformation, to the
contrary for high-cycle fatigue where only the surface undergoes deformation. Con-
sequently, the fatigue crack grows along grain boundaries and eventually becomes
a continuous macro crack. When the crack becomes large enough, it is driven by
the external load and will continue to grow in a plane normal to the load [23].

Region II is called the high-cycle region. The material is expected to behave elas-
tically on the macroscopic level, and S-N data usually follows a log-linear relation,
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also known as the Wöhlers equation.

N(∆S)m = A (2.2)

On log-log form:
log ∆S = − 1

m
logN + 1

m
logA (2.3)

where A and m are constants depending on the material. The starting point for
high-cycle region varies from 102 to 104 depending on the material [24]. For marine
structures, e.g. mooring chains, a long life-time is expected, meaning that number
of cycles often lies within Region II.

For ferrous metals, the curve flattens out for low stress ranges, seen in Region III.
Below a stress range ∆S0 no fatigue damage will occur due to the formation of non-
propagating cracks. This is known as the fatigue limit. However, for nonferrous
metals and corrosive environments, small pits can be present and initiate the crack
growth. Thus, the fatigue limit does not exist, and fatigue damage occurs at all
stress levels [22].

2.2.1 Effects on the S-N Curve
High-cycle fatigue is often associated with a stress-based approach. It focuses on
the stresses in the affected region of the component. Apart from the stress range,
mean stress, environmental effect such as corrosion, and geometrical effects, e.g.,
notches, are important parameters that influence the fatigue life. The latter will
be discussed in section 2.3. Furthermore, it should be emphasized that effects
such as shape and distribution of inclusion, surface finish, grain size and direction,
component size, load type, surface treatments, and temperate will affect the stress-
life. The reader is referred to chapter 3 in the Fatigue and Corrosion in Metals
textbook [23] further details.

Mean-Stress Effect

For an engineering component under uniaxial cyclic loading history following a si-
nusoidal pattern, as shown in Figure 2.2, the following relations can be established.

Figure 2.2: Cyclic stress history and symbols [22]
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The stress range:
∆S = Smax − Smin (2.4)

The stress ratio:
R = Smax

Smin
(2.5)

The mean stress:
Sm = ∆S

2

(
R+ 1
R− 1

)
(2.6)

An increase in the mean stress, Sm, yields increasingly fatigue damage. This can
be seen in Figure 2.3a, where the curve moves downwards as Sm increases. A
higher mean stress implies most of the stress range is tensile stress, i.e., contributes
to crack growth. On the other hand, as the load ratio, R, decreases, the fatigue
damage abates, moving the fatigue limit upwards, as seen in Figure 2.3b. A lower
stress ratio implies that the cyclic stress on the tensile side becomes smaller, and
hence, lowers the fatigue damage as only tensile stresses contribute to crack growth.

(a) Increase in Sm (b) Decrease in R

Figure 2.3: Effects of mean stress and stress ratio [25]

Environmental Effects

For mooring chains, a sudden unexpected failure due to fatigue may occur. This
may occur even if the experienced number of cycles is well below the designed
fatigue life or even the stress range is lower than the fatigue limit (if such exists).
Hostile environments, e.g., seawater, can accelerate the crack initiation and growth,
due to formation of corrosion pits acting as stress raisers. Additionally, chemical
reactions and dissolution at the crack tip cause the crack to grow faster and reduce
fatigue life. In general, fatigue limits do not exist for corrosive environments, and
fatigue damage occurs at all stress levels. This emphasis the importance of correctly
calculate the stresses within components such as mooring chains to ensure a safe
fatigue life design or correctly predict the condition of the chains.



13 2.3 NOTCH EFFECT

For mooring chains, pitting corrosion is one environmental effect that reduces the
fatigue life, as these pits act as stress raisers. Pitting corrosion is localized corrosion
on the surface in which cavities or holes are created. The pits are formed when the
corrosion attacks a point or a small area. The geometry of the pits varies and will,
depending on the shape, influence the fatigue performance differently. In Figure 2.4
a variety of their cross-sectional shape is shown.

(a) Trough pit

(b) Narrow pit

Figure 2.4: Different cross-section geometries of pitting corrosion[26]

2.3 Notch effect
The stress amplification naturally depends on the geometry of the notch, in which
depth and root radius are the most weakening parameters. The theoretical stress
concentration factor, kt, is based on linear elasticity theory. It is determined by the
ratio between the peak stress at the notch tip, σmax, and the nominal stress, σnom,
based on the net section, i.e., stresses not affected by the stress concentration. See
Equation 2.7.

kt = σmax
σnom

(2.7)

Due to the local stress increase, it is expected that the fatigue limit will be reduced.
Evidence shows that the reduction is present but not as high as kt. Thus, the actual
stress concentration factor, called the notch factor, kf , is equal to or lower than kt.
When the latter is high, kf tends to deviate more from kt. In addition, for hard
materials, SCF and notch factor tends to become closer [23].

2.3.1 Petersons and Neubers Approach
Peterson introduced a notch sensitivity factor, q, showing the influence of SCF on
the notch factor. The sensitivity factor takes material properties and geometrical
effects into account. The notch factor is found by the following equation:

kf = 1 + q · (kt − 1) (2.8)

where q ∈ [0, 1]. When q = 1, the notch factor equals the SCF. As kt is greater
than or equal to kf , choosing q = 1 is the most conservative choice. When q equals
zero the notch effect is abscent.
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Peterson’s approach, known as the point method, states that fatigue damage can
be determined by the stress level at a short distance below the notch root. In
this region, it is assumed that the stress gradient is steep, and there is a linear
decrease in notch tip stress. Through experimental work, Peterson came up with
the empirical expression for q as seen below.

q = 1
1 +

√
aP

ρ

(2.9)

Here ρ represents the root radius, and aP is a critical distance depending on the
material.

Similarly, Neuber’s approach, which actually was presented before Petersons, is
based on stress levels close to the root of the notch. Stresses in close vicinity of
the notch are averaged out over a material distance. Almost the same equation
emerges.

q = 1
1 +

√
aN

ρ

(2.10)

The main difference in these two equations is the material constants, aN and aP ,
and how they are derived. Both, Neuber’s and Peterson’s approach highlight im-
portant effects of notches which can be summarized as follows:

• In addition to the peak stress, the stress gradient affects the fatigue strength.

• Root radius influences the strength. It means that similar discontinuities
with the same kt, but with different root radius, will influence differently.

2.4 Critical Distance
Both Neuber’s and Peterson’s approach is a starting point for the theory of crit-
ical distance (TCD). However, at that time, describing the linear stress fields in
close vicinity of the notch tip was no easy task and could not practically be done.
Nowadays, thanks to tools as the finite element method, a finite element analysis
using computers can be used to establish the stress field.

The critical distance, L, is a material parameter. It is found by combining the
threshold stress intensity factor, ∆Kth, with the fatigue limit range for plain speci-
mens, ∆S0. See Equation 2.11. If the stress level at a distance L/2 from the notch
tip is below a critical stress level, no fatigue damage will occur. Thus, it acts as a
threshold limit. This method is known as the point method.

L = 1
π

(
∆Kth

∆S0

)2
(2.11)

Other TCD formulations using the critical distance is the line method, in which
the stresses are averaged out over a length of 2L, as illustrated in Figure 2.5c. The
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area method, which averaging the stresses over a semicircular area with radius L,
is seen in Figure 2.5d.

Figure 2.5: Different approaches for theory of critical distance [25]

2.5 Notch Effect on S-N curve

The notch effect influences the whole S-N curve, not only the fatigue limit. To
motivate the use of TCD, this present section presents a method, based on section
2.7.2 in [25], where the critical distance is used to calculate the reduction in fatigue
life on notch specimens.

The theory of critical distance is used as a starting point when calculating the notch
effect. The critical distance, LM , changes when the number of cycles before failure,
Nf decreases. The relation shows that LM is a function of Nf , which follows the
power-law shown below. A and B are constants whom must be determined by
experiments.

Lm(Nf ) = A ·NB
f (2.12)

Susmel and Taylor [27] proposed a procedure to determine the constant. The
procedure applies two calibration curves as shown in Figure 2.6. At specified value
Nf = Nf,k there is a corresponding stress range, in the figure shown as ∆σ1,k
for plain specimen. For a notched specimen, it is possible to find a distance,
Lm(Nf,k)/2, from the notch in which the stress range is the same as the one
applied for the plain specimen. By calculation critical distances in both the low-
and high-cycle regions, A and B can be determined[23].
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Figure 2.6: S-N curve used for determination of critical distance, and thereby used for
determine A and B [25].

A recursive procedure can be used to find the reduced number of cycles before
failure, Nf,b. For a notched specimen with a nominal stress range, ∆S, it is as-
sumed a value for the number of cycles before failure, Nf,a. By equation (2.12) the
corresponding critical distance is calculated. The stress range at a distance Lm/2,
namely ∆S1,a, can be found using the stress field around the notch tip. From
the Wöhler equation, Equation 2.2, presented earlier, the following relation can be
obtained to calculate the reduced number of cycles.

Nf,b = N0

(
∆S0

∆S1,a

)m
(2.13)

Here ∆S0 and N0 represents the fatigue limit stress and the numbers of cycles at the
the point of fatigue limit, respectively. If Nf,a 6= Nf,b, the procedure is redone with
replacing the assumed number of cycles with the one calculated, i.e.Nf,a = Nf,b.
The procedure is repeated until the two coincide.



Chapter 3
Deep Generative Modeling

This chapter explains machine learning in general, and how generative adversarial
network is built and trained. The use of deep learning, specifically deep neural
networks (DNN), as function approximators and their generalization capability
will be discussed. Moreover, image-to-image translation by use of a conditional
GAN named Pix2Pix created by Isola et al. [21] is discussed.

3.1 Machine Learning - Introduction

Artificial intelligence (AI) has been present since the 1950s. The concept of AI
is that any application that tries to replicate human behavior either by solving
a specific task or learn how to solve them is artificial intelligence. The latter is
Machine Learning (ML), a sub-class of AI. An ML algorithm is not specifically
programmed to solve the problem; it rather learns how to solve the problems by
recognizing patterns from large amounts of data. Due to the advance in computer
processing capacity and a large amount of available data, ML has become faster and
cheaper and thus more used. An ML technique is Deep Learning (DL), which is a
multi-layered neural network inspired by the human brain. Figure 3.1 summarizes
the classes of AI, ML and DL.

17



3. DEEP GENERATIVE MODELING 18

Figure 3.1: Visual representation of classes AI, ML and DL [28]

3.1.1 Supervised vs. Unsupervised Learning
Machine learning can be divided into two categories, supervised learning and unsu-
pervised learning. Supervised learning is when an algorithm has an input variable,
x, and an output label, y. The algorithm is trained by showing the input, predict-
ing the output, and comparing the output with the label. This is schematically
shown Figure 3.2a. The model is corrected to make the predicted output become
more like the label, i.e., finding the best mapping from input to output. Therefore,
supervised learning is often used in classification tasks, object detection, regression
problems.

(a) Supervised learning (b) Unsupervised learning

Figure 3.2: Examples of Machine Learning approaches [29]

In addition, there is unsupervised learning. In this case, the model is trained with
a data set that does not contain any labeled data. There exist no output labels,
y, see Figure 3.2b. Unsupervised learning models focus on finding patterns or
extracting information from the input data instead of predicting an output sample.
Such models are able to generate samples based on the distribution found in the
data set. Generative models, e.g., Generative Adversarial Networks, are based on
unsupervised learning.
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3.2 Neural Networks
3.2.1 A Single Neuron - The Building Block
The building block in artificial neural network (ANN), or neural network (NN), is
a neuron, also known as a node, a representation is shown Figure 3.3.

Figure 3.3: Representation of a single neuron used in neural networks

The neuron has inputs x1, x2, ..., xm with corresponding weights w1, w2, ..., wm.
The weights describe each inputs importance on the the output of the neuron. In
addition, a bias, w0, is connected to the neuron. The bias is meant to introduce a
shift to the neuron’s output. A summation of the inputs with weights and the bias
produces a scalar

z =
n∑
i=1

xiwi + w0 = wTx + w0 (3.1)

where x and w is the input and weight vector, respectively. The scalar is feed into
an activation functionf , also known as a transfer function, and yields the output
ŷ.

f
(
wTx + w0

)
= f(z) = ŷ (3.2)

3.2.2 Activation Functions
The activation function introduces non-linearity to the network, which enables it
to predict non-linear problems. Without an activation function, the output will
only be a linear transformation of the input [30]. The choice of activation function
depends on the properties of the data and what kind of problem the network is
intended to solve. In the following, the most common functions will be presented.

Sigmoid

The Sigmoid function, plotted in Figure 3.4, is a logistic function which squishes
value between zero and one. Thus, it fits for yielding the probability as a result.
In addition, the derivative exists in all point which enables training with the use
of gradient descent. This will be further explained later. One possible problem is
that the gradient becomes small for both large and small numbers, thus making
training slower.
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Figure 3.4: Sigmoid activation function

Softmax

The softmax activation function is a generalized Sigmoid function. It transforms
an n-dimensional vector into an n-dimensional output vector with a length equal
to one. Hence, each component represents the probability of the n elements. The
activation function is often seen in the last layer of networks [31].

Hyperbolic Tangent

Hyperbolic tangent, tanh, activation function is similar to the Sigmoid function.
The main difference is that tanh is zero-centered and outputs values in the range
[−1, 1]. As a result, hyperbolic tangent activation is often chosen instead of a
Sigmoid activation as negative inputs will be mapped to negative outputs, making
it better for training [30].
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ez + e−z
(3.4)

Figure 3.5: Hyperbolic tangent, tanh, activa-
tion function
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Rectified Linear Unit - ReLU

The rectified linear unit, ReLU, maps the input values in the range [0,∞]. The
function is zero for all negative values and acts as a linear function for positive
inputs. ReLU is the most common activation function due to being computationally
efficient. However, the derivative is constant equal to zero for negative values, which
may impose problems during training as neurons can die out [32].
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z

f(z)

f(z) = max(0, z) (3.5)

Figure 3.6: Rectified Linear Unit, ReLU, acti-
vation function

Leaky Rectified Linear Unit - Leaky ReLU

Leaky ReLU is a variant of ReLU that addresses the problem with a constant zero
derivative. For negative values, the function now has a small slope, a, greater than
zero.

z

f(z)

f(z) =
{

z z > 0
az z < 0 (3.6)

Figure 3.7: Leaky Rectified Linear Unit, Leaky
ReLU, activation function
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3.2.3 Deep Feedforward Network
A deep feedforward network, also known as feedforward neural networks (FFNN)
or multi layered perceptrons (MLP), is, in essence, connecting multiple neurons to-
gether in numerous layers. Figure 3.8 shows a fully connected feedforward network,
meaning that all neurons are connected to the neurons in the previous layer. This
is often referred to dense layers or densely connected layers. Moreover, the infor-
mation flows from the input layer to the output layer, i.e., it propagates forward,
thereby its name.

Between the input and output layer lie the hidden layers. The hidden layers capture
more abstract and complex features from the input data as the width (number of
neurons) and depth (number of hidden layers) increases [33]. The state of the
hidden layers is not directly determined by the real world. It is also not directly
observable, hence given the name hidden layers.

Figure 3.8: A dense neural network with two hidden layers

Using the building block from the previous section, the neuron, it is clear that the
output from the first hidden layer now becomes a vector dependent on the input
layer. This can be further generalized; let L be numbers of layers and l represent
a specific layer. Within layer l, there exist Kl neurons, where k refers to a specific
neuron. Furthermore, let wljk denote the weight connection between neuron k in
layer (l − 1) to neuron j in layer l, and wl0j is the bias. Thus, the output alk of
neuron k in layer l, is dependent on the outputs and weights in the previous layer,
(l − 1), and can be written as seen below.

alj = f

Kl−1∑
k

wljka
l−1
k + w0j

 (3.7)

To handle large networks it can be convenient to write Equation 3.7 on matrix
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form, as seen in Equation 3.8. Thus, the outputs form layer l is now a vector, al,
where Wl is the weight matrix and wl

0 is the bias vector.

al = f
(
Wlal−1 + wl

0
)

(3.8)

Function Approximators

MLPs are so-called universal function approximators. Cybenko [34] showed that
a neural network with just one hidden layer including a finite number of neurons
can approximate any continuous function on a closed bounded subset of Rn by use
of a non-linear function as the Sigmoid function [35]. Later, Hornik [36] showed
that application of any bounded non-constant activation function, MLPs are uni-
versal approximators. In addition, with a sufficient smooth activation function, the
derivatives are approximated accurately.

Even though a network with a single hidden layer is sufficient, a deep neural network
is commonly used. A reason for this is that the complexity of this single layer may
become large, and the width grows exponentially, i.e., numbers of neurons become
huge. Therefore, it can be difficult to train the network in such a way that the
correct weights are found. Also, for a complex network, there is a risk of overfitting.
Nevertheless, based on empirical observations, DNNs have shown to outperform a
single hidden layer network although they have the same approximation ability
[32].

3.2.4 Optimizing the network
The network has to be trained in order to find the correct weights and biases. Under
supervised learning, the network is given both the input and the true output. In
order for the network to know how good or bad the prediction is, the quality of the
prediction has to be quantified. This is done by using an objective function, also
called a loss function. A well performing network has a small error. Hence, the
objective when training a network is to minimize the loss function. The process of
minimizing the loss is done through backpropagation.

Another essential aspect of optimizing is that the data is split into a training set and
a test set. Then, the network is trained on the training data and tested on unseen
data from the test set. In this way, it can be shown that the network predicts the
output in a suitable way rather than memorizing each data point in the data set.
Furthermore, this means that the weights and biases are tuned correctly.

Loss function

The loss function, L, quantifies the error. It can be formulated in a variety of
ways, depending on the task at hand. For regression problems, e.i. the network is
going to predict numbers, the mean square error (MSE), see Equation 3.9, or mean
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absolute error (MAE), see Equation 3.10, is common choices.

L(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2 (3.9)

L(y, ŷ) = 1
n

n∑
i=1

yi − ŷi (3.10)

Here n denotes the number of training samples, yi is the true value, and ŷ is the
network’s prediction.

For other problems, such as classification, where the network predicts a probability
of the outputs, the cross-entropy loss function, also known as the log-loss, is com-
monly used. The cross-entropy, H, of probability distributions p relative to the
probability distribution q with n discrete states is given in Equation 3.11.

H(p, q) = Ep [log q] = −
n∑
i=1

q (yi) log (p (yi)) (3.11)

Backpropagation

During training, the objective is to minimize the loss function. This can be done
by using the gradient of the loss function with respect to the weights, i.e., ∂L

∂W .
Note that the bias is considered as the zeroth weight and that W represents all
the weights in the network. By moving a small step, η, in the direction of steepest
descent, the new weights can be found as shown in Equation 3.12. The value η
is called the learning rate and prevents overshooting. If the overall objective is to
maximize the loss function, one moves in the direction with the steepest ascent,
flipping the sign on the gradient below.

W = W− η ∂L
∂W (3.12)

Finding the gradient of L is, in essence, applying the chain rule from calculus repet-
itively. This implies that the derivative in each layer is multiplied together, and
thus, explains the name backpropagation as the derivative propagates backward in
the network. The reader is referred to chapter two of Neural Networks and Deep
Learning by Nielsen [37] for further details on backpropagation. Nonetheless, in
reality, calculating the gradient is time-consuming and is not suitable in neural
networks as the training time increases. Therefore, other methods like stochastic
gradient descent (SGD) [38], which updates the weights for every training exam-
ple, Mini-Batch Gradient descent, or adaptive learning rates, i.e., changing η during
training, can be used to lower training times.

In recent years, more complicated optimization algorithm has been made. Mo-
mentum can be implemented, which can be imagined as pushing a ball downhill.
The ball will move faster when the slope is in the same direction as the ball was
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initially moving, i.e., the momentum increases in the dimensions in which the gra-
dient points the same way. On the other hand, the ball will move slower when the
slope is in other directions; thus, the momentum decreases in the dimensions in
which the gradient changes [39]. In addition, adaptive learning rates can be used.
The algorithm Adam [40] is one that implements both an adaptive learning rate
and a property similar to the momentum, with momentum parameters β1 and β2
[39].

3.2.5 Generalization
One powerful aspect of NNs is their generalization ability. It means that a suffi-
ciently trained network can predict the output from yet unseen inputs. In other
words, both the training error and the test error are small. However, it is not
guaranteed that a network is generalized. During training, the network can either
be under fitted, generalized, or overfitted, see Figure 3.9.

Figure 3.9: Representation of underfitting, generalization and overfitting [35]. The
leftmost image is underfitting, where the predicted line is not a good fit to the data
points. The middle image shows a generalized network, where the predicted line is a good
fit. The rightmost image shows overfitting. Even the the predicted line goes trough all
the data points, it do not capture the underlying trend in the data set.

Underfitted means that the network is not performing well enough; both the train-
ing and the test errors are too high. This implies that the network is not appropri-
ately trained to find the correct weights and biases due to either a small training
data set or that the training data is not a good representation of the whole prob-
lem. It can be avoided by increasing the network’s complexity, remove noise data,
or making sure that the data represent the problem.

An overfitted network remembers each data point rather than capture the whole
picture. An overfitted network captures the noisy data. A cause of overfitting is
that the network is trained with too much data so that the network learns each
point. One can either reduce the size of the data set or decrease the complexity
of the network if applicable. Another way to check if a network is overfitted is by
looking at the training and test error. If the training errors decay while the test
error increases, the network is overfitted.
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3.3 Convolutional Neural Networks

A convolutional neural network (CNN) is a distinct type of DNN. CNNs are widely
used within image recognition, image classification, and object detection. The
reason for its name is due to the convolution layer. A typical CNN architecture
can be seen in Figure 3.10. The main layers are the convolutional layer, pooling
layer, and often a softmax layer.

Figure 3.10: Typical layout of a CNN [41]

Convolution layer

A convolution layer aims to extract different features from the input data, often
considered as an image. The layer can find features such as edges or patterns, or
sharpen the picture or blur it up. It works by convolving a kernel over an image,
as shown Figure 3.11. The kernel, also known as a filter, is swept across the image,
and the output, which is saved in a feature map, is essentially the dot product of
the picture and the kernel as it goes over the image. The filter is moving s pixels
every time, these moves are known as strides. A convolutional layer is often seen
with a ReLU or LeakyReLU activation function. In Figure 3.11 a 3 × 3 filter, K,
with 1× 1 stride is convolved with the input image, I.
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.
Figure 3.11: Representation of a convolutional layer [42]. The kernel, K is moved over
the image, I, and the dot product of them is the result of the convolutional layer

3.4 Generative Adversarial Networks

Generative adversarial networks are generative models commonly based on deep
learning. The GAN architecture and procedure for training were first described
in the paper Generative Adversarial Networks by Goodfellow et al. [20]. However,
the established model was both hard to train and unstable. Thus, the standard
approach today is loosely based on the Deep Convolutional Generative Adversarial
Network (DCGAN) established by Radford et al. [43].

The architecture of GANs comprises of two models; a generator to generate new
samples, and a discriminator that tries to classify whether samples are fake or not,
see Figure 3.12. In a game theory-based procedure, these two networks are pitted
against each other. The generator seeks to deceive its adversary, the discriminator,
while the generator tries to correctly categorize the generated sample. In this setup,
both the generator and discriminator can be optimized to perform better. In the
following sections the generator, discriminator and how to optimize the network
will be explained.
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Figure 3.12: Schematics of the architecture of GANs [44]. The generator is feed with
random noize vector, and then generates an image. The discriminator assigns a real or a
fake label on the input image, either from the training set of the generated image.

3.4.1 Generator
The generator is a differentiable function, G, often represented in the form of a
deep neural network, as seen in Figure 3.13 where deconvolution layers are used.
The overall goal for the generator is to find a distribution, pg with θg variables,
that is as close as possible to the actual distribution of the data set, pdata. To learn
pg, the generator is given input z, drawn randomly from a Gaussian distribution,
and used as a seed for the generator to create new samples. The input vector is
referred to as a latent variable, meaning that it has no physical meaning and is not
directly observed. However, it is vital for the network to generate samples.

Figure 3.13: Overview of a typical generator architecture [45]. The latent variable, z,
is used as input, and decovolutional layers followed by a activation function are used to
generate an image.

3.4.2 Discriminator
The discriminator is a differentiable function, D, often as a classification neural
network. The discriminator, consisting of θd parameters, takes an input sample x,
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and outputs a single scalar. Thus, D(x; θd) represents the probability of x being
drawn from the true data set, pdata. After training, the need for the discriminator
is not there, as only the generated samples are of interest. Thus, the discriminator
is only used for training, i.e., making the generator better.

3.4.3 Training Process
A generator that performs well generates samples that fools the discriminator, i.e.,
maximizing the probability of being real. However, on the other hand, a discrimi-
nator that performs well can easily distinguish between a real or fake sample. Thus,
it is a two-player game, where the two models try to outperform each other.

More formally, D is trained to maximize the probability of assigning the correct
label (real or fake) to both the generated sample and samples from the training
set. Further, G is trained to minimize the probability of being classified as fake,
i.e, log(1 − D(G(z))), or the equivalent maximizing the probability of being real
log(D(G(z))).

The standard discriminator loss function, LD, is formulated as seen in Equa-
tion 3.13. Here Ex∼pdata[log(D(x)] represents the expected value of the cross-
entropy loss between x, drawn from pdata, and D(x). In some cases, the 1

2 is
discarded in training, as the actual value of the loss function is not of interest, only
the optimized point. In fact, the one-half factor shows that the discriminator is
trained with two mini-batches; one drawn from training data and one drawn from
the generator samples.

LD(D,G) = −1
2Ex∼pdata[logD(x)]− 1

2Ez[log(1−D(G(z)))] (3.13)

The generator loss, LG, is determined by how the two-player game is set up. A
well-known way is to set up as a zero-sum game or minimax game. In this game,
the generator loss is defined as seen in Equation 3.14, where the generator tries to
minimize this loss.

LG(D,G) = Ez[log(1−D(G(z)))] (3.14)

Moreover, as LD is dependent on LG, the game can be summarized with a value
function, V , where both the parameters for the generator and discriminator, θg
and θd respectively, are included, see Equation 3.15. Thus, both models can be
trained based on this function.

V (D,G) = −LD (3.15)

The minimax game originates from that the inner loop is maximized, while the
outer loop is minimized, as specified below.

min
G

max
D

V (D,G) = Ex∼pdata[logD(x)] + Ez[log(1−D(G(z)))] (3.16)
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The two-player game is implemented using an iterative, numerical approach. If
the inner loop, i.e., maximizing the discriminator, is trained to completion, the
network would be overfitted; the discriminator would remember all the data points
in the data set. Moreover, in this instance, the discriminator would always assign
the correct label to the generated samples and thus prevent a good training of
the generator. Therefore, the approach optimizes the discriminator with k steps,
followed with one step of optimizing the generator. The optimizing procedure
follows Algorithm 1 presented in paper Generative Adversarial Networks [20].
This algorithm is reproduced below.

Algorithm 1: Minibatch stochastic gradient descent training of generative
adversarial nets. The number of steps to apply to the discriminator, k, is a
hyperparameter. The authors in [20] used k = 1, the least expensive option, in
the experiments.
for number of training iterations do

for k steps do
• Sample a minibatch of m noize samples

{
z(1), . . . ,z(m)}

• Sample a minibatch of m generated samples
{
x(1), . . . ,x(m)}

• Update the discriminator by ascending it stochastic gradient:
∇θd

1
m

∑m
i=1
[
logD

(
x(i))+ log

(
1−D

(
G
(
z(i))))]

end
• Sample a minibatch of m noize samples

{
z(1), . . . ,z(m)}

• Update the discriminator by ascending it stochastic gradient:
∇θg

1
m

∑m
i=1 log

(
1−D

(
G
(
z(i))))

end

Furthermore, when using the minimax game, the generator loss may not provide
gradients on which the generator can train on. That is, if the discriminator per-
forms well, it can correctly classify the generated sample. As a consequence, the
value of log(1−D(G(z))) becomes small, and thus, the gradients for the generator
to train on becomes small. To prevent this saturated game position, the generator
can be trained to maximize log(D(G(z))), which provides sufficient gradients early
in training. Note that in this particular case, the two-player game is not a mini-
max game. However, the loss functions can find the same optimized point in the
adversarial game [20].
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3.5 Conditional Generative Adversarial Networks
A limitation to GANs is that they are only able to generate random samples, the
samples may be different, but the user does not have any control over the output.
An extension to GANs, in which the user can affect the output, are conditional gen-
erative adversarial networks developed by Mirza and Osindero [46]. The network
has the two same building blocks as GAN, namely a generator and a discriminator.
However, both the generator and discriminator are now conditioned on an addi-
tional input, y, represented in Figure 3.14. This condition can be viewed as telling
the network what to generate, e.g., telling the network to generate an image of a
cat, or using an image to tell the generator to mimic the style the input image.

Figure 3.14: Structure overview of cGAN [46]

As the generator is conditioned on y, its output depends on both the random
input z and y, thus G(z | y) or often denoted as G(z,y). The same holds for the
discriminator, it is also conditioned on y, thus D(x | y) or equivalent D(x,y). In
terms of training, the only difference with respect to GANs is the implementation
of the conditional probabilities. Thus, the training procedure shown in section 3.4.3
is followed, with the value function used in the zero-sum games as:

min
G

max
D

V (D,G) = Ex,y[logD(x,y)] + Ey,z[log(1−D(G(z,y),y)))] (3.17)

3.6 Image-to-Image Translation
In this section, the Pix2Pix network created by Isola et al. [21] in the paper Image-
to-Image Translation with Conditional Adversarial Networks will be explained.
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Image-to-Image is an application of cGANS where the condition is in the form
of an image. The architecture of the generator and discriminator was carefully
chosen through testing and comparing performance for each modification of the
network. Thus, the Pix2Pix network provides an general framework for various
image-to-image translations, e.g., gray-to-color, day-to-night, aerial-to-map.

3.6.1 Pix2Pix Generator - U-Net
The generator utilizes a convolutional neural network architecture called U-net,
established by Ronneberger et al. [47]. A representation of a U-Net can be seen
in Figure 3.15. The input layer is an image; this is down-sampled on the encoder
side, using convolutional layers with drop-out and batch normalization, until a
bottleneck layer. At the bottleneck, the process is upsampled on the decoder side,
by use deconvolutional layers. An essential aspect of this structure is the use of skip
connections between the layers in the downsample and upsample side, showed by
the dotted line in the figure. The skip connection is used to carry over the low-level
information shared between the input and output layer. Additionally, there is no
random noise vector, z; instead, some sort of randomness is introduced through
the drop-out layers.

Figure 3.15: Schematics of a generator following a encoder-decoder structure [21]. The
leftmost figure shows a regular encoder-decoder generator. The rightmost figure shows a
U-Net generator, with skip connections between the encoder and decoder side.

3.6.2 Pix2Pix Discriminator - PatchGAN
The discriminator utilizes a concept called a PatchGAN discriminator, visualized in
Figure 3.16. This is a deep convolutional neural network that scans patches of the
input image rather than the entire image, as done in regular GANs. The patches
are generally of size N × N . However, the authors found that a 70 × 70 patch
yielded the best result [21]. Consequently, the discriminator’s output is a 30 × 30
matrix, where each element represents the probability of each patch being real.
Therefore, the discriminator is more locally dependent, and it assumes that pixels
with a diameter larger than a patch size are independent of each other. Finally,
the result matrix is averaged out to provide the prediction of D. This technique
enables the discriminator to effectively run on larger images with fewer parameters,
thus being easier to train.
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Figure 3.16: Representation of PatchGAN discriminator [48]. The discriminator evalu-
ates patches from the image of being real or fake trough covolutional layers. The result
from the discriminator is shows as a matrix containing the prediction.

3.6.3 Loss Functions and Training Process
For image-to-image translation, an optimized network can, with good accuracy,
generate samples that are similar to that of the training data. However, using the
value function, for cGANs given in Equation 3.17 may not sufficiently train the
generator network. This value function only labels the images as real or fake. An
additional loss that penalizes the generator if the pixel values are far from the real
image is wanted, and thus forcing the generator to produce a real image and an
image as close to the input as possible. Using either the L1-distance or the L2-
distance as an additional loss will provide such penalization. However, L2-distance
is prone to yield blurry images, which in the context of generating a real-looking
image is not suitable. Therefore, is the L1-distance as seen in Equation 3.18 applied.
Note that the latent variable, z, is present in the equation. However, this only
represents the randomness created by the use of drop-out layers.

LL1(G) = Ex,y,z [‖y −G(x, z)‖1] (3.18)

The Pix2Pix network is optimized following the training algorithm presented in
Algorithm 1 with one step on D, and one step on G. The stochastic gradient
descent algorithm Adam is used. Furthermore, to avoid saturation, the generator
maximizes log(D(G(z,y),y), let this be denoted as LcGAN . Combining the L1-
distance with LcGAN , the generator loss is as follows:

LG(D,G) = Ey,z[logD(G(z,y),y))] + λLL1(G). (3.19)

in which λ is a hyperparameter the specifies the importance of the L1-distance
to the generator loss. A λ = 100 showed to be the most effective [21]. The
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discriminator loss follows the traditional cGAN loss, as seen below.

LcGAN = Ex,y[logD(x,y)] + Ey,z[log(1−D(G(z,y),y)))] (3.20)



Chapter 4
Data Collection Method

In order to train and test the performance of the neural network used in this
thesis, a data set has to be obtained. The data set consists of images of the surface
elevation of pits and their corresponding stress field at a critical distance below
the surface. This chapter presents the methods used for creating this data set and
choices made during modeling.

4.1 Overview
The neural network is aimed to work as an effective and fast tool in fatigue as-
sessment of mooring chains by predicting the stress field at a critical distance.
As discussed in chapter 2, the fatigue life of notched specimens is reduced as the
notches act as stress raisers, and thus reducing the fatigue resistance. Therefore,
looking at pitting corrosion as a geometry effect, rather than a chemical process,
the effects of pitting corrosion can be assessed using the theory of critical distance.
In this thesis, the critical distance was assumed to be constant at a distance, L = 1
mm, below the surface. Following the point method, discussed in section 2.4, the
stresses at L/2 = 0.5 mm was used in the assessment.

The entire method of creating a data set is summarized in the flowchart in Fig-
ure 4.1. This data set contained two types of images; one describing the surface
elevation of a pit, and one describing the stress field at the critical distance. The
latter was used to evaluate the network performance of predicting the stress field,
whereas the first was used as the condition for the network. The surface elevation
images were based on 3D scans of real pits on corroded mooring chains. By use of
a finite element model a method of creating the stress field images was established.
In the following, a description of how the geometry of the pit was obtained, how
the finite element model was established, and lastly, how the data set was created
is given.

35
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Figure 4.1: Workflow for data collection method
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4.2 Obtaining Pit Geometry

The geometry of individual pits was provided by Marius Andersen. The exact
method for 3D scanning mooring chains and the method used in the post-processing
of these scans was not provided. However, a short description of the procedure for
creating images containing the pits’ surface elevation will be given.

In order to analyze the effect of one pit, the post-processed 3D scans were used to
sort out single pits with their corresponding geometry and location on the chain.
By using the depth and size of the pits, a pit that fitted within a small patch could
be detected. Furthermore, when transforming the pit surface to an image, the
extracted pit was placed in a 60× 60 mm2 patch, where the surrounding surface of
the pit was assumed flat, not curved as the actual surface of the chain. Moreover,
the pit was oriented in such a way that the expected maximum stress was to occur
in the x-direction in the surface image. Figure 4.2 shows an example of a pit
extracted from a chain and transformed into an image is showed. The red patch is
oriented such that the expected maximum stress is to occur in the x-direction. The
horizontal direction in the image corresponds to this x-direction. The pit surface
image was a 8-bit gray-scale image with 240× 240 pixels. A scale factor based on
a maximum depth of 11.93 mm was used to represent pit depths consistently. The
maximum pixel value of 255 corresponded to a depth of 11.93 mm.

Figure 4.2: Example of pit being extracted from 3D-scan. Note: the image on the right
is scaled in order to visually be able to see the pit.

However, only one continuous pit was transformed into a surface image. This
means, if two different pits with no connection were to fit within the small patch,
these two would be separated into two different images, see Figure 4.3. In this way,
a robust method of investigating the effects of the pits could be established.
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Figure 4.3: Example of two pits within one patch during extraction of single pits. Note:
the images on the right is scaled in order to visually be able to see the pit.

4.3 Finite Element Model Procedure
A finite element model was used to obtain the stress field at the selected critical
distance. The model was based on the pit surface images. Thus, the dimensions
used to create the image had to be carried over to the FE model. Moreover, as
the neural networks needs large data sets, i.e., a large number of images, to be
trained sufficiently, running the finite element method in batch mode was estab-
lished. This method, referred to as the finite element model procedure, is visualized
in Figure 4.4.

Figure 4.4: Overview of the finite element model procedure
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The finite element model consisted of a 60×60×60 mm3 box, as seen in Figure 4.5a.
The top surface of the box was used to replicate the pitted surface. The box model
was created by essentially imposing the pit image on the top surface and then use
the surface elevation as a negative height, i.e., the pit goes into the box. The
process of creating a STL-file of the box model is seen as the two first steps in the
Figure 4.4. Using a 60 × 60 × 60 box, enabled the model not to let the stress in
close proximity to the pit be affected by the applied boundary conditions at the
bottom and sides, as these could cause a local stress increase.

(a) 3D view of the model (b) 2D - Top view of box

Figure 4.5: Representation of box model used in the finite element model procedure

Table 4.1: Material constants and dimensions in FE model

Value Unit Description
E 209 GPa Youngs modulus
ν 0.3 Poissons ratio
H 60 mm Box height
L 60 mm Box length
B 60 mm Box height
S 1000 Pa Applied stress

To obtain the stress field at the critical distance, an artificial surface was created,
seen as the third step in Figure 4.4. The artificial surface was identical to the pit
surface. This enabled the procedure to extract the stress precisely at a distance
of 0.5 mm below any point along the pitted surface. As know from chapter 2, the
stresses in close vicinity to geometry defects decrease rapidly. Thus, to describe
these rapid changes, a fine mesh was needed. Using ANSYS ICEM CFD 19.0,
hereinafter referred to as ICEM, as a meshing tool, a meshing procedure that
used a proximity-based refinement of the mesh was utilized. These refinements
empowered a fine mesh in areas with complex geometry, such as the pit region,
and a coarser mesh where the geometry was more modest. The model was meshed
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with 4-node tetrahedral elements, named SOLID 185 in ANSYS, in which each
node has three degrees of freedom; translation in all three directions, x,y and z.

Furthermore, the meshed box was analyzed by use of ANSYS Mechanical APDL
R.19, referred to as ANSYS. As specified in the provided image, the assumed
maximum stress was in the x-direction. Hence, the box was placed under uniaxial
stress load going in x-direction, as illustrated in Figure 4.5b. The applied material
properties and box parameters are shown in Table 4.1.

The procedure for creating the FE model consisted of using MATLAB to run the
different tasks in batch mode. MATLAB was used to create an STL-file of the box
model based on the pit surface image, and ICEM was used to create the artificial
sub-surface and mesh the model. Finally, ANSYS was used to apply loads and run
finite element analysis.

4.4 Creating the Data Set
The neural network was intended to predict the result stress field image at a critical
distance. Therefore, stress field images were created to be used as training samples
for the network. These stress field images were created by mapping the nodal
stresses on the artificial sub-surface into a 240×240, 16-bit gray-scale image. Each
pixel represented the corresponding critical stress at the same location as the image
of the surface elevation.

However, as the applied load on the box had no meaning other than resulting in
stress concentration around the pit, the stress concentration factor at the critical
distance was chosen as the value represented by the pixel values. The stress con-
centration at the critical distance is, for the rest of this thesis, referred to as the
stress concentration factor or SCF.

Furthermore, to utilize the generalization ability of neural networks, the training
data has to be a good representation of the whole problem domain. To create a
robust network, the data set should include unexpected or unrealistic data points.
Relating this to a SCF; a factor of 5 yields the very upper end of the expected
stress concentration factors, which represents sharp notches acting more as cracks
rather than notches. To include the possibility of correctly generate samples with
unexpected values, the maximum stress concentration factor in the stress field
images was limited to 10. Which in terms, enables the network to be correct down
the fourth decimal in the SCF value. The transformation from local stress value σ,
to the pixel value P , or finding the SCF based on the pixel value, was performed
using Equation 4.1, in which S was the applied stress presented in Table 4.1.

P = σ

S
· 216 − 1

10 = SCF · 216 − 1
10 (4.1)

As mentioned above, the data set has to be a good representation of the whole
problem domain. In this present thesis, approximately 65000 different images of
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pits were provided to the author. Using all these images in the network’s training
is desired; however, such a large data set would be extremely time-consuming to
train with. In addition, running all the images through the finite element model
procedure would further increase the total time consumption from start to finish.
Hence, 2028 randomly selected pits were used to create the training data set, and
418 images were used to create the test set. As discussed in chapter 2 the stress
notch effect factor is dependent on the pit depth. A comparison of the pit depth
distribution in both the training and test set was conducted. In Figure 4.6 a
histogram plot of the pit depths in the entire data set and selected data set is
provided.

(a) The selected training data set (b) The whole provided set

Figure 4.6: Histogram of the pit depth distribution in the selected training set, and the
entire provided data set

The finalized input for the neural network can be seen in the figure below. During
the training of the neural network, the network will use the input image alongside
the stress field image to calculate the losses and thereby optimize the generator
and the discriminator. To ensure that the correct input image was paired with the
resultant stress field, the two images were concatenated, as seen in Figure 4.7.

Figure 4.7: Input image for the neural network. The left image is the pit surface
elevation, the right image is the stress field at the critical distance. Note: Both images
has been locally scale to be able to visually see the them.





Chapter 5
Implementation of Pix2Pix Network

In this section, the implementation of the machine learning algorithm, Pix2Pix,
discussed in section 3.6, is presented. It should be emphasized that the created
network, and its architecture, was based on the original Pix2Pix network[21] and
the TensorFlow tutorial on Pix2Pix1. Applying an algorithm created by others,
requires some customization and trial and error to fit the desired problem. Fur-
thermore, to distinguish the neural network used in this thesis2 from the original
network, the latter is referred to as Pix2Pix, whereas the first is named Pit2Pix.

5.1 Environment Setup
The neural network was chosen to use the open-source library within machine
learning named TensorFlow. The library was created by the Google Brain Team
and made public in November 2015. TensorFlow supports programming languages
such as Python, C++, JaveScript, and more as the front-end, making TensorFlow a
versatile tool applicable for a vast number of tasks. All mathematical operations are
channeled to be performed in the high-performance C++. In addition, TensorFlow
is highly compatible with other libraries such as Keras. Hence, enabling a high-level
functionality and making it simpler to create neural networks and deep learning
models without the need for hardcoding every single mathematical operation, such
as those presented in section 3.2.

Moreover, the machine learning code was created using the cloud-based Google
Colaboratory, for short Colab. Colab allows the user execute Python programming
language directly in their browser. The Python code was run in virtual machines

1https://www.tensorflow.org/tutorials/generative/pix2pix
2https://drive.google.com/drive/folders/1tEUJTSvg6KwNQPOlrlzaP5Bp5T0gHF3K?usp=

sharing
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operated by Google and used Jupyter Notebook as interface. Using Colab along-
side TensorFlow was immensely beneficial, as one can use graphics processing units
(GPUs) or tensor processing units (TPUs). This massively increased the virtual
machines’ computational power, and thus decreased the time consumption of train-
ing the neural network. In addition, established codes, networks, and data set could
easily be shared and run across computers by saving the data in Google drive.

5.2 Building the Neural Network
Building the neural network consisted of creating an input pipeline, to efficiently
retrieve the training data. Then, further creating the generator and discriminator,
and lastly specifying the loss functions, optimization algorithms. These steps will
be explained below.

5.2.1 Input Pipeline
The data set used for training and testing the network consisted of images as that
seen in Figure 4.7. These concatenated images ensured that the correct images
were paired. However, the input image was separated into two, as only the leftmost
part, pit surface elevation, was used as the condition to both the generator and
discriminator. The rightmost part, the stress field image, was used in the training
process, as these images represented the distribution space of the stress field images.
In addition, the stress field image was used to calculate the L1-distance.

The network architecture was designed to process images of size 256 × 256. To
comply with this, the two separated images were resized from the original 240×240
size to 256× 256. In addition, these up-scaled images were normalized between -1
and 1, which is a common practice in machine learning.

5.2.2 The Generator
The generator architecture followed the U-Net architecture described in section 3.6.1.
The down-sampling side, known as the encoder, used convolutional batch- normal-
ization layers with LeakyReLU activation functions, with a slope a = 0.2. Each
convolutional layer used k filters with size 4 × 4 and stride s = 2, which resulted
in a down-sampled factor of 2 for each layer. Let one layer of these layers de-
scribed above be denote as Ck. The encoder architecture was as follows: C64-
C128-C256-C512-C512-C512-G512. As an exception, the first layer did not use
batch-normalization.

At the up-sampling side, the U-net decoder, deconvolutional batch-normalization
layers with a dropout rate of 50 % was used. ReLU activation function was used in
the three first layers. Each of these layers had k filter with a size of 4×4 and strides
s = 2, resulting in a up-sampling factor of 2. Let one such layer denote as CDk.
The last four layers used a convolutional batch-normalization with ReLU activation
function, and filter as described above. Let this be denoted as, CRk. The U-net
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decoder architecture was as follows: CD512-CD512-CD512-CR512-CR256-CR128-
CR64.

The U-Net utilized skip connections between a layer i in the encoder and a layer
n − i in the decoder, where n denotes the total number of layers. The output
of one layer i was concatenated with layer n − i. Thus, doubling the input di-
mension on the layers in the U-net decoder. At the last layer, a convolution was
applied to match the size of the output image and channels, with a following Tanh
activation function. Figure 5.1 gives an overview of the generator architecture.
The yellow color indicates a result of a convolutional batch-normalization layer
with LeakyReLU, whereas the blue color indicates the result from a deconvolu-
tional batch-normalization dropout layer with ReLU. The blue lines with arrows
indicates the skip connections.

Figure 5.1: Visual representation of implemented generator architecture. The yellow
color indicates a result of a convolutional batch-normalization layer with LeakyReLU,
whereas the blue color indicates the result from a deconvolutional batch-normalization
dropout layer with ReLU. Blue lines with arrows indicates the skip connections.

5.2.3 The Discriminator

The discriminator was a patchGAN, as discussed in section 3.6.2. The size of the
patches was 70× 70 pixels resulting in a 30× 30 output matrix. Two images were
used as input to the discriminator, namely the generated image and the real target
image. All layers in the discriminator were convolutional batch-normalization layers
with leakyReLU activation function with a slope of 0.2. The layers had k filters
with a size of 4× 4 and stride s = 2, again denoted as Ck. Between the last two, a
zero-padding was employed. At the last layer, a convolution was made to output
the 70×70 matrix. The discriminator architecture was as follows: C64-C128-C256-
C512. Figure 5.2 shows an overview of the patchGAN where the yellow box is the
result of a convolutional layer, and the red box indicates a zero-padding layer.
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Figure 5.2: Visual representation of the implemented discriminator architecture used in
the neural network. The input layer, the purple color, is a generated image and a true
image. The yellow box is the result of a convolutional layer, and the red box indicates a
zero-padding layer.

5.2.4 Loss Functions and Optimization

The applied loss function is as specified in section 3.6.3. The generator loss and the
discriminator loss was as shown in Equation 3.19 and Equation 3.20, respectively.
The optimization procedure followed the algorithm presented in Algorithm 1,
with one step on D, and one step on G. Both updates used the gradient descent
algorithm, Adam, with momentum parameters β1 = 0.5, β2 = 0.999 and a learning
rate η = 0.0002. Figure 5.3 shows an visual representation of the optimization
process as performed in the neural network code is presented. As the correct label
on the input images feed the discriminator was known, the cross entropy loss was
calculated between the output matrix from the discriminator and a matrix of same
dimension, i.e., 30×30, contain either ones or zeroes depending on the true or false
label respectively.
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(a) Generator training process. The D
loss was calculated as Ey,z [log D(G(z,y),y))],
and the mean absolute error was the L1-
distance loss. The SDG algorithm Adam was
used to calculate the gradients.

(b) Discriminator training proces. The
D loss is calculated as presented in Equa-
tion 3.20.The SDG algorithm Adam is used
to calcualte the gradients.

Figure 5.3: Overview of training process of the implemented network [49]

5.3 Maximum Loss and Other Modifications
As discussed in chapter 2, the highest stress concentration has most weakening
effect. Also, using the position, the highest SCF can yield a potential failure point.
Thus, to further improve the generator’s ability to accurately predict the highest
SCF, an additional loss for the generator was used. This loss can be looked upon
as a maximum value loss, where the generator was penalized when the maximum
value of the generated image, max(G(x, z)i,j), differs from the maximum value in
true stress field image, max(yi,j), see Equation 5.1. In this case, the total generator
loss was as seen in Equation 5.2, the maximum loss is scaled with λ/2.

Lmax = Ex,y,z [max(yi,j)−max(G(x, z)i,j)] (5.1)

LG = LcGAN + λLL1 + λ

2Lmax (5.2)





Chapter 6
Results
In this chapter, the results from the neural networks called Pit2Pix and Pit2PixV1
are presented. The neural networks were trained on the training set in the Im-
gResComb.zip folder1. In order to compare the results from the two different
network configurations, training losses and the generated stress field images are
presented. In addition, image metrics as mean absolute error and standard devia-
tion between the generated samples and the true samples, alongside the maximum
SCF prediction error, are shown.

6.1 Time Spent During FEA
The time consumption of creating one stress field image, which followed the finite
element model procedure presented in section 4.3, is presented in Table 6.1. This
can be separated into two, the time spent in ICEM for creating artificial sub-
surface and mesh the box, and the time spent running FEA in ANSYS. The time
spent creating both training and test data set, containing 2028 and 418 samples
respectively, is presented in Table 6.2.

Table 6.1: Time consumption of creating one stress field image

Data set ICEM time [min] ANSYS time [min] Total time [min]
Training set 3.5 3.5 7
Test set 3.5 3.5 7

Table 6.2: Total time consumption of data set creation

Data set Images Total time [days]
Training set 2028 10
Test set 418 2

1https://folk.ntnu.no/haakonkp/PitsImgComb.zip
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6.2 Pit2Pix Performance
This section presents the results obtained from training and testing the neural
network named Pit2Pix. The network was build as specified in section 5.2. The
training losses, image metrics, and examples of generated images are presented.
Training the network was performed over several different sessions. Many of these
training sessions did not yield satisfactory results, thus results from these will not
be presented in this present thesis. However, losses from all training sessions can
be found on TensorBoard2.
The best-performing model was evaluated on two criteria. First was the training
losses. The different training losses should be stable over the entire training session,
and they should converge to. In addition, low L1 distance loss was wanted. The
second criterion was the quality of the images, i.e., producing real-looking images,
and especially for this thesis, accurately estimate the highest pixel value in the
image, hence the highest SCF in the image.

6.2.1 Image Metrics
The result from testing Pit2Pix on the 418 samples in the test set is presented
below. The actual maximum SCF in each of the true stress image versus the
predicted maximum SCF in each of the generated image is presented in Figure 6.1.
The transformation from pixel value to SCF followed Equation 4.1. The red line
in the plot shows x = y, meaning that both the prediction and the actual value are
the same.
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True SCF vs. Predicted SCF

Figure 6.1: True maximum SCF vs. redicted maximum SCF of Pix2Pix. The red line
shows x = y, i.e., the predicted and true maximum SCF is identical.

2https://tensorboard.dev/experiment/sGlX0OAIRjOQlvzmUX6C1Q/

https://tensorboard.dev/experiment/sGlX0OAIRjOQlvzmUX6C1Q/
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The prediction error in maximum SCF, and the percentage error, of each of the 418
samples are presented in Figure 6.2. The average deviation was 0.0169. In addition,
considering the whole image, the mean absolute error in pixel value between the
generated stress field images and the real stress field images, with its standard
deviation, is presented in Figure 6.3.

(a) SCF error (b) SCF error in percent

Figure 6.2: Pit2Pix network histogram of maximum SCF error

(a) Mean absolute error (b) Standard deviation error

Figure 6.3: Pit2Pix Network image performance metrics

6.2.2 Losses
The discriminator losses, generator cGAN losses, L1-distance losses, and total gen-
erator losses obtained during training, are presented in Figure 6.4. The actual
values of the discriminator and generator losses are not that important, as only
the optimized point in the adversarial training is wanted. Only values in the L1-
distance losses are of direct interest, which ended with a value of 4.6·10−4. However,
note that the images were normalized between -1 and 1 in the input pipeline. The
network was trained over 400 epochs, with a batch size of 1. One epoch is a com-
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plete run through the entire training set. The training time for one epoch varied
between 65 seconds to 120 seconds depending on the available GPUs in Colab. The
particular time for the training session, with 400 epochs, for this network was 8
hours.
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(c) L1 loss, LL1
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(d) Total generator loss, LG

Figure 6.4: Training losses for Pit2Pix. The horizontal axis show the epochs, whereas
the vertical axis is the loss value.

6.2.3 Example Images

To evaluate the generator’s ability to generate images that are close to the ground
truth, a visual inspection of the images is needed. Additionally, the reader gets
an insight into the generator’s prediction power. In Figure 6.5 randomly selected
examples of the generated stress-field image alongside their input image, true stress
field image, and the difference between the generated and true stress image is
shown. The difference image is the absolute difference between each pixel in the
image. Plase the GoogleDrive for more examples3

3https://drive.google.com/drive/folders/1jmo48dD0WjmaJ0x_Y_S74t_YYjktPuE-?usp=
sharing

https://drive.google.com/drive/folders/1jmo48dD0WjmaJ0x_Y_S74t_YYjktPuE-?usp=sharing
https://drive.google.com/drive/folders/1jmo48dD0WjmaJ0x_Y_S74t_YYjktPuE-?usp=sharing
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Figure 6.5: Examples of generated images of the Pit2Pix network. The image on the
left is the input image to the generator. The middle-left image is the true stress field
image, whereas the middle-right image is the generated image. The rightmost image is
the difference image between the true and predicted image. Note: All images are scaled
to be visually able to see them.
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6.3 Pit2PixV1 Performance

In this section, the result from the network Pit2PixV1 during training and testing
is presented. This network configuration utilized the additional max loss for the
generator, as described in section 5.3. In addition, the network was tested on the
same 418 samples in the test set, to be able to compare the two networks.

6.3.1 Image Metrics

The predicted maximum SCF and the true maximum SCF of the 418 samples in
the test are presented in Figure 6.1. The transformation from pixel value to SCF
followed Equation 4.1. The red line shows x = y, i.e., the predicted maximum
equals the true maximum.
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Figure 6.6: True maximum SCF plotted against predicted maximum SCF of Pix2Pix.
The red line shows x = y, i.e., the predicted and true maximum SCF is identical.

In Figure 6.7 the maximum SCF error and the percentage error in SCF is shown.
The mean deviation was −0.0028 To evaluate the difference between the true and
predicted image as a whole, the mean absolute error in pixel values and the standard
deviation is shown in Figure 6.8
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(a) SCF error (b) SCF error in percent

Figure 6.7: Pit2PixV1 network histogram of maximum SCF error

(a) Mean absolute error (b) Standard deviation error

Figure 6.8: Pit2PixV1 network with max-loss image performance metrics

6.3.2 Losses

The exact loss values are not that important, as only the optimized point is of
interest for the generator and the discriminator. However, as mentioned above,
the values L1-distance loss is of interest, where a low value is wanted. Moreover,
the maximum loss should be small, resulting in a more accurate maximum SCF
value. In Figure 6.9 the different losses obtained during training are shown. In
this training session, the total time to finish training over 400 epochs was 11 hours,
and the L1-distance loss and max loss ended up with a value of 5.18 · 10−4 and
9.95 · 10−3 respectively.
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(a) Discriminator loss, LD (b) cGAN loss, LcGAN

(c) L1 loss, LL1 (d) Total generator loss, LG

(e) Total maximum loss, Lmax

Figure 6.9: Training losses for Pit2PixV1.The horizontal axis show the epochs, whereas
the vertical axis is the loss value.

6.3.3 Example Images Generated

To evaluate the Pit2PixV1 generator’s ability to generate real-looking images that
are close to the true stress field image, a visual inspection of the generated images
are useful. The visual inspection was additionally used to see if the max loss
affected the prediction accuracy on the whole image. Plase the GoogleDrive for
more examples4

4https://drive.google.com/drive/folders/18CrKq784ZNHf92fN2sj6MoOYfCbTA8l3?usp=
sharing

https://drive.google.com/drive/folders/18CrKq784ZNHf92fN2sj6MoOYfCbTA8l3?usp=sharing
https://drive.google.com/drive/folders/18CrKq784ZNHf92fN2sj6MoOYfCbTA8l3?usp=sharing
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Figure 6.10: Examples of generated images of the Pix2PixV1 network. The image on
the left is the input image to the generator. The middle-left image is the true stress field
image, whereas the middle-right image is the generated image. The rightmost image is
the difference image between the true and predicted image. Note: All images are scaled
to be visually able to see them.



6. RESULTS 58

6.4 Training Instability
The Pix2Pix network was trained and tested multiple times to find the best per-
forming network. The best network shows a steady training process, and the gen-
erator loss and discriminator loss converges to some number. In Figure 6.11 the
losses obtained during four different training sessions of 400 epochs are presented to
see the difference in stability in training losses. It should be pointed out that value
values have been smoothed to more easily see the trends in the training stability
in each training session.

(a) Discriminator loss, LD

(b) cGAN loss, LcGAN

(c) L1 loss, LL1
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(d) Total generator loss, LG

Figure 6.11: Multiple training losses for Pit2Pix, showcasing the instability and incon-
sistency with training. The horizontal axis show the epochs, whereas the vertical axis is
the loss value.





Chapter 7
Discussion

7.1 Finite Element Model and Time Consumption
When modeling in ANSYS, or any other numerical solver, the choice of elements,
boundary conditions, and loads affect the results. Regarding the choice of element
type, the tetrahedral SOLID185 was chosen. This element type is not recommended
by ANSYS, as the model consists of over 10 % tetrahedral element. This is be-
cause hexahedral elements perform better than tetrahedral as the latter can, under
certain loads and boundary conditions, lock up. However, as the FE model only
accounts for uniaxial tensile stress and the box model was sufficiently larger than
the pit itself, it limits the possibility that the elements lock up. In addition, the
boundary conditions do not affect the stress in close vicinity to the pit.

Furthermore, creating an automatic meshing routine in ICEM that meshes the
surface of multiple different pits with complex geometry was more manageable
with tetrahedral elements. Using other higher-order elements as SOLID186 and
SOLID187, which can be hexahedral, was not an option in ICEM. Another aspect
is that the higher-order elements would be more time-consuming to mesh and
analyze due to an even larger number of nodes. As a data set with over 2000
images was to be created, it was not sufficient to have a time-consuming method
to generate the images for the data set. Therefore, using the SOLID185 element
was suitable.

The presented time consumption in Table 6.1 and Table 6.2 showed to be rela-
tively high. Using the proximity-based refinement enabled the pit surface to be
adequately meshed. The stresses in close proximity to the pit are described suffi-
ciently, which is desired as the stresses at the critical distance are wanted. However,
using the proximity-based refinement introduced a large number of elements be-
tween the top surface and the artificial sub-surface, as this was placed only 0.5 mm
below the top, and thus, increasing the time spent in both ANSYS and ICEM.
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7.2 Performance of Pit2Pix and Pit2PixV1.
As presented in Figure 6.1 and Figure 6.6 the two networks performance in predict-
ing the maximum SCF are quite good. However, for larger SCFs, the prediction
deviates more. As seen in the plots, most of the data samples in the test set are
place within 1.1 to 1.4 in SCF. It is known that a neural network has limited ca-
pability to perform well far away from the training points. This may indicate that
most training samples are placed within the region where the networks are more
accurate.

Moreover, the generator’s goal is to find the distribution of the input data space.
It is easier for the generator to find this distribution if the data points are covering
all the sample space. Also, having many samples implies that the generator has
more samples to train on which provides better basis to capture the distribution
the distribution. The distribution of pit depth for all the provided pit images and
the selected images used in the data set can be seen in Figure 4.6. It is apparent
that that majority of the pit depths in both sets are below approximately 0.8 mm.
Therefore, as there are fewer training samples at the upper end regarding the pit
depths, the generator will better perform within the region with many samples
than outside this region. As the pit depths are one of the most weakening factors
of notches, which causes larger SCFs, the distribution of pits depths indicates that
the deviation at the upper end in Figure 6.1 and Figure 6.6, originates from the data
set rather than the generators ability to predict these SCFs. With more training
samples containing a higher SCF, the generator can have better performance.

To better cover the whole input domain, artificial pits, based on provided pits
geometries, can be scaled to introduce higher SCFs. Even artificially created pits
with unexpected geometry can be included in the data set. Not only does this
enhance the performance at the upper end, but it also generalizes the network to
all possible pits geometries. It makes the network perform well for unexpected pit
shapes or other damages on the mooring chains that affects the fatigue performance.

Looking at the SCF error, Figure 6.2 and Figure 6.7 it is clear that the Pit2Pix
network has an error positioned on the positive, the majority of the error are
positive. This means that the network overestimates the maximum SCF in the
image. On the contrary, the Pit2PixV1 network has more zero-centered error, with
most of the error counts on the negative side, meaning that the network is more
accurate in max SCF prediction but tends to underestimate the value.

The mean absolute error and standard deviation in pixel value of the whole image
is rather small, see Figure 6.3 and Figure 6.8. As a reference, a MAE at 60 in
pixel value corresponds to an error of 9.15 ·10−3 in SCF. However, a low value only
shows that the generated image is close to the true image as a whole. In Figure 6.5
and Figure 6.10, the difference between these two images are shown. Most of the
difference in the images is found in the relatively small area under the pit. Thus,
the error in the most interesting part of the image is higher than the whole image.
Moreover, the example images show that the generator can generate images that
are similar to the real image, which is positive.
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The Pit2PixV1 network aimed to penalize the generator if the maximum pixel
value deviated. As seen in the result, the error in maximum SCF decreases, which
is as wanted. However, this penalization turned the network to underestimate the
stress concentration, which in contrast is undesirable. This may indicate that the
penalization was too high. A lower weight on the loss can be used to reduce this.
When performing a fatigue assessment, it is better to be conservative, i.e., it is
better to overestimate the stresses. Hence, using PitPix instead of Pit2Pixv1 may
be reasonable. However, with tuning of the As the prediction error when using the
maximum loss is

7.3 Training Losses and Training Instability
Training losses for the two networks was stable as presented in Figure 6.4 and
Figure 6.9. The discriminator loss, and total discriminator loss shows tendency
to converge to steady number. However, the numbers of the training losses are
not informative. In the adversarial training procedure the generator is competing
against the discriminator, this means that the losses only show relative performance
of D against G. An increase in the generator loss results in a decrease in the
discriminator loss.

Furthermore, the only values of direct interest are the L1 loss, and in addition,
the maximum loss for Pit2PixV1. Both losses decreased early in training, which
is positive. This means that the generator assigns accurate pixel values to the
generated images. However, the L1 loss might not sufficiently illustrate the desired
loss for the stress field images. The difference image in Figure 6.5 and Figure 6.10,
indicated that generated image is prone to errors in the area around the pit, and
errors elsewhere are lower. Consequently, as the loss is the averaged value over
the whole image, the loss values became lower than the errors in the pitted area.
Using another dimension in the images, where the pit covers more of the image, a
larger L1 loss may be yielded. This can consequently reduce the prediction error
in maximum SCF and as the generator has steeper gradients to train on when
the L1-loss becomes higher. Alternatively, by using a higher λ, the same can be
achieved.

The losses from different training session of Pit2Pix is shown in Figure 6.11. The
best performing network was decided on the training losses. As seen in the figures,
the losses for the additional tests are fluctuating, which indicates that the optimized
point in the adversarial training is not obtained, and the network has to be trained
more. A common problem for cGANs and especially GANs is that they may be
unstable during training. The discriminator and generator move around during
training to outperform its adversary and can find a point that makes it perform
even worse. The L1 losses in Figure 6.11c were used as one important criterion
when evaluating the best network. Comparing the loss for the third additional test
to the Pit2Pix loss made it easy to decide which training network to choose.





Chapter 8
Conclusion and Further Work

8.1 Conclusion
The main objective of this thesis was to investigate the use of machine learning in
the remaining life assessment for corroded mooring chains. This can reduce the
time consumption compared to today’s standard approach as the need for FEA is
removed. Furthermore, this can provide cost-saving and a better understanding of
the mooring chains’ condition.

The use of image-to-image translation by use of a conditional generative adversarial
network proved to yield promising results for use in fatigue assessment of corroded
mooring chains. The network’s generator was able to create real-looking stress
field images, by using the pits surface elevation images as an input image. The
generator captured the underlying distribution of the training data set.

Two neural networks based in the Pix2Pix architecture, namely Pit2Pix and Pit2PixV1,
were established. The latter introduced a maximum loss to penalize the generator
when the maximum value in the generated and true image deviated. However, the
applied penalization factor reduced the prediction error in maximum SCF compared
to Pit2Pix network’s prediction. This max loss turned Pit2PixV1 to underestimate
the value more often than the other. Thus, one can conclude that Pit2Pix is the
best option to go for when assessing the fatigue performance as this is more likely
to overestimate the SCF, and thus is conservative.

A finite element model procedure that was able to produce a data set in which the
neural networks could use in training, was created. The procedure used an artificial
sub surface to obtain the stresses at a critical distance and further transform these
stresses into a grayscale image. However, the time used to create the entire data
set was high, although using this method provided a good and accurate way to
describe the stresses.
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8.2 Recommendations for Further Work
Further work would be to create an end-to-end application with the uses of the
trained generator. The application should utilize that the position of each pit
is known. Hence, the generated stress field image can be mapped back to the
original chain. In this way, the end-to-end application can detect the location of
the highest stress concentration factor and thus find the critical point to use in
the fatigue assessment. The application should also be able to either classify the
damage level of the chain based on the generated images or predict the number of
cycles before failure based on the highest SCF. The application can, for example,
use the procedure presented in section 2.5.

An even larger data set can be made to further strengthen the generator’s ability
to generate true samples for multiple different pits and sizes. This provides more
training samples for the generator and the discriminator to capture the input space
distribution. Further, a less time-consuming finite element model procedure should
be made. This can be done by either decreasing the number of elements in the
meshed model, run multiple analysis in parallel, or utilize other numerical solvers
such as ABAQUS.

Further investigations on the actual needed size of the generator and discriminator
architecture can be conducted. This will decrease the training and enable a possible
end-to-end application to faster generate the stress field images, as a reduction in
the number, and size of the layers will decrease the number of variables in the
network.
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Appendix A
Generating Image After Training

After training, the generator is aimed to generate images. However, in Tensorflow,
one has the ability to choose whether images is to be generated using training=True
or training=False. The images presented above in chapter 6 have all been produced
using training=True. However, the networks was tested to generate image using
training equal false. In Figure A.1 the true maximum SCF is plotted against the
predicted maximum SCF.
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Figure A.1: True maximum SCF vs. Predicted maximum SCF of Pix2PixV1 with
training=False
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