
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

O
scar Arne Rosfjord Thorstensen

Oscar Arne Rosfjord Thorstensen

Applicability of Machine Learning
Algorithms for the Capesize Shipping
Segment

Master’s thesis in Marine Technology
Supervisor: Bjørn Egil Asbjørnslett
Co-supervisor: Bjørnar Brende Smestad

June 2021

M
as

te
r’s

 th
es

is

Oscar Arne Rosfjord Thorstensen

Applicability of Machine Learning
Algorithms for the Capesize Shipping
Segment

Master’s thesis in Marine Technology
Supervisor: Bjørn Egil Asbjørnslett
Co-supervisor: Bjørnar Brende Smestad
June 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

 NTNU Trondheim

 Norwegian University of Science and Technology

 Department of Marine Technology

MASTER THESIS IN MARINE TECHNOLOGY

SPRING 2021

For stud.techn.

Oscar Arne Rosfjord Thorstensen

Applicability of Machine Learning Algorithms for the Capesize Shipping

Segment

Background

The world is becoming more digitized by the minute, creating a continuous production of an increasing
amount of data. This data can provide valuable information and insight for the development of new
technological advancements. A crucial business strategy is to properly exploit this abundant amount of
readily accessible data, analyze it, and use it for high-quality decision support. Numerous large
corporations already practice methods for this purpose. McKinsey & Company produced an article in
November 2020 where they express the necessity for actors in the maritime industry, particularly the
bulk and tanker segment, to utilize data-driven insight for decision making. Furthermore, they identify
four primary areas to seize opportunities with data-led analytics for shipowners and operators in bulk
shipping. These four areas are defined as:

1. Finding attractive subsectors and niches through insight into end customers,
2. Optimizing portfolios based on relative attractiveness and risk level of different vessel classes,
3. Improving commercial choices, and
4. Operating vessels more effectively.

For this study, we are primarily interested in the last two key areas. The shipping industry is generally
considered to have fallen behind on its digitization process, and these possibilities will most likely require
substantial investments. We also recognize that the number of studies and approaches for efficiently
employing the Automatic Identification System (AIS) data are rapidly increasing. This study will explore
and investigate the opportunities for shipping behavior analysis by utilizing a combination of AIS- and
market-relevant data.

The work of the project thesis focused on exploring previously conducted research studies on AIS data
and investigated the development of various shipping segments. Given the considerable size and
efficiency of the dry bulk sector, a behavioral analysis of this shipping niche was determined to have
more considerable potential and applicability. We, therefore, selected it for further investigation in this
master thesis. There has not been a study investigating freight rate prediction of the Capesize bulker
segment combining AIS and market-relevant data to the candidate's knowledge.

 NTNU Trondheim

 Norwegian University of Science and Technology

 Department of Marine Technology

Utilizing machine learning algorithms for modeling complex problems and time-series forecasting to
obtain decision-support material is nothing new. Historically, decision-making in the shipping industry
has primarily been based on judgment and experience, especially in the bulk shipping sector. There are
proven results using existing machine learning models; it is highly possible to outperform traditional
methods. This applies particularly when the amount of readily available data increases, which is the case
of AIS- and market-relevant data. Previous research studies have been done on the utilization of machine
learning algorithms to predict freight rate movements in different segments of the shipping industry.
However, a study has not focused on the Capesize bulker segment to the candidate's knowledge.

Objective

The overall objective of this thesis is to investigate the applicability of machine learning algorithms to
predict short-term freight rate movements on the C3 route in the Capesize bulker shipping niche.
Furthermore, we aim to identify elements that significantly influence this shipping segment.

Tasks

The candidate should cover the following main points:

a. Conduct a thorough literature review on relevant topics for the problem objective.

b. Construct and provide a detailed problem description.

c. Document the methodology used to approach the problem.

d. Retrieve, pre-process and clean global AIS data for further exploration of the Capesize bulker

segment.

e. Extract and explore patterns in the Capesize bulker segment from global AIS data.

f. Identify and construct valuable features from AIS- and market-relevant data.

g. Choose relevant machine learning algorithms to forecast short-term freight rate movements based on

multivariate data input.

h. Evaluate the forecasting results from the employed models of various feature subsets, using statistical

metrics and results from benchmark model.

i. Discuss results and approaches employed in relation to the problem.

j. Provide a short and concise conclusion of the problem.

General

In the thesis the candidate shall present his personal contribution to the resolution of a problem within the

scope of the thesis work.

Theories and conclusions should be based on a relevant methodological foundation that through

mathematical derivations and/or logical reasoning identify the various steps in the deduction.

The candidate should utilize the existing possibilities for obtaining relevant literature.

The thesis should be organized in a rational manner to give a clear statement of assumptions, data, results,

assessments, and conclusions. The text should be brief and to the point, with a clear language. Telegraphic

language should be avoided.

 NTNU Trondheim

 Norwegian University of Science and Technology

 Department of Marine Technology

The thesis shall contain the following elements: A text defining the scope, preface, list of contents,

summary, main body of thesis, conclusions with recommendations for further work, list of symbols and

acronyms, reference and (optional) appendices. All figures, tables and equations shall be numerated.

The supervisor may require that the candidate, in an early stage of the work, present a written plan for the

completion of the work.

The original contribution of the candidate and material taken from other sources shall be clearly defined.

Work from other sources shall be properly referenced using an acknowledged referencing system.

Supervision:

Main supervisor: Bjørn Egil Asbjørnslett

Co-supervisor: Bjørnar Brende Smestad

Deadline: 10.06.2020

Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Master of Science with specialization in Marine Systems Design at the Department
of Marine Technology (IMT). The work presented in this thesis has been carried out
during the spring of 2021 at the Norwegian University of Science and Technology
(NTNU), and corresponds to 30 ECTs.

The thesis was conducted during the SARS-CoV-2 pandemic. Despite both regional
and national restrictions throughout the semester, it has been possible to organize
digital guidance sessions thanks to the adaptability of both the supervisor and the
Department of Marine Technology.

Trondheim, June 10, 2021
Oscar A. R. Thorstensen

i

Acknowledgment
I would like to thank the following persons for their great help and to express my
sincerest gratitude for making this thesis possible:

Professor Bjørn Egil Asbjørnslett, my supervisor, for valuable advice and enriching
guidance throughout the work of this thesis.

PhD cand. Bjørnar Brende Smestad, my co-supervisor, for retrieving AIS data
from the Norwegian Coastal Administration database and useful insight into AIS
data exploitation.

Ingeborg Alm̊as, analyst at Clarksons Platou, for extremely rewarding discussions
of the shipping industry and providing me with market-specific data.

I would also like to thank my office mates for helpful discussions and creating an
educationally rewarding environment at Tyholt.

Finally, I would like to thank my family for their support, and in particular my
father and sister for their valuable feedback on the report.

ii

Abstract

The thesis investigates the applicability of selected machine learning algorithms
to predict short-term freight rate movements on the Capesize route from Tubarao
to Qingdao (C3). The dry bulk shipping segment was selected for this exercise in
consideration of its market size, potential and applicability to the performance of a
behavioral study. Input from Automatic Identification System (AIS) and market-
relevant data has been employed in attempts to identify significant elements (fea-
tures) influencing Capesize bulk operations. A comprehensive literature review
was conducted for benchmark topic relevance to the problem objective. The study
has used AIS data retrieved from the Norwegian Coastal Administration (NCA)
database as well as market derived information provided by Clarksons Platou. Sev-
eral methods were explored in the process of extracting and constructing relevant
features from the different data sources. In attempts to determine the more impor-
tant influencing elements, different feature selection methods were utilized. The
study considered three different machine learning models; (1) the linear ridge re-
gression (LRR) model, (2) the random forest regression (RFR) model, and (3) the
long short-term memory (LSTM) model. The persistence model was utilized for
comparison purposes of the forecasting results and to provide a benchmark per-
formance level. Lastly, the study employed a grid search method to analyze and
describe the optimal combination of hyperparameters for the various employed ma-
chine learning algorithms. The results of the conducted investigation indicate that
all selected models employed in this thesis show capabilities in predicting short-
term freight rate movements on the C3 route. Differing sets of features proved
influential in development of prediction accuracy in machine learning algorithms.
However, results attained provided no definitive conclusions or identification as
to which feature specification set that showed greatest market influence. All ex-
amined feature sets included a combination of AIS- and market-derived data and
consequently supported the objective formulated for this thesis. We can therefore
conclude that the employed machine learning models can to some degree predict
short-term freight rate movements on the C3 route.

iii

Sammendrag

Denne avhandlingen undersøker anvendeligheten til utvalgte maskinlæringsalgorit-
mer for å kunne forutsi kortsiktige bevegelser i fraktrater ved Capesize-ruten mel-
lom Tubarao og Qingdao (C3). Med et utgangspunkt i markedsstørrelse, potensial
og anvendelighet for gjennomføring av en atferds studie, valgte vi å se p̊a skips-
fartssegmentet for tørr bulk til denne øvelsen. I et forsøk p̊a å identifisere viktige
elementer som p̊avirker Capesize bulk-operasjoner benyttet vi input fra Automatic
Identification System (AIS) og annen markedsrelevant data. Det ble gjennomført
en omfattende litteraturstudie for å undersøke relevansen av referansetemaet for
m̊alet med avhandlingen. Studien evaluerte tre ulike maskinlæringsmodeller; en
linear ridge regression (LRR) modell, en random forest regression (RFR) modell,
og en long short-term memory (LSTM) modell. En persistence model ble brukt
til å sammenligne prognoseresultatene og for å etablere et ytelsesniv̊a. Til sist ble
det brukt en grid search metode for å analysere og beskrive den mest gunstige
kombinasjonen av hyperparametere ved de benyttede maskinlærings algoritmene.
Resultatene v̊are indikerer at de utvalgte modellene viser evne til å kunne forutsi ko-
rtsiktige bevegelser i fraktraten til C3-ruten. Alle undersøkte funksjonssett inklud-
erte en kombinasjon av AIS og markedsavledede data og støttet følgelig m̊alet av
avhandlingen. Vi kan derfor konkludere med at maskinlæringsmodellene som ble
brukt i denne studien til en viss grad kan forutsi kortsiktige bevegelser i fraktrater
ved C3-ruten.

iv

Table of Contents

Preface i

Acknowledgment ii

Abstract iii

Sammendrag iv

Table of Contents vii

List of Figures x

List of Tables xii

Nomenclature xiii

1 Introduction 1
1.1 Background . 2
1.2 Motivation . 3
1.3 Problem Description . 3

1.3.1 Objective . 5
1.4 Thesis outline . 6

2 Literature Review 7
2.1 Dry bulk shipping . 7

2.1.1 Freight Rate Modeling . 8
2.2 AIS applications . 8

2.2.1 Data handling . 9
2.2.2 Previous applications with machine learning 9

2.3 Data science literature and theory 10
2.3.1 Exploratory data analysis . 10

v

2.3.2 Data mining . 11
2.3.3 Machine learning . 12

2.3.3.1 Building a machine learning model 12
2.3.3.2 Supervised, unsupervised or semi-supervised 13

2.3.4 Algorithm selection . 13

3 Methodological Approach 15
3.1 Exploratory data analysis . 15
3.2 Feature engineering . 18

3.2.1 Feature construction and extraction 18
3.2.1.1 Vessel capacity count in world regions and port lo-

cations . 18
3.2.1.2 Fleet percentage in world regions 21
3.2.1.3 Active vessels and fleet capacity 22
3.2.1.4 Fleet utilization . 23
3.2.1.5 Price and market features 23

3.2.2 Data preparation . 26
3.2.3 Feature selection . 29

3.3 Algorithm selection . 31
3.3.1 Linear ridge regression . 31
3.3.2 Random forest regressor . 33
3.3.3 Long short-term memory . 35
3.3.4 Model tuning with hyperparameter optimization 38

3.4 Model evaluation method . 40
3.4.1 Baseline model . 40
3.4.2 Statistical modeling metrics 41

4 Computational Study 43
4.1 The bulk shipping case . 43

4.1.1 Commodity types . 44
4.1.2 Classification of vessel types 45
4.1.3 Route segments . 46
4.1.4 One-step-ahead forecasting 46

4.2 Description of raw data . 48
4.2.1 Capesize Bulker Data . 48

4.2.1.1 Vessel type classification data 48
4.2.1.2 Historical time-series data 49

4.2.2 AIS Data . 50
4.2.2.1 Message content and frequency 51
4.2.2.2 Data extraction . 52
4.2.2.3 Data assembly and preprocsessing 53

4.3 Results . 55
4.3.1 Benchmark model . 55
4.3.2 Feature selection . 55
4.3.3 Hyperparameter optimization 56
4.3.4 Model training . 61

vi

4.3.5 Model forecasting . 62
4.3.6 Train vs test performance . 67

5 Discussion 71
5.1 Evaluation of forecasting results . 71
5.2 Evaluation of methodological approach 73

5.2.1 Hyperparameter optimization technique 73
5.2.2 Employed feature selection methods 74
5.2.3 Feature construction process 74

5.3 Limitations and considerations . 75

6 Conclusion 77
6.1 Further work . 78

Bibliography 79

A AIS Data Contents 83

B Descriptive Statistics of Features 85

C Augmented Dickey-Fuller Results 89

D Feature Importance Scores 91

E Python Scripts 97
E.1 Description of Python scripts . 97
E.2 project settings.py . 98
E.3 AIS SQL Script . 99
E.4 data processing.py . 101
E.5 clarksons.py . 105
E.6 polygons.py . 109
E.7 FE.py . 115
E.8 data preparation.py . 123
E.9 feature importance score.py . 126
E.10 feature selection.py . 128
E.11 ML models.py . 132

vii

List of Figures

1.1 Baltic Exchange Capesize Index . 4
1.2 Illustration of Anthony’s framework 5

2.1 Summary of studies on the applications of AIS data 9
2.2 Data Science Venn Diagram . 10
2.3 Gartner’s analytics maturity model 11
2.4 Comparison of different learning styles 13
2.5 Decision tree for algorithm selection process 14

3.1 Scatter plot of worldwide AIS Capesize recordings 16
3.2 Density plot of worldwide AIS Capesize recordings 16
3.3 Map of major Capesize routes and port locations 17
3.4 Velocity histogram of worldwide AIS recordings 17
3.5 Orientation of world polygons . 19
3.6 Orientation of port polygons . 19
3.7 Zoomed example of a port polygon (Tubarao) 20
3.8 Vessel distribution over time in world regions 21
3.9 Capacity distribution of the world polygons 21
3.10 Comparison of different vessel count features on global scale 22
3.11 Comparison of different sum of fleet capacity features on global scale 23
3.12 Capesize bulker fleet utilization factor 24
3.13 Historical spot rate progression of selected Capesize routes 24
3.14 Historical progression of the BCI and BDRY features 25
3.15 BCI data transformation and normalization 28
3.16 Training and test set split . 28
3.17 Simple decision tree example . 34
3.18 Random forest algorithm structure 35
3.19 MLP with 3 hidden layers and n input features 35
3.20 Composition of neuron i in the first hidden layer of an MLP 36
3.21 Unrolled recurrent neural network 37

ix

3.22 Structure of the repeating module in an LSTM model 38

4.1 Vessel Size Groups (in deadweight tons) 45
4.2 Spot rate C3 route . 46
4.3 Historical plot of two different spot rates 50
4.4 Overview of AIS applications in maritime research 51
4.5 Velocity histogram of worldwide AIS recordings (>25 knots) 54
4.6 Persistence model forecasting results 55
4.7 Grid search scores for linear ridge regression model 58
4.8 Grid search scores for random forest regression model 59
4.9 Grid search scores for long short-term memory model 60
4.10 Linear ridge regression model forecast for different feature subsets . 64
4.11 Random forest regression model forecast for different feature subsets 65
4.12 Long short-term memory model forecast for different feature subsets 66
4.13 RMSE performance measurements utilizing all features 67
4.14 RMSE performance measurements utilizing top features 68
4.15 RMSE performance measurements utilizing selected features 69

5.1 Copy of figure 4.8c . 73

D.1 Top 20 most important features based on random forest regressor
model performance . 91

D.2 Cumulative feature importance score with respect to number of fea-
tures . 92

D.3 Top 20 features based on mean feature importance score 92
D.4 Feature importance scores of selected algorithms (1/3) 93
D.5 Feature importance scores of selected algorithms (2/3) 94
D.6 Feature importance scores of selected algorithms (3/3) 95

x

List of Tables

1.1 Comparison of planning and decision levels 4

3.1 Overview of engineered features for final dataset 25
3.2 Univariate and multivariate filter methods to identify top n features 30
3.3 Overview of selected activation functions for ANN [33] 37
3.4 Overview of optimized hyperparameters in selected machine learning

algorithms . 39

4.1 Vessel size groups according to commonly used shipping terminology 45
4.2 Overview of dry bulk shipping routes 47
4.3 Vessel type and size indication, with corresponding aggregated data

from Clarksons Research Services database 48
4.4 Correlation matrix for time charter and trip charter rates 49
4.5 Descriptive statistics of correlation matrix in Table 4.4 50
4.6 AIS data types . 52
4.7 Reporting intervals of dynamic AIS data 52
4.8 AIS ship types . 53
4.9 Structure of the original data retrieved from the AIS database 53
4.10 Structure of the post-processed AIS data 53
4.11 AIS data file comparison pre-, peri- and post-processing 54
4.12 Composition of different feature combination sets 56
4.13 Optimal hyperparameter combinations 56
4.14 Performance metrics on training set for all models, with the em-

ployed data scaled in domain [0,1] 61
4.15 Performance metrics on test set for all models, with the employed

data scaled in the domain [0,1] . 62
4.16 Performance metrics on forecast results for all models 63

B.1 Descriptive statistics of count features in port locations 85
B.2 Descriptive statistics of capacity features in port locations 86

xi

B.3 Descriptive statistics of count and capacity features in world regions 86
B.4 Descriptive statistics fleet percentage features in world regions . . . 87
B.5 Descriptive statistics of fleet count and capacity features 87
B.6 Descriptive statistics of fleet utilization feature 87
B.7 Descriptive statistics of market and price derived features 87

xii

Nomenclature
ADF = Augmented Dickey-Fuller
AIS = Automatic Identification System
ANN = Artificial Neural Network
BCI = Baltic Exchange Capesize Index
BDRY = Breakwave Dry Bulk Shipping ETF
BPPT = Backpropagation through time
CNN = Convolutional Neural Network
DT = Decision Tree
EDA = Exploratory Data Analysis
ETF = Exchange-Traded Fund
GAM = Generalized Additive Models
IMO = International Maritime Organisation
KDD = Knowledge Discovery in Databases
KNN = K-Nearest Neighbour
LRR = Linear Ridge Regression
LSTM = Long Short-Term Memory
MAE = Mean Absolute Error
MAPE = Mean Absolute Percentage Error
ML = Machine Learning
MLP = Multilayer Perceptron
MLR = Multiple Linear Regression
NCA = Norwegian Coastal Administration
RFE = Recursive Feature Elimination
RFR = Random Forest Regressor
RMSE = Root Mean Squared Error
RNN = Recurrent Neural Network
SIN = Shipping Intelligence Network
SLR = Simple Linear Regression
SVM = Support Vector Machine
VHF = Very High Frequency

xiii

Chapter 1
Introduction

The maritime shipping and transport industry, and in particular the dry bulk
segments, has long been considered a prime example of a perfectly competitive
and efficient market (Norman [1]). According to Hayes [2], a perfectly competitive
market requires the satisfaction of the following criteria;

• Companies sell identical products

• Market share does not influence price

• Companies are able to enter or exit without barrier

• Buyers have perfect information

• Companies cannot determine prices

In a paper by Adland et al. [3], concerns regarding the shipping industry’s market
efficiency at a micro-level are raised. They identify various elements that indicate
a flawed hypothesis of a perfectly competitive shipping market.

Meanwhile, the maritime shipping industry includes a multitude of important
stakeholders, such as shipowners, charterers, classification societies, and shipyards,
to name a few; is by its very nature the most global industry and effects all citi-
zens in all nations throughout the world, but has yet to gainfully employ the vast
amounts of historical data available through advanced technological modeling and
analysis. This paradox must surely be about to change as we see the enormous ad-
vances in other industries who have successfully employed big data analysis. This
paper is perhaps a small step towards addressing this obvious flaw.

1

1. INTRODUCTION

1.1 Background
The world is becoming increasingly digitized, more by the minute, creating a con-
tinuous production of an increasing amount of data. This data can provide valuable
information and insight for the development of new technological advancements.
A crucial business strategy is to properly exploit this abundant amount of readily
accessible data, analyze it, and use it for high-quality decision support. Numer-
ous large corporations already practice methods for this purpose. Jie et al. [4] at
McKinsey & Company produced an article in November 2020 where they express
the necessity for actors in the maritime industry, particularly the bulk and tanker
segments, to utilize data-driven insight to support decision making. In addition,
they identify four key areas where opportunity for application of data-led analytics
exists:

1. finding attractive subsectors and niches through insight into end customers,

2. optimizing portfolios based on relative attractiveness and risk level of different
vessel classes,

3. improving commercial choices, and

4. operating vessels more effectively.

Our discussion is focused primarily towards the last two key fields.

Despite its global reach and fundamental nature, the shipping industry is generally
considered to have fallen behind the general digitization process. In all likelihood
this is due to challenging market conditions at a time when such digitization re-
quires substantial investments. However, we recognize that the number of studies
and approaches for efficiently utilizing the Automatic Identification System (AIS)
data are rapidly increasing. This study will explore and investigate the opportu-
nities for predicting shipping behavior by employing a combination of AIS- and
market-relevant data analysis.

In the preliminary project presentation, the candidate explored previously con-
ducted research studies on AIS data and investigated the development of various
shipping segments. Given the considerable size and efficiency of the dry bulk sector,
a behavioral analysis of this shipping niche was determined to have more potential
and applicability, and it was consequently selected for further investigation in this
master thesis. Indeed, to the candidates knowledge there has not been a study
investigating freight rate prediction of the Capesize bulker segment combining AIS
and market-relevant data.

Utilizing machine learning models for modeling complex problems and time-series
forecasting to obtain decision-support material is nothing new. Historically, decision-
making in the shipping industry has primarily been based on judgment and expe-
rience, especially in the bulk shipping sector. There are numerous results showing
that with the use of existing sophisticated machine learning models, there is a
significant likelihood to outperform traditional methods. This applies particularly
when the amount of readily available data increases, which is the case of AIS-

2

1.2 MOTIVATION

and market-relevant data. There have been previous studies on the utilization of
machine learning models for the prediction of freight rate movements in different
segments of the shipping industry ([5], [6]), but none focused on the Capesize bulker
segment.

1.2 Motivation
The primary motivation for investigating these opportunities is to produce new and
gainful insight into the maritime shipping and transportation industry. Initially,
the focus of this thesis was to examine extreme changes in the bulker segment and
in particular, to concentrate on the impact of various global and regional crises.
Considering that several significant situations have had great effect on the finan-
cial markets, particularly the energy prices, the idea of gaining insight into how
these elements have affected the bulk market was an exciting starting point. Such
understanding might provide information that will contribute to developing new
methods for predicting the consequential impact of future calamities. Since how-
ever, the bulk segment in world shipping and trade encompasses an unfathomable
amount of influencing elements, it is undeniably difficult to single out significant
factors from historical crises that have had an identifiable effect on the market
development of the bulker segment.

Rather than identifying crises specific elements, we therefore aim to identify fac-
tors influencing the Capesize dry bulk sector in general, with the combined use of
AIS- and market-relevant data. The Capesize bulker segment is a highly volatile
market, and the opportunity of retrieving helpful insight into this sector is highly
motivating. Moreover, the possibility of utilizing AIS data to provide added pre-
dictive value in anticipating significant fluctuations in this sector is essential for
the long-term profitability for both shipowners and operators in this market. Fig-
ure 1.1 properly illustrates the volatile Baltic Exchange Capesize Index (BCI). We
immediately observe that the index plummets to a negative value after a period of
more than 300 weeks, which is the first time the index has dropped into negative
territory [7]. Numerous influences where among the root causes of this historical
dip; amongst them seasonality, flooding in Brazil, and undoubtedly the most sig-
nificant, the global coronavirus outbreak. With China being the largest importer
of dry bulk commodities, accounting for roughly 40% of the market1, we observed
the significant impact of a locked-down China in the aftermath of the outbreak of
the SARS-CoV-2 pandemic.

1.3 Problem Description
The model presented in Figure 1.2 is a commonly employed framework to categorize
different planning levels, namely strategic-, tactical- and operational-planning. The
triangular model is based on Robert Anthony’s fundamental beliefs that companies

1https://www.hellenicshippingnews.com/chinas-import-surge-drives-optimism-in-dry-bulk-
shipping-demand/

3

1. INTRODUCTION

Figure 1.1: Baltic Exchange Capesize Index

and organizations are constructed as a hierarchy of decision-making levels. Top-
level decisions are considered strategic and are seldom very specific, while the
further down the hierarchy we descend, the more detailed and operation-specific the
decisions become. Since we aim to predict short-term freight rate movements, this
thesis falls into the category of operational planning. A more detailed comparison
of the different planning levels is provided in Table 1.1.

Among the most critical elements of any data science project is to gain a complete
business understanding of the addressed problem. Failure to properly understand
the problem will result in less efficient model scoping that in turn will not pro-
duce the desired outcomes for further evaluation. The below section of this paper
will therefore also describe the objectives and approaches selected to address the
problems encountered.

Table 1.1: Comparison of planning and decision levels

Factor Strategic Planning Tactical Planning Operational Planning
Purpose Management of change, Resource utilization Execution, evaluation,

resource acquisition and control
Implementation instruments Policies, objectives, Budgets Procedures, reports

capital investments
Planning horizon Long Medium Short
Scope Broad, corporate level Medium, plant level Narrow, job shop level
Level of management involved Top Middle Low
Frequency of re-planning Low Medium High
Source of information Largely external External and internal Largely internal
Level of aggregation of Highly aggregated Moderately aggregated Detailed
information
Required accuracy Low Medium High
Degree of uncertainty High Medium Low
Degree of risk High Medium Low

4

1.3 PROBLEM DESCRIPTION

Figure 1.2: Illustration of Anthony’s framework

1.3.1 Objective
The central objective of this thesis is to investigate the applicability of sophisticated
machine learning algorithms to predict short-term freight rate movements on the
Capesize route from Tubarao to Qingdao (C3). In continuation, we aim to identify
critical elements that significantly influence this shipping segment.

To best approach these objectives, we intend to utilize data retrieved from the Nor-
wegian Coastal Administration (NCA) AIS database in combination with freight
market data provided from Clarksons Platou and Breakwave Dry Bulk Shipping
exchange-traded fund data. With such extensive datasets available, we are pre-
sented with a challenge to construct, evaluate and determine which features and
combinations of features that are most influential and relevant for various machine
learning algorithms to produce the best possible predictions. It is therefore crit-
ical to study and analyze all available data thoroughly. Following this, we have
addressed the following research objectives in this thesis:

a Conduct a thorough literature review on relevant topics for the problem ob-
jective.

b Construct and provide a detailed problem description.

c Document the methodology used to approach the problem.

d Retrieve, pre-process and clean global AIS data for further exploration of the
Capesize bulker segment.

5

1. INTRODUCTION

e Extract and explore patterns in the Capesize bulker segment from global AIS
data.

f Identify and construct valuable features from AIS- and market-relevant data.

g Choose relevant machine learning algorithms to forecast short-term freight
rate movements based on multivariate data input.

h Evaluate the forecasting results from the employed models of various feature
subsets, using statistical metrics and results from benchmark model.

i Discuss results and approaches employed in relation to the problem.

j Provide a short and concise conclusion of the problem.

1.4 Thesis outline
The thesis is structured in the following order:

Chapter 2: Reviews literature for benchmark topic relevance to the problem
objective.

Chapter 3: Provides insight to the employed methods for feature engineering,
algorithm selection and model evaluation.

Chapter 4: Presents the obtained raw data, in addition to the produced results
from the benchmark and machine learning models.

Chapter 5: Discusses the produced results and the methodology used to approach
the problem.

Chapter 6: Provides a short and concise conclusion and presents further work.

6

Chapter 2
Literature Review

This part of the paper will provide insight into previously conducted research and
applications reviewed as part of the work performed for this master thesis. The
articles presented in this section have given a better understanding of influencing el-
ements in dry bulk shipping and currently utilized AIS data application approaches.
They also provide better insight into suitable methods commonly employed in data
science. A notable portion of the literature review was conducted as part of the
project thesis. However, all the literature combined sets the foundation for further
work in this thesis.

2.1 Dry bulk shipping
Adland et al. [3] conduct a study where they propose a model to extract freight rate
information in individual contracts from the transportation of crude oil and dry
bulk commodities. Their study’s purpose is twofold; (1) to expand already existing
models on microeconomic determinants on freight rates to account for relationship
effects between buyers and sellers, and (2) investigate the influence of these rela-
tionships on the freight rates for individual fixtures empirically. The study is meant
to assess buyers’ and sellers’ impact on fluctuations in freight rates. According to
their findings, market conditions and routes remain the most important covariates.
However, they also acknowledge the significant role of charterers and shipowners
and their influence in individual contracts.

Alizadeh and Talley [8] utilize a large sample of individual dry bulk charter con-
tracts to investigate several important aspects of the dry bulk shipping market.
They primarily study the microeconomic determinants of freight rates while si-
multaneously examining; (1) how the freight rates vary with regards to major dry
bulk routes, (2) how shipping activities are distributed geographically, and (3) the
laycan period duration in shipping contracts. Their conclusions indicate a strong

7

2. LITERATURE REVIEW

correlation between dry bulk freight rates and laycan periods. Furthermore, they
identify voyage routes, vessel deadweight, and age as significant and influential
determinants of the dry bulk shipping freight rates.

Köhn and Thanopoulou [9] proposes a methodology to assess the non-linearity
nexus between charter rates and their determinants in dry bulk shipping. They
utilize semi-parametric methods to construct various generalized additive models
(GAMs) to examine different factors influencing the physical time-charter rates.
The paper aims to recognize general market trends and further explain the resulting
variations on physical T/C rates. According to their findings, both vessel and
fixture-specific traits are revealed to impact time-charter rates for different ships.

2.1.1 Freight Rate Modeling
The purpose of the study by Århus and Salen [5] is twofold; (1) utilize already de-
veloped machine learning techniques to predict future shipping freight rates in the
crude oil tanker market, and (2) examine the predictiveness of employing satellite
AIS data. They combine the use of AIS-derived information with non-AIS-derived
data. Furthermore, they attempt several experiments with various forecasting hori-
zons and complexity levels to evaluate the model’s accuracy. Their findings indicate
that for predicting the freight rates in the tanker market, AIS-derived data does
not provide any significant additional value. It will be interesting to compare the
impact of AIS-derived information on the tanker market with the dry bulk segment.

2.2 AIS applications
The study conducted by Yang et al. [10] illustrates applications for AIS data in
marine research. Their paper demonstrates the rapid growth in the utilization of
AIS data applications. The authors have identified three main categories for these
applications: basic applications, extended applications, and advanced applications.
Figure 2.1, extracted from their study, illustrates the division of these categories.
Furthermore, they also identify a list of the major categories for methods used
with AIS applications. Data mining, causality analysis, and operational research
are respectively fascinating and relevant for further investigation. The information
and findings from this study have provided a more comprehensive understanding of
the shipping market dynamics. Additionally, it has helped to provide better insight
into what elements to research for more significant multi-disciplinary studies with
AIS data in the center.

Adland et al. [11] investigate the accuracy of trade volume estimates in the shipping
industry based on AIS data combined with a detailed crude oil shipments database.
More specifically, the study strictly only applies to shipping segments where the
cargo type is observable and homogenous due to limitations for AIS-based estimates
of trade volumes. According to their research, utilization of AIS-derived data
to determine total exported quantities provide somewhat good alignment to the
aggregated customs-based export numbers. However, when examining the exported

8

2.2 AIS APPLICATIONS

Figure 2.1: Summary of studies on the applications of AIS data

values at more micro-levels, the estimates become less accurate with more unstable
deviations of the exported volumes.

Yan et al. [12] present their study of the global marine oil trade, as a combination of
traffic route analysis, trade volume analysis, and trade network analysis, based on
AIS data. While Adland et al. [11] focuses on determining the level of precision for
the trade volume estimates, this study aims to construct a framework for estimating
the trade volume.

2.2.1 Data handling
Brende Smestad et al. [13] presents heuristic methods for identifying vessel types
using AIS-data. The study intends to predict ship types with a high level of accu-
racy and demonstrate the unnecessary purchasing of additional information from
commercial databases, thereby avoiding additional costs. The paper provides a
detailed and thorough preprocessing of the AIS database, which is essential to pre-
vent inaccurate data in the heuristics. According to the final results, the developed
heuristics provide highly accurate predictions compared to data from the Clarksons
Ship Register.

2.2.2 Previous applications with machine learning
Chen et al. [14] conducts a ship movement classification analysis with the com-
bination of AIS data with machine learning algorithms. Their study focuses on
the use of Convolutional Neural Network (CNN) for ship movement classification.
However, they also compare the results with other commonly utilized algorithms
such as K-Nearest Neighbours (KNN), Support Vector Machine (SVM), and Deci-
sion Tree (DT). The results from the study indicate that the use of CNN provides
better performance for the classification of AIS data.

Århus and Salen [5] conduct a fascinating study with a twofold purpose, namely to
(1) apply machine learning techniques to predict shipping freight rates and (2) to
investigate the possibilities for prediction with the use of AIS data. Furthermore,
they describe the process of transforming raw AIS data into usable time-series

9

2. LITERATURE REVIEW

data and identifying relevant features and crucial non-AIS-derived data elements.
A detailed description of their methodology for constructing the machine learning
program is also presented in the paper.

2.3 Data science literature and theory
Data science’s primary purpose is to provide solutions to real business problems by
utilizing available data resources. Figure 2.2 illustrates the essential elements that
combined results in data science and is extracted from Conway [15]. The hacking
skills represent computer science, data engineering, and programming, while math
and statistics knowledge define the necessary numerical techniques and algorithms
to derive insight. Lastly, the substantive expertise element means to represent the
necessity for domain knowledge and business value.

Figure 2.2: Data Science Venn Diagram

According to Anadiotis [16], we can classify data analytics applications into the
following categories: Descriptive Analytics, Diagnostic Analytics, Predictive An-
alytics, and Prescriptive Analytics. The different classifications present different
levels of complexity with a corresponding level of business value that is achievable.
Figure 2.3 properly demonstrates the correlation between difficulty and benefit for
the different classifications.

2.3.1 Exploratory data analysis
Exploring the data is commonly the first step in data science projects. The Ex-
ploratory Data Analysis (EDA), according to Bruce et al. [17], includes a set of
approaches and techniques used for examining datasets and provides a summary
of the main features. Tukey [18] defines EDA as ”Procedures for analyzing data,

10

2.3 DATA SCIENCE LITERATURE AND THEORY

Figure 2.3: Gartner’s analytics maturity model

techniques for interpreting the results of such procedures, ways of planning the gath-
ering of data to make its analysis easier, more precise or more accurate, and all the
machinery and results of (mathematical) statistics which apply to analyzing data.”

Data visualization tools are essential in exploratory analysis. They intend to pro-
vide insight into trends and patterns and visually illustrate how they are correlated
using different plots. Commonly used plots for this type of analysis include but are
not limited to box plots, scatter plots, and histograms.

2.3.2 Data mining
Twin [19] defines data mining as converting raw data into useful information, which
is done by discovering and recognizing patterns and structures in the datasets.
They also mention that the process is highly dependent on computer processing
capabilities and the level of efficiency for data collection.

Mannila [20] identifies and presents five steps as part of the knowledge discovery in
databases (KDD) process, more commonly known as data mining. These steps are
listed below. Furthermore, they consider some data mining methods for pattern
recognition and demonstrate possible applications of these techniques.

1. understanding the domain,

2. preparing the data set,

3. discovering pattern (data mining),

4. postprocessing of discovered patterns, and

5. putting the results into use.

11

2. LITERATURE REVIEW

2.3.3 Machine learning

The purpose of Machine learning (ML) is to allow computers to continuously im-
prove their performance regarding decision-making or predictive accuracy based on
their previous experience [21]. In general, we consider ML as a branch or subfield
of artificial intelligence. ML utilizes algorithms and statistical modeling combined
with feature data to create predictions or make decisions without being explicitly
programmed.

As mentioned previously, it is common to utilize visualization tools as part of the
exploratory analysis; the same applies to the start of an ML study. A correlation
matrix is an example of this type of instrument that intends to identify the impact
the dataset’s different features have on the target variable. Therefore, this method
is widespread for feature selection in ML studies.

2.3.3.1 Building a machine learning model

Before starting to work on building an ML model, it is essential to obtain a compre-
hensive business understanding. This step might seem obvious; however, the data
scientist must understand the problem correctly to construct the best possible sys-
tem. The next step in creating an ML model is to examine the data that comprise
the available raw material, forming the final feature set’s foundation. For this
step, it is vital to verify the data provided and investigate the applied processing
techniques.

Following the proper understanding of available data material, it is necessary to
prepare and define training and test sets. The process of preparing the datasets
can be quite extensive; however, it is crucial to make sure that the selected data
for training is clean, properly formatted, and does not contain any imbalances that
would impact the practice model.

The fourth step for this method is to determine what algorithm to use for the
training model. There are currently numerous developed algorithms for various
purposes; therefore, conducting thoroughgoing research when selecting what algo-
rithm to use is of high importance.

After concluding the algorithm and set of features to apply in training, the next
step is fitting the model. This part of the approach for building an ML model is
an iterative process. This step aims to identify the optimum parameters’ values
and adjust the algorithm’s weights until the model returns satisfying results. The
product that produces acceptable outcomes will be the trained algorithm, namely
the machine learning model.

The final step is to utilize the ML model on new test data, to solve the proposed
business problem. Ideally, the system will improve over time and produce more
accurate results regarding the end goal.

12

2.3 DATA SCIENCE LITERATURE AND THEORY

2.3.3.2 Supervised, unsupervised or semi-supervised

We categorize the different learning styles in ML into three primary categories: Su-
pervised, unsupervised, and semi-supervised. Figure 2.4 presents a clear overview
of the different learning types and provides examples of commonly applied algo-
rithms. Additionally, there exists a learning method called reinforcement learning.
This technique focuses on learning from interactions with an agent and trial and
error methodology. For this study, we will not consider this technique for further
use.

Figure 2.4: Comparison of different learning styles1

The typical goal of any ML prediction model is to utilize input values X to map
a function f̂ that returns ŷ = f̂(X) as best possible estimation for the real value
y. For the model to identify said function, it needs to be trained. When we
say that the model requires training, it must be given input values to learn from
progressively. With supervised learning, both input and output values are known,
and the model employs both during the training process. The model does so by
first utilizing input values to return a prediction. Secondly, it gets instructed of the
true value of what the prediction should have been, after which the system makes
adjustments to account for the error. The objective of a supervised learning model
is to identify the relationship between the two known values, input and output.
While an unsupervised learning model only employs input values as known to
discover unknown patterns in the data.

2.3.4 Algorithm selection
We previously pointed out in Section 2.3.3.1 the importance of deciding what algo-
rithm to select for the ML model. There exists a wide selection of ML algorithms
to choose from, and it is often extremely challenging to determine which will yield
the best results to the proposed problem. Lee and Shin [22] address the issues
of algorithm selection in ML. As mentioned in their paper, each case comprises
different variables and data that influence algorithms’ performance. Additionally,
they highlight that the main challenge is to select the algorithm that results in

1https://www.datasciencecentral.com/profiles/blogs/supervised-learning-vs-unsupervised-in-
one-picture

13

2. LITERATURE REVIEW

the best trade-off between accuracy and interpretability. Figure 2.5 is extracted
from their paper and illustrates a process they designed to determine what machine
learning algorithm to select. They recognize that without any particular time- and
or processing limitations, it is possible to test out different algorithms and methods
commonly employed in ML models. However, this type of strategy, which aims to
test as many algorithms as possible to identify the best possible algorithm, can be
quite extensive and time-consuming. Therefore, a proper understanding of previous
use cases for different algorithms is highly beneficial.

Figure 2.5: Decision tree for algorithm selection process

14

Chapter 3
Methodological Approach

With a detailed definition and understanding of the stated problem and objec-
tives of this study, we can move on to the next work considerations of this thesis,
namely the methodological approach. Initially however, we must conduct a thor-
ough exploratory data analysis of the readily available data before we begin with
the feature engineering process.

3.1 Exploratory data analysis
As discussed in Section 2.3.1 under literature review, conducting an EDA to get a
more comprehensive understanding of the data available is typically the first step
of any data science project. The primary intention of this EDA is to examine
and identify any anomalies, trends, correlations, or patterns of interest that can
be employed in the feature engineering process described later. To ensure that
the analysis is as thorough as possible, we have investigated the available data
quantitatively, with statistics, and visually, with various plots and figures.

We begin the EDA by examining the geospatial data from AIS. Figure 3.1 illustrates
a scatter plot of all registered vessel recordings of Capesize vessels retrieved from
the AIS database. Other than the fact that this figure confirms that we have
managed to retrieve AIS data messages worldwide, there is no additional insight
to gain from studying this figure. We have therefore produced a more insightful
illustration in Figure 3.2, which correctly shows a density plot of the worldwide
recordings. This figure allows us to better understand the major trading routes
serviced by Capesize vessels in 2019. To some extent we can also determine what
port locations are more commonly accessed. Clearly illustrated is the heavy traffic
around Cape of Good Hope, as well as significant movement to and from Brazil
and Australia. It is challenging to derive from either figure whether or not there
are irregular records that we should remove from the dataset.

15

3. METHODOLOGICAL APPROACH

Figure 3.1: Scatter plot of worldwide AIS Capesize recordings

Figure 3.2: Density plot of worldwide AIS Capesize recordings

The findings from the density plot corresponds well to several known and estab-
lished Capesize trading routes and port locations. In Figure 3.3 we have plotted
a series of major trading routes and port locations, provided with insight from
Clarksons Platou. The figure also indicates whether or not a port is importing or
exporting goods and the transported commodity type. Port locations in dark blue
color indicate exporting ports, while light blue colors symbolize importing ports.
The two commodity types presented in the figure are iron ore and coal, with dark
blue colored lines also indicating the transportation of iron ore, and light blue col-
ored lines show the transportation of coal. However, we also observe that there are
specific port locations and routes that appear to be heavily traversed according to
the density plot that is apparent from Figure 3.3.

In continuation, we have addressed the vessel velocity recordings in the retrieved
data from AIS. Figure 3.4 presents two velocity histogram plots, with Figure 3.4a

16

3.1 EXPLORATORY DATA ANALYSIS

Figure 3.3: Map of major Capesize routes and port locations

illustrating original raw data, whilst Figure 3.4b shows a histogram of the data
post-processing. From Figure 3.4a we see that the original raw data retrieved from
AIS contains certain records with abnormal vessel velocities. Due to the abnormal
velocity recordings, it is challenging to display a proper illustration of the velocity
distribution without further data processing. In Figure 3.4b therefore, we illustrate
the velocity distribution after employing simple processing techniques on the raw
data. According to this figure, it is easy to deduce that Capesize vessels spend
most of their operational time in the velocity range of 7.5 to 15 knots. However,
it is also crucial to bear in mind that the reporting intervals vary significantly; a
discussion further elaborated in Section 4.2.2.1. In consequence, the figures do not
all together correctly illustrate the Capesize fleet’s operational status concerning
time.

(a) Pre-processed (b) Post-processed

Figure 3.4: Velocity histogram of worldwide AIS recordings

17

3. METHODOLOGICAL APPROACH

3.2 Feature engineering
After having obtained greater insight and understanding of the available data, we
can begin the process of feature engineering. It is however, essential to bear in mind
that there is still substantial exploratory data analysis that we can conduct to gain
further insight. Indeed, there are various steps included in the method of feature
engineering, as is listed below. The approach is considered to be an iterative process
as new features may constantly develop from preceedingly explored and constructed
features. In consequence, this part of any data science project is generally regarded
as highly time-consuming, but is perhaps also the most critical part of any such
project. In short, the process aims to continuously transform the retrieved raw data
into valuable features that better the representation of the underlying problem.

1. Feature construction and extraction: Identify, create and extract fea-
tures from the retrieved raw data.

2. Data preparation: Transform, normalize and scale data for better appli-
cation in different machine learning algorithms. Define training and test sets
for the machine learning model to employ.

3. Feature selection: Select a subset of the final feature dataset to utilize in
the machine learning model based on various statistical tests and methods.

3.2.1 Feature construction and extraction
Ultimately selecting what features to construct from the raw data is a market-
specific question underlying the importance of conducting a proper EDA. The
features built as part of this thesis are primarily chosen for the Capesize bulker
segment, but may be applicable to other shipping niches. The following subsec-
tion of the chapter will describe the process of developing specific features later
employed in the machine learning algorithms. A total of 65 unique features have
been identified, with 52 weekly observations from January 2019 to January 2020.

3.2.1.1 Vessel capacity count in world regions and port locations

Perhaps the most intuitive features derived from the AIS data are vessel and ca-
pacity count in different zones and port locations. First, it is necessary to define
the areas of interest before aggregating any data regarding geospatial locations.
The python script polygons.py attached in Appendix E.6 was designed for this ex-
act purpose, and it utilizes a variety of built-in packages to accomplish this. The
reader can find a short and concise description of the different functions in the
script. The included set of central port locations for Capesize vessels is identical
to the collection of port locations previously illustrated in Figure 3.3. Utilizing the
classic-sea-routes website1, it was possible to obtain and determine the physical
areas of all port locations. In combination with the interactive geojson-website2, it

1https://classic.searoutes.com/routing
2http://geojson.io

18

3.2 FEATURE ENGINEERING

enables the process of retrieving all coordinates to identify and construct the des-
ignated port sites. Figure 3.5, and Figure 3.6 presents the constructed orientation
of the world polygons and port polygons, respectively. Although it may be difficult
to observe from Figure 3.6, the port locations are not just small dots marked on
the map. A zoomed example is presented in Figure 3.7 to illustrate better how the
port locations are constructed. All coordinates are saved to individual area-based
geojson-files to utilize further the established areas of interest in the feature con-
struction process. This is accomplished with the functions ocean polygons geojson
and port polygons geojson in the polygons.py-script. From Figure 3.5, one can ob-
serve that the world has been divided into seven polygon areas or world regions,
identified as the following: Atlantic, Far East, Arabian Gulf, East Pacific, North
West Europe, Indian Ocean, and the Mediterranean.

Figure 3.5: Orientation of world polygons

Figure 3.6: Orientation of port polygons

With the various areas of interest adequately established, feature construction by

19

3. METHODOLOGICAL APPROACH

deriving data from AIS may commence. The function geofence processing, included
in the FE.py-script attached in Appendix E.7, processes data from AIS and returns
a binary value indicating whether or not a recording has been made inside the area
of interest. Utilizing the manufactured binary values enables the possibility of
determining the set of vessels recorded at the respective regions of interest at a
weekly frequency regarding their identification values, i.e., the pre-defined MMSI
numbers. This is achieved with the function vessels dict. With direct access to
a complete overview of all registered vessels in each pre-ordained location at any
given week, deriving the count of vessels and corresponding sum of capacity for
the respective areas is easily accomplished. Combining the complete dictionary3 of
recorded vessels with the Capesize database provided by Clarksons Platou enables
the applied method in acquiring the correct sum of capacity.

Figure 3.7: Zoomed example of a port polygon (Tubarao)

The distribution and progression of the reported vessels recorded in the pre-defined
world regions are illustrated in Figure 3.8. The figure demonstrates that the ma-
jority of the Capesize fleet operates in the categorized Far East-region. A large
part of the fleet is also recorded in both the Atlantic- and Indian Ocean-regions.
The distribution for the remaining areas however, shows significantly lower activity
levels. Considering that Capesize vessels have historically been forced to transit
via the Cape of Good Hope or Cape Horn, the significant trading routes are ob-
served from Brazil, China, and West Australia; corresponding well with our output
values. Unfortunately, the data retrieved from AIS covers only a single year, which
in turn makes it challenging to conclude any seasonal movements or typical trend
developments.

An overview of the descriptive statistics of all features constructed in this section
can be found in Table B.1, Table B.2, and Table B.3 located in Appendix B.

3Python dictionary, generally known as an associative array: https://realpython.com/python-
dicts/

20

3.2 FEATURE ENGINEERING

Figure 3.8: Vessel distribution over time in world regions

3.2.1.2 Fleet percentage in world regions

The fleet percentage features for the respective world regions are derived from the
previously mentioned features. These features indicate the capacity percentage of
the fleet in the various regions. Figure 3.9 illustrates a boxplot to demonstrate the
distribution of the Capesize bulker fleet visually.

An overview of the descriptive statistics of all fleet percentage features for the
respective world regions can be found in Table B.4 located in Appendix B.

Figure 3.9: Capacity distribution of the world polygons

21

3. METHODOLOGICAL APPROACH

3.2.1.3 Active vessels and fleet capacity

In addition to providing features for the count of vessels and sum of capacity in
selected ports and world regions, deriving the number of active ships and fleet
capacity on a global scale at a weekly frequency may be of great significance.
When developing the features for vessel count in various world locations, there
is a possibility of registering several vessels in multiple areas for the same week.
Consider for instance, a particular ship may report its location Wednesday morning
for a specific week in the Far East region. If the same vessel is active and sailing,
it is possible that it also records a location in the Indian Ocean region for the same
week. Thus, the features indicating the count of vessels in the various areas of
interest may contain misleading or disruptive information.

Furthermore, when deriving the number of active vessels on a global scale at a
weekly frequency, additional data input is utilized, namely nav-status4. Moreover,
the previously mentioned features, i.e. vessel count and capacity in areas of inter-
est, do not consider ships’ navigational status. This results in additional misleading
information. Figure 3.10a and Figure 3.10b properly illustrates the level of con-
flicting information in the different vessels count features. In Figure 3.10a, it is
easily observed that the two different vessel count features show relatively similar
developments over time. In fact, the correlation between them is 0.84. We also
recognize the dotted horizontal line as the total number of vessels registered in
the fleet and investigated in this thesis. In addition, the figure shows that the
sum vessels-feature manages to identify more ships than included in the database,
which should not be possible. The second figure, Figure 3.10b, is included to pro-
vide a better visual understanding of how these two features correlate. The same
issues therefore are present for the sum of fleet capacities at weekly frequencies,
illustrated in Figure 3.11a and Figure 3.11b.

(a) Count of active vessels vs the sum of vessels (b) Difference in the two vessel count features

Figure 3.10: Comparison of different vessel count features on global scale

4A more detailed description of employed data for the works of this thesis is provided in
Section 4.2.2.3

22

3.2 FEATURE ENGINEERING

(a) Registered fleet capacities (b) Difference in the two fleet capacity features

Figure 3.11: Comparison of different sum of fleet capacity features on global scale

An overview of the descriptive statistics of all features constructed in this section
can be found in Table B.5 located in Appendix B.

3.2.1.4 Fleet utilization

The final feature derived from AIS data concerns the fleet utilization factor, in-
tended to indicate at what level the Capesize bulker fleet is employed at a weekly
frequency. This feature is constructed by the previously mentioned fleet capacity-
feature, derived from the active vessels-feature, in combination with the total fleet
capacity of the investigated Capesize fleet. Figure 3.12 presents the change in
the fleet utilization factor over time, which indicates significant fluctuations over
shorter periods. There can be numerous reasons behind these volatile variations,
i.e. such as seasonal trends, cultural and political events, environmental incidents,
and the global economy to name a few. Identifying and quantifying these influ-
encing elements can provide indispensable learning material to a machine learning
algorithm. However, the process of quantifying these factors is enormously chal-
lenging and likely impossible.

The descriptive statistics of the fleet utilization factor is provided in Table B.6
located in Appendix B.

3.2.1.5 Price and market features

In addition to deriving features from AIS data, this thesis also leverages market-
derived features. The most commonly employed feature in price or spot-rate fore-
casting is the historical data of the dependent variable itself, i.e., the unit being
predicted. Examples of this are Kulkarni and Haidar [23], and Yu et al. [24],
which forecast future prices with only the use of historical prices as input in neural
network models. Historical data for the dependent variable is not the only market-
derived feature employed in this thesis; a selection of different spot rates for various
main routes in the Capesize niche, with assumed relevance to the C3 route, are

23

3. METHODOLOGICAL APPROACH

Figure 3.12: Capesize bulker fleet utilization factor

also employed. These additional historical spot rates are included for the following
Capesize routes: C2, C5, C14, C17 5, as well as the average rate for Capesize vessels
with a capacity of 172,000 dwt. Clarksons Platou provides all the abovementioned
historical spot rate data at a weekly frequency. The historical spot rates are pre-
sented in both $/tonne and $/day, and Figure 3.13a and Figure 3.13b plots the
selected spot rates against each other, with regards to the unit measurement. The
figures present the dynamic relationships between the selected features and clearly
illustrate the expected high correlation, with only minor independent fluctuations
over time.

(a) Spot rates measured in $/tonne (b) Spot rates measured in $/day

Figure 3.13: Historical spot rate progression of selected Capesize routes

The last two features included in this thesis are also market-derived, namely the
Baltic Exchange Capesize Index (BCI) and the Breakwave Dry Bulk Shipping ETF
(BDRY). The BCI provides a benchmark measurement for the price of transport-
ing commodities by sea in the Capesize shipping segment and is thus primarily

5Table 4.2 provides a detailed overview of trading routes in dry bulk shipping

24

3.2 FEATURE ENGINEERING

influenced by fluctuations in the Capesize market. Clarksons Platou also provided
historical data of the BCI. In comparison, the BDRY is designed to reflect the
daily price movements of the near-dated dry bulk freight futures6 and is more heav-
ily influenced by the progression in the Capesize, Panamax, and Supramax markets
combined. Figure 3.14 demonstrates the progression of both features in relevance
to each other. The figure also exhibits similar trend developments as the previous
market-derived features, highlighting the dynamic response between the various
features.

An overview of the descriptive statistics of all features constructed in this section
can be found in Table B.7 located in Appendix B.

Figure 3.14: Historical progression of the BCI and BDRY features

A complete overview of all constructed feature types, along with a short and concise
description and the anticipated influence on the various employed machine learning
algorithms, can be found in Table 3.1.

Table 3.1: Overview of engineered features for final dataset

Feature type Description Unit Expected impact
AIS-derived features

port count Count of vessels in each port # vessels l
port capacity Derived sum of capacity in each port dwt ↑
zone count Count of vessels in each zone # vessels l
zone capacity Derived sum of capacity in each zone dwt ↓
zone percentage Calculated percentage of world capacity in each zone % ↑
sum zone capacity Calculated total sum of capacity for all zones dwt ↓
active vessels Count of active vessels in the world # vessels ↑
world capacity Derived sum of utilized capacity worldwide dwt l
fleet utilization Calculated fleet utilization factor % ↑

Non-AIS-derived features
calendar features Year and week ↓
BDRY The Breakwave Dry Bulk Shipping exchange-traded-fund $ ↑
BCI Baltic Exchange Capesize Index ↑
BCI C2 Spot rate on the BCI C2 route (Tubarao to Rotterdam) $/tonne l
BCI C3* Spot rate on the BCI C3 route (Tubarao to Qingdao) $/tonne ↑
BCI C5 Spot rate on the BCI C5 route (W. Australia to Qingdao) $/tonne l
BCI C14 Spot rate on the BCI C14 route (China-Brazil round-voyage) $/day ↑
BCI C17 Spot rate on the BCI C17 route (Saldanha Bay to Qingdao) $/tonne l
avg rate Capesize 172,000 dwt average trip rates $/day l

6https://etfmg.com/funds/bdry/

25

3. METHODOLOGICAL APPROACH

3.2.2 Data preparation
The second step in conducting a proper feature engineering operation is preparing
and processing the data to be employed. The following three steps cover the prin-
cipal data preparation and processing procedure performed as part of the works in
this thesis:

1. Data transformation: Analyze the time series, transform and investigate
whether or not stationarity exists.

2. Normalize data: Feature scaling of data for greater applicability in various
machine learning algorithms and better comparison of different models.

3. Split data into training and test sets: Ensuring that the data is employable
in supervised machine learning problems.

Step 1: Data transformation

Time series are predominantly identified as non-stationary time series, i.e., they
illustrate a certain level of relation to time, for instance, in seasonal variations,
trends, or cycles. In the field of machine learning, transforming non-stationary
data to stationary is not necessarily a requirement. It is however highly preferred to
convert all data to a stationary format as it might provide the employed algorithms
with greater predictive power. As highlighted by Brooks [25], stationary data series
will not be influenced as much as non-stationary data series over time in the case
of a shock event. Thus, stationary data will provide a greater probability for
identifying underlying elements rather than just seasonal components.

Before performing any transformation on the existing data, we analyze and investi-
gate the necessity of any data transformation. An Augmented Dickey-Fuller (ADF)
unit root test was conducted to determine the non-stationary data in the original
feature dataset. The test indicated that a total of 36.92% of the original feature
set was non-stationary with a confidence interval of 1%. Adjusting the confidence
interval to 10%, the test categorized 25.15% of the feature set as non-stationary.
Thus, to achieve greater prediction levels in the employed forecasting models, a
transformation of the features dataset to stationary data was essential.

There exist a variety of employable techniques to transform non-stationary data to
a stationary format. For the works of this thesis, a differencing data technique is
utilized. This technique subtracts the previous observation from the current obser-
vation to determine the difference; with a given series Z(t), we get the differenced
series Y (t), as illustrated mathematically in Equation (3.1).

Y (t) = Z(t)− Z(t− 1) (3.1)

After completing the transformation of the features dataset, a second ADF unit
root test is conducted to confirm that all data is stationary. The reader can find the
results from the second ADF unit root test in Appendix C. The results show that

26

3.2 FEATURE ENGINEERING

the null hypothesis (H0), i.e. that the series presents heteroscedasticity, cannot be
rejected for 7.69% of the data with a confidence interval of 1%. However, the ADF
unit root test rejects the null hypothesis, H0, for all data series in the dataset with
a confidence interval of 10%. Thus, the data is regarded as successfully transformed
to a stationary format. With this being the desired outcome in regression analysis,
no additional data transformation was necessary.

Step 2: Normalize data

After successfully transforming all features to a stationary format, the second step
of the data preparation procedure is to normalize the data. Normalizing the data
is primarily done to ensure that all available variables contribute equally to the
model. Considering that the employed feature dataset contains a vast collection of
various data with a whole range of different units, this step is crucial. To illustrate
this, consider two constructed features for this thesis, namely fleet utilization and
world capacity. The fleet utilization feature represents the percentage utilization of
the world Capesize fleet and ranges therefore from 0 to 1. The world capacity fea-
ture on the other hand, represents the total active capacity utilized and ranges from
approximately 150,000,000 dwt to 200,000,000 dwt. These two features operate at
totally different scales. Thus, when conducting further analysis, especially regres-
sional analysis, the world capacity feature will intrinsically influence the model
more as a direct result of its larger values. However, this feature is not necessarily
a better predictor for the model. To avoid these complications, therefore it is es-
sential to normalize the data to ensure that all input variables operate at the same
scale.

For the work of this thesis, we employ the Min-Max scaling method, also referred
to as normalization, and scale all features in the range [0,1]. The mathematical
formulation for scaling the data is presented in Equation (3.2).

zp,t = xp,t −min(Xp)
max(Xp)−min(Xp)

(3.2)

In the equation above, p indicates feature Xp, with xp,t ∈ Xp. This results in the
normalization of Xp with Xnorm

p = (zp,t, ..., zp,n), scaled in the predefined domain
range, namely [0,1]. Read more about the implementation of the Min-Max scaler in
python via scikit-learn7. Figure 3.15a through Figure 3.15c are included to provide
a visual example of the employed data transformation and normalization procedure,
with the Baltic Exchange Capesize Index (BCI) employed as an example.

Step 3: Split data into training and test sets

With all data successfully transformed and normalized, the last part of the exercise
in this data preparation process is to divide the dataset into training and test sets.
The training set contains a substantial portion of sample data from the original

7https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

27

3. METHODOLOGICAL APPROACH

(a) Original (b) Differenced (c) Normalized differenced

Figure 3.15: BCI data transformation and normalization

dataset and is purposefully used to fit the parameters of the respective machine
learning algorithms. On the other hand, the test set contains the remainder of the
original dataset that is not included in the training set. The data stored in the test
set is only intended for evaluation and assessment purposes on the performance level
of the various employed machine learning algorithms. The test dataset provides
a reference standard to compare the competing models to determine which model
performs best. For the works of this thesis, a train-test ratio of [0.8:0.2] was used.
Figure 3.16 correctly illustrates the division of the original dataset into training
and test subsets.

Figure 3.16: Training and test set split

In addition to splitting the data into training and test subsets, it is essential to
include a validation technique. The primary purpose of having a validation method-
ology on the trained data is to provide an unbiased evaluation of a model while
tuning the models hyperparameters [26]. We have employed a time series cross-
validation technique for the works in this thesis, namely the time series split tech-
nique, which is a variation of the KFold method. Adjusting the number of splits
to divide the training set into for validation purposes, correspondingly adjusts the
respective training and test sets. Equation (3.3) and Equation (3.4) presents the
mathematical expressions for the training and test subset sizes respectively, with
regards to the i-th split. Here, n represents the number of data samples in the
training set, and ns is the total number of splits.

Strain,i = i · n
ns + 1 + n mod (ns + 1) (3.3)

Stest,i = n

ns + 1 (3.4)

28

3.2 FEATURE ENGINEERING

3.2.3 Feature selection
A vast collection of different features and possible predictors were developed as
part of the feature construction and extraction stage. The final step in this feature
engineering process is selecting various feature subsets to apply in the machine
learning algorithms. However, this raises an essential question to be addressed in
data science and machine learning problems specifically, namely:

Why can we not provide the machine learning algorithms with all available
features and allow the algorithm to determine which features to use?

There are multiple reasons why it is not helpful to introduce all features for em-
ployment in machine learning. For this thesis, we have primarily been concerned
with the following three aspects:

1. Curse of dimensionality: To better understand the meaning behind dimen-
sionality in data science, we quote Chris Albon [27]:

As the dimensionality of the features space increases, the number of
configurations can grow exponentially, and thus the number of

configurations covered by an observation decreases.

In other words, with too much available data input, i.e. features, there is
a significant risk that the applied machine learning algorithm will fit the
training data perfectly. This in turn, will result in the case of overfitting.
Thus, the employed algorithm will not generalize and modify the test data,
indicating that the model has not learned anything.

2. Occam’s razor: A philosophical problem-solving principle stating that entities
are not to be multiplied beyond necessity [28]. This principle gives precedence
to simplicity and applies exceptionally well in data science. Therefore, it is
preferable to construct machine learning models in a straightforward manner.
With more features introduced to a model, the less intuitive and explainable
the model becomes.

3. Garbage in→ Garbage out: This last element is perhaps quite self-explanatory.
The majority of data science problems include a multitude of non-informative
features, which is likely also the case for this thesis. As presented in Table 3.1,
a complete overview of all constructed feature types for this thesis is included,
with the rightmost column indicating the expected impact on the employed
algorithms for the different feature types. However, these levels of expected
impacts are merely assumptions. Providing an algorithm with poor-quality
input data will result in poor-quality output data and consequently poor
forecasting results. It is therefore necessary to avoid excess feature input.
Reducing the number of feature inputs also makes the machine learning al-
gorithms less time-consuming and easier to implement.

Ultimately therefore and as pointed out by Shaikh [29], performing proper feature
selection techniques may yield multiple benefits concerning performance measure-
ments, i.e., reduces overfitting, improves accuracy, and reduces training time.

29

3. METHODOLOGICAL APPROACH

For the works of this thesis, three different feature combinations have been em-
ployed, i.e., all features, top features, and selected features.

As the first feature combination implies, this utilizes all available features when
training the data; this is employed to investigate if the other feature selection
methods applied in this thesis yield any beneficial performance enhancements. In
comparison the second feature combination, top features, employs the top n fea-
tures as input data to fit and train the respective machine learning models. The
methodology for selecting the top n features is highly inspired by Næss [6], and the
reader can find a thorough and detailed description of the employed filter selection
method in the respective paper.

The top feature selection process identifies the top n features regarding the mean
feature score from various filter methods. Table 3.2 presents an overview of the
different univariate and multivariate filter methods used in this thesis to determine
the respective feature importance scores. The feature importance scores are rat-
ings indicating the relative importance of the individual features in predicting the
predictor. These ratings are scaled in the domain of [0,1], where 0 implies that the
corresponding feature is of no value in predicting the predictor, while 1 signifies
the most statistically significant feature. Figure D.4 through Figure D.6 in Ap-
pendix D provides a complete overview of all calculated scores for the individual
features with the corresponding filter method. The analysis process for this feature
selection method is conducted using the feature importance score.py-script, located
in Appendix E.9.

Table 3.2: Univariate and multivariate filter methods to identify top n features

Univariate Multivariate
Linear correlation Linear regression
Maximal information coefficient Ridge regression

Random forests

The last feature combination, selected features, utilizes a feature selection approach
developed by Koehrsen [30]. The first step in this approach is to remove one out of
every pair of feature variables that presents a correlation level greater than a pre-
defined value; for this thesis, the value has been set to 97.5%. The original feature
set, including all previously constructed features, contains a total of 130 features.
The first step in this approach identified a total of 51 features to drop from the
original dataset. Thus, the updated features dataset contains only 79 features, a
39.231% decrease in features. The next step is to determine the feature importance
scores for the remaining features. After training a random forest regression model
on the complete training set, it is possible to obtain an overview of the different
feature importances. Normalizing the ranked scores, i.e., summing the importance
scores to one, allows for determining the significance of the individual features
on the model. Additionally, it is possible to determine the cumulative importance
score and identify the least necessary number of features required to reach a desired

30

3.3 ALGORITHM SELECTION

cumulative importance threshold. For experimental and investigative purposes
of this thesis, we explored a threshold of 95%, which indicated that 30 features
were necessary to reach this level of cumulative feature importance. The most
important features according to this approach, along with the cumulative feature
importance score, are presented in Figure D.1 and Figure D.2 respectively, located
in Appendix D.

However, rather than simply identifying the top features, as previously achieved by
calculating the mean feature importance scores on various filter methods, this last
feature combination aims to select the best possible subset of n features. Conduct-
ing a recursive feature elimination (RFE) process will help reach this goal. An RFE
utilizes an external estimator, i.e., the number of trees in a random forest regres-
sion model, to select features by recursively considering smaller and smaller sets of
features8. It was possible to identify the optimal estimator to the random forest
regression model utilizing a cross-validation technique. The reader can find the
Python script feature selection.py for the approach of extracting this last feature
combination in its entirety in Appendix E.10.

3.3 Algorithm selection
It is important to note that the focus of this study is not on making discoveries
in the field of machine learning or data science. Instead, the aim is to investigate
the applicability of existing sophisticated machine learning algorithms to predict
short-term freight rate movements and potentially identify significantly influencing
elements in the Capesize shipping segment. One of several objectives for this thesis
is to select relevant machine learning algorithms to employ in forecasting short-
term freight rate movements. This section will therefore provide the reader with
only a brief introduction to a selection of potential algorithms.

3.3.1 Linear ridge regression
The first machine learning algorithm we are exploring is the linear ridge regressor
(LRR) model. To better understand how a ridge regression model functions, we
begin by exploring linear regression. There are two different applications of linear
regression, namely simple linear regression (SLR) and multiple linear regression
(MLR). Since we investigate multivariate data as input to the selected machine
learning algorithms, we are primarily interested in MLR. The principal use for
regression models is when the dependent variable, i.e., the predicted value, is a
continuous data type; while the employed predictors, i.e., the input data, can by
any data type9. The purpose of the regression model is to identify the best fit line,
which illustrates the relationship between the predictors and dependent variable,
which yields the least error value. To find the best fit line for the dependent
variable, we employ the following equation:

8https://scikit-learn.org/stable/modules/generated/sklearn.feature selection.RFE.html
9https://www.mygreatlearning.com/blog/linear-regression-in-machine-

learning/#multiplelinearregression

31

3. METHODOLOGICAL APPROACH

ŷ(w, x)t = w0 + w1x1,t + w2x2,t...+ wpxp,t (3.5)

In the above equation, ŷ(w, x)t represents the predicted value, at time t, given a
specific set of input values x (x = [x1, x2, x3, ..., xp]) and the respective weighted
coefficient for each data input w (w = [w1, w2, w3, ..., wp]), with p being the number
of input variables. The equation also includes one additional weight coefficient,
namely w0, which is purposefully added to provide the model with an extra degree
of freedom, more commonly referred to as the intercept or bias coefficient. The
final equation for an MLR model with the associated error term for the predicted
value at time t consequently becomes:

ŷ(w, x)t = w0 + w1x1,t + w2x2,t...+ wpxp,t + εt (3.6)

The overall objective of the MLR model is to determine the weight coefficients
(w = [w1, w2, w3, ..., wp]) by minimizing the error variable. An LRR model is
very similar to an MLR model, with the main difference being that an LRR
model employs an L2 regularization technique. This makes the LRR the preferable
model type in problems where the input data suffers from multicollinearity. Mul-
ticollinearity is a term associated with statistics and is defined as the occurrence
of high intercorrelations among two or more independent variables in a multiple
regression model [31]. The primary reasons for applying a regularization technique
is to reduce the model complexity via feature selection and address issues regard-
ing over-fitting. Considering that the employed dataset for this thesis contains
a vast amount of constructed features, this technique can be highly effective and
consequently provide valuable forecasting results. The L2 regularization technique
utilizes the squared magnitude of the respective coefficients as penalty terms for
the loss function10. The LRR model aims to minimize the objective function pre-
sented in the equation below, with the penalty term illustrated as the highlighted
part of the equation.

min(‖ŷ − wx‖2 + α ‖w‖2) (3.7)

It is critical to determine a good value for α to avoid over-fitting or under-fitting.
This method however is generally considered to be an excellent technique to avoid
possible over-fitting issues. For more information on LRR models, documenta-
tions11 and user guides12 on the implementation of an LRR model in python, we
refer to scikit-learn.

10https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
11https://scikit-learn.org/stable/modules/generated/sklearn.linear model.Ridge.html
12https://scikit-learn.org/stable/modules/linear model.html#ridge-regression

32

3.3 ALGORITHM SELECTION

3.3.2 Random forest regressor
Secondly, we have investigated the applicability of a random forest regression
model. Random forest regression models utilize the ensemble learning method,
which is a learning technique that focuses on combining multiple predictions from
various machine learning algorithms to determine the best possible forecast. These
types of machine learning models are therefore categorized as ensemble models.
Machine learning models that employ ensemble learning can be further classified
into the following types:

1. Boosting → The purpose of this ensemble learning technique is to make var-
ious algorithms learn from each other by communicating which feature or set
of features to best focus on in the upcoming models. This technique there-
fore focuses on teamwork capabilities. The term boosting comes from the fact
that the employed machine learning algorithm is provided with instructions
from previously exhausted algorithms that augment or enhance the current
algorithm’s learning abilities.

2. Bootstrap aggregation (bagging) → This type of learning methodology em-
ploys only a portion of data from the complete dataset. The small subset
of data used is retrieved at random. This technique is a commonly applied
procedure when the objective is to reduce the variance in machine learning
algorithms with high degrees of variance. Compared to the boosting prac-
tice, bagging functions with each model running independently and afterward
aggregates the output values with no preference to any model.

A random forest machine learning model is a sophisticated and supervised ma-
chine learning algorithm with applicability for both regression and classification
problems. The difference between a regression and classification problem is fur-
ther discussed in Section 3.4.2. Random forest models operate with a bagging
technique since the constructed trees in the model are run independently, and in
parallel, with absolutely no form of communication between them. Considering
that random forest models are built by combining several decision trees into one
model, it is necessary first to learn and understand how decision trees work.

A simple example of a decision tree is presented in Figure 3.17 [32]. The sample
input data set is given at the top of the figure. The objective is to separate and
identify smaller sets of data by combining various features. For this particular
example, the employed features are the color (red or blue) and format (underlined or
not) of the input data. In the first split, the input dataset is evaluated on the color
of the data. If the data has the color red, it moves the Yes branch, and if the color
is anything but red, it moves down the No branch. The same process is done with
the format feature in focus, as is illustrated in the figure. In this example, it was
necessary to employ two different features to split all the data perfectly. However,
this is only a simple example to understand better how a decision tree functions.
Problems encountered with real data are often more challenging to process, but the
theory and logic behind a decision tree remain the same. Considering that decision
trees are extremely data-sensitive, the produced predictions can vary significantly.

33

3. METHODOLOGICAL APPROACH

A random forest model allows for combining several decision trees into one model,
reducing some data sensitivity in the predictions.

Figure 3.17: Simple decision tree example13

Random forest models are sophisticated and supervised machine learning algo-
rithms with applicability for both regression and classification problems, as de-
scribed in Section 3.4.2. The constructed trees in a random forest model utilize the
bagging technique, meaning they are run in parallel with absolutely no interaction
between the different trees. The algorithm for random forest regression models
functions by creating a multitude of trees, combined create a forest, and the re-
sulting prediction is the mean prediction of all individual trees. An illustration
of this process and a general structure of the random forest algorithm is given in
Figure 3.18. The idea behind this technique is that a large number of relatively
uncorrelated models (trees) operating as a committee will outperform any of the in-
dividual constituent models [32]. It is therefore essential to ensure that the separate
trees or models diversify each other, i.e., each tree can not be too correlated with
any other tree in the forest. With the utilization of the bagging technique, allowing
each tree to sample input data with replacement from the original dataset at ran-
dom, the algorithm achieves some diversification. Additionally, the random forest
algorithm also ensures diversification through feature randomness. In contrast to
regular decision trees, where all dataset features are available when determining
how to split the node, each tree in random forest models can only employ a random
subset of features. Thus, a random forest model utilizes a combination of random
sample data input and feature randomness to achieve optimal diversification of all
constructed trees. For more information on Random Forest models, documenta-
tion14 and user guides15 on the implementation of a Random Forest Regression
model in python, we refer to scikit-learn.

13https://towardsdatascience.com/understanding-random-forest-58381e0602d2
14https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
15https://scikit-learn.org/stable/modules/ensemble.html#forest
16https://medium.com/swlh/random-forest-and-its-implementation-71824ced454f

34

3.3 ALGORITHM SELECTION

Figure 3.18: Random forest algorithm structure16

3.3.3 Long short-term memory

The third model we wish to explore is the long short-term memory (LSTM) model.
LSTM networks are recognized as a particular type of recurrent neural network
(RNN), while RNN is a class of artificial neural networks (ANN). Thus, to properly
understand how an LSTM network operates and the benefits of employing such a
network, it is essential first to grasp a basic understanding of ANN and RNN.
Considering that the focus of this thesis is on the employment of various machine
learning algorithms, such as an LSTM network, this section will only provide a
brief introduction to both ANN and RNN.

Figure 3.19: MLP with 3 hidden layers and n input features

35

3. METHODOLOGICAL APPROACH

ANN models are considered to be exceptionally well suited for fitting and solving
complex problems, as this type of network does not make any a priori assumptions
regarding the issue at hand. The Multilayer Perceptron (MLP) is an example
of a neural network and is represented in Figure 3.19. From the illustration, we
observe several key elements of an artificial network, namely input layer, hidden
layers, and output layer. The input layer consists of n nodes for each feature in the
feature dataset, and each input node is connected to all nodes in the first hidden
layer, indicated as h1 in the figure. From the first hidden layer, the input to the
subsequent layers is the current layer’s outputs. The nodes in the hidden layers are
where the computation of the model is performed. The outputs from all nodes in
the final hidden layer, indicated as h3 in the figure, provides the single output value
ŷt+1, i.e., the predicted value at time t + 1. The architecture of an ANN is given
by the number of inputs (nodes in the input layer, i.e., X = {x1,t, x2,t, ..., xn,t}),
number of hidden layers (h = {h1, h2, h3, ...}), number of neurons in the hidden
layers (nodes in the hidden layers) and number of outputs (ŷt+1). Figure 3.20
provides an illustration of the composition of a single neuron i in the first hidden
layer of an MLP and is included to give the reader a better understanding of the
computational process.

Figure 3.20: Composition of neuron i in the first hidden layer of an MLP

As the figure illustrates, each neuron in the first hidden layer has a set of n input
values Xn (Xn = {x1,t, x2,t, ..., xn,t}). Each input value has a corresponding weight
value w. Additionally, we identify an activation function f . Thus, the output of
node i becomes the sum of the paired input value x with the corresponding weight
w multiplied by the applied activation function. The computation process for node
i in the subsequent hidden layer is similar, except that output values of all nodes in
the current hidden layer become the input values for the nodes in the subsequent
layer. The activation function aims to determine to what extent the received signal
progresses through the network and the effect on the concluding outcome. Thus,
the choice of activation function varies from problem to problem. This thesis will
not go into detail and describe various activation functions. However, Table 3.3
presents a selection of commonly applied activation functions, extracted from the
works of Raschka [33].

36

3.3 ALGORITHM SELECTION

Table 3.3: Overview of selected activation functions for ANN [33]

Activation function Example use cases Equation 1D Graph

Logistic (sigmoid) Logistic regression, Multi-layer NN φ(z) = 1
1 + e−z

Hyperbolic tangent Multi-layer NN φ(z) = ez − e−z

ez + e−z

Rectified linear unit Multi-layer NN φ(z) = max(0, z)

Rectifier, softplus Multi-layer NN φ(z) = ln(1 + ez)

Now that we have obtained a basic understanding of how an ANN functions, it is
necessary to understand the ABCs of RNNs. As previously mentioned, an RNN
is a class of ANNs and was first introduced by Elman [34]. In traditional neural
networks, there is no persistence, meaning they do not have the foundations for
utilizing previously recorded data, they only use the current data as input. RNNs
are developed to address this specific issue. The primary difference is that RNNs
operate with loops, thus allowing data and information to persist throughout the
termination of each iteration in the program. The looping process, which enables
data to flow through the network and lasts throughout the entirety of the program,
is illustrated in Figure 3.21, retrieved from Olah [35].

Figure 3.21: Unrolled recurrent neural network

In the process of determining the gradients, which are used for updating the weights
in the network, RNNs leverage a backpropagation through time (BPTT) algorithm
[36]. The BPTT algorithm ensures that the model trains using the calculated
errors from the output layers to its input layers. This in turn, fits the employed
parameters of the model correspondingly. Unlike traditional backpropagation, the

37

3. METHODOLOGICAL APPROACH

BPTT needs to sum errors at each step since the operational parameters are shared
across each network layer. However, it is also during this process of determining the
gradients that most RNNs run into problems, i.e., the issues of exploding gradients
and vanishing gradients. These issues are described as the following [37]:

1. The vanishing gradient problem: A relatively small gradient will continue
to decrease until it ultimately becomes insignificant (i.e. = 0), resulting in
difficulties for the network to learn from long term dependencies.

2. The exploding gradient problem: Opposite to the vanishing gradient problem,
when a gradient is too large and goes towards infinity at an exponential rate,
the gradients will eventually become NaN, and the model becomes unstable.

The problem concerning the vanishing gradient and the issues of long-term depen-
dencies was explored by Hochreiter [38]17. A variant of RNNs, the LSTM network,
was principally developed to tackle the problem of the vanishing gradient in RNNS
and has been significantly applied since it was first introduced to the field of data
science by Hochreiter and Schmidhuber [39].

Figure 3.22 (extracted from the works of Olah [35]) provides an illustration of
the chain like LSTM structure and a detailed view of the repeating module is
presented. In contrary to a standard neural network model, that only utilize a
single neural network layer, in an LSTM network there are four neural network
layers, as indicated in Figure 3.22. The key characteristics of an LSTM network is
the ability to remove or add information, regulated by different gates. These gates
allows the model to control the flow of information used as input in the network
model.

Figure 3.22: Structure of the repeating module in an LSTM model

3.3.4 Model tuning with hyperparameter optimization
After conducting a thorough algorithm screening, i.e., identifying suitable and em-
ployable algorithms, it is vital to enhance the respective algorithms as much as
possible for the relevant problem. One commonly applied method for doing so is

17Conducted as a thesis in computer science, only available in german

38

3.3 ALGORITHM SELECTION

tuning the hyperparameters in the respective machine learning models. It is crucial
to understand that model parameters and hyperparameters are not the same. Hy-
perparameters are defined as the building blocks for the model architecture. Thus,
optimizing the hyperparameters of the respective models is considered an exhaus-
tive but necessary process to achieve greater predictability. The general idea behind
the tuning process is to instruct the machine learning model to explore a range of
possible values for a set of hyperparameters and ultimately identify and select the
structural foundation that yields the best score.

There exist multiple methods for hyperparameter tuning in machine learning prob-
lems. Jordan [40] recognizes three commonly applied methods, namely grid search,
random search, and bayesian optimization. The cross validation grid search-method
has been leveraged as the hyperparameter tuning technique for this thesis, which
allows for selecting the scoring method utilized the cross validation. The nega-
tive root mean squared error-scorer has been employed for this hyperparameter
optimization technique. This method is considered an extremely exhaustive ap-
proach, as it evaluates all possible combinations of the various hyperparameters it
is instructed to investigate. If for instance, the objective is to identify the best com-
bination of two different hyperparameters, each with four different possible values,
the approach trains the model on all 16 different combinations. Eventually, after
all combinations have been trained and evaluated, the grid search will output the
combination that performed best. This method is far from being considered the
best hyperparameter optimization technique. As pointed out by Johnson [41], the
grid search-method does not guarantee that it will identify the best solution, as
the problem of aliasing tends to occur.

A complete overview of the investigated hyperparameters for the different machine
learning algorithms is given in Table 3.4. The table also includes a short description
of the various hyperparameters and the explored search range. For documentation
on the implementation of the grid search method with cross-validation, we refer to
scikit-learn18.

Table 3.4: Overview of optimized hyperparameters in selected machine learning algo-
rithms

Model Hyperparameter Definition Search Range
Linear Ridge Regressor (LRR) Alpha Regularization strength to reduce [0.01, 0.05, 0.1, 0.5, 1, 2, 5]

the variance
Solver Computational method for fitting [’auto’, ’lsqr’, ’sag’, ’saga’]

the regression model
Random Forest Regressor (RFR) N-estimators Number of trees in the forest [20, 50, 100, 150, 200]

Max depth Max depth in the tree [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
Long Short-Term Memory (LSTM) Epochs Number of times the algorithm will [10, 25, 50, 75, 100]

work through the training dataset
Batch size Number of samples the network requires [8, 16, 32, 64, 128, 254]

before performing a weight update

18https://scikit-learn.org/stable/modules/generated/sklearn.model selection.GridSearchCV.html

39

3. METHODOLOGICAL APPROACH

3.4 Model evaluation method
To best assess the quality performance of any forecasting model, it is essential to
determine a benchmark performance level and define a set of metrics to evaluate
against benchmark results. The most common practice for assessing various ma-
chine learning models is quantifying the relative error and accuracy of the respective
model. This section of the paper will describe a variety of regularly employed fore-
casting methods that can be utilized as a benchmark model to compare the final
results. Additionally, we identify three statistical metrics for evaluating error and
accuracy levels for machine learning models.

3.4.1 Baseline model
The results from a baseline model are primarily utilized to produce a relative
understanding of other employed model’s performance. The last-value forecast-
ing technique, commonly referred to as the naive method or persistence model, is
perhaps the most frequently applied model to obtain benchmark results. This tech-
nique uses the last observation as a forecast for the next period, expressed by the
following equation:

ŷt = yt−1 (3.8)

In the above equation, ŷt represents the predicted value of yt at time t, while yt−1
is the real value of y at the previous time step i.e. t − 1. Because of the model’s
simplicity, quick implementation, and the fact that it requires no training, this
model provides a good baseline forecast for comparison. This technique can be
especially applicable in problems where the underlying assumption of a stationary
time series is questionable. In laymen’s terms, the time series indicates extreme
volatility that can be difficult to capture by more advanced methods.

Another regularly used forecasting method to obtain benchmark results is the aver-
aging forecasting-technique. To produce the predicted value ŷt at time t, it employs
the average value of all past observations, illustrated by the equation below.

ŷt =
t∑

τ=1

yτ−1

t
(3.9)

Hillier [42] highlight that this particular method is best suited for young processes
(i.e., not too many data points) and that the data should be relatively stable. In
other words, large datasets with significant volatility should avoid applying this
forecasting technique.

The moving-average forecasting-technique is quite similar to the abovementioned
averaging forecastinig-technique. However, this method does not employ the aver-
age value of all past observations; it only applies the past n observations to produce

40

3.4 MODEL EVALUATION METHOD

the predicted value ŷt at time t. The equation below illustrates how this technique
is applied in practice.

ŷt =
t∑

τ=t−n+1

yτ−1

t
(3.10)

The primary advantage of this method in comparison to the standard averaging
forecasting-technique is that the old observations, and perhaps irrelevant data, are
discarded. On the other hand, when predicting the next forecasting value, all
previous and included data have equal weight in determining the value.

The final method we describe for potential use to produce the baseline model is the
exponential smoothing forecasting-technique. This method defines a recursive rela-
tionship between current observation and current forecast, as compared with the
previously mentioned techniques that only utilize actual historical values directly
to determine the forecasted value. The following equation describes the recursive
relationship:

ŷt = αyt−1 + (1− α) · ŷt−1 (3.11)

In the above equation, α represents the smoothing constant while ŷt−1 is the pre-
dicted forecast value at time t − 1. This particular technique intends to use a
weighted average of previous observations, with more recent observations having a
higher weight in determining the value.

After exploring various potential baseline models, we have decided to employ a
persistence model for producing the benchmark results for the case investigated
in this thesis. This decision is primarily due to the persistence model’s level of
simplicity and quick implementation. Additionally, we recognize that with the
volatile nature of spot rates in the Capesize segment, a persistence model might
capture elements of the rapidly changing time series better than some of the more
sophisticated models employed in this study.

3.4.2 Statistical modeling metrics
Supervised machine learning algorithms are classified into two main types19, namely:

1. Regression: Used to predict a continuous variable

2. Classification: Used to predict a discrete variable

19https://www.mygreatlearning.com/blog/linear-regression-in-machine-
learning/#multiplelinearregression

41

3. METHODOLOGICAL APPROACH

Moreover, there are different statistical metrics developed and used in evaluating
the performance of regression and classification models. In previous sections, it
has been stipulated that the study of this thesis focuses on predicting the value of
a continuous variable. Consequently, the statistical metrics used in the evaluation
process of this thesis are metrics developed for regression models.

As discussed above, we have employed a combination of three error metrics for mea-
suring the accuracy of the various employed machine learning algorithms. There
exist multiple metrics for assessing the performance level of machine learning al-
gorithms on both magnitude and directional scales, but for evaluation purposes in
this thesis, we have only utilized statistical metrics to determine the magnitude ac-
curacy. The metrics used in this study are the Root Mean Squared Error (RMSE),
the Mean Absolute Error (MAE) and finally the Mean Absolute Percentage Error
(MAPE). The equations for calculating the different error metrics are presented in
Equation (3.12), Equation (3.13) and Equation (3.14) respectively. In the functions
below, ŷt is the predicted value of yt at time t for a set with a sample size of n.

RMSE =

√√√√ 1
n

n∑
t=1

(yt − ŷt)2 (3.12)

MAE = 1
n

n∑
t=1
|yt − ŷt| (3.13)

MAPE =
(

1
n

n∑
t=1

|yt − ŷt|
|yt|

)
· 100% (3.14)

The RMSE is widely considered the most popular form of metric in evaluating
the predictive performance of machine learning algorithms in regression problems.
Performance measurement in machine learning is predominantly efficient when the
input data is considerably large. This however is not the case for the problem
investigated in this thesis.

42

Chapter 4
Computational Study

This study utilizes two primary data sources to provide input data and insight into
the Capesize vessel size of the dry bulk shipping market. These data are sourced
from (1) Clarksons Shipping Intelligence Network (SIN)1 and (2) the NCA AIS
database. Additional insight into influencing elements and economic determinants
in dry bulk shipping and a greater understanding of the AIS database has been
obtained after conducting a thorough literature review from previous studies, which
were described in Chapter 2. Discussions with research analysts and shipowners
have provided an added understanding of the shipping industry, in general, as well
as significant elements of the Capesize vessel segment.

This chapter will present the obtained raw data from the abovementioned sources
and the data processing methods employed in this study. Data preparation, pro-
cessing, and manipulation are critical elements for this study to provide datasets of
high quality to utilize as input in the employed prediction models. The last section
of this chapter will display the produced results from the benchmark and machine
learning models.

4.1 The bulk shipping case
As outlined initially, the central objective of this thesis has been to investigate the
applicability of sophisticated machine learning algorithms to predict short-term
freight rate movements on the Capesize route from Tubarao to Qingdao (C3). The
choice of this particular shipping segment as well as route alternative has been
primarily as a consequence of the following considerations:

1. Market efficiency

1https://sin.clarksons.net/

43

4. COMPUTATIONAL STUDY

2. Manageable data quantity and availability

3. Study limitations

It was necessary to approach the thesis objective through the use of available
data originating from an efficient marketplace. Whilst the global shipping market
is inarguably efficient over the long-run, this is of limited interest in predicting
short-term freight rate movements. Conversely, as various studies have sought
to show, market efficiency is not necessarily present in smaller shipping segments
or niche operations. Generally however, market efficiency is strong in the volume
segments such as global tanker or dry bulk operations, both as a consequence of the
many operators located worldwide, but also in consideration of the spill-over effect
observed between the different sub-segments at times of significant freight shifts.
It follows that our thesis objective required a volume segment to achieve apparent
market efficiency. However, given the very large number of vessels operating in both
the global tanker and dry bulk segments, further reduction criteria was necessary
in order to reduce the quantity and scope of study.

From the preliminary work of the specialization project conducted in the fall of
2020, we identified the dry bulk market in preference to the tanker operations, as
a segment to perform a behavioral study. This decision was made with a view to
the bulk markets considerable size, potential and applicability.

4.1.1 Commodity types
In aggregate, dry bulk shipping accounts for the majority of global shipping volume.
However, commodity characteristics are determinants in choice of vessel capacities.
Frequently specific commodities require vessel specialization and volume optimiza-
tion. Consequently, certain bulk vessels are dedicated to transporting iron ore,
coal or grain, whilst other vessels may transport a variety of commodities, such as
steel, cement, bauxite or minerals2. Most commonly commodities are differentiated
between minor and major.

1. Major Dry bulk commodities

(a) Iron Ore

(b) Coal

(c) Grain

2. Minor Dry bulk commodities

(a) Fertilisers

(b) Steel

(c) Cement

(d) Bauxite
2https://www.eurosender.com/blog/en/shipping-dry-bulk-commodities/

44

4.1 THE BULK SHIPPING CASE

(e) Miscellaneous minerals

There are substantially fewer operators handling major dry bulk commodities. Op-
erations in this segment are more regular, easier to handle with fewer charterers
and accessible ports for loading and discharge. Capital costs however, are substan-
tially higher than the smaller segments and the fleet consequently numbers fewer
vessels.

4.1.2 Classification of vessel types
The different shipping segments have classified ships employed into a set of vessel
subtypes. Table 4.1 below lists the commonly used size classification for ships in
the dry bulk segment; the table is extracted from the United Nations Conference
on Trade and Development (UNCTAD) Review of Maritime Transport 20203.

Table 4.1: Vessel size groups according to commonly used shipping terminology

Dry bulk and ore carriers Vessel Capacity
Capesize bulk carrier 100,000 dwt and above
Panamax bulk carrier 65,000 - 99,999 dwt
Handymax bulk carrier 40,000 - 64,999 dwt
Handysize bulk carrier 10,000 - 39,999 dwt

However, there exist many different vessel size groupings depending on the source.
Figure 4.1 below illustrates an example of this. We note that all the classifications
from Table 4.1 are included with slightly different vessel capacity ranges. This
figure also introduces two additional classes for dry bulk carriers: Very Large Ore
Carriers (VLOC) and Ultra Large Ore Carriers (ULOC).

Figure 4.1: Vessel Size Groups (in deadweight tons)4

3https://unctad.org/system/files/official-document/rmt2020 en.pdf
4https://transportgeography.org/contents/chapter5/maritime-transportation/vessel-size-

groups/

45

4. COMPUTATIONAL STUDY

4.1.3 Route segments
A complete overview of all dry bulk shipping routes are presented in Table 4.2. For
the purpose of this thesis and in order to eliminate as much unapplicable dry bulk
tonnage as possible, we have the chosen the C3 route from Tubarao to Qingdao.
This is handled strictly by Capesize vessels or larger, and is considered a benchmark
trade by commercial operators, with reference rates quoted weekly.

4.1.4 One-step-ahead forecasting
A forecast horizon may apply to anything between a day to several years ahead.
However, considering the general volatility observed in the Capesize segment as
a whole, and in particular the rate movements on the C3 route (as depicted in
Figure 4.2), there is limited interest or practical application for the prediction
of very short (i.e. daily) forecasting. Moreover, longer forecasting horizons will
require substantially longer time-series to generate a satisfactory number of data
points. Consequently, we have identified a forecasting horizon of one week as the
most attractive and applicable to our study.

Figure 4.2: Spot rate C3 route

46

4.1 THE BULK SHIPPING CASE

Table 4.2: Overview of dry bulk shipping routes5

Notation Description Feature
Capesize

C2 Tubarao to Rotterdam Yes
C3 Tubarao to Qingdao Yes
C5 West Australia to Qingdao Yes
C7 Bolivar to Rotterdam No
C8 14 Gibraltar/Hamburg transatlantic round voyage No
C9 14 Continent/Mediterranean trip China-Japan No
C10 14 China-Japan transpacific round voyage No
C14 China-Brazil round voyage Yes
C16 Revised backhaul No
C17 Saldanha Bay to Qingdao Yes

Panamax
P1A 82 Panamax Skaw-Giv transatlantic round voyage No
P2A 82 Panamax Skaw-Gib trip to Taiwan-Japan No
P3A 82 Panamax Japan-S. Korea Transpacific round voyage No
P4 82 Panamax Japan-S. Korea trip to Skaw Passero No
P5 82 Panamax South China, Indonesian round voyage (BEP Asia) No
P6 82 Panamax Singapore round voyage via Atlantic No
P7 Panamax USG to Qingdao grain 66,000 MT No
P8 Panamax Santos to Qingdao grain 66,000 MT No
P1A 03 Panamax 74 Skaw-Gib transatlantic round voyage 74,000 MT No
P2A 03 Panamax 74 Skaw-Gib trip to Taiwan-Japan 74,000 MT No
P3A 03 Panamax 74 Japan-S. Korea Transpacific round voyage 74,000 MT No

Supramax
S1B 58 Canakkale trip via Med or Bl Sea to China-South Korea No
S1C 58 US Gulf trip to China-south Japan No
S2 58 North China one Australian or Pacific round voyage No
S3 58 North China trip to West Africa No
S4A 58 US Gulf trip to Skaw-Passero No
S4B 58 Skaw-Passero trip to US Gulf No
S5 58 West Africa trip via east coast South America to north China No
S8 58 South China trip via Indonesia to east coast India No
S9 58 West Africa trip via east coast South America to Skaw-Passero No
S10 58 South China trip via Indonesia to south China No

Handysize
HS1 38 Skaw-Passero trip to Rio de Janeiro-Recalada No
HS2 38 Skaw-Passero trip to Boston-Galveston No
HS3 38 Rio de Janeiro-Recalada trip to Skaw-Passero No
HS4 38 US Gulf trip via US Gulf or north coast South America to Skaw-Passero No
HS5 38 South East Asia trip to Singapore-Japan No
HS6 38 North China-South Korea-Japan trip to North China-South Korea-Japan No
HS7 38 North China-South Korea-Japan trip to south east Asia No

5https://www.balticexchange.com/en/data-services/market-information0/dry-services.html

47

4. COMPUTATIONAL STUDY

4.2 Description of raw data
For the purpose of this study, we have employed a combination of data from al-
ternative sources. We have retrieved market-related data from the Clarksons SIN
database, such as historical spot-, trip- and time-charter rates, in addition to rele-
vant information on the Capesize Bulker world fleet. Static and dynamic voyage-
related data from the AIS database have been provided by the NCA. However, due
to time limitations, computer processing and data accessibility constraints, only a
part of the desired data has been retrieved for further processing and assembly.

4.2.1 Capesize Bulker Data
The data extracted from the Clarksons SIN database are twofold; (1) Vessel type
classification data and (2) time-series data of historical spot-, trip- and time-charter
rates. The following two subsections will provide a more detailed description of the
datasets.

4.2.1.1 Vessel type classification data

The original Capesize vessels database extracted from the SIN platform contains all
registered Capesize vessels in the Clarksons database. After reviewing the database,
we conclude that it includes all dry bulk vessels with a capacity range from approx-
imately 120,000 dwt up to 400,000 dwt. We understand that the original database
contains relevant information for vessels not only classified as Capesize but also
includes valuable information on the VLOC and ULOC fleets. After performing
specific data processing techniques on the database, we have divided it into three
separate databases containing only the necessary information for each vessel cate-
gory, i.e., Capesize, VLOC, and ULOC. Table 4.3 presents and compares all vessel
databases, both the original and the extracted and processed versions. It is im-
portant to note that the processed version of the Capesize database (as provided
in Table 4.3 below) only comprises information on the vessels included in the AIS
dataset.

Table 4.3: Vessel type and size indication, with corresponding aggregated data from
Clarksons Research Services database6

Vessel Type Vessel Capacity [dwt] No. of Vessels Total Fleet Capacity [dwt]
Clarksons SIN Original Database

All 120,397 - 403,919 1,717 349,476,969
Capesize Database

Capesize 120,397 - 216,656 1,466 271,720,962
Very Large Ore Carrier Database

Very Large Ore Carrier 215,790 - 299,688 132 34,441,498
Ultra Large Ore Carrier Database

Ultra Large Ore Carrier 300,000 - 403,919 117 42,964,353
Capesize Database - Processed

Capesize 120,397 - 216,656 1,301 240,407,734

48

4.2 DESCRIPTION OF RAW DATA

4.2.1.2 Historical time-series data

In addition to the vessel database, we have also obtained extensive time-series data
of historical spot-, trip- and time-charter rates from the Clarksons SIN database.
The original datasets were very comprehensive, covering a multitude of rates and
index values at a weekly frequency. Some of the information dates back to 1999,
while more data becomes available around 2009, or even as late as 2014. Due to the
quantity of the readily available historical time-series data, a series of processing
techniques and methods have been employed to understand and apply the data as
input variables to the machine learning model.

Table 4.4: Correlation matrix for time charter and trip charter rates

Bol/Rot Aus/Qin Tub/Qin Tub/Rot Cont-FE Tr.Atl R/V FE-Cont Tr.Pac R/V Trip Rates
$/Tonne $/Tonne $/Tonne $/Tonne $/Day $/Day $/Day $/Day $/Day

Bol/Rot 1.000000
Aus/Qin 0.950016 1.000000
Tub/Qin 0.954561 0.969767 1.000000
Tub/Rot 0.988988 0.950287 0.953138 1.000000
Cont-FE 0.933902 0.918133 0.910579 0.921330 1.000000
Tr.Atl R/V 0.909627 0.850740 0.822159 0.901664 0.954902 1.000000
FE-Cont 0.747104 0.706187 0.658977 0.770724 0.836398 0.908444 1.000000
Tr.Pac R/V 0.859625 0.889442 0.830129 0.864048 0.941887 0.942015 0.899288 1.000000
Trip Rates 0.903680 0.881384 0.847998 0.902822 0.974178 0.985676 0.928376 0.977158 1.000000

Firstly, we observe that the historical rates are not provided on a universal scale.
For instance, various trip rates are registered and stored as dollars per day, while
other rates are presented in dollars per tonne. Examples of different rates and units
of measurement are shown in Table 4.4 above. The table also illustrates the statis-
tical correlation between various rates. After investigating the correlation matrix,
we find that the most excellent correlation is between the Bol/Rot and Tub/Rot
rates. Continuously meanwhile, the least similarity is between the Tub/Qin and
FE-Cont, with correlation factors of 0.988988 and 0.658977, respectively.

In Figure 4.3 we plot two different rates, with different units of measurement against
each other, to visualize the comparison between them. The figures indicate the
existence of somewhat similar trend developments. However, there are also periods
where the relative differences vary significantly.

Table 4.5 provides descriptive statistics for the previously mentioned correlation
matrix. It is apparent after assessing the presented results that the average cor-
relation between the different rates is significant. Indeed, except for the least two
correlating rates, they all indicate a correlation factor of 0.7 or higher.

6These values are extracted based on vessel capacity for the respective vessel type, from a
database on Capesize vessels provided by Clarksons Research Services Limited 2021

49

4. COMPUTATIONAL STUDY

Figure 4.3: Historical plot of two different spot rates

Table 4.5: Descriptive statistics of correlation matrix in Table 4.4

Bol/Rot Aus/Qin Tub/Qin Tub/Rot Cont-FE Tr.Atl R/V FE-Cont Tr.Pac R/V Trip Rates
Count 9.000000 9.000000 9.000000 9.000000 9.000000 9.000000 9.000000 9.000000 9.000000
Mean 0.916389 0.901773 0.883034 0.917000 0.932368 0.919470 0.828388 0.911510 0.933475
Std 0.916389 0.087068 0.106023 0.069947 0.046006 0.058482 0.114299 0.057225 0.053137
Min 0.747104 0.706187 0.658977 0.770724 0.836398 0.822159 0.658977 0.830129 0.847998
25% 0.903680 0.881384 0.830129 0.901664 0.918133 0.901664 0.747104 0.864048 0.902822
50% 0.933902 0.918133 0.910579 0.921330 0.933902 0.909627 0.836398 0.899288 0.928376
75% 0.954561 0.950287 0.954561 0.953138 0.954902 0.954902 0.908444 0.942015 0.977158
Max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

4.2.2 AIS Data
Automatic Identification System (AIS) was initially intended to identify hazardous
maritime instances and thereby increase the safety of ships and the environment7.
The system has since been employed as a supplementary tool with marine radar
to prevent collisions at sea. AIS equipment, is recognized as an automatic tracking
method transmitting real-time information over the Very High Frequency (VHF)
system. According to Skauen et al. [43], AIS messages reach significantly further
when emitted vertically by comparison to horizontally. The launching of AIS-
enabled satellites allowed for a more comprehensive data collection, enabling more
insightful research areas.

The UN’s International Maritime Organisation (IMO) has established international
requirements as to which vessel types and classifications necessitate functional AIS

7https://www.kystverket.no/en/EN Maritime-Services/Reporting-and-Information-
Services/ais/Automatic-Identification-System-AIS/

50

4.2 DESCRIPTION OF RAW DATA

equipment installed8. Therefore, a significant proportion of the world shipping fleet
has installed AIS transmitters. AIS data can be registered or transferred either by
exchange with nearby vessels, or through AIS base stations or satellites. There are
three primary categories of data information stored in the AIS database: static,
dynamic, and voyage-related. For the research conducted in this study, we employ
both static and dynamic AIS data to engineer useful features so as to gain insight
into the Capesize Bulk segment.

Figure 4.4: Overview of AIS applications in maritime research

In more recent years, as highlighted by Yang et al. [10], study and research employ-
ing AIS data for more advanced applications have proliferated as a direct result
of the rapidly increasing and readily available high-quality data. As part of their
study, they divide recorded AIS applications into three development stages, as il-
lustrated by Figure 4.4. In addition, they identify four significant methodology
categories; (1) data processing and mining, (2) index measurement, (3) causality
analysis, and (4) operational research. Their research combines AIS data mining
and trade analysis, applying it to both basic applications and advanced applications.

4.2.2.1 Message content and frequency

AIS data consists of a multitude of data types9. The information is either constant
or updated continuously and done either manually or automatically. Table 4.6
presents a detailed overview and description of commonly employed AIS data types.
The reader will find a more comprehensive summary of all data types included in
the AIS database in Appendix A.

8https://www.kystverket.no/en/EN Maritime-Services/Reporting-and-Information-
Services/ais/AIS-Requirements/

9Data storage format, containing either a specific type or range of values, with examples: inte-
gers, strings, arrays, timestamps, and boolean values. https://techterms.com/definition/datatype

51

4. COMPUTATIONAL STUDY

Table 4.6: AIS data types

Information type Description
MMSI Vessel ID - Maritime Mobile Service Identity
Unixtime Number of seconds elapsed, since 1 January 1970
Vessel dimensions Length and breadth - measured in meters
Draught Value of reported draught - measured in meters
IMO number Additional ID number
Voyage origin Origin of current voyage
Voyage destination Destination of current voyage
ETA Estimated time of arrival, current voyage
Vessel type Vessel type category
Nav-status Vessel navigational status, indicating ship activity

The frequency of the reporting intervals varies according to operational status. For
all static and voyage-related data types, the reporting intervals are every 6 minutes
or when data has been amended or requested10. For dynamic data, the reporting
intervals are adjusted according to different operating conditions, this type of data
is reported with substantially higher frequency. Depending on movement, Table 4.7
describes the different intervals for the recording of dynamic data.

Table 4.7: Reporting intervals of dynamic AIS data

Operational condition Reporting interval
Not changing course Changing course

At anchor or moored and moving less than 3 knots 3 min 3 min
At anchor or moored and moving faster than 3 knots 10 sec 10 sec
0 to 14 knots 10 sec 3 1/3 sec
14 to 23 knots 6 sec 2 sec
Over 23 knots 2 sec 2 sec

4.2.2.2 Data extraction

Co-advisor for this thesis, Bjørnar Smestad, has primarily conducted the process of
extracting the necessary data from the AIS database. In Appendix E.3 the reader
will find a draft script identifying the desired data requested from the AIS SQL
database by the author. With limited experience with SQL databases, compiling a
draft script to retrieve the necessary data was done to gain a better understanding
of what data was available and therefore to determine what type of data would be
gainfully employed in continuation.

Considering that a significant portion of the world shipping fleet is required to op-
erate with functioning AIS equipment, it is understandable that the AIS database
contains an enormous amount of data. So as to avoid excess outputs, the process
of identifying only the necessary data to extract from the AIS database is funda-
mental. The AIS database contains data for a range of different ship types, with
a total of 99 different vessel categories registered11. The first digit however, pro-

10https://arundaleais.github.io/docs/ais/ais reporting rates.html
11https://api.vtexplorer.com/docs/ref-aistypes.html

52

4.2 DESCRIPTION OF RAW DATA

vides an indication of the vessel type, as presented in Table 4.8. Since we are only
concerned with the world Capesize fleet, we have focused on vessel type 7, namely
cargo vessels.

Table 4.8: AIS ship types

First digit Vessel type
1 Reserved for future use
2 Wing in ground (WIG)
3 Other vessels
4 High speed craft (HSC)
5 Special craft
6 Passenger ships
7 Cargo vessels
8 Tankers
9 Other ship types

4.2.2.3 Data assembly and preprocsessing

The original data extracted from the AIS database contained various excess infor-
mation that required substantial processing. The structure of the retrieved raw
data is presented in Table 4.9. Certain elements are either too difficult to interpret
or do not serve any apparent use for further examination. The unixtime measure-
ment for instance, is a commonly used system for describing a point in time, with
the value indicating the number of lapsed seconds since the Unix epoch12. How-
ever, since this value is not easy to interpret independently, we convert this data
into readable dates. Moreover, data components like heading, cog and rot will not
be used for further exploration and are therefore removed from the final dataset.

Table 4.9: Structure of the original data retrieved from the AIS database

MMSI Unixtime Latitude Longitude Heading SOG Nav-status COG ROT
374705000 1557246594 9.91268333333333 -14.8193666666667 3 13.10 0 3.0 0.0
372634000 1553030915 -31.1811166666667 43.6466333333333 64 9.39 0 60.0 0.0
566358000 1571491226 -17.7887616666667 116.705521666667 171 13.19 0 171.5 0.0

In Table 4.10 we present the structure of the post-processed AIS data. We im-
mediately observe that this dataset is significantly more readable and contains no
excess data, allowing accurate and efficient input to the machine learning models
employed.

Table 4.10: Structure of the post-processed AIS data

MMSI Date Year Week Latitude Longitude SOG Nav-status
210615000 2019-05-27 18:02:16 2019 22 1.1262 60.30366 12.0 0
256848000 2019-06-20 19:48:52 2019 25 -23.0520 152.80703 14.0 0
247283400 2019-11-11 06:53:38 2019 46 -17.6322 62.40476 4.59 3

12https://www.unixtimestamp.com/

53

4. COMPUTATIONAL STUDY

After conducting a short investigation into the registered vessel velocities, we found
a series of abnormal speed recordings. We therefore determined to drop all record-
ings with anomalous speed records (>25 knots) from the dataset. Figure 4.5 illus-
trates a histogram plot of all filed vessel velocities.

Figure 4.5: Velocity histogram of worldwide AIS recordings (>25 knots)

Table 4.11 presents an overview of the data file pre-, peri- and post-processing. It
shows a significant amount of excessive data removed from the original file, as we
managed to reduce the total data size by 27.69%. Importantly, these numbers are
based solely on the data retrieved from 01.01.2019 to 31.12.2019. Due to computer-
processing limitations and memory capacities, it was necessary to split the final
dataset into four further parts.

Table 4.11: AIS data file comparison pre-, peri- and post-processing

No. of rows No. of columns Size
Raw AIS data-file 62,914,023 9 5.49 GB
AIS data processed once 62,914,023 7 4.88 GB
AIS data processed twice 51,264,153 7 3.97 GB
Processed data - Split 1 12,868,382 7 0.99 GB
Processed data - Split 2 12,766,109 7 0.98 GB
Processed data - Split 3 12,835,156 7 0.99 GB
Processed data - Split 4 12,794,506 7 0.99 GB

After conducting a thorough investigation of the data and performing the necessary
processing methods to avoid excess information, we concentrated on the remaining
material. In Figure 3.1 we depict a scatter plot of all recorded vessel locations for
the year 2019. Other than the fact that we can confirm that we have retrieved AIS
data from the entire world, there is not much insight to gain from examining this
illustration. Figure 3.2 on the other hand, provides a better understanding of the
data at large. The figure depicts a density map in a scatter format, illustrating the
main routes traversed by the world fleet and central port locations.

54

4.3 RESULTS

4.3 Results
This section of the chapter will display the findings from the examination con-
ducted as part of this thesis. Initially, the results from the benchmark model, i.e.,
the persistence model described in Section 3.4.1, will be presented. These results
will provide the necessary means for evaluating the performance of the various
applied machine learning algorithms in this study. In addition, we will present
the findings from the different feature selection processes and the results from the
hyperparameter tuning approach. Lastly, we show all produced forecasts.

4.3.1 Benchmark model
To produce a benchmark model for this thesis, we employed the persistence model
technique. As previously presented, this model is used because of its level of sim-
plicity and fast implementation. The results of the persistence model are depicted
in Figure 4.6.

Figure 4.6: Persistence model forecasting results

4.3.2 Feature selection
In Section 3.2.3, we stated that this thesis will use three different sets of feature
combinations as input to the different machine learning models. We identified these
feature combinations as: all features, top features, and selected features. The all
features combination is highly self-explanatory; it utilizes the complete set of all
constructed features as part of this thesis. In contrast, the top features composi-
tion only utilizes the top 20 established features. These features are presented in
Table 4.12. The table also includes the list of the selected features combination.
Features in the table without any asterisk annotation are featured in both sets.
Elements marked with one or two asterisk symbols however, indicate that they
are only employed in the top or selected feature sets, respectively. The feature
price(t), i.e., the dependent variable, was originally included in both sets, but is

55

4. COMPUTATIONAL STUDY

removed from the different feature combination training sets. Consequently, the
employed training sets for the top and selected feature combinations contains only
19 features. The top feature set consists of 47.4% market-derived features, while
the remaining 52.6% features are derived from AIS. By comparison, the selected
feature combination is built up from 68.4% market-derived features and 31.6%
AIS-derived features.

Table 4.12: Composition of different feature combination sets

Top 20 features Selected 20 features
avg rate(t) avg rate(t)
BCI C17(t) BCI C17(t)
avg rate(t-1)* Bdry(t)**
tubarao cap(t)* BCI C2(t-1)**
Med pct(t)* BCI C5(t)**
tubarao(t)* BCI C14(t-1)**
BCI C14(t) BCI C14(t)
price(t-1) price(t-1)
nouadhibou cap(t)* BCI C17(t-1)**
Bdry(t-1) Bdry(t-1)
indi pct(t-1)* portcartier(t-1)**
nouadhibou(t)* atlantic(t-1)**
portcartier cap(t)* Med(t-1)**
BCI(t-1)* atlantic pct(t)**
BCI C2(t) BCI C2(t)
portcartier(t)* CP pct(t-1)**
BCI(t) BCI(t)
Med cap(t)* Med pct(t-1)**
EstP pct(t-1)* price(t+1)**

4.3.3 Hyperparameter optimization
Earlier, in Section 3.3.4, we describe the employed method used in this thesis to
tune machine learning algorithms. Table 3.4 provides an overview of the different
investigated hyperparameters and the respective search ranges. In Table 4.13, we
have presented the optimal combination of the investigated hyperparameters for
the various machine learning algorithms and corresponding feature combinations.

Table 4.13: Optimal hyperparameter combinations

Model Feature Set Hyperparameter 1 Hyperparameter 2
Linear Ridge Regressor All Alpha = 0.01 Solver = auto

Top Alpha = 0.01 Solver = saga
Selected Alpha = 0.01 Solver = saga

Random Forest Regressor All Max depth = 14 N estimators = 50
Top Max depth = 9 N estimators = 20
Selected Max depth = 7 N estimators = 50

Long Short-Term Memory All Batch size = 128 Epochs = 50
Top Batch size = 64 Epochs = 50
Selected Batch size = 8 Epochs = 75

56

4.3 RESULTS

Moreover, below we have included visual illustrations of the grid search results for
the different models used in this thesis. Figure 4.7a through Figure 4.7f, presents
the mean and standard deviation scores from conducting a grid search to explore
the hyperparameters of the linear ridge regression model. The figures also denote
what feature combination set has been employed.

Similarly, all subfigures of Figure 4.8 visually illustrate the results of the grid search
examination of the random forest regression model. The caption of each subfigure
indicates both the score type, i.e., mean or standard deviation, and the respectively
feature set employed.

Figure 4.9a through Figure 4.9f present the findings from the grid search investi-
gation of the final algorithm utilized in this thesis, i.e., the long short-term model.
Like our previously explained figures, the LRR and RFR models respectively, these
figures also indicate which feature combination has been employed.

From the figures included in this subsection, we can extract the following:

1. The mean scores of the grid search for the linear ridge regression model
is approximately in the domain [-0.2, -0.06]. The corresponding standard
deviation scores are primarily in the range [0.02, 0.07].

2. The mean scores of the grid search for the random forest regressor model is
found in the [-0.18, -0.1275] region. With the corresponding standard devia-
tion scores observed in the domain [0.04, 0.075].

3. Lastly, the mean scores of the grid search for the long short-term memory
model appears in the domain [-0.32, -0.075]. The corresponding standard
deviation scores are found in the range [0.04, 0.13].

57

4. COMPUTATIONAL STUDY

(a) Mean test scores: all features (b) Std. test scores: all features

(c) Mean test scores: top features (d) Std. test scores: top features

(e) Mean test scores: selected features (f) Std. test scores: selected features

Figure 4.7: Grid search scores for linear ridge regression model

58

4.3 RESULTS

(a) Mean test scores: all features (b) Std. test scores: all features

(c) Mean test scores: top features (d) Std. test scores: top features

(e) Mean test scores: selected features (f) Std. test scores: selected features

Figure 4.8: Grid search scores for random forest regression model

59

4. COMPUTATIONAL STUDY

(a) Mean test scores: all features (b) Std. test scores: all features

(c) Mean test scores: top features (d) Std. test scores: top features

(e) Mean test scores: selected features (f) Std. test scores: selected features

Figure 4.9: Grid search scores for long short-term memory model

60

4.3 RESULTS

4.3.4 Model training
Having obtained the optimal combination of hyperparameters for the models and
respective feature sets employed in this thesis, the process of training the models
can be initiated. In Table 4.14, we have presented the error estimates for the various
models on the training dataset, while employing scaled data input vales. The
results provided in the table are produced while employing the identified optimal
hyperparameter combinations as given by Table 4.13.

Considering that all statistical metrics used for model evaluation in this thesis
are error estimates, the objective is to minimize the error values, i.e. the lower
the better. Hence, we immediately observe that the LRR model, when using all
features, outperforms all other model and feature set combinations investigated
while training the model. These results are highlighted in bold font in the table.
Lastly, we observe that the best results in the table are significantly low, and might
indicate the existence of overfitting.

Table 4.14: Performance metrics on training set for all models, with the employed data
scaled in domain [0,1]

Model Feature Set RMSE MAE MAPE
Linear Ridge Regressor All 0.00105 0.00083 Inf

Top 0.04305 0.02989 Inf
Selected 0.02412 0.01752 Inf

Random Forest Regressor All 0.03428 0.02590 Inf
Top 0.04008 0.02540 Inf
Selected 0.03044 0.02176 Inf

Long Short-Term Memory All 0.18085 0.13183 Inf
Top 0.19750 0.14350 Inf
Selected 0.03559 0.03288 Inf

61

4. COMPUTATIONAL STUDY

4.3.5 Model forecasting
We have produced the forecasting results by applying the optimal hyperparameter
combinations for the different machine learning models on the test set. Figure 4.10a
through Figure 4.10c illustrate the forecasting results for the linear ridge regression
model. The results from the random forest regression model are presented in the
subplots of figure Figure 4.11. Finally, Figure 4.12a through Figure 4.12c display
the results formed by the long short-term model.

In addition, we have presented an overview of the error metrics used in this thesis
for the corresponding model and feature combination in Table 4.15 and Table 4.16.
While both tables demonstrate the performance metrics for the different forecasting
results, Table 4.15 presents the results while employing scaled values, purposely
included to compare with the findings given in Table 4.14. In Table 4.16 on the
other hand, the performance metrics are calculated with the inverse scaled values,
i.e. the real forecasted estimates, for comparison with the persistence model.

Table 4.15: Performance metrics on test set for all models, with the employed data
scaled in the domain [0,1]

Model Feature Set RMSE MAE MAPE
Linear Ridge Regressor All 0.14608 0.12550 1.52896

Top 0.09308 0.07712 0.70141
Selected 0.08932 0.06023 0.35733

Random Forest Regressor All 0.08441 0.06633 1.07919
Top 0.07169 0.05499 0.75042
Selected 0.08496 0.06328 0.77296

Long Short-Term Memory All 0.27967 0.21744 4.96886
Top 0.25515 0.22622 4.71898
Selected 0.04195 0.03465 0.30806

62

4.3 RESULTS

We can conclude the following from the results of Table 4.16:

1. All feature combinations of the linear ridge regression model outperform the
benchmark model.

2. All feature combinations of the random forest regression model outperform
the benchmark model.

3. All feature combinations of the long short-term memory model outperform
the benchmark model, with respect to the RMSE performance metrics.

4. The persistence model outperform the LSTM + top features combination,
with respect to MAE and MAPE performance levels.

5. The long short-term memory model with the selected features combination
produces the best forecasting according to all performance metrics employed
in this study.

6. The RFR model produce the lowest mean RMSE values

Table 4.16: Performance metrics on forecast results for all models

Model Feature Set RMSE MAE MAPE RMSE*
Persistence Model N/A 1.56025 1.25699 6.16010 1.56025
Linear Ridge Regressor All 0.88964 0.76430 3.78948 0.66501

Top 0.56611 0.46916 2.33206
Selected 0.53928 0.36498 1.83010

Random Forest Regressor All 0.46571 0.37224 1.79907 0.46942
Top 0.44551 0.33029 1.61718
Selected 0.49704 0.33850 1.60570

Long Short-Term Memory All 1.05658 0.81617 3.94328 0.95530
Top 1.55385 1.37769 6.74109
Selected 0.25548 0.21099 1.04014

Note: RMSE* indicates the mean RMSE score for the different models

63

4. COMPUTATIONAL STUDY

(a) All features

(b) Top features

(c) Selected features

Figure 4.10: Linear ridge regression model forecast for different feature subsets

64

4.3 RESULTS

(a) All features

(b) Top features

(c) Selected features

Figure 4.11: Random forest regression model forecast for different feature subsets

65

4. COMPUTATIONAL STUDY

(a) All features

(b) Top features

(c) Selected features

Figure 4.12: Long short-term memory model forecast for different feature subsets

66

4.3 RESULTS

4.3.6 Train vs test performance
In previous Section 4.3.4, we present the findings (Table 4.14) of the performance
metrics for the various employed machine learning models with corresponding fea-
ture set combination on the training set alone. While in Section 4.3.5, the perfor-
mance metrics on the test set are given (Table 4.15). In Figure 4.13, Figure 4.14,
and Figure 4.15, these results are visually illustrated, to provide a better under-
standing of the RMSE performance progression for the different model and feature
combinations.

Figure 4.13: RMSE performance measurements utilizing all features

67

4. COMPUTATIONAL STUDY

Figure 4.14: RMSE performance measurements utilizing top features

68

4.3 RESULTS

Figure 4.15: RMSE performance measurements utilizing selected features

69

Chapter 5
Discussion

This chapter will provide a discourse on the forecasting results produced and the
described approach employed to address the objective of this thesis. The discussion
of the employed method will focus on the following: the adopted hyperparameter
tuning approach, the feature selection processes used, and the feature construc-
tion practice. Finally, we address the topic of encountered limitations as well as
considerations for future research.

5.1 Evaluation of forecasting results
Despite limited data available from the NCA AIS database, this thesis has managed
to produce interesting forecasting results of the short-term freight rate movements
on the C3 Capesize route from Tubarao to Qingdao, using AIS- and market-derived
information. The employed machine learning models have managed to compile
results in accordance with the intended purpose of this study, as illustrated by
Figure 4.10a through Figure 4.12c.

As presented in Table 4.14, we have found performance measurements for the re-
spective models on the training dataset. Although these measurements do not indi-
cate the predictiveness in the different models, they can help deduce whether or not
a model is overfitted, i.e. if the model learns too much and therefore becomes un-
reliable. We have observed that a selection of the model- and feature-combinations
demonstrate high-performance levels (RMSE < 0.1) with the following: all LRR
combinations, all RFR combinations, and the LSTM model with the selected fea-
ture combination. Comparing these performance levels with the computed mea-
surements for the corresponding model- and feature-combinations on the test set
presented in Table 4.15, indicates the existence of overfitting. In Figure 4.13, Fig-
ure 4.14, and Figure 4.15 we have visualized the RMSE performance levels for the
different models and corresponding feature sets, for both training and test periods.

71

5. DISCUSSION

We can conclude a case of overfitting especially in Figure 4.13 for the linear ridge
regression model. The figure correctly demonstrates the RMSE performance scores
for both training and testing. However, one can clearly observe that the RMSE is
relatively non-existent for the training set, whilst for the test set the RMSE values
are substantially larger. This collaborates well with the results in Table 4.14 and
Table 4.15. In addition, we also identified the existence of minor overfitting cases
in other model and feature combinations, namely: LRR + selected features, RFR
+ all features, and RFR + selected features. Consequently, of all tested algorithms
only the LSTM model does not exhibit any case of overfitting.

Applying the models to the dataset, we investigated the predictiveness for compar-
ison with results produced by the benchmark model, i.e. the persistence model.
After examining the results presented in Table 4.16, we have observed that all
employed machine learning models and feature combinations outperform the per-
sistence model under evaluation against the RMSE performance metric. However,
the table also implies that the persistence model manage to outperform only the
LSTM model with top features combination when compared to the MAE and
MAPE performance measurements. Furthermore, we recognize that the LSTM +
selected features combination delivers the highest performing forecasting results.
Interestingly, the remaining two LSTM combinations produce significantly worse
forecasting estimates. Careful examination of Table 4.16 reveals that the LSTM
model produced the most varying performance estimates by comparison to the LRR
and RFR models. Indeed, the RFR model is generally recognized for producing
the least fluctuating error measurements, and achieves in addition the lowest mean
RMSE score for all experimented feature combinations. Lastly, it is challenging to
identify any recognizable pattern when inspecting the performance levels for the
different feature sets. For instance, the results from the LRR model show that mov-
ing from all features to top features and subsequently selected features, yields more
accurate prediction estimates. In the case for the RFR model however, one can
observe that the selected features combination yields the least accurate forecasting
outputs.

In consideration of the applicability of machine learning algorithms in predicting
short-term freight rate movements on the C3 route in the Capesize bulk segment,
all selected models investigated in this thesis indicate capabilities in predictive-
ness. In addition, we have constructed sets of elements that presumably influence
the Capesize bulk segment, allowing the employed machine learning algorithms
to produce relatively accurate predictions. However, there is no evidence to sup-
port which specific set of elements that together influence this shipping segment
best. Interestingly, all examined feature sets includes a combination of AIS- and
market-derived data.

72

5.2 EVALUATION OF METHODOLOGICAL APPROACH

5.2 Evaluation of methodological approach

5.2.1 Hyperparameter optimization technique
As mentioned in Section 3.3.4, this study employs the cross validation grid search-
technique for hyperparameter optimizing with the employment of the negative root
mean squared error-scorer. The results from the exhaustive grid search to iden-
tify the optimal hyperparameter combinations can be found in Table 4.13. In
Figure 4.7a through Figure 4.9f the mean and standard deviation scores for the
different models and feature set combinations are illustrated. In theory, the em-
ployed grid search method selects the hyperparameter combination that yields the
best score with regards to the selected scoring-identifier. According to Table 4.13,
the optimal combination of hyperparameters for the LRR model with all features
is; alpha = 0.01 and solver = auto. This corresponds well to the illustration in Fig-
ure 4.7a, since we employ the negative root mean squared error-scorer the best com-
bination is the given by the highest score. However, we identify several cases where
the presented optimal hyperparameter combination in the table do not correspond
to the respectively plotted mean score figure. For instance, the table demonstrate
that the optimal hyperparameter combination for the RFR model with top features
are; max depth = 9 and n estimators = 20. Examining the respective figure, i.e.
Figure 4.8c (copy of which is shown below for easy reference), one would assume
the optimal combination to be; max depth = 5 and n estimators = 100, as this
results in the least negative mean test score. This frequently recurring inconsis-
tency has been exhaustively investigated without any conclusive explanation. To
determine whether this has arisen from personal error or system inherit fault is
presently unproductive. The author is of the opinion this will require further work
in a separate study.

Figure 5.1: Copy of figure 4.8c

73

5. DISCUSSION

5.2.2 Employed feature selection methods
For the investigation conducted in this thesis, we have intentionally studied the
employment of three different sets of information, i.e. a set of all constructed fea-
tures, a set of top features, and lastly a set of selected features. From the results
previously discussed concerning Figure 4.13, we identified the existence of overfit-
ting in both the LRR and RFR models, which proves the presence of the curse of
dimensionality1. This necessitated feature reduction to best deal with the issue of
dimensionality. A feature selection process is recognized as a subprocess of feature
reduction. We consequently developed and applied two different feature selection
methods, described in Section 3.2.3. The resulting lists of features for the two
methods, i.e. top features (inspired by Næss [6]) and selected features (developed
by Koehrsen [30]), can be found in Table 4.12. Note that both feature combinations
contain both AIS- and non-AIS-derived features. However, after carefully review-
ing Figure D.1, which demonstrates the normalized feature importance for the top
20 features using the selected method, we observed that the top seven features are
exclusively retrieved from market-relevant information. Similarly, we observe from
Figure D.3, illustrating the top 20 features using the top method, the four most
dominant features are also exclusively derived from market data. Interestingly, two
of the top features in both selection methods are employed in both feature sets,
namely: avg rate(t) and BCI C17(t). Unfortunately, the limited number of exper-
imental results and time-series data available from AIS do not provide sufficient
evidence to draw any firm conclusions on whether or not this data information can
be identified as significantly influencing elements in the Capesize bulk segment.

5.2.3 Feature construction process
The exploratory data analysis (EDA) is considered an essential milestone in the
data exploration process and was conducted as a preliminary exercise to the feature
engineering procedure. Performing a comprehensive EDA enabled the possibility of
deriving valuable understanding of the data retrieved from the NCA AIS database,
and allowed a better insight to the operational activities in the Capesize bulk
segment. Consequently, the process of constructing features to utilize as input
parameters in the later developed machine learning models became more efficient.
However, as a result of certain elements being overlooked in the feature construction
phase, later stages of the study showed that several constructed features contained
misleading and disruptive information. Features demonstrating inaccurate infor-
mation were still deemed useful and therefore included in the final features dataset.
In addition, whereas the features constructed from AIS-derived input were primar-
ily composed of aggregated data, it may possibly have been more constructive to
produce a dynamic feature set. Further study of these circumstances is warranted
and suggested by the author. Moreover, considering that the shipping industry and
the respective freight rates are highly dependent on demand factors, establishing
specific features with this focus for the Capesize bulk segment should be of great
interest for further analysis.

1Definition provided in Section 3.2.3

74

5.3 LIMITATIONS AND CONSIDERATIONS

5.3 Limitations and considerations
All computations performed as part of this thesis have been conducted on the
author’s personal computer. Consequently, processing power set by the employed
computer is identified as a major constraint and limitation throughout this study.

Although we previously considered the retrieved data from the NCA AIS database
as a limited data set, the actual information is extensive in data volume. As we
have presented in Table 4.11, the initially retrieved data set contained more than
60 million rows of information in nine corresponding data columns, requiring a
total of 5.49 GB of storage capacity. During attempts to process this AIS data
we frequently experienced exceeding the memory capability of the used computer.
However, in relation to a time-series window, this data set is limited to only a single
year. The author is of the opinion that a longer time-series is necessary to further
validate the thesis objective.

Finally, as summarized in Section 4.2, only a minor part of the requested data was
made available from the NCA AIS database. Again, due to the relatively modest
number of weekly observations, it is challenging to properly train the selected
machine learning algorithms to produce acceptable and reliable forecasting results.

75

Chapter 6
Conclusion

For the purpose of this thesis and the construction of machine learning algorithms
this study employed three forecasting models; the linear ridge regression (LRR)
model, the random forest regression (RFR) model and the long short-term memory
(LSTM) model. All models were explored with identical feature combinations and
underwent comparable hyperparameter optimization processes.

From a total of 65 features examined, spanning numerous Capesize bulk operations
from defining routes to fleet utilization and port capacity; two features were iden-
tified as influential in all feature selection processes, avg rate(t)1 and BCI C17(t)2.

To optimize the respectively employed machine learning algorithms, we used a hy-
perparameter optimization technique: cross validation grid search. The use of this
hyperparameter optimization method produced frequently recurring inconsisten-
cies. Despite exhaustive investigation, no conclusive explanation for this disparity
was established.

Model simulation was conducted on a Intel Core i7-7700HQ CPU, with 16 GB
RAM installed. Most accurate results were provided by the LSTM model with our
selected features set. Overall, the RFR model produced the most consistent and
least varied forecasts as well as the lowest mean RMSE metrics.

All selected models investigated in this thesis, indicate applicability of machine
learning algorithms in predicting short-term freight rate movements on the C3 route
in the Capesize bulk segment. Moreover, varying prediction accuracy corroborates
that our selected features influence rate movements. We were however unable
to identify, define or prove which specific set of features that bears the greatest
influence on rate predictability. This aside, all examined feature sets included a

1Capesize 172,000 dwt average trip rates
2Spot rate on the C17 route, from Saldanha Bay to Qingdao

77

6. CONCLUSION

combination of AIS- and market-derived data. Machine learning algorithms from
single source information remains untested.

6.1 Further work
Based on the topics discussed in the previous Chapter 5, and conclusions provided
in Chapter 6, the necessity for further research of several elements are identified.
The list below presents topics that will require further work based on the author’s
opinion.

• Investigating the use of other hyperparameter optimization techniques, for ex-
ample the random search or bayesian optimization mentioned in Section 3.3.4.

• Explore the possibilities of constructing additional features from either AIS
or market-specific data, such as demand or supply related features.

• Examine the applicability of features sets containing information from only
single source in the Capesize bulk segment.

78

Bibliography

[1] V. D. 1. Norman. Economics of bulk shipping. Bergen: Institute for Shipping
Research, 1979.

[2] A. Hayes. Perfect Competition. 2020. url: https://www.investopedia.
com/terms/p/perfectcompetition.asp.

[3] R. Adland, P. Cariou, and F.-C. Wolff. “The influence of charterers and
owners on bulk shipping freight rates”. In: Transportation Research Part E:
Logistics and Transportation Review 86 (2016), pp. 69–82. issn: 1366-5545.
doi: https : / / doi . org / 10 . 1016 / j . tre . 2015 . 11 . 014. url: https :
//www.sciencedirect.com/science/article/pii/S1366554515002252.

[4] Y. Jie, A. Kersing, and Q. Xie. Data will decide success in the next nor-
mal of bulk and tanker shipping. 2020. url: https://www.mckinsey.com/
industries/travel- logistics- and- infrastructure/our- insights/
data - will - decide - success - in - the - next - normal - of - bulk - and -
tanker-shipping.

[5] G. H. Århus and S. R. Salen. “Predicting Shipping Freight Rate Movements
Using Recurrent Neural Networks and AIS Data-On the tanker route between
the Arabian Gulf and Singapore”. MA thesis. NTNU, 2018.

[6] P. A. Næss. “Investigation of multivariate freight rate prediction using ma-
chine learning and ais data”. MA thesis. NTNU, 2018.

[7] H. S. N. Worldwide. Capesize index plummets to -133, the first time ever
in negative history. 2020. url: https : / / www . hellenicshippingnews .
com/capesize- index- plummets- to- 133- the- first- time- ever- in-
negative-territory/.

79

https://www.investopedia.com/terms/p/perfectcompetition.asp
https://www.investopedia.com/terms/p/perfectcompetition.asp
https://doi.org/https://doi.org/10.1016/j.tre.2015.11.014
https://www.sciencedirect.com/science/article/pii/S1366554515002252
https://www.sciencedirect.com/science/article/pii/S1366554515002252
https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/data-will-decide-success-in-the-next-normal-of-bulk-and-tanker-shipping
https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/data-will-decide-success-in-the-next-normal-of-bulk-and-tanker-shipping
https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/data-will-decide-success-in-the-next-normal-of-bulk-and-tanker-shipping
https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/data-will-decide-success-in-the-next-normal-of-bulk-and-tanker-shipping
https://www.hellenicshippingnews.com/capesize-index-plummets-to-133-the-first-time-ever-in-negative-territory/
https://www.hellenicshippingnews.com/capesize-index-plummets-to-133-the-first-time-ever-in-negative-territory/
https://www.hellenicshippingnews.com/capesize-index-plummets-to-133-the-first-time-ever-in-negative-territory/

[8] A. H. Alizadeh and W. K. Talley. “Microeconomic determinants of dry bulk
shipping freight rates and contract times”. In: Transportation 38 (2011),
pp. 561–579. doi: https : / / doi . org / 10 . 1007 / s11116 - 010 - 9308 - 7.
url: https://link.springer.com/article/10.1007/s11116-010-9308-
7#citeas.

[9] S. Köhn and H. Thanopoulou. “A gam assessment of quality premia in the
dry bulk time–charter market”. In: Transportation Research Part E: Logistics
and Transportation Review 47.5 (2011), pp. 709–721. issn: 1366-5545. doi:
https://doi.org/10.1016/j.tre.2011.01.003. url: https://www.
sciencedirect.com/science/article/pii/S1366554511000068.

[10] D. Yang, L. Wu, S. Wang, H. Jia, and K. X. Li. “How big data enriches mar-
itime research – a critical review of Automatic Identification System (AIS)
data applications”. In: Transport Reviews 39.6 (2019), pp. 755–773. doi:
10.1080/01441647.2019.1649315. eprint: https://doi.org/10.1080/
01441647.2019.1649315. url: https://doi.org/10.1080/01441647.
2019.1649315.

[11] R. Adland, H. Jia, and S. P. Strandenes. “Are AIS-based trade volume esti-
mates reliable? The case of crude oil exports”. In: Maritime Policy & Man-
agement 44.5 (2017), pp. 657–665. doi: 10.1080/03088839.2017.1309470.
eprint: https://doi.org/10.1080/03088839.2017.1309470. url: https:
//doi.org/10.1080/03088839.2017.1309470.

[12] Z. Yan, Y. Xiao, L. Cheng, S. Chen, X. Zhou, X. Ruan, M. Li, R. He, and B.
Ran. “Analysis of global marine oil trade based on automatic identification
system (AIS) data”. In: Journal of Transport Geography 83 (2020), p. 102637.
issn: 0966-6923. doi: https://doi.org/10.1016/j.jtrangeo.2020.
102637. url: http://www.sciencedirect.com/science/article/pii/
S0966692319306076.

[13] B. Brende Smestad, B. Asbjørnslett, and Ø. Rødseth. “Expanding the Possi-
bilities of AIS Data with Heuristics”. In: TransNav, the International Jour-
nal on Marine Navigation and Safety of Sea Transportation 11 (June 2017),
pp. 93–100. doi: 10.12716/1001.11.02.10.

[14] X. Chen, Y. Liu, K. Achuthan, and X. Zhang. “A ship movement classi-
fication based on Automatic Identification System (AIS) data using Con-
volutional Neural Network”. In: Ocean Engineering 218 (2020), p. 108182.
issn: 0029-8018. doi: https://doi.org/10.1016/j.oceaneng.2020.
108182. url: http://www.sciencedirect.com/science/article/pii/
S0029801820311124.

[15] D. Conway. The Data Science Venn Diagram. 2010. url: http://drewconway.
com/zia/2013/3/26/the-data-science-venn-diagram.

80

https://doi.org/https://doi.org/10.1007/s11116-010-9308-7
https://link.springer.com/article/10.1007/s11116-010-9308-7#citeas
https://link.springer.com/article/10.1007/s11116-010-9308-7#citeas
https://doi.org/https://doi.org/10.1016/j.tre.2011.01.003
https://www.sciencedirect.com/science/article/pii/S1366554511000068
https://www.sciencedirect.com/science/article/pii/S1366554511000068
https://doi.org/10.1080/01441647.2019.1649315
https://doi.org/10.1080/01441647.2019.1649315
https://doi.org/10.1080/01441647.2019.1649315
https://doi.org/10.1080/01441647.2019.1649315
https://doi.org/10.1080/01441647.2019.1649315
https://doi.org/10.1080/03088839.2017.1309470
https://doi.org/10.1080/03088839.2017.1309470
https://doi.org/10.1080/03088839.2017.1309470
https://doi.org/10.1080/03088839.2017.1309470
https://doi.org/https://doi.org/10.1016/j.jtrangeo.2020.102637
https://doi.org/https://doi.org/10.1016/j.jtrangeo.2020.102637
http://www.sciencedirect.com/science/article/pii/S0966692319306076
http://www.sciencedirect.com/science/article/pii/S0966692319306076
https://doi.org/10.12716/1001.11.02.10
https://doi.org/https://doi.org/10.1016/j.oceaneng.2020.108182
https://doi.org/https://doi.org/10.1016/j.oceaneng.2020.108182
http://www.sciencedirect.com/science/article/pii/S0029801820311124
http://www.sciencedirect.com/science/article/pii/S0029801820311124
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

[16] G. Anadiotis. Planet analytics: big data, sustainability, and environemntal
impact. 2017. url: https://www.zdnet.com/article/planet-analytics-
big-data-sustainability-and-environmental-impact/.

[17] P. Bruce, A. Bruce, and P. Gedeck. Practical Statistics for Data Scientists:
50+ Essential Concepts Using R and Python. O’Reilly Media, 2020.

[18] J. W. Tukey. “The Future of Data Analysis”. In: The Annals of Mathematical
Statistics 33.1 (1962), pp. 1–67. issn: 00034851. url: http://www.jstor.
org/stable/2237638.

[19] A. Twin. Data Mining. 2020. url: https://www.investopedia.com/terms/
d/datamining.asp.

[20] H. Mannila. “Methods and problems in data mining”. In: Database Theory
— ICDT ’97. Ed. by F. Afrati and P. Kolaitis. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1997, pp. 41–55. isbn: 978-3-540-49682-3.

[21] C. E. IBM. Machine Learning. 2020. url: https://www.ibm.com/cloud/
learn/machine-learning#toc-machine-le-K7VszOk6.

[22] I. Lee and Y. J. Shin. “Machine learning for enterprises: Applications, algo-
rithm selection, and challenges”. In: Business Horizons 63.2 (2020), pp. 157–
170. issn: 0007-6813. doi: https://doi.org/10.1016/j.bushor.2019.
10.005. url: http://www.sciencedirect.com/science/article/pii/
S0007681319301521.

[23] S. Kulkarni and I. Haidar. “Forecasting model for crude oil price using ar-
tificial neural networks and commodity futures prices”. In: arXiv preprint
arXiv:0906.4838 (2009).

[24] L. Yu, S. Wang, and K. K. Lai. “Forecasting crude oil price with an EMD-
based neural network ensemble learning paradigm”. In: Energy Economics
30.5 (2008), pp. 2623–2635.

[25] C. Brooks. Introductory econometrics for finance. Cambridge university press,
2019.

[26] T. Shah. “About Train, Validation and Test Sets in Machine Learning”. In:
(2017). url: https://towardsdatascience.com/train-validation-and-
test-sets-72cb40cba9e7.

[27] C. Albon. Machine learning with python cookbook: Practical solutions from
preprocessing to deep learning. ” O’Reilly Media, Inc.”, 2018.

[28] B. Duignan. “Occam’s razor - Philosophy”. In: (2021). url: https://www.
britannica.com/topic/Occams-razor.

[29] R. Shaikh. “Feature Selection Techniques in Machine Learning with Python”.
In: (2018). url: https://towardsdatascience.com/feature-selection-
techniques-in-machine-learning-with-python-f24e7da3f36e.

81

https://www.zdnet.com/article/planet-analytics-big-data-sustainability-and-environmental-impact/
https://www.zdnet.com/article/planet-analytics-big-data-sustainability-and-environmental-impact/
http://www.jstor.org/stable/2237638
http://www.jstor.org/stable/2237638
https://www.investopedia.com/terms/d/datamining.asp
https://www.investopedia.com/terms/d/datamining.asp
https://www.ibm.com/cloud/learn/machine-learning#toc-machine-le-K7VszOk6
https://www.ibm.com/cloud/learn/machine-learning#toc-machine-le-K7VszOk6
https://doi.org/https://doi.org/10.1016/j.bushor.2019.10.005
https://doi.org/https://doi.org/10.1016/j.bushor.2019.10.005
http://www.sciencedirect.com/science/article/pii/S0007681319301521
http://www.sciencedirect.com/science/article/pii/S0007681319301521
https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7
https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7
https://www.britannica.com/topic/Occams-razor
https://www.britannica.com/topic/Occams-razor
https://towardsdatascience.com/feature-selection-techniques-in-machine-learning-with-python-f24e7da3f36e
https://towardsdatascience.com/feature-selection-techniques-in-machine-learning-with-python-f24e7da3f36e

[30] W. Koehrsen. “A Complete Introduction and Walkthrough”. In: (2018). url:
https://www.kaggle.com/willkoehrsen/a- complete- introduction-
and-walkthrough/notebook#Feature-Selection.

[31] A. Hayes. “Fundamental Analysis - Multicollinearity”. In: (2021). url: https:
//www.investopedia.com/terms/m/multicollinearity.asp.

[32] T. Yiu. “Understanding Random Forest - How the Algorithm Works and
Why it Is So Effective”. In: (2019). url: https://towardsdatascience.
com/understanding-random-forest-58381e0602d2.

[33] S. Raschka. “Activation Functions for Artificial Neural Networks”. In: (2016).
url: http://rasbt.github.io/mlxtend/user_guide/general_concepts/
activation-functions/.

[34] J. L. Elman. “Finding structure in time”. In: Cognitive science 14.2 (1990),
pp. 179–211.

[35] C. Olah. “Understanding LSTM Networks”. In: (2015). url: https : / /
colah.github.io/posts/2015-08-Understanding-LSTMs/.

[36] I. C. Education. “Recurrent Neural Networks”. In: (2020). url: https://
www.ibm.com/cloud/learn/recurrent-neural-networks.

[37] B. Or. “The Exploding and Vanishing Gradients Problem in Time Series”.
In: (2020). url: https://towardsdatascience.com/the-exploding-and-
vanishing-gradients-problem-in-time-series-6b87d558d22.

[38] S. Hochreiter. “Untersuchungen zu dynamischen neuronalen Netzen”. In:
Diploma, Technische Universität München 91.1 (1991).

[39] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[40] J. Jordan. “Hyperparameter tuning for machine learning models”. In: (2017).
url: https://www.jeremyjordan.me/hyperparameter-tuning/.

[41] A. Johnson. “Common Problems in Hyperparameter Optimization”. In: (2017).
url: https://sigopt.com/blog/common-problems-in-hyperparameter-
optimization.

[42] F. S. Hillier. Introduction to operations research. Tata McGraw-Hill Educa-
tion, 2012.

[43] A. N. Skauen, Ø. Helleren, Ø. Olsen, and R. Olsen. “Operator and user
perspective of fractionated AIS satellite systems”. In: Proceedings of the
AIAA/USU Conference on Small Satellites, Around the Corner, SSC13-XI-
5. 2013.

82

https://www.kaggle.com/willkoehrsen/a-complete-introduction-and-walkthrough/notebook#Feature-Selection
https://www.kaggle.com/willkoehrsen/a-complete-introduction-and-walkthrough/notebook#Feature-Selection
https://www.investopedia.com/terms/m/multicollinearity.asp
https://www.investopedia.com/terms/m/multicollinearity.asp
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
http://rasbt.github.io/mlxtend/user_guide/general_concepts/activation-functions/
http://rasbt.github.io/mlxtend/user_guide/general_concepts/activation-functions/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://towardsdatascience.com/the-exploding-and-vanishing-gradients-problem-in-time-series-6b87d558d22
https://towardsdatascience.com/the-exploding-and-vanishing-gradients-problem-in-time-series-6b87d558d22
https://www.jeremyjordan.me/hyperparameter-tuning/
https://sigopt.com/blog/common-problems-in-hyperparameter-optimization
https://sigopt.com/blog/common-problems-in-hyperparameter-optimization

Appendix A
AIS Data Contents

Information item Information generation, type and quality of information
Static Information
MMSI Set on installation
Call sign and name Set on installation
IMO Number Set on installation
Length and beam Set on installation or if changed
Type of ship Select from pre-installed list
Location of position-fixing Set on installation or may be changed for bi-directional vessels or
antenna those fitted with multiple antennae
Dynamic Information
Ship’s position with Automatically updated from the position sensor connected to AIS
accuracy indication and The accuracy indication is for better or worse than 10 m
integrity status
Position time stamp in Automatically updated from ship’s main position sensor connected
UTC to AIS
Course over ground (COG) Automatically updated from ship’s main position sensor connected

to AIS, if that sensor calculates COG
Speed over ground (SOG) Automatically updated from the position sensor connected to AIS
Heading Automatically updated from the ship’s heading sensor connected

to AIS
Navigational status Navigational status information has to be manually entered by the

OOW and changed as necessary, for example:
- underway by engines
- at anchor
- not under command (NUC)
- restricted in ability to manoeuvre (RIATM)
- moored
- constrained by draught
- aground
- engaged in fishing
- underway by sail

In practice, since all these relate to the COLREGs, any change that is
needed could be undertaken at the same time that the lights or shapes
were changed

Rate of turn (ROT) Automatically updated from the ship’s ROT sensor or derived from
the gyro

83

Voyage-related
Ship’s draught To be manually entered at the start of the voyage using the maximum

draft for the voyage and amended as required
(e.g. - result of de-ballasting prior to port entry)

Hazardous cargo (type) To be manually entered at the start of the voyage confirming whether
or not hazardous cargo is being carried, namely:

DG (Dangerous goods)
HS (Harmful substances)
MP (Marine pollutants)

Indications of quantities are not required
Destination and ETA To be manually entered at the start of the voyage and kept up to date

as necessary
Route plan (waypoints) To be manually entered at the start of the voyage, at the discretion of

the master, and updated when required

84

Appendix B
Descriptive Statistics of Features

Table B.1: Descriptive statistics of count features in port locations

Feature name Unit Mean Std. Min Max
tubarao # vessels 5.826923 2.826493 1 13
qingdao # vessels 0.115385 0.378534 0 2
bolivar # vessels 2.192308 1.547147 0 6
dampier # vessels 3.961538 1.969986 0 9
oita # vessels 0.057692 0.307645 0 2
haypoint # vessels 4.038462 2.195910 0 11
baltimore # vessels 0.500000 0.939336 0 4
narvik # vessels 1.596154 1.240803 0 4
portcartier # vessels 1.326923 1.097612 0 4
richardsbay # vessels 4.038462 2.384275 0 10
gangavaram # vessels 0.480769 0.851536 0 4
saldanhabay # vessels 6.480769 2.469344 2 12
goa # vessels 0.173077 0.473665 0 2
nouadhibou # vessels 2.153846 1.363166 0 5
rizhao # vessels 0.096154 0.495454 0 3
dekheila # vessels 0.096154 0.297678 0 1

85

Table B.2: Descriptive statistics of capacity features in port locations

Feature name Unit Mean Std. Min Max
tubarao cap dwt 1,076,131 532,401 174,944 2,518,616
qingdao cap dwt 20,971 68,815 0 361,120
bolivar cap dwt 392,957 278,127 0 1,085,260
dampier cap dwt 714,453 359,079 0 1,608,192
oita cap dwt 10,822 56,548 0 354,954
haypoint cap dwt 732,136 401,746 0 2,029,211
baltimore cap dwt 88,847 167,447 0 724,584
narvik cap dwt 292,281 228,058 0 772,584
portcartier cap dwt 236,616 195,834 0 714,800
richardsbay cap dwt 710,667 414,787 0 1,732,110
gangavaram cap dwt 85,151 150,964 0 705,473
saldanhabay cap dwt 1,181,196 447,457 349,144 2,161,695
goa cap dwt 32,269 87,631 0 365,860
nouadhibou cap dwt 382,596 241,140 0 896,086
rizhao cap dwt 17,396 90,686 0 566,375
dekheila cap dwt 16,697 51,707 0 179,067

Table B.3: Descriptive statistics of count and capacity features in world regions

Feature name Unit Mean Std. Min Max
atlantic # vessels 221.21 25.24 187 361
FE # vessels 630.06 40.02 540 784
CP # vessels 39.63 7.36 27 65
EstP # vessels 54.54 8.67 39 95
NWE # vessels 22.15 4.88 13 33
indi # vessels 191.44 27.72 150 284
Med # vessels 32.31 6.29 20 55
atlantic cap dwt 40,350,807 4,606,793 34,040,551 65,990,019
FE cap dwt 116,124,869 7,340,753 99,998,161 144,061,607
CP cap dwt 7,116,248 1,330,829 4,783,052 11,708,818
EstP cap dwt 9,846,140 1,587,266 7,114,499 17,382,856
NWE cap dwt 4,033,180 890,305 2,309,654 6,140,830
indi cap dwt 34,904,410 5,005,928 27,374,150 51,795,173
Med cap dwt 5,803,266 1,128,724 3,603,926 9,826,379

86

Table B.4: Descriptive statistics fleet percentage features in world regions

Feature name Unit Mean Std. Min Max
atlantic pct % 0.18488 0.01434 0.15216 0.21605
FE pct % 0.53273 0.02118 0.47047 0.57737
CP pct % 0.03253 0.00497 0.02280 0.04618
EstP pct % 0.04506 0.00563 0.03342 0.05765
NWE pct % 0.01849 0.00393 0.01004 0.02923
indi pct % 0.15968 0.01698 0.12864 0.19498
Med pct % 0.02664 0.00493 0.01625 0.03648

Table B.5: Descriptive statistics of fleet count and capacity features

Feature name Unit Mean Std. Min Max
n active # vessels 993.35 38.21 907 1,136
sum cap dwt 182,125,989 6,963,553 166,466,264 208,192,051
sum tot cap dwt 218,178,920 15,057,033 192,887,535 306,204,691

Table B.6: Descriptive statistics of fleet utilization feature

Feature name Unit Mean Std. Min Max
fleet util % 0.75757 0.02897 0.69243 0.86600

Table B.7: Descriptive statistics of market and price derived features

Feature name Unit Mean Std. Min Max
avg rate $/day 16865.42 9829.43 1250.00 35625.00
Bdry $ 15.27 3.76 9.46 22.11
BCI - 2243.74 1319.60 160.80 4910.60
BCI C2 $/tonne 8.15 2.44 4.31 12.82
BCI C3* $/tonne 18.56 4.58 11.75 28.79
BCI C5 $/tonne 7.72 1.97 4.49 11.21
BCI C14 $/day 17081.90 8274.28 4764.00 35755.00
BCI C17 $/tonne 13.78 3.53 8.50 20.90

87

Appendix C
Augmented Dickey-Fuller Results

Feature ADF Statistics p-value 1% 5% 10% H0 at 1% H0 at 5% H0 at 10%
avg rate -4.3878 0.0003 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
Bdry -6.0744 0.0000 -3.5685 -2.9214 -2.5987 FALSE FALSE FALSE
BCI -4.1101 0.0009 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
BCI C2 -4.0910 0.0010 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
BCI C5 -5.2287 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
BCI C14 -4.5606 0.0002 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
BCI C17 -4.7116 0.0001 -3.5685 -2.9214 -2.5987 FALSE FALSE FALSE
tubarao -3.7082 0.0040 -3.5925 -2.9315 -2.6041 FALSE FALSE FALSE
tubarao cap -3.4955 0.0081 -3.5925 -2.9315 -2.6041 TRUE FALSE FALSE
qingdao -10.1735 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
qingdao cap -4.3952 0.0003 -3.6056 -2.9371 -2.6070 FALSE FALSE FALSE
bolivar -4.3703 0.0003 -3.5848 -2.9283 -2.6023 FALSE FALSE FALSE
bolivar cap -4.3555 0.0004 -3.5848 -2.9283 -2.6023 FALSE FALSE FALSE
dampier -7.8557 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
dampier cap -7.8826 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
oita -6.6332 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
oita cap -6.6332 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
haypoint -5.9843 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
haypoint cap -6.0871 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
baltimore -4.0599 0.0011 -3.5848 -2.9283 -2.6023 FALSE FALSE FALSE
baltimore cap -4.0427 0.0012 -3.5848 -2.9283 -2.6023 FALSE FALSE FALSE
narvik -4.1105 0.0009 -3.5925 -2.9315 -2.6041 FALSE FALSE FALSE
narvik cap -4.1545 0.0008 -3.5925 -2.9315 -2.6041 FALSE FALSE FALSE
portcartier -5.4991 0.0000 -3.5813 -2.9268 -2.6015 FALSE FALSE FALSE
portcartier cap -5.4984 0.0000 -3.5813 -2.9268 -2.6015 FALSE FALSE FALSE
richardsbay -7.9060 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
richardsbay cap -8.0256 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
gangavaram -6.9387 0.0000 -3.5778 -2.9253 -2.6008 FALSE FALSE FALSE
gangavaram cap -6.9626 0.0000 -3.5778 -2.9253 -2.6008 FALSE FALSE FALSE
saldanhabay -8.3633 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
saldanhabay cap -8.4392 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
goa -7.2491 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
goa cap -7.2316 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
nouadhibou -6.1865 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
nouadhibou cap -6.1707 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
rizhao -7.6660 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
rizhao cap -7.4851 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE

89

Feature ADF Statistics p-value 1% 5% 10% H0 at 1% H0 at 5% H0 at 10%
dekheila -6.6634 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
dekheila cap -6.6558 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
atlantic -2.7514 0.0656 -3.6010 -2.9351 -2.6060 TRUE TRUE FALSE
atlantic cap -2.8085 0.0571 -3.6010 -2.9351 -2.6060 TRUE TRUE FALSE
FE -9.9724 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
FE cap -10.0361 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
CP -7.4551 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
CP cap -7.4230 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
EstP -5.5200 0.0000 -3.5813 -2.9268 -2.6015 FALSE FALSE FALSE
EstP cap -5.4311 0.0000 -3.5813 -2.9268 -2.6015 FALSE FALSE FALSE
NWE -5.4499 0.0000 -3.5778 -2.9253 -2.6008 FALSE FALSE FALSE
NWE cap -5.3289 0.0000 -3.5778 -2.9253 -2.6008 FALSE FALSE FALSE
indi -2.9161 0.0435 -3.5925 -2.9315 -2.6041 TRUE TRUE FALSE
indi cap -2.9137 0.0438 -3.5925 -2.9315 -2.6041 TRUE TRUE FALSE
Med -5.0555 0.0000 -3.6010 -2.9351 -2.6060 FALSE FALSE FALSE
Med cap -4.9382 0.0000 -3.6010 -2.9351 -2.6060 FALSE FALSE FALSE
Sum tot cap -9.1170 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
sum cap -11.0353 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
n active -10.9207 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
fleet util -11.0353 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
atlantic pct -5.9118 0.0000 -3.5746 -2.9240 -2.6000 FALSE FALSE FALSE
FE pct -5.9252 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
CP pct -7.5884 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
EstP pct -5.9481 0.0000 -3.5813 -2.9268 -2.6015 FALSE FALSE FALSE
NWE pct -5.1803 0.0000 -3.5778 -2.9253 -2.6008 FALSE FALSE FALSE
indi pct -5.4771 0.0000 -3.5715 -2.9226 -2.5993 FALSE FALSE FALSE
Med pct -4.0392 0.0012 -3.5966 -2.9333 -2.6050 FALSE FALSE FALSE
price -5.1018 0.0000 -3.5685 -2.9214 -2.5987 FALSE FALSE FALSE

90

Appendix D
Feature Importance Scores

Figure D.1: Top 20 most important features based on random forest regressor model
performance

91

Figure D.2: Cumulative feature importance score with respect to number of features

Figure D.3: Top 20 features based on mean feature importance score

92

Figure D.4: Feature importance scores of selected algorithms (1/3)

93

Figure D.5: Feature importance scores of selected algorithms (2/3)

94

Figure D.6: Feature importance scores of selected algorithms (3/3)

95

Appendix E
Python Scripts

E.1 Description of Python scripts

Name Description
project settings.py Generates global variables for file accessability
ais sql.py Draft script for extraction of desired AIS data from SQL databases
data processing.py Pre-processes data retrieved from the AIS database to avoid any excess or unwanted

data. Also splits the processed data into smaller parts for better implementation.
clarksons.py Pre-processes and generate plots for data retrieved from the Clarksons Platou database
polygons.py Creation, plotting and saving of world and port polygons, used for further geospatial

analysis of AIS data
FE.py Script for feature engineering and construction process
data preparation.py Data preparation of time series data to enable supervised learning problems
feature importance score.py Rank the features in accordance to the filter selection methods
feature selection.py Determine the best feature set combination for an optimized decision tree model
ML models.py Serves as the main file, runs and evaluates the selected machine learning models

97

E.2 project settings.py
import os

#AIS Data
#AIS_RAW_DATA_PATH = r'oscarsingapore1.csv'
AIS_RAW_DATA_PATH = r'AIS_Data\AIS_2019_raw_processed.csv'
#AIS_RAW_DATA_PATH = r'cotankers2019.csv'
SAMPLE_SET_PATH = r'AIS_Data\sample_ais.csv'
AIS_PROCESSED_DATA_PATH = r'AIS_Data\AIS_2019_processed_02.csv'
AIS_PROCESSED_DATA_VEL_PATH = r'AIS_Data\AIS_2019_processed_vel.csv'
AIS_PROCESSED_DATA_SPLIT1 = r'AIS_Data\AIS_2019_processed_split1.csv'
AIS_PROCESSED_DATA_SPLIT2 = r'AIS_Data\AIS_2019_processed_split2.csv'
AIS_PROCESSED_DATA_SPLIT3 = r'AIS_Data\AIS_2019_processed_split3.csv'
AIS_PROCESSED_DATA_SPLIT4 = r'AIS_Data\AIS_2019_processed_split4.csv'

#Feature Sets
FEATURES = r'AIS_Data\Features.csv'
FEATURE_SPLIT_1 = r'AIS_Data\FeatureSetSplit_v01.csv'
FEATURE_SPLIT_2 = r'AIS_Data\FeatureSetSplit_v02.csv'
FEATURE_SPLIT_3 = r'AIS_Data\FeatureSetSplit_v03.csv'
FEATURE_SPLIT_4 = r'AIS_Data\FeatureSetSplit_v04.csv'
FINAL_FEATURE_SET = r'AIS_Data\FinalFeatureSet.csv'
FINAL_FEATURE_SET_2 = r'AIS_Data\FinalFeatureSet_2.csv'
FEATURE_SPLIT_V1 = r'AIS_Data\FeatureSetSplit_v011.csv'
FEATURE_SPLIT_V2 = r'AIS_Data\FeatureSetSplit_v012.csv'
FEATURE_SPLIT_V3 = r'AIS_Data\FeatureSetSplit_v013.csv'
FEATURE_SPLIT_V4 = r'AIS_Data\FeatureSetSplit_v014.csv'

#Clarksons Data
#Price Data
CLARKSONS_RAW_DATA_PATH = r'ClarksonsData\Capesize_rates_weekly_avg_combined.csv'
CLARKSONS_MERGED_PATH = r''
CLARKSON_PATH = r'AIS_Data\FeatureSet_01.csv'
CLARKSONS_RATES_PATH = r'ClarksonsData\Capesize_rates_only.csv'
CLARKSON_TEST_PATH = r'AIS_Data\FeatureTest01.csv'
#Vessel Databases
CLARKSONS_CAPESIZE_DATABASE_PATH = r'CapesizeDatabase\Capesize_database.csv'
CLARKSONS_CAPESIZE_PATH = r'CapesizeDatabase\Capesize.csv'
CLARKSONS_CAPESIZE_PROCESSED_PATH = r'CapesizeDatabase\Capesize_processed.csv'
CLARKSONS_VLOC_PATH = r'CapesizeDatabase\VLOC.csv'
CLARKSONS_ULOC_PATH = r'CapesizeDatabase\ULOC.csv'
#Vessel Routes
CAPESIZE_ROUTES_PATH = r'C:\Users\Bruker\Oscar\NTNU\Div. Programmering\Python\paths.csv'

98

E.3 AIS SQL Script

import sqlite3
import time
import pandas as pd

def ExtractData(file,a,b,c,d,start_time,end_time,t1,t5,n1,n5, st=70):
'''
Extracts data from the AIS database:

file: Filepath to AIS data database
a,b,c,d: Corners of the area of interest (The entire globe)
start_time, end_time: Time window of interest (01.01.2019 - current date)
t1: 1 if MessageType1 (Position Report) will be extracted, 0 otherwise
t5: 1 if MessageType5 (Static and voyage related data) will be extracted, 0 otherwise
n1: Name of table with MessageType1 data in "file"
n5: Name of table with MessageType5 data in "file"
st: Ship Type to extract data of (=70 -> Cargo-all ships of this type)

returns: DataFrames with Message Types 1 and 5 data
'''
plotlat = list()
plotlon = list()
timestep = list()
mmsi = list()
navstat = list()
voyagetime = list()
draught = list()
useridVoyage = list()
beam = list()
loa = list()
shiptype = list()

#MessageType1:
if t1 == 1:

conn = sqlite3.connect(file)

#For navigational status, insert portsatus into '':
#portstatus = 'and (nav_status==1 or nav_status==5)

SQLstring1 = "SELECT unixtime, latitude, longitude, userid, nav_status\
FROM %s WHERE longitude <= %s and latitude <= %s and longitude >= %s \
and latitude >= %s and unixtime >= %s and unixtime <= %s %s ORDER BY \
userid, unixtime ASC" % (n1, str(a), str(b), str(c), str(d),str(start_time),
str(end_time),'')

#Extract data from database:
A = time.time()
with conn:

cur = conn.cursor()
cur.execute(SQLstring1)
VesselData = cur.fetchall()

for i in range(0, len(VesselData)):
Datastrip = VesselData[i]
timestep.append(Datastrip[0])
plotlat.append(Datastrip[1])
plotlon.append(Datastrip[2])
mmsi.append(Datastrip[3])

99

navstat.append(Datastrip[4])

cur.close()
print('MessageType1 database extraction time: %f s' % (time.time()-A))

df = pd.DataFrame({'Unixtime' : timestep, 'MMSI' : mmsi, 'Lat' : plotlat,
'Lon' : plotlon})

else:
df = False

#MessageType5:
if t5 == 1:

conn = sqlite3.connect(file)
cur = conn.cursor()

SQLstring5 = "SELECT unixtime, userid, draught, beam, loa, st from %s where \
unixtime >= %s and unixtime <= %s and st == %s ORDER BY unixtime ASC" % (n5,
str(start_time), str(end_time), str(st))

#Extract draught, beam and loa from database:
A = time.time()
with conn:

cur = conn.cursor()
cur.execute(SQLstring5)
VoyageData = cur.fetchall()

for i in range(0, len(VoyageData)):
VoyageStrip = VoyageData[i]
voyagetime.append(VoyageStrip[0])
useridVoyage.append(VoyageStrip[1])
draught.append(VoyageStrip[2])
beam.append(VoyageStrip[3])
loa.append(VoyageStrip[4])
shiptype.append(VoyageStrip[5])

cur.close()
print('MessageType5 database extraction time: %f s' % (time.time()-A))

dfVoyage = pd.DataFrame({'Unixtime' : voyagetime, 'MMSI' : useridVoyage,
'Draught' : draught, 'Beam' : beam, 'LoA' : loa,
'Ship Type' : shiptype})

else:
dfVoyage = False

return df, dfVoyage

100

E.4 data processing.py

from tqdm import tqdm
from configs.project_settings import AIS_PROCESSED_DATA_SPLIT1, AIS_PROCESSED_DATA_SPLIT2
from configs.project_settings import AIS_PROCESSED_DATA_SPLIT3, AIS_PROCESSED_DATA_SPLIT4
from configs.project_settings import AIS_PROCESSED_DATA_VEL_PATH

def ais_pre_processing():
with open(r"CapesizeDatabase\Capesize.csv") as f:

MMSI_vals = [line.split(",")[3] for line in f]

with open(r"AIS_Data\AIS_2019_raw_processed.csv") as f:
with open(r"AIS_Data\AIS_2019_processed_02.csv", "w+") as out_f:

for i, line in enumerate(tqdm(f)):
if line.split(",")[0] in MMSI_vals:

out_f.write(line)
pass

##

def capesize_db_processing():
with open(AIS_PROCESSED_DATA_PATH) as f:

MMSI_vals = [line.split(",")[0] for line in f]

with open(r"CapesizeDatabase\Capesize.csv") as f:
with open(r"CapesizeDatabase\Capesize_processed.csv", "w+") as out_f:

for i, line in enumerate(tqdm(f)):
if line.split(",")[3] in MMSI_vals:

out_f.write(line)
pass

##

def ais_splitting_set():
with open(r"AIS_Data\AIS_2019_processed_02.csv") as f:

with open(AIS_PROCESSED_DATA_SPLIT1, "w+") as f_out1:
with open(AIS_PROCESSED_DATA_SPLIT2, "w+") as f_out2:

with open(AIS_PROCESSED_DATA_SPLIT3, "w+") as f_out3:
with open(AIS_PROCESSED_DATA_SPLIT4, "w+") as f_out4:

for i, line in enumerate(tqdm(f)):
if i == 0:

f_out1.write(line)
f_out2.write(line)
f_out3.write(line)
f_out4.write(line)

else:
mmsi = int(line.split(",")[0])
if mmsi <= 353788000:

f_out1.write(line)
elif mmsi <= 431342000:

f_out2.write(line)
elif mmsi <= 538090370:

f_out3.write(line)
else:

f_out4.write(line)
pass

101

##

def velocity_processing():
with open(r"AIS_Data\AIS_2019_processed_02.csv") as f:

with open(AIS_PROCESSED_DATA_VEL_PATH, "w+") as f_out:
for i, line in enumerate(tqdm(f)):

if i == 0:
f_out.write(line)

else:
speed = float(line.split(",")[6])
if speed < 25:

f_out.write(line)
pass

##

Alternative Approach for AIS Data Processing
#------- Extremely more Time Consuming -------#

import pandas as pd
import time
from configs.project_settings import SAMPLE_SET_PATH, AIS_PROCESSED_DATA_PATH
import clarksons as cl

def raw_ais_data(sample=False, processed=False):
'''
Extracts:

AIS data from .csv-file
Returns:

AIS DataFrame
'''
if sample == True:

ais_df_chunk = pd.read_csv(SAMPLE_SET_PATH)#, chunksize=100)
elif processed == True:

ais_df_chunk = pd.read_csv(AIS_PROCESSED_DATA_PATH)#, chunksize=1000000)

return ais_df_chunk

##

def excess_vessels(db, df):
'''
Extracts:

Array of all MMSI values registered in the Clarksons Capesize database
Array of all MMSI values registered in the raw AIS database

Returns:
Set of all excess vessels extracted from the AIS database,
that does not appear in the Clarksons Capesize database

'''
vessels_db_array = db[["mmsi"]].to_numpy().astype(int)
vessels_df_array = df[["mmsi"]].to_numpy().astype(int)
excess_vessels_set = set()

for mmsi in vessels_df_array:
if mmsi[0] not in vessels_db_array:

excess_vessels_set.add(mmsi[0])

102

return excess_vessels_set

##

def excess_vessels_db(db, df):
'''
Extracts:

Array of all MMSI values registered in the Clarksons Capesize database
Array of all MMSI values registered in the raw AIS database

Returns:
Set of all excess vessels extracted from the AIS database,
that does not appear in the Clarksons Capesize database

'''
vessels_db_array = db[["mmsi"]].to_numpy().astype(int)
vessels_df_array = df[["mmsi"]].to_numpy().astype(int)
excess_vessels_db_set = set()

for mmsi in vessels_db_array:
if mmsi[0] not in vessels_df_array:

excess_vessels_db_set.add(mmsi[0])

return excess_vessels_db_set

##

def raw_ais_data_process(db, df):
'''
Utilizes the Set of excess vessels in the AIS database,
to remove all data for these vessels, and creates a new
and processed AIS DataFrame for only Capesize vessels
Returns:

Processed AIS DataFrame with recordings from only
Capesize vessels listed in the Capesize database

'''
excess_vessels_set = excess_vessels(db, df)
for index, row in df.iterrows():

if row['mmsi'] in excess_vessels_set:
df.drop(index, inplace=True)

if is_integer_num(index / 50000):
print(index)

return df

##

def ais_chunk_processing(db, df):
chunk_list = [] #Append each chuck DataFrame here

for chunk in df:
#Processing the raw AIS data
df_chunk_filter = raw_ais_data_process(db, chunk)

#Once the data processing is done, append the chunk to list
chunk_list.append(df_chunk_filter)

#Concat the list into DataFrame

103

df = pd.concat(chunk_list)
df.to_csv(r'AIS_Data\AIS_2019_processed_01.csv', index=False)

##

def is_integer_num(n):
if isinstance(n, int):

return True
if isinstance(n, float):

return n.is_integer()
return False

##

if __name__ == "__main__":
start = time.time()
start_readable = time.ctime(start)
print(f"\nInitialized run at: {start_readable}\n")

#---- Extract Excess Vessels in Raw AIS Data ----#
#ais_df = raw_ais_data(processed=True)
#spot_df, capesize_db = cl.clarksons_data()
#excess_vessels_set = excess_vessels(capesize_db, ais_df)
#excess_vessels_db_set = excess_vessels_db(capesize_db, ais_df)
#print(len(excess_vessels_set))
#print(len(excess_vessels_db_set))
#print(excess_vessels_db_set)

#---- Remove Excess Vessel Recordings in Raw AIS Data ----#
#ais_df_chunk = raw_ais_data(processed=True)
#spot_df, capesize_db = cl.clarksons_data()
#ais_chunk_processing(capesize_db, ais_df_chunk)

#ais_splitting_set()
#df1 = pd.read_csv(AIS_PROCESSED_DATA_SPLIT1)
#print(df1)
#df2 = pd.read_csv(AIS_PROCESSED_DATA_SPLIT2)
#print(df2)
#df3 = pd.read_csv(AIS_PROCESSED_DATA_SPLIT3)
#print(df3)
#df4 = pd.read_csv(AIS_PROCESSED_DATA_SPLIT4)
#print(df4)

#capesize_db_processing()
#ais_pre_processing()

velocity_processing()

end = time.time()
end_readable = time.ctime(end)
print(f"\nCode ended at: {end_readable}")
print(f"Runtime of the program is {end - start}")

104

E.5 clarksons.py

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pandas import Grouper, DataFrame
from matplotlib.dates import DateFormatter
import time

#plt.style.use('seaborn-whitegrid')

#Importing datapaths
#Price Data:
from configs.project_settings import CLARKSONS_RAW_DATA_PATH, CLARKSONS_MERGED_PATH
#Vessel Databases:
from configs.project_settings import CLARKSONS_CAPESIZE_DATABASE_PATH, CLARKSONS_CAPESIZE_PATH
from configs.project_settings import CLARKSONS_VLOC_PATH, CLARKSONS_ULOC_PATH
from configs.project_settings import CLARKSONS_CAPESIZE_PROCESSED_PATH

##

def clarksons_data():
spot_rates_df = pd.read_csv(CLARKSONS_RAW_DATA_PATH, parse_dates=True, squeeze=True)
capesize_df = pd.read_csv(CLARKSONS_CAPESIZE_PROCESSED_PATH)
#capesize_df = pd.read_csv(CLARKSONS_CAPESIZE_DATABASE_PATH)

spot_rates_df.rename(columns={'172 dwt' : 'dwt_172', '180 dwt' : 'dwt_180'}, inplace=True)
spot_rates_df.drop(columns=['dwt_180','Eco'], inplace=True)
spot_rates_df.dropna(inplace=True)

return spot_rates_df, capesize_df

##

def spot_rate_figures(df):
print(df)

fig, ax1 = plt.subplots()

ax1.set_xlabel('Date')
ax1.set_ylabel('Rates ($/day)', color='b')
ax1.plot(df['Date'], df['dwt_172'], color='b')
ax1.tick_params(axis='y', labelcolor='b')

ax2 = ax1.twinx()

ax2.set_ylabel('Rates ($/ton)', color='r')
ax2.plot(df['Date'], df['Tubarao/Rotterdam_160'], color='r')
ax2.tick_params(axis='y', labelcolor='r')

plt.xticks(np.arange(36, len(df.index), step=106), rotation=45)

fig.tight_layout()
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\Figures\Python\rate_comparison1.png',

bbox_inches='tight',dpi=100)

105

##

def capesize_database_processing(capesize, vloc, uloc):
'''
Converts the original database provided by Clarkson into separate Capesize, VLOC and
ULOC Databases

capesize = [0 or 1], if 1 -> Saves new Capesize.csv-database file
vloc = [0 or 1], if 1 -> Saves new vloc.csv-database file
uloc = [0 or 1], if 1 -> Saves new uloc.csv-database file

'''
#Read original Clarkson Bulk Vessel Database with dwt of 200,000+, sort in descending order
vessel_df = pd.read_csv(CLARKSONS_CAPESIZE_DATABASE_PATH)
vessel_df.sort_values(by='Dwt', ascending=False, ignore_index=True, inplace=True)

if capesize == 1:
capesize_df = DataFrame()
for i in range(len(vessel_df.index)):

if (vessel_df.loc[i,'Dwt'] < 200000 and vessel_df.loc[i, 'Type'] != 'Slurry Carrier')
or (vessel_df.loc[i, 'Dwt'] > 200000 and vessel_df.loc[i, 'Type'] == 'Bulk Carrier'):

capesize_df = capesize_df.append(vessel_df.loc[i,:],
ignore_index=True)[vessel_df.columns.tolist()]

capesize_df.to_csv(CLARKSONS_CAPESIZE_PATH, index=False)

if vloc == 1:
vloc_df = DataFrame()
for i in range(len(vessel_df.index)):

if vessel_df.loc[i,'Dwt'] >= 200000 and vessel_df.loc[i,'Dwt'] < 300000
and vessel_df.loc[i, 'Type'] != 'Bulk Carrier':

vloc_df = vloc_df.append(vessel_df.loc[i,:],
ignore_index=True)[vessel_df.columns.tolist()]

vloc_df.to_csv(CLARKSONS_VLOC_PATH, index=False)

if uloc == 1:
uloc_df = DataFrame()
for i in range(len(vessel_df.index)):

if vessel_df.loc[i,'Dwt'] >= 300000:
uloc_df = uloc_df.append(vessel_df.loc[i,:],

ignore_index=True)[vessel_df.columns.tolist()]
uloc_df.to_csv(CLARKSONS_ULOC_PATH, index=False)

##

def mmsi_list(vessel_database):
'''
Converts row of mmsi values in the respective vessel database into a list

vessel_database = 1 -> Capesize
vessel_database = 2 -> VLOC
vessel_database = 3 -> ULOC

returns: list of all mmsi values in desired vessel type database
'''
if vessel_database == 1:

df = pd.read_csv(CLARKSONS_CAPESIZE_PATH)
elif vessel_database == 2:

df = pd.read_csv(CLARKSONS_VLOC_PATH)
elif vessel_database == 3:

df = pd.read_csv(CLARKSONS_ULOC_PATH)

106

mmsi_list = df['MMSI'].to_numpy().astype(int)

#if 477947300 in mmsi_list:
in_list = True

return mmsi_list

##

def tot_fleet_capacity(vessel_database):
'''
Calculates the total fleet capacity (DWT) in the respective vessel database

vessel_database = 1 -> Capesize
vessel_database = 2 -> VLOC
vessel_database = 3 -> ULOC

returns: total fleet capacity, measured in DWT
'''
if vessel_database == 1:

df = pd.read_csv(CLARKSONS_CAPESIZE_PATH)
elif vessel_database == 2:

df = pd.read_csv(CLARKSONS_VLOC_PATH)
elif vessel_database == 3:

df = pd.read_csv(CLARKSONS_ULOC_PATH)

dwt = df['Dwt'].to_numpy().astype(int)
dwt = dwt.sum()

return dwt

##

def percentage_change(df):
df['dwt_172_percentchange'] = df['dwt_172'].pct_change()
df['Tubarao/Qingdao_160/170mt_percentchange'] = df['Tubarao/Qingdao_160/170mt'].pct_change()

plt.scatter(df['dwt_172_percentchange'], df['Tubarao/Qingdao_160/170mt_percentchange'])
plt.show()

fig, ax1 = plt.subplots()

color = '#1e4f9c'
ax1.set_xlabel('Date')
ax1.set_ylabel('Rates ($/day)', color=color)
ax1.plot(df['Date'], df['dwt_172_percentchange'], color=color)
ax1.tick_params(axis='y', labelcolor=color)

ax2 = ax1.twinx()

color = ('#87b1dd')
ax2.set_ylabel('Rates ($/ton)', color=color)
ax2.plot(df['Date'], df['Tubarao/Qingdao_160/170mt_percentchange'], color=color)
ax2.tick_params(axis='y', labelcolor=color)

plt.xticks(np.arange(36, len(df.index), step=106), rotation=45)

fig.tight_layout()
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\Figures\Python\rate_comparison_pct.png',

107

bbox_inches='tight',dpi=100)

correlation = df['dwt_172_percentchange'].corr(df['Tubarao/Qingdao_160/170mt_percentchange'])
print(f"Correlation is: {correlation} ")

##

##

if __name__ == "__main__":
start = time.time()
spot_rates_df, capesize_df = clarksons_data()
spot_rate_figures(spot_rates_df)
#capesize_database_processing(0,1,0)
#mmsi = mmsi_list(1)
#dwt = tot_fleet_capacity(3)
#print(dwt)
#percentage_change(spot_rates_df)
end = time.time()
print(f"Runtime of the program is {end - start}")

108

E.6 polygons.py

import pandas as pd
import time
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset
from geojson import Polygon, Feature, FeatureCollection, dump
#plt.style.use('seaborn-dark-palette')

from configs.project_settings import CAPESIZE_ROUTES_PATH

##

def generate_polygons():
'''
Generate: ocean polygons
Returns: List with polygons
'''
polygons = list()
polygon_atlantic = [[25, -90],[25,0],[-5.5,36],[-10,90],[-100,90],[-103,22],[-76,7],

[-61,-19],[-80,-90],[25,-90]]
polygon_FE = [[180,90],[80,90],[50,50],[80,40],[77,11],[180,-90]]
polygon_CP = [[33,29],[50,50],[80,40],[77,11],[25,0],[33,29]]
polygon_EstP = [[-180,90],[-100,90],[-103,22],[-76,7],[-61,-19],[-80,-90],[-180,-90]]
polygon_NWE = [[-5.5,36],[-10,90],[80,90],[50,50],[4,48],[-5.5,36]]
polygon_indi = [[25,-90],[25,0],[77,11],[180,-90],[25,-90]]
polygon_Med = [[25,0],[-5.5,36],[4,48],[50,50],[33,29],[25,0]]

polygons.append(polygon_atlantic)
polygons.append(polygon_FE)
polygons.append(polygon_CP)
polygons.append(polygon_EstP)
polygons.append(polygon_NWE)
polygons.append(polygon_indi)
polygons.append(polygon_Med)

return polygons

##

def ocean_polygons(polygons = generate_polygons()):
'''
Plots the ocean polygons

with: polygons = list of polygons
'''
fig, ax = plt.subplots(figsize=(15,15))
m = Basemap(projection='cyl', lon_0=0, resolution='l')
m.drawmapboundary(fill_color='white')
m.fillcontinents(color='lightgrey', lake_color='white')

for polygon in polygons:
x, y = zip(*polygon)
m.plot(x,y,markersize=0)
ax.fill(x, y, alpha=0.2)
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\Figures\Python\ocean_polygons.png',

109

bbox_inches='tight',dpi=100)

##

def ocean_polygons_geojson(ocean_polygons = generate_polygons()):
'''
Writes the ocean polygon coordinates generated by generate_polygons() to .geojson-files for
geofence evaluation in ais.py-script
'''
string_ocean_polygons = ['atlantic','FE','CP','EstP','NWE','indi','Med']
n = len(ocean_polygons)
for i in range(n):

polygon = Polygon([ocean_polygons[i]])
features = []
features.append(Feature(geometry=polygon))

feature_collection = FeatureCollection(features)

with open(r'OceanPolygons\polygon_' + string_ocean_polygons[i] + r'.geojson', 'w') as f:
dump(feature_collection, f)

##

def generate_port_polygons():
'''
Generate: port polygons
Returns: List with port polygons
'''
port_polygons = list()

#Get coordinates from: https://www.gps-coordinates.net/
#Get port locations from: https://classic.searoutes.com/routing
port_singapore = [[103.5, 1.15], [103.62, 1.27], [103.64, 1.33], [104, 1.33],

[104, 1.22], [103.78, 1.16], [103.5, 1.15]]
port_tubarao = [[-40, -20], [-40, -20.5], [-40.25, -20.75], [-40.5, -20.5],

[-40.35, -20], [-40, -20]]
port_qingdao = [[120.16159057617186,36.0624217151089],[120.1348114013672,35.86790829906797],

[120.46440124511719,35.8562222630588],[120.56533813476562,36.029110596631874],
[120.31677246093749,36.1245647481333],[120.16159057617186,36.0624217151089]]

port_rotterdam = [[4.178581237792968,51.93145921471351],[4.198322296142578,51.959605695633044],
[4.08966064453125,52.057557132353644],[3.8520812988281246,51.98065110068555],
[3.9427185058593746,51.88412064173134],[4.178581237792968,51.93145921471351]]

port_bolivar = [[-71.97263717651367,12.244230289476999],[-71.95272445678711,12.20245561901314],
[-71.90071105957031,12.268889343198195],[-71.9384765625,12.319709903080708],
[-72.02808380126953,12.299248680984558],[-72.04113006591797,12.23148048741301],
[-71.97263717651367,12.244230289476999]]

port_dampier = [[116.74999237060547,-20.620493976900747],[116.70810699462889,-20.619529991918],
[116.72218322753906,-20.639933037853005],[116.74398422241211,-20.647563395349],
[116.76758766174316,-20.63206132059543],[116.74999237060547,-20.620493976900]]

port_oita = [[131.66616439819336,33.256489214763576],[131.6757774353027,33.259575428753976],
[131.66925430297852,33.27464607011705],[131.67963981628418,33.287920432606434],
[131.6572380065918,33.29466447030428],[131.63869857788086,33.27651177811422],
[131.64170265197754,33.26746989857436],[131.66616439819336,33.256489214763576]]

port_haypoint = [[149.29218292236328,-21.279617267606948],[149.3009376525879,-21.281376790374],
[149.3199920654297,-21.25962121266924],[149.3048858642578,-21.249702161806933],
[149.2818832397461,-21.27561827396124],[149.2839431762695,-21.28153674594627],
[149.29218292236328,-21.279617267606948]]

110

port_baltimore = [[-76.54895782470703,39.20751693226987],[-76.5256118774414,39.21576330385492],
[-76.53350830078125,39.235178353475774],[-76.5582275390625,39.22985969593234],
[-76.56784057617188,39.214167307512355],[-76.54895782470703,39.207516932269]]

port_gwangyang = [[127.69100189208984,34.92675642136852],[127.63744354248045,34.8898735965285],
[127.63160705566405,34.86480634950137],[127.67074584960938,34.82986845427644],
[127.69546508789061,34.85691844395436],[127.70816802978516,34.91437014491459],
[127.69100189208984,34.92675642136852]]

port_narvik = [[17.430496215820312,68.42835737688752],[17.416076660156246,68.43529882733436],
[17.385005950927734,68.43126042407293],[17.356853485107422,68.42311832857942],
[17.413673400878906,68.40467734676693],[17.437705993652344,68.41617314451344],
[17.430496215820312,68.42835737688752]]

port_portcartier = [[-66.79078102111816,50.03233498004549],[-66.79987907409668,50.02081063581],
[-66.77833557128906,50.01799805556886],[-66.76872253417969,50.026655864097],
[-66.77704811096191,50.034760805448535],[-66.79078102111816,50.03233498004]]

port_richardsbay = [[32.02239990234375,-28.78782076284914],[32.00386047363281,-28.8049701491075],
[32.05089569091797,-28.838057477044515],[32.093467712402344,-28.8924782762],
[32.14977264404297,-28.821815920748026],[32.069435119628906,-28.77217324806],
[32.02239990234375,-28.78782076284914]]

port_gangavaram = [[83.2265853881836,17.626353863611257],[83.20117950439453,17.5602465032949],
[83.2993698120117,17.55991917900598],[83.31893920898438,17.62798987749787],
[83.25748443603516,17.647948051340578],[83.2265853881836,17.626353863611257]]

port_saldanhabay = [[18.051910400390625,-33.04723451447377],[18.002471923828125,-32.9867798933],
[17.896041870117188,-32.99081149087487],[17.765579223632812,-33.0483856287],
[17.86376953125,-33.20134964006387],[17.99560546875,-33.14215083110535],
[18.051910400390625,-33.04723451447377]]

port_banjarmasin = [[114.54826354980469,-3.279686393323821],[114.42466735839844,-3.43117485722],
[114.33540344238281,-3.5798980917712004],[114.444580078125,-3.671039169907],
[114.53453063964844,-3.5408348394316587],[114.57229614257812,-3.27625878298],
[114.54826354980469,-3.279686393323821]]

port_goa = [[73.80992889404297,15.397417842677568],[73.82125854492188,15.407347605586226],
[73.83258819580078,15.445076377324979],[73.72993469238281,15.459967425155801],
[73.71791839599608,15.380867184736008],[73.80992889404297,15.397417842677568]]

port_nouadhibou = [[-17.05078125,20.78693059257028],[-16.772003173828125,20.493918871618803],
[-16.65802001953125,20.704738720055513],[-16.917572021484375,21.208739012],
[-17.04254150390625,21.053744493156348],[-17.05078125,20.78693059257028]]

port_rizhao = [[119.54154968261717,35.39240857605964],[119.454345703125,35.25683378961826],
[119.59648132324219,35.185032937998294],[119.69192504882812,35.294391713301195],
[119.65072631835936,35.41031879581839],[119.54154968261717,35.39240857605964]]

port_dekheila = [[29.7894287109375,31.134370760178317],[29.814147949218746,31.130844260159883],
[29.855690002441406,31.15993396385525],[29.826164245605465,31.19195169537777],
[29.733467102050785,31.139954117071454],[29.752693176269528,31.10556717407662],
[29.7894287109375,31.134370760178317]]

port_polygons.append(port_singapore)
port_polygons.append(port_tubarao)
port_polygons.append(port_qingdao)
port_polygons.append(port_rotterdam)
port_polygons.append(port_bolivar)
port_polygons.append(port_dampier)
port_polygons.append(port_oita)
port_polygons.append(port_haypoint)
port_polygons.append(port_baltimore)
port_polygons.append(port_gwangyang)
port_polygons.append(port_narvik)
port_polygons.append(port_portcartier)
port_polygons.append(port_richardsbay)
port_polygons.append(port_gangavaram)

111

port_polygons.append(port_saldanhabay)
port_polygons.append(port_banjarmasin)
port_polygons.append(port_goa)
port_polygons.append(port_nouadhibou)
port_polygons.append(port_rizhao)
port_polygons.append(port_dekheila)

return port_polygons

##

def port_polygons_plot(port_polygons = generate_port_polygons()):
'''
Plots the port polygons

with: port_polygons = list of port polygons
'''
zoom = 1

fig, ax = plt.subplots(figsize=(15,15))
m = Basemap(projection='cyl', lon_0=0, resolution='l')
m.drawmapboundary(fill_color='white')
m.fillcontinents(color='lightgrey', lake_color='white')

for port_polygon in port_polygons:
x, y = zip(*port_polygon)
m.plot(x,y,markersize=0)
ax.fill(x,y,alpha=0.2)

if zoom == 1:
axins = zoomed_inset_axes(ax, 12.5, loc=3)
axins.set_xlim(-45, -37)
axins.set_ylim(-23, -17)

plt.xticks(visible=False)
plt.yticks(visible=False)

m2 = Basemap(llcrnrlon=-45,llcrnrlat=-23,urcrnrlon=-37,urcrnrlat=-17, ax=axins)
m2.drawmapboundary(fill_color='white')
m2.fillcontinents(color='lightgrey', lake_color='white')

for port_polygon in port_polygons:
x, y = zip(*port_polygon)
m2.plot(x,y,markersize=0)
axins.fill(x,y,alpha=0.2)

mark_inset(ax, axins, loc1=4, loc2=2, fc="none", ec="0.5")

plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\Figures\Python\port_polygons_zoom.png',
bbox_inches='tight', dpi=100)

##

def port_polygons_geojson(port_polygons = generate_port_polygons()):
'''
Writes the port polygon coordinates generated by generate_port_polygons to .geojson-files for
geofence evaluation in ais.py-script
'''

112

string_port_polygons = ['singapore','tubarao','qingdao','rotterdam','bolivar','dampier',
'oita','haypoint','baltimore','gwangyang','narvik','portcartier',
'richardsbay','gangavaram','saldanhabay','banjarmasin','goa',
'nouadhibou','rizhao','dekheila']

n = len(port_polygons)
for i in range(n):

polygon = Polygon([port_polygons[i]])
features = []
features.append(Feature(geometry=polygon))

feature_collection=FeatureCollection(features)

with open(r'PortPolygons\polygon_' + string_port_polygons[i] + r'.geojson', 'w') as f:
dump(feature_collection, f)

##

def path_map():
df = pd.read_csv(CAPESIZE_ROUTES_PATH)
print(df)

fig, ax = plt.subplots(figsize=(15,15))
m = Basemap(projection='cyl', lon_0=0, resolution='l')
m.drawmapboundary(fill_color='white')
m.fillcontinents(color='lightgrey', lake_color='white')

already_plotted_poo = list()
already_plotted_pod = list()

for i in range(len(df)):
lon_start = df.loc[i, 'Lon_PoO']
lat_start = df.loc[i, 'Lat_PoO']

lon_end = df.loc[i, 'Lon_PoD']
lat_end = df.loc[i, 'Lat_PoD']

if df.loc[i, 'Commodity'] == 'Ore':
color = '#1e4f9c'

else:
color = '#87b1dd'

m.drawgreatcircle(lon_start, lat_start, lon_end, lat_end, linewidth=1,color=color)

m.plot(lon_start, lat_start, marker='o', color='#1e4f9c', markersize=5, alpha=1)
m.plot(lon_end, lat_end, marker='o', color='#87b1dd', markersize=5, alpha=1)

if df.loc[i,'PoO'] not in already_plotted_poo:
already_plotted_poo.append(df.loc[i,'PoO'])
label = df.loc[i,'PoO']
if df.loc[i,'PoO'] == 'Rizhao':

plt.text(lon_start, lat_start, label, ha='right', va='top', fontsize=6)
else:

plt.text(lon_start, lat_start, label, ha='right', va='bottom', fontsize=6)

if df.loc[i,'PoD'] not in already_plotted_pod:
already_plotted_pod.append(df.loc[i,'PoD'])
label = df.loc[i,'PoD']

113

if df.loc[i,'PoD'] == 'Qingdao':
plt.text(lon_end, lat_end, label, ha='center', va='bottom', fontsize=6)

elif df.loc[i,'PoD'] == 'Oita':
plt.text(lon_end, lat_end, label, ha='left', va='top', fontsize=6)

else:
plt.text(lon_end, lat_end, label, ha='left',va='bottom',fontsize=6)

plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\Figures\Python\Capesize_routes.png',
bbox_inches='tight', dpi=100)

##

if __name__ == "__main__":
start = time.time()
#generate_polygons()
#ocean_polygons(polygons = generate_polygons())
#generate_port_polygons()
#port_polygons_plot()
#port_polygons_geojson(port_polygons = generate_port_polygons())
#port_polygons = generate_port_polygons()
#ocean_polygons_geojson(ocean_polygons=generate_polygons())
path_map()
end = time.time()
print(f"Runtime of the program is {end - start}")

114

E.7 FE.py

import numpy as np
import pandas as pd
import geopandas as gpd
from shapely.geometry import Point, LineString, Polygon
import matplotlib.pyplot as plt
import time
import datetime as dt
from datetime import datetime
from collections import defaultdict
#plt.style.use('seaborn-dark-palette')
from tqdm import tqdm

#Importing DataPaths
from configs.project_settings import AIS_RAW_DATA_PATH, SAMPLE_SET_PATH, AIS_PROCESSED_DATA_PATH
from configs.project_settings import CLARKSONS_RAW_DATA_PATH, CLARKSON_PATH, CLARKSON_TEST_PATH
from configs.project_settings import AIS_PROCESSED_DATA_SPLIT1, AIS_PROCESSED_DATA_SPLIT2
from configs.project_settings import AIS_PROCESSED_DATA_SPLIT3, AIS_PROCESSED_DATA_SPLIT4
from configs.project_settings import FEATURE_SPLIT_1, FEATURE_SPLIT_2, FEATURE_SPLIT_3
from configs.project_settings import FEATURE_SPLIT_4, FINAL_FEATURE_SET
from configs.project_settings import FEATURE_SPLIT_V1, FEATURE_SPLIT_V2, FEATURE_SPLIT_V3
from configs.project_settings import FEATURE_SPLIT_V4,FINAL_FEATURE_SET_2, FEATURES

#Importing Code
import polygons as pg
import clarksons as cl

##

def ais_data(sample=False, processed=False, split1=False, split2=False, split3=False,
split4=False):

'''
Extracts:

AIS data from .csv-file
Returns:

AIS DataFrame
'''
if sample == True:

ais_df = pd.read_csv(SAMPLE_SET_PATH)
elif processed == True:

ais_df = pd.read_csv(AIS_PROCESSED_DATA_PATH)
elif split1 == True:

ais_df = pd.read_csv(AIS_PROCESSED_DATA_SPLIT1)
elif split2 == True:

ais_df = pd.read_csv(AIS_PROCESSED_DATA_SPLIT2)
elif split3 == True:

ais_df = pd.read_csv(AIS_PROCESSED_DATA_SPLIT3)
elif split4 == True:

ais_df = pd.read_csv(AIS_PROCESSED_DATA_SPLIT4)

ais_gdf = gpd.GeoDataFrame(ais_df, geometry=gpd.points_from_xy(ais_df.longitude,
ais_df.latitude))

return ais_gdf

115

##

def geofence_processing(df, polygon_area, zone=False, port=False):
'''
Processes data from df (AIS GeoDataFrame), inserting columns
indicating if a recording has been made inside/outside the polygon_area
'''
if zone == True:

polygon = gpd.read_file(r"OceanPolygons\polygon_" + polygon_area + ".geojson")
mask = (polygon.loc[0, 'geometry'])

elif port == True:
polygon = gpd.read_file(r"PortPolygons\polygon_" + polygon_area + ".geojson")
mask = (polygon.loc[0, 'geometry'])

pip_mask_geofence = df.within(mask)
df.loc[:,polygon_area] = pip_mask_geofence
df[polygon_area] = df[polygon_area].replace({True:1, False:0})

return df

##

def df_to_array(df, polygon_area):
'''
Takes the AIS DataFrame as input, and converts the
essential data into numpy array format
Returns:

Array from the AIS database, with columns:
MMSI
Year
Week
Polygon_area

'''
array = df[["mmsi", "Year", "Week", polygon_area]].to_numpy()
return array

##

def df_to_array_nav(df):
array = df[["mmsi", "Year", "Week", "nav_status"]].to_numpy()
return array

##

def vessels_dict(df, polygon_area, vessel_list):
'''
Utilizes the data in the array converted from the AIS DataFrame
to write MMSI values of vessels registered in polygon_area
to the corresponding set of combination year and week
Returns:

A dictionary containing the set of vessels recorded
in polygon_area at a weekly frequency. For example:

{(2019, 1): [370137000, 356142000], (2019,3): [564558000]}
'''
vessel_dict = defaultdict(lambda: set())
array = df_to_array(df, polygon_area)

116

for element in array:
if element[3] == 1:

for vessel in vessel_list:
if vessel.mmsi == element[0]:

vessel_dict[(element[1], element[2])].add(vessel)

return vessel_dict

##

def vessels_count_cap_dict(df, polygon_area, vessel_list):
vessel_count_dict = defaultdict()
vessel_dict = vessels_dict(df, polygon_area, vessel_list)

for key in vessel_dict.keys():
vessel_count_dict[key] = {"count": len(vessel_dict[key]),

"sum_dwt": sum([vessel.dwt for vessel in vessel_dict[key]])}

#vessel_count_dict[(2019, 31)]['count']

return vessel_count_dict

##

class Vessel:
def __init__(self, mmsi, dwt):

self.mmsi = mmsi
self.dwt = dwt

##

def mmsi_cap_array(db):
'''
Returns an array of objects with MMSI and Dwt from the Capesize database
'''
array = db[["mmsi", "Dwt"]].to_numpy().astype(int)
array = [Vessel(arr[0], arr[1]) for arr in array]

return array

##

def write_features(db, df, polygon_area, vessel_count_dict, split1=False, split2=False,
split3=False, split4=False):

df[polygon_area] = np.nan
df[polygon_area + '_cap'] = np.nan
for i in range(696969):

print(69)
for index, row in df.iterrows():

year, week = row['Year'], row['Week']
if (year, week) in vessel_count_dict:

df.loc[index, polygon_area] = vessel_count_dict[(year, week)]['count']
df.loc[index, polygon_area + '_cap'] = vessel_count_dict[(year, week)]['sum_dwt']

pass

if split1 == True:

117

df.to_csv(FEATURE_SPLIT_1, index=False)
elif split2 == True:

df.to_csv(FEATURE_SPLIT_2, index=False)
elif split3 == True:

df.to_csv(FEATURE_SPLIT_3, index=False)
elif split4 == True:

df.to_csv(FEATURE_SPLIT_4, index=False)

##

def combine_split_features(df1, df2, df3, df4):
df1 = df1.replace({np.nan: 0})
df2 = df2.replace({np.nan: 0})
df3 = df3.replace({np.nan: 0})
df4 = df4.replace({np.nan: 0})
feature_df = df1

feature_cols = ['tubarao','tubarao_cap','qingdao','qingdao_cap','rotterdam','rotterdam_cap',
'bolivar','bolivar_cap','dampier','dampier_cap','oita','oita_cap',
'haypoint','haypoint_cap','baltimore','baltimore_cap','gwangyang',
'gwangyang_cap','narvik','narvik_cap','portcartier','portcartier_cap',
'richardsbay','richardsbay_cap','gangavaram','gangavaram_cap','saldanhabay',
'saldanhabay_cap','banjarmasin','banjarmasin_cap','goa','goa_cap',
'nouadhibou','nouadhibou_cap','rizhao','rizhao_cap','dekheila','dekheila_cap',
'atlantic','atlantic_cap','FE','FE_cap','CP','CP_cap','EstP','EstP_cap',
'NWE','NWE_cap','indi','indi_cap','Med','Med_cap']

for item in tqdm(feature_cols):
for index, row in feature_df.iterrows():

feature_df.loc[index, item] += df2.loc[index,
item] + df3.loc[index, item] + df3.loc[index,item]

feature_df.to_csv(FINAL_FEATURE_SET, index=False)

##

def vessels_active_dict(df, vessel_list):
vessel_active_dict = defaultdict(lambda: set())
array = df_to_array_nav(df)

for num, element in tqdm(enumerate(array), total=array.shape[0]):
if element[3] == 0:

for vessel in vessel_list:
if vessel.mmsi == element[0]:

vessel_active_dict[(element[1], element[2])].add(vessel)
pass

return vessel_active_dict

##

def weekly_capacity(df, vessel_list):
weekly_cap_dict = defaultdict()
vessels_active = vessels_active_dict(df, vessel_list)

for key in tqdm(vessels_active.keys()):
weekly_cap_dict[key] = {"count": len(vessels_active[key]),

118

"cap": sum([vessel.dwt for vessel in vessels_active[key]])}
pass

return weekly_cap_dict

##

def write_weekly_cap(df, weekly_cap_dict, split1=False, split2=False, split3=False,
split4=False):

df["sum_cap"] = np.nan
df["n_active"] = np.nan
for index, row in tqdm(df.iterrows(), total=df.shape[0]):

year, week = row['Year'], row['Week']
if (year, week) in weekly_cap_dict:

df.loc[index, "sum_cap"] = weekly_cap_dict[(year, week)]['cap']
df.loc[index, "n_active"] = weekly_cap_dict[(year, week)]['count']

pass

if split1 == True:
df.to_csv(FEATURE_SPLIT_V1, index=False)

elif split2 == True:
df.to_csv(FEATURE_SPLIT_V2, index=False)

elif split3 == True:
df.to_csv(FEATURE_SPLIT_V3, index=False)

elif split4 == True:
df.to_csv(FEATURE_SPLIT_V4, index=False)

##

def combine_split_features_active(df1, df2, df3, df4):
df1 = df1.replace({np.nan: 0})
df2 = df2.replace({np.nan: 0})
df3 = df3.replace({np.nan: 0})
df4 = df4.replace({np.nan: 0})
feature_df = df1

feature_cols = ['sum_cap', 'n_active']

for item in tqdm(feature_cols):
for index, row in feature_df.iterrows():

feature_df.loc[index, item] += df2.loc[index,
item] + df3.loc[index, item] + df3.loc[index,item]

feature_df.to_csv(FINAL_FEATURE_SET_2, index=False)

##

def write_fleet_utilization(df):
tot_fleet_cap = 240407734

df['fleet_util'] = np.nan
df = df.replace({np.nan: 0})

for index, row in df.iterrows():
df.loc[index, 'fleet_util'] = df.loc[index, 'sum_cap'] / tot_fleet_cap

119

df.to_csv(FEATURES, index=False)

##

def write_zone_factor(df):
new_cols = ['atlantic', 'FE', 'CP', 'EstP', 'NWE', 'indi', 'Med']
for item in tqdm(new_cols):

df[item + '_pct'] = np.nan
for index, row in df.iterrows():

weekly_cap = df.loc[index, 'Sum_tot_cap']
df.loc[index, item + '_pct'] = df.loc[index, item + '_cap'] / weekly_cap

pass
df = df.replace({np.nan: 0})

df.to_csv(FEATURES, index=False)

##

def plotting(df, fleet_utilization=False, zone_factor=False):

if fleet_utilization == True:
#df.plot(kind='line', x='Date', y='fleet_util')
df.iloc[0:52].plot(kind='line', x='Date', y='fleet_util')
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\\fleet_utilization.png',

bbox_inches='tight',dpi=100)

if zone_factor == True:
df1 = pd.read_csv(FEATURES, usecols=["atlantic_pct", "FE_pct", "CP_pct",

"EstP_pct", "NWE_pct", "indi_pct", "Med_pct"])
corr = df1.corr()
df1.boxplot()
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\\boxplot_zone_cap.png',

bbox_inches='tight',dpi=100)
print(corr)
desc = df1.describe()
print(desc)
desc2 = corr.describe()
print(desc2)

##

if __name__ == "__main__":
start = time.time()
start_readable = time.ctime(start)
print(f"\nInitialized run at: {start_readable}\n")

#------ Output Processed AIS DataFrame ------#
#ais_df = ais_data(sample=True)
#print(ais_df)

#--------- Geofence Processing ---------#
#ais_df, ais_gdf = ais_data(sample=True)
#ais_df = geofence_processing(ais_gdf, 'atlantic', zone=True)
#print(ais_df)

#---- Convert from DataFrame to Array ----#
#ais_df, ais_gdf = ais_data(sample=True)

120

#ais_df = geofence_processing(ais_gdf, 'atlantic', zone=True)
#array = df_to_array(ais_df, 'atlantic')
#print(array)

#---- Extract Set of Vessels in Area of Interest ----#
#ais_df, ais_gdf = ais_data(sample=True)
#ais_df = geofence_processing(ais_gdf, 'atlantic', zone=True)
#spot_df, capesize_db = cl.clarksons_data()
#vessel_list = mmsi_cap_array(capesize_db)
#vessel_dict = vessels_dict(ais_df, 'atlantic', vessel_list)
#print(vessel_dict)

#---- Extract Num of Vessels & Capacity in Area of Interest ----#
#ais_gdf = ais_data(sample=True)
#ais_df = geofence_processing(ais_gdf, 'atlantic', zone=True)
#spot_df, capesize_db = cl.clarksons_data()
#vessel_list = mmsi_cap_array(capesize_db)
#vessel_count_dict = vessels_count_cap_dict(ais_df, 'atlantic', vessel_list)

#---- Extract Num of Active Vessels & Capacity in World on Weekly Frequency ----#
#ais_gdf = ais_data(split4=True)
#print('AIS Extraction Finished')
#spot_df, capesize_db = cl.clarksons_data()
#print('Clarksons Data Extraction Finished')
#vessel_list = mmsi_cap_array(capesize_db)
#print('Vessel List Extraction Finished')
#weekly_cap = weekly_capacity(ais_gdf, vessel_list)
#write_weekly_cap(spot_df, weekly_cap, split4=True)

#---- Write Features to Split Feature Dataset ----#
#ais_gdf = ais_data(split4=True)
#print('AIS Extraction Finished')
#spot_df, capesize_db = cl.clarksons_data()
#print('Clarksons Data Extraction Finished')
#vessel_list = mmsi_cap_array(capesize_db)
#print('Vessel List Extraction Finished')
#string_port_polygons = ['tubarao','qingdao','rotterdam','bolivar','dampier',
'oita','haypoint','baltimore','gwangyang','narvik','portcartier','richardsbay',
'gangavaram','saldanhabay','banjarmasin','goa','nouadhibou','rizhao','dekheila']
#string_ocean_polygons = ['atlantic', 'FE', 'CP','EstP','NWE','indi','Med']
#for port in tqdm(string_port_polygons):
ais_df = geofence_processing(ais_gdf, port, port=True)
vessel_count_dict = vessels_count_cap_dict(ais_df, port, vessel_list)
write_features(capesize_db, spot_df, port, vessel_count_dict, split4=True)
#for zone in tqdm(string_ocean_polygons):
ais_df = geofence_processing(ais_gdf, zone, zone=True)
vessel_count_dict = vessels_count_cap_dict(ais_df, zone, vessel_list)
write_features(capesize_db, spot_df, zone, vessel_count_dict, split4=True)

#---- Combine the Split Feature Datasets ----#
#df1 = pd.read_csv(FEATURE_SPLIT_1)
#df2 = pd.read_csv(FEATURE_SPLIT_2)
#df3 = pd.read_csv(FEATURE_SPLIT_3)
#df4 = pd.read_csv(FEATURE_SPLIT_4)
#combine_split_features(df1, df2, df3, df4)

#df1 = pd.read_csv(AIS_PROCESSED_DATA_SPLIT1)

121

#df2 = pd.read_csv(AIS_PROCESSED_DATA_SPLIT2)
#df3 = pd.read_csv(AIS_PROCESSED_DATA_SPLIT3)
#df4 = pd.read_csv(AIS_PROCESSED_DATA_SPLIT4)
#df = pd.read_csv(r'AIS_Data\AIS_2019_processed_02.csv')
#print(df)

#---- Combine the Split Feature Datasets (Active) ----#
#df1 = pd.read_csv(FEATURE_SPLIT_V1)
#df2 = pd.read_csv(FEATURE_SPLIT_V2)
#df3 = pd.read_csv(FEATURE_SPLIT_V3)
#df4 = pd.read_csv(FEATURE_SPLIT_V4)
#combine_split_features_active(df1, df2, df3, df4)

#---- Write Fleet Utilization Factor to Feature set ----#
#df = pd.read_csv(FEATURES)
#write_fleet_utilization(df)

#---- Write Zone Utilization Factor to Feature set ----#
#df = pd.read_csv(FEATURES)
#write_zone_factor(df)

#---- Plot Selection of Features ----#
df = pd.read_csv(FEATURES)
plotting(df, zone_factor=True)

end = time.time()
end_readable = time.ctime(end)
print(f"\nCode ended at: {end_readable}")
print(f"Runtime of the program is {end - start}")

122

E.8 data preparation.py

import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
from statsmodels.tsa.stattools import adfuller
import time

from configs.project_settings import FEATURES

def plot_time_series(data):
values = data.values

train_size = round(len(values)*0.9)
validation_size = round(train_size*0.9)

train_data = values[0:validation_size+1]
validation_data = values[validation_size:train_size+1]
test_data = values[train_size:]

groups = list(range(0, len(data.columns)))
i = 1
#Plot each column
plt.figure(figsize=(20,20))
for group in groups:

plt.subplot(len(groups), 1, i)
plt.plot(train_data[:, group], label='training_set')
plt.plot(range(validation_size, train_size+1), validation_data[:, group],

label='validation_set')
plt.plot(range(train_size, len(values)), test_data[:, group], label='testing_set')
plt.title(data.columns[group], y=0.85, loc='right')

if i == 1:
plt.legend()

plt.xlim([-1, len(data)+1])
i += 1
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\plot_time_series.pdf',

bbox_inches='tight')

##

def normalize(data):
for i, col in data.iteritems():

scaler = MinMaxScaler(feature_range=(0,1))
data[i] = scaler.fit_transform(data[i].values.reshape(-1,1))
data = data[data.columns].astype('float32')

return data, scaler

##

def difference_normalize(data):
data = data.diff().dropna()

for i, col in data.iteritems():
scaler = MinMaxScaler(feature_range=(0,1))

123

data[i] = scaler.fit_transform(data[i].values.reshape(-1,1))
data = data[data.columns].astype('float32')

return data, scaler

##

def log_difference_normalize(data):
data = data.apply(np.log)
data = data.replace([np.inf, -np.inf], 0)
data = data.dropna().diff().dropna().reset_index(drop=True)

for i, col in data.iteritems():
scaler = MinMaxScaler(feature_range=(0,1))
data[i] = scaler.fit_transform(data[i].values.reshape(-1,1))
data = data[data.columns].astype('float32')

return data, scaler

##

def stationarity_check(data):
AF = pd.DataFrame()

for name, series in data.iteritems():
result = adfuller(series)
AF.at['ADF Statistics', name] = result[0]
AF.at['p-value', name] = result[1]
for key, value in result[4].items():

AF.loc[key, name] = value
for key, value in result[4].items():

AF.loc['Accept H0 at ' + key, name] = (result[0]>value)

return AF

##

def supervised_learning(lag, data, diff=True):
if diff == True:

df_data, scaler = difference_normalize(data)
else:

df_data = data

dataframe = pd.DataFrame()
for name, data in df_data.iteritems():

series = df_data[name]
for i in range(lag, 0, -1):

dataframe[name + '(t-' + str(i) + ')'] = series.shift(i)
dataframe[name+ '(t)'] = series

dataframe = dataframe[lag:]

dataframe['price(t+1)'] = dataframe['price(t)'].shift(-1)

#train_size = round(len(data) * 0.9)
#train_data = dataframe[0:train_size]

#return train_data.dropna()

124

return dataframe

##

def inverse(pred, test, last_obs, scl):
inverted = scl.inverse_transform(pred)
return inverted

##

def inverse_transform(pred, test, last_obs, scl):
pred = scl.inverse_transform(pred)
inverted = list()
inverted.append(pred[0] + last_obs)

for i in range(1, len(pred)):
inverted.append(pred[i] + test[i-1])

return inverted

##

def inverse_log_transform(pred, test, last_obs, scl):
last_ln_obs = np.log(last_obs)
pred = scl.inverse_transform(pred)
inverted = list()
inverted.append(pred[0] + last_ln_obs)

for i in range(1, len(pred)):
inverted.append(pred[i] + np.log(test[i-1]))

return np.exp(inverted)

##

if __name__ == "__main__":
start = time.time()
start_readable = time.ctime(start)
print(f"\nInitialized run at: {start_readable}\n")

#data = pd.read_csv(r'AIS_Data\FinalFeatureSetTesting_v01.csv')
data = pd.read_csv(FEATURES)
#plot_time_series(df)
#data, scaler = normalize(data)
#data, scaler = difference_normalize(data)
#data, scaler = log_difference_normalize(data)
ADF = stationarity_check(data)
print(data)
print(ADF)
ADF_transposed = ADF.transpose()
ADF_transposed.to_csv(r'ADF_Features_nodiff.csv')

end = time.time()
end_readable = time.ctime(end)
print(f"\nCode ended at: {end_readable}")
print(f"Runtime of the program is {end - start}")

125

E.9 feature importance score.py

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import f_regression
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import RidgeCV, LinearRegression
import matplotlib.pyplot as plt
from minepy import MINE
import seaborn as sns
import time
import data_preparation as DP

from configs.project_settings import FEATURES

def scale_rank(rank, name, order=1):
scale = MinMaxScaler()
rank = scale.fit_transform(order*np.array([rank]).T).T[0]
rank = map(lambda x: round(x, 2), rank)
return dict(zip(name, rank))

##

def main(lag, data, n_features, plot=False):
df = DP.supervised_learning(lag, data)
#df.to_csv(r'FeatureSets\FeatureSet_Test_01.csv', index=False)
array = df.dropna().values.astype('float32')

#Split into input and output
X = array[:,0:-1]
Y = array[:,-1]

names = df.columns.values[0:-1]
ranks = {}

#Linear Regression
lr = LinearRegression()
lr.fit(X, Y)
ranks['Linear Reg.'] = scale_rank(np.abs(lr.coef_), names)

#Ridge Regression with cross validation to find the tuning parameter
ridge = RidgeCV()
ridge.fit(X, Y)
ranks['Ridge Reg.'] = scale_rank(np.abs(ridge.coef_), names)

#Random Forests
rf = RandomForestRegressor()
rf.fit(X, Y)
ranks['RF'] = scale_rank(rf.feature_importances_, names)

#Linear Correlation
f, pval = f_regression(X, Y, center=True)
ranks['Linear Corr.'] = scale_rank(f, names)

#MIC
mine = MINE()

126

mic_scores = []
for i in range(X.shape[1]):

mine.compute_score(X[:,i], Y)
m = mine.mic()
mic_scores.append(m)

ranks['MIC'] = scale_rank(mic_scores, names)

#Mean Score
r = {}
for name in names:

r[name] = round(np.mean([ranks[method][name] for method in ranks.keys()]), 2)
ranks['Mean Score'] = r

ratings = pd.DataFrame(ranks)

#Sort the ranked features with regards to Mean Score
features_sorted = ratings.sort_values('Mean Score', ascending=False)
#Extract only top number of features
top_features = features_sorted.index[:n_features]

if plot == True:
#Plot top features based on mean score
ratings['Mean Score'].sort_values()[-n_features:].plot(kind='bar',

figsize = (10,2), color='b')
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\mean_score.png',

bbox_inches='tight')

j = 0
for i in range(0, len(ratings), 50):

j += 1
plt.subplots(figsize=(12, 0.3*len(ratings[i:i+63])))
sns.heatmap(ratings[i:i+63], cmap='coolwarm', annot=True, cbar=False,

linewidths=.1, vmin=0, vmax=1)
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\FI_' + str(j) + r'.png',

bbox_inches='tight')

return top_features

##

if __name__ == "__main__":
start = time.time()
start_readable = time.ctime(start)
print(f"\nInitialized run at: {start_readable}\n")

#data = pd.read_csv(r'AIS_Data\FinalFeatureSetTesting_v01.csv')
data = pd.read_csv(FEATURES)
n_features = 20
top_features = main(1, data, n_features, plot=True)

end = time.time()
end_readable = time.ctime(end)
print(f"\nCode ended at: {end_readable}")
print(f"Runtime of the program is {end - start}")

127

E.10 feature selection.py

#Data Manipulation
from matplotlib import colors
from numpy.core.numeric import Inf
from numpy.lib.function_base import average
import pandas as pd
import numpy as np

#Visualization
import matplotlib.pyplot as plt
import seaborn as sns

from collections import OrderedDict
from sklearn import linear_model

from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import f1_score, make_scorer
from sklearn.model_selection import cross_val_score, KFold
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipeline
from sklearn import linear_model, tree, ensemble
from sklearn.feature_selection import RFE

from configs.project_settings import FEATURES
import time

import data_preparation as DP

def rmse(score):
rmse = np.sqrt(-score)
print(f'rmse = {"{:.4f}".format(rmse)}')
return rmse

##

def plot_feature_importances(df, n=20, threshold=None):
'''
Plots n most important features. Also plots the cumulative importance if threshold
is specified and prints the number of features needed to reach threshold
cumulative importance. Intended for use with any tree-based feature importances.

Args:
df (DataFrame): Dataframe of feature importances. Columns must be "feature" and "importance"
n (int): Number of most important features to plot. Default is 10.
threshold (float): Threshold for cumulative importance plot. If not provided,
no plot is made. Default is None.

Returns:
df (DataFrame): Dataframe ordered by feature importances with a normalized column
(sums to 1)

Note:
* Normalization in this case means sums to 1
* Cumulative importance is calculated by summing features from most to least important
* A threshold of 0.9 will show the most important features needed to reach 90% of

128

cumulative importance
'''
#Sort Features with most important at the head
df = df.sort_values('importance', ascending=False).reset_index(drop=True)

#Normalize the feature importances to add up to one and calculate cumulative importance
df['importance_normalized'] = df['importance'] / df['importance'].sum()
df['cumulative_importance'] = np.cumsum(df['importance_normalized'])

#Bar plot of n most important features
plt.rcParams['font.size'] = 12
df.loc[:n, :].plot.barh(y = 'importance_normalized',

x = 'feature', color = 'darkblue',
edgecolor = 'k', figsize = (12, 8),
legend = False, linewidth=2)

plt.xlabel('Normalized Importance', size=18); plt.ylabel('');
plt.title(f'{n} Most Important Features', size=18)
plt.gca().invert_yaxis()
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\Figures\Chapter4_MA\FI.png',

bbox_inches='tight')

if threshold:
#Cumulative Importance plot
plt.figure(figsize=(8,6))
plt.plot(list(range(len(df))), df['cumulative_importance'], 'b-')
plt.xlabel('Number of features', size=16); plt.ylabel('Cumulative Importance', size=16);
plt.title('Cumulative Feature Importance', size=18);

#Number of features needed for threshold cumulative importance
#This is the index (will need to add 1 for the actual number)
importance_index = np.min(np.where(df['cumulative_importance'] > threshold))

#Add vertical line to plot
plt.vlines(importance_index + 1, ymin=0, ymax=1.05, linestyles=':', color='black')
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\FI_cumulative_plot.png',

bbox_inches='tight')

print('{} features required for {:.0f}% of cumulative importance.'.format(importance_index
+ 1, 100*threshold))

return df

##

def model_tuning():
#Read data
unprocessed_data = pd.read_csv(FEATURES)

#Define Train/Test-ratio
train_test_ratio = 0.8
train_size = round(len(unprocessed_data) * train_test_ratio)

#Set lag
lag = 1

#Convert unprocessed dataframe with features to supervised dataframe, with corresponding lag

129

data = DP.supervised_learning(lag, unprocessed_data, diff=True)

#Split data into Train and Test sets
train_set, test_set = data[0:train_size], data[train_size:]
X = train_set.copy()
train_target = X['price(t)']
X.drop(['price(t)'], axis=1, inplace=True)

#Get list of all features
features = list(X.columns)

estimators = [50, 100, 150, 200, 250, 300, 350]
best_estimator = None
best_rmse = Inf
for count in estimators:

score = cross_val_score(ensemble.RandomForestRegressor(n_estimators=count,
random_state=1337420), X, train_target, scoring="neg_mean_squared_error")

print(f'For estimators: {count}')
rmse_val = rmse(score.mean())
#Lowest rmse = 0.1131 -> estimators = 300
if rmse_val < best_rmse:

best_estimator = count
best_rmse = rmse_val

return X, train_target, features, best_estimator

##

def feature_importance():
X, train_target, features, estimator = model_tuning()

#Create and fit RF model
model = RandomForestRegressor(estimator, random_state=1337420)
model.fit(X, train_target)

feature_importances = pd.DataFrame({'feature': features,
'importance': model.feature_importances_})

fi_df = plot_feature_importances(feature_importances, threshold=0.95)
return X, train_target, fi_df, estimator

##

def feature_selection(n_features):
X, train_target, fi_df, estimator = feature_importance()

#Create correlation matrix
corr_matrix = X.corr()

#Select upper triangle of correlation matrix
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))

#Find index of feature columns with correlation greater than 0.975
to_drop = [column for column in upper.columns if any(abs(upper[column]) > 0.975)]

#Drop feature columns with correlation greater than 0.975
X = X.drop(columns=to_drop)

130

#Recursive Feature Elimination with Random Forest
#Create a model for feature selection
estimator = RandomForestRegressor(random_state=1337420, n_estimators=estimator)

#Create the object
selector = RFE(estimator, n_features_to_select=n_features, step=1)
selector = selector.fit(X, train_target)

selected_features = list()
for index, item in enumerate(selector.support_):

if item == True:
selected_features.append(X.iloc[:, index].name)

print(selected_features)
return selected_features

##

if __name__ == "__main__":
start = time.time()
start_readable = time.ctime(start)
print(f"\nInitialized run at: {start_readable}\n")

n_features = 20
sel_n_features = feature_selection(n_features-1)

end = time.time()
end_readable = time.ctime(end)
print(f"\nCode ended at: {end_readable}")
print(f"Runtime of the program is {end - start}")

131

E.11 ML models.py

from sklearn.utils import shuffle
from LSTM_multivariate import prepare_data_LSTM
from keras.layers.wrappers import Bidirectional
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sklearn.metrics as metrics
from sklearn.metrics import make_scorer
from sklearn.model_selection import TimeSeriesSplit, GridSearchCV
from sklearn import linear_model
from sklearn.ensemble import RandomForestRegressor
import time
import feature_importance_score as FIS
import data_preparation as DP
from catboost import CatBoostRegressor
from sklearn.tree import export_graphviz
from sklearn import tree
from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_absolute_percentage_error

from keras.layers import Input, Dense, Dropout, LSTM
from keras.models import Sequential
from keras import backend as K
from keras.wrappers.scikit_learn import KerasRegressor

from configs.project_settings import FEATURES

import feature_selection as FS

##

def regression_results(y_true, y_pred):
explained_variance = metrics.explained_variance_score(y_true, y_pred)
mae = metrics.mean_absolute_error(y_true, y_pred)
mse = metrics.mean_squared_error(y_true, y_pred)
#mean_squared_log_error = metrics.mean_squared_log_error(y_true, y_pred)
#r2 = metrics.r2_score(y_true, y_pred)
mape = metrics.mean_absolute_percentage_error(y_true, y_pred)

print('Explained Variance: ', round(explained_variance,4))
#print('Mean Squared Log Error: ', round(mean_squared_log_error,4))
#print('R2: ', round(r2,4))
print('MAE: ', round(mae,5))
#print('MSE: ', round(mse,4))
print('RMSE: ', round(np.sqrt(mse),5))
print('MAPE: ', round(mape,5))

##

def rmse(actual, predict):
predict = np.array(predict)
actual = np.array(actual)
distance = predict - actual
square_distance = distance ** 2
mean_square_distance = square_distance.mean()
score = np.sqrt(mean_square_distance)

132

return score

##

def plot_models(y_test, predictions, min):
print(y_test[min:].values)
print(predictions[0][min:])
print(predictions[1][min:])
plt.plot(y_test[min:].values, label=True, linewidth=3, alpha=0.7)
plt.plot(predictions[0][min:], label="LR")
plt.plot(predictions[1][min:], label="RF")
#plt.plot(predictions[2][min:], label="NN")
plt.legend(loc='upper right')
plt.rcParams["figure.figsize"] = (15,15)
plt.rcParams["legend.fontsize"] = 14
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\Figures\Python\TestPlots\LR_RF.png')

##

def root_mean_squared_error(y_true, y_pred):
return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))

##

def create_model():

K.clear_session()

model = Sequential()
model.add(LSTM(1000, input_shape=(X_train_lstm.shape[1], X_train_lstm.shape[2])))
model.add(Dropout(0.3))
model.add(Dense(1, activation='linear'))
model.compile(loss=root_mean_squared_error, optimizer='adam')

return model

##

def prepare_data_LSTM(data, sliding_window):
n_features = len(data[0])

#Split the data into Features (x) and Predicted Value (y)
x, y = data[: ,:n_features], data[:,-1].reshape(-1,1)
#Create Features (shape=[samples, sliding_window, n_features]) and Predicted Value arrays
#The Feature Array (X) will contain the next # sliding_window data points for all features
#see example below
'''
array([[[0.51559937, 0.55616438, 0.1875 , ..., 0. ,

0. , 0.48648649],
[0.3087028 , 0.41917807, 0.6875 , ..., 0.83720928,
0.83167738, 0.52252251],

[0.27093595, 0.3890411 , 0.25 , ..., 0.79069769,
0.7868582 , 0.32432431],

[0. , 0.18630135, 0.625 , ..., 0.67441857,
0.67622554, 0.17117119]],

[[0.3087028 , 0.41917807, 0.6875 , ..., 0.83720928,

133

0.83167738, 0.52252251],
[0.27093595, 0.3890411 , 0.25 , ..., 0.79069769,
0.7868582 , 0.32432431],

[0. , 0.18630135, 0.625 , ..., 0.67441857,
0.67622554, 0.17117119],

[0.19540229, 0.29041094, 0.25 , ..., 0.72093022,
0.71738136, 0.4954955]],

'''
X, Y = np.empty((0, sliding_window, n_features)), np.empty((0))

for i in range(len(x)-sliding_window):
X = np.vstack((X, [x[i:(i+sliding_window),:]]))
Y = np.append(Y, y[i+sliding_window])

Y = np.reshape(Y, (len(Y), 1))

return X, Y

##

def plot_rmse(rmse_lstm, rmse_LR, rmse_RF, train_len, all=False, top=False, sel=False):
xthreshold = train_len-1
train = []
test = []
X = []
for index, item in enumerate(rmse_LR):

X.append(index)
if index <= xthreshold:

train.append(True)
test.append(False)

else:
train.append(False)
test.append(True)

X = np.array(X)
fig, ax = plt.subplots(figsize=(15,15))
plt.plot(X[train], rmse_lstm[train], linestyle='-', marker='o',color='b')
plt.plot(X[test], rmse_lstm[test], linestyle='-', marker='v', color='b')
plt.plot(X[train], rmse_LR[train], linestyle='-', marker='o', color='g')
plt.plot(X[test], rmse_LR[test], linestyle='-', marker='v', color='g')
plt.plot(X[train], rmse_RF[train], linestyle='-', marker='o', color='r')
plt.plot(X[test], rmse_RF[test], linestyle='-', marker='v', color='r')
plt.title('RMSE Model Loss')
plt.ylabel('RMSE')
plt.xlabel('Time')
plt.legend(['LSTM Train', 'LSTM Test', 'LR Train', 'LR Test', 'RF Train', 'RF Test'])
if all == True:

plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\RMSE_models_all_features.png',
bbox_inches='tight')

if top == True:
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\RMSE_models_top_features.png',

bbox_inches='tight')
if sel == True:

plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\RMSE_models_sel_features.png',
bbox_inches='tight')

##

def evaluate_results(real_LR, real_RF, real_lstm, pred_LR, pred_RF, pred_lstm, all=False,

134

top=False, sel=False):
rmse_LR = np.sqrt(mean_squared_error(real_LR, pred_LR))
rmse_RF = np.sqrt(mean_squared_error(real_RF, pred_RF))
rmse_lstm = np.sqrt(mean_squared_error(real_lstm, pred_lstm))

mae_LR = mean_absolute_error(real_LR, pred_LR)
mae_RF = mean_absolute_error(real_RF, pred_RF)
mae_lstm = mean_absolute_error(real_lstm, pred_lstm)

mape_LR = np.mean(np.abs((real_LR - pred_LR) / real_LR))*100
mape_RF = np.mean(np.abs((real_RF - pred_RF) / real_RF))*100
mape_lstm = np.mean(np.abs((real_lstm - pred_lstm) / real_lstm))*100

print("===================================")
print(f"Test scores for LR")
print('\nTest RMSE: ', rmse_LR)
print('\nTest MAE: ', mae_LR)
print('\nTest MAPE: ', mape_LR)
print("===================================")

print("===================================")
print(f"Test scores for RF")
print('\nTest RMSE: ', rmse_RF)
print('\nTest MAE: ', mae_RF)
print('\nTest MAPE: ', mape_RF)
print("===================================")

print("===================================")
print(f"Test scores for LSTM")
print('\nTest RMSE: ', rmse_lstm)
print('\nTest MAE: ', mae_lstm)
print('\nTest MAPE: ', mape_lstm)
print("===================================")

forecast_LR = pd.DataFrame(data = pred_LR, columns=['Pred LR'])
forecast_LR['Real'] = pd.DataFrame(real_LR)

forecast_RF = pd.DataFrame(data = pred_RF, columns=['Pred RF'])
forecast_RF['Real'] = pd.DataFrame(real_RF)

forecast_lstm = pd.DataFrame(data = pred_lstm, columns=['Pred LSTM'])
forecast_lstm['Real'] = pd.DataFrame(real_lstm)

if all == True:
forecast_LR.to_csv(r'ForecastingResults\LR_forecast_all_features.csv')
forecast_RF.to_csv(r'ForecastingResults\RF_forecast_all_features.csv')
forecast_lstm.to_csv(r'ForecastingResults\LSTM_forecast_all_features.csv')

if top == True:
forecast_LR.to_csv(r'ForecastingResults\LR_forecast_top_features.csv')
forecast_RF.to_csv(r'ForecastingResults\RF_forecast_top_features.csv')
forecast_lstm.to_csv(r'ForecastingResults\LSTM_forecast_top_features.csv')

if sel == True:
forecast_LR.to_csv(r'ForecastingResults\LR_forecast_sel_features.csv')
forecast_RF.to_csv(r'ForecastingResults\RF_forecast_sel_features.csv')
forecast_lstm.to_csv(r'ForecastingResults\LSTM_forecast_sel_features.csv')

print(forecast_LR['Pred LR'])

135

print(forecast_LR['Real'])
print(forecast_RF['Pred RF'])
print(forecast_RF['Real'])
print(forecast_lstm['Pred LSTM'])
print(forecast_lstm['Real'])

#Plot Forecast
fig, ax = plt.subplots(figsize=(15,15))
plt.plot(forecast_LR['Pred LR'], linestyle='--', label='LR Pred', color='b')
plt.plot(forecast_RF['Pred RF'], linestyle='--', label='RF Pred', color='r')
plt.plot(forecast_lstm['Pred LSTM'], linestyle='--', label='LSTM Pred', color='m')
plt.plot(forecast_LR['Real'], linestyle='-', label='LR & RF Real', color='k')
plt.plot(forecast_lstm['Real'], linestyle='-.', label='LSTM Real', color='k')
plt.legend()
plt.title('Model Forecasting Plot')
plt.ylabel('Spot Rate [$/day]')
plt.xlabel('Time')
if all == True:

plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Forecasting_models_all_features.png',
bbox_inches='tight')

if top == True:
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Forecasting_models_top_features.png',

bbox_inches='tight')
if sel == True:

plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Forecasting_models_sel_features.png',
bbox_inches='tight')

##

def model_persistence(x):
return x

##

def plot_grid_search(cv_results, grid_param_1, grid_param_2, name_param_1, name_param_2,
file_type):

#Get test scores mean and std for each grid search
scores_mean = cv_results['mean_test_rmse']
scores_mean = np.array(scores_mean).reshape(len(grid_param_2),len(grid_param_1))

scores_sd = cv_results['std_test_rmse']
scores_sd = np.array(scores_sd).reshape(len(grid_param_2),len(grid_param_1))

Plot Mean Grid search scores
_, ax = plt.subplots(1,1)

Param1 is the X-axis, Param 2 is represented as a different curve (color line)
for idx, val in enumerate(grid_param_2):

ax.plot(grid_param_1, scores_mean[idx,:], '-o', label= name_param_2 + ': ' + str(val))

#ax.set_title("Grid Search Scores", fontsize=20, fontweight='bold')
ax.set_xlabel(name_param_1, fontsize=16)
ax.set_ylabel('CV Average Score', fontsize=16)
#ax.legend(loc='upper left', bbox_to_anchor=(1.05, 1), fontsize=12)
ax.legend(loc="upper center", bbox_to_anchor=(0.5, -0.3))
ax.grid('on')
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\GS_mean_scores_' + file_type + r'.png',

136

bbox_inches='tight')

Plot Std Grid search scores
_, ax1 = plt.subplots(1,1)

Param1 is the X-axis, Param 2 is represented as a different curve (color line)
for idx, val in enumerate(grid_param_2):

ax1.plot(grid_param_1, scores_sd[idx,:], '-o', label=name_param_2 + ': ' + str(val))

ax1.set_xlabel(name_param_1, fontsize=16)
ax1.set_ylabel('CV Std Score', fontsize=16)
#ax1.legend(loc='upper left', bbox_to_anchor=(1.05, 1), fontsize=12)
ax1.legend(loc="upper center", bbox_to_anchor=(0.5, -0.3))
ax1.grid('on')
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\GS_std_scores_' + file_type + r'.png',

bbox_inches='tight')

##

if __name__ == "__main__":
start = time.time()
start_readable = time.ctime(start)
print(f"\nInitialized run at: {start_readable}\n")

#Fix random seed for reproducibility
seed = 1337420
np.random.seed(seed)

#Select number of features and lag to utilize in models
n_features = 20
lag = 1

#Initialize Feature Selection (True / False)
all_features = False #Employ all constructed features
top_features = False #Employ only top n features
sel_features = False #Employ best combination of n features

#Create Persistence Model (True/False)
persistence_model = True

#Plot RF Trees - True/False
plot_trees = False
#Run Catboost - True/False
cboost = False

#Extract Unprocessed Feature Data
#unprocessed_data = pd.read_csv(r'AIS_Data\FinalFeatureSetTesting_v01.csv')
unprocessed_data = pd.read_csv(FEATURES)
features = list(unprocessed_data.columns)

#Convert unprocessed raw data to supervised dataset
data = DP.supervised_learning(lag, unprocessed_data, diff=False)

#Difference and Normalize the Supervised Data
data, scaler = DP.difference_normalize(data)

#Define Train/Test-ratio

137

train_test_ratio = 0.8
train_size = round(len(data) * train_test_ratio)

#Feature Selection
if all_features == True:

train_data, test_data = data[1:train_size], data[train_size:]

X_train = train_data.loc[:, train_data.columns != "price(t)"]
y_train = train_data["price(t)"]
X_test = test_data.loc[:, test_data.columns != "price(t)"]
y_test = test_data["price(t)"]
fs = 'all'

elif top_features == True:
#Extract Top Features
top_n_features = FIS.main(lag, unprocessed_data, n_features, plot=True)

#Split data into raw Train and Test sets
train_raw_data, test_raw_data = data[1:train_size], data[train_size:]

train_data = pd.DataFrame()
test_data = pd.DataFrame()
for item in top_n_features:

train_data[item] = train_raw_data[item]
test_data[item] = test_raw_data[item]

X_train = train_data.loc[:, train_data.columns != "price(t)"]
y_train = train_raw_data["price(t)"]
X_test = test_data.loc[:, test_data.columns != "price(t)"]
y_test = test_raw_data["price(t)"]
fs = 'top'

elif sel_features == True:
#Extract Selected Features
sel_n_features = FS.feature_selection(n_features-1)

#Split data into raw Train and Test sets
train_raw_data, test_raw_data = data[1:train_size], data[train_size:]

train_data = pd.DataFrame()
test_data = pd.DataFrame()
for item in sel_n_features:

train_data[item] = train_raw_data[item]
test_data[item] = test_raw_data[item]

X_train = train_data.loc[:, train_data.columns != "price(t)"]
y_train = train_raw_data["price(t)"]
X_test = test_data.loc[:, test_data.columns != "price(t)"]
y_test = test_raw_data["price(t)"]
fs = 'sel'

elif all_features == False and top_features == False and sel_features == False
and persistence_model == False:

print('Remember to select feature selection process or compute persistence model!')
exit()

#Training
#format: tuple("name", ModelClass)
#Remember to also add search params
models = [

138

("LR", linear_model.Ridge(max_iter=20000, fit_intercept=True)),
("RF", RandomForestRegressor()),
#("NN", MLPRegressor(max_iter=20000))
("LSTM", KerasRegressor(build_fn=create_model))

]

search_params = [
{ 'alpha': [0.01, 0.05, 0.1, 0.5, 1, 2, 5], 'solver': ['auto', 'lsqr', 'sag', 'saga'] }, #LR
{ 'n_estimators': [20, 50, 100, 150, 200], 'max_depth': [i for i in range(5,15)] }, #RF
{ 'epochs': [10, 25, 50, 75, 100], 'batch_size': [8, 16, 32, 64, 128, 254]} #LSTM

]

scorers = {'rmse': 'neg_root_mean_squared_error'}

models_trained = []
history_acc = list()
history_val_acc = list()
history_loss = list()
history_val_loss = list()

rmse_score = make_scorer(rmse, greater_is_better=False)
if persistence_model == False:

for i, m in enumerate(models):
name, model = m
print(f"Training Model {name} ...")

ts_cv = TimeSeriesSplit(n_splits=4)
if name == "LSTM":

if all_features:
#Need to make sure that price(t) is the last column in the dataframe
data_lstm = data
data_lstm = data_lstm.drop(columns="price(t)")
data_lstm["price(t)"] = data["price(t)"]
data_lstm = data.values.astype('float32')

if top_features:
data_lstm = pd.DataFrame()
#Need to make sure that price(t) is the last column in the dataframe
if "price(t)" in top_n_features:

for item in top_n_features:
if item != "price(t)":

data_lstm[item] = data[item]
data_lstm["price(t)"] = data["price(t)"]

else:
for item in top_n_features:

data_lstm[item] = data[item]
data_lstm["price(t)"] = data["price(t)"]

data_lstm = data_lstm.values.astype('float32')
if sel_features:

data_lstm = pd.DataFrame()
#Need to make sure that price(t) is the last column in the dataframe
if "price(t)" in sel_n_features:

for item in sel_n_features:
if item != "price(t)":

data_lstm[item] = data[item]
data_lstm["price(t)"] = data["price(t)"]

else:
for item in sel_n_features:

139

data_lstm[item] = data[item]
data_lstm["price(t)"] = data["price(t)"]

data_lstm = data_lstm.values.astype('float32')

#data_lstm = data.values.astype('float32')
sliding_window = 1
train_data_lstm, test_data_lstm = data_lstm[0:train_size],

data_lstm[train_size-sliding_window:]
X_train_lstm, y_train_lstm = prepare_data_LSTM(train_data_lstm, sliding_window)
X_test_lstm, y_test_lstm = prepare_data_LSTM(test_data_lstm, sliding_window)

grid_search = GridSearchCV(estimator=model, param_grid=search_params[i],
scoring=scorers, refit='rmse', cv=ts_cv)

grid_search.fit(X_train_lstm, y_train_lstm)
best_score = grid_search.best_score_
best_model = grid_search.best_estimator_
print(best_model.sk_params)
#LSTM: batch_size=254, epochs=100 | {'batch_size': 254, 'epochs': 100}

#Train set results:
print("Train set results: ")
print(regression_results(y_train_lstm, best_model.predict(X_train_lstm)))

#Test set results:
print("Test set results: ")
print(regression_results(y_test_lstm, best_model.predict(X_test_lstm)))
plot_grid_search(grid_search.cv_results_, grid_search.param_grid['batch_size'],

grid_search.param_grid['epochs'], 'Batch Size', 'Epochs', name + '_' + fs)

real_lstm_train = y_train_lstm
y_pred_lstm_train = best_model.predict(X_train_lstm)
rmse_lstm_train = [rmse(real_lstm_train[i][0],

y_pred_lstm_train[i]) for i in range(len(y_pred_lstm_train))]

real_lstm_test = y_test_lstm
y_pred_lstm_test = best_model.predict(X_test_lstm)
rmse_lstm_test = [rmse(real_lstm_test[i][0],

y_pred_lstm_test[i]) for i in range(len(y_pred_lstm_test))]

#Concatenate the two RMSE_LSTM arrays
rmse_lstm = np.concatenate((rmse_lstm_train, rmse_lstm_test), axis=0)

else:
grid_search = GridSearchCV(estimator=model, cv=ts_cv, param_grid=search_params[i],

scoring=scorers, refit='rmse')
grid_search.fit(X_train, y_train)

best_score = grid_search.best_score_
best_model = grid_search.best_estimator_
print(best_model)
#LR: alpha=100, max_iter=20000
#RF: max_depth=10, n_estimators=20, bootstrap=True, criterion: mse, verbose=0,

#Train set results
print("Train set results (scaled): ")
print(regression_results(y_train.values, best_model.predict(X_train)))

140

#Test set results
print("Test set results (scaled): ")
print(regression_results(y_test.values, best_model.predict(X_test)))
if name == "LR":

print(best_model.solver)
plot_grid_search(grid_search.cv_results_, grid_search.param_grid['alpha'],

grid_search.param_grid['solver'], 'Alpha', 'Solver', name + '_' + fs)
history_LR = best_model.fit(X_train, y_train)
pred_array_LR_train = history_LR.predict(X_train)
real_array_LR_train = y_train.values
rmse_LR_train = [rmse(real_array_LR_train[i],

pred_array_LR_train[i]) for i in range(len(real_array_LR_train))]

pred_array_LR_test = history_LR.predict(X_test)
real_array_LR_test = y_test.values
rmse_LR_test = [rmse(real_array_LR_test[i],

pred_array_LR_test[i]) for i in range(len(real_array_LR_test))]

#Concatenate the two RMSE_LR arrays
rmse_LR = np.concatenate((rmse_LR_train, rmse_LR_test), axis=0)

if name == "RF":
plot_grid_search(grid_search.cv_results_, grid_search.param_grid['max_depth'],

grid_search.param_grid['n_estimators'], 'Max Depth', 'N Estimators',
name + '_' + fs)

#plot_search_results(grid_search)
history_RF = best_model.fit(X_train, y_train)
pred_array_RF_train = history_RF.predict(X_train)
real_array_RF_train = y_train.values
rmse_RF_train = [rmse(real_array_RF_train[i],

pred_array_RF_train[i]) for i in range(len(real_array_RF_train))]

pred_array_RF_test = history_RF.predict(X_test)
real_array_RF_test = y_test.values
rmse_RF_test = [rmse(real_array_RF_test[i],

pred_array_RF_test[i]) for i in range(len(real_array_RF_test))]

#Concatenate the two RMSE_RF arrays
rmse_RF = np.concatenate((rmse_RF_train, rmse_RF_test), axis=0)

#For RF:
history = best_model.fit(X_train, y_train)
history.predict(X_train) -> array with predictive values for each sample
y_train.values -> array with real values

#history_loss.append(history.history['loss'])
#history_val_loss.append(history.history['loss_val'])

models_trained.append((name, best_model))

if plot_trees == True:
#Visualize the first 10 decision trees
if name == 'RF':

estimator = best_model.estimators_[10]
#feature_names = X_train.columns.values.tolist()
#target_names = y_train.name
feature_names = X_train.columns.values.tolist()

141

target_names = y_train.name
#Export as dot file
export_graphviz(estimator,

out_file=r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\tree.dot',
feature_names = feature_names,
class_names = target_names,
rounded = True, proportion = False,
precision = 2, filled = True)

#Convert from dot file to png:
#https://dreampuf.github.io/GraphvizOnline

for i in range (0, 5):
tree_num = i
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(4,4), dpi=800)
tree.plot_tree(best_model.estimators_[tree_num],

feature_names = feature_names,
class_names = target_names,
filled=True);

fig.savefig(r'C:\Users\Bruker\Oscar\NTNU\individual_tree' +
str(tree_num) + r'.png')

#No maximum depth
model_nomaxdepth = RandomForestRegressor(max_depth=None, n_estimators=50)
model_nomaxdepth.fit(X_train, y_train)
print(model_nomaxdepth.estimators_)
estimator_nonlimited = model_nomaxdepth.estimators_[1]
export_graphviz(estimator_nonlimited,

out_file=r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\total_tree.dot',
feature_names = feature_names,
class_names = target_names,
rounded = True, proportion = False, precision = 2, filled=True)

#baseline_error = regression_results(test[''], test[''])
#print('baseline_error:{0}'.format(baseline_error))

train_len = len(rmse_LR_train)
test_len = len(rmse_LR_test)

plot_rmse(rmse_lstm, rmse_LR, rmse_RF, train_len, all=all_features,
top=top_features, sel=sel_features)

#Reshape array of predicted values for the various models
y_pred_LR = pred_array_LR_test.reshape(-1,1)
y_pred_RF = pred_array_RF_test.reshape(-1,1)
y_pred_lstm = y_pred_lstm_test.reshape(-1,1)

#Inverse Transform Data to get Forecasting Values
y_real_lstm = unprocessed_data['price'].iloc[-len(y_test)-1:-1].values.reshape(-1,1)
y_real = unprocessed_data['price'].iloc[-len(y_test)-1:-1].values.reshape(-1,1)
last_obs_lstm = unprocessed_data['price'].iloc[-len(y_test)-2]
last_obs = unprocessed_data['price'].iloc[-len(y_test)-2]

y_forecast_LR = DP.inverse_transform(y_pred_LR, y_real, last_obs, scaler)
y_forecast_RF = DP.inverse_transform(y_pred_RF, y_real, last_obs, scaler)
y_forecast_lstm = DP.inverse_transform(y_pred_lstm, y_real_lstm, last_obs_lstm, scaler)

142

#Add all RMSE values to dataframe
rmse_df = pd.DataFrame({'rmse LR': rmse_LR, 'rmse RF': rmse_RF, 'rmse LSTM': rmse_lstm})

#Evaluate and Plot Results
evaluate_results(y_real, y_real, y_real_lstm, y_forecast_LR, y_forecast_RF,

y_forecast_lstm, all=all_features, top=top_features, sel=sel_features)

#CATBOOST MODEL - Requires too much memory!
if cboost == True:

n_features_cboost = 2
top_features_cboost = FIS.main(lag, unprocessed_data, n_features)

train_data_cboost = pd.DataFrame()
test_data_cboost = pd.DataFrame()
for item in top_features:

train_data_cboost[item] = train_raw_data[item]
test_data_cboost[item] = test_raw_data[item]

X_train = train_data_cboost.loc[:, train_data.columns != "price(t)"]
y_train = train_raw_data["price(t)"]
X_test = test_data_cboost.loc[:, test_data.columns != "price(t)"]
y_test = test_raw_data["price(t)"]

model = CatBoostRegressor(
task_type = 'GPU',
loss_function = 'MAE',
eval_metric = 'RMSE'#,
#depth = ,
#iterations = ,
#learning_rate =

)
parameters = {'depth':[3,1,2,6,4,5,7,8,9,10],

'iterations':[250,100,500,1000],
'learning_rate':[0.03,0.001,0.01,0.1,0.2,0.3],
}

grid = GridSearchCV(estimator=model, param_grid=parameters, cv=2, n_jobs=-1)
grid.fit(X_train, y_train, verbose=100)

print("\n===================================")
print(" Results from Grid Search")
print("===================================")
print("\n The best estimator across ALL searched params:\n", grid.best_estimator_)
print("\n The best score across ALL searched params:\n", grid.best_score_)
print("\n The best parameters across ALL searched params:\n", grid.best_params_)
print("\n===================================")
#Best:
{'depth': , 'iterations': , 'learning_rate':}

#PERSISTENCE MODEL
if persistence_model == True:

data = DP.supervised_learning(lag, unprocessed_data, diff=False)
persistence_df = data[["price(t)", "price(t-1)"]]
X = persistence_df.values
train, test = X[:train_size+1], X[train_size+1:-1]
y_real, y_pred_persistence = test[:, 0], test[:, 1]

143

#Reshape array of predicted values for the persistence model
y_pred_persistence = y_pred_persistence.reshape(-1,1)
y_real = y_real.reshape(-1,1)

#Evaluate results
rmse_persistence = np.sqrt(mean_squared_error(y_real, y_pred_persistence))
mae_persistence = mean_absolute_error(y_real, y_pred_persistence)
mape_persistence = np.mean(np.abs((y_real - y_pred_persistence) / y_real))*100

print("===================================")
print(f"Test scores for Persistence Model")
print('\nTest RMSE: ', rmse_persistence)
print('\nTest MAE: ', mae_persistence)
print('\nTest MAPE: ', mape_persistence)
print("===================================")

forecast_persistence = pd.DataFrame(data=y_pred_persistence, columns=['Pred Persistence'])
forecast_persistence['Real'] = pd.DataFrame(y_real)

print(forecast_persistence)

fig, ax = plt.subplots(figsize=(15,10))
plt.plot(forecast_persistence['Pred Persistence'], linestyle='--', marker='o',

label='Persistence')
plt.plot(forecast_persistence['Real'], marker='o', label='Real')
plt.legend()
plt.ylabel('Spot Rate [$/day]')
plt.xlabel('Week in 2019')
ax.set_xticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
ax.set_xticklabels(['42', '43', '44', '45', '46', '47', '48', '49', '50', '51'])
plt.savefig(r'C:\Users\Bruker\Oscar\NTNU\5. Klasse\Master\Persistence_model.png',

bbox_inches='tight')

end = time.time()
end_readable = time.ctime(end)
print(f"\nCode ended at: {end_readable}")
print(f"Runtime of the program is {end - start}")

144

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

O
scar Arne Rosfjord Thorstensen

Oscar Arne Rosfjord Thorstensen

Applicability of Machine Learning
Algorithms for the Capesize Shipping
Segment

Master’s thesis in Marine Technology
Supervisor: Bjørn Egil Asbjørnslett
Co-supervisor: Bjørnar Brende Smestad

June 2021

M
as

te
r’s

 th
es

is

	Preface
	Acknowledgment
	Abstract
	Sammendrag
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Motivation
	Problem Description
	Objective

	Thesis outline

	Literature Review
	Dry bulk shipping
	Freight Rate Modeling

	AIS applications
	Data handling
	Previous applications with machine learning

	Data science literature and theory
	Exploratory data analysis
	Data mining
	Machine learning
	Building a machine learning model
	Supervised, unsupervised or semi-supervised

	Algorithm selection

	Methodological Approach
	Exploratory data analysis
	Feature engineering
	Feature construction and extraction
	Vessel capacity count in world regions and port locations
	Fleet percentage in world regions
	Active vessels and fleet capacity
	Fleet utilization
	Price and market features

	Data preparation
	Feature selection

	Algorithm selection
	Linear ridge regression
	Random forest regressor
	Long short-term memory
	Model tuning with hyperparameter optimization

	Model evaluation method
	Baseline model
	Statistical modeling metrics

	Computational Study
	The bulk shipping case
	Commodity types
	Classification of vessel types
	Route segments
	One-step-ahead forecasting

	Description of raw data
	Capesize Bulker Data
	Vessel type classification data
	Historical time-series data

	AIS Data
	Message content and frequency
	Data extraction
	Data assembly and preprocsessing

	Results
	Benchmark model
	Feature selection
	Hyperparameter optimization
	Model training
	Model forecasting
	Train vs test performance

	Discussion
	Evaluation of forecasting results
	Evaluation of methodological approach
	Hyperparameter optimization technique
	Employed feature selection methods
	Feature construction process

	Limitations and considerations

	Conclusion
	Further work

	Bibliography
	AIS Data Contents
	Descriptive Statistics of Features
	Augmented Dickey-Fuller Results
	Feature Importance Scores
	Python Scripts
	Description of Python scripts
	project_settings.py
	AIS SQL Script
	data_processing.py
	clarksons.py
	polygons.py
	FE.py
	data_preparation.py
	feature_importance_score.py
	feature_selection.py
	ML_models.py

