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We discuss the cooperative failure dynamics in the fiber bundle model where the individual
elements or fibers are Hookean springs that have identical spring constants but different
breaking strengths. When the bundle is stressed or strained, especially in the equal-load-
sharing scheme, the load supported by the failed fiber gets shared equally by the rest of the
surviving fibers. This mean-field-type statistical feature (absence of fluctuations) in the load-
sharing mechanism helped major analytical developments in the study of breaking
dynamics in the model and precise comparisons with simulation results. We intend to
present a brief review on these developments.
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1 INTRODUCTION

Fiber bundle model (FBM) has been used widely for studying the fracture and failure [1] of
composite materials under external loading. The simplicity of the model allows us to achieve analytic
solutions [2–4] to an extent that is not possible in any other fracture models. For these very reasons,
FBM is widely used as a model of breakdown that extends beyond disordered solids. In fact, FBMwas
first introduced in connection with textile engineering [5]. Physicists took interest in it recently to
explore the critical failure dynamics and avalanche phenomena during such stress-induced failures
[6–9]. Apart from the classical fracture–failure in composites, FBM has been used successfully for
studying noise-induced (creep/fatigue) failure [10–14] where a fixed load is applied on the system
and external noise triggers the failure of elements. Furthermore, it was used as a model for other
geophysical phenomena, such as snow avalanche [15], land slides [16, 17], biological materials [18],
or even earthquakes [19]. In this review article, we concentrate only on the cooperative dynamical
aspects in FBM.

F. T. Peirce, a textile engineer, introduced the fiber bundle model [5] in 1926 to study the strength
of cotton yarn. Later, in 1945, Daniels discussed some static behavior of such a bundle [20] and the
model was brought to the attention of physicists in 1989 by Sornette [21] who started analyzing the
failure process. Even though FBM was designed initially as a model for the fracture or failure of a set
of parallel elements (fibers), having different breaking thresholds, with a collective load-sharing
scheme, the failure dynamics in the model shows all the attributes of the critical phenomena and the
associated phase transition. It seems, due to the usefulness and richness, FBM plays the same role (in
the field of fracture) as the Ising model in magnetism [22].

In FBM, a number of parallel Hookean springs or fibers are clamped between two horizontal
platforms (Figure 1). The breaking strengths of the springs or fibers are different. When the load per
fiber (stress) exceeds a fiber’s own threshold, it fails. The load it carries has to be shared by the
surviving fibers. If the lower platform deforms under loading while the upper platform remains rigid,
fibers in the neighborhood of the just-failed fiber will absorb more of the load compared to fibers
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sitting further away, and this arrangement is called the local-load-
sharing (LLS) scheme [23, 24]. If both the platforms are rigid, the load
has to be equally distributed among all the surviving fibers, which is
called the equal-load-sharing (ELS) scheme. Intermediate load
redistribution schemes are also studied (see, e.g., [25]), where a
part of the load is shared locally within a few fibers and the rest is
shared globally among all the fibers.

How does cooperative dynamics set in? In the case of ELS, all the
intact fibers carry the load equally. When a fiber fails, the stress level
increases on the remaining fibers and that can trigger more fiber
failures (successive failure). As long as the initial load is low, the
successive failures of the fibers remain small, and though the strain
(stretch) of the bundle growswith increasing stress (load), the bundle
as a whole does not fail. Once the initial load reaches a “critical”
value, determined by the fiber strength distribution, the successive
failures become global (catastrophic) and the bundle collapses.

We arrange this review article as follows: In the short
introduction (Section 1), we elaborate the concept of the
fiber bundle model and its evolution as a fracture model.
Section 2 deals with the equal-load-sharing FBM where we
demonstrate the dynamic behavior of FBM with evolution
dynamics and their solutions. Analytic results are compared
with numerical simulations in this section. In Section 3, we
discuss noise-induced failure dynamics in FBM through
theory, simulation, and real data analysis. The self-
organizing mechanism in FBM is discussed in Section 4.
We reserve Section 5 for discussions on some works that
would help to understand the cooperative dynamics in FBM.
Finally, we have a short Summary and Conclusion section
(Section 6) at the end.

2 EQUAL LOAD SHARING FBM

We consider an FBM having N parallel fibers placed between two
rigid bars. Each fiber follows Hook’s law with a force f to the
stretch value x as f � κx, where κ is the spring constant. To make
things simpler, we consider κ � 1 for all the fibers. Each fiber has a
particular strength threshold value and if the stretch x exceeds
this threshold, the fiber fails irreversibly. We are interested in the
equal-load-sharing (ELS) mode (the bars are rigid), and by
construction of the model, the applied load has to be shared
equally by the intact fibers.

Other than the analytical treatment of the model, several
aspects of the model are also explored numerically. The
implementation of the model, particularly in the equal
load sharing version we discuss here, is straightforward.
The load is initially applied to each fiber equally. The
fibers having failure thresholds less than the applied load
are irreversibly broken. The load carried by those fibers is
redistributed equally among the remaining fibers, which can
cause further breaking. The redistribution continues until no
new fibers are breaking. The external load is held constant
during the whole redistribution process. This is due to the
separation of time scales of externally applied loading rate
and the internal (elastic) relaxation processes within
materials. After the end of each redistribution cycle, the
external load is further increased to continue the
dynamics. This process continues until the entire system is
broken. The critical strength, avalanche statistics, and other
critical exponents are calculated from this dynamics, which,
as we will see, match well with the analytical results.

2.1 Fiber Strength Distributions
The fiber strength thresholds are drawn from a probability
density of p(x). The corresponding cumulative probability is

P(x) � ∫x

0
p(y)dy. (1)

The most used threshold distributions are uniform and
Weibull distributions (see Figure 2) in the FBM literature.

For a uniform distribution, we can write

p(x) � 1; P(x) � x, (2)

where, the range of function is between 0 and 1. The cumulative
Weibull distribution has the form:

P(x) � 1 − exp(−xk), (3)

where, k is the shape parameter or the Weibull index. The
corresponding probability distribution takes the form:

p(x) � kxk−1exp(−xk). (4)

The shapes of the uniform andWeibull distributions are shown
in Figure 2. The range of definition is between 0 and ∞.

2.2 The Critical Values
When we stretch the bundle by applying a force, the fibers fail
according to their thresholds, the weakest first, then the next

FIGURE 1 | A cartoon of the fiber bundle model where a macroscopically
large number (N) of Hookean springs, with identical spring constants but
different breaking thresholds, hang parallelly from an upper rigid bar and a load/
force F is applied at the lower horizontal rigid bar (not allowing any local
deformation of the bar and consequent local stress concentration). If any spring
fails at any time, the (extra) load is sharedby the surviving fibers at that time. In the
equal-load-sharing scheme, considered here, this extra load is shared equally by
all the surviving fibers (x denoting the strain of the surviving fibers).
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weakest, and so on. If Nf fibers have failed at a stretch value of x,
the force on the bundle is

F � (N − Nf )x � N(1 − P(x))x, (5)

as κ � 1. The normalized force (F/N) versus the stretch x curve
looks like a parabola (Figure 3).

It is obvious that the maximum of the force value is the
strength of the bundle, and the corresponding stretch value (xc) is
called the critical stretch beyond which the bundle collapses.
Therefore, we can define two distinct phases of the system: stable
phase for 0< x ≤ xc and unstable phase for x > xc.

The critical stretch value can be obtained easily by
setting dF(x)/dx � 0:

1 − xcp(xc) − P(xc) � 0. (6)

1. Uniform threshold distribution

Substituting the p(xc) and P(xc) values for uniform
distribution, we obtain

xc � (1
2
). (7)

Now inserting the xc value in the force expression (Eq. 5),
we get

Fc
N

� 1
4
; (8)

which is the critical strength of the bundle (Figure 3).

2. Weibull threshold distribution

In the case of Weibull distribution, at the force-maximum, by
inserting the P(x) and p(x) values into the expression (Eq. 6), we
obtain

exp(−xkc) − (xckxk−1c exp(−xkc)) � 0. (9)

One can get the critical stretch value

xc � k−1/k; (10)

and the corresponding critical force value

Fc
N

� k−1/k exp(−1
k
). (11)

For k � 1, xc � 1.0 and (Fc/N) � (1/e) (Figure 3).

FIGURE 3 | Normalized force (F/N) against extension x for a fiber bundle with uniform (xc � 0.5) and Weibull xc � 1, (1/3)1/3 , (1/5)1/5 for k � 1, 3, 5, respectively,
distributions of strengths (thresholds).

FIGURE 2 | The uniform and Weibull distributions of fiber strengths (thresholds).
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2.3 Different Ways of Loading
Now, we will discuss how the load or stress can be applied on the
bundle. In the FBM literature, the most common loading
mechanism discussed [26, 27] is the -weakest-link-failure
mechanism of loading. This loading process ensures a
separation in time scales between external loading and internal
stress redistribution. This is equivalent to a quasi-static approach,
and noise/fluctuation in the threshold distribution influences the
breaking dynamics as well as the avalanche statistics.

A fiber bundle can also be loaded in a different way by
applying a fixed amount of load at a time. In that case, all fibers
having a failure threshold below the applied load, fail. The stress
on the surviving fibers then increases due to load redistribution.
The increased stress may drive further failures, and so on. This
iterative breaking process continues until an equilibrium is
reached where the intact fibers (those who can support the
load) is reached. One can also study the failure dynamics of the
bundle when the external load on the bundle is then increased
infinitesimally, but by a fixed amount (irrespective of the
fluctuations in the fiber strength distribution as discussed
above). Indeed, as shown recently in Biswas and Chakrabarti
[28], the universality class of the dynamics of such fixed loading
(even for the same ELS mode of load redistribution after
individual fiber failure) will be different from that for the
quasi-static (or weakest link failure type) loading discussed
above and is given by the Flory statistics [29] for linear
polymers, accommodating the Kolmogorov-type dispersion in
turbulence [30].

2.4 The Cooperative Dynamics
We are going to discuss the cooperative dynamical behavior of the
breaking processes for the bundle loaded by fixed amount per step
(following the formulations in the References [1, 2, 4, 8, 26,
27, 31]).

Let us assume that an external force F is applied to the fiber
bundle. The stress on the bundle (the external load per fiber) is

σ � F/N. (12)

Let us call Nt to be the number of surviving fibers after t steps
in the stress redistribution cycle, with N0 � N .

Now, the effective stress becomes

σ t � Nσ/Nt . (13)

Therefore, NP(Nσ/Nt) of fibers will fail in the first stress
redistribution cycle. The number of intact fibers in the next cycle
will be

Nt+1 � N − NP(Nσ/Nt). (14)

Using nt � Nt/N , Eq. (14) takes the form of a recursion
relation,

nt+1 � 1 − P(σ/nt), (15)

with σ as the control parameter and n0 � 1 as the start value.
The character of an iterative dynamics is determined by its

fixed points (denoted by *) where a dynamical variable remains
exactly at the same value it had in the previous step of the

dynamics. In other words, a fixed point is a value (of a dynamical
variable) that is mapped onto itself by the iteration. The dynamics
stops or it becomes locked at the fixed point.

One can find out the possible fixed points n* of (15), which
satisfy

np � 1 − P(σ/np), (16)

and the solutions of the breaking dynamics at the fixed point.

2.5 The Critical Exponents
If we consider that the fiber strengths follow uniform distribution,
the recursion relation can be written as

nt+1 � 1 − σ/nt , (17)

Consequently, at the fixed point, the relation assumes a simple
form

(np)2 − np + σ � 0, (18)

with solution

n* � 1
2
± (σc − σ)1/2. (19)

Here the critical stress value is σc � (1/4), beyond which the
bundle collapses completely. In Eq. 19, the upper sign gives
np > nc, which corresponds to a stable fixed point. From this
solution, it is easy to derive the order parameter, susceptibility,
and relaxation time (all defined below).

The fixed-point solution gives the critical value (σ � σc).

np
c �

1
2
. (20)

Therefore, the fixed-point solution can be presented as

np(σ) − np
c ∝ (σc − σ)β, β � 1

2
. (21)

Clearly, n*(σ) − n*c can be considered like an order parameter,
which shows a clear transition from nonzero to zero value at σc.

The susceptibility is defined as χ � −dnp/dσ and the fixed-
point solution gives

χ∝ (σc − σ)− c, c � 1
2
; (22)

which follows a power law and diverges at the critical point σc.
The dynamical approach very near a fixed point is very

interesting, and this can be investigated by expanding the
differences nt − n* around the fixed point. In the case of
uniform distribution, the recursion relation (Eq. 17), gives

nt+1 − np � σ

np
− σ

nt
� σ

ntnp
(nt − np)x σ

np2
(nt − np). (23)

Clearly, the fixed point is approached with exponentially
decreasing steps:

nt − n*∝ e−t/τ, (24)

where τ is a relaxation parameter, dependent on stress value:
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τ � 1/ln(np2/σ) � 1/ln⎡⎣(1
2
+

�����
1
4
− σ

√ )2/σ⎤⎦. (25)

At the critical stress, σ � σc � 1/4, the argument of the
logarithm is 1 and apparently τ is infinite. As the critical stress
is approached for σ→ σc.

τx
1
4
(σc − σ)− θ with θ � 1

2
. (26)

This divergence clearly shows the character of the breaking
dynamics, that is, it becomes very slow at the critical point.

2.6 Universal Behavior
The recursion relation and the fixed point solutions demonstrated
the dynamic critical behavior for the uniform distribution of the
breaking thresholds. Now the question arises—how general the
results are? The universality of the cooperative breaking dynamics
can be verified by considering a different distribution of fiber
strengths. We are now going to examine the situation for a
linearly increasing distribution (Figure 4) within the
interval (0, 1),

p(x) � { 2x, 0≤ x ≤ 1,
0, x > 1.

(27)

From the force–stretch relationship, the average force per
fiber is

F(x)/N � { x(1 − x2), 0≤ x ≤ 1,
0, x > 1. (28)

Therefore, the critical point is

σc � 2
3

�
3

√ . (29)

In this case, the breaking dynamics can be written as a
recursion relation:

nt+1 � 1 − (σ/nt)2, (30)

and the fixed-point equation is

(np)3 − (np)2 + σ2 � 0, (31)

that is, a cubic equation in n*. Clearly, there are three solutions of
n* for a value of σ. At the critical stress value, σc � 2/3

�
3

√
, the only

acceptable solution of Eq. 31 is

np
c �

2
3
. (32)

We want to investigate the breaking dynamics in the
neighborhood of the critical point. Therefore, we insert n � 2/3 +
(n − nc) into (Eq. 30), with the result

4
27

− (n − nc)2 − (n − nc)3 � σ2 � ( 2
3

�
3

√ + σ − σc)2

� 4
27

+ 4
3

�
3

√ (σ − σc) + (σ − σc)2.
(33)

We get (to leading order)

(n − nc)2 � 4
3

�
3

√ (σc − σ). (34)

Obviously, for σ ≤ σc the order parameter behaves as

n(σ) − nc ∝ (σc − σ)β, β � 1
2
, (35)

in accordance with (Eq. 21). The susceptibility χ � −dn/dσ gives

χ∝ (σc − σ)− c, c � 1
2
. (36)

We can also discuss how the stable fixed point is
approached from below. From Eq. 30, one can write,
around the fixed point,

nt+1 − np � σ2

np2
− σ2

n2
t

� σ2

np2n2
t

(n2
t − np2)x(nt − np) 2σ

2

np3
. (37)

The approach is clearly exponential,

nt − np ∝ e−t/τ with τ � 1
ln(np3/2σ2). (38)

The argument of the logarithm becomes 1 exactly at the
critical point; therefore, τ diverges when the critical state is
approached. The nature of such divergence assumes the same
form,

τ∝ (σc − σ)− θ, θ � 1
2
, (39)

which is similar to the model with a uniform fiber strength
distribution, Eq. 26.

We can now conclude that the ELS FBM with a linearly
increasing fiber strength distribution possesses the same
critical power laws as the ELS FBM with a uniform fiber
strength distribution. This confirms that the critical properties

FIGURE 4 | The linearly increasing fiber strength distribution.

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 6133925

Chakrabarti et al. Cooperative Dynamics in the FBM

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


of cooperative breaking dynamics are universal. A general
treatment for verifying universality in ELS FBM can be found
in Reference [26].

2.7 Two-Sided Critical Divergence
When a fixed amount of load is applied on the system, the
iterative breaking process ends with one of the two possible end
results. Either the whole bundle collapses, or an equilibrium
situation is reached where intact fibers can hold/support the
applied load/stress. Thus, the final fate of the bundle depends on
whether the external stress σ on the bundle is postcritical (σ > σc),
precritical (σ < σc), or critical (σ � σc). It is interesting to know
how the breaking dynamics is approaching the critical point
(failure point) from below (precritical) and above (postcritical)
stress values.

In the case of uniform fiber strength distribution when the
external stress approaches the critical value of σc � 1/4 from a
higher value, that is, in the postcritical region, the number of
necessary iterations needed for the whole system to break increases
as the critical point is approached. Close to the critical point, the
number of iterations shows a square root divergence [8]:

tfx
1
2
π(σ − σc)− 1/2. (40)

Similarly, in the precritical region, when the external stress
approaches the critical value of σc � 1/4 from below, the number
of iterations has again a square root divergence [8] (for uniform
distribution) close to the critical point:

tf � 1
4
ln(N)(σc − σ)− 1/2. (41)

The only difference is that, in precritical case, the amplitude of
the square root divergence has a system-size-dependence, which
is absent in the postcritical case.

We can conclude that in ELS FBM, the breaking dynamics
shows a two-sided critical divergence in terms of the number of
iteration steps needed to reach critical points from below
(precritical) and above (postcritical) (Figure 5). The
theoretical details of the exact solutions can be found in
References [8, 26].

2.8 Avalanche Dynamics With Fixed Amount
Loading
The number of fibers (S) breaking between two successive stable
conditions of the fiber bundle is called an avalanche. The distribution
of the avalanche sizes P(S) shows a power-law tail for the large S
limit [6], which is a sign of the criticality discussed above. This is
experimentally widely observed for driven disordered systems in
general [31] and for quasi-brittle/ductile fracture in particular.While
the details of the avalanche dynamics seen in the fiber bundle model
with quasi-static load increase has been discussed elsewhere in this
special issue [32], here we briefly describe the avalanche dynamics
for fixed amount load increase, that is, when the system is in a stable
condition, a fixed amount of load δ is added, which restarts the
dynamics. As before, the number of fibers breaking until the system
reaches the next stable state constitutes an avalanche. Clearly, this
type of avalanche is a result of the cooperative breaking dynamics,
and it is not arising due to any fluctuations in stress levels or in fiber
strength distribution. We will describe below how to calculate
theoretically the distribution of such avalanches.

The load curve, in terms of the threshold values, can be
written as

F(x) � Nx(1 − x). (42)

For the uniform threshold distribution in (0, 1) (see Eq. 5).
The load increases between 0 and N/4 with an increment of δ.
Therefore, the values of the load are mδ, with

FIGURE 5 | Postcritical and precritical relaxation: Numerical data are for a
bundle with N � 106 fibers having uniform threshold distribution and averages
are taken over 105 samples. Lines are showing theoretical estimates.

FIGURE 6 | Phase boundary (σ0 vs. T plot) for three different types of
fiber strength distributions with N � 20000. Data points are simulation results
and solid lines are analytic estimates (Eq. 50) based on mean-field arguments.
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m � 0, 1, 2, . . . ,N/4δ. The threshold value for load mδ can be
obtained from (Eq. 4) as

xm � 1
2
(1 − ����������

1 − 4mδ/N√ ). (43)

The average number of fibers broken due to the increase of
load from mδ to (m + 1)δ is

S � N
dxm
dm

� δ����������
1 − 4mδ/N√ . (44)

The number of avalanches of size between S and S + dS is
obtained from the corresponding interval of the variable m, that
is, P(S)dS � dm. From the equation above, we have

dS
dm

� 2S3

(Nδ). (45)

Therefore, the avalanche size distribution is given by

P(S) � dm
dS

� 1
2
NδS−3, for S≥ δ. (46)

Indeed, it is possible to show [26] that for an arbitrary
threshold distribution, p(x), the large S asymptotic limits of
the avalanche size distribution is

P(S) ∼ CS−3, (47)

with C � (Nδp(xc)2/2p(x) + xcp′(xc)), with the mild assumption
that the load curve has a generic parabolic form with a
critical point.

3 NOISE-INDUCED FAILURE IN FBM

So far we have discussed the classical stress-induced failure of fibers
without the presence of noise. A noise-induced failure scheme for
the fiber bundle model can be formulated [13, 14, 33] for which the
cooperative failure dynamics can be solved analytically.

As in the previous sections, we consider a bundle of N parallel
fibers clamped between two rigid bars. A load or force (F � σN)

is applied on the bundle. The fibers have different strength
thresholds (x), and there is a critical strength σc [1] for the
whole bundle, so that the bundle does not fail completely for
stress σ ≤ σc, but it fails immediately for σ > σc. Now we introduce
noise (T) in the system and assume that each fiber having the
strength of xi has a finite probability Pf (σ,T) of failure at any
stress σ induced by a noise T:

Pf (σ,T) �
⎧⎪⎨⎪⎩ Cexp[ − 1

T
(xi
σ
− 1)], 0≤ σ ≤ xi,

1, σ > xi.
(48)

Here C is a prefactor. Pf (σ,T) increases as T increases and for
a fixed value of T and σc, as we increase σ, the bundle breaks more
rapidly. The motivation behind (Eq. 48) comes from the time-
dependent behavior or the so-called creep behavior of materials,
observed in real systems [10, 26]. It is obvious that the strength of
elements/fibers degrades in time due to external influences like
moisture, temperature, etc.

Such a noise-induced failure scheme will produce two
different failure regimes depending on the stress and noise
levels—continuous breaking regime and intermittent breaking
regime. In the continuous breaking regime, we can calculate the
failure time (step) as a function of stress and noise values.
However, in the intermittent breaking regime, one can define
the waiting time between two consecutive failure phases.

The phase boundary can be determined through a mean-field
argument that at σ � σ0, at least one fiber must break to trigger
the continuous fracturing process. After this single failure, the
applied load has to be redistributed on the intact fibers (due to
ELS) and the effective stress will surely increase (more than σ0),
which in turn enhances failure probability for all the intact fibers.
Following this logic, in the case of a homogeneous bundle where
all the fibers have identical strength, xi � 1 (and σc � 1), at the
phase boundary NPf (σ0,T)≥ 1 giving

N exp[ − 1
T
( 1
σ0

− 1)]≥ 1. (49)

which finally gives

FIGURE 7 | Failure time versus σ (left) and versus T (right) for a homogeneous bundle having identical fibers with a strength of 1 (σc � 1 as well). The data are for
simulations over a single realization with a system size of N � 1000000, and the solid lines are the theoretical estimates following (Eq. 55).
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σ0 ≥
1

1 − T log(1/N). (50)

In absence of noise, when T � 0, the above equation gives
σ0 � 1 � σc, which is consistent with the static FBM results [1].
This analytic estimate overlaps with the data obtained from
simulation (Figure 6). It shows that the continuous and
intermittent fracturing regimes are separated by a well-defined
phase boundary, which depends on both the stress level and the
noise level [33].

In the case of heterogeneous FBMs where fibers have different
strength thresholds, keeping in mind that in absence of noise T,
we should always get σ0 � σc, one can make a conjecture that

σ0 ≥
σc

1 − T log(1/N). (51)

The numerical data for the heterogeneous cases (Figure 6)
having uniform and Weibull-type fiber strength distributions
supports the conjecture well [33].

Identification of such a phase boundary has important
consequences in material-fracturing and in other similar
fracture-breakdown phenomena. During material/rock
fracturing, acoustic emission (AE) measurements can record
the burst or avalanche events in terms of AE amplitude and
AE energy [34]. Therefore, AE data could reveal the correct
rupture-phase of a material body under stress. Once a system
enters into continuous rupture phase, the system collapse must be
imminent. Thus, identification of the rupture phase can guide us
to visualize the final fate of a system. It can also help to stop
system collapse, if it is possible to withdraw external stress in time
before the system enters into continuous rupture phase.

We will now discuss cooperative dynamics in both these
regimes in the following sub-sections.

3.1 Continuous Breaking Regime
In the continuous breaking regime, one can describe the breaking
dynamics in an FBM through a recursion relation [14]. Let us
consider a homogeneous bundle having N fibers with exactly the

FIGURE 8 | Failure time versus σ (left) and versus T (right) for bundles having uniform strength distributions. The data are for simulations over 1000 realizations with a
system size of N � 106, and the solid lines are the theoretical estimates following (Eq. 56).

FIGURE 9 | Left: The simulation results for the waiting time distributions for three different types of fiber strength distributions, withN � 20000. All the curves can be
fitted with the Gamma form exp(−tW /a)/t1−cW , where c � 0.15 is for the homogeneous case and c � 0.26 is for uniform andWeibull distributions.Right:we show the data
collapse of the waiting time distributions with system sizes for uniform fiber strength distribution.

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 6133928

Chakrabarti et al. Cooperative Dynamics in the FBM

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


same strength thresholds of 1; therefore, critical (or failure)
strength of the bundle is σc � 1. Now, we consider a noise-
induced failure probability for breaking of each fiber in the
continuous regime:

Pf (σ,T) �
⎧⎪⎨⎪⎩

σ

σc
exp[ − 1

T
(xi
σ
− 1)], 0≤ σ ≤ xi,

1, σ > xi.
(52)

As all the fibers are identical, xi � 1 � σc. The prefactor is a
function of stress level σ, and this is a careful choice to get a
solution of the recursive dynamics, which we will describe below.

We denote the fraction of total fibers that remain intact at time
(step) t by nt and the breaking dynamics can be written as

nt+1 � nt[1 − Pf(σ

nt
,T)]. (53)

In the continuum limit, the above recursion relation can be
presented in a differential form

−dn
dt

� σ

σc
exp[ − 1

T
(σc
σ
n − 1)]. (54)

Giving the failure time

tf � T exp(−1
T
)[exp( σc

σT
) − 1]. (55)

The simulation result shows (Figure 7) the exact agreement
with this theoretical estimate.

In the case of heterogeneous bundles where fibers have
distributed strengths, the failure times seem to follow another
form [14]:

tf � T exp(−1
T
)[exp( σc

σT
+ 1
T
) − 1]. (56)

This form was obtained through a trial and error approach. It
is extremely difficult (as of now) to write the recursion relation for
noise-induced failure dynamics in the case of heterogeneous
systems. The simulation results have been compared with the
formula above, and the agreement (Figure 8) is quite
satisfactory [14].

3.2 Intermittent Regime
As we discussed before, in the intermittent fracturing phase,
simultaneous breaking events (avalanches) are separated by
waiting times (tW) of different magnitudes. The waiting time
distribution can be fitted with a Gamma distribution [33] for both
homogeneous and heterogeneous bundles

D(tW)∝ exp(−tW/a)/t1−cW (57)

where c � 0.15 for homogeneous case and c � 0.26 for
heterogeneous cases (Figure 9). Here a is a measure of the
extent of the power law regime, and it seems that the power
law exponent does not change with the variation of σ, T,
and N [33].

In the waiting time distributions, the power law part
dominates for small tW values and exponential law dominates

for bigger tW values. The inherent global load sharing nature is
responsible for the power law part of the Gamma distribution, as
power law usually comes from a long range cooperative
mechanism [6, 35, 36]. The exponential part of the Gamma
distribution is contributed by the noise-induced failure factor
Pf (σ,T). For large tW values, one can eventually treat the failures
to be independent. If P indicates the noise-induced failure
probability within tW , then the probability
D(tW) � A(1 − P)tWN ∼ exp(−PtWN), where A is a constant.
The normalization of D(tW) requires A ∼ N. Though for
smaller values of tW , one cannot ignore the correlations
between successive failures (responsible for the power law part
in D(tW)), the exponential scaling behavior for D(tW) can be
easily obtained from the above. As shown in the inset of Figure 9,
the plot of D(tW)/N against tWN gives good data collapse for
differentN values. Such a data collapse indicates the robustness of
the Gamma function form. It is not clear yet whether the Gamma-
type distribution is a direct consequence of the failure probability
function (Eq. 48). It needs more investigations with various other
types of possibilities for Eq. 48.

Apparently, the modeling scheme for noise-induced rupture
process is not limited to any particular system, rather it is a
general approach and perhaps it can model more complex
situations like rupture-driven earthquakes. In literature, we
can find evidences of stress-localization around fracture/fault
lines in an active seismic-zone. Also, there are several factors
that can help rupture evolution, like friction, plasticity, fluid
migration, spatial heterogeneities, chemical reactions, etc. To
some extent, such stress redistribution/localization can be taken
into account through a proper load sharing scheme and a noise
term (T) can in principle represent the combined effect of all
other factors.

To compare the waiting time results of the model system with
real data, the California earthquake catalog from 1984 to 2002
[37] has been analyzed [33] to study the statistics of waiting times

FIGURE 10 | Gamma-fitting (dotted lines) to the waiting time
distributions in California catalog (1984–2002).
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[38–40] between earthquake events. First, a cutoff (mc) has been
set in the earthquake magnitude, so that all earthquake events
above this cutoff magnitude will be considered for the analysis.
The distribution of waiting times shows similar variation for
different cutoff values. It seems [33] waiting time distributions for
all the data sets follow a Gamma distribution [38]:

D(tW)∝ exp(−tW/a)/t(1−c)W ; (58)

with same γ (x 0.1) and different a values for different cutoff
levels: a � 30, 120, 500, 2000, respectively, formc � 2.5, 3.0, 3.5, 4.0
(see Figure 10).

The similarities in waiting time statistics and scaling forms
suggest that slowly driven (noise-induced) fracturing process and
earthquake dynamics (stick-slip mechanism) perhaps have some
common origin.

4 INTERFACE PROPAGATION IN THE
FIBER BUNDLES: SELF-ORGANIZATION
AND DEPINNING TRANSITION
So far we have considered FBM versions that are globally loaded,
that is, all the fibers in the system are loaded equally from the
initial time, and the load remains equal on each surviving fiber,
given that the load sharing is equal. This necessarily implies that
the damage or failures in the system could occur at any point;
indeed, there is no notion of distance in this form of the model.

However, in fracture dynamics, particularly in the mode-1
variant of it, a front could propagate in the direction transverse to
that of the loading. A fracture front necessarily implies damage
localization within a region with a lower dimension than that of
the system, that is, a front-line in two dimensions or a front
surface in a three-dimensional system. Indeed, front propagation
driven through a disordered medium is not limited to fracture; it
also happens in the vortex lines in superconductors [41],
magnetic domain walls in magnetic materials with impurities
[42], contact line dynamics in wetting [43], and so on.

In the context of FBM, it is possible to capture the dynamics of
a front propagating through a disordered medium by considering
a localized loading of the system (when the fibers are arranged in

a square lattice and the load is applied at an arbitrarily chosen
central site; see Figure 11) in dimension higher than one (in one
dimension, the damage interface is a point and hence cannot
increase). The external load is increased at a low and constant rate
(maintaining the separation of time scales between applied
loading rate and redistribution process) [44]. Initially, the
system is not loaded anywhere except for the one fiber at an
arbitrarily chosen central site. As the external load increased
beyond the failure threshold of the said central fiber, it breaks and
the load carried by that fiber is redistributed among the fibers that
are in the damage boundary (in the beginning just the four
nearest neighbors). Therefore, the fibers that are newly exposed to
the load after an avalanche carry a lower load compared to those
accumulating loads from the earlier avalanches. This process
keeps a compact structure of the cluster of the broken fibers. The
localized nature of the load redistribution is justified from the fact
that the newly exposed fibers are further away from the point of
loading and therefore carry a smaller fraction of the load at the
original central site.

FIGURE 11 | A schematic representation of locally loaded fiber bundle model and the resulting interface propagation. From [44].

FIGURE 12 | The avalanche size distributions are plotted for zero and
finite lower cutoffs for Model II. The distribution function is a power law with an
exponent value of 1.50 ± 0.01, which is also our estimate from scaling
arguments. Inset: The distribution of avalanche duration is plotted for
Model II. This also shows a power law decay with an exponent value of
2.00 ± 0.01. From [44].
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As the damage perimeter increases, so does the number of
fibers on that perimeter. This implies that for an avalanche, the
load per fiber will decrease along the damage boundary. But due
to a further increase in the load, this value will subsequently
increase, initiating another avalanche. In the steady state, the load
per fiber value will fluctuate around a constant and the system is
said to have reached a self-organized state. In this state, the failure
of fibers in the process of avalanches has a scale-free size
distribution, which suggests that it is a self-organized critical
(SOC) state (where external drive and dissipation balance and the
critical point becomes an attractive fixed point [31]).

The steady-state value of the load per fiber and the
corresponding avalanche size distribution can be calculated
for a variant of this model where the load redistribution is
uniform along the entire damage boundary, that is, every fiber
along the damage boundary gets the same fraction of load in a
redistribution process. We discuss this for the Weibull
distribution below, but this is true for other distributions
as well.

The Weibull distribution in its general form can be written as

Wα,β(x) � αβxα−1e−βx
α
, (59)

where α and β are the two parameters. We can consider the
particular case when α � 2 and β � 1. The failure threshold of a
fiber is greater than x with a probability that is proportional to∫∞
x
x′e

−x′
2

dx′ ∼ e−x2 . Given that the probability density function
for force is uniform, the probability of a fiber having a load
between x and x + dx is e−x2P(x)dx, with P(x) � c
(unnormalized). The normalization gives c∫∞

0
e−x2dx � 1,

implying c � 2/
��
π

√
. Hence, the normalized probability density

function for the load on the surviving fibers is

Dσ(x) � 2��
π

√ e−x
2
. (60)

Similarly, the probability that the load is lower than x is
proportional to x. Using the form for threshold distribution
( ∼ xe−x2 ), the probability density function for the threshold
distribution of the survived fibers becomes

Dth(x) � 4��
π

√ x2e−x
2
. (61)

Both of these functions are in good agreement with numerical
simulations. Also, the saturation value of the average load per
fiber can be calculated as

∫∞

0
xDσ(x)dx � 2��

π
√ ∫∞

0
xe−x

2
dx � 1��

π
√ , (62)

which is again in good agreement with simulations.
The size distribution of avalanches is a power law with the

exponent value close to 3/2 (see Figure 12), which is in agreement
with the scaling prediction of avalanche size distributions in SOC
models for the mean field. The distribution of the avalanche
duration, that is, the number of redistribution steps for an
avalanche, is a power law with an exponent value close to
2.00 ± 0.01, which is again in agreement with the scaling
predictions of the SOC models in mean field.

For estimating the avalanche size exponent, it can be assumed
that the average load per fiber on the damage boundary has a
distribution, which is Gaussian around its mean:
P(σ) ∼ e−(σ−σc)

2/δσ . Hence, from a dimensional analysis, mean-
squared fluctuation is δσ ∼ (σ − σc)2. Also, the avalanche size S
scales as (δσ)− 1 , as it may be viewed as the number of broken
fibers after a load increase of δσ. This gives

(σ − σc) ∼ S−1/2. (63)

The probability of an avalanche being of the size between S and
S + dS is D(S)dS. Now, the deviation from the critical point scales
[1] with the cumulative size of all avalanches up to that point;
giving (σ − σc) ∼ ∫∞

S
D(S)dS. If we take D(S) ∼ S−c, then

(σ − σc) ∼ S1−c. (64)

By comparing Eqs. 63 and 64, we have c � 3/2. So, the
probability density function for the avalanche size becomes
D(S) ∼ S−3/2, which fits well with simulation results (Figure 12).

5 SOME RELATED WORKS ON THE
DYNAMICS OF FBM

In this section, we would like to bring attention to some related
works on the dynamics of FBM which, we believe, may be
regarded as essential reading in this field.

As we have discussed in detail in the earlier sections, there has
been considerable progress in characterizing the failure dynamics
in the fiber bundle model through tools describing critical
phenomena. One crucial step toward that direction is to
identify the universality class of the model. That often needs a
coarse grained description of the model, writing down the free
energy form suited for the dynamics and then identifying the
symmetries and consequently the universality class. One such
step was done in Ref. [45] by writing down a mesoscopic
description of the ELS-FBM. By specifically, writing the time
evolution of the order parameter n(σ) − nc � η and the driving
field (stress increase) as J � σc − σ, the dynamics is described by

zη

zt
� −η2 + J. (65)

Writing in terms of the density of intact fibers n,

zn
zt

� λn(1 − n) − σ, (66)

with λ � 1. This equation has a particle-hole symmetry for zero
external field σ � 0; hence, it is generally expected to be in the
CDP or compact domain growth universality class of non-
equilibrium phase transition [46]. Although done for the ELS
version, this approach of relating fiber bundle model dynamics to
nonequilibrium critical phenomena through a Langevin equation
could provide useful insights into more realistic versions.

Among other attempts to relate fracture and in particular FBM
dynamics with different universality classes, a relatively less
explored route is that of the hydrodynamics of turbulence.
The analogy between the velocity fluctuation in turbulence
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and surface roughness due to fracture have been explored before
[47]. However, given that FBM is able to provide a reasonably
consistent picture for fracture dynamics, its association with
hydrodynamics of fracture is a crucial question. In Ref. [28],
the relation between the Kolmogorov energy dispersion in
turbulence and avalanche dynamics in the FBM was explored.
Specifically, the vortex lines in a fully developed turbulence can be
mapped to self-avoiding walk (SAW) picture of polymers [48].
Then, following Flory’s theory [29], the Kolmogorov energy
dispersion becomes

Eq ∼ q−1/]F , (67)

where q is the wave number, ]F is the Flory exponent, and d is the
spatial dimension. Then, drawing the parallel with the energy
dispersion in avalanche dynamics in the FBM (see Eq. 47), we get
Eq ∼ q−d/3 for the mean field case (i.e., d � du, the upper critical
dimension). By taking du � 6, which is consistent for the FBM
[49], we get back the Flory mean field result Eq ∼ q−2. In parallel,
by taking the correlation length as inverse of the wave number q,
and using finite size-scaling arguments, one can show that ]d �
2/3 in the mean field limit, where ν is the correlation length
exponent. Again using d � 6 as the upper critical dimension, one
gets ] � 1/4.

It may be noted that there is also a gratifying consistency in the
main results discussed above. In the ELS FBM, the critical
exponents β, γ and ν for the order parameter, breakdown
susceptibility and correlation length respectively satisfy the
Rushbrooke scaling relation (incorporating the hyperscaling
relation) [50] : 2β + c � d], with β � 1/2 � c along with the
value of the upper critical dimension d � 6 and ] � 1/4.

Given that the fiber bundle is essentially an ensemble of
discrete elements having finite failure thresholds, under the

condition of conserved load, it can serve as a generic model
for intermittent progress toward catastrophic failure in a wide
variety of systems. Such systems can be roads carrying traffic,
power grids, or redundant computer circuitry. In several of such
cases, the load redistribution following the failure of an individual
element (say, traffic jam along one road, failure of one power
station, etc.) is controllable to some extent–a freedom lacking in
the case of stressed disordered solids. Under such circumstances,
it is useful to ask the question as to how the total load-carrying
capacity of the system could be maximized by a suitable load
redistribution rule [51].

It is rather straightforward to establish that the maximum
limit of σc would be achieved when the maximum number of
fibers carry loads to their fullest capacity. For a uniform
distribution of the failure thresholds in (0, 1), it is possible
to show that for loading in a discrete step the limiting value for
the critical load is

�
2

√ − 1 and for quasi-static loading, it is 3/8.
The remaining question, therefore, is to find the rule of load
transfer following a local failure that can achieve the global
failure threshold in the closest proximity to the
abovementioned limits.

Intuitively, it is clear that a higher share of load should be
transferred to the fibers with higher capacity. Generally, it is
useful to assume that the transfer rule would be of the form
A(fi − σ i)b, where fi and σ i are, respectively, the failure threshold
and load of the i-th element; A is an appropriate constant to
ensure load conservation and b is a parameter.

The dynamics, as discussed before, depends on whether the
load is applied in a discrete step or gradually. The maximization
of the strength of the system would also, therefore, depend on the
loading protocol. The only parameter to tune here is b. It is
possible to calculate analytically that the maximum strength is
indeed achieved with this redistribution rule for b � 1 for the

FIGURE 13 | The phase diagram in the b − σc plane (b represents the anisotropy in the load redistribution process) is shown for (a) discrete step and (b) quasi-static
loading for various fractional errors in the knowledge of the threshold values of the individual fibers (curves from top to below are for e � 0.0,0.1, 0.2, 0.3, 0.4, 0.5, 0.75).
The upper bounds for both cases are shown, which are reached for b � 1 (a) and b→∞ (b). From [51].
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discrete step loading and b→∞ (practically achieved for b ≈ 10)
for quasi-static loading (see Figure 13).

An important information in implementing the redistribution
rule is the exact knowledge of the failure thresholds of all the
surviving elements. This requirement may not be always fulfilled.
Assuming that there is a (fractional) error e in the knowledge of
the failure thresholds, numerical simulations show (see
Figure 13) that the redistribution rule still gives better results
than a uniform redistribution. Therefore, in situations where the
load redistribution is controllable, the redistribution rule
mentioned above gives the best possible outcome.

We would like to mention that cooperative dynamics appears
in another class of fiber bundle models where fibers are treated as
viscoelastic elements [52–54]. The readers can go through [55]
(appearing in the same research topic: The fiber bundle) for a
review on viscoelastic fiber bundle models.

6 SUMMARY AND CONCLUSION

One can easily see that the fiber bundle model (FBM) introduced
by Peirce [5] in 1926 as a model to understand the strength of
composite materials is extremely elegant. As mentioned before,
the model consists of a macroscopically large number of parallel
fibers/springs with linear elastic behavior and of identical length.
The breaking thresholds, however, are different for each fiber and
are drawn from a probability distribution. All these fibers/springs
hang from a rigid horizontal platform. The load on the bundle is
applied at the lower horizontal platform. This lower platform has
been assumed here to be rigid, implying that the stress or load
share per surviving fibers/springs is equal, irrespective of how
many fibers or springs might have broken (equal load sharing or
ELS scheme). It may be mentioned that we have not discussed
here the extensive studies on fiber bundle models with local load
sharing (LLS) schemes, for which the readers may be advised to
consult Refs. [1, 26], and the “impregnated fiber bundle” models
for which the readers may be referred to Refs. [56, 57].

As discussed in this review, the failure dynamics of the FBM
under the ELS scheme of load sharing have been analyzed for
long, both analytically as well as numerically by several
distinguished groups of investigators from engineering,
physics, and applied mathematics. The results may be briefly
summarized as follows: After introducing the model, we have
described the dynamics of the equal load sharing (ELS) fiber
bundle model in Section 2. Specifically, in this section, we discuss
and summarize works (Refs. [1, 2, 4, 8, 28], see also [26, 40, 41])
related to the cooperative failure dynamics in the ELS fiber bundle
model having a large number of fibers with different strength
thresholds. We start this section by describing the force
displacement relation (load curve) when the bundle is
stretched by an amount x. The maximum point of this curve
gives the strength of the whole bundle. One can easily derive the
strength of the bundle for different fiber threshold distributions.
We have chosen uniform and Weibull distributions as examples
and derive bundles’ strength as critical displacement (xc) and
critical force (Fc). Next, we describe how to formulate the
dynamics of failure through a recursion relation in case of

loading by discrete steps when fiber thresholds are uniformly
distributed. The solution of the recursion relation at the fixed
point gives some important information of the failure dynamics:
Order parameter goes to zero following a power law as the applied
stress values approach a critical value and both susceptibility and
relaxation time diverge at the critical stress following well-defined
power laws (see [4, 8, 42]). To check the universality of the failure
dynamics, we choose different types of fiber strength distributions
(linearly increasing) and derive the fixed-point solutions. The
exponent values of the power laws for order parameter,
susceptibility, and relaxation time variations are exactly the
same as the model with a uniform distribution and therefore
the failure dynamics in ELS fiber bundle model is universal. In
addition, we present the exact solutions for pre- and post-critical
relaxation behavior which we believe is one of the most important
theoretical developments in this field. In the last part of this
section, we present an analysis on the avalanche statistics for
loading by a fixed amount. Such a loading scheme introduces a
different mechanism for the avalanche sizes of simultaneous
breaking of fibers. We discuss using analytical calculations that
the exponent of the avalanche size distribution (P(S)) for discrete
loading would be −3, which is different (−5/2) from the same in
the case of quasi-static loading situation [6].

In Section 3, we summarize some recent developments
(Refs. [11–16, 47, 49, 56]) in the cooperative dynamics of
noise-induced failure in ELS fiber bundle models. In addition
to applied stress, the noise factor plays a crucial role in
triggering the failure of individual fibers. The trick here is
how to define the failure probability of individual fibers as a
function of applied/effective stress and the noise level.
Normally, noise-level remains constant during the entire
failure process, but the stress level increases gradually due
to stress redistribution mechanism. The choice of the
probability function should satisfy the fact that without the
noise factor the noise-induced failure model must reproduce
the classical failure scenario (discussed in Section 2). We start
this section by presenting a noise-induced failure probability
for individual fiber failure. The choice of stress and noise level
dictates whether the system is in continuous breaking regime
or in intermittent breaking regime. Through a mean-field
argument, one can easily find out the phase diagram
separating these two regimes (Eq. 50; Figure 6).
Apparently, the continuous breaking regime is easy to
analyze. For a homogeneous bundle, where all the fibers are
identical (strengths are the same), one can write down the
failure dynamics as a recursion relation (Eq. 53). The solution
gives an exact estimate for the failure time (steps) as a function
of applied stress (σ) and noise level (T) (Eq. 55). Simulation
results show perfect agreement with the theoretical estimates
(Figure 7). When we consider a strength distribution among
the fibers in the model, it becomes extremely difficult to
construct the recursion relation for the failure dynamics.
One reason could be that during the failure process the
strength distribution gets changed with time. However, the
simulation results (Figure 8) for the failure time of
heterogeneous bundles follow similar variation with applied
stress and noise level with an extra noise factor (Eq. 56). Next,
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we discuss the other regime, that is, the intermittent failure
regime where there is waiting time between the two failure
phases. The distribution of the waiting time is the most
important aspect in this regime. Simulation results on
homogeneous and heterogeneous bundles show that the
waiting time distribution follows a Gamma distribution
(Eq. 57) and a data collapse confirms the universal nature
of such distribution function (Figure 9). Surprisingly, waiting
time distribution from earthquake time series (California
catalog) seems to follow a similar Gamma distribution
(Figure 10).

In Section 4, we have considered self-organized fracture front
propagation in a fiber bundle model where the fracture front
adjusts its size in a self-organized way to meet the increasing load
on the bundle and several features of the self-organized dynamics
can still be analyzed in a mean field way; see, for example,
Figure 12 for the avalanche size distribution, which fits well
with D(S) ∼ S−3/2.

As already mentioned (in Section 2), the universality class of
the dynamics of fixed load increment during the ongoing
dynamics of failure in the bundle (until its complete failure)
will be different from that for the quasi-static (or weakest link
failure type) loading during its dynamics. And, as discussed in
Section 5, it is given by the Flory statistics for linear polymers,
when fracture dynamics in the bundle is mapped to turbulence
and one utilizes the Kolmogorov-type dispersion energy cascades
[28]. In particular, we already obtained ([3]; see Eqs. 35 and 36)
the order parameter exponent, β � 1/2 � c, the susceptibility
exponent. Employing the Rushbrooke scaling 2β + c � d]
(where ν denotes the correlation length exponent), we get d] �
3/2 here in conformity with finite-size scaling results. As
discussed in [28] (see also the discussions in Section 5), by

mapping the avalanche size distribution (Eq. 47) to the
Kolmogorov energy dispersion in turbulence (Eq. 67) and
identifying S with the energy and inverse correlation length as
the wave vector q, we got the upper critical dimension du for FBM
in the ELS scheme to be 6. This suggests that the correlation
length exponent ν value here is 1/4.

As discussed in this review, the absence of stress
concentrations or fluctuations around the broken fibers
allows mean-field-type statistical analysis in such equal load
sharing fiber bundle models. This feature of the models helped
major analytical studies for the breaking dynamics and also
allowed precise comparisons with computer simulation
results.
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