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Currently, in the building sector there is an increase in energy use due to the 

increased demand for indoor thermal comfort. Proper energy planning based 

on a real measurement data is a necessity. In this study, we developed and 

evaluated hybrid artificial intelligence models for the prediction of the daily 

heating energy use. Building energy use is defined by significant number of 

influencing factors, while many of them are difficult to adequately quantify. 

For heating energy use modelling, the complex relationship between the input 

and output variables is hard to define. The main idea of this paper was to 

divide the heat demand prediction problem into the linear and the non-linear 

part (residuals) by using different statistical methods for the prediction. The 

expectations were that the joint hybrid model, could outperform the individual 

predictors. Multiple Linear Regression (MLR) was selected for the linear 

modelling, while the non-linear part was predicted using Feedforward 

(FFNN) and Radial Basis (RBFN) neural network. The hybrid model 

prediction consisted of the sum of the outputs of the linear and the non-linear 

model. The results showed that the hybrid FFNN model and the hybrid RBFN 

model achieved better results than each of the individual FFNN and RBFN 

neural networks and MLR on the same dataset. It was shown that this hybrid 

approach improved the accuracy of artificial intelligence models. 
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1. Introduction 

Considering that the building sector in Europe is entitled for 40% of total energy use and 36% of 

total CO2 emission [1] the energy efficiency in buildings is still one of the top priorities for engineers 

and researchers worldwide. The growing interest in improving and designing energy efficient buildings 

has highlighted the importance of adequate energy use analysis. This task has proven to be highly 

challenging, due to the complexity of the building itself, its thermal properties, weather conditions, as 

well as building systems, occupants behavior and other often correlated impact factors. The white-box 

models based on physical principles require detail knowledge about a building and high quality of input 



data related to internal loads and occupant behavior. Many of the building energy performance 

simulation softwares have challenges for model calibration based on the real-time data [2].  

Data-driven models, or often referred as black-box models, have proven to be very successfully 

used for solving various problems in building energy sector, mainly load estimation and prediction, 

energy use mapping, benchmarking, defining various energy efficiency strategies and guidelines, etc. 

[3]. The implementation of artificial intelligence models, has shown to be very effective in building 

energy use predictions and classification, while the recent reviews can be found in [3] and [4]. By using 

these techniques, the modelling of building energy behavior comes down to defining relationship 

between variables based on the significant amount of high quality historical data. There is wide range 

of applied methodologies, starting from the more simple algorithms such as statistical regression, over 

artificial neural networks with different architectures, support vector machines, and finally most 

complex hybrids and multistage ensembles. The most often used influencing parameters for building 

energy demand and different methods for the prediction of energy use in large-scale buildings were 

presented in [5]. 

At early stages of the development, Bauer and Scartezzini [6] presented a regression model used 

for the prediction of heating and cooling load taking into account internal and solar heat gains. Another 

regression model was developed for estimating the monthly heating need of the single-family houses in  

[7]. The multiple regression model showed to be successful predictor of heating energy demand in [8]. 

The multiple nonlinear regression model was used for cooling load prediction in [9]. Comparing to 

other, far more complex statistical models, multiple regression can be simple, practical solution offering 

satisfactory prediction results. These models often result poorly when it comes to outliers (untypical 

input values). Among numerous artificial intelligence (AI) models, the artificial neural networks (ANN) 

stand out as the most prominent and most often used models for the building energy use prediction. 

Similar as other AI methods, ANN was first used for solving classification problems, while later its 

application was extended to the regression, which made these models good candidates for different 

prediction problems. ANN proved to be highly successful for the prediction of building energy use as 

shown in [10]. Support vector machine regression model was developed for the prediction of daily 

heating energy use in [11]. It has shown that this AI model can achieve similar results and even 

outperform other, more often used ANNs. The importance of having accurate model for the prediction 

of district heating load is highlighted in [12]. Based on the measured data, the authors developed ANN 

model for short-term prediction, while using particle swarm optimization for adjusting the parameters. 

The deep learning recurrent neural network has been successfully developed for the short-term building 

energy prediction in [13]. The geometric semantic genetic programming has been used for the prediction 

of heating and cooling building energy load in [14]. On 6 real-world benchmark datasets, the authors 

have proven that the regression tree algorithm can successfully tackle the prediction problems in [15]. 

The Random Forest model developed for the prediction of energy use in multiple buildings in [16] 

outperformed even the Decision Tree and Random Tree models on the same database. It has shown that 

this model can be effective tool to help building owners and managers in understanding building energy 

performance in order to improve energy efficiency. The authors developed gradient boosting machine 

for modeling the energy consumption based on a large dataset of 410 commercial buildings in [17], 

showing that it can outperform linear regression and random forest algorithm. It can be used for further 

development of the model-based predictive controls, diagnostics and malfunction detection.  



Hybrid modelling is based on the fact that linear models are very successful in describing linear 

relationships between variables, while resulting poorly while operating with higher number of variables, 

as well as with outliers. However, ANN excel in modelling nonlinear relationship among variables, and 

they are often used to solve various nonlinear problems, such as predictions in different engineering 

fields. By combining the advantages of linear and nonlinear models, the hybrid approach has the 

potential to outperform the individual models. The methodology that combines auto-regressive moving 

average (ARIMA) model with ANN and successfully uses it for time-series prediction, while using 

empirical data was suggested in [18]. There were many other successful examples of solving various 

engineering problems using hybrid approach. The hybrid model combining the seasonal autoregressive 

integrated moving average (SARIMA) with ANN is used for the assessment of the yearly energy cost 

budget in the educational buildings in [19]. The hybrid ARIMA-NN model shows to be successful also 

for the prediction of wind speed [20] while the achieved results are better than each of the individual 

models. Alawi et al. apply similar algorithm for the prediction of the ground-level ozone in [21] while 

using measured data. They used Principal Component Regression for the linear model and combined it 

with neural network for the better accuracy. It can be seen that the hybrid models increase the prediction 

accuracy of the individual AI models. The main idea for this paper was to analyze whether the linear 

modelling could help ANNs in solving complex engineering problems, such as prediction of the heating 

energy use. With the rapid development of ANNs with different architecture, the simple statistical tools, 

such as multiple linear regression, are being pushed aside and often wrongfully neglected. However, if 

the problem is divided into the linear and the non-linear part, the combined model could outperform the 

results of the individuals [18]. 

2. Problem formulation 

Prediction of  multi-building energy use at campus or even on district scale has become more 

interesting to the researchers recently, since it has been highlighted that the focus on analyzing and 

modeling large-scale building can provide more insights into energy use patterns and opportunities to 

save energy [22]. These models can be used also for benchmarking, detecting meter malfunction, 

creating heating bills for tenants, planning energy savings, etc. The authors have developed various AI 

models to solve the complex task of energy use prediction and proposed several upgrades in order to 

improve the prediction accuracy. The main goal of this paper is to elaborate the possible improvements 

of the individual models for the campus energy use prediction by applying the hybrid approach. As it 

has shown to be successful in solving other prediction problems, the main idea is to use the similar 

methodology as proposed by Zhang [18], on the daily district heating use prediction. For this case study, 

the selected input variables are meteorological (based on an outdoor temperature, wind speed, relative 

humidity and solar radiation) and categorical (day in the week and month in the year).  

3. Case study and previous work 

In this study, the database consisting of measured meteorological and daily heating energy use 

data for the University campus in Trondheim, Norway, was used for the analysis and predictions. The 

analyzed campus consists of 35 buildings, with the total area of approximately 300,000 m2. More details 

can be found in [23]. This case study may be treated as a very effective in analyzing heating energy use 

patterns of group of mixed-use buildings, representing a small-scale town. The accurate energy use 

estimation or prediction for large-scale buildings, based on the adequate analysis of the main influencing 



factors, can help in solving environmental problems, as well as conserve energy [5]. Building energy 

use data may be available at different frequency and quality depending on the monitoring system and a 

practical need. Specific annual energy use is relevant for energy planning and policy development, while 

hourly energy use is relevant for control, operation and maintenance. Daily energy use data may be also 

used for operation and maintenance, as well as energy billing. Since some parts of this campus is being 

leased to other users, the daily heating energy use models can be used for defining heating costs for 

tenants. If the reading of the meter is significantly different from the value predicted by the model, it 

can point out the meter malfunction, or indicate excessive consumption, so the management could 

investigate possible reasons. For the prediction of the daily heating energy use of this campus ANNs 

with different architectures: Feedforward Neural Network (FFNN), Radial Basis Function Network 

(RBFN) and Adaptive Network Based Fuzzy Inference System (ANFIS) were developed in [23]. The 

accuracy of individual ANNS is further improved by creating ensemble as shown in [23]. It can be 

concluded from the presented results that the simple combination of the single networks (simple-SAV, 

weighted-WAV or median based averaging-MAV) leads to the improvement of the prediction quality. 

The idea of using k-means clustering to select the ensemble members is proposed in [24]. First, 

clustering has been used to divide networks in groups, and then the most accurate individual network is 

selected for the ensemble, while FFNN and ANFIS networks in the second level are used to create the 

multistage ensemble. RBFN is proposed for the second stage in [25]. K-means clustering is used for 

creating subsets used to train individual RBFN in [26]. In the second step the outputs of the individual 

networks separately trained on different training dataset are aggregated. Another successfully used AI 

model, the Support Vector Machine, is developed in [11] and it has proven that it can achieve similar 

and even better results than more popular neural networks. All of the proposed complex algorithms 

applied to the same dataset has shown improvement in prediction quality compared to the single ANNs. 

The idea of this paper was to investigate another potential improvement of the ANNs prediction, by 

combining it with the linear model. 

4. Method  

The readings of the Main meter in the University campus, which is installed by the district heating 

supplier, for the four years period were collected. The meteorological data were gathered from the local 

weather station and their correlation with the heating energy use was analyzed [23]. The analysis of the 

minimum, maximum and average daily temperatures for the observed period suggested that the database 

should be divided into three parts: cold, mild and warm period. For the models development the working 

days in the cold period (from January 1st until March 31st and from November 1st until December 31st) 

were selected. More details on the selection of input variables and database pre-processing can be found 

in [17]. In this study, the input variables were: month in year M [-], day in week D [-], mean daily 

outdoor temperature tm [°C], maximum daily outdoor temperature tmax [°C], minimum daily outdoor 

temperature tmin [°C], total daily solar radiation SD [Wh/m2], mean daily wind speed wm [m/s], mean 

daily relative humidity φd [%]. Month in year, as nominal categorical variable, was represented with 

values 1 to 12, and day in week with numbers 1 to 5. The output variable was campus daily district 

heating use.  

In this case the daily heating energy use of the previous day was not used as additional input 

variable, so the prediction can be done more accurately for several days ahead (if the energy use of the 

previous day is also predicted, the error of the model is accumulated), as elaborated in [23]. The dataset 



was divided in training (years 2009, 2010 and 2011) and testing dataset (year 2012). In total, there were 

318 samples for training and 100 for testing. A linear scaling function was used to normalize all input 

and output variables to the interval (0,1). The prediction accuracy was measured by the coefficient of 

determination (R2), root mean square error (RMSE) and mean absolute percentage error (MAPE), as 

suggested in [27] and defined as follows: 
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where yk is measured (real) output for k-th sample, kŷ  is model output for k-th sample, y  is the mean 

value of y and N is total number of samples. 

4.1. Hybrid models 

Hybrid model may be described as suggested in [13] as: 

ttt NGy   (4) 

where yt is the output variable, Gt is the linear component (predicted by the linear model, and Nt is the 

nonlinear component (predicted by the nonlinear model). After the prediction using the linear model, 

the residuals are defined as: 

ttt Gye ˆ  (5) 

where et is the residual, and tĜ  is the result of the linear model. The residuals are then predicted using 

the nonlinear model and finally the hybrid prediction is defined as: 

ttt JGy ˆˆˆ   (6) 

where tĴ  is the result of the nonlinear model. For the linear model, MLR was selected, while the non-

linear part (residuals) were predicted using FFNN and RBFN. 

4.2. Multiple Linear Regression 

Multiple Linear Regression (MLR) is a linear multivariate regression technique proposed by 

Galton in 1886 to develop a relationship linking the output to the contributing inputs plus an error term 

[5], such as: 

  nni XXXXY 3322110  (7) 



where Yi is a response variable, X1, X2, …, Xn are the predictors, n is the number of variables and β0, β1, 

…, βn are the regression coefficients and ε is the error. The MLR analyzes the relationship between 

predictors and the result is formulated as a prediction equation with the estimated parameters as: 

nni XXXXY ˆˆˆˆˆˆˆˆˆˆ
3322110     (8) 

where iŶ  is the predicted value and ̂  are estimates of the regression coefficients. Similar to other data-

driven methods used for prediction, developing statistical regression equations requires significant 

number of measured data in order to estimate the involved parameters [3]. The advantage of this model 

is that it is easy-to-use, while offering relatively fair prediction, which has made it very popular at the 

early stages of energy use modeling. However, the achieved short-term prediction results show lower 

accuracy comparing to other, more complex blackbox models, such as ANN and SVM [3]. 

4.3. Feedforward Backpropagation Neural Network 

ANNs are the most commonly used AI models for solving prediction problems. The extensive 

reviews on the application ANN for building energy use prediction may be found in [10, 28]. ANNs are 

information processing systems that are inspired by interconnected neurons of biological systems. In 

significant number of recently published papers they have proven their ability to approximate nonlinear 

relationships between the input and the output variables of various complicated systems. One of the 

most popular ANN architecture is a feedforward neural network (FFNN) with one input layer that 

accepts signals from outside world, an output layer (as a result) and one or more hidden layers. The 

layers consist of neurons that are connected using adaptable weighted connections. In the training phase, 

the weights are adjusted, so that the error between the ANN output and the target output is minimized. 

The activation functions used in this study for the hidden and output layers were the hyperbolic tangent 

and linear functions, respectively. The Levenberg-Marquardt (LM) algorithm was adopted as the 

learning algorithm. For the FFNN models, one hidden layer was selected and the number of neurons in 

the hidden layer was varied, while the optimal number was selected by trial and error method. For the 

purpose of this study, two FFNN models were created. Firstly, the single FFNN model was used for the 

prediction of the campus heating energy use (eight input variables). After that, as a part of hybrid 

modelling, the second, residual FFNN was developed using the same method and input variables to 

predict the residuals. 

4.4. Radial Basis Function Network 

A RBF network consists of three layers - input layer, a single hidden layer and an output layer. 

The nodes in the input layer are linked with the neurons placed in the hidden layer. For the 

transformation of data from the input to the hidden space, this network applies the nonlinear function. 

Specific to the RBFN is that the radially symmetrical function, Gaussian function, is used as the 

activation function. For a RBFN with an n-dimensional input nx  , the output of the j-th hidden 

neuron is given by: 

    mjcxxh jjj ,...2,1,    (9) 



where cj is the center (vector) of the j-th hidden neuron, m is the number of neurons in the hidden layer, 

and   is the radial basis function. The linear transfer function is used for the neurons in the output 

layer. The outputs of the neurons in hidden layer linked with the k-th output neuron are multiplied by 

the weight factor and their sum represents the k-th output of the RBFN: 
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where wkj is the weight between the j-th hidden neuron and the k-th output neuron, wko is the bias and m 

is the number of the hidden layer neurons. 

In this study, the training of RBFN consisted of setting the centers and widths of the Gaussian 

functions, while the least mean square algorithm was used for weights optimization. The setting 

parameters, number of neurons in the hidden layer and the spread (radius value) of the radial basis 

function were varied in order to achieve the best accuracy of the RBF network. As for the FFNN model, 

the two RBFN networks were developed: 1) single model for the prediction of heating energy use, and 

2) RBFN for residuals prediction, as a part of the hybrid model. 

5. Hybrid FFNN and hybrid RBFN models for the prediction of heating energy use 

As the first step MLR model for the prediction of daily heating energy use was developed. Based 

on the training dataset, the equation that described the relationship between daily heating energy use and 

input parameters was: 
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In this study, the possibility to combine MLR with ANN using eight input variables in order to 

improve the accuracy of the individual models was proposed. After performing predictions with 

individual MLR, FFNN and RBFN models, the hybrid algorithm was analyzed. First the prediction of 

the MLR model was used for the linear part of the problem, where there were eight input variables and 

one output variable (daily heating energy use). Then the residuals were calculated (as the difference 

between training output values and the results of the MLR prediction for training period) and these 

values were used as output parameter for training the FFNN network. So, the second (residual) FFNN 

network had eight input variables (M, D, tm, tmax, tmin, SD , wm and φd) and one output variable (the 

residuals). After training the networks, choosing the optimal number of neurons in hidden layer by trial 

and error method, the best network was evaluated on test dataset. 

Respectively, for the test dataset, the prediction had been firstly done with MLR model (linear part) 

and the residuals were predicted using FFNN model (as part of the hybrid). The final output (heating 

energy use) was calculated as the sum of the MLR output and residual FFNN output. The same 

procedure was performed for the RBFN model and the prediction results of the hybrid models were 

evaluated and compared with single MLR, FFNN and RBFN models. The prediction accuracy was 

measured by the R2, RMSE, and MAPE. 

6. Results and discussion 

Equation 11 obtained by the MLR model based on the training dataset was used to evaluate the 

heating energy use of the test dataset. The prediction accuracy indices are shown in Tab. 1. The MAPE 



of 8.1540% could be considered relatively satisfactory for early stages and estimation of daily energy 

use. By applying very simple procedure, it is possible to roughly estimate daily heating energy use for 

different values of the input parameters. This model achieves RMSE of 11,389 kWh for the training 

period and 11,430 kWh for the test dataset. The MLR model with R2=0,9701 showed acceptable 

prediction accuracy.   

Table 1. Prediction indices for Hybrid FFNN model 

Model 
R2 [-] RMSE [kWh] MAPE [%] 

training test training test training test 

MLR 0.9574 0.9701 11,389 11,430 5.7850 8.1540 

FFNN 0.9739 0.9740 9,086 9,492 4.5430 6.3438 

Hybrid FFNN 0.9719 0.9768 9,659 8,448 4.8441 5.5137 

 

The comparisons of the measured values and the predictions of the MLR model for the training and 

test period are shown in Fig. 1 and Fig. 2, respectively. The results showed that the MLR model tends 

to "overestimate" heating energy use (predicts higher values than measured). The training dataset had 

fewer days with low heating energy use, so the model was not accurately trained for the prediction of 

lower heat demand. Therefore, more significant deviations were found for the days with heating energy 

use lower than 150,000 kWh (Fig. 2). 

  
Figure 1. MLR model vs. measured data for 
                the training period 

Figure 2. MLR model vs. measured data for  
                the test period 

 

The quality of the prediction for the hybrid FFNN model is presented in Tab. 1. The FFNN model, 

as one of the most often used ANN models for prediction, achieved MAPE of 6.3438% which is 

significantly better than the MLR model. However, Hybrid FFNN model improved this accuracy with 

MAPE=5.5137%. In this case study it can be seen that the hybrid approach offers better prediction 

quality than the single MLR or FFNN model. RMSE for the test period has been lowered from 9,492 

kWh to 8,448 kWh when combining the FFNN with the MLR model. Considering that the range of the 

daily heating consumptions for the whole dataset is between 46,600 kWh and 320,366 kWh, with the 

average value of 160,251 kWh, the achieved RMSE = 8,448 kWh for the test period can be considered 

as a good result.  

The Hybrid FFNN model outputs compared to the measured data for the training and test period 

are shown in Fig. 3 and 4, respectively. Similar trend of overestimate for lower daily heating energy use 



in the test period, as in the case of MLR model, can be seen for Hybrid FFNN model, but with smaller 

error.  

Table 2. Prediction indices for Hybrid RBFN model 

Model 
R2 [-] RMSE [kWh] MAPE [%] 

training test training test training test 

MLR 0.9574 0.9701 11,389 11,430 5.7850 8.1540 

RBFN 0.9686 0.9766 9,766 10,196 5.3309 6.5084 

Hybrid RBFN 0.9825 0.9703 7,377 9,230 3.3579 6.0488 

 

In Fig. 5 the Hybrid FFNN model outputs for the test period are shown. It can be seen that the 

Hybrid FFNN model offers great matching with measured data, with some more significant deviation 

around 60th sample. In Tab. 2 the prediction accuracy for hybrid RBFN model is shown. This hybrid 

achieved better results than both linear model and single RBFN, while having MAPE 3.3579% on the 

training data and 6.0488% on the test data. The achieved RMSE was also lower when using hybrid 

RBFN model and for this case it was 9,230 kWh for test period, comparing to the same quality indicator 

for single RBFN model of 10,196 kWh.  In this case study there were obvious improvement in prediction 

accuracy by using the hybrid approach. 

   

Figure 5. Prediction results of the hybrid FFNN 
                model for the test period 

Figure 6. Prediction results of the hybrid RBFN 
                model for the test period 

  
Figure 3. Hybrid FFNN model vs. measured  
                data for the training period 

Figure 4. Hybrid FFNN model vs. measured  
                data for the test period 



In Fig. 6 it can be seen that the Hybrid RBFN model predicted values that were closer to the 

measured values than those achieved with single RBFN model. The comparison of the measured values 

and the prediction of the hybrid RBFN model for the training and test period is shown in Fig. 7 and 8, 

respectively.  

  

Figure 7. Hybrid RBFN model vs. measured  
                data for the training period 

Figure 8. Hybrid RBFN model vs. measured  
                data for the test period 

 

The developed models showed more significant deviation around 60th sample (beginning of 

November 2012). The training dataset consists of 318 samples of the coldest period for the years 2009, 

2010 and 2011 and the test datasets has 100 samples of the same period in 2012. The analysis of these 

samples showed that the November of 2012 was unusually cold (lower outdoor temperatures than in 

November of previous years). This untypical input value can cause more significant prediction error in 

this case. Other reason for this deviation can be measurement error (meter malfunction) or inadequate 

data pre-processing (outliers not removed). Besides for the prediction of heating energy use, the AI 

models can be used for the meters control, by pointing out the excessively big difference between the 

expected and measured values. Further improvements could be achieved by using other non-linear 

models, such as recurrent neural networks, that has shown to be very successful in solving prediction 

tasks.  

7. Conclusion 

In this paper, hybrid modelling approach for the prediction of daily heating energy use of the 

university campus was investigated. The main idea was to divide this complex problem into the linear 

and the nonlinear part. The database for the training and testing the developed models consists of real, 

measured data. The input variables were: month in year M [-], day in week D [-], mean daily outdoor 

temperature tm [°C], maximum daily outdoor temperature tmax [°C], minimum daily outdoor temperature 

tmin [°C], total daily solar radiation SD [Wh/m2], mean daily wind speed wm [m/s] and mean daily relative 

humidity φd [%]. FFNN and RBFN models were developed for the daily heating energy use prediction, 

achieving MAPE in the test period of 6.3438% and 6.50584%, respectively. RMSE for the test period 

when using FFNN network is 9,492 kWh, while the RBFN makes the error of RMSE=10,196 kWh. The 

MLR model was used for solving the linear part of the task, while the non-linearity was expected to be 

captured in the residuals. These residuals were calculated as the difference between the measured data 

and the MLR outputs. For the prediction of the residuals (using the same eight input variables as for the 



individual models), the residual FFNN and the RBFN networks were created. The hybrid prediction was 

the sum of the MLR and residuals FFNN (or RBFN) outputs. The results showed that the hybrid 

approach improved the prediction quality. The hybrid FFNN and the hybrid RBFN models were 

compared to the single FFNN and single RBFN models, respectively. In the test period the hybrid FFNN 

model achieved MAPE of 5.5137%, outperforming the single FFNN with 6.3438%. RMSE has also 

shown significant decrease from 9,492 kWh to 8,448 kWh. These results can be considered as good 

comparing to the mean value of the daily heating consumption in the whole dataset of 160,251 kWh (the 

minimum value is 46,600 kWh, and the maximum is 320,366 kWh). Combining the RBFN and the MLR 

model also showed the improvement with MAPE=6.0488% comparing to the single RBFN network 

(6.5084%). RMSE is in this case lowered from 10,196 kWh to 9,230 kWh. This is relatively simple 

method, comparing to significantly more complex models of improvements presented in the previous 

research papers using the same database. However, it shown to be very effective in improving the FFNN 

and RBFN prediction accuracy, by overcoming the shortages of the linear modelling, but with keeping 

its advantages. The building energy use modelling is very demanding task, considering that the complex 

relationship between variables is hard to define. Therefore, on this case study, it was proven that the 

combination of the linear and the non-linear models might be very successful algorithm for improving 

prediction accuracy. The hybrid modelling has proven to improve the accuracy of the individual AI 

models for the prediction of yearly energy cost budget in educational buildings, wind speed, ground-

ozone level, and in this case study, also daily heating energy use. These results can encourage other 

researchers to apply similar methodology for solving prediction problems in their engineering fields. 

Further improvement of the model accuracy can be achieved by applying some methodology for optimal 

ANN parameter selection, or using other AI model for the residuals, such as recurrent neural networks, 

which can be subject of the future work. 
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