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Abstract
A fast method is presented for calculating the wavefields from initialized leaky Lamb
waves on plates immersed in sufficiently light fluids. The method works by precom-
puting the dispersion relation and attenuation, and propagating the wavefields in
the frequency domain. An angular spectrum approach is used to include leakage
into surrounding fluid. Compared to matching FEM simulations, the computations
are performed in the order of seconds, rather than hours. The method also benefits
from being much easier to set up correctly, but is on the other hand less general in
that it cannot handle e.g. scattering from defects. The correspondence is shown to be
good for the case of interest.

1 Introduction

Due its simple geometry, plates and plate-like structures are often encountered in nature
as well as in the man-made world. The examples range from the ice on a frozen lake to
the hull of a ship, or the casings in an oil well. In situations where such systems are to
be probed, acoustic methods are often chosen due to being relatively non-invasive. The
methods rely on different principles, but can be broadly categorized into response and
modal methods [1]. In response methods, one studies the response from a known excita-
tion, using e.g. reflection coefficients, and in modal methods, one studies the propagation
characteristics, such as attenuation or propagation speed. For a plate with a specified ini-
tial wavefield, the modal approach is the only feasible option.

The propagation properties of acoustic waves in plates are described by Lamb wave
theory, which is a special case of elastic waves in layered media, with only a single layer in
a vacuum. In most practical situations, however, the plate is in contact with a fluid on one
or both sides, making it “leaky” in the sense that the plate wave is attenuated as waves are
radiated into the surrounding medium. The radiation makes fluid-immersed transducers
suitable for measuring the radiated wavefront from e.g. a wavepacket propagating on the
plate, as is done in pitch-catch well logging [2–5].

Full simulation of ultrasonic plate waves in e.g. COMSOL Multiphysics can be very
slow as the domain must be finely meshed. Proper initialization of wave packets is also
more complicated than one first may think, because multiple fields must be correctly set
up at all relevant frequencies.
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Figure 1: Schematic development of a Lamb wave. Dp, Ds, Up and Us represent a steady pattern
of P- and S-waves traveling upwards and downwards in the plate. There is vacuum outside the
plate boundaries at y = ±h.

Figure 2: Phase velocities for Lamb modes in a generic steel plate as a function of the frequency-
thickness product f d, where d = 2h is the thickness of the plate.

Faster simulation can be achieved by exploiting that the propagation characteris-
tics are already known from modal Lamb wave analysis, as will be presented in this
article. The semi-analytical method presented here uses a Fourier decomposition of
the wavefield for each mode, where propagation is achieved by adjusting the phase
of the mode according to its dispersion relation. Radiation into the surrounding fluid
medium is implemented using an angular spectrum approach, relying directly on the
aforementioned Fourier decomposition. Attenuation is included using a perturbation-
based method valid for light fluids (i.e., with a much lower density than that of the plate).

2 Theory

2.1 Lamb wave theory

Lamb waves are the modal solution of guided waves in a free plate. Consider Fig. 1,
which represents a slab of elastic media such as steel. As the plate is excited, waves are
reflected from the two free boundaries. Any propagating wavemodes must eventually
create a steady pattern of plane waves which leads to different propagating modes that
are symmetric (S0, S1, etc.) or antisymmetric (A0, A1, etc.) with respect to the midplane of
the plate. Examples of possible phase and group velocities for these modes are shown in
Fig. 2 and 3. To understand how these modes come to be, first consider that two types of
waves can be supported in an elastic plate: longitudinal P-waves (for primary/pressure),
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Figure 3: Group velocities for a steel plate as a function of the frequency-thickness product f d.

and transversal S-waves (for secondary/shear), with sound speeds given by

cp =

√
λ + 2G

ρ
, (1a)

cs =

√
G
ρ

. (1b)

Here, λ and G are the first and second Lamé constants that define the stress-strain rela-
tionship in isotropic media, and ρ is the density. The Lamé constants can be expressed
from the more experimentally available Young’s modulus E and Poisson’s ratio ν as

λ =
νE

(1 + ν)(1− 2ν)
, (2a)

G =
E

2(1 + ν)
. (2b)

The general displacement field u can be written using Helmholtz decomposition theorem
from the scalar (φ) and vector (Ψ) wave potentials as

u = ∇φ +∇×Ψ = up + us. (3)

A solution is sought in the x-y plane, where the fields are invariant in the z-direction. It
can be shown that the uz-components depends only on the potentials Ψx and Ψy that are
associated with the horizontally polarised shear wave (SH). The other two components
depend on potentials φ and Ψz = ψ, associated with longitudinal waves (P) and verti-
cally polarised shear waves (SV), respectively. It is therefore possible to seek solutions
separately for the P + SV wave combination. In the remaining analysis the SH waves are
discarded because they do not couple to a fluid.

In a solid layer, the fields of a right-going wave may thus be expressed as the super-
position of four plane waves. These are the P- and SV-waves (from here on abbreviated
as S) propagating in the upwards and downwards directions. Snell’s law requires that
the wave vectors are oriented so that they all have the same component β, equal to kx

in this situation, along the waveguide propagation direction. That implies the concept
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of transverse resonance for plates; with lossless boundaries, the mode solutions are trav-
eling along the waveguide axis and are standing waves in the transverse direction. The
potentials from these four plane waves can be written as

φ =
[
Dpeiγpy + Upe−iγpy]ei(ωt−βx), (4a)

ψ =
[
Dseiγsy + Use−iγsy]ei(ωt−βx), (4b)

where Dp and Ds are the wave potential amplitudes of downward-moving P- and S-
waves respectively, and Up and Us are the amplitudes of upwards-moving waves. The
horizontal wavenumbers β are the same for all the plane waves, as mentioned. Because
of the different wave speeds, the wavenumbers of P- and S-waves differ: kp = ω/cp and
ks = ω/cs. The vertical wavenumbers ky, are therefore also different for P- and S-waves,
and are denoted by γp and γs respectively:

γs =
√

k2
s − β2, (5a)

γp =
√

k2
p − β2. (5b)

The real power of the formulation emerges when introducing the field variables as
expressed via the four wave components. Naturally, when two layers are in contact, the
boundary conditions need to be matched. For elastic waves that means the continuity of
particle displacement, and normal and shear stress (σyy and σxy). One can obtain expres-
sions for the stresses by calculating the strain from particle displacement, and then pipe
the result into the constitutive relation for stress, which is where the Lamé constants are
introduced. As can be verified with a textbook on the matter [6, 7], one obtains

σxx = λ

(
∂2φ

∂x2 +
∂2φ

∂y2

)
+ 2G

(
∂2φ

∂x2 +
∂2ψ

∂x∂y

)
, (6a)

σxy = G
(

2
∂2φ

∂x∂y
− ∂2ψ

∂x2 +
∂2ψ

∂y2

)
, (6b)

σyy = λ

(
∂2φ

∂x2 +
∂2φ

∂y2

)
+ 2G

(
∂2φ

∂y2 −
∂2ψ

∂x∂y

)
. (6c)

Any stress component with a z-index is zero, and although σxx is not an imposed bound-
ary condition, it will be needed in a later section. The last step is to substitute the plane
wave formulation of the potentials into the stress and displacement equations. A bit of
rearrangement yields a matrix equation for the stress and displacement through the plane
wave amplitudes in y = 0, which is an arbitrary origin.

σyy(y)
σxy(y)
uy(y)
ux(y)

 =


G(β2 − γ2

s ) G(β2 − γ2
s ) −2Gβγs 2Gβγs

2Gβγp −2Gβγp G(β2 − γ2
s ) G(β2 − γ2

s )

iγp −iγp iβ iβ
−iβ −iβ iγs −iγs




Dpe+iγpy

Upe−iγpy

Dse+iγsy

Use−iγpy

 . (7)

Similar matrices using a different coordinate convention can be found from e.g. Hovem [7]
or Lohne et al. [8]. Using a matrix formulation gives a systematic way of working with
guided waves in multi-layered media, such as plates in contact with different fluids or
solids. Here we limit ourselves to free plates and will not go into more details or gener-
alizations than needed.
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The plate considered is a single layer with with thickness d = 2h, and boundaries to
vacuum at y = ±h. The vacuum boundary conditions require that the relevant stresses
are zero. Evaluated with respect to the mid-plane of the plate,

σyy(+h)
σxy(+h)
σyy(−h)
σxy(−h)

 =


0
0
0
0

 =


ae+iγph ae−iγph −be+iγsh be−iγsh

ce+iγph −ce−iγph ae+iγsh ae−iγsh

ae−iγph ae+iγph −be−iγsh be+iγsh

ce−iγph −ce+iγph ae−iγsh ae+iγsh




Dp

Up

Ds

Us

 , (8)

where a = G(β2 − γ2
s ), b = 2Gβγs, and c = 2Gβγp are introduced for compactness. With

a priori knowledge about the solution or by close consideration, one can see that there is
a good match between the first two columns, as well as the last two. Therefore, instead of
solving for the up- and down-going wave components, a solution to their combinations
is sought:

0
0
0
0

 =


+a cos(γph) +ai sin(γph) −ib sin(γsh) −b cos(γsh)
+ci sin(γph) +c cos(γph) +a cos(γsh) +ai sin(γsh)
+a cos(γph) −ai sin(γph) +ib sin(γsh) −b cos(γsh)
−ci sin(γph) +c cos(γph) +a cos(γsh) −ai sin(γsh)




Dp + Up

Dp −Up

Ds + Us

Ds −Us

 . (9)

Then the following substitutions are performed Dp + Up → A2, Dp −Up → A1, Ds +

Us → B2, and Ds −Us → B1. The potentials in Eq. (4) can thus be rewritten as

φ =
[
A2 cos(γpy) + iA1 sin(γpy)

]
ei(ωt−βx), (10a)

ψ =
[
B2 cos(γsy) + iB1 sin(γsy)

]
ei(ωt−βx). (10b)

The substitutions will take on a more significant meaning soon, as they explain the sym-
metric and antisymmetric modes in the final solution.

The final step is to further simplify the matrix by row operations on row 1 and 3 and
row 2 and 4:

0
0
0
0

 =


a cos(γph) 0 0 −b cos(γsh)
ci sin(γph) 0 0 ai sin(γsh)

0 −ai sin(γph) +ib sin(γsh) 0
0 c cos(γph) a cos(γsh) 0




A2

A1

B2

B1

 . (11)

To have a wave that can exist without forcing, the matrix must have a determinant of
0. Otherwise, it would be invertible and a non-zero solution of the vector of unknowns
could not exist. Writing out the determinant gives

[a2 cos(γph) sin(γsh) + bc cos(γsh) sin(γph)]

·[a2 cos(γsh) sin(γph) + bc cos(γph) sin(γsh)] = 0.
(12)

The determinant is also the product of two individual 2-by-2 determinants in the two
upper and two bottom rows. Each can be equal to 0 on its own, as seen from the two
square brackets. It will be shown that the two brackets are associated with the symmetric
and antisymmetric modes.

After choosing the material parameters and thickness for the plate, the two remaining
unknowns are frequency and wavenumber. The two can be matched to give the disper-
sion relation ω(β) by solving for the zeros of a transcendental characteristic equation
(one of the two brackets), a method for which is presented later. The wavefields in the
plate can be described entirely once the dispersion relation is known.
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Figure 4: Displacement field of the S0 mode at 250 kHz in a 1 cm thick steel plate.

2.1.1 Symmetric solution

When the first part of the characteristic equation (12), which describes the components
A2 and B1, is set to zero, the dispersion relation is implicit in

tan(γsh)
tan(γph)

+
4β2γsγp

(β2 − γ2
s )

2 = 0. (13)

To obtain the dispersion relation in practice, the roots of Eq. (13) have to be found nu-
merically.

When the dispersion relation holds, the corresponding 2-by-2 submatrix in Eq. (11)
has a determinant of 0, and therefore also a free row. That makes it possible to express
the ratio of A2 and B1 as

RS =
B1

A2
=

(β2 − γ2
s ) cos(γph)

2βγs cos(γsh)
. (14)

The potentials φ and ψ are then known, with the exception of an arbitrary scaling that
will be represented by K. Substitution back into the relationships (3) and (6) give the full
field equations for symmetric Lamb waves

φS = K cos(γpy) (15a)

ψS = iKRS sin(γsy) (15b)

vS
x = iωK[β cos(γpy)− γsRS cos(γsy)] (15c)

vS
y = ωK[γp sin(γpy) + βRS sin(γsy)] (15d)

σS
xx = iGK[(2γ2

p − β2 − γ2
s ) cos(γpy) + 2γsβRS cos(γsy)] (15e)

σS
xy = −GK[2βγp sin(γpy) + (β2 − γ2

s )RS sin(γsy)] (15f)

σS
yy = iGK[(β2 − γ2

s ) cos(γpy)− 2γsβRS cos(γsy)] (15g)

Note that the displacements have been converted to velocities by multiplication with iω.
The common phasor ei(ωt−βx) is also omitted from all quantities.

The notion of symmetric waves come from the field equations. The x-velocities vx are
symmetric around the mid-plane of the plate if described by cosines as seen in Eq. (15c),
whereas the y-velocity vy is symmetric if described by sines as seen in Eq. (15d). For
antisymmetric modes, the sines and cosines are swapped. The displacement field of an
S0 symmetric Lamb wave is shown in Fig. 4.
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Figure 5: Displacement field of the A0 mode at 250 kHz in a 1 cm thick steel plate.

2.1.2 Antisymmetric solution

The second part of the characteristic equation (12) describes the antisymmetric modes,
and the dispersion relation is implicit in

tan(γph)
tan(γsh)

+
4β2γsγp

(β2 − γ2
s )

2 = 0. (16)

The same steps as for the symmetric solution are followed. When the dispersion relation
holds, the corresponding 2-by-2 submatrix in Eq. (11) has a free row since the determi-
nant is 0. That makes it possible to express the ratio of A1 and B2 as

RA =
B2

A1
=

(β2 − γ2
s ) sin(γph)

2βγs sin(γsh)
. (17a)

With the potentials known, again with the exception of an arbitrary scaling K, substitu-
tion back into the relationships (3) and (6) gives the full field equations for antisymmetric
Lamb waves. Examples of the displacement fields of the A0 and A1 modes at 250 kHz are
given in Fig. 5 and 6.

φA = iK sin(γpy) (18a)

ψA = KRA cos(γsy) (18b)

vA
x = iωK[β sin(γpy)− γsRA sin(γsy)] (18c)

vA
y = −ωK[γp cos(γpy) + βRA cos(γsy)] (18d)

σA
xx = KGi[(2γ2

p − β2 − γ2
s ) sin(γpy) + 2RAβγs sin(γsy)] (18e)

σA
xy = KG[2βγp cos(γpy) + RA(β2 − γ2

s ) cos(γsy)] (18f)

σA
yy = iKG[(β2 − γ2

s ) sin(γpy)− 2RAβγs sin(γsy)] (18g)

2.2 Lamb wave attenuation in light fluids

The Lamb wave derivation assume a free plate in vacuum. The interaction with a sur-
rounding fluid or solid would need to be included already in the boundary conditions
in Eq. (8). However, in situations where the plate is much denser than the surrounding
material, as with a steel plate in water, the Lamb wave structure can be assumed to be
unperturbed except for the addition of an imaginary attenuation term α to the wavenum-
ber:

kx = kxr + ikxi = β− iα. (19)
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Figure 6: Displacement field of the A1 mode at 250 kHz in a 1 cm thick steel plate.

Figure 7: Balance of energy flow into a small element of a plate.

For a wave of initial amplitude A, this implies exponential decay with distance as

Aei(ωt−kxx) = Ae−αx · ei(ωt−βx), (20)

with an the attenuation α often measured in neper per meter (Np/m), or in decibel 8.686 ·
α (dB/m).

Several perturbation techniques can be used to calculate approximate attenuation
curves. Merkulov [9] used Schoch’s characteristic equation (a generalization of Eq. (13)
and (16) to include the effect of two-sided fluid loading) to come to an approximation of
the attenuation by doing a first order perturbation and assuming the density of the fluid
to be small. Another perturbation method is presented by Auld [10], starting from a com-
plex reciprocity relation. The same numerical attenuation values are obtained with both
methods through different equations. Here we will look a at a more intuitive method pre-
sented in 1982 by Watkins et al. [11] that leads to the same equations as Auld’s method.

The main assumption is that the wave retains its structure although power is lost.
Consider a differential element of the plate of unit depth, as illustrated in Fig. 7. In steady
state a time averaged power Px(x) is incident from the left, and a power Px(x+ dx) leaves
from the right. On the top of the plate a total time-averaged power PL(x) = IL(x) · dx is
lost to the medium through radiation. Conservation of energy requires that

Px(x + dx)− Px(x) = −IL(x) · dx −→ dPx(x)
dx

= −IL(x). (21)

The time-averaged power flow along the plate can be calculated as

Px = −1
2

∫ h

−h
(vxσ∗xx + vyσ∗xy)dy. (22)

The next step is to calculate the radiated intensity IL. Here we only look at the case
where the plate is in contact with a fluid, but it is similarly possible to calculate radiated
intensity into a solid by taking into account how the vertical and horizontal velocity com-
ponents contribute to radiated P- and S-waves. For fluids it is enough to consider that
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Figure 8: Perturbation values of attenuation for Lamb waves in a 1 cm thick steel plate in contact
with water on both sides. Only the first three S- and A-modes are shown. The black dotted lines
indicate cutoff frequencies.

the normal velocity is continuous on the interface, and related to the pressure through
Euler’s equation. The radiated intensity on one side of the plate is [12]

IL =
Z f |v̄ys|2√
1−

(
c f
cph

)2
, (23)

where v̄ys is the RMS-value of the vertical velocity at the surface of the plate in con-
tact with the fluid. c f is the speed of sound in the fluid, and Z f is the specific acoustic
impedance, for water Z f = 1.48 MRayl.

The intensity and power flow both scale with the square of the amplitude. Hence,
IL ∝ Px, and the power flow and radiated intensity exponentially damped as e.g.

Px(x) = Px(0)e−2αx. (24)

This can be inserted into Eq. (21), which can then be re-expressed as

α =
IL

2Px
=

Power lost per metre into medium
2× Power flow along the plate

. (25)

By knowing the dispersion relation, Eq. (22) can be integrated numerically, and Eq. (23)
can be evaluated with the same arbitrary scaling K. The result for a steel plate in water
is shown in Fig. 8. The curves are identical to Merkulov’s first order approximation, but
the power flow method benefits by being easier to understand and more flexible; it can
treat radiation into solids, and preliminary findings [13] suggest that one can use inho-
mogeneous (“damped”) waves [14] to partially correct for the singularity at coincidence
(spike in A0 mode) and the absence of subsonic radiation. Around coincidence, the real
wavenumber also changes appreciably, but the physics get more complicated at lower
frequencies, and the current scope is on the higher frequencies. Note that the attenuation
curves can deviate significantly from the perturbation solution at higher frequencies if the
plate is in contact with water on only one side, or if the fluids have different impedance.

For the purposes of this work, it is more suitable to define the attenuation as hap-
pening in time. If ω is taken to be real, the imaginary wavenumber gives a complex
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propagation speed c = cr + ici, where cr 6= cph. To achieve the same attenuation within
time interval ∆t as with α over the distance ∆x = cph∆t, one can add an imaginary part
iωi to ω,

Ae−α·∆x = Aei·iωi ·∆t −→ ωi = α
∆x
∆t

= αcph =
α

β
ω, (26)

and discard the imaginary part of the wavenumber.

2.3 The angular spectrum approach

The angular spectrum method is a superposition method for modeling the propagation
of a wave field when the solution is supplied on the plane y = y′ [12]. It is based on the
fact that ei(ωt−k·r) is a solution of the Helmholtz equation

∇2 p + k2 p = 0, (27)

when the wave vector components satisfy

k2 = k2
x + k2

y + k2
z = β2 + k2

y =
ω2

c2 . (28)

Note that the wavenumber along an arbitrary propagation direction in the waveguide is
given by β2 = k2

x + k2
z. Since k is constant for each frequency, the three wavenumbers are

not independent. Choosing ky as dependent, one has that ky = ±
√

k2 − k2
x − k2

z, where
the appropriate root must be chosen.

When a vibrating steel plate is in contact with e.g. air, the wavefield in the x-z plane
is given because it is imposed by the velocity field of the steel plate. The traces of the
wavefronts in the air must match the wavefronts on the steel. The component ky can thus
be real or imaginary as a consequence. The latter implies a non-propagating evanescent
wave into the air, when the phase velocity of the plate wave is subsonic with respect to
the surrounding air.

First consider an initial complex wavefield at t = 0 on the plate surface at y = y′,
expressed through its vertical surface velocity vys. It can be decomposed into a sum of
plane waves through the Fourier transform

Vys(kx, kz) = FxFz
{

vys(t = 0, x, y = y′, z)
}

, (29)

which is also known as the angular spectrum. For waves propagating on a plate, the
dispersion relation ω(β) is already known, and using Eq. (26), the attenuation with time
can be included.

The time-evolution of each plane wave component has a simple description, only
changing by a phase factor and attenuated. Therefore, the propagated wavefield on
the plate can be obtained by injecting a “time propagator”, and performing the inverse
Fourier transform:

vys(t, x, y = y′, z) =
∫∫

Vys(kx, kz)︸ ︷︷ ︸
Angular spectrum

·

Fourier Basis︷ ︸︸ ︷
ei(kxx+kzz) · ei(ω(β)+iωi)t︸ ︷︷ ︸

Time
propagator

dkxdkz. (30)

The normal velocity field is interesting on a plate, but the pressure p is more meaning-
ful in a fluid. Euler’s equation in the frequency domain can be used to relate the normal
velocity to the fluid pressure just above the plate

iωρV = −∇P. (31)
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Figure 9: Propagation of a monochromatic wavefield from a plate (blue) into a parallel plane
(green). The colored gradients represent wavefronts. The wave vector components kx and kz are
imposed by the plate at y = y′. The wavefield between the planes, here shown as a cross section
(red), can be calculated as different solution planes.

Doing the conversion using the dispersion relation frequency ω(β) brings some benefits
that will be discussed in section 3.3. In that case one can calculate the angular spectrum
of the pressure field above the plate at t = 0, P(kx, kz). Then, it is possible using the
method represented in Eq. (30) to propagate the wavefield to different times of interest,
giving P(t, kx, kz). Performing a Fourier transform over the t-dimension, one obtains
P(ω′, kx, kz), with ω′ given by the sampling of t, and not the dispersion relation. Since ky

in the fluid is given by kx and kz via Eq. (28), one can propagate the wavefield between
parallel planes, as shown in Fig. 9, as

p(t, x, y, z) =
∫∫∫

P(ω′, kx, kz)︸ ︷︷ ︸
Angular spectrum

·

Fourier Basis︷ ︸︸ ︷
ei(ω′t+kxx+kzz) · eiky(y′−y)︸ ︷︷ ︸

Propagator to
parallel planes

dkxdkzdω′. (32)

In practice, the implementation uses the Fast Fourier Transform (FFT) or its inverse
(IFFT). Hence, the solution domain will have to be sampled to resolve the shortest wave-
length and highest frequency, and it will be periodic. The method naturally handles
effects such as diffraction, dispersion, and attenuation.

Another method known as normal mode expansion (NME) [6, 15] is similar in some
aspects to the presented method. It is a method for calculating the excitation of waveg-
uides, and works by computing “modal participation factors” that carry a similar mean-
ing to the angular spectrum coefficients here.

3 Method

3.1 Numerical solution of the Lamb dispersion relation

Equations (13) and (16) implicitly relate the frequency ω to a wavenumber β along the
propagation direction. For any frequency, there are a finite number of purely propagating
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Figure 10: Dispersion curves as they are traced out. Notice that the curves are not one-to-one,
and more predictable than e.g. the phase velocity Fig. 2.

modes (A0, S0, A1, S1, etc.), as shown e.g. in Fig. 2. Tracing out the dispersion curves is
necessary, and this section describes a procedure to do so.

The first step is to recognize that γs and γp will change from being real to imaginary
depending on the wavenumber β and frequency. This causes (13) and (16) to switch be-
tween having real and imaginary roots. As an example of a special case, it is known that
the phase velocity for the A0 mode is bounded between 0 and the Rayleigh wave velocity
cR < cs, making the vertical wavenumbers γs and γp imaginary. For other modes, one or
both of the vertical wavenumbers may become real at some point. To simplify analysis, it
is therefore useful to rewrite the characteristic equations so they take on only real values
for real horizontal wavenumbers β. From Rose [6], this can be done as

tan(γsh)
γs

+
4β2γp tan(γph)

(γ2
s − β2)2 = 0 for symmetric modes, (33a)

γs tan(γsh) +
(γ2

s − β2)2 tan(γph)
4β2γp

= 0 for antisymmetric modes. (33b)

The curves change sign when crossing 0, so a root-finding algorithm can be used.
However, caution should be taken as the equations also change sign when crossing a
pole. Depending on the algorithm used, one should test that the obtained root is in fact
fairly close to 0. The curves are traced out as ω(β), as seen in Fig. 10 for two reasons.
Firstly, these curves are two-to-one, meaning we can capture the back-propagating modes
(negative group velocity, e.g. S1 mode at low frequencies). Secondly, as Lowe points out
[1], they are more easily traced out than say cph(ω) which perhaps is the most intuitive
choice to go for.

Tracing out the modes is a bit involved, in particular due to the possibility of having
holes in the curves. The holes are regions where no roots are found for a mode, and the
consequences are potentially that a mode is missed, or that one reaches a dead end when
following a curve. In brief, the algorithm used here works as follows:

1. Choose either Eq. (33a) or (33b).
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2. Make a list of β values: (β0, ... , βi, βi+1...βn) for a fine search for roots/modes along
the ω axis.

3. For each βi, trace out the modes found as follows:

i Store the values of each root as the intersection with a mode.

ii Do a similar search nearby (βi + δβ) to estimate the derivative ∂ω/∂β.

iii Trace the modes (as far as possible) down to βi−1 and up to βi+1, taking small
steps of e.g. ∆β = 5, and store the result as a piece of a mode curve for the
index i.

4. Starting from i = 0, go through each curve piece, and splice with the best matching
curve piece in i = 1 (if any), then for i = 2, and so on:

i Splice two curve pieces if they overlap at some point with a similar angle (< 5
degrees).

ii If any curve pieces remain, they are attempted to be matched based on how
well linear extrapolation finds the midpoint between the unconnected ends.
An upper tolerable error is defined from the derivatives ∂ω/∂β, and length of
the gap.

iii Unmatched curve pieces are at this point considered as new modes.

5. The fully traced modes are then labeled e.g. A0, A1, etc. based on their lowest fre-
quency, in line with how higher modes have higher cut-off frequencies [16].

6. The mode curves are finally fitted with a spline function to get ω(β). For the inverse
function β(ω) the fit ignores the back-propagating modes, so it is a one-to-one func-
tion.

When a spline function is obtained, it is quite easy and fast to work with, as the mode
tracing is separate from everything else. The method above has worked very well for
steel plates and similar materials up to at least 1 MHz·mm, but for very different mate-
rial parameters it is difficult to assess general robustness. Using the above method will
therefore require inspection, and potential tweaking of hyperparameters such as the step
length ∆β. It should also be mentioned that at very low frequencies, the A0 and S0 modes
may be difficult to trace due to issues relating to the numerical range and precision of e.g.
floats or doubles in the characteristic equations. In those situations, the low frequency ap-
proximations given in [16] can be used. Finally, in cases where one is interested in general
leaky Lamb dispersion relations, the wavenumber is complex, and the search for roots is
significantly more difficult, but still possible as described by Lowe [1].

3.2 Plate wave propagation

To propagate a wavefield on a plate, the first step is to choose the dimensions and dis-
cretization of the plate. The Nyquist sampling theorem requires more than two samples
per smallest wavelength to be simulated. Then, the vertical surface velocity vys profile is
specified, and here we will consider the simple case of a Gaussian wavepacket propagat-
ing along the x-direction, θ = 0, on the plate. It can be expressed as

vys(t = 0, x, z) = e−
(x−x0)

2+(z−z0)
2

2σ2 · e−iβc[cos θ(x−x0)+sin θ(z−z0)], (34)
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where βc is the wavenumber at the center frequency of the wavepacket, and x0 and z0

the initial location. The wavefield is complex valued, which is necessary for defining the
propagation direction. The spatial extent of the wavepacket is given by σ2, using the full
width at half maximum (FWHM), σ ≈ FWHM/2.355. In this work FWHM = 2λc =

4π/βc.
An attractive feature of the method is that specifying only vys is enough, even though

one has velocity components in the x-direction, and stress/strain fields inside the plate.
The reason is that all field relations are implicit in the Lamb wave assumption and dis-
persion relation. The only situation where vys cannot capture a Lamb wave mode, is for
certain frequencies in the higher modes. Looking at Fig. 8, the S1 mode has 0 attenuation
at a particular frequency, and the reason is that vys = 0 even though there is a wave with
non-zero power flow Px. For each Lamb mode the procedure of calculating propagation
is:

1. Starting point: Complex wavefield or wavepacket at t = 0, (x, z).

2. Fourier transform: Wavenumber domain, (kx, kz).

3. Propagate to different times: Using the “time propagator” in Eq. (30), (t, kx, kz).

4. Inverse Fourier transform: Propagated wavefields, (t, x, z).

The parenthesis at each step shows the the dimensions of the data worked with. A reason
why the method is fast is that optimized FFT routines can be used, along with broadcast-
ing/vectorization. Using Python, the step from (kx, kz) to (t, kx, kz) is written on one line
using Numpy arrays, completely avoiding inefficient Python loops.

Table 1: Material parameters used.

Material ρ (kg·m−3) cp (m·s−1) cs (m·s−1)

Steel 7850 5900 3200
Water 1000 1480 -

3.3 Including leakage to fluid

Sometimes a plate wave can be interesting to model on its own, but in most practical
settings the interaction with a surrounding fluid is key. A few modifications to the list in
the previous section is needed; new steps are marked with (*):

1. Starting point: Complex wavefield or wavepacket at t = 0, (x, z).

2. Fourier transform: Wavenumber domain, (kx, kz).

3. * Convert to pressure: Using Euler’s equation (alternatively after step 6).

4. * Add attenuation: ω → ω(1 + i α
β ).

5. Propagate to different times: Using the “time propagator”, (t, kx, kz).

6. * Transform to frequency domain: ω′ given by sampling of t, (ω′, kx, kz).
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Figure 11: The equivalent convolution kernels that propagates a wavefield as a leaky A0 Lamb
wave by a time t.

i If step 3 is moved, reduce spectral leakage from the “sudden” initialization of
the plate wave with a window function in time, e.g. Tukey (see next section).

ii Zero padding to avoid temporal wrap-around with y (see next section).

7. * Propagate to parallel planes of interest: Using Eq. (32), (ω′, kx, y, kz).

8. Inverse Fourier transform: Wavefield in fluid, (t, x, y, z).

Step 3, converting to pressure, can alternatively be moved to after step 6. The dif-
ference is between using the frequency from the dispersion relation ω, or the frequency
from the time sampling t, ω′. Doing the conversion in step 3 with ω avoids an unwanted
“startup wave” as in Fig. 16.

3.4 Frequency domain periodicity

The method works in the frequency domain where the solution is periodic. To under-
stand the implications of that, we start by looking at the “time propagator” in more de-
tail. It works like a filter that is applied in the frequency domain by multiplication. In the
spatial domain, it would be a convolution by a kernel that is a function of propagation
time, as shown in Fig. 11.

The intial impulse splits into a left- and right-going pulse. Which direction is deter-
mined by the wavenumber, so if the initialized wavefield is defined to move to the right,
the left-going pulse will be zero. The peak in this particular case moves at roughly the
typical group velocity (A0 mode), and attenuation is included. Once the pulse moves to
the right end (x = 0.4 m) it will wrap back to the beginning (x = 0.0 m).

To avoid wraparound effects, one must essentially the avoid the effects of circular con-
volution that may turn up when doing the convolution in the frequency domain without
zero-padding. To have linear convolution, the length L after convolution must be given
by

L = N + M(t)− 1, (35)

where N is the number of samples in the domain, and M(t) is the appropriate number
of samples in the convolution kernel. In the circular convolution case L = N, and M(t)
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Figure 12: Illustrations of necessary domain extension and zero padding in time to avoid wrap-
around artifacts. The Tukey window is optional, but reduces spectral leakage if one does the
conversion to pressure after step 6 in the recipe.

is then the zero-padding needed to extend the domain, see Fig. 12. It can be decided by
taking into account the largest group velocity of interest, the propagation time, and the
spatial sampling rate. It may not be necessary to use full domain extension if, for instance,
the wavefield consists of a well localized wavepacket on one side of the domain.

When the wavefield of the plate is propagated into the fluid, the propagation delay
plays a role. The wavefield a distance yd away from the plate surface is unaffected by
the current plate vibration until a time td = yd/c f has passed, depending on the sound
speed in the fluid c f . From step 6 in the recipe in sec. 3.3, the solution is periodic in time,
and when moving away from the radiating plate surface, the wavefield is determined by
a increasingly distant past. Therefore, as the distance y increases, the delayed time will
eventually cause a wrap-around in the solution. To avoid this, sufficient zero padding in
time must be used. The amount depends on how far away from the plate one wants to
propagate the wavefield. A schematic representation of necessary zero padding is shown
in Fig. 12.

4 Results and discussion

4.1 Free plate propagation

The method is implemented in Python, and compared with equivalent simulations in
COMSOL Multiphysics. To verify 1D propagation for a free plate, an A0 wavepacket
propagating to the right is initialized at x0 = −25 cm with a center frequency of 250 kHz.
The vertical midplane velocity is measured.

The COMSOL simulation is realized by calculating the necessary fields u(x, y) and
v(x, y), using e.g. Eq. (18c), at the center frequency of 250 kHz, and windowing using a
Gaussian function. This is an approximation, as the windowing introduces a bandwidth
of frequencies that are not properly modeled. It is deemed unfeasible to synthesize the
different fields one frequency at a time, but for this example, the maximum deviance in
intensity Ix that contributes to the power flow Px is 2%. For all simulations 6 quadratic
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Figure 13: Comparison of 1D propagation for a free plate. The presented method is shown in the
Python implementation. The COMSOL simulation shows additional modes due to the approxima-
tion used when initializing the fields.

Figure 14: f -k plot from the COMSOL simulation between −0.2 m to 0.3 m and from 20 µs to
140 µs. The modes A1, A2 etc. come from the inexact initialization in COMSOL.

elements per wavelength at 500 kHz is used, unless stated otherwise.
The propagation in the two cases can be seen in Fig. 13. The method presented in this

work shows a single very weakly dispersive wavepacket. In COMSOL, the targeted A0

wavepacket is simulated in the same way, but additional modes are also present. The
explanation is the approximation used when initializing the fields. The f -k plot in Fig. 14
shows clearly that the deviation comes from higher-order antisymmetric Lamb modes,
confirming that the error is related to the initialization and not numerical.

A verification of 2D propagation is also shown in Fig. 15, where one sees the wavepacket
from above the plate as it propagates and diffracts. The two different solutions are shown
on each side of the symmetry axis. For the same reasons as in 1D, there are additional
modes in this simulation, but it is quite clear that the main A0 wavepacket behaves sim-
ilarly. The boundary conditions at z = ±0.1 m are different; they are periodic in the
Python implementation, and fixed in COMSOL. The reason touches on the motivations
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Figure 15: 2D propagation, with different solutions above and below the propagation axis. The
x-z-plane represents the plate surface.

for the work, as a very fine mesh is needed for simulating ultrasonic waves. Also, the 2D
propagation requires a 3D model to capture the plate thickness, and the memory usage
and simulation time had to be reduced. Even when using two planes of symmetry, re-
ducing the maximum frequency to 400 kHz, and shrinking down the domain into what
is seen, it still took roughly 8 hours to compute. Although no formal benchmarking has
been performed, the computation time on the same computer was on the order of a cou-
ple of seconds using the presented method.

4.2 Leaky wave propagation

Simulations of fluid interaction are performed in 1D. The setup consists of a steel plate of
1 cm thickness with water on both sides, as seen in Fig. 16. Here it is assumed that the
Lamb waves do not change their propagation characteristics except for being attenuated.

The COMSOL simulation shows a “startup” wave that seem to spread almost circu-
larly from the initial position. It is not seen in the vertical surface velocity, and is therefore
not a form of interface wave, but an artifact that occurs when a wave suddenly “pops”
into existence. The comparison is done by monitoring the pressure 1 cm above the plate,
as illustrated with the red dotted line.

In this work, the artificial “startup” wave is not present, as seen in Fig. 17. The reason
has already been discussed, and is attributed to the velocity to pressure conversion before
propagating the wavefield in time. Doing the conversion to pressure at a later stage
introduces the “startup” wave. A finer comparison of the waveforms 1 cm above the plate
is shown in Fig. 18. As soon as the “startup” wave and the leaked wavefield separate after
some time, it shows that both attenuation and wave shape is modeled quite well. A slight
shift of the waveform is likely owing to the minor influence of the water loading on the
exact real horizontal wavenumber β, and/or numerical dispersion in COMSOL.
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Figure 16: COMSOL model used to verify leaky wave propagation. The measurement line indi-
cates the x-axis shown in Fig. 18.

5 Conclusion

A fast semi-analytical method that can propagate initialized leaky Lamb wavefields has
been presented. Although no formal benchmarks have been performed, it is clear that
computations are done within seconds, while matching computations in COMSOL have
usually taken several hours. The speed-up is mainly attributed to

1. having precomputed the propagation characteristics in e.g. the dispersion relation,

2. not having to discretize the direction normal to the plate and having all field rela-
tions implicit, and

3. benefiting from optimized FFT routines and vectorization.

The method has been tested for A0 wave propagation under the assumption that
the fluid is sufficiently light compared to the plate so that classical Lamb wave the-
ory together with a perturbative method for calculating attenuation is sufficient. The
agreement is good, and assumed sufficient for most applications. Because the unwanted
“startup” wave is not turning up in the presented method, it is well suited for calculating
leaked wavefields in a fluid from known wavefields on a plate.
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