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“I call it frost”: Features of scientific social 
language during inquiry-based learning on 
the particulate nature of matter

Abstract
The particulate nature of matter (PNM) is central to learning science and is a difficult concept for both 
children and adults. The purpose of this study is to examine how teaching materials from an integrated 
science and literacy curriculum on the PNM affects communication between pre-service teachers. We 
were especially interested in examining communication during an activity phase and whether and how 
participants used PNM models. The interactions between participants were recorded with headcams and 
analysed using a framework developed by Mortimer and Scott in 2003. The findings revealed that the 
participants mainly described what they observed directly using scientific words and concepts, but they 
did not necessarily use PNM models or theoretical knowledge spontaneously. Research indicates that the 
ability to use knowledge at a theoretical level is key to understanding chemical concepts, so our study 
underscores the importance of explicitly asking participants to use models and theoretical knowledge.

INTRODUCTION
The particulate nature of matter (PNM) is a central concept necessary for understanding several fun-
damental topics in science (Tsaparlis & Sevian, 2013). Despite its importance in school curricula, 
studies have revealed students’ difficulties in understanding the PNM (Harrison & Treagust, 2002; 
Özmen, Ayas, & Coştu, 2002). Some studies have reported that many pre-service teachers (PSTs) 
have an insufficient understanding of the PNM (e.g., Håland, 2010; Valanides, 2000), which may 
undermine the comprehension of the PNM in future student generations (Yip, 1998). Studies have 
indicated that inquiry-based approaches enhance understanding by providing rich opportunities for 
reflection and talk (Cervetti, Barber, Dorph, Pearson, & Goldsmith, 2012), so such methods may en-
hance PST education on the PNM.
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According to Minner, Levy and Century (2009), the term “inquiry-based” refers to students learning 
by thinking about and experimenting with a phenomenon or problem, often mirroring the processes 
used by scientists. Inquiry-based approaches are often based on students working in small groups. 
To study how students communicate in such situations, we examined the features of student-stu-
dent communication for insight into the type of understanding being constructed. Understanding 
phase transitions relies on understanding sub-microscopic particles. A study by Chittleborough and 
Treagust (2007) indicated that students’ understanding of chemical concepts is influenced by their 
abilities to use and interpret chemical models. According to Mortimer and Scott (2003), a theoretical 
level of knowledge draws on theoretical entities that are not observable in phenomena themselves. 
Communication between pre-service science teachers during an inquiry-based activity was therefore 
analysed to explore how students used models of PNM and a theoretical level of knowledge.

FRAMEWORKS AND CONCEPTS
Talking to learn science
According to a sociocultural perspective, one meets new ideas in social situations (Vygotsky, 1986). 
Ideas are rehearsed between people drawing on a range of communication modes, such as talk. There 
is a transition from social to individual planes, where interlocutors make individual meaning of what 
is being communicated. From this perspective, language is one of the most important resources for 
mediating learning.

From a sociocultural standpoint, learning science involves learning the social language of the scien-
tific community (Scott, Asoko & Leach, 2007). The term “social language” was first defined by Bakhtin 
(1981) as “a discourse peculiar to a specific stratum of society within a given system at a given time”. 
Science education researchers Leach and Scott (2002) argued that scientific knowledge itself can be 
portrayed as a social language. From a sociocultural perspective, learning science therefore involves 
being initiated into scientific ways of knowing and to the concepts and models of conventional science 
(Driver, Asoko, Leach, Mortimer, Scott, 1994).

This is also consistent with research indicating that to learn science, students must learn to use the 
language of science (Lemke, 1990; Wellington & Osborne, 2001). Results from an experimental pro-
gramme for talk and reasoning indicated that talk-based activities can have a useful function in scaf-
folding the development of reasoning and scientific understanding (Mercer, Dawes, Wegerif & Sams, 
2004). Other studies have indicated that science learning is most effective when students can com-
bine first-hand experiences with opportunities for reflection and rich talk (Cervetti et al., 2012). For 
instance, in their study of 94 fourth-grade classes, Cervetti et al. (2012) found that students of teach-
ers who used an integrated science and literacy approach had greater gains in science understanding, 
science vocabulary and science writing than other students. Furthermore, in an in-depth study of 
two elementary school teachers, Haug and Ødegaard (2014) proposed that students’ levels of word 
knowledge develop into conceptual knowledge when students are required to apply key concepts in 
their talk throughout all phases of inquiry.

The way students communicate during a science lesson is important for their learning outcomes and 
abilities to make meaning of the scientific story being told (Mortimer & Scott, 2003). To study how 
talk is involved in meaning-making in science classrooms, Mortimer and Scott (2003) developed an 
analytical framework for scientific social language based on the sociocultural view of teaching and 
learning.

They elaborated the content of classroom interactions used by either teacher or students into three 
fundamental features of scientific social language: description, explanation and generalisation (see 
Figure 1 and Table 1). These features can be further qualified as empirical or theoretical. According to 
Mortimer and Scott (2003, p. 31), descriptions and explanations are characterised as empirical when 
they are based on directly observable properties. In contrast, those that draw upon entities created 
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through the theoretical discourse of science, as in the case of microscopic particle models, are char-
acterised as theoretical.

Figure 1. Framework for analysis developed from Mortimer and Scott (2003).

Table 1. The three fundamental features of scientific social language from Mortimer & Scott (2003).

Empirical and theoretical – From macroscopic to microscopic
Explanations of empirically observable phenomena, such as phase transitions, rely on understanding 
the behaviour of sub-microscopic particles, which is a theoretical level of knowledge. Because these 
particles are invisible, one must rely on representations such as models, diagrams and equations to 
describe them. Johnstone (1991) argued that chemistry is difficult for students because it involves 
thought at three different levels: the macroscopic, the sub-microscopic and the symbolic, often re-
ferred to as the “chemical triplet”. Such abstract theoretical ideas are challenging for learners (Har-
rison & Treagust, 1996; Johnson, 1998; Taber, 2005).

Taber (2013) argued that teachers must be aware of the importance of modelling how chemists oper-
ate with and between the macroscopic domain and the theoretical, sub-microscopic domain. Some 
studies have suggested that understanding chemistry improves with better modelling skills (e.g. Chit-
tleborough & Treagust, 2007; Kozma & Russel, 1997). More specifically, Chittleborough and Treagust 
(2007) emphasised that students with higher modelling abilities could develop higher-order thinking 
processes about the chemistry they were learning. For instance, they could use models to test, predict 
and evaluate their ideas; develop mental pictures of the sub-microscopic level of matter; and transfer 
ideas between different levels of representation. According to Chittlesborough and Treagust (2007), 

Categories Definition

Description Involves statements that provide an account of a system, an 
object or a phenomenon in terms of its constituents or the 
spatiotemporal displacements of those constituents.

Explanation Involves importing some form of theoretical model or mecha-
nism to account for a specific phenomenon. 

Generalisation Involves making a description or explanation that is indepen-
dent of any specific context.
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these modelling skills should be explicitly taught, and students should practice applying multiple 
representations.

Nakleh and colleagues examined middle school (Nakleh, Samarapungavan & Saglam, 2005) and el-
ementary school students (Nakleh & Samarapungavan, 1999) developing their understanding of the 
nature of matter. They suggested that the understanding of matter is fragmented for both young chil-
dren and middle school children. More specifically, Nakleh and Samarapungavan (1999) reported 
that young elementary school children appeared to have descriptive rather than explanatory belief 
systems, in which many observable properties of matter are treated as intrinsic properties that are 
self-explanatory. They suggest that school instruction on the nature of matter must help children 
transition from thinking about the macroscopic properties of matter to thinking about the micro-
scopic particles that explain those macroscopic properties (Nakleh & Samarapungavan, 1999).

The PNM is a competence objective of the elementary school natural science subject curriculum in 
Norway1. We analyse how PSTs apply this knowledge in a practical setting and compare their applica-
tion to the findings of Nakleh and Samarapungavan (1999, 2005).

Our study
We investigated whether an inquiry-based approach could provide the support PSTs needed to prac-
tice scientific social language and talk about matter on a microscopic level and/or use scientific mod-
els concerning the PNM. Our theoretical perspectives on learning about the PNM in inquiry-based 
science are based on the three fundamental features of scientific social language (description, ex-
planation and generalisation) and empirical and theoretical subcategories. The frameworks depicted 
in Table 1 and Figure 1 were guidelines when analysing how PSTs interacted through inquiry-based 
activities.

A growing body of research indicates that actively engaging students in the learning process through 
scientific investigation is more likely to increase understanding than traditional instruction, which 
relies on more passive knowledge transmission (Anderson, 2002; Hmelo-Silver, Duncan, & Chinn, 
2007; Minner, Levy, & Century, 2010).

Our hypothesis is that an inquiry-based curriculum would provide rich opportunities for PSTs to 
describe, explain and generalise. The framework of scientific social language is valuable because it al-
lows us to analyse whether the PSTs are mainly describing, explaining or generalising as well analyse 
the characteristics of their communication in each category.

The participants are expected to include theoretical knowledge in their talk – specifically, to refer to 
the micro level by using models of the PNM to which they had been introduced throughout the teach-
ing materials. The framework of scientific social language also allows us to examine whether and how 
the PSTs use empirical and theoretical levels of knowledge and thus to what extent they alternate 
between the macroscopic and microscopic worlds.

Our research questions are as follows:
1. How do inquiry-based teaching materials about phase changes developed for grades 5–7 facili-

tate pre-service teachers’ use of the fundamental features of scientific social language?
2. In what ways do pre-service teachers’ social language include expressions on the empirical and 

theoretical level when making meaning of the PNM?

1 Available at https://www.udir.no/lk20/nat01-04
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METHOD
Context of the study
The participants in the study were our own PSTs in the first year of their five-year teacher-education 
programme for primary teachers at a Norwegian university. There were, in total, 22 PSTs, 17 females 
and five males, all in their early twenties. All participated in an introductory science teaching course 
that consisted mainly of physics, chemistry and didactics, with some biology and geology. The par-
ticipants’ backgrounds in science from high school were, for the most part, a one-year mandatory 
course. Thirteen had completed the mandatory natural science course, with five classes per week over 
one year. Five participants had also completed one physics or chemistry course, and four had studied 
both physics and chemistry courses in high school.

The data were collected in a science class setting during an inquiry-based activity. Pre-service teach-
ers worked in pairs. Two teacher educators were responsible for the session and took turns teaching 
and guiding PSTs in their inquiry. The recorded pairs were numbered, and each partner was assigned 
a letter. For example, the participants in pair 1 were named PST 1 and the individual students PST 
1A and PST 1B. The PSTs were asked to observe what happened on the outside of a beaker filled with 
a mixture of salt and ice, as specified in the teaching materials. If the PSTs did not begin generating 
explanations on their own, they were prompted by the teachers. This was the case in one of the re-
corded groups.

Teaching materials
The PSTs were carrying out the unit “Models” from the integrated inquiry-based science and literacy 
curriculum Seeds of Science, Roots of Reading (Barber, 2009) developed by Lawrence Hall of Sci-
ence2 and translated to Norwegian by the Norwegian Centre for Science Education3. Seeds of Science, 
Roots of Reading includes several units covering a variety of topics within the sciences (life science, 
physical science and earth science). The units are characterised by a Do-it, Talk-it, Read-it and Write-
it approach, in which students learn science concepts in depth while also learning how to read, write 
and discuss in an inquiry-based setting (Cervetti, Pearson, Bravo, & Barber, 2006). The teaching 
material was developed for pupils in grades 5–7. The topics “phase changes” and “PNM models” are 
part 2 of the unit “Models”. The topics were taught for two 180-minute teaching sessions on separate 
days (Table 2). The reading sessions and final explanation sessions were done as homework. These 
were mandatory, and worksheets or papers were collected.

The unit “Models” introduces students to several PNM models, including particulate models of phase 
change, including a two-dimensional (2D) dot model, in which particles are represented as dots on a 
paper; a three-dimensional (3D) pearl model, in which pearls in a petri dish represent particles; and 
a classroom model, in which students represent particles. The teaching materials also introduce the 
students to the relationship between energy and phase transitions, as well as the scientific concepts 
for the various phase changes. Throughout the teaching session, students read, write and discuss.

Based on what they learned from the sessions prior to the recorded session, it was reasonable to ex-
pect that the PSTs would be able to use models for the PNM in their conversations about phase tran-
sitions on a sub-microscopic level. They should also be able to discuss energy transfer during phase 
transitions and identify which substances participate in such energy transfer.

2 https://www.lawrencehallofscience.org/programs_for_schools/curriculum
3 Available from http://www.naturfag.no
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Data sources
The data material consists of video recordings of the practical investigation in session 2.6. The video 
recordings included four PST pairs and were conducted with a headcam. The PST pairs were chosen 
randomly from the participants who agreed to video and audio recording.

The Norwegian Social Science Data Services (NSD) approved the use of the headcam and voice re-
corder as observational tools. All participants signed informed-consent forms stating that they could 
withdraw from the research project at any time, that their anonymity would be ensured and that the 
headcam videos would be stored securely. Efforts were made to avoid recording participants who did 
not consent to being filmed.

Analysis
This study examines PSTs’ communication of the PNM during an inquiry into a phase transition, the 
condensation of water on the outside of a beaker of ice and salt. In the analysis, verbal communication 
during the inquiry was coded based on whether the participants described, explained or generalised 
the phenomenon in question strictly following the definition of the codes developed by Mortimer and 
Scott (2003) (see Figure 1 and definitions in Table 1).

In our study, empirical (see Figure 2) includes matter on a macroscopic level and the temperature 
measured, which is directly observable, while theoretical (see Figure 2) includes matter on a  micro-
scopic level as well as energy transfer on both the macro and micro levels, as the PSTs must use theory 
to talk about these transfers. Table 3 contains a detailed description of the codes, which are adapted 
from Nakleh and Samarapungavan (1999). See examples of how the different codes were used in 
Table 4.

Table 2. Outline of “Models”, part 2. The sequence reflects the adaptations made to fit the course 
schedule.

Session Description

2.3 Reading the book Phase Change at Extreme Temperatures 
(homework)

2.1 Practical inquiry into melting

2.2 Introducing several models of the PNM

2.4 Writing an explanation of melting

2.5 Understanding phase transitions

2.8 Reading the book Science You Cannot See (homework)

2.6 Recorded session: Practical inquiry on condensation and frost 
formation

2.7 Evaluating and revising models of the PNM

2.9 Understanding phase transitions, part 2

2.10 Writing an explanation of a mystery – adapted to writing an 
explanation of session 2.6 (homework)

“I call it frost”: Features of scientific social language during inquiry-based learning
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Figure 2. The figure shows how our two research questions are related to the framework for analy-
sis developed from Mortimer and Scott (2003). It also shows what was coded as empirical and 
theoretical in our analysis.

Table 3. Codes used for further categorisation into empirical and theoretical.

RESULTS AND ANALYSIS
We found that descriptions were the category of scientific social language that dominated the PSTs 
talk during the inquiry. For two of the groups (PST 2 and 4), all talk was exclusively in this category. 
For the remaining two groups (PST 1 and 3), there were a few utterances that could be categorised 
as explanations. Concerning the subcategories theoretical and empirical, most PSTs’ talk was on an 
empirical level, such as descriptions and explanations related to what they could observe. PST 1 had 
some theoretical utterances concerning energy transition and matter on the micro level. For PST 3, 
there were some theoretical utterances concerning matter at the micro level, but these were related to 
the salt-ice mixture, not the phase transition phenomena.

Table 4 contains examples of utterances and how they were coded. Note that some utterances were 
difficult to categorise as either macro or micro, which is partly related to the students talking in an 
informal, colloquial matter. One example is, Yes, these molecules go directly from gas to solid. This 
utterance is somewhere between the macro and micro levels. The PSTs talked about the state of mat-

Matter Description, explanation or generalisation (utterance) based 
on observable properties or changes in observed phenom-
enon

Energy transfer Description, explanation or generalisation (utterance) of en-
ergy transition specifying the substances/mediums that the 
energy is transferred from and to

Macro level Utterances about matter or energy transfer on a macroscopic 
level

Micro level Utterances about matter or energy transfer on a particulate 
level

Temperature Utterance based on a perception of heat or a measurement 
of the temperature, not specifying energy transition

Eikeseth and Haugstad
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ter on an empirical level (gas and solid), but the use of the word molecule could indicate that they 
were at least partly thinking about the particulate constituents of matter, so we chose to categorise 
this as micro.

Table 4. Examples of pre-service teacher utterances, including original utterances in Norwegian, 
and how they were coded according to the framework created by Mortimer and Scott (2003).

To answer the research questions, an in-depth analysis of PST interactions during the inquiry-based 
activity was performed. The results related to our two research questions are presented in the follow-
ing sections. First, we present how the inquiry-based curriculum facilitated the fundamental features 
of scientific social language, and second, we present how PSTs’ talk related to expressions on the 
empirical and theoretical level.

The fundamental features of scientific social language
Our analyses revealed that descriptions were the dominating feature of the PSTs’ scientific social 
language in all four groups. There were also a few examples of explanations. There were no utterances 
that could be categorised as generalisation, according to the definition proposed by Mortimer and 

Example of pre-service teacher utterance How it was coded

It has frozen on the outside of the glass.

Norwegian: Det har fryse på på glasset på utsida. 

Description – Empirical – Matter – Macro 
level

Because it must come from somewhere, the vapour on 
the outside. It doesn’t come from the inside. The water on 
the outside must come from the air.

Norwegian: For det må jo komme frå nån plass herre 
dampen utenpå. Vannet utenpå må jo komme fra lufta.

Explanation – Empirical – Matter – Macro 
level

Yes, these molecules go directly from gas to solid.

Norwegian: Ja, disse molekylene går rett fra gass til fast.

Explanation – Theoretical – Matter – Micro 
level

Yes, the heat in the room takes part in transferring energy 
to the ice, so it melts.

Norwegian: Ja, varmen i rommet da, det er den som er 
med på å tilføre energi til isen, sånn at den smelter. 

Explanation – Theoretical – Energy – Macro 
level

The gas . . . the water molecules in the air . . . transfer 
energy to this [pointing at the inside of the beaker] and 
becomes a solid on the outside.

Norwegian: Gassen.. vannmolekylan i lufta

..gir fra seg energi

..gir fra seg energi te herre her da [peker oppi glasset] og 
blir te fast stoff utenpå her.

Explanation – Theoretical – Energy – Micro 
level

The glass becomes colder.

Norwegian: Glasset blir jo kaldere.

Description – Empirical – Temperature
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Scott (2003). Observations were the basis for the descriptions, and PSTs used a rich variety of obser-
vations to back up their descriptions. All groups observed the phenomenon visually with and without 
a magnifying glass and touched the condensed water and ice on the outside of the beaker. One group 
even used their olfactory senses to observe the content of the beaker. Examples of student observa-
tions can be seen in Figure 3 and in the following quotations. 

Figure 3. Pre-service teachers observe the frost layer on the beaker using a magnifying glass and 
touching the beaker.

PST 1A:  Do you smell something? 
PST 1B: [Bends down and smells the content of the beaker and then touches the outside] What is this?
PST 1A: Dew?
PST 1B: Oh, it is frost.

Touching the ice layer especially seemed to help them connect their observations to the types of ice 
they had experienced in their everyday lives. An example of this is provided here:

PST 2A: [touches the outside of the beaker with her finger] It’s becoming the kind of ice that is 
on windows. 

PST 2B: Oh, has it become frozen? [Touches the beaker with his finger] Oh wow! Okay!
PST 2A: It is like a thin ice frost layer. 
PST 2B: I call it frost.

Eikeseth and Haugstad
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We also registered that the observations promoted the use of scientific language and discussions of 
scientific concepts. Two of the PST pairs also connected their observations to other phenomena from 
their everyday lives, as is shown in the previous and following conversation:

PST 3A: Because if you imagine going out and looking at the grass where it is frozen, because 
frost has formed, right? Has it not been in a liquid state before it froze? There is no way 
you could tell?

PST 3B: I think it happens so fast that . . . that you would count it as frozen.
PST 3A: Yes.
PST 3B: That’s what I am thinking. Because if it was in a liquid state, it would run down, and 

then it would freeze.
PST 3A: Yes.
PST 3B: True, it crystalises at once.

They focused on general concepts to describe phase transitions, such as the states of solid, liquid and 
gas. The specific concepts of water’s phase transitions were not introduced before the activity. Our 
results showed that three of the pairs struggled to find the correct concepts for the different states of 
water and the phase transitions, as exemplified below:

PST 3A: But frost, that is from gas state to liquid, not gas to solid state, isn’t it?
PST 3B: Frost is frozen, isn’t it?
PST 3A: Oh, is it?
PST 3B: Yes, dew is . . . dew is . . .
PST 3A: Yes, dew, yes. 
PST 3B: It’s not frozen.
PST 3A: That’s right. 
PST 3B: Condensation.

Although descriptions were expected to be the predominant category of scientific social language, it 
was somewhat surprising that so little of the PST talk could be characterized as attempts to explain the 
phenomenon in question. Only one pair spontaneously attempted to explain what they observed, and 
this explanation was provided very quickly by one of the PSTs, with a confirmation from the partner:

PST 3A: What is on the outside is not water from there [pointing into the beaker], but water from 
. . . [pointing into the air].

PST 3B: The air, yes.

There are no more attempts to explain the condensation after that. This PST pair did, however, at-
tempt to explain the low temperature of the ice and salt mixture.

Also, PST 1 started to explain the phenomenon only after the teacher prompted them to. Here, there 
was a great deal more discussion between the partners about how they could explain the phenomenon 
of condensation and frost formation. This will be discussed in more detail below.

Talk on a theoretical or empirical level
The descriptions were mainly on an empirical level. The PSTs described what they could directly ob-
serve. The descriptions of the substances were mainly on the macro level, and PSTs mainly mentioned 
the temperature and not energy transfer from one substance to another.

PST 3B: Yes, the glass is colder than zero degrees, so here, it changes directly from gas to a solid 
state. We are skipping the water state.

“I call it frost”: Features of scientific social language during inquiry-based learning
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The one PST pair that provided a spontaneous explanation talked about matter mainly on the macro 
level, which is categorised as empirical. They did, however, make a short attempt to explain the en-
ergy transfer on the macro level, which is a theoretical explanation because the energy is not directly 
observable.

PST 3B: It is the heat from the outside that melts it slowly. [Talking about the melting of the ice 
inside the beaker.]

One pair talked about water molecules from the air condensing on the beaker only after the teacher 
specifically asked them to do so and after consulting the textbook. They used both the empirical and 
theoretical levels in their explanation.

PST 1B: The water vapour in the air transfers . . . or the ice transfers . . .
PST 1A: The energy . . .
PST 1B: The energy of the gas in the air, so it becomes ice on the outside. Do you understand 

what I am saying?
PST 1A: No.
PST 1B: Because this must come from somewhere [points at the beaker], the vapour on the out-

side. It is not coming from the inside [points to the inside of the beaker]. The water must 
come from the air.

Here, the PSTs discussed matter on a macro level, and they could at least explain that the gas must 
transfer some of its energy to change state to liquid. By looking more closely at the figures in the text-
book, they could also develop this explanation to include matter on a micro level (Figure 4).

PST 1B: The gas . . . the water molecules in the air.
PST 1A: Transfer energy.
PST 1B: Transfer energy to this [points into the beaker] and becomes solid state outside here.
PST 1A: Yes.

Figure 4. A student pair using the textbook to help develop their explanation of matter on the micro 
level.
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DISCUSSION
The PNM is a central topic in Norwegian primary schools and was considered known and understood 
to some degree by the PSTs. The teaching materials used in our study was developed for grades 5–7. 
The learning outcome from these teaching materials was expected to be mainly the inquiry-based 
teaching methods for teaching the PNM model to primary school children. Studying the use of these 
inquiry-based teaching materials, however, showed that PSTs’ understanding of the PNM that was 
not previously obtained via traditional teaching. The unit “Models” from the Seeds of Science, Roots 
of Reading worked quite well for the PSTs, allowing them to gain new insights into the PNM models. 
This study has revealed that PSTs need training in talking about and using models. This is especially 
relevant for PSTs, as they will need to consider the same when teaching their pupils.

The fundamental features of scientific social language
Observation is regarded as a fundamental science skill that students must practice. However, re-
searchers argue that scientific observation requires theory and disciplinary knowledge and that it 
must be learned (Eberbach & Crowley, 2009; Leach & Scott, 2003; Mortimer & Scott, 2003). Asking 
the PSTs to observe led them to seriously observe the experiment using several senses. They appar-
ently needed to touch the ice on the outside of the glass to be sure the water was frozen, emphasis-
ing the value of using practical inquiries in addition to teaching materials, such as illustrations and 
animations. There were some observations of PSTs mentioning irrelevant features, such as smell, 
which is typical for everyday observers (Eberbach & Crowley, 2009). This underscores the point that 
observation is challenging, and that disciplinary knowledge is needed to filter, focus and foster under-
standing. The teacher has a key role in introducing students to this scientific way of thinking about 
the world (Leach & Scott, 2003).

Descriptions were expected to predominate because the PSTs had been asked to observe what hap-
pened on the outside of the beaker. However, it was not expected that most of the PSTs did not try to 
explain what they observed; very little talk could be categorised as explanation. The day before, they 
had worked with different particle models and completed an inquiry about ice melting in which they 
were asked to write a short explanation and afterwards learned about phase transitions. Therefore, 
they were expected to use some PNM models with which they had worked. It was also believed that 
the experiment would motivate the PSTs to try to find an explanation for the phenomenon.

One reason the PSTs spent little time explaining the phenomenon could be that they thought that 
the low temperature of the glass was a sufficient explanation. It may have been self-evident for them 
that condensation occurred because they are used to dew forming on surfaces with low temperature 
and ice forming at negative temperatures. This is in accordance with the findings of Nakleh and Sa-
marapungavan (1999) that students often have descriptive rather than explanatory belief systems, in 
which many observable properties of matter are treated as intrinsic properties. For instance, when 
elementary school children attempt to provide causal explanations for phase transition phenomena, 
the causal models are rather shallow, with the children saying, for example, that a phase transition 
occurs when a substance loses or gains properties such as heat or cold. It seems as if this could also be 
the case for university students unless they are asked to explain.

We observed that three of the PST pairs found the low temperature of the ice and salt mixture inter-
esting, and one pair had a longer discussion about the low melting point of ice in this mixture. Teach-
ers should evaluate whether these discussions that fall outside of main topics are relevant for stu-
dents’ learning outcomes or if it is better to eliminate such opportunities from the experiments. In our 
case, the low temperature was necessary for frost formation on the glass, and the PSTs were surprised 
to find ice when they touched the glass. This encouraged discussions about whether a substance can 
transform directly from a gas to solid form. It allowed the PSTs to improve their observational skills 
and use scientific social language. However, it would have been possible to use only ice in the beaker 
to make the PSTs focus on the condensation of water and the PNM models they had learned.

“I call it frost”: Features of scientific social language during inquiry-based learning



[164] 17(2), 2021

During their observations, the PST struggled with finding the correct concepts for the various phases 
of water. Observing and describing the experiment seemed to increase the PSTs’ awareness of the 
various scientific concepts. For example, PST 3 asked the teacher about the specific words used in 
describing the phase transition of water from gas to solid, an example of the integrated inquiry-based 
curriculum providing opportunities for students to engage in active thinking about concepts. This 
supports the suggestion of Bravo, Cervetti, Hiebert, and Pearson (2008) that science may be a fertile 
context for vocabulary learning, giving students a language to voice the depth of their understanding, 
that is, creating descriptions using scientific terminology.

Talk on a theoretical or empirical level
Our results show that the PSTs both described and explained mainly on an empirical level. Mortimer 
and Scott (2003) emphasised that descriptions can also exist at a theoretical level. For example, the 
PSTs could have talked about particles in their descriptions or used the particle model to describe the 
movement of the particles in the various phases they observed.

Because the PSTs mainly used the empirical level, they also talked little about energy transfer, which 
is theoretical because it cannot be directly observed. The lack of talk about energy transfer was un-
expected because the teaching material had focused on energy transfer in phase transitions. The one 
pair (PST 3) that mentioned energy transfer spontaneously did so briefly and in very few words. En-
ergy transfer was not precisely explained in their talk. They only specified that heat from the outside 
must have melted the ice inside the beaker. The one exception was PST 1. When prompted to explain, 
they managed to develop their explanation at a theoretical level by using the textbook. These PSTs 
also explained the energy transfer on both the macro and micro levels, specifying energy transfer 
between the substances and between the particles.

This underscores that teachers should determine when PSTs need guidance and ensure they know 
they can use the textbook as guidance in the learning phase. It also emphasises how much informa-
tion the teacher can acquire about students’ meaning-making from listening to their talk, and it is a 
reminder of how a prompt from the teacher can improve the quality of student-student communica-
tion.

Our results indicate that during an inquiry, PSTs should be challenged to discuss the theory with 
which they are struggling and not only discuss what they already know and understand. Here, our 
results are consistent with Chittleborough and Treagust (2007), who propose that modelling is not 
an instinctive skill when learning chemistry and that the ability to model impacts students’ mental 
models of matter, so modelling skills should be taught by being incorporated into instruction and by 
giving students opportunities to apply multiple representations of chemicals and their interactions.

The teaching materials used in this study were designed for school children, and for this age group, 
it is probably valuable to limit the exercise to training observation. For the university-level PSTs, in 
addition to observation, it was necessary to prompt them to use both theoretical and empirical expla-
nations. Adapting the inquiry session to the PSTs’ level could easily have been accomplished by also 
asking them to describe the phenomenon on a particle level and then asking them to explain what 
happened using the models they had already learned. This is an idea for teachers to use with high-
performing students in their classes.

CONCLUDING REMARKS
Since the study had few participants, we make no generalisable claims; however, our findings are 
consistent with other studies. Our results suggest that teaching material from an inquiry-based sci-
ence curriculum could facilitate rich communication between PSTs via various features of scientific 
social language and their practice of scientific observation via the use of several senses. According to 
our findings, teachers should be aware of these fundamental features of scientific social language, as 
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practicing them is key to learning science. The study suggests that PSTs mainly provide descriptions 
and explanations on the observational, empirical level. There were few examples of utterances on a 
theoretical level. Because depth of understanding in chemistry is related to how easily students can 
navigate between the macro and micro levels, this is something that students should be trained to do. 
Our study indicates that teachers should explicitly instruct students to use theoretical models, such as 
models for the PNM, in their descriptions and explanations.

ACKNOWLEDGMENTS
We would like to thank Niklas Gericke, Sonja Mork, Berit Haug and Merethe Frøyland for their help-
ful advice. We also want to thank all our fellow students in the course NatDid4901 for fruitful discus-
sions and support.

REFERENCES
 Anderson, R. D. (2002). Inquiry as an organizing theme for science curricula. In S. Abell & N. G. 

Lederman (Eds.), Handbook of research on science education (pp. 807–830). Mahwah: Erl-
baum.

Bakhtin, M. M. (1981). Discourse in the novel (C. Emerson & M. Holquist, Trans.). In M. Holquist 
(Ed.), The dialogic imagination: Four essays. Austin and London: University of Texas Press.

Barber, J. (2009). The Seeds of Science/Roots of Reading Inquiry Framework. www.scienceandlit-
eracy.org

Bravo, M. A., Cervetti, G. N., Hiebert, E. H., & Pearson, P. D. (2008). From passive to active control 
of science vocabulary. In The 56th Yearbook of the National Reading Conference (pp. 122–135). 
Chicago: National Reading Conference.

Cervetti, G. N., Barber, J., Dorph, R., Pearson, D., & Goldsmith, P. G. (2012). The impact of an inte-
grated approach to science and literacy in elementary school classrooms. Journal of Research in 
Science Teaching, 49(5), 631–658. doi:10.1002/tea.21015

Cervetti, G. N., Pearson, P. D., Bravo, M. A., & Barber, J. (2006). Reading and writing in the service 
of inquiry-based science. In R. Douglas, M. P. Klentchy, K. Worth, & W. Binder (Eds.), Linking 
science and literacy in the K-8 classroom (pp. 221–244). Arlington: National Science Teacher 
Association Press.

Chittleborough, G., & Treagust, D. F. (2007). The modelling ability of non-major chemistry students 
and their understanding of the sub-microscopic level. Chemistry Education Research and Prac-
tice, 8(3), 274–292. doi: 10.1039/B6RP90035F

Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge 
in the classroom. Educational Researcher, 23(7), 5–12. doi: 10.3102/0013189X023007005

Eberbach, C., & Crowley, K. (2009). From everyday to scientific observation: How children 
learn to observe the biologist’s world. Review of Educational Research, 79(1), 39–68. doi: 
10.3102/0034654308325899

Harrison, A. G., & Treagust, D. F. (1996) Secondary students’ mental models of atoms and mol-
ecules: Implications for teaching chemistry. Science Education, 80(5), 509–534. doi: 10.1002/
(SICI)1098-237X(199609)80:5<509::AID-SCE2>3.0.CO;2-F

Harrison, A. G., & Treagust, D. F. (2002). The particulate nature of matter: Challenges in under-
standing the sub-microscopic world. In J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, & 
J. H. Van Driel (Eds.), Chemical education: Towards research-based practice. Dordrecht: 
Kluwer. doi: 10.1007/0-306-47977-X_9

Haug, B. S., & Ødegaard, M. (2014). From words to concepts: Focusing on word knowledge when 
teaching for conceptual understanding within an inquiry-based science setting. Research in Sci-
ence Education, 44(5), 777–800. doi: 10.1007/s11165-014-9402-5

Håland, B. (2010). Student teacher conceptions of matter and substances – Evaporation and dew 
formation. Nordic Studies in Science Education, 6(2), 109–124. doi: 10.5617/nordina.251

“I call it frost”: Features of scientific social language during inquiry-based learning



[166] 17(2), 2021

Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-
based and inquiry learning: A response to Kirchner, Sweller, and Clark (2006). Educational 
Psychologist, 42(2), 99–107. doi: 10.1080/00461520701263368

Johnson, P. (1998) Progression in children’s understanding of a ‘basic’ particle theory: A 
longitudinal study. International Journal of Science Education, 20(4), 393–412. doi: 
10.1080/0950069980200402

Johnstone, A. H. (1991) Why is science difficult to learn? Things are seldom what they seem. Jour-
nal of Computer Assisted Learning, 7, 75–83. doi: 10.1111/j.1365-2729.1991.tb00230.x

Kozma, R. B., & Russel, J. (1997). Multimedia and understanding: Expert and novice responses to 
different representations of chemical phenomena. Journal of Research in Science Teaching, 34, 
949–968. doi: 10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U

Leach, J., & Scott, P. (2002). Designing and evaluating science teaching sequences: An approach 
drawing upon the concept of learning demand and a social constructivist perspective on learn-
ing. Studies in Science Education, 38, 115–142. doi: 10.1080/03057260208560189

Leach, J., & Scott, P. (2003). Individual and sociocultural views of learning in science education. 
Science and Education, 12(1), 91–113. doi: 10.1023/A:1022665519862

Lemke, J. (1990). Talking science: Language, learning, and values. Norwood: Ablex.
Mercer, N., Dawes, L., Wegerif, R. & Sams, C. (2004). Reasoning as a scientist: Ways of helping 

children to use language to learn science. British Educational Research Journal, 30(3). doi: 
10.1080/01411920410001689689

Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction – What is it and 
does it matter? Results from a research synthesis years 1984–2002. Journal of Research in Sci-
ence Teaching, 47(4), 474–496. doi: 10.1002/tea.20347

Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms. Maiden-
head: Open University Press.

Nakhleh, M. B., & Samarapungavan, A. (1999). Elementary school children’s beliefs about mat-
ter. Journal of Research in Science Teaching, 36, 777–805. doi: 10.1002/(SICI)1098–
2736(199909)36:7<777::AID-TEA4>3.0.CO;2-Z

Nakleh, M. B., Samarapungavan, A., & Saglam, Y. (2005) Middle school students’ beliefs about mat-
ter. Journal of Research in Science Teaching, 42(5), 581–612. doi: 10.1002/tea.20065

Özmen, H., Ayas, A., & Coştu, B. (2002). Determination of the science student teachers’ under-
standing level and misunderstandings about the particulate nature of the matter. Educational 
Sciences: Theory & Practice, 2, 506–529. doi: 10.1007/s10763-009-9167-x

Scott, P., Asoko, H., & Leach, J. (2007). Student conceptions and conceptual learning in science. In 
Abell, S. K. & Lederman, N. G. (Eds.), Handbook of research on science education. Mahwah, 
NJ: Lawrence Erlbaum Associates.

Taber, K. S. (2005). Learning quanta: Barriers to stimulating transitions in student understanding 
of orbital ideas. Science Education, 89(1), 94–116. doi: 10.1002/sce.20038

Taber, K. S. (2013). Revisiting the chemistry triplet: Drawing upon the nature of chemical knowl-
edge and the psychology of learning to inform chemistry education. Chemical Education 
Research and Practice, 14, 156–168. doi: 10.1039/C3RP00012E

Tsaparlis, G., & Sevian, H. (2013) Introduction: Concepts of matter – Complex to teach and difficult 
to learn. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 1–8). 
Dordrecht: Springer.

Valanides, N. (2000). Primary student teachers’ understanding of the particulate nature of mat-
ter and its transformations during dissolving. Chemistry Education Research and Practice in 
Europe, 1, 249–262. doi: 10.1039/A9RP90026H

Vygotsky, L. S. (1986) Thought and language. Cambridge: MIT Press.
Wellington, J., & Osborne, J. (2001). Language and literacy in science education. Philadelphia: 

Open University Press.
Yip, D.-Y. (1998). Identification of misconceptions in novice biology teachers and remedial strate-

gies for improving biology learning. International Journal of Science Education, 20, 461–477. 
doi: 10.1080/0950069980200406

Eikeseth and Haugstad


