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A B S T R A C T   

In this study, a novel simulation-based algorithm for CO2 ejector design and performance evaluation is presented. 
The algorithm is based on an automated Computational Fluid Dynamics (CFD) workflow that can account for 
different ejector geometries and operating conditions. The CFD data points are used to train a Gaussian Process 
Regression (GPR) machine learning model to predict the ejector performance indicators; efficiency, mass flow 
rates, outflow uniformity, and entropy generation. Three use cases are investigated using this methodology: 1) 
performance mapping for off-design operating conditions of a given ejector, 2) design mapping of ejector per-
formance with 5 geometry variables investigated, and 3) flow structure prediction between different ejector 
mixing chamber geometries. The results show that this algorithm can be used to efficiently explore ejector de-
signs with mean average errors between 0.07 and 0.1 [–] in entrainment ratio. Furthermore, the method can to 
look for optimized geometries using gradient descent methods, as well as produce ejector performance maps. 
Additionally, the method is able to predict local flow structures of velocity and pressure inside the ejector with 
varied ejector geometries. The databases and GPR method implementation from this work is made available 
open-source for further development and research.   

1. Introduction 

The urgent need to rapidly reduce greenhouse gas emissions calls for 
unprecedented action from individuals, industry, and governments. The 
Heating, Ventilation, Air-conditioning, and Refrigeration (HVAC & R) 
industry is accountable for a significant part of global greenhouse gas 
emissions. If not limited, large-scale adoption of high GWP synthetic 
working fluids like hydrofluorocarbons (HFCs) is expected to be a major 
contributor to global emissions within 2050 [1]. In response, interna-
tional agreements to phase out high GWP working fluids have been 
ratified, such as the Kigali amendment to the Montreal Protocol and the 
EU F-gas regulation [2]. A promising alternative to the use of synthetic 
refrigerants is natural working fluids such as CO2 (R744). R744 has a 
GWP of 1 and is a non-toxic, non-flammable, and natural refrigerant that 
can be efficiently implemented for many applications [3]. Furthermore, 
R744 has several favorable thermodynamic properties that allow for 
efficient and compact units. However, the high operating pressures 
common in R744 systems introduce large expansion losses, that can 
significantly reduce system COP. Therefore, expansion-loss recovery 
devices are often implemented to achieve higher system efficiency. 

Ejectors are low-cost work-recovery devices with no moving parts 

that can use the lost expansion energy to pump a secondary flow to a 
higher pressure [4,5]. An ejector can improve system performance by as 
much as 10–30% [4] at design conditions. However, they are highly 
dependent on the correct design and minor changes in ejector geometry 
can dramatically reduce ejector efficiency [6–9]. Therefore, the devel-
opment of efficient and accurate methods for ejector design has in recent 
years gained attention. 

The flow within a two-phase ejector is challenging to model as it 
involves several interdependent and highly complex features such as 
compressible, super-sonic, and multiphase flow with phase change, and 
multiphase turbulence and flow jet atomization. Therefore, over the last 
decade, much research has been devoted to developing high-resolution 
CFD models to accurately predict ejector performance and improve their 
design. CFD models have seen extensive applications within R744 
ejector design and performance prediction [10–16]. Today, the most 
commonly used model is the homogeneous equilibrium model (HEM). 
HEM models have been studied extensively 
[17,18,12,13,10,19,11,16,5,14] and can reasonably predict motive 
mass flow rates (MFR) for supercritical motive conditions [5]. For better 
prediction of the motive mass flow rate at lower motive inlet pressure 
conditions Palacz et al. [12] concluded that non-equilibrium effects 
should be considered. In general, CFD models are able to accurately 
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predict motive MFR typically within 10%. However, the suction MFR is 
less accurately predicted, with errors ranging up to 20–100%. For a 
detailed review on ejector modeling, its applications, and available 
experimental data, the reader is referred to Ringstad et al. [5]. 

While the high sensitivity of ejector performance to their design has 
been noted in several studies[6,7,14], major knowledge gaps remain in 
the field of high-performance ejector design. Nakagawa et al. [6] 
investigated the effect of different mixing chamber geometries experi-
mentally, noting the significant impact of the mixing chamber length on 
ejector performance. This was followed up in the work by Banasiak et al. 
[7] and Banasiak et al. [15] where the mixing chamber and diffuser 
geometries were investigated experimentally and numerically. They 
concluded that these geometry parameters were important for achieving 
high ejector efficiency and that the most important parameters for 
ejector performance were the mixing chamber diameter, both with a 
significant impact on entropy production. Furthermore, they concluded 
that the different parameters must be optimized simultaneously and not 
in isolation. Entropy production in R744 ejectors was further investi-
gated by He et al. [14] using CFD. The results showed that the motive 
outlet diameter plays a critical role in ejector performance and that the 
nozzle exit position plays a key role in momentum exchange and exergy 
destruction. 

In this work, a method for producing a machine learning-based 
surrogate model from numerical results is presented. Using this surro-
gate model, it is possible to replace several different calculation tools 
with a single one. Here, three distinct cases are presented (1) perfor-
mance mapping for different operating conditions given a specific 

ejector geometry, (2) design mapping and optimization of ejector per-
formance with different geometric parameters, (3) flow structure map-
ping for different ejector geometries. 

Performance mapping of off-design performance has been investi-
gated using CFD in previous works by Haida et al. [20,11]. CFD data was 
used to generate a Reduced Order Model (ROM) to quickly predict 
ejector performance at any operating condition. Such ROM models has 
great applicability for dynamic simulations [11] or Digital Twins. 

CFD based shape optimization for R744 ejectors has been previously 
carried out by Palacz et al. [12,13], resulting in the EjectorPL system for 
automated CFD model generation. The study compared two evolu-
tionary optimization approaches for ejector design. The results showed 
that up to 6% improvement in ejector efficiency is possible from an 
existing design based on 1D model calculations. Barta et al. [21] recently 
presented a design optimization methodology for R744 ejectors based 
on 0D sub-component polynomial modeling. The methodology can 
accurately predict ejector performance and offers insights into design 
trade-offs in ejector design. 

Alternatively, optimization may be performed on performance maps 
using optimization methods such as gradient descent. This, however, 
depends on quick evaluation of results and their gradient at any given 
point in the design space. For complex flow devices, such as ejectors, 
evaluating the flow at a single design point with CFD tools requires 
significant computational effort (from hours to days). Therefore, it is 
better to perform the optimization on a surrogate meta-model such that 
performance can be quickly evaluated. 

In this work, the Gaussian Process Regression (GPR) machine 

Nomenclature 

Abbreviations 
ANN Artificial Neural Network 
CFD Computational fluid dynamics 
EoS Equation of state 
GP Gaussian Process 
GPR Gaussian process regression 
GWP Global warming potential 
HEM homogeneous equilibrium model 
HFC Hydrofluorocarbon 
HRM Homogeneous relaxation model 
HVAC Heating, ventilation, air-conditioning, and refrigeration 
KPI Key performance indicator 
LHC Latin hyper cube 
MFR Mass flow rate 
MSE Mean squared error 
ROM Reduced Order Model 
UDF User defined function 

Symbols 
αd Diffuser angle 
E Expectation value 
χ Scaled sampling variable 
Ṡh1,2,3 Enthalpy source term 
∊ Turbulent kinetic energy dissipation 
η Efficiency 
Γ Diffusion coefficient 
λ Thermal conductivity 
μ viscosity 
ϕ vapour volume fraction 
ψ Generic field variable 
ρm Density 
σ Data variance 
τ Stress tensor 

θ Hyperparameter 
u Velocity vector 
cp heat capacity 
Ddiff Diffuser outlet diameter 
Dm− out Motive outlet diameter 
Dmix Mixing chamber diameter 
Lmix Mixing chamber length 
T Temperature 
a Sampling range 
E Total Energy 
f Underlying unobservable function 
G Learning rate 
h Enthalpy 
K Covariance function - kernel 
k Turbulent kinetic energy 
l Characteristic length scale 
M Data mean 
n Noise 
P Pressure 
Pr Prandtl number 
q Heat flux 
s Entropy 
W Work 
x Direction vector 
X,y Data in dataset 

Subscripts 
eff Effective 
i,j Notation indices 
m Motive 
m Pseudo-fluid mixture property 
o Outlet 
s Suction 
t Turbulent  
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learning approach is used to generate such a surrogate model from a 
large set of CFD data. The CFD database is built using an automated 
workflow for different shape designs, model parameters, and operating 
conditions. Using CFD results to generate a large database has several 
advantages. Firstly, it enables one to investigate local flow structures in 
detail. Secondly, CFD models implicitly take into account 2D or even 3D 
geometric effects which are impossible to account for using simpler zero 
or one-dimensional approaches. 

The datasets are used for the training of a Gaussian Process Regres-
sion model to predict different ejector performance indicators and flow 
structures inside the ejector. GPR has been extensively used for a wide 
range of model problems [22]. Alternative machine learning methods, 
such as artificial neural networks (ANN), have previously been used in 
ejector design [23] and performance analysis [24,25]. Still, GPR models 
have advantages over ANN methods, such as more efficient use of data, 
lower risk of overfitting, ease of use, and explainability [26]. 

Using this GPR surrogate modeling approach, both performance- and 
shape mapping are handled with one tool. This simplification also allows 
for combined studies of shape and operating conditions in a novel way. 
In addition, the mapping can be used for the optimization of both 
operating conditions and geometry. This approach has several advan-
tages over other methods:  

1. It can give a full mapping of performance at any combination of 
parameters, allowing for a full investigation of possible designs and 
what-if scenarios. 

2. The method can take advantage of experimental and numerical re-
sults from previous works to improve model accuracy.  

3. The GPR method provides estimated prediction uncertainty at any 
point. This information can be used to improve modeling tools or 
refine database coverage.  

4. The method can produce maps of local flow structures with varied 
geometries and operating conditions. 

2. Ejector CFD model 

2.1. Multiphase model 

In this work, the multiphase flow within a two-phase R744 ejector is 
modeled using a homogeneous equilibrium model (HEM) based on the 
formulation of Smolka et al. [17]. The HEM is based on the assumption 
of strongly coupled phases at mechanical, thermal, and thermodynamic 
equilibrium, i.e. both phases can be described with a single velocity-( u→), 
temperature- (T), and pressure-field (P). By these assumptions, a single 
set of partial differential equations for the mixture of liquid and gas 
needs to be solved. Essentially, the two phases are then treated as a 
single pseudo-fluid with transport properties derived according to an 
averaging procedure. This pseudo-fluid will be governed by the equa-
tions of fluid motion and energy: 

∂ρm

∂t
+

∂
∂xj

[
ρmumj

]
= 0, (1)  

∂
∂t
(ρmumi)+

∂
∂xj

[
ρmumiumj + Pδij − τij eff

]
= 0, (2)  

∂
∂t
(ρmEm)+

∂
∂xj

[
ρmumjhm − qj,eff − umiτij,eff

]
= 0, (3) 

Here the Einstein notation is used with subscript-indexes i and j, and 
the subscript m indicates the pseudo-fluid mixture properties. Here, ρm, 
um, P, E, hm, q refer to the density, velocity, pressure, total energy, 
mixture enthalpy and heat flux, respectively. The effective stress tensor 
τij,eff is the laminar (Newtonian) and turbulent stress tensors combined: 

τij,eff = τij + τij,t. (4) 

To obtain the total mixture enthalpy, an alternative formulation of 
the energy equation, Eq. (5), was implemented using user-defined 
functions (UDF) in the ANSYS Fluent software [27], replacing Eq. 3. 

∂
∂t

ρh+∇⋅
(

ρ u→h
)

= ∇⋅
(

Γeff∇h
)

+ Ṡh1 + Ṡh2 + Ṡh3 (5) 

In this equation, h is the specific enthalpy, u→ is the velocity vector, 
Γeff the effective diffusion coefficient. The source terms Ṡh1,2,3 describe 
the mechanical energy, the irreversible dissipation of the kinetic energy 
variations, and the dissipation of the turbulent kinetic energy, respec-
tively [17]. 

Γeff is defined as: 

Γeff =
μt

Pr
+

λ
cp
, (6)  

where μt is the turbulent viscosity, Pr is the Prandtl number, cp is the 
mixture specific heat capacity, and λ is the thermal conductivity. 

2.2. Equation of state 

One preferable property of the equilibrium assumption is that the 
pressure and enthalpy uniquely define the thermodynamic state, and 
thus the properties in the two-phase dome. Properties are typically 
divided into thermophysical (Eq. 7) and transport (Eq. 8) properties. 
⎡

⎢
⎢
⎢
⎢
⎣

ρ
cp
ϕ
T
s

⎤

⎥
⎥
⎥
⎥
⎦
= f

⎛

⎜
⎜
⎜
⎜
⎝

P, h

⎞

⎟
⎟
⎟
⎟
⎠
, (7)  

[
μ
λ

]

= g
(

P, h
)

, (8)  

where ρ,ϕ, μ, λ, cp, s are the pseudo-fluid density, vapour volume frac-
tion, kinematic viscosity, thermal conductivity, specific heat capacity, 
and specific entropy, respectively. 

The properties of liquid and gas are evaluated by the pressure and 
enthalpy, interpolated from a look-up table. The CoolProp library [28] 
for R744 is based on the Span-Wagner equation of state, which is 
considered the most accurate equation of state (EoS) for CO2 and is 
widely used for R744 ejector simulations [5]. Here, CoolProp is used to 
generate the look-up tables that are imported in Fluent using UDFs. This 
study is limited to the operating range suited for the HEM model, 
however, the methods presented here are easily extended to cover non- 
equilibrium conditions. 

2.3. Turbulence model 

Accurately describing the mixing process inside two-phase ejectors is 
largely dependent on modelling the two-phase turbulent flow inside the 
mixing chamber. The turbulent viscosity, μt, is then sub-modeled by the 
k − ∊ realizable turbulence model. This model involves solving the set of 
transport equations for the turbulent properties, Eqs. (9) and (10): 

∂
∂t

(

ρmk
)

+
∂

∂xj

(

ρmkumj

)

=
∂

∂xj

[(

μ +
μt

σk

)
∂k
∂xj

]

+ pk + pb − ρ∊ − YM +Sk,

(9)   

∂
∂t

(

ρm∊
)

+
∂

∂xj

(

ρm∊umj

)

=
∂

∂xj

[(

μ+μt

σ∊

)
∂∊
∂xj

]

+ρC1S∊ − ρm C2
∊2

k+ ̅̅̅̅̅μ∊√
/ρm

+C1∊
∊
k

C3∊pb+S∊,

(10) 
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μt = ρm
k2

∊
, (11)  

where the subscript, m, indicates mixture properties based on mass or 
volume weighted averaging, C is a model specific constant, S and Y are 
model specific source terms, p is the strain rate production of k; p =

μtEijEij. This model has favourable stability properties in comparison to 
k-ω based models and scalable wall functions simplifies the automated 
meshing algorithm [5]. 

3. Machine learning approach 

3.1. Gaussian process regression 

Gaussian Process Regression (GPR) is a supervised machine learning 
tool based on Bayesian regression to generate surrogate models. The 
model is trained using a labeled data set (yi,Xi), where y is the obser-
vations, and X is the input for datapoint i. The data used in the machine 
learning model are referred to as features. The feature data is rescaled to 
be zero mean with unit variance, according to Eq. (12), using the Sklearn 
toolset StandardScaling [29]: 

z =
X − M

σ (12) 

Here, X and z are the unscaled and scaled feature data, respectively, μ 
is the feature data mean, and σ is the feature data standard deviation. 

Assuming that the observations are obtained from an unobservable 
underlying function f with zero mean Gaussian noise, ni = N (0,σ), the 
input-output relationship can be written as (Eq. 13): 

y = f (X)+ ni (13) 

The Gaussian Process (GP) can then be written as (Eq. 14): 

y = GP (M(X),K(X,X′; θ)) (14) 

The GP has a mean function, M = E[f(X)], where E is the expectation 
value, a covariance function K(X,X′) = E[f(X)f(X′)], and a set of model 
hyperparameters θ. The co-variance function is also referred to as the 
kernel, which measures the correlation between the outputs variable at 
two points Xi,Xj, and is specified as a prior. 

In this paper, the Squared Exponential kernel is used as a covariance 
function and a white noise kernel is added to account for numerical 
errors. The combined kernel function is then defined as (Eq. 15): 

K
(

X,X′; θ, σ
)

= σ2
f exp

(

−
1

2l2(X − X′)
2
)

+ σ2
nI (15)  

where, I is the identity matrix. The kernel has three hyper parameters; σf ,

l, and σn, which are the signal standard deviation, the characteristic 
length-scale, and the noise level (variance) respectively. The parameter 
σf is a scaling parameter and the length-scale l governs the length over 
which two points X and X′ are correlated. Larger values of l enforces that 
f varies more smoothly. The characteristic length scale is dimensional 
and can vary between features. 

Hyperparameters (l,σn,σf ) are optimized during the fitting of the data 
using a gradient descent optimizer on the log-marginal-likelihood of the 
hyper-parameters. The optimizer is a quasi-Newton L-BFGS optimizer 
[30,29,31] with n = 10 optimizer restarts, commonly used in the liter-
ature [32]. Characteristic length scales are bounded to upper and lower 
limits of 1.0×10− 3 and 3.0× 101, respectively, for all dimensionless 
features. The kernel optimizer is initialized with σf ,0 = 0.2, l0 = 0.5,
σn,0 = 0.02. Using the training data with dimensions A× (Btotal - Btraining), 
where A is the number of features and B the number of data points, a 
posterior distribution can be found by drawing from a joint distribution 
of the training data y and test data y∗. 

[
y
y∗

]

= N

([
M
M∗

]

,

[
K K*

K* K∗∗

])

(16) 

This GPR algorithm was implemented using the Scikit-learn Python 
package [29]. 

3.2. Gradient descent based optimization 

The GPR model predicts the ejector operation at any point in the 
defined feature domain. By using a gradient-based optimization algo-
rithm on the function it is possible to optimize the ejector parameters for 
a given output. Here, a gradient descent optimization algorithm was 
implemented according to, Eq. (17): 

Xi+1 = Xi +G∇f (Xi) (17)  

Here, G is a specified learning rate and f is the chosen function to 
optimize. A first-order finite difference method for evaluating the 
gradient. The initial points were chosen randomly from a uniform dis-
tribution of the feature space. 

4. CFD automation algorithm 

To generate the data sets needed to train the GPR model, an algo-
rithm was developed in the Python 3.9 programming language [33] for 
automatically generating CFD data. This algorithm incorporates auto-
matic meshing, automatic generation of Fluent journal files, and post- 
processing the results. An illustration of the system layout is presented 
in Fig. 1. The program takes in data points from the boundary condition - 
geometry design space and automatically simulates the flow case. 

Initially, the automated algorithm settings need to be defined. This 
involves choosing the features to be explored and choosing the 
remaining constant parameters. In this step, different sampling algo-
rithms, meshing strategies, and post-processing settings are available. 
Based on the chosen features and sampling algorithms, a user-specified 
number of data points are sampled from the design space. The sampling 
algorithm used is further discussed in Section 4.1. The algorithm then 
iteratively simulates each flow case in three steps. 

The first step is to generate the specified 2D structured mesh using an 
in-house automated meshing script for the ICEM meshing program ac-
cording to the specified geometry parameters. The script generates high- 
quality meshes with average orthogonal quality of 99.9% for a 10k cell 
mesh. The mesh parameters included are the baseline cell size, refine-
ment ratio, and aspect ratio of the mixing section cells. A mesh sensi-
tivity study is conducted and discussed in Section 4.3.1. Acceptable 
results were obtained using meshes around 8k cells. To limit computa-
tional cost while keeping the high accuracy a mesh of 24k cells was 
chosen as the average design case. 

The second step is to generate an ANSYS Fluent journal file to 
automatically run the flow case with the prescribed boundary conditions 
from the algorithm for pressure and enthalpy. The inlets and outlets 
were prescribed with the ANSYS pressure-inlet and pressure-outlet 
boundary conditions, respectively. The boundary conditions for the 
specific enthalpy defined for the HEM model were zero gradient 
enthalpy at the outlet and constant inlet enthalpy. The wall conditions 
were defined as adiabatic with a wall roughness of Hrough = 2[μm], 
commonly used in CFD literature for R744 ejectors [13,34]. All calcu-
lations were done using a steady solver. The discretization schemes used 
are described in Table 1. 

Each case is simulated in ANSYS Fluent 2019R3 with the standard 
initialization procedure, starting the simulations with first-order 
schemes for the first 20k iterations, before changing to second-order 
schemes. Convergence was judged based on low mass flow rate imbal-
ance below 1.0×10− 5 [kg/s] and residuals below 1.0× 10− 5. The ma-
jority of the simulations would converge within 40–50k iterations. 
Simulations that did not converge were continued until either conver-
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gence or reaching 80k iterations. Simulations that were oscillating after 
80k iterations were removed from the results. These oscillations typi-
cally occurred at low motive inlet specific enthalpy (below 270 [kJ/kg]) 
and high motive pressures (above 110 [bar]), which is close to the limit 
of the HEM range of validity. 

The third step is to post-process the CFD results, collecting the 
different output KPI parameters and storing these in a database. The 
different output parameters and their calculation are discussed in Sec-
tion 4.2. After all the steps are completed the database is stored and 
duplicated. After which the data can be analyzed by the machine 
learning model. 

4.1. Sampling 

The design space is initially sampled using a Latin HyperCube (LHC) 
approach [35] with the Python package LHC-Python. Latin hypercube 
sampling is a statistical sampling approach that samples N points from a 
statistical distribution in equiprobable zones. This approach ensures 
good sampling of a higher dimensional subspace with fewer data points 
than random or equidistant sampling. The LHC design gives an N- 

dimensional mapping to fill a space with low overlap. The design points 
χi are chosen from the range (0,1) and is transformed to a chosen sub- 
space for each feature, xi. All variables are sampled evenly according 
to Eq. (18), 

Xi = χi ∗ (amax − amin), (18)  

using the maximum and minimum values, amin/max, presented in Table 2. 
This is to get a well-represented operational mapping for different given 
ejectors. 

To avoid sampling unphysical ejector geometry combinations a 
sampling constraint had to be added. The motive outlet diameter was 
constrained such that the motive nozzle is smaller than the suction 
chamber at the nozzle exit position according to: 

Dm− out < 2(tan(αs/2)Lmch + Dmix/2 − t) (19) 

Fig. 1. Illustration of the algorithm layout.  

Table 1 
Discretization schemes used in the CFD models.  

Discretization Scheme 

Pressure PRESTO! 
Pressure-velocity coupling Coupled 
Gradient Green Gauss cell-based 

Momentum Second order upwind 
Density –”– 
Enthalpy –”– 
Turbulent kinetic energy –”– 
Turbulent energy dissipation –”–  

Table 2 
Available features and their parameter sampling range for LHC-sampling 
algorithm.  

Parameter amin  amax  

Dm− out, [mm]  Dthroat  1.5 Dthroat, Eq. (19)  
Lmix, [mm]  0 50 Dmix  

Dmix, [mm]  Dthroat  10 Dthroat  

Ddiff , [mm]  Dmix  10 Dmix  

αd, [◦]  1 90 

Pm, [bar]  75 140 
Ps, [bar]  28 55 
Po, [bar]  Ps  Ps+15  
hm, [kJ/kg]  250 340 
hs, [kJ/kg]  380 460  
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4.2. Key performance indicators 

In this study, four Key Performance Indicators (KPIs) were consid-
ered to evaluate ejector performance for different ejector designs. These 
are motive and suction mass flow rates (entrainment ratio), ejector ef-
ficiency, mixture entropy generation rate, and ejector outlet flow uni-
formity for velocity and vapor fraction. 

Mass flow rates are calculated by Fluent at the inlets and outlets of 
the ejector. These are reported and post-processed by the algorithm. 
Using the mass flow rates and boundary conditions, the ejector effi-
ciency is calculated from the Elbel efficiency, Eq. (20) [36] using calls to 
the CoolProp software [28]. 

ηejector =
Ẇ r

Ẇ r,max
= ω⋅

h(Pout, ss) − hs

hm − h(Pout, sm)
(20)  

Entropy production is found by calculating the mass-weighted average 
of the incoming and outgoing entropy in each section. This is done using 
surface definitions and an entropy look-up table implemented in ANSYS 
Fluent using user-defined functions. The ejector outlet flow uniformity is 
calculated using the Uniformity Index defined in ANSYS Fluent: 

γa = 1 −

∑n

i=1

(⃒
⃒
⃒
⃒ψi − ψa

⃒
⃒
⃒
⃒

)

Ai

2
⃒
⃒
⃒
⃒ψa

⃒
⃒
⃒
⃒
∑n

i=1
Ai

(21)  

where ψa is the averaged value of the field variable ψ over the n cells on 
the outlet surface, and Ai is the surface area for cell i. Here, the 
unformity index is calculated for the vapour fraction ϕ and the axial 
velocity u. These two KPIs indicate how well mixed the flows are at the 
outlet of the ejector. 

4.3. CFD model validation 

The HEM as implemented in this work has been extensively validated 
in previous works [17,37,38]. As previously mentioned, the prediction 
error of the presented model is typically considered to be within 10% for 
motive mass flow rate. Suction mass flow rate is less accurately pre-
dicted, and can in cases significantly deviate from experimental results. 
Therefore, simulation results and any optimized design should be 
carefully inspected and scrutinized. This also motivates further research 
into the modeling of R744 two-phase ejectors. The presented method-
ology is modular, and switching the underlying CFD model can be done 
with only minor modifications. 

4.3.1. Mesh sensitivity study 
To ensure that the mesh is sufficiently refined to describe the ejector 

flow and mesh independent results are achieved a mesh study was 

conducted. The main ejector geometry parameters are presented in 
Table 3. This ejector geometry is intended as an open-access geometry 
for simulations as sharing of this geometry is not limited by proprietary 
restrictions. The different ejector dimensions are illustrated in Fig. 2. 

Previous studies with the HEM have investigated mesh independence 
and shown that mesh independent results can be achieved with only 9k 
cells for optimization studies [13]. The ejector simulations were per-
formed with five different meshes, A, B, C, D, E that were composed of 
2.2k, 8k, 26k, 60k, and 100k cells, respectively. Meshes A, B, and E were 
generated using an ICEM mesh refinement algorithm for coarsening and 
refinement of mesh C. The refinement is applied uniformly for all cells, 
halving/doubling the mesh size in each dimension. Mesh D was based on 
a smaller baseline cell size in the meshing script with a similar refine-
ment to mesh C. These simulations were run with boundary conditions 
named OP11 close to the design point, see the footnote. The calculated 
mass flow rates are presented in Table 4. The motive mass flow rate 
tends to reduce with the mesh refinement. However, the difference be-
tween these flow rates was less than 5% for all mesh densities. The 
suction mass flow rate varied more than the motive MFR, and has, in 
general, a decreasing trend as the mesh is refined. The suction mass flow 
rate is less accurately predicted with mesh A, 11% difference to mesh E, 
while for mesh B and C the difference is less than 1%. Interestingly, mesh 
D produced higher suction MFR than the other meshes. This could be 
due to that mesh D is based on a different baseline cell size. 

Based on these mesh refinement indicators mesh C was chosen for 
further study, as it gave reasonable accuracy, within 1% of the most 
refined mesh, with a low computational cost. The study shows that R744 
ejector flow using the HEM can be reproduced with a coarse mesh, 
which agrees with previous findings by Palacz et al. [13]. Such a mesh is 
ideal for use in optimization algorithms where computational speed is 
essential. 

5. Results and discussion 

The presented method is flexible and can look at various combina-
tions of features. Any computable and physical combination of geometry 
variables, operating condition parameters, or CFD model parameters 
can be used for the mapping. In addition the GPR model can be applied 
for the prediction of flow structures such as pressure and velocity dis-
tributions, entropy production, and flow separation. Here, the results of 
the methodology are presented for three use cases. Case 1; generate an 
operation map for off- and on-design conditions using a given ejector 
geometry. Case 2; design space mapping and optimization at a given 
operating condition. Case 3; prediction of flow structures in the ejector 
from CFD data. Other use cases with alternative features are presented 
and discussed in Section 6. 

5.1. Case 1: Off-design operation mapping 

Case 1 presents a method of performance mapping of a given design 
at various operating conditions. Only the thermodynamic features (Pm,

Ps,Po,hm,hs, see Table 2) are included in this part of the investigation. 
These features are allowed to vary as specified in Table 2. The ejector 
geometry used is the new ejector geometry presented in Table 3. 

5.1.1. Database sampling 
Model accuracy is dependent on the number of data points. To verify 

how accuracy is affected by the number of data points, a model 
convergence study is done. One can test the sensitivity to the number of 
data points by either removing points from the training set or by 
generating additional data with more points. As each database is 
generated with an LHC sampling method, a fair comparison cannot be 

Table 3 
All main ejector dimensions of the new proposed open design.  

Parameter Value 

Motive Inlet diameter (Dm− in)  10.0 [mm] 
Motive Throat diameter (Dthroat)  1.41 [mm] 
Motive Outlet diameter (Dm− out)  1.52 [mm] 
Nozzle tip thickness (t) 1.2 [mm] 
Pre-mixer length (Lmch)  4.2 [mm] 
Mixer length (Lmix)  26.0 [mm] 
Mixer diameter (Dmix)  4.0 [mm] 
Diffuser diameter (Ddiff)  12.0 [mm] 
Diffuser angle (αd)  6[◦]
Motive converging angle (αm− c)  35[◦]
Motive diverging angle (αm− d)  3[◦]
Suction angle (αs)  42[◦]

1 OP1: Pm = 85 [bar], Ps = 33 [bar], Po = 38 [bar], hm = 290 [kj/kg], hs =

432 [kj/kg] 
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made by simply removing data points. Therefore, three separate data-
bases of 100, 300, 600 data points were sampled and simulated. The 
GPR model was trained using these three databases and the average GPR 
model accuracy was evaluated with different test and training sampling 
sizes. The mean squared error (MSE) between the GPR model prediction 
and the CFD data points in the test data was calculated for the different 
KPIs. The errors are estimated using 15% of the data as hidden test data 
that is left out of the model training and 85% as training data. The 
calculated mean square error results are shown in Fig. 3, normalized by 
the error with the smallest dataset. 

From Fig. 3 it is found that, except for entropy, all KPIs are better 
predicted by increasing the database resolution. Refining the database to 
600 datapoints reduced the MSE by 50–90% for the different KPIs. 
Interestingly, entropy production in the mixing chamber is worse 
resolved as the number of points is increased. This is believed to be 
caused by small length scales associated with the entropy production 
that are not resolved by the smaller data sets. Improved entropy post- 
processing models for entropy [39] should be implemented in further 
work to gain better data and insights into entropy production mecha-
nisms in the flow. 

Still, with only 100 data points, the algorithm can accurately 
calculate a performance map. The average absolute error for entrain-
ment ratio was found to vary between 0.25 and 0.35 [–] with 100 data 
points, and vary between 0.06 and 0.1 [–] with 600 data points. Using a 
larger database could ensure even better accuracy of the GPR model, 
however, due to computational limitations, the study is limited to a 600 
point database. The 600 data point set will be analyzed in the following 
sections as it gave the highest accuracy. 

5.1.2. Model prediction 
The GPR model can predict the ejector performance at any combi-

nation of features, however, its accuracy depends on the proximity to a 
nearby data point. The predictions can be used to generate a heat-map of 
ejector performance by varying two features and keeping the remaining 
constant. Such a performance mapping is presented in Fig. 4a–c in a 
motive condition P-h diagram using one realization of the GPR model. 
Here, the features for motive pressure and motive enthalpy are inves-
tigated, keeping the remaining features at constant conditions, specified 
in each figure caption. As shown in Fig. 4a, the model identifies a high- 
efficiency region near 120–140 [bar] at an enthalpy between 270 and 
320 [kJ/kg] for high-pressure lifts (10 [bar]). Here, ejector break-down 
(no suction flow) occurs for lower motive pressure than 90 [bar]. As the 
pressure lift is reduced to 7 [bar], Fig. 4b, the high-efficiency region is 
extended to pressures between 100 and 130 [bar]. Below 100 [bar] the 
ejector performance quickly drops off and ejector break down occurs for 
pressures lower than 80 [bar]. As the pressure lift is reduced to 3 [bar], 
Fig. 4b, the optimum operating point moves to a smaller region closer to 
90 [bar]. At low-pressure lifts, using higher pressures than 90 [bar] is 
not valuable in terms of ejector efficiency. The presented mapping can 
indicate zones that are optimal operation points for the presented 
ejector. Furthermore, these performance maps can be easily imple-
mented into dynamic system simulations as a performance evaluation 
can be calculated within milliseconds. 

5.1.3. Performance mapping - characteristic length scales 
The GPR model optimizes the characteristic length scales (l in Eq. 15) 

for each parameter. If a feature is associated with a short characteristic 
length scale, the data contains more variation in that parameter. When a 
feature is associated with a characteristic length scale that is large 
compared to the feature space, then this feature is redundant to predict 
an output. Table 5 shows the different obtained characteristic length 
scales for one run of the GPR model. Characteristic length scales were 
limited to an upper limit of 30 standard deviations in scaled form. Based 
on these results, some relationships are suggested. First, the motive mass 
flow rate is primarily governed by the motive enthalpy (temperature) 
and pressure. This is reasonable as, for a chocked super-sonic flow, the 
upstream temperature and the upstream and downstream pressure are 
the primary parameters for the mass flow rate. It was expected that the 
outlet pressure would have a more significant impact on results, how-
ever, these results might indicate that the sampling range for outlet 
pressure was too small for this effect to be dominant. Second, void 
fraction uniformity is independent of the performance of the ejector, 

Fig. 2. Generic ejector geometry with geometry parameters. Gray color signifies solid parts.  

Table 4 
Mesh convergence study with different mesh sizes.  

Mesh Cells OP1 [kg/s]   

MFRm  MFRs  

A 2.2k 0.0824 0.0538 
B 8.0k 0.0812 0.0615 
C 26k 0.0799 0.0613 
D 62k 0.0795 0.0662 
E 100k 0.0791 0.0609  

Fig. 3. Comparison of database sizes and the GPR prediction mean-square error 
for each KPI. The data has been non-dimensionalized by the mean square error 
for the 100 data point set. 
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however, this is found to be caused by the void fraction always being 
highly uniform at diffuser exit. Third, velocity uniformity is governed 
primarily by the pressures at the ejector ports and is independent of the 
motive and suction enthalpy. The remaining outputs (ER, efficiency, 
MFRs) are dependent on all variables and characteristic length scales, 
except on suction enthalpy. The independence of mass flow rates on 

suction enthalpy is believed to be due to the small differences in gas 
density as a function of enthalpy. This suggests that suction enthalpy can 
be neglected as a feature for future models as long as the ejector entrains 
primarily vapor. 

5.1.4. Optimization of performance zones 
The gradient descent optimization algorithm, see Section 3.2, was 

used with the GPR model to identify optimal operating regions for the 
ejector. As an illustration, the algorithm was tasked to optimize motive 
pressure and enthalpy with other conditions kept constant. A set of ten 
initial points were randomly sampled from the distribution between +1 
and − 1 standard deviation from the mean. These initial points were used 
in the gradient descent optimizer for ejector efficiency. By plotting a line 
from each starting point to its optimal value, the optimization steps can 
be visualized. This is shown in Fig. 5, where the optimization paths from 
random points in the motive P-h diagram and constant conditions Ps =

38 [bar], Plift = 7 [bar] are shown. 
Fig. 5 shows that, for all initial positions, the algorithm is able to 

improve ejector efficiency and find a close to the optimal operating 
point. The algorithm converges to solutions in the range of 110–112 

Fig. 4. Efficiency (Eq. 20) map in a P-h diagram for motive conditions at different pressure lifts. Saturation line for CO2 plotted in orange in each subfigure. Suction 
inlet specific enthalpy is kept constant at 430 [kJ/kg]. 

Table 5 
Optimized characteristic length scales for different outputs. Kernel seed  = 40   

Optimized characteristic length scale for feature 

Output parameter Pm  Po  Ps  hm  hs  

Entrainment ratio [–] 2.17 1.65 2.05 2.71 30 
Efficiency [–] 1.21 0.342 0.316 3.07 30 
MFRm [kg/s]  5.01 30 30 4.42 30 
MFRs [kg/s]  4.04 2.6 3.88 2.2 30 
Velocity uni., [–]γu  4.21 3.31 4.28 30 30 
Void frac. uni., γϕ [–]  30 30 30 30 30 
Entropy prod., dsm− d [–]  1.65 3.17 4.35 12.8 7.63  
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[bar] for motive pressure Pm and 325–370 [kJ/kg] motive enthalpy hm 
with ejector efficiency of 36%. This demonstrates that the algorithm can 
efficiently find optimal operating conditions using the GPR surrogate 
model. 

5.2. Case 2: Design mapping 

Case 2 presents a method of design mapping and optimization of 
ejector geometry at a given operating condition. In this study, 5 geo-
metric features were included and allowed to vary as presented in 
Table 2. The choice of geometric dimensions was based on findings from 
previous studies [7]. This study is limited to 5 geometric features due to 
the computational costs of sampling additional dimensions. The 
remaining geometric parameters are set according to the design in 
Table 3. The operating condition for design optimization is intended for 
heat pump use cases. With a gas-cooler temperature of 30 ◦C, the 
optimal motive pressure is calculated to approximately 85 [bar] using 
the correlation by Kauf [40]. Suction pressure is set according to the 
conditions typically found in such applications. The design point is 
therefore set to: Pm = 85 [bar], Tm = 30[◦C], Ps = 33 [bar], Ts =

− 2[◦C], Plift = 5 [bar]. 

5.2.1. Database sampling 
An initial database of 300 points was generated using LHC sampling. 

The calculation of this database took approximately 10 days of 
computation time on a 32 core computer. Due to the small range of 
positively performing ejectors (Dthroat < Dmix < 3Dthroat), a second data-
base was sampled based on the results from this first database. In this 
work, new limits were found manually by inspecting the dataspace, 
however, this procedure can in the future be automated and use an 
iterative approach to find the best efficiency ejector geometries. 

A secondary database of 200 data points was generated with new 
limits chosen based on the first iteration. The limits of the first and 
second databases are shown in Table 6. The main reason for the 
resampling was that the mixing chamber diameter, being the primary 
factor influencing the entrainment ratio, dominated the effects of the 
other parameters due to its large sampling range. The mixing chamber 
diameter limits were therefore reduced to a range where less variation 
and all of the positive ER geometries were located. The calculation of 
this second database took approximately 5 days of computation time on 
a 32 core computer. The model was fitted to the data set and the accu-
racy was evaluated with a test set of 15% of the data points, similarly to 

Section 5.1.1. Based on the test data the average absolute error for 
entrainment ratio value was 0.07 [–]. The following results are discussed 
with the second iteration database. 

5.2.2. Model prediction 
First, each feature size is varied with the remaining features set 

constant according to their baseline values (Table 3). The GPR model 
predicted efficiency is then plotted as a function of each feature size, non 
dimensionalized by its maximum value, shown in Fig. 6a and b. Both 
figures show the ejector efficiency under single variable variations using 
different samples from the GPR function space. This is to illustrate that 
different realizations of the GPR will converge to different solutions. 
These results show that optimizing each of these dimensions in isolation 
can yield significant efficiency improvements. The mixing chamber 
diameter is very sensitive to optimization and shows a narrow zone of 
high efficiency. This trend is found in both samples of the GPR model. 
Similarly, the same functional relationship for mixing chamber length is 
found in both samples. The diffuser angle relationship is similar for both 
function samples, however, the optimum value is slightly different. This 
indicates that more data should be collected in the range of small 
diffuser angles. The relationship for the motive outlet diameter suggests 
that only this diameter has only a minor influence on performance. 
However, as the motive outlet diameter is increased, the ejector per-
formance is reduced, likely due to shock-losses caused by motive flow 
over-expansion. The predicted performance curve with varied diffuser 
outlet diameter is different between the two samples, which indicates 
that the database contains too little information on the relationship to 
separate from the dominant features; Dmix, Lmix, and αd. 

Using the combined information from these two samples, the optimal 
motive outlet diameter from sample B and the optimal outlet diameter 
from sample A, the individually optimized size of each design parameter 
was found to be; Do

m− out =1.78 [mm], DO
mix = 3.98 [mm], LO

mix = 23.0 
[mm], αO

d = 11.6◦, DO
diff = 28.1 [mm] with a predicted efficiency of 

0.42–44 (–). In comparison, the baseline design has a predicted effi-
ciency of 0.40 [–]. The superscript o indicates optimum values by iso-
lated optimization. Such a design lies remarkably close to the initially 
designed ejector (Table 3) in terms of mixing chamber length and 
diameter. 

The motive outlet diameter of an ejector is designed such that the 
motive nozzle expansion matches the ejector mixing chamber pressure. 
This achieves the best efficiency as there are lower losses associated with 
the under- and over-expansion of the motive flow. The individually 
optimized motive outlet diameter is therefore expected to lie close to 
this point. As each data point corresponds to a CFD simulation, it is 
possible to inspect individual ejector data points in detail to investigate 
this hypothesis. A data point with a motive outlet diameter of 1.77 
[mm], close to Do

m− out, is chosen from the database and the pressure 

Fig. 5. Optimization paths in a P-h diagram of ejector efficiency from ran-
domized starting positions. Operating conditions: Ps = 38 [bar], Plift = 7 [bar] 
are shown. The optimization path is colored black, and every tenth iteration it 
plotted with a circle colored according to the iteration number to illustrate 
convergence. 

Table 6 
First and second iteration sampling range.  

Parameter amin  amax  

First sampling 

Dm− o, [mm]  Dthroat  1.5 Dthroat  

Lmix, [mm]  0 50 Dmix  

Dmix, [mm]  Dthroat  10 Dthroat  

Ddiff , [mm]  Dmix  10 Dmix  

αd, [◦]  1 90 

Second sampling 

Dm− out, [mm]  Dthroat  2 Dthroat  

Lmix, [mm]  0 10 Dmix  

Dmix, [mm]  Dthroat  4 Dthroat  

Ddiff , [mm]  Dmix  10 Dmix  

αd, [◦]  1 90  
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profile is shown in Fig. 7. The motive expansion pressure matches the 
ejector mixing chamber pressure within 1 [bar], illustrating that the 
algorithm is able to find reasonable design parameters and demon-
strating how the database of CFD results can be used to investigate 
design improvements. 

5.2.3. Optimization of design 
From previous studies [15,14], it is generally agreed that optimal 

ejector geometry must be found by optimizing the different parameters 
of the ejector geometry simultaneously. To better understand the re-
lationships between each design parameter, a performance heat map 
was generated based on two geometry parameters at a time. As an 
example, the ejector efficiency for varying mixing diameter and lengths 
is shown in Fig. 8a with the remaining parameters left constant at the 
values obtained by single variable optimization. A high efficiency zones 
is identified near the previous optimal values at Dmix ≈ 4 [mm] and 

Fig. 6. Plot of ejector efficiency with each dimension varied in isolation with 
the remaining dimensions left constant as the individual optimum values. Two 
different randomization seed samples for the training data sets. 

Fig. 7. Pressure distribution for datapoint #46 with dimensions: Dm− out =1.77 [mm], Dmix = 1.59 [mm], Lmix = 6.9 [mm], αd = 3.9◦, Ddiff = 11.9 [mm]. The gray- 
color scale is log-scaled. 

Fig. 8. Efficiency plot of GPR design space prediction.  
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Lmix ≈ 25 [mm]. The predicted ejector efficiency at varied diffuser ge-
ometry parameters (αd, Ddiff) with remaining parameters as the indi-
vidual optimum values is shown in Fig. 8b. These results indicate that 
outlet diameters in the range of 0–20 [mm] and small diffuser diverging 
angles yield the highest efficiency. Further investigation with a refined 
database for this region of diffuser geometries is left for future work. 

The designs suggested by inspection using the GPR methodology 
suggests designs with similar dimensions to the initial baseline design. 
This gives a good indication that the algorithm suggests designs that 
comparable to designs produced by 1D approaches [41] within a few 
iterations of database generation. With additional iterations of database 
refinement, the algorithm is believed to converge to a better, more ac-
curate representation and a better design. A validation of the surrogate 
model optimized design is conducted in Section 5.2.5. 

A more general approach to design optimization is to use an opti-
mizer function on the GPR model. The gradient descent method, as 
described in previous sections, was used on the GPR model for design 
parameters. 10 initial points were sampled and optimized for maxi-
mizing ejector efficiency. The gradient descent path was constrained 
such that the ejector optimization algorithm would not suggest negative 
lengths or angles. The results are presented in Table 7. Of the 10 initial 
conditions, 8 ended up at the same solution with an efficiency of 43%. 
The remaining 2 simulations found local optimums with very poor ef-
ficiency. The optimized solution converges to a solution close to the 
previously mentioned individually optimal solution. To improve the 
design further additional sampling of the database is necessary, which is 
left to further work. 

5.2.4. Design mapping - characteristic length scales 
Similarly to Section 5.1.3, the optimized characteristic length scales 

associated with each geometric design parameter for the prediction of 
the different KPIs are investigated, shown in Table 8. Some self-evident 
relationships are apparent from the data. Firstly, the motive mass flow 
rate is not dependent on the geometry features downstream of the nozzle 
due to supersonic choking, and the dependency on motive outlet 
diameter is negligible for this range of motive outlet diameters. As the 
motive mass flow rate is approximately independent of the model fea-
tures, the suction mass flow rate, entrainment ratio, and efficiency are 
closely connected. These features are primarily dependent on the mixing 
chamber geometry (Dmix,Lmix) and the diffuser angle, which agrees with 
the previous experimental findings [6,7]. The outlet flow uniformity for 
velocity and void-fraction is, as expected, dependent only on the diffuser 
geometry. Lastly, the entropy production in the mixing chamber is pri-
marily governed by the mixing chamber geometry. Further study into 
these parameters should be conducted in the future to better understand 
these relationships. 

5.2.5. CFD simulation of the optimized ejector design 
The CFD predictions with the optimal ejector design may not 

necessarily agree with the GPR performance predictions. To verify the 
performance of the GPR optimization, three designs with high predicted 
ejector efficiency were evaluated with new CFD simulations. The tested 

designs and the resulting predictions are shown in Table 9 and Fig. 9. 
The model predictions were very close to the CFD results for all three 
points, with less than 6% maximum deviation. Additionally, the correct 
trend is predicted and the best entrainment ratio is found for the opti-
mized design. This very good agreement confirms that our novel 
approach is a highly useful tool for optimization studies. 

5.3. Case 3 - Flow structures 

The large databases of CFD contains additional information on the 
2D flow structures that occur in the ejector. Analysis of the flow struc-
ture is in general a challenging problem due to the lack of clear dis-
tinctions of flow regimes and regions. As an example, the assumption of 
two distinctive motive and suction flows that exchange momentum is 
common in 1D models, however with detailed multidimensional CFD 
data such a distinction may not exist. Still, detailed knowledge of flow 
structures and how these vary with changing operating conditions and 
ejector design is highly valuable for the design process. 

Case 3 presents a novel application of the GPR model, namely, to 
predict the internal flow structures of the ejector using the detailed CFD 
data. Here, the study is limited to investigating the pressure and velocity 
along pathlines of the motive and suction flow. 

The flow structure inside the ejector is analyzed and mapped along 
particle pathlines inside the ejector where the curve length parameter, c, 
is used as a parameter for the GPR model. The velocity and pressure data 
along these pathlines from the CFD simulations are then used to train the 
GPR model. By training the GPR model with different ejector design 
parameters the flow structures can be analyzed as a function of the 
ejector design. In comparison to predicting the performance KPIs, this is 
a much harder problem due to the GPR model not having any knowledge 
of the flow physics. This tool will therefore primarily be used to gain 
insight into the trends of the ejector flow structures. 

The pathlines of the suction and motive flow are illustrated in 
Fig. 10. Due to the large amount of data available in each CFD simula-
tion, a small database with 25 CFD data points was generated. This 
database was uniformly sampled over the mixing chamber diameter and 
mixing chamber length design space in the ranges 10 < Lmix < 50 [mm] 
and 3 < Dmix < 5 [mm], respectively. The pathlines are defined from the 
suction and motive inlets to the ejector outlet. Along these pathlines, the 
different flow variables are reported and post-processed by the algo-
rithm. As the number of data points along each pathline is in most cases 
several thousand, the data was reduced by averaging over increments of 

Table 7 
Optimized designs based on gradient descent  

# Dm− out [m]  Dmix [m]  Lmix [m]  αD [◦]  Ddiff [m]  Efficiency [–] 

1 0.0016 0.0039 0.024 2.4 0.028 0.43 
2 0.0016 0.0039 0.024 2.4 0.028 0.43 
3 0.0022 0.0059 0.038 78.2 0.004 0.01 
4 0.0016 0.0039 0.024 2.4 0.028 0.43 
5 0.0016 0.0039 0.024 2.4 0.028 0.43 
6 0.0016 0.0039 0.024 2.4 0.028 0.43 
7 0.0016 0.0039 0.024 2.4 0.028 0.43 
8 0.0022 0.0058 0.000 15.4 0.037 0.02 
9 0.0016 0.0039 0.024 2.4 0.028 0.43 
10 0.0016 0.0039 0.024 2.4 0.028 0.43  

Table 8 
Optimized characteristic length scales for different outputs. Kernel seed  = 8   

Optimized characteristic length scale for feature 

Output parameter Dm− out  Dmix  Lmix  αD  Ddiff  

ER [–] 9.22 1.68 1.18 5.48 30 
Efficiency [–] 7.09 0.48 1.36 1.95 27.8 
MFRm [kg/s]  30 30 30 30 30 
MFRs [kg/s]  9.31 1.65 1.18 5.45 30 
γu [–]  30 30 18.4 15.9 0.585 
γϕ [–]  30 30 18.4 15.9 0.585 
dsm-d [–]  30 0.13 7.03 30 30  

Table 9 
Comparison of entrainment ratio between GPR prediction and CFD model for 
optimized designs. Dm− out = 1.77 [mm], Dmix = 3.82 [mm], Ddiff = 65.1 [mm].  

Geometry #1 #2 #3 

Lmix [mm]  13.47 27 27 
αD [◦]  15.8 15.8 5.0 

ER GPR 0.601 0.714 0.742 
ER CFD 0.598 0.753 0.793  
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30 steps along the pathline. 
The GPR model is trained to predict the flow variable distributions 

along the different pathlines. The mixing chamber geometry parameters 
and the pathline length parameter are chosen as the model features. 
Fig. 11a–b shows a scatter plot of the CFD data and the predicted 
pressure along the central suction flow pathline. The CFD data for that 
geometry was hidden for the GPR predictor to verify the model accuracy 
when interpolating between ejector geometries. Even with the specific 
predicted geometry data hidden, a decent match between the CFD data 
and the predicted velocity and pressure distribution with a mean ve-
locity error of 2.2 [m/s] and 0.13 [bar]. In Fig. 11a, the general pressure 
structures are reproduced with high accuracy. The method captures the 
pressure drop occurring in the mixing chamber due to a motive shock 
train. Still, the predicted shock strength for the smallest mixing chamber 
length, Fig. 11b, is not well resolved and the shock strength is over-
predicted by approximately 2 [bar]. This is likely due to the short length 
scales and discontinuities along the path line. 

A detailed insight into the effects of different design choices on the 
flow structure is useful for ejector design. This model can give a pre-
diction of the changes to the local flow variables, such as velocity and 
pressure distributions, as a function of different design variables. An 
example of such an application is shown in Fig. 12a and b. Fig. 12a 
shows the predicted velocity along the central suction flow pathline as a 
function of the mixing chamber diameter for a constant mixing chamber 
length of 30 [mm]. The figure shows that the highest velocities are 
achieved with the smallest diameters due to the constricted size of the 
mixing chamber. For the smallest ejector diameters (Dmix = 3 − 3.5 
[mm]), the suction MFR (ejector efficiency) is limited by the suction 
flow area. As the mixing chamber diameter is increased, the suction flow 

velocity in the ejector is reduced due to the larger flow area and the 
lowered mixing efficiency. At a mixing diameter of 4 [mm], the 
maximum ejector efficiency is reached, where the optimal compromise 
between mixing efficiency and flow area is found. Fig. 12b shows the 
predicted velocity as a function of the mixing chamber length for a 
mixing chamber diameter of 4 [mm]. In this data set, the shortest mixing 
sections were associated with the highest ejector efficiency. As the 
mixing chamber length is increased, the velocity of the suction flow is 
reduced and the high-velocity region is extended. For mixing chambers 
longer than 30 [mm], the predicted velocity distribution in the mixing 
section is flattened out. This implies that less momentum is transferred 
from the motive to the suction flow and that the only effect of extending 
the mixing section beyond 30 [mm] is increasing wall friction. 

The presented methodology allows insight into design decisions on a 
flow structure level. The method can be used as a tool to better predict 
different flow structures and losses in the ejector. Still, accurately pre-
dicting sharp gradients such as shocks is a major challenge for the 
methodology. Therefore, to produce accurate predictions of flow struc-
tures large data sets are needed due to the larger variation of flow 
structures between ejector geometries and operating conditions. 

5.4. Discussion 

This approach to ejector mapping and optimization shows great 
promise both for off-design performance mapping, design mapping, and 
shape optimization. The algorithm is able to identify high-efficiency 
regions in design and operating conditions. The algorithm can identify 
optimized designs, and can by iteration be improved to sample appro-
priate ranges of data. In addition, the benefits of using CFD data for data 
points are used to verify ejector designs and investigate flow structures 
in ejectors. However, some limitations of this modeling approach should 
be addressed in further work, discussed below. 

5.4.1. CFD model accuracy 
The GPR machine learning model can only be as good as the data 

collected. In this study, we have assumed that the CFD results are 
deterministic, i.e. that the same calculation will always yield the same 
result. However, due to numerical errors, this cannot be guaranteed. 
Numerical errors due to poor convergence, poor mesh, or numerical 
solution errors can affect the CFD model results. This is even more sig-
nificant if a larger database using data from various sources, such as 
numerical and experimental data collected from the literature. Ejector 
meshing is a significant source of numerical errors. Consistent meshing 
between different ejector designs is challenging due to the large varia-
tion in shape and proportions occurring within possible ejector 
configurations. 

Furthermore, the accuracy of the underlying CFD models must be 
taken into account. As found in previous works [5], the motive nozzle 
MFR can be quite accurately predicted in the supercritical region, where 

Fig. 9. Comparison of entrainment ratio predicted by the GPR model and new 
CFD validation points with geometries given according to Table 9. 

Fig. 10. Illustration of the pathlines of the suction (colored yellow) and the motive (colored red) flows.  
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this study has been primarily focused. However, the suction flow is often 
less accurately predicted. Up to 20% error between experimental and 
numerical results can be observed. This will have a significant impact on 
the accuracy and validity of the optimized design. Further research into 
suction flow prediction is necessary to fully leverage the potential of 
these optimization models. In this work, the motive pressure has been 
kept above critical to ensure that the HEM accurately represents the flow 
physics. However, as the motive pressure is reduced, non-equilibrium 
effects become dominant and must be taken into account. As there is a 
strong ongoing research effort on this topic, the authors fully expect that 
numerical methods will soon handle non-equilibrium effects with 
similar performance as the HEM in the supercritical region. The method 
developed here will be immediately able to profit from these de-
velopments. Accurate prediction of flow separation in the ejector is 
highly dependent on the CFD model accuracy. Wall shear stress in a 
turbulent multiphase flow is very complex and is highly dependent on 
specific CFD model choices, such as wall-mesh resolution and turbulence 
wall models. This makes the prediction of flow separation highly chal-
lenging and should be further investigated in future works. 

5.4.2. GPR modelling 
The GPR modeling approach has proven to be able to accurately 

reproduce CFD-generated ejector performance maps in various config-
urations. However, the GPR modeling method is sensitive to user errors, 
poor data, and outliers. It is important to be critical to the model pre-
diction as this is a meta-model, meaning that it makes predictions based 
on previous model results, which can amplify errors. This work has 
shown that an appropriate choice of data sampling range is important 
for optimization, and previous knowledge should be implemented in the 
model at an early stage. Additionally, that the sampling range and 
number of data points should be chosen with care. Model accuracy is 
highly dependent on the number of data points. It is also key to sample 
such that the mean lies close to the optimal design. In this work, all 
features were sampled with equal density by the LHC method. This is not 
optimal as the different features contain different amounts of informa-
tion about the different KPIs. In further work, alternative data-efficient 
and adaptive sampling strategies should be explored. The number of 
required data points scales with the number of features sampled. This 
study has used 5 features for each use case due to the exponentially 

Fig. 11. Predicted velocity distribution (line plot) along the central suction 
pathline for two geometries with a mixing chamber diameter of Dmix = 0.004 
[m]. Verification CFD data marked with circles. The colored area correspond to 
the predicted velocity +− 1 standard deviation. 

Fig. 12. Predicted pressure distribution (line plot) along the central suction 
pathline for two geometries. Verification CFD data marked with circles. The 
colored area correspond to the predicted pressure +- 1 standard deviation. 
Approximate locations of the different ejector sections is shown on the x-axis. 
Ejector efficiency for each design shown in the figure legend. 
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increasing computational costs per additional feature. The number of 
features and the number of data points should be chosen on a case-by- 
case basis. Future studies are suggested to explore feature space opti-
mization by use of, for example, Principal Component Analysis (PCA). 
This could reduce the number of dimensions and the number of data 
points. 

In this work, an iterative approach to data sampling was used based 
on manual inspection of the data. Further work should investigate the 
effect of automatically identifying high-performance regions and adap-
tively sample those regions. This approach can, using the GPR model, be 
combined with estimated uncertainty to ensure that the optimal data-
point distribution is obtained. While the generation of the 200 point 
database took 5 days of computation time, the method is trivially 
extendable to large computing clusters as the simulations of different 
data points are independent. 

5.4.3. Flow structure analysis 
A challenge that has been highlighted in the literature on response 

surface modeling for ejectors is the sharp gradients that occur in the 
design space [42]. The nonlinearities and discontinuities that occur in 
super-sonic ejectors are challenging to capture with simple regression 
methods. The GPR methodology can account for several of these struc-
tures and non-linearities, however still needs high data density in re-
gions with large gradients for accurate predictions. The use of GPR for 
these predictions can be further applied to predict the 2D or 3D flow 
structures as well. However, as the amount of data scales rapidly with 
additional dimensionality, it is expected to be computationally ineffi-
cient. One of the main challenges with such an approach is the large 
variation in flow structures that occur inside ejectors. These structures 
may furthermore change abruptly with ejector design or operating 
conditions. Examples of such conditions are the large gradients associ-
ated with the thermodynamics near the critical point of the working 
fluid or the on-set of supersonic flow. 

5.5. Open access tool - GPR model and data 

The resulting dataset and GPR model are openly available online. 
The GPR prediction tool is available as Python 3.9 code based on the 
Scikit package [29]. The data is openly available for other researchers, 
and further analysis of and extensions to the databases of ejector data is 
encouraged. The data is organized as Comma Separated Value - files 
with all available geometry parameters, operating conditions, flow 
variables along pathlines, and KPIs. For more details regarding the use of 
the GPR model in Scikit, see Pedregosa et al. [29]. https://github.com/ 
knutringstad/Ejector_GPR 

6. Challenges and further work 

This work has demonstrated the possibility to use machine learning 
on large CFD model databases for component optimization. The primary 
application for this algorithm is for CO2 (R744) two-phase ejector 
design, but may easily be adapted for other working fluids or single- 
phase ejectors. In future work, the algorithm should be optimized to 
minimize user input and be close to fully automated. One such method 
would involve determining several ejector geometry parameters based 
on predetermined requirements. For example, the motive throat diam-
eter can be determined to produce a given mass flow rate at a certain 
pressure. The motive outlet diameter can be chosen such that the motive 
nozzle expansion perfectly matches the mixing chamber pressure, and 
the outlet diameter such that the outlet velocity is below a certain value. 
An optimized set of ejector dimensions or a combination of dimensions, 
could be chosen as features and iteratively and adaptively sampled to 
optimize ejector operation. The current model optimizes for a single 
operating point, however, it is possible to optimize performance at a 
range of operating conditions simultaneously. 

Looking forward, it is possible to consider using this approach to 

cover a combination of operating conditions and ejector geometry. This 
has the potential to optimize ejector performance and design in all 
possible combinations. However, this will require a large dataset. Such a 
dataset could be generated by combining available ejector data from 
experimental and numerical investigations found in the literature. 

The performance maps generated in this work can be implemented 
into system scale dynamic simulations, similarly to the work by Haida 
et al. [11] for a multi-ejector module. The presented methodology can 
for such applications be adapted to the specific ejector geometry and 
operating conditions of the system, which may increase model accuracy. 

Another potential application of the GPR model is to investigate CFD 
model error prediction, both in comparison to experimental data and in 
terms of mass conservation. Lastly, it is noted that this approach is 
generic and can be used for many other applications and components, 
both for optimization and performance mapping. 

The use of GPR analysis in combination with CFD data shows 
promise as a methodology for predicting flow structures in the ejector. 
Future work should further explore alternative methods for analyzing 
the flow data. The prediction of flow separation in the ejector suction 
chamber and diffuser could be an important tool to avoid losses in the 
ejector. This could be predicted by analyzing the flow vorticity inside 
the different ejector sections, or by analyzing the wall shear stress. 
Additional analysis of mixing efficiency and momentum transfer is of 
interest and could be analyzed by looking into the jet boundary layer 
inside the ejector [43]. Another application for the GPR methodology is 
for the prediction of the different sources of entropy production. By 
analyzing the local sources of entropy production, such as viscous 
dissipation and heat transfer, additional insights into the relationships 
between entropy production and ejector design could be gained [39,44] 
and further analyzed using GPR. Though the GPR model struggles with 
capturing the strength and location of super-sonic shock distributions in 
the ejector, further work should be dedicated toward alternative 
methods for predicting shock and their related losses in the ejector. As 
presented in this paper, these flow structure analyses can be introduced 
into the GPR model either as a KPI or as a local flow variable predicted 
along the ejector dimensions. 

A further application of the flow structure prediction tool is for CFD 
computation speed-up. As the general structure of several main flow 
variables can be predicted, the data may be used as initial conditions. 
This may allow CFD calculations to converge faster as the initial state is 
closer to the converged solution. Further work should investigate the 
possibility of including such a method for computational speed up. 

7. Conclusions 

In this work, the GPR machine learning tool for R744 two-phase 
ejector design has been trained using large databases of CFD data. An 
automated algorithm for the generation of CFD databases is presented 
and used to produce databases of high-quality CFD data for ejectors at 
various ejector operating conditions and geometries. The data is used to 
train a GPR model for three cases. First, a performance map of an ejector 
at various pressure and temperature operating conditions is presented. 
The model is able to reproduce CFD data for entrainment ratio with 
+− 0.1 [–]. Secondly, a mapping of ejector performance factors with 
various ejector geometries was generated using the surrogate model 
with similar accuracy within an entrainment ratio of +− 0.07 [–]. A 
gradient descent optimization algorithm was implemented and used to 
optimize ejector operation and ejector design. The final ejector design 
was found to have an ejector efficiency of 43%. Further improvements 
could be gained by increasing the number of data points in regions of 
high efficiency. Last, the GPR model was applied for flow structure 
prediction from the local CFD data using a database with varied mixing 
chamber geometries. The method was able to predict different pressure- 
and velocity structures along the suction flow pathlines within 0.13 
[bar] and 2.2 [m/s]. Based on this prediction tool, the optimal combi-
nation of mixing chamber length and diameter was analyzed. 
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To facilitate and encourage further developments with this design 
method, the data and trained GPR model are made available open- 
access. Several suggestions for further work have been discussed, 
where the emphasis is put on the further development of models and 
methodologies to improve the ejector design process. Improvements to 
flow structure analysis tools, further study into the details of the ma-
chine learning models, and higher accuracy of the underlying CFD 
models are highlighted topics for future development. By integrating a 
complete methodology to encompass prediction of ejector performance 
and flow structures under varied operating conditions and ejector de-
signs, the design of ejectors may in the future be designed quicker, with 
higher accuracy and a better understanding of design trade-offs. 
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