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1  | INTRODUC TION

One of the key topics addressed by community ecology is the ex-
ploration of community composition. To that end, species com-
munities are surveyed at locations along environmental gradients. 
The ecological niche is then reflected in the observed distribution 
of a species. A species exhibits its maximum abundance, or has the 
highest probability of occurrence, at the optimum of the niche. The 
limits of a species distribution correspond to the limits of the niche, 
controlled by a species' tolerance to a range of environmental con-
ditions. Different species vary in their ability to tolerate deviations 

from the optimum, reflecting differences in niche width, and indicat-
ing different places on the specialist– generalist spectrum.

Correspondence analysis (CA) is often used to estimate the op-
tima of species niches with quadratic response curves. It implicitly 
approximates the fit of a quadratic model, which functions best 
under the assumptions of equally spaced optima, sites being well 
within the range of species optima, equal tolerances and equal or 
independent maxima (ter Braak, 1985). The combination of assum-
ing equally spaced optima, equal maxima and equal tolerances gives 
an early niche model called the species packing model (MacArthur 
& Levins, 1967). The relationship of the species packing model to 
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Abstract
1. It is common practice for ecologists to examine species niches in the study of com-

munity composition. The response curve of a species in the fundamental niche is 
usually assumed to be quadratic. The centre of a quadratic curve represents a 
species' optimal environmental conditions, and the width its ability to tolerate de-
viations from the optimum.

2. Most multivariate methods assume species respond linearly to niche axes, or with 
a quadratic curve that is of equal width for all species. However, it is widely under-
stood that some species have the ability to better tolerate deviations from their 
optimal environment (generalists) compared to other (specialist) species. Rare 
species often tolerate a smaller range of environments than more common spe-
cies, corresponding to a narrow niche.

3. We propose a new method, for ordination and fitting Joint Species Distribution 
Models, based on Generalized Linear Mixed- effects Models, which relaxes the 
assumptions of equal tolerances.

4. By explicitly estimating species maxima, and species optima and tolerances per 
ecological gradient, we can better explore how species relate to each other.
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CA has added to its popularity among applied ecologists (Wehrden 
et al., 2009).

Recent advances in the estimation of species niches have fo-
cused on performing ordination with explicit statistical models, such 
as Generalized Linear Latent Variable Models (GLLVMs; Warton 
et al. 2015). With intercepts included for row standardization, GLLVMs 
can fit a quadratic response curve, assuming species have equal tol-
erances (Hui et al., 2015; Jamil & ter Braak, 2013). When predictor 
variables are included, a GLLVM with quadratic response model par-
titions species distributions in observed (fixed effects) and latent or 
unobserved (random effects), similar to the partitioning of fixed and 
random effects in mixed- effects models when predictors are included.

The GLLVM framework is well known for its capability to fit 
Joint Species Distribution Models (JSDMs; Ovaskainen et al., 2017; 
Pollock et al., 2014; Tobler et al., 2019; Zurell et al., 2020). In the 
context of JSDMs, GLLVMs assume species abundances are cor-
related due to similarity in response to ecological gradients, mod-
elled with predictor variables and latent variables. Latent variables 
can be understood as combinations of missing predictors, so that 
GLLVMs allow us to parsimoniously model species distributions. 
They are equivalent to ordination axes, representing complex eco-
logical gradients (Halvorsen, 2012). Recently, the use of GLLVMs 
to perform model- based ordination has increased in popularity 
(Björk et al., 2018; Damgaard et al., 2020; Inoue et al., 2017; Lacoste 
et al., 2019; Paul, 2020). However, existing GLLVMs assume that 
species respond to latent variables linearly, just as all classical ordi-
nation methods do (Jamil & ter Braak, 2013). In contrast, it is widely 
understood that species have unequal tolerances, so that the as-
sumption of linear responses, or at best quadratic responses with 
equal tolerances, is unlikely to hold in practice.

In this paper, our goal was to overcome the assumptions of 
equal tolerances, by formulating a GLLVM where species are al-
lowed to respond to the latent variables in a quadratic fashion. 
To our knowledge, there has been no attempt to implement such 
a GLLVM until now. The quadratic term allows to fully estimate 
species niches, so that species optima and tolerances per la-
tent variable and species maxima can all be estimated explicitly. 
Explicitly estimating the combination of these three parameters 
gives unique insight into reasons for species rarity, whether it 
is due to low abundance or probability of occurrence (maxima), 
a high degree of habitat specialization (tolerance) or due to un-
suitable observed environmental conditions (optima). Due to the 
model- based nature of the proposed ordination method, it is pos-
sible to calculate confidence intervals for each set of parameters, 
providing unparalleled benefits for inference when using ordina-
tion. Additionally, assuming a quadratic response model allows 
to implement the concept of gradient length, as in Detrended 
Correspondence Analysis (DCA; Hill and Gauch, 1980), which is a 
measure of beta diversity commonly used by ecologists.

In contrast to classical ordination methods, GLLVMs model the 
latent variables as unobserved, treating them as random rather 
than fixed (Walker & Jackson, 2011), which consequently have to 
be integrated over in the likelihood. Here, we develop a variational 

approximation (VA) implementation after Hui et al. (2017) and Niku 
et al. (2019), to perform calculations quickly and efficiently. In ad-
dition to presenting the GLLVM with quadratic response model, 
we perform simulations to evaluate the accuracy of the VA im-
plementation, and the capability of the GLLVM with quadratic re-
sponse model to retrieve the true species- specific parameters and 
latent variables. We use two real- world datasets to demonstrate 
the use and interpretation of the proposed GLLVM with quadratic 
responses: (a) a small dataset of hunting spiders in a Dutch dune 
ecosystem (van der Aart & Smeek- Enserink, 1974), and (b) a larger 
dataset of Swiss alpine plant species on a strong elevation gradient 
(D'Amen et al., 2018).

2  | MODEL FORMUL ATION

The ecological niche for each species j = 1…p is described here by a 
quadratic function involving three parameters: the optimum ujq for 
latent variable q = 1…d stored in the vector uj = {uj1…ujq}, the toler-
ance tjq for latent variable q stored in the vector tj = {tj1…tjq} and a 
species' overall maximum cj. Optima uj are the locations on the eco-
logical gradients where a species exhibits its highest abundance or 
probability of occurrence (the maximum cj). The tolerances tj are a 
measure of the width or breadth of the niche, indicating if a species 
is a generalist or specialist on each ecological gradient.

Consider an n × p matrix of observations, where yij denotes the 
response of species j at sites i = 1…n. Then, we assume that condi-
tional on a vector zi ∼ �(0, I) of d latent variables where d ≪ p, the 
responses yij at site i are independent observations from a distribu-
tion whose mean, denoted here as E(yij|z i), is modelled as:

where g{·} is a known link function (e.g. the log link when responses are 
assumed to be Poisson, negative- binomial or gamma distributed, the 
probit link when the responses are assumed to be Bernoulli or ordinal 
distributed and the identity link for responses that are assumed to be 
Gaussian distributed).

For a closer comparison to the GLLVM with linear response 
model (Hui et al., 2015), we formulate the GLLVM with quadratic 
species response curves in terms of matrix notation:

with a species- specific intercept β0j that accounts for species mean 
abundances, and a vector of coefficients per species for the linear term 
γ j. We can see that a third term is added here to the existing structure 
of a GLLVM with linear species responses, which models tolerances 
per species and latent variable. Specifically, we introduce a diagonal 
matrix Dj of positive- only quadratic coefficients, with each diagonal 
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element being the quadratic effect for latent variable q and species 
j. The sign constraint ensures that species exhibit concave quadratic 
curves only. The proposed model could instead be used to estimate 
species minima rather than maxima, though we did not do that here as 
clear ecological foundations for such a model are lacking.

Let Djqq denote the diagonal elements of Dj for latent variable 
q. Then we are able to derive the following connections between 
the parameters in Equations (1) and (2): �0j = cj −

1

2

∑
d
q= 1

u2
jq
∕t2

jq
,   

� jq = ujq∕t
2
jq
, and Djqq = 1∕

(
2t2

jq

)
. Similarly, for the formulation in 

Equation (2), the parameters in Equation (1) can be retrieved: 
cj = �0j +

1

4

∑
d
q= 1

�2
jq
∕Djqq, ujq = � jq∕

(
2Djqq

)
, and tjq = 1∕

√
2Djqq

.
Additionally, row intercepts or predictors can be included as in 

Hui et al. (2017), or species traits as in Niku et al. (2019), though 
we have chosen to omit those terms here and focus on the case of 
unconstrained ordination.

Four special cases of the GLLVM with quadratic response model, 
as formulated in Equation (2), are worth discussing: (a) Dj = D,  
that is, common tolerances for species, (b) Dj = D11Id where Id is 
a d × d identity matrix, that is, equal tolerances for species and 
latent variables, (c) when Dj = 0 for a subset of the p species and 
(d) when Dj = 0 for all p species. The first case assumes toler-
ances to be the same across species, but not latent variables. This 
species- common tolerances model might prove useful in practice, 
as it requires fewer observations per species than when estimating 
quadratic coefficients for all species, but still explicitly includes 
quadratic species responses in contrast to the simpler GLLVM 
with linear responses. In the second case, the quadratic term is 
not species or latent variable specific, so that it is equivalent to 
the GLLVM with linear species responses and random row inter-
cepts as presented in Hui et al. (2015), which assumes tolerances 
to be the same for all species and latent variables. In the third case, 
some species respond to the latent variable linearly, while others 
exhibit quadratic responses. The fourth case is the most basic 
GLLVM with linear responses, which is the current standard in 
many software packages for JSDMs and model- based ordination, 
for example, boral (Hui, 2016), HMSC- R (Tikhonov et al., 2021) and 
gllvm (Niku et al., 2020).

3  | MODEL INTERPRETATION

In this section, we derive and discuss various tools that are com-
monly used in the application of JSDMs and ordination, such as cal-
culating residual correlations, partitioning or decomposing residual 
variance, calculating gradient length and visualizing the ordination, 
and demonstrate how they can be adapted to the proposed GLLVM 
with quadratic response model.

3.1 | Residual covariance matrix

One aspect of GLLVMs is known for is modelling species residual 
correlations (Blanchet et al., 2020; Zurell et al., 2018), calculated 

from the residual covariance matrix. To facilitate calculation of the 
residual covariance matrix, we can reparameterize all GLLVMs as a 
multivariate mixed- effects model with a residual term:

Here, ϵij accounts for any residual information that is not accounted for 
by fixed effects in the model, such as predictors or intercepts (Warton 
et al., 2015). Assuming the latent variables are independent for all sites, 
the elements of the residual covariance matrix are given by:

For a length p vector ϵ i, existing JSDM implementations (e.g. Pichler 
& Hartig, 2020; Pollock et al., 2014) assume �i ∼ �(0,�), that is, the 
residual term follows a multivariate normal distribution. For the 
GLLVM with linear species responses, it is straightforward to show 
that with 𝜖ij = z⊤

i
� j, then �i ∼ �

(
0,ΓΓ⊤

)
, where Γ is a p × d matrix 

of species linear coefficients for the latent variables γ j. In essence, 
GLLVMs preform a low rank approximation to the covariance matrix 
of a residual term. The rank of this residual covariance matrix is equal 
to the number of estimated latent variables d in the model for the 
GLLVM with linear species responses.

Turning to the GLLVM with quadratic response model, where 
𝜖ij = z⊤

i
� j − z⊤

i
Djzi, the elements of the residual covariance matrix are:

for which a proof is given in Appendix S1. This can be rewritten in 
terms of the species optima uj and tolerances tj:

Equations (4) and (5) additionally serve to demonstrate how 
to partition and decompose the residual variance of the GLLVM 
with quadratic response model, for example, per latent variable, 
for the linear and quadratic term separately, or both. Variance 
partitioning is commonly used in the application of ordination 
methods, for example, to determine fit (Øland, 1999), or to ex-
plore causes of residual variance (Borcard et al., 1992; Øland & 
Eilertsen, 1994). Predictor variables can be included in the model 
to account for the residual variance otherwise accounted for by 
the latent variables. The residual variance can be used to iden-
tify indicator species, that is, those species that best represent an 
ecological gradient, or to calculate a measure of R2 (Nakagawa & 
Schielzeth, 2013).

Under the assumption of latent variables with zero mean, the lin-
ear and quadratic terms in the model are independent. As such, the 
rank of the residual covariance matrix is double that of a GLLVM with 
linear species responses and the same number of latent variables, 
2d. The additional quadratic term thus allows us to account for more 
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residual correlations between species, with fewer latent variables. 
This corresponds to the ecological notion that species often respond 
to few major complex ecological gradients (Halvorsen, 2012). From 
this, we see that when the number of latent variables in a GLLVM 
with quadratic response model exceeds ½p, there are more param-
eters included than in a JSDM with an unstructured residual covari-
ance matrix. However, this is not an issue here, since for ordination 
purposes we are only interested in cases where there are much 
fewer latent variables d than species p.

3.2 | Gradient length

The length of an ecological gradient is of great interest to ecolo-
gists in the use of ordination, because it is a measure of beta diver-
sity (Oksanen & Tonteri, 1995). Longer gradients indicate higher 
diversity, as spacing between sites in latent space is potentially 
larger. In the past, it has been emphasized that short gradients 
are better analysed using linear ordination methods, and longer 
with unimodal methods (ter Braak & Prentice, 1988). However, the 
GLLVM with quadratic response model allows species to exhibit 
both linear and unimodal responses, and so it is appropriate for 
both, removing the need to switch between ordination methods 
as a consequence of (the lack of) unimodal species responses. 
Regardless, gradient length could be used to decide between re-
sponse models instead of, for example, information criteria. To de-
termine gradient length from the proposed GLLVM with quadratic 
response model, we rescale the latent variables z i with a diagonal 
covariance matrix G of size d × d, to calculate ecological gradi-
ents z̃i. The measure of gradient length calculated here can be in-
terpreted in the same manner as the gradient length provided by 
DCA (Hill & Gauch, 1980).

First, for a species- common tolerances model, we note that the 
quadratic term in Equation (2), that is, z⊤

i
Dzi, can instead be written as ∑

d
q= 1

z2
iq
Dqq, so that z̃iq = ziq

√
Dqq, and z̃i ∼ �(0,G), where G = 2D. Then, 

the length per ecological gradient is approximately 4G
1

2

qq
 (i.e. the ap-

proximate width of a normal distribution).
Second, for the species- specific tolerances model, we note that 

one of the uses of gradient length in the past has been to rescale the 
latent variables so that an ordination diagram can be understood in 
terms of compositional turnover (Hill & Gauch, 1980). This requires 
the mean species tolerances to be one (as is the case for the species- 
common tolerances model, under the rescaling suggested above), so 
that the covariance matrix of the ecological gradient in the species- 
specific tolerances model is Gqq =

1

2p

∑ p

j= 1
Djqq and the matrix of 

quadratic coefficients Dj is scaled by the inverse of the covariance 
matrix of the ecological gradient, G−1. However, we choose to use 
the median of the species tolerances tjq instead, as it more accurately 
represents gradient length with both linear and quadratic responses 
of species in the model. In general, the proposed quadratic model 
allows further exploration of measures of gradient length by, for 
example, using the mean tolerance of species with clear quadratic 
responses, rather than the median of all tolerances.

3.3 | Ordination diagram

Usually, results from an ordination are inspected visually, by jointly 
plotting site and species scores. For a GLLVM with linear responses, 
this can be done by constructing a biplot (Gabriel, 1971). Biplots per-
form a linear approximation of a matrix, and thus are expected to 
perform poorly when species exhibit quadratic responses: biplots 
will create an arch when the residual variance of the linear term is 
smaller than the residual variance of the quadratic term. When the 
linear and quadratic terms are independent, as is the case here (see 
above), a biplot can visualize them separately.

Instead, we propose that species optima and tolerances can 
be plotted directly, so that species niches are visualized in a two- 
dimensional latent (ecological) space from a top- down perspective. 
However, since species are allowed to exhibit linear responses in the 
quadratic response model, optima and tolerances can be very large. 
If plotting both directly, this will lead to species with large optima and 
wide niches dominating the plot. The first issue can be prevented 
by only visualizing species optima that are close to, or within, the 
range of the estimated site scores, and by using arrows to indicate 
the location of the remaining optima (similarly as in Gabriel, 1971). 
The widths of the niches can be represented as ellipses using the 
precision of estimated species tolerances, to provide an impression 
of species co- occurrence patterns. The precision, calculated as the 
inverse of the squared species tolerances 1∕t2

jq
, can be interpreted 

as ‘narrowness’ of the ecological niche (i.e. a small precision corre-
sponds to a wide niche). Then, a larger ellipse corresponds to a larger 
residual variance of the quadratic term of a latent variable, drawing 
emphasis to potential indicator species.

Additionally, information on sites, such as the predicted locations 
and prediction regions, can be added (Hui et al., 2017). Information 
for the sites can be used to infer the distance of sites to the species 
optima (i.e. the suitability of sites for species), or to the edges of spe-
cies niches (see the hunting spiders example below).

Finally, based on the discussion in the two subsections above, 
there are two ways of scaling the ordination diagram: (a) by the re-
sidual variance per latent variable, or (b) by using the mean or median 
tolerance. In the first scaling, the diagram is scaled to draw atten-
tion to the latent variable that explains most variance in the model. 
However, the second scaling has a more ecological intuitive interpre-
tation; if the tolerances are assumed to be common for species, the 
second scaling produces an ordination diagram in units of compo-
sitional turnover (Gauch, 1982). When the linear term in the model 
does not explain a larger proportion of the total residual variance per 
latent variable relative to the quadratic term, these scalings produce 
similar results.

4  | MODEL ESTIMATION

We propose to use VAs (Hui et al., 2017) for estimation and in-
ference for the GLLVM with quadratic response model. Broadly 
speaking, VA is a general technique used to provide a closed- form 
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approximation to the marginal log- likelihood of a model with random 
effects or latent variables, when an analytical solution is not avail-
able. Computationally, VA can be orders of magnitude faster than 
MCMC, numerical integration or even the Laplace approximation 
(Niku et al., 2019), and without loss of accuracy (Hui et al., 2017). 
However, the calculation of the VA log- likelihood needs to be de-
rived on a case- by- case basis. In contrast, the Laplace approximation 
can be applied automatically in many cases (Kristensen et al., 2016), 
although it is not possible to apply that here for the GLLVM with 
quadratic response model (K. Kristensen, pers. comm., 8 March 
2019).

The marginal log- likelihood of a GLLVM is given by:

where f(yij|zi, Θ) is the distribution of the species responses given the 
latent variables. As mentioned previously, and as per Hui et al. (2015), 
we assume the distribution of the latent variables h(zi) to be multivar-
iate standard normal, that is, h(zi) = �(0, I). The vector Θ includes all 
parameters in the model Θ =

{
𝛽01…𝛽0j, 𝛾11…𝛾 jq,D111…Djqq

}⊤.
In VA, we construct a lower bound to Equation (6), by assuming 

that the posterior distribution of the latent variables can be approx-
imated by a closed- form distribution, for example, a multivariate 
normal distribution (this is also referred to as the variational distribu-
tion). We then treat this lower bound as our new objective function, 
on which we base estimation and inference of the model parameters, 
as well as predictions of the latent variables. More details on the mo-
tivation and background of variational approximations are available 
in the study by Ormerod and Wand (2010, 2012). Hui et al. (2017) 
showed that, for GLLVMs with linear responses, the optimal varia-
tional distribution is multivariate normal zi ∼ �

(
ai,Ai

)
, with mean ai  

and covariance matrix Ai, so we will adopt this choice here as well. 
While we do not anticipate a multivariate normal distribution to be 
the optimal variational distribution for a GLLVM with quadratic re-
sponse model, we nevertheless choose to follow the same assump-
tion to facilitate computational efficiency and a closed form for the 
resulting VA log- likelihood. The means of the variational distribu-
tion ai can be understood as predicted locations of sites, that is, site 
scores in an ordination. The covariance matrices of the variational 
distributions Ai provide the necessary information to construct pre-
diction regions.

In Appendix S2 we provide derivations for the log- likelihood of 
common response types in community ecology, such as count data 
(Poisson, a Poisson– Gamma derivation of the negative- binomial 
distribution for overdispersed counts and both assuming a log- 
link function), binary data and ordinal data (both with probit- link 
function), as well as positive continuous data (gamma, with log- 
link function) and continuous data (Gaussian, with an identity- link 
function). Additionally, some information on calculating approx-
imate confidence intervals for (functions of) the parameters is 
included in Appendix S2. Recommendations on stabilizing the 

fitting of GLLVMs with a quadratic response model are included 
in Appendix S3.

5  | SIMUL ATION STUDY

To assess how well the proposed model retrieves the true latent vari-
ables z i, optima u j and tolerances t j, we performed simulations for 
six response distributions; (1) Gaussian, (2) gamma, (3) Poisson, (4) 
negative- binomial, (5) Bernoulli and (6) ordinal. The R code used for 
the simulations is provided in Appendix S4. For each of the distribu-
tions, we simulated 1,000 datasets with different numbers of sites 
and species. A consequence of restricting the quadratic response 
model to concave shapes only is that it often simulates a large num-
ber of negative values (on the link scale, generally more so than the 
GLLVM with linear species responses), providing a challenge in test-
ing its accuracy, especially for small datasets.

First, to study the accuracy of the VA approximation, we sim-
ulated datasets of p = 20– 100 species in increments of 10, while 
keeping the number of sites constant at n = 100. Hui et al. (2017) 
argued that the VA log- likelihood is expected to converge to the true 
likelihood as p → ∞, as with many species the posterior for the site 
scores is likely to be approximately normal due to the central limit 
theory. This will allow us to study the finite sample properties of the 
VA approximation for the proposed model. Second, to explore the 
sample size required to accurately estimate the species- specific pa-
rameters, for example, species optima uj and tolerances tj, we simu-
lated datasets of n = 20– 100 sites in increments of 10, while keeping 
the number of species constant at p = 100.

As a true model, we considered a GLLVM with quadratic re-
sponse model and d = 2 latent variables, which was constructed as 
follows. The latent variables were simulated following a multivariate 
standard normal distribution, that is, zi ∼ �(0, I). Second, the species 
maxima cj were simulated as Uniform(2,6), as this was approximately 
the range of species maxima in the best fitting model for the hunt-
ing spider dataset below. Next, the true optima ujq were simulated 
within the range of the realized latent variables (approximately be-
tween −2 and 2) following a uniform distribution. Lastly, species tol-
erances were simulated as Uniform(0.2,1), corresponding to species 
niches ranging from narrow to the full width of the latent variable. 
Resulting species- specific intercepts β0j from Equation (2) approxi-
mately ranged between −15 and 20, but tended to be more positive 
than negative, with a median of 2.6. For the Gaussian, negative- 
binomial and gamma distributions, the dispersion parameter for all 
species was set equal to 1. For the ordinal distribution, we assumed 
six classes with the true cut- offs being 0, 1, 2, 3, 4, 5, meaning that 
species were most often absent (category 0), while they were rarely 
very abundant (category 5). When fitting a model to each simulated 
dataset, we assumed the number of latent variables was known prior 
to fitting (i.e. we did not select the number of latent variables).

We measured performance of the GLLVM with quadratic re-
sponse model by the prediction of the latent variables zi and the 
species optima uj. The species optima are a function of both the 

(6)ℒ(Θ) =

n�
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⎧
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linear and quadratic coefficients and should provide a good over-
all measure of performance for retrieving the true species- specific 
parameters, in addition to being of specific interest to ecologists. 
We measured discrepancy to the true parameter values using the 
Procrustes error (Peres- Neto & Jackson, 2001). For this, we ex-
cluded the optimum of the first species on the second latent variable 
as this was fixed to zero for reasons of parameter identifiability (Hui 
et al., 2015). Since the GLLVM with quadratic response model allows 
species to exhibit linear responses, which have optima tending to in-
finity, we also chose to remove all optima larger than 10 and smaller 
than −10, that is, for those species that clearly lacked a sufficiently 
strong quadratic signal in the simulated datasets. Including these 
optima would result in a biased view of the accuracy of the optima 
that can be estimated by the model. For clarity and transparency, we 
additionally present the number of optima removed for each of the 
datasets, to further provide an impression of the data requirements 
of the proposed model.

For all of the models fitted to Gaussian and gamma response 
datasets, typically none or only a few optima were excluded, 
meaning that the median number excluded was zero. In general, 

and not surprisingly, more optima were excluded for models fitted 
to datasets where n/p was small and for discrete distributions. For 
example, when n = 20 sites and p = 100 species, so that the true 
model included a total 200 species optima, the median number of 
optima excluded for datasets with Poisson responses was 4 (2– 5, 
first and third quartiles), for datasets with negative- binomial re-
sponses this was 7 (5– 10), for datasets with Bernoulli responses 
this was 44 (40– 47) and for datasets with ordinal responses this 
was 20 (17– 24). In contrast, for datasets where n/p was large, con-
siderably fewer optima were excluded across all response types. 
For example, when n = 100 and p = 100, and for Poisson responses, 
the median of excluded optima was 1 (1– 3), for negative- binomial 
response datasets this was 6 (5– 7), while for Bernoulli response 
datasets the median number of optima excluded was with a me-
dian of 29 (27– 32) still large and for ordinal response datasets this 
was 13 (11– 15).

The symmetric Procrustes error per distribution and for the 
different sized datasets is presented in Figure 1. As expected, the 
GLLVM with quadratic responses was more accurate for datasets 
with larger p and larger n. For all distributions, the latent variables 

F I G U R E  1   Simulation results for the 1,000 GLLVMs fitted to each dataset and response distribution, with the symmetric Procrustes 
error calculated based on optima that could be estimated (optima outside the range (−10,10) were excluded). The left column shows 
simulations where the number of sites was kept constant at n = 100, and analogous for the right column with p = 100. The figure includes 
the median Procrustes Error for species optima (black) and latent variables (red), with the first and third quartiles represented as dotted 
(optima) and dashed (latent variables) lines
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were often better retrieved than the species optima. This is not 
surprising, as the species optima are a function of two parame-
ters, particularly the inverse of the quadratic coefficients, so that 
a small change in the quadratic coefficients can result in a large 
change in the species optima. When fitted to Gaussian or gamma 
response datasets, the model performed best. The accuracy of the 
estimated species optima and latent variables was only slightly 
lower for datasets with Poisson responses, and was also similar 
for datasets with negative- binomial responses and a large num-
ber of sites. If the number of sites is small, the variation in accu-
racy of the latent variable and of species optima was considerably 
larger for datasets with negative- binomial responses. Since the 
quadratic response model can, even without negative- binomial 
distribution, simulate overdispersed counts compared to the lin-
ear response model, these results were not surprising. In many 
cases, negative- binomial distributed datasets contained less infor-
mation than datasets with Poisson- distributed responses, which 
makes accurate estimation increasingly difficult. The model was 
not accurate for Bernoulli or ordinal response datasets with small 
p. Fortunately, data of ecological communities often contain many 
species. For small n, models fitted to datasets with Bernoulli re-
sponses were not accurate, whereas models fit to datasets with 
ordinal responses showed slightly better performance. This too 
was not surprising, as datasets with ordinal responses include 
more information compared to datasets with Bernoulli responses. 
When the number of sites and species increased above 40, the 
performance of the GLLVM with quadratic responses in both 
cases improved considerably. Regardless, especially for Bernoulli 
responses, the simulated datasets often included too little infor-
mation for many species to accurately estimate the parameters.

6  | APPLIC ATIONS TO RE AL DATA

We applied the proposed GLLVM with quadratic response model to 
two different datasets: (a) the well- known hunting spider dataset 
collected by van der Aart and Smeek- Enserink (1974) in Dutch dunes, 
available in the mvabund R package (Wang et al., 2012), and (b) a 
dataset of plants in the Swiss Alps (available in the dryad database; 
D'Amen et al., 2017).

6.1 | Hunting spiders

For the hunting spider dataset, van der Aart and Smeek- Enserink 
(1974) used pitfall traps to collect spiders over a 60- week period, 
resulting in a dataset of counts for each of the n = 28 sites and p = 12 
species. It has been used in the testing of ordination methods before 
(e.g. ter Braak, 1985, 1986; Hui et al., 2015; Yee, 2004), providing 
the possibility for comparison here. We used the Akaike informa-
tion criterion corrected for small sample sizes (AICc; Burnham and 
Anderson, 2002) to find the model that best fitted the hunting spi-
der dataset. We fitted GLLVMs with d = 1– 3 latent variables, with 

linear and quadratic responses, including equal, common or unequal 
tolerances, and fixed row intercepts, all with Poisson or negative- 
binomial distributions (see Appendix S5 for the details). After se-
lecting the model structure and number of latent variables, we 
continued to explore different sets of initial values to find the model 
that maximizes the VA log- likelihood. The best model included d = 3 
latent variables and unequal tolerances, though a model with un-
equal tolerances d = 2 latent variables and fixed row intercepts was a 
close second contender (difference of 2.2 in AICc; see Appendix S5). 
The results for the two latent variables of the final model fit, which 
explained most residual variation, are presented in Figure 2.

We used the residual variance to determine which latent vari-
ables explained most variation, that is, were most important to con-
sider for inference. For the GLLVM with quadratic response model, 
the first and third latent variables explained most variation in the 
model; 31% and 58%, respectively, so we will discuss the results 
of these below. Overall, the GLLVM with quadratic responses ex-
plained two and a half times more residual variation than a GLLVM 
with linear responses and the same number of latent variables. The 
lengths of the ecological gradients were 5.48 (3.96– 7.00, 95% confi-
dence interval), 3.68 (2.65– 4.71) and 4.77 (3.10– 6.44).

ter Braak (1985) interpreted the first ordination axis of DCA as 
‘a composite gradient of soil moisture and openness of habitat’, as 
determined by regressing the ordination axis on variables measuring 
the amount of bare sand, soil moisture and the percentage cover 
by mosses at sites. Yee (2004) concluded that reflection of the soil 
surface had the strongest relationship with the first latent variable 
estimated using a Vector Generalized Additive Model. Similarly, the 
first latent variable in the GLLVM here has a strong relation with 
reflection of the surface (correlation coefficient of 0.83), the per-
centage cover of moss (0.82) and the cover of fallen leaves (−0.75). 
The second latent variable was related to the cover provided by the 
herb layer (0.70), and the third latent variable with soil water content 
(0.77).

ter Braak (1985) and Yee (2004) both visualized quadratic curves 
of the first latent variable using variations of Poisson regression and 
Generalized Additive Models respectively. There are clear similari-
ties between the height and the location of species response curves 
for the first latent variable, and the corresponding response curves 
described by ter Braak (1985) and Yee (2004). Similarly, Figure 2 
here shows a similar arrangement of species as Figure 1 in ter Braak 
(1986).

ter Braak (1985) concluded that most species exhibited uni-
modal curves on the first latent variable, though the benefit of a 
quadratic response model was least to the species Alopecosa fab-
rilis, Arctosa perita and Pardosa lugubris. Similarly, the optimum of 
Pardosa lugubris could not be estimated by VGAM. Here, as in Yee 
(2004), Pardosa lugubris and Trochosa terricola were the most abun-
dant species. On the first latent variable, only the optima of Pardosa 
lugubris and Pardosa monticola were located outside the range of 
the latent variable. On the third latent variable, only the optima of 
Arctosa lutetiana were unobserved. Similar to the conclusion by ter 
Braak (1985), the confidence intervals for the quadratic coefficients 
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of Pardosa lugubris and Arctosa perita included zero on all latent vari-
ables, in addition to Arctosa lutetiana. From all species on all latent 
variables, Arctosa lutetiana had the smallest tolerance (0.33, on the 
first latent variable).

6.2 | Swiss alpine plants

In the second application, n = 912 plots of 4 m2 each were 
used to record binary data on p = 175 plant species. More 

species were recorded, but in the original study of this data-
set species with less than 22 presences were excluded (D'Amen 
et al., 2018). Though fitting the model with these species would 
not have presented any computational issues, their estimates 
could not necessarily be expected to be accurate. Plots were 
located on a strong elevation gradient ranging from 375 m to 
3,210 m a.s.l. (D'Amen et al., 2018). To improve computation 
time, we excluded 72 plots without any presences, and 103 
plots with less than six presences, so that the final dataset in-
cluded n = 737 plots.

F I G U R E  2   Ordination plot for the first 
two latent variables of the final GLLVM fit 
to the hunting spider dataset, scaled by 
the residual variances. Species optima are 
shown as letters, indicating the following 
species: a = Alopecosa accentuata, b = 
Alopecosa cuneata, c = Alopecosa fabrilis, 
d = Arctosa lutetiana, e = Arctosa perita,   
f = Alonia albimana, g = Pardosa lugubris, 
h = Pardosa monticola, i = Pardosa 
nigriceps, j = Pardosa pullata, k = Trochosa 
terricola, l = Zora spinimana. Ellipses 
represent the precision of the ecological 
niche, which can be interpreted as 
‘narrowness’, so that large or wide 
ellipses represent species with narrow 
response curves. Species quadratic curves 
are included as side panels, with 95% 
confidence interval bands. Site locations 
are represented by grey numbers, though 
prediction regions have not been included 
in favour of readability
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F I G U R E  4   Species tolerances and approximate 95% confidence intervals derived using the Delta method, of the first latent variable from 
the model with unequal tolerances, fitted to the Swiss plants dataset. When tolerances cross 1 (indicated with a red dashed line), species 
have partially unobserved niches (regardless of the location of their optima). The panels show the first and second half of species in the 
dataset, respectively, ordered by the size of their tolerances. Species of which the confidence interval for the quadratic coefficients crosses 
0 are shown in grey. Species at the top of the plot, seemingly without tolerances, exhibit near linear responses, so that their tolerances are 
very large. Grey dashed lines are added at increments of 0.5 as visual aid
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Instead of selecting the optimal number of latent variables, we 
directly fitted the proposed GLLVM with quadratic response model 
to the data, using a Bernoulli distribution and with d = 2 latent vari-
ables, for the purpose of constructing an ordination diagram. We 
tested different sets of initial values and retained the model that had 
the highest log- likelihood.

The first latent variable explained 75% of the overall residual 
variation in the model, of which 50% was accounted for by the linear 
term. The length of the first ecological gradient was 4.79 (3.94– 5.64, 
95% confidence interval), and the length of the second ecological 
gradient 3.66 (2.86– 4.45). Since the first latent variable explained 
considerably more residual variation than the second, we here focus 
our inference on that alone for illustration purposes. The species re-
sponse curves for the first latent variable are visualized in Figure 3a– 
c. To improve readability, species are numbered by their location 
in the dataset, for which the corresponding names are included in 
Figure 4, which also shows species tolerances for the first latent 
variable, with approximate 95% confidence intervals.

The original dataset additionally included multiple predictor vari-
ables, measuring the growing degree- days above zero, a moisture 
index, total solar radiation over the year, slope, topography and ele-
vation (van der Veen et al., 2021). In an attempt to identify the eco-
logical gradient represented by the first latent variable, we post hoc 
calculated correlation coefficients between the predictors and the 
first latent variable. From all predictor variables, elevation was most 
correlated with the first latent variable (a correlation coefficient of 
0.93), though this was collinear with growing degree- days above zero 
and the moisture index. We additionally fitted two unconstrained 
GLLVMs with linear species responses and with two latent variables, 
one of which included a random row intercept, and again calculated 
a correlation coefficient between the latent variables and elevation. 
Jamil and ter Braak (2013) showed that a mixed- effects model with 
random row intercept can account for the squared term of the latent 
variable. Here, the random row intercept was indeed related to the 
square of the first latent variable (correlation coefficient of −0.82). 
The GLLVM with linear species responses but without a row inter-
cept estimated the ecological gradient less successfully (highest cor-
relation coefficient with the elevation predictor of −0.71), than when 
a row intercept was included (highest correlation coefficient of 0.92). 
To test more explicitly for the effect of elevation, we additionally fit-
ted a GLLVM with quadratic latent responses and elevation included 
as a predictor (both the linear and quadratic term, but without sign 
constraints, though most species exhibited concave curves), and 
with two latent variables. Including the predictor variable reduced 
the residual variance to 36% of that in the unconstrained model. The 
results presented here are from the unconstrained model, though 
the effect of elevation is presented in Appendix S5, Figure S1.

Of the p = 175 species included in the model, 36 had optima that 
were unobserved, of which 20 were larger than 10 or smaller than −10. 
The environmental tolerances from species of which the confidence 
interval for the quadratic coefficients on the first latent variable did 
not include zero ranged from 0.45 (Veratrum album) to 1.72 (Silene 
vulgaris) with a median tolerance of 0.73 and a standard deviation of 

0.22. We examined groups of plants at the extremes of the gradient, 
that is, plants that had optima of minus two or smaller, and plants 
with optima of two or larger, to further investigate whether the es-
timated latent variable from the GLLVM with quadratic responses 
represented an elevation gradient. This approach allowed us to dis-
tinguish two groups of plants, the first indicative of lowlands (see 
Figure 3). In contrast, plant species included on the opposite side of 
the latent variable were clearly indicative of alpine conditions. Here, 
we focus our inference on the alpine plants, as those are likely to be 
most affected by climate change (Walther et al., 2005). All species 
with optima larger than 2 had confidence intervals for the quadratic 
coefficients that included zero. Three alpine species had optima lo-
cated between 1.5 and 2: Androsace chamaejasme (1.85, −0.10 to 
3.81), Polygonum viviparum (1.59, 0.77– 2.40) and Salix herbacea (1.88, 
−0.04 to 3.80). Of these three species, Salix herbacea had the lowest 
maximum: −0.34. All three species had a wide response curve on the 
first latent variable, with tolerances near 1.

Figure 4 clearly shows some species that have smaller tolerances, 
thus more specialized species are present in the dataset. Six spe-
cies had a tolerance of 0.50 or smaller: Aposeris foetida, Carex flacca, 
Nardus stricta, Pedicularis foliosa, Potentilla aurea and Veratrum album.

7  | DISCUSSION

In this article, we extended the GLLVM approach of Hui et al. (2015), 
to estimate the niches of species with quadratic responses to un-
observed ecological gradients. We fitted and performed inference 
for the GLLVM with quadratic response model by extending the VA 
approach from Hui et al. (2017). The relation between latent variable 
models (i.e. unobserved ecological gradients) and ecological niches 
has been well- described for classical ordination methods (ter Braak 
& Prentice, 1988; Jongman et al., 1995), yet a method (either classi-
cal or model- based) to perform unconstrained (residual) ordination 
without limiting assumptions for species tolerances has not been 
available to date.

The similarity in responses of species to unobserved environ-
ments can be assessed by examining optima and tolerances, for 
example, visually using an ordination diagrams, to identify overlap 
in species distributions, or alternatively by examining a matrix of re-
sidual correlations between species. Determining if species exhibit 
fully quadratic curves in response to ecological gradients, whether 
tolerances are the same for all species per ecological gradient, or if 
the equal tolerances assumption is suited for a dataset, comes down 
to a problem of model selection for GLLVMs. To that end, future 
research can further investigate approaches such as regularization 
(e.g. possibly extending the approach of Hui et al., 2018), hypothesis 
testing or the use of confidence intervals of the quadratic coeffi-
cients. Similar to DCA, the GLLVM with quadratic response model 
provides estimates of gradient length. Here, gradient length is cal-
culated from the quadratic coefficients, which are estimated via a 
variational approximation approach to maximizing the marginal like-
lihood function.
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For datasets with 50 species and 50 sites or more, the GLLVM 
with separate quadratic responses for all species accurately re-
trieved ecological gradients and species- specific parameters, though 
for continuous responses or counts it was possible to accurately es-
timate parameters with fewer species or sites. In general, when fit-
ting the GLLVM with quadratic response model to binary or ordinal 
responses, more information is required than for other data types 
(similarly as reported in Yee, 2004). However, this is conditional on 
the information content in a dataset, and the number of required 
sites and species here should only be considered as a rough rule of 
thumb. For observed environmental variables, ter Braak and Looman 
(1986) reported from simulations on estimates of species optima by 
weighted averaging that, ‘with 10– 13 presences, the variances of 
species optima are appreciable’. In our simulations, even with the 
number of sites fixed at n = 100, 24% of species had 13 or fewer 
presences, indicating difficulty in achieving a sufficient information 
content in presence– absence datasets to accurately estimate spe-
cies optima.

We studied the response curves of species to ecological gradi-
ents for hunting spiders in a Dutch dune ecosystem (van der Aart 
& Smeek- Enserink, 1974), and for Swiss alpine plants (D'Amen 
et al., 2017), using the GLLVM with quadratic response model. 
Various specialist species can be identified in both datasets, as 
species with small tolerances on one or multiple latent variables. 
Specialist species are more likely to be affected by future changes in 
the environment, and as such their identification is of critical impor-
tance to community ecology, to better focus recommendations for 
conservation efforts.

Modelling rare species is often difficult in community ecology 
as few ordination methods have the capability to explicitly do so. 
The quadratic response model has great potential for community 
ecology, as it can simultaneously accommodate common (large tol-
erances and maximum i.e. a wide and high niche) and rare species 
(small tolerances and maximum i.e. a narrow and low niche). The 
quadratic response model naturally predicts species with unob-
served optima, narrow niches and small maxima to have the few-
est observations. Since the quadratic response model includes two 
species- specific parameters per latent variable, and thus requires 
more information in the data for accurate estimation of parameters 
than when assuming linear species responses, it potentially requires 
a large dataset to include sufficient information on rare species and 
accurately estimate the corresponding parameters. However, the 
example in this paper using the dataset of counts for hunting spi-
ders (van der Aart & Smeek- Enserink, 1974) suggests that a GLLVM 
with quadratic response model can be feasible to fit even to small 
datasets. Regardless, assuming quadratic coefficients to be the 
same for all species per latent variable might be more realistic for 
many ecological datasets, while still providing the benefit of an ex-
plicit quadratic response model, with all the benefits it provides— 
calculating species optima, tolerances, maxima, gradient length 
and their corresponding statistical uncertainties. An additional 
advantage of a GLLVM- type approach is the ability to use infor-
mation from both common and rare species to improve estimation 

of ecological gradients. Even if optima of species with too few ob-
servations cannot be accurately estimated, species preferences 
can be identified based on the ecological gradient, in relation to 
the response curve of more common species, and based on the di-
rection of the maximum (slope). Without penalization or borrowing 
information for estimation from more abundant species though, the 
(quadratic) coefficients for species with few observations are not 
necessarily expected to be accurate.

An easy- to- use implementation of the quadratic response model 
with GLLVMs is available in the gllvm R package (Niku et al., 2020).
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