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Abstract. Nowadays, the implementation of cloud manufacturing technologies 

epitomises the avant-garde in production systems. This affects several aspects of 

the management of these production systems, in particular on scheduling activities, 

due to the possibility provided by cloud manufacturing of having real-time infor-

mation about the stages of a product life cycle and about the status of all services. 

However, so far, cloud manufacturing has mainly focused on machines, with limited 

interest in material handling systems. This shortfall has been addressed in this study, 

where a new material handling paradigm, called Cloud Material Handling System 

(CMHS) and developed in the Logistics 4.0 Lab at NTNU (Norway), has been in-

troduced. With CMHS, the scheduling of the Material Handling Modules (MHMs) 

can be optimized, increasing the flexibility and productivity of the overall manufac-

turing system. To achieve this, the integration of advanced industry 4.0 technologies 

such as Internet of Things (IoT), and in particular Indoor Positioning Technologies 

(IPT), Cloud Computing, Machine Learning (ML), and Artificial Intelligence (AI) 

is required. In fact, based on the relevant information provided on the cloud platform 

by IPT and IoT for each product, called Smart Object (SO) (position, physical char-

acteristics and so on), an Intelligent Cognitive Engine (ICE) can use ML and AI to 

decide, in real time, which MHM is most suitable for carrying out the tasks required 

by these products based on a compatibility matrix, on their attributes, and on the 

defined scheduling procedure. 

1 Introduction 

In recent years, connectivity and exchange of information have played an 

important role in the world of manufacturing (Alcácer and Cruz-Machado 2019). 

Researchers and practitioners have focused their attention on new technologies 

(such as cyber physical systems (CPS), IoT, and cloud computing) that enable the 
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integration of production with network connectivity (Xu 2012; Lee et al. 2018; 

Ivanov et al. 2016; Ivanov et al. 2019; Panetto et al. 2019). In this way, the 

traditional rigid and automated operational processes can evolve in fully-connected 

and flexible systems, highly valuable in a market characterised by unpredictable 

changes. In fact, connecting different machines in production, material handling 

systems in warehouses, and equipment in laboratories can form networks capable 

of dynamic reconfiguration and high flexibility, and can provide global feedback in 

order to achieve high efficiency. 

Most effort has been put towards the connectivity of different machines in the 

production systems, with the establishment of the cloud manufacturing. By 

connecting different machines with cloud services and managing them in a 

centralised way, the production systems can adapt, in real-time, to new demands 

with increased flexibility (Liu et al. 2019). This new manufacturing paradigm 

influences several aspects, one of which is scheduling. 

Scheduling is the process of arranging, controlling, and optimising work or 

workloads. Therefore, in terms of allocating resources/services to tasks, monitoring, 

controlling, and optimising task execution, the possibility provided by cloud 

manufacturing of having real-time information about all the stages of a product life 

cycle and about the status of all the services is of great impact. Considering the 

allocation of resources to different tasks, Liu et al. described the process as a sum 

of different sub-steps, at the end of which an optimised schedule is generated based 

on the real-time status information (availability, position, etc.) of the machines 

required to process an order (Liu et al. 2019; Dolgui et al. 2019). 

As mentioned earlier, the connectivity of different machines has been already 

developed, improving the scheduling activities. However, a step forward towards 

the optimisation of these new manufacturing scheduling procedures would be the 

implementation of cloud services for material handling equipment. However, due 

to the complexity and variability of possible performed tasks, available resources, 

and equipment, the scheduling and planning of material handling equipment has 

been mainly treated as separate from the manufacturing systems with which they 

operate. 

Material handling is defined as the movement, storage, protection and control of 

materials throughout the manufacturing and distribution process (including their 

consumption and disposal). It involves providing the right amount of the right 

material, in the right condition, at the right place, in the right position, in the right 

sequence, and for the right cost, by the right method(s). The main objective of 

material handling is to perform it safely, efficiently, at low cost, in a timely manner, 

accurately, and without damage. 

The typical structure of today’s material handling systems is a mix of different 

equipment with various levels of automation (Furmans and Gue 2018). It is still 

largely dominated by manual and mechanised systems, such as manual carts and 

industrial vehicles (i.e., pallet trucks, forklifts), in which humans still play an 

important decisional role. In other cases, automated solutions, such as Automated 

Guided Vehicles (AGVs) or Automated Storage and Retrieval Systems (AS/RS), 

are implemented with their own decentralised control systems. Since they are not 
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connected to each other, a multilevel hierarchical control system is necessary to 

coordinate the different sub-systems and allow the products to be moved from one 

point to the next within the manufacturing system. Typically, decision-making 

processes such as scheduling are distributed over the levels of systems interacting 

with each other (such as the local PLCs, the material flow controller, the Warehouse 

Management System (WMS), Manufacturing Execution System (MES), and the 

Enterprise Resource Planning (ERP) system). 

Decisions, processes, and activities in material handling systems show great 

dependencies and should not be seen as isolated, independent procedures. Materials 

handling should be seen within a system context. The systems concept id 

particularly helpful because it identifies and analyses the interrelation within a 

system. Blanchard & Fabrycky define a system as “a set of interrelated components 

working together with the common objective of fulfilling some designated need” 

(Blanchard and Fabrycky 1990). The efficient scheduling of the Material Handling 

Equipment (MHE) has a strong effect on the productivity, profitability, and 

flexibility of the manufacturing systems. Some examples are a machine waiting for 

the product to process since the forklift driver is not available, or a machine being  

blocked because the unit loads in the unloading station are still waiting to be 

transport to the next production phase. The availability in recent years of industry 

4.0 technologies, such as IPT as part of IoT, motion tracking and control, and cloud 

computing is making MHE one of the most feasible solutions for increasing the 

flexibility of manufacturing systems. 

By extending the definition of cloud manufacturing to handling activities, a new 

kind of paradigm, called a Cloud Material Handling System (CMHS), has been 

introduced and developed by the authors in the Logistics 4.0 Laboratory at the 

Norwegian University of Science and Technology. This is the Norway’s first 

logistics laboratory that merges digital technologies with traditional production and 

logistics systems, enabling researchers, practitioners, engineers, pioneers, students, 

and other enthusiasts to come together and collaborate on common ground. 

As described previously, the typical aim of the cloud manufacturing is to deliver 

on-demand manufacturing services to customers based on orders received via the 

Internet. With the CMHS, this aim can be adapted to the efficient management and 

scheduling of MHE. Based on the same concept as cloud manufacturing, the CMHS 

has the scope to satisfy consumers’ requests (handling of unit loads) through the 

available resources (MHE) in a cloud environment, reducing the complexity of a 

multilevel hierarchical control system and increasing the overall flexibility and 

productivity of the manufacturing system. The CMHS has been developed mostly 

for applications within a single factory, but it can be also extended to a multi-factory 

environment where the logistics activities are, for example, external transportation. 

For this purpose, the CMHS needs information that is not typically collected and 

used in cloud manufacturing. According to the definition of material handling 

(movement, storage, protection, and control) the most important information 

required from the system is the real-time locations of products and MHE. This lack 

can be filled by implementing IPT, allowing real-time localisation of the 

products/unit loads and Material Handling Equipment in a cloud platform. IPT is in 
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fact a technology that continuously determines in real-time the position of 

something or someone in a physical space (Hightower and Borriello 2001b). As part 

of IoT, according to (Gu, Lo, and Niemegeers 2009), an IPT can provide different 

kinds of data, including position, travel path, time, speed, and required activities. 

Depending on the applications, there are several different kinds of IPT. They will 

be described in the next section, focusing on their characteristics and on their pros 

and cons. In Section 3, the CMHS will be introduced and described, while in Section 

4 the characteristics of scheduling in the CMHS will be described and compared to 

the traditional method. Finally, conclusions, future research, and perspectives will 

be provided in Section 5. 

2 Indoor Positioning Technologies 

IPT, as part of the IoT, is defined as the sub-system that permits to a mobile 

device to determine its position, and that renders this position available for position-

based services (Gu, Lo, and Niemegeers 2009). These position-based services can 

bring benefits in several environments, such as hospitals, where the position of the 

equipment needs to be known to efficiently use the medical resources, 

supermarkets, where the customers want to know the fastest path to reach the 

desired products, and large museums, where tourists are interested in knowing the 

location of the artworks they are interested in (Tesoriero et al. 2008). In the last 

years, IPS has gained interest also in the industrial field (Zuin et al. 2018). In 

particular, material handling processes are those that can benefit the most from this 

system. In fact, due to the necessity of handling huge amount of products with very 

short lead times, material handling system has to eliminate all the inefficiencies, 

such as delays in the searching of the required product in the warehouse, errors in 

the storage or in the picking of an item, and waste of time during the travelling of 

carts and operators. 

As stated by Curran et al. (2011), there are several available technologies to 

identify, in real-time, the location and flow of material depending on the required 

performances. There is not a single ‘best solution’ that is suitable for each scenario. 

Therefore, in recent years, different types of IPSs have been introduced depending 

on the desired level of accuracy, coverage area, robustness, scalability, cost, and 

complexity (Gu, Lo, and Niemegeers 2009). They can use one or several positioning 

technologies (i.e., triangulation, fingerprinting, proximity, and vision analysis 

(Kaemarungsi and Krishnamurthy 2004; Hightower and Borriello 2001a)), but the 

majority leverage the triangulation method, where once the coordinates X and Y of 

the three reference elements A, B, and C are known, the position can be calculated 

by using either the length or the directions of at least three vectors from the 

respective reference points (Gu, Lo, and Niemegeers 2009). 

However, the classification of these IPSs is not usually based on the positioning 

technology used. Instead, it is usually based on whether they are network-based 

(Deak, Curran, and Condell 2012) or on their hardware requirements (Liang et al. 
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2013). Another classification can be based on the main technology used to 

determine the location, which may include infrared (IR) signals, ultrasound waves, 

vision-based analysis, and radio frequency. 

Infrared positioning systems. This is one of the most common positioning 

systems since IR emitters are small and lightweight. The system architecture is 

simple, and it performs positioning estimation in a very accurate way (with an 

accuracy of several mm). It was used by Pinto et al. for the localisation of small 

mobile robots, and they reported high accuracies (0.06m and 7 degrees) and fast 

responsiveness in the localisation (less than 40ms) (Pinto, Moreira, and Costa 

2015). Similar results were reported in D. Zhang et al. (2010), where an accuracy 

of 3mm and a responsiveness of 3ms were reported. However, they also reported a 

limited coverage area (7m). In fact, one of the main limitations is related to the 

application environment of this system, as it requires the absence of interferences 

and obstacles. Nevertheless, this can also be an advantage; the inability of the IR 

beams to penetrate the walls ensure that it is possible to limit the signal inside a 

specific room (Mainetti, Patrono, and Sergi 2014). Other limitations are the high 

cost of the hardware, the short-range signal transmission between devices, and the 

interference from florescent light and sunlight (Fernando et al. 2003). 

Ultrasound positioning systems. This system uses ultrasound signals to measure 

the distance of a mobile target from a fixed-point receiver. Despite its low cost, the 

diffusion of this IPS is hampered by the low accuracy (several cm) and the short 

range (from 2 to 10m). These drawbacks have been shown to be overcome by using 

a large number of transmitters on the ceiling (Woodman and Harle 2010). However, 

by doing so one of the main advantage of this IPT (the low cost) would be lacking. 

Both studies reported the system to be high susceptible to noise sources, affecting 

its reliability and accuracy. 

Vision-based positioning systems. This system is based on the use of fixed or 

mobile cameras that can cover a large area at a low installation cost. The tracked 

person and/or device do not need to wear or carry any device. It has been 

successfully used as tracking system for rolled milled plates with an accuracy of 

0.5m (Tratnig, Reisinger, and Hlobil 2007). However, some inaccuracies were 

reported, especially in a dynamic changing environment and in environments 

characterised by many interference sources. These systems are, in fact, preferable 

for quality control and inventory level assessments (Wu, Ip, and Chan 2009). In 

addition, the difficulty of tracking several persons and/or devices has also limited 

its use (Zuin et al. 2018). 

Radio frequency position systems. There are several systems that use radio 

waves, such as Wi-Fi, Radio Frequency Identification (RFID) and Ultra-Wide Band 

(UWB). Wi-Fi system is often used to monitor the movements of mobile devices 

due to its low cost. In fact, Wi-Fi is widely spread inside the facilities and thus extra 

software are not required. The accuracy is quite low (between 20 and 40 metres) 

due to problems of refraction, scattering and multi-path fading in the indoor 

propagation of Wi-Fi signals. This can be improved increasing the number of access 

points and adding wireless routers (Lyu-Han Chen et al. 2014), reaching an 

accuracy of 2 metres (Han and He 2018), or by using particular filters, such as 
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Unscented Kalman Filter (Khan, Yang Dong Kai, and Gul 2017). RFID is a means 

of storing and retrieving data through radio waves to an RF-compatible integrated 

circuit (Ni et al. 2003). These systems can cover large distances since they do not 

require line-of-sight (i.e., they can easily travel through walls and human bodies). 

Moreover, RFID leverages on small and light tags and this allows a unique 

identification of equipment and persons. However, this system needs several 

infrastructure components in the working area and they suffer of multi-path 

distortion of radio signals reflected by walls and obstacles (Gu, Lo, and Niemegeers 

2009). UWB technology uses pulses with a very short duration (less than 1ns) to 

overcome the limitation of the multi-path distortion of radio signals affecting RFID 

systems. In addition, the use of multiple bands of frequencies simultaneously (each 

transmitting its own signal, as opposed to RFID which uses just a single portion of 

the frequency spectrum) overcomes the RFID’s line-of-sight requirement and thus 

increases the accuracy. That was shown by Regattieri and Santarelli, who tested and 

UWB system in different industrial environments and reported an accuracy of 1m 

(Regattieri and Santarelli 2013). These results agreed with those reported in Zuin et 

al. 2018, who found that 70% of measurements of a moving target showed the gap 

between the tracked position and the real one as lower than 0.40m. 

By using IPT it is thus possible to have real-time information about 

products/operators/MHE location in an easy and fast way, representing a 

prerogative for the development of the CMHS. 

3 Cloud Material Handling System 

Uber is revolutionising the world of urban logistics (i.e., people mobility and 

product delivery) by providing peer-to-peer ridesharing, ride service hailing, food 

delivery, and a bicycle sharing system. Its success is based on the cloud storage and 

smart use of huge amounts of data regarding the real-time locations of consumers 

and cars/bicycles/scooters. 

Using Uber is very simple both for the consumers and drivers. The phone app 

helps the users in setting the pickup location (using GPS), setting the destination, 

and requesting a car. It also supports the drivers in managing the request and  

receiving the payment. However, there is a huge amount of data processed in a cloud 

platform, even when the driver has no passengers or products out for delivery. All 

this data is stored and leveraged to predict supply and demand, as well as being used 

for setting fares and gathering information about issues such as bottlenecks, traffic 

jams, and shortcuts. 

The concept behind the CMHS developed by the authors at the Logistics 4.0 

Laboratory at NTNU is similar to the taxi-hailing web app. In this case, the 

‘consumers’ are the unit loads which require a specific service from the system 

(typically to be transported from one point to another), while the ‘cars’ and ‘drivers’ 

are the MHE (forklifts, manual trolleys, conveyors, etc.) with different capabilities 

(capacity, cost, speed, time, service level, etc.). The cloud platform has a cognitive 
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engine able to dynamically assign the requests to the available resources based on 

knowledge gained over time. 

Similarly to cloud manufacturing (Liu et al. 2019; L. Zhang et al. 2014), the 

operation model of the Cloud Material Handling System has a direct effect to the 

characteristics of the scheduling. Figure 1 depicts the operation model developed 

by the authors at the base of the CMHS. Adapting the concept introduced by L. 

Zhang et al. 2014, it consists of three categories of stakeholders: SOs, Material 

Handling Modules (MHMs), and ICE, sharing a common knowledge of the system. 

 

 

 
Fig. 1: Operation model of Cloud Material Handling System 

 

SOs: These are the unit loads that require handling by the MHE (Furmans and 

Gue 2018). They are uniquely identified through a tag containing a dynamic set of 

attributes, such as material flow or process of the object, the current and next step 

of the process, or its physical characteristics (size, weight, fragility, etc.). The tag is 

localised through one of the IPTs described in the previous section (Fig. 2). 

 

 
Fig. 2: Examples of SOs 
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Material Handling Modules (MHMs): These have the capabilities to perform one 

or more physical functions related to handling and storing, as required by the SOs. 

MHM are typical MHE, such as forklifts, conveyors, cranes, trolleys and carts, 

AGVs, AMRs, shelving units, storage racks, or ASR/RS (Furmans and Gue 2018). 

They can be purely manual or mechanised equipment where the operators still play 

important role, like driving, loading or unloading, but also fully automated 

equipment with automatised functions. Like the SOs, they are classified in the 

CMHS with a tag including a set of attributes, such as dimensions, capacity, 

autonomy, automation level, cost, etc. They have also a set of functions they are 

able to perform. According to Furmans and Gue 2018, four classes can be identified: 

holder (storing an SO, such as shelf and racks); mover (moving an SO, such as 

forklifts); picker-placer (picking and placing an SO, such as human pickers or robot 

arms); and unitised-separator (putting together more SOs, such as a palletiser, or 

creating more SOs from an initial single one, such as a depalletiser). They are 

connected to the ICE, communicating their locations in real-time thanks to IPT. 

Their availability and lists of attributes/functions are shared with the other 

stakeholders in the cloud platform, through which they receive jobs. In case they 

require the human to be active, such as manual trolleys or traditional pallet jacks or 

forklifts, the interaction with the ICE is based on the use of industrial smartphones 

or devices, through which the operators receive the scheduled assigned tasks after 

processing in the ICE (Fig. 3). 

 
Fig. 3: Examples of MHMs 

ICE: This is responsible of the management of the cloud platform where all the 

information is collected and elaborated (Greis et al. 2019). It receives and stores all 

the information about the available MHMs and their attributes and functions. These 

characteristics are matched with the handling requirements sent by the active SOs 

through a MHMs-SOs compatibility matrix. The ICE is an AI-based computing 

system, and thanks to several ML algorithms it can predict how the global CMHS 

performs in different situations. In the ICE, the models, rules, and algorithms for 

scheduling are implemented. Their performance, such as % of loaded travel time, 
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% of added value time, or service level, is assessed in real-time in order to be 

improved over time through what-if scenarios simulation (Fig. 4). 

 

 
 

 
Fig. 4: Screenshots of the ICE dashboard 

4 Scheduling in Cloud Material Handling System 

The real-time localisation of the SOs and MHMs due to the IPT implementation, 

and the sharing of their attributes/functions along with positions, are enabling a new 

way of scheduling and control of all the components in the system. In this section, 

the procedure for assignment of the required jobs by SOs to the different available 

MHMs are described, and the characteristics of the scheduling in CMHS are 

presented in comparison to the scheduling in a traditional environment. The 

advantages will be illustrated and, since the novelty of this paradigm, the research 

opportunities are discussed at the end. 

NTNU - Cloud Material 
Handling System

Dashboard – Intelligent Cognitive Engine

Smart Objects Material Handling Modules Handling Tasks to be scheduled

SO Tag Status Location

0100251324 waiting buffer 07

0100542359 moving MHM002

0258700032 stocking MHM004

0580015200 in progress machine 003

0622501120 waiting buffer 21

0658114203 waiting buffer 11

MHM Tag Status Location

MHM001 waiting parking 01

MHM002 moving dpt 01

MHM003 waiting parking 02

MHM004 stocking storage 01

SO tag Task Destination

0100251324 move to buffer 03

0622501120 stock to storage 01

0658114203 move to buffer 04

NTNU - Cloud Material 
Handling System

Dashboard – Intelligent Cognitive Engine – Charts - MHM002

MHM Heat Map - MHM002 MHM Congestion Map - MHM002 MHM Performance - MHM002

Speed profile
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4.1 Procedure of scheduling 

There are three different phases for the scheduling in CHMS: order/task release, 

scheduling and delivery and performance assessment. 

Order/task release: The scheduling process begins when SOs send their 

requirement of a specific service to ICE. The specific service may be the need of 

SOs to be stored, moved, transferred, picked, placed, unitised, separated and/or a 

combination of these needs. It can be triggered manually by the operator of the 

machine/MHM where the SO is produced/moved. IPTs can automatise this step of 

the process. Specific areas can be defined in the cloud platform; when the location 

of SOs (using IPT) is within one of this areas it could be linked to the claiming of 

service from MHMs. Other areas could be used as destination of the service; when 

the SOs are moved into those areas, it means that the required tasks have been 

performed. These tasks are defined a priori thanks to the connection to the ERP 

system and material flows/production processes. 

Scheduling: Every SO is uniquely identified by a tag containing all their relevant 

information (i.e., characteristics such as size, weight, the next step of the process, 

etc.). Based on these characteristics, the ICE can decide the most suitable type of 

MHM, leveraging the MHM-SO compatibility matrix. Once the type of MHM that 

fulfils the handling requirements of the SO, has been defined, the required MHM is 

then found among those available according to the pre-defined scheduling 

procedure (i.e., the closest MHM, the fastest MHM, the cheapest, etc.). AI and 

scheduling algorithms derived from those developed for cloud manufacturing will 

support this phase of the process in the case of more complex environments. 

Delivery and performance assessment: Once the MHM has completed its task, 

data such as the average speed, the path, congestion phenomena, % of added value, 

time, and other performances can be obtained by ICE through the extrapolation of 

the data from the tag associated with the SO under consideration. In this way, the 

ICE can use the acquired information in order to optimise the future tasks using the 

acquired data as inputs in its ML algorithms. 

4.2 Characteristics of scheduling in CMHS 

The scheduling of material handling tasks is a decision-making process at an 

operational level. In today’s manufacturing and service industries, the coordination 

of these tasks is mainly hierarchical in structure, with centralised or decentralised 

control (Scholz-Reiter and Freitag 2007). Several decisions stages are thereby, to a 

different degree, interconnected and automated. Low degree of such decisions have 

led to fixed assignment using either simple scheduling rules as FIFO (First in first 

out) or EDD (Earliest Due Date), weighted priority rules, or heuristics scheduling 

rules. Scheduling is difficult even for human intelligence. The complexity of the 

material flow and the push towards increased automation has led to standardised 
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multilevel control architectures and information flow for material handling systems 

(Furmans and Gue 2018). The standards contain the tasks to be performed on each 

level and the communication protocols between the levels. The decision-making 

process is normally distributed over several system levels: PLC, ERP, MES, 

process, and machine control. Within a company using material handling systems, 

there can typically be found between 5 and 8 levels of systems interacting with each 

other. Multilevel design and scheduling is often motivated by a company’s low 

capability for real-time information sharing. The introduction of CMHS changes the 

characteristics of scheduling as follows: 

Knowledge-sharing based scheduling: The introduction of the cloud platform 

and its ICE modified the way of doing scheduling. In the CMHS, all the equipment 

is at the same level as the handled products. This allows for real-time adaptability 

of the MHMs to the current requirements of the systems with which they operate. 

Each module and object are individual stakeholders, autonomous decision-making 

process, and interest-independent entities (Liu et al. 2019). 

Many MHMs to many jobs scheduling: The sharing of information about 

locations and attributes of MHMs and SOs enables the distribution of multiple jobs 

to multiple integrated resources. In traditional MHS, each job is managed 

individually from one single resource, or it is treated as a sequence of elementary 

jobs to be executed by single resources. 

Dynamic and complex scheduling: Scheduling in CMHS is more complex due 

to the two characteristics described previously. In this case, the application of AI 

and ML can support the scheduling, learning from previous experience and 

assessing the performance of each single module of the system. Rules, models, and 

algorithms are developed based on the huge amount of data collected over time. 

The CMHS allows for more efficient scheduling since all MHMs are shared 

among all the SOs requiring a handling activity (compared to traditional MHS 

where, for example, equipment is limited to a specific area or specific material flow 

and unit loads). Simple examples of its benefits are: MHMs idle while no SOs 

require them in the area can move to another area to serve other SOs and share their 

availability with the rest of the CMHS; delay in handling an SO due to over-utilising 

of MHMs can be reduced using the other similar equipment available in other areas 

of the systems. The basic concept is that by using shared equipment, the total 

number of required modules is lower than in case of fixed assignment. Therefore, 

the average usage of the MHMs is higher, as is the service level and responsiveness 

of the system. Moreover, the introduction of AI and ML in the ICE allows increased 

efficiency in every scheduled task thanks to the learning effect based on the huge 

amount of data collected over time. The big data available (about the travelled path, 

delivery time, travel time, service level, etc) can provide useful feedback on the 

efficiency of the scheduling, enabling the AI and ML to improve future scheduling. 

Scheduling in CMHS still faces many challenges. For example, it is still very 

important to consider how to manage the different interests and objectives of the 

different MHMs and SOs in the system. The scheduling could be based on a market 

mechanism for coordinating the activities of the MHMs that pursue their own 

interest. The market model could be used for solving dynamic job processing and 
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scheduling problems. Conflicts between individual requirements could be resolved 

by negotiating and bargaining on simple terms such tasks, due dates, and prices 

(Márkus, Kis Váncza, and Monostori 1996). New game theory, negotiation 

methodology, cooperation, and coordination among the MHMs are just some 

examples of new research areas for more efficient scheduling. Another example is 

how to define the optimal level of control between a fully-centralised system with 

ICE as the main actor and a fully decentralised/holonic system where the MHMs 

and SOs act as individual intelligent agents. Several control models from other 

fields, such as cloud manufacturing, can be applied to support the scheduling. 

5 Conclusions 

Sharing real-time information on MHE and unit loads has enabled and changed 

the decision-making process for scheduling of material handling activities from a 

hierarchal structured and centralised control system to a cloud-based one. With the 

introduction of the CMHS, the scheduling of material handling activities can be 

optimised, leading to increasing flexibility and productivity of the overall 

manufacturing system. Current literature does not specify how production systems 

should be adapted from a material handling perspective to enable cloud 

manufacturing. We contribute to the existing literature by introducing a conceptual 

model of CMHS and application at NTNU’s Logistics 4.0 laboratory, reflecting a 

manufacturing environment. The current state of the IPTs and the CMHS have been 

described. A special focus has been given to scheduling, highlighting the differences 

and benefits for future material handling systems. Future research should 

investigate how AI and ML can further improve scheduling and consecutive 

activities of routing and dispatching which have not been investigated until now. 
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