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Abstract—Understanding the current environmental conditions
is essential for autonomous ships, among which real-time esti-
mation of sea conditions is a key aspect. Considering the ship
as a large wave buoy, the sea state can be estimated from
motion responses without extra sensors installed. This task is
challenging since the relationship between the wave and the ship
motion is hard to model. Existing methods include a wave buoy
analogy (WBA) method, which assumes linearity between wave
and ship motion, and a machine learning (ML) approach. Since
the data collected from a vessel in the real world is typically
limited to a small range of sea states, the ML method might fail
when the encountered sea state is not in the training dataset.
This paper proposes a hybrid approach that combined the two
methods above. The ML method is compensated by the WBA
method based on the uncertainty of estimation results and,
thus, the failure can be avoided. Real-world historical data from
the Research Vessel (RV) Gunnerus are applied to validate the
approach. Results indicate that the hybrid approach improves
the estimation accuracy.

Index Terms—Sea state estimation, autonomous ship, super-
vised machine learning, hybrid method.

I. INTRODUCTION

REMOTELY operated and autonomous ships are a topic
of increasing interest in the maritime industry [1]. These

ships have the potential to reduce human-based errors, lower
fuel consumption, and extend the operational window [2].
Efforts have been made in the recent years to develop modern
control [3] and path planning algorithm [4] for marine ve-
hicles. Nonetheless, these autonomous systems must be able
to process the current environmental conditions for safe and
effective decision making. For marine vessels, the external sea
loads are crucial for their control and operation [5]. Real-
time estimation of sea states is therefore of key importance
for autonomous vessels.

The sea state refers to the general condition of the ocean
with respect to wind waves and swell at a certain location
in oceanography. A sea state is usually characterized by
statistical parameters, e.g., significant wave height, average
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wave frequency, and peak frequency [6]. The primary tool
nowadays to collect accurate statistical wave data is floating
wave buoys. However, wave buoys are deployed at fixed
locations and they are not practical for a vessel in maneuvering
operations. Other methods include meteorological satellite and
wave radar. The meteorological satellite image quality is often
subjected to a time delay of several hours and could be affected
by cloudy weather. A wave radar satisfies the need, but it is
expensive to install, requires frequent calibration [7], and is
only equipped to a limited number of vessels.

Nowadays, the majority of marine vessels are equipped
with sensors that measure the ship motions in 6 degrees of
freedom. The motion responses reflect the sea state conditions
and therefore a ship can be considered as a large wave buoy.
From this perspective, a vessel is essentially equipped with an
environmental condition estimation system [8]. Estimating the
sea state based on the ship motion responses is of interest and
has been investigated in the literature. Several challenges exist
to estimating the sea state using motion data: (1) ocean waves
are stochastic processes and they are usually described by
statistical parameters; (2) It is difficult to model the relation-
ship between wave and ship motion; (3) extra complexity is
added due to the moving of the vessel. Previous works involve
model-based methods that use response amplitude operators
(RAOs) to relate the sea state to vessel responses. RAOs are
complex-valued transfer functions that are calculated using
strip theory and sometimes computational fluid dynamics.
Ship responses are, in general, non-linearly related to the
wave excitation. However, the transfer functions are linear
and therefore only valid for light and moderate sea states [9].
Besides, the RAOs are difficult to estimate exactly and might
need to be tuned with real-world data. On the other hand, this
task can be posed as a supervised machine learning problem
and several data-driven approaches have been employed to
learn the mapping from measured ship motion responses to
an actual sea state [10]. The advantage of these approaches is
that they are able to discover the pattern between ship motions
and sea states based on historical experience.

However, machine learning methods often require an exten-
sive amount of training data and they only perform well when
the training and testing data are sampled independently and
identically from the same distribution [11]. In other words,
models in deployment can fail catastrophically when the test
data distribution differs from the distribution of the training
data [12]. The vessel is usually operated in the same route for
a specific period, the historical data collected in the real world,
therefore, contains limited number of sea state and can not
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cover the entire range of possible sea states. When the vessel
is deployed into a new route or experience a new sea state, the
machine learning model trained with historical data is likely to
fail. A failing on the sea state estimation might cause severely
operational and financial costs. Ideally, a machine learning
model should be able to provide not only the predictions but
also how much confidence it has in the predictions. There are
existing models that can directly provide or approximate the
uncertainty [13], [14]. When the predictive uncertainty can
be accounted for, the model-based method can be utilized to
compensate for the prediction with high uncertainty.

In this paper, the feasibility of the hybrid approach for
sea state estimation using ship motion responses will be
investigated. The ML model estimates the current sea state
with predictive uncertainty, while, in parallel, the wave buoy
analogy method provides the estimation results using the
same ship motion responses. The estimation results from both
methods are then fused together. Specifically, the wave buoy
method results compensate the ML results based on its predic-
tive uncertainty. This work will focus on the estimation of the
significant wave height and the mean wave period. Real-world
data are collected from the research vessel R/V Gunnerus.
Currently, there is no wave radar installed on the ship and
the sea state is manually observed by the captain based on
experience. The proposed method aims to provide an onboard
support tool for estimating the sea state and further support
the development of autonomous vessels and operations. The
main contributions can be highlighted as follows:
• A hybrid model is developed for sea state estimation

using measured ship motion responses.
• The developed hybrid model has the ability to estimate a

broad range of sea states when the training data is limited.
• The performance of the developed hybrid model is ver-

ified through real-world data collected from a research
vessel.

The remainder of this paper is organized as follows: a
introduction to sea state estimation is given in Section II. Sec-
tion III introduces the proposed hybrid estimation approach.
The experiments are discussed in Section IV. Section V
concludes the paper.

II. RELATED WORK

Research has been conducted on estimating the sea state
based on the motion response. Most of them focuses on
the field of frequency domain analysis. Through Fast Fourier
Transform (FFT) or autocorrelation analysis, the ship motion
response is first transformed into the frequency domain. The
RAOs are then used to relate the wave spectrum to the motion
spectrum. The fundamental idea is to minimize the difference
between the measured ship spectrum and the calculated ship
spectrum [15]. If a wave spectra, e.g., JONSWAP, Bretschnei-
der, is assumed, the wave parameters are obtained in the
nonlinear optimization process [16]. Otherwise, a Bayesian
approach can be applied [17], in which the wave spectrum
is represented in a discrete frequency-directional domain and
the original least square problem is transformed into the
maximization of posterior. The methods are initially developed

for dynamically positioned (DP) vessels, Iseki and Ohtsu [17]
extend this method to ship with forward speed by incoperating
the Doppler shift function.

The above methods depend on the spectral analysis, which
may cause a certain degree of errors, the estimation of sea
state based on ship motion response can also be solved in
the time domain. Pascoal and Soares [18] treated the wave
components as state variables and proposed an estimation
algorithm based on the Kalman filter. This method is further
extended to account for ships with forward speed and valida-
tion is performed through sea trials [19]. A similar observer-
based approach is developed by Belleter et al. [20] to estimate
the wave frequency using the measured roll or pitch angle.
Nevertheless, these two methods, either frequency or time
domain, are dependent on RAOs to relate the wave to the ship
motion. RAOs are simplified linear transfer functions and hard
to tune for a broad use (tuning with real-world data is often
needed). In addition, RAOs only hold for mild and moderate
sea state [9].

Machine learning methods are alternative methods that learn
the mapping between ship motions and sea states directly.
The advantage of these methods is that they do not rely
on an explicit model to link waves to ship motions. Tu et
al. [21] extract time and frequency domain statistical infor-
mation of the measured motion data and apply a three-layer
classifier to classify the sea state. Han et al. [10] extract
statistical, temporal, spectral and wavelet features from ship
motion responses. An ensemble machine learning model is
then developed to estimate the sea state. A concern is how to
extract useful features. An end-to-end deep learning method
has also been developed. Cheng et al. [22] treat it as a
time series classification problem and combine convolutional
neural network (CNN), Long Short-Term-Memory (LSTM),
and FFT to classify the sea state. Further, they develop
a CNN with skip-connection and demonstrate its superior
performance [23]. Mak and Duz [24] regard it as a regression
problem and compared the performance of three network ar-
chitectures: CNN, LSTM-CNN, and sliding puzzle. However,
the collection of a large dataset that covers possible sea states
is the foundation for these approaches, which is usually hard
to archive and the model might fail catastrophically when the
encountered sample is not in the training set.

III. HYBRID SEA STATE ESTIMATION

Since the proposed method in this study is a combination
of model-based and data-based methods, the following will
outline how they are constructed and how they cooperate to
estimate the sea state from measured ship motions.

A. Overview of the hybrid approach

The machine learning model is only good at interpolation
but generally cannot extrapolate well. The data collected
for sea state estimation purposes is usually limited and can
not cover the entire range of possible sea state conditions.
Therefore, a model-based method is used to compensate for
the ML results when the sample is out of training distribution.
Fig. 1 shows the schematic illustration of the proposed hybrid
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Fig. 1. Schematic illustration of the proposed hybrid approach. The upper rectangle is the ML model and the lower rectangle is the model-based method.

method. Historical data containing ship motion and corre-
sponding sea state information is collected to train a machine
learning model. The machine learning pipeline consists of
feature extraction, feature selection, and model training. The
Gaussian process is chosen since it not only provides pre-
dictions but also uncertainty. The wave buoy analogy method
builds on a comparison between measurements of response
spectrum and calculated ones. By minimizing the discrepancy
between the measured and calculated spectrum, the sea state
is determined. Then the uncertainty-aware confusion module
receives the sea state estimation results from these two meth-
ods. The WBA estimation results are used to compensate for
the ML results according to its uncertainty. In this way, the
hybrid estimation results are the combination of the estimation
results made by the ML model and the WBA method.

The detailed data-driven method, model-based method and
the fusion of both methods will be illustrated in the following
sections.

B. Data-driven sea state estimation

The machine learning model is established based on the
procedure described in Han et al. [10].

1) Signal detrending: The measured ship motion might be
affected by the measurement offset. In order to ensure that
the ship motions fluctuates around zero, the average value of
measured signal is subtracted. This step is important for the
robustness of the extracted features.

2) Feature extraction: Considering a signal is a discrete
time series data (x1, x2, . . . , xn) with length n, four categories
of features are constructed to describe the sea state pattern,
namely, statistical, temporal, spectral, and wavelet features.

Statistical features Seven basic statistical features are ex-
tracted from each DOF measurement. Six standard features
of the signal including maximum, minimum, mean, variance,

skew, and kurtosis are considered. Additionally, the q quantile
information of the signal is extracted, which is the value
greater than q of the ordered values from the signal. The
variable q is selected as 0.2, 0.4, 0.6, and 0.8.

Temporal features Firstly five temporal features are consid-
ered, which include: absolute sum of change (

∑n−1
i=1 |xi+1 −

xi|), absolute energy (
∑n
i=1 x

2
i ), mean second derivative cen-

ter ( 1
2(n−2)

∑n−2
i=1

1
2 (xi+2−2xi+1+xi)), zero cross (the num-

ber of the signal crossing zero), longest strike above mean (the
length of the longest consecutive subsequence in a signal that
is larger than its mean). Autocorrelation: This feature measures
the similarity between observations as a function of the time
lag between them. For a discrete process, the autocorrelation
is obtained as 1

(n−k)σ2

∑n−k
i=1 (xi−µ)(xi+k−µ), where µ and

σ2 are the mean and variance respectively. k denotes the time
lag. Five different time lags (10, 20, 30, 40, 50) are used to
extract this feature.

Welch spectral features The Welch method is an approach
of converting a signal from the time domain to the frequency
domain and estimating the power of a signal at different
frequencies. The method is based on the fast Fourier transform
(FFT) and the Hamming window. After the signal is trans-
formed into the frequency domain, four basic spectral features
including max power spectrum, fundamental frequency, max
frequency, and median frequency are extracted. Additionally,
five features related to the shape of the spectrum [25] is also
extracted: centroid, variation, spread, skewness, kurtosis.

Wavelet features The wavelet transform is a time-frequency
analysis method which selects the appropriate frequency band
adaptively based on the characteristics of the signal. A signal
can be split into different frequency sub-bands and therefore
the signal can be analyzed with multi-scales in the time and
frequency domain. The Daubechies wavelet of order 1 (db1)
is selected as the basis function and the decomposition level
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is five, which results in five approximation components and
five detail components in total. For each components, the
mean, variance, median, skewness, kurtosis, absolute energy,
absolute sum of changes, and zero cross are extracted.

3) Feature selection: In order to select salient features from
the constructed multi-domain features, mRMR [26] feature
selection framework is utilized. The mRMR criterion is a filter-
based feature selection method which can effectively reduce
the redundant features while keeping the relevant features for
the model. The mRMR criterion can be expressed as:

fmRMR(xi) = I(y, xi)−
1

|S|
∑
x∈S

I(xs, xi) (1)

where the function I(·, ·) denotes the mutual information (MI).
|S| is the size of the feature set and xs ∈ S is one feature out of
the feature set. The first term in Eq.(1) represents the relevant
to the target y while the second term measures the redundancy.
Since the MI is computationally expensive for continuous
variables, the redundancy is replaced with correlation. The MI
used to measure the relevance is normalized to [0, 1] to have
a same range as the correlation.

4) Gaussian process regression: The data-driven predictive
model is built based on the Gaussian process (GP) model [13],
[27]. A Gaussian Process is a probability distribution over
functions. The advantage of GP is that it provides a well-
calibrated uncertainty of the prediction. We assume either
exact or independent normally distributed measurement errors,
i.e. the evaluation of y(x) at point x satisfies:

y(x)|f(x) ∼ N (µ(x), σ2(x)) (2)

where σ2 is a known function describing the variance of the
measurement errors and µ(x) is the mean.

GP is characterized by a mean function m(x) and a co-
variance kernel function κ(x, x′). Given the training set at
n points with input as x1:n , {x1, x2, · · · , xn} and target
as y1:n , {y1, y2, · · · , yn}, the posterior can be obtained by
combining these observed values with prior:

µ(x) = m(x)

+ κ(x, x1:n)[κ(x1:n, x1:n) + σ2
nI]−1(y1:n −m(x1:n))

σ2(x) = κ(x, x)

− κ(x, x1:n)[κ(x1:n, x1:n) + σ2
nI]−1κ(x1:n, x)

(3)

where σ2
n is a additive noise level. The µ(x) can be viewed as

the prediction of the function value, while the σ2 is a measure
of uncertainty of the prediction. In this work a constant mean
function m(x) = 0 is used and the rational quadratic kernel
is used:

κ(x, x′) =

(
1 +

(x− x′)2

2αl2

)−α
(4)

where α and l are parameters of the kernel. These parameters
are obtained by maximizing the log marginal likelihood.

C. Parametric wave buoy analogy method

Assuming linearity between waves and ship response, the
cross-spectrum of ship responses are related to the direction
wave spectrum through the following integral:

Sij(ωe) =

∫ π

−π
Φi(ωe, θ)Φj(ωe, θ)E(ωe, θ)dθ (5)

where Φ(ωe, θ) denotes the response amplitude operators
(RAOs) in terms of a complex-valued transfer function and
Φ(ωe, θ) is the complex conjugate. E(ωe, θ) is the directional
wave spectrum, ωe and θ are the encounter wave frequency and
the relative wave direction, respectively. It is noteworthy that
the wave spectrum is advantageously estimated in the wave
frequency domain. The encounter frequency ωe is related to
the absolute frequency ω through the Doppler shift:

ωe = ω − ω2ψ, ψ =
v

g
cos θ (6)

where g is the acceleration of gravity and v is the forward
speed of the vessel.

The parametric directional wave spectrum is usually based
on a 10-parameter bi-model spectrum. Since the shape param-
eter λ has a weak influence on wave-induced loads and ship
motion [16], its value has been fixed as 1. Therefore the wave
spectrum is given by:

E(ω, θ) =
1

4

2∑
i=1

5

4
ω4
mi

H2
si

ω5
exp [−5

4
(
ωmi
ω

)4]

×A(si) cos2si (
θ − θmi

2
)

(7)

where Hs is the significant wave height, θm is the mean wave
direction and ωm is the model frequency. The spectrum in
Eq.(7) can be referred to as a Pierson-Moskowitz spectrum
with the cos2s spreading model. Since the model considers
two separated wave components (i = 1, 2), it is capable of
representing a variety of spectrum shapes. The constant A(s)
in the cos2s model is difined as:

A(s) =
22s−1Γ2(s+ 1)

πΓ(2s+ 1)
(8)

where Γ demotes the Gamma function and s is the spreading
parameter.

The estimation problem can be established through Eq.(5),
where the left-hand side is estimated by measured ship motion
response and the right-hand side is obtained through theoret-
ical calculations. By minimizing the difference between the
two sides in Eq.(5), the sea state parameters can be obtained.
In this way, a minimization problem is formulated through the
following objective function:

min
x

n∑
i=1

n∑
j=1

(Sij − Ŝij(x))2 (9)

where Sij is the cross spectrum from measured ship motion
responses and Ŝij is the cross spectrum from theoretical
calculation with wave parameters x. The wave parameters
in this paper is representing by a 8-component vector x =
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[Hs1, ωm1, θm1, s1, Hs2, ωm2, θm2, s2]. n is the number of
used ship motion components and it is set as 3 in this paper
since only the sway velocity, roll, heave are used.

This leads to a non-linear optimization problem. We ran-
domly sample 20 initial points from the wave parameters space
and then the L-BFGS-B algorithm is used, the estimated wave
parameters are selected as the one with the lowest value in
Eq.(9). In this way, a near-optimal result is achieved.

When the 8-component wave parameters are determined, the
2D directional wave spectrum is obtained. Then the estimated
significant wave height Ĥs and the mean wave period T̂m can
be calculated as follows:

Ĥs = 4
√
m0

T̂m = m−1/m0

(10)

where m0 and m−1 represents the moment of wave with order
0 and -1, respectively. Specifically, mn =

∫∫
ωnE(ω, θ)dωdθ

with order n.

D. Uncertainty-aware fusion

As shown in Fig. 2, the estimation results from the machine
learning model and the wave buoy analogy method are as-
sumed to follow a distribution as P (y|ML) and P (y|WBA),
respectively. Since P (y|ML) and P (y|WBA) are indepen-
dent, the final result can be obtained through eq.(11). In this
way, the hybrid estimation results would move towards the
WBA results if the uncertainty of the ML results are high.

P (y|ML,WBA) = P (y|ML) · P (y|WBA) (11)

The P (y|ML) follows a Gaussian distribution with mean
µML and variance σ2

ML, which can be calculated by eq.(3).
For the wave buoy analogy method, the uncertainty is not easy
to measure directly, a Gaussian distribution is also assumed
for P (y|WBA) with mean µWBA (calculated by eq.(10)) and
variance σ2

WBA. Then the final estimation result is:

yML,WBA = µML +
σ2
ML(µWBA − µML)

σ2
ML + σ2

WBA

(12)

Here σ2
WBA is a parameter which can be tuned to adjust the

final results towards ML or WBA results. The computational
complexity of the hybrid approach is O(n3 + m2), where n
is the number of samples used in the ML model and m is the
number of undetermined parameters in the WBA method.
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Fig. 3. Sea State information in the middle Norway at 12:00, 13th, June,
2018 reported by the Norwegian Meteorological Institute.

IV. EXPERIMENT

A. Data

The experiment was conducted based on historical data
acquired through log files created by a data acquisition system
onboard the RV Gunnerus. The one-year time period from
June 2017 and ending in October 2018 was selected. For all
measurements in the data set, a sampling rate of 1 Hz was
observed.

The maneuvering data that the vessel is cruising with a
constant speed and constant heading is obtained, which results
in a total of 47 trajectories. The cruising speed of the vessel is
about 10 knots. The trajectories are then cut into 20 minutes
segment without overlapping since the sea state usually re-
mains unchanged for 20 minutes. Three sensor measurements
related to the vessel motion were obtained: sway velocity, roll,
and heave. These measurements are responsible for estimating
the sea state. Two additional variables longitude and latitude
are obtained, which is for matching the target sea state into the
motion responses. Table. I gives all the input variables used
in this study. Ranges are given as maximum and minimum
values observed in the time series of each variable.

TABLE I
SHIP MOTION RESPONSES USED IN THIS STUDY AS INPUT

Variable name Range Unit
Sway velocity [-2.64, 3.23] knots

Roll [-13.00, 12.01] deg
Heave [-2.03, 2.13] m

The sea state information is collected from the weather
forecast system provided by the Norwegian Meteorological
Institute (MET). Since the vessel is only operating in the west
coastal region of Norway, the coastal data is used. The coastal
wave data is obtained by a numerical wave model which is run
on an 800-meter grid with ECMWF and AROME atmospheric
force. Two sea state characteristics are considered: Significant
wave height Hs and mean wave period Tm. Fig. 3 shows
the contour plot of the significant wave height in the coastal
region of middle Norway on a specific day. The two sea
state characteristics are then matched to the ship motion data
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Fig. 5. Illustration of the data we collected from R/V Gunnerus operating on
the west coast of Norway. The red lines denote the trajectory of the vessel.

through position information. Specifically, the longitude and
latitude corresponded to the ship motion data are used to
query the nearest sea state information. The process is done
by utilizing a ball tree with the Haversine distance.

Fig. 4 shows the sea state distribution of the collected
data. It is shown that the significant wave height is mostly
distributed around 1m. The reason is that the vessel is usually
operated near the west coast of Norway and it is not likely to
go far away from the shore, as shown in Fig. 5.

B. Evaluation Metrics

As presented in Section IV-A, the ship motion data is cut
into segments of 20 minutes. For the ML method, the segments
are divided into 5 subsets without shuffling. In this way, the
segments that come from the same trajectory would not end
up in different folds to prevent data leakage. Among the 5
subsets, a single subset is retained as the validation data, and
the remaining 4 subsets are used as training data. The process
is then repeated 5 times and the out-of-fold predictions are
used. In parallel, the WBA method is utilized to provide the
same kinds of predictions. The RAOs used in the WBA method
is calculated through a hydrodynamic workbench ShipX. The
hybrid predictions are given by combining the out-of-fold
predictions from the data-driven model and the predictions
from the parametric wave buoy analogy method. To evaluate
the performance of the methods, the mean absolute error
(MAE) is used. The MAE is calculated as follows:
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Fig. 6. Number of selected features VS. MAE of significant wave height and
mean wave period.

yerr =
N∑
i=1

|ypredi − yactuali | (13)

where N is the number of sample. ypred and yactual denotes
the predicted and actual value, respectively.

C. Machine Learning Model Development

The development of the machine learning model consists
of feature extraction, feature selection, and model training.
As described in Section III, four different kinds of features
are extracted and only the salient features are selected. Once
the salient features are determined, these features can be
constructed and used in the Gaussian process model in the
deployment stage. The training takes around 3 seconds using
the Intel Xeon W-2225 CPU. Fig. 6 shows the mean absolute
error (MAE) versus the number of used features for the
Gaussian process model. The features are ranked by the
mRMR criterion. The blue line indicates the significant wave
height while the red line indicates the mean wave period.

It is shown that the performance of the model first increases
with the number of features and then the performance de-
grades. The reason is that some of the features are similar and
therefore a certain degree of feature redundancy exists. When
the selected features exceed a certain value, the MAE of the
model starts to increase. The optimal number of features uses
for Hs and Tp is 15 and 20, respectively.

In order to understand what kind of features are used on
the developed model. The features used in our ML model are
shown in Fig. 7 and Fig. 8 for significant wave height and
mean wave period, together with the corresponding score from
mRMR criterion. The motion is in the first bracket while the
feature extracted from this motion is in the second bracket. The
approximation and detail component from wavelet transform
is denoted as “approx” and “detail”, respectively. It is shown
that for the significant wave height, the features related to
the amplitude or the strength of the signal is favored. As
for the mean wave period, the focus is given to the spectral
and wavelet features. The selected features fit our intuition
since the wave height is related to the magnitude of ship
displacement, and the response spectrum shape and the signal
in different frequency range is sensitive to the wave period.
The development of the ML model is finished.
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Fig. 7. Features ranked by mRMR criterion for significant wave height.
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Fig. 8. Features ranked by mRMR criterion for mean wave direction.

D. Effect of σ2
WBA

To develop the hybrid model, the uncertainty of the WBA
method is required. Since the uncertainty of the model-based
WBA method can not be directly represented, a constant
parameter σ2

WBA is then introduced to express the uncertainty.
Generally, larger σ2

WBA suggests that we have less confidence
in the WBA estimation and vice versa. Fig. 9 and Fig. 10 show
the MAE versus σ2

WBA in terms of significant wave height and
mean wave period, respectively.

In these two figures, the MAE of the hybrid method first
drops and then steadily increase with the increase of σ2

WBA.
The MAE of the hybrid method is similar to the WBA method
when σ2

WBA is small and it is similar to ML predictions when
σ2
WBA is large. The MAE of the hybrid method can be lower

than the ML method when σ2
WBA exceeds a certain value.

This phenomenon is more obvious for the significant wave
height as shown in Fig. 9. The hybrid method only reduces
the MAE for the mean wave period in a small range. The
reason is that the mean wave period estimated by the WBA
method has similar or even higher errors when comparing with
the results with high uncertainty from the ML method. From
the sensitivity analysis, the optimal values for σ2

WBA for the
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Fig. 9. Effect of σ2
WBA on the estimation error of the significant wave height.
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Fig. 10. Effect of σ2
WBA on the estimation error of the mean wave period.

significant wave height and the mean wave period are around
0.5 and 3.5 in this study. These values yield the lowest error
for the hybrid method.

E. Performance Evaluation

In this part, the performance of different methods is eval-
uated. A baseline model named SeaStateNet [22] is imple-
mented here for comparison. SeaStateNet is an end-to-end
deep learning model that directly uses the raw sensor as input.
In order to distinguish between this ML model with our ML
model, SeaStateNet and GP are used as the notation in this
part.

Fig. 11 shows the significant wave height for each sample,
where MET stands for the “actual” value from the Norwegian
Meteorological Institute. Fig. 12 presents the same graph for
the mean wave period. The value of σ2

WBA are selected as
0.5 and 3.5 for significant wave height and mean wave period,
respectively (see Section IV-D). The GP model provides fairly
accurate results in terms of the significant wave height. For the
mean wave period, the predictions are mostly distributed in the
range of 5s to 8s, therefore it provides relatively bad results
for low and high wave periods. Similar results are observed
for the WBA method and the SeaStateNet model. The reason
might be that the vessel itself is a filter and its motions are only
sensitive in a specific range of the wave frequency. The hybrid
model predictions are the GP model predictions corrected
by the WBA method. As shown in Fig. 11, the GP model
predictions with high uncertainty are corrected, which can be
easily observed for samples 17, 51, and 52. The GP predictions
and hybrid predictions in Fig. 12 is quite similar since we put
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Fig. 11. Estimation of significant wave height by different approaches.
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Fig. 12. Estimation of mean wave period by different approaches.

a relatively large σ2
WBA. The reason is that the results from

WBA for the mean wave period are relatively less accurate
compared with the significant wave height.

Table. II summarized the overall performance in terms of
MAE. The GP model performs better than the SeaStateNet
model. The reason might be that our data is limited. It is
shown that the GP predictions provide an overall low error
when comparing with the WBA method. The hybrid method
reduces the MAE in terms of significant wave height by about
10% when comparing with the GP method. For the mean wave
period, the hybrid method gives a similar error with the GP
method. From the experiment, the hybrid method can reduce
the estimation errors by correcting the high uncertainty GP
predictions with the WBA predictions. Compared with the rest
of the models, the hybrid model has the smallest error.

TABLE II
MAE OF DIFFERENT SEA STATE ESTIMATION METHOD

Sea State SeaStateNet WBA GP Hybrid (GP+WBA)
Hs(m) 0.392 0.316 0.268 0.248
Tm(s) 1.758 1.998 1.533 1.529

F. Discussion

The proposed hybrid method consists of a data-driven
method and a model-based method. The error of the model-
based wave buoy analogy method comes from the following
aspects: (1) the assumption of parametric wave spectrum; (2)
the errors from spectral analysis; (3) the uncertainty of the
transfer function; (4) the nonlinear optimization procedure.
Even though the data-driven approach does not subject to
the limitation above, it is prone to be failed when the new
sample is not from the same distribution as the training data.

The wave buoy method is used to compensate for the results
from the data-driven method when the sample is unlikely
from the training data, which is represented by the outputs
with uncertainty from the data-driven method. The uncertainty
should accurately characterize the confidence of the results.
Therefore the success of the proposed method relies on the
accuracy of both methods. The upper bound error of the
hybrid method is the method with a higher error, which is
the WBA method in this case. To summarize, the proposed
hybrid method tries to eliminate the disadvantage of the data-
driven method with the model-based method. However, the
correctness of the uncertainty representation and the accuracy
of the model-based method are two key aspects for this
approach.

V. CONCLUSIONS

Estimating the sea state from measured ship motion re-
sponse is a complex and challenging task. As a way to reduce
the possibility of failure in the ML model when the encoun-
tered sea state is not in the training set, estimation results
from the ML model were combined with the results from
the model-based wave buoy analogy method. This results in
a hybrid estimation approach. In the ML model, the Gaussian
process is used, which allows obtaining not only the estimation
results but also the uncertainty of the estimation results. When
the uncertainty of the ML model results can be obtained, the
WBA results are used to compensate for the ML results based
on its uncertainty. Specifically, the more uncertainty present in
the ML model, the more the final results will be relying on the
WBA method. This is accomplished by the proposed fusion
module. A substantial decrease in the mean absolute error was
observed for the significant wave height, with a reduction of
error of nearly 10%. For the mean wave period, the hybrid
approach shows a similar performance compared to the pure
ML model in this case.

This study suggests that the proposed hybrid method offers
better performance compared with the pure ML or the pure
WBA method. The major drawback of this approach is that
if the model-based method is inaccurate and the trust in
this method is high. Also, the parameter σ2

WBA needs to be
determined by expertise or trial and error. Since the ML model
is expected to get better if more data is available, the proposed
hybrid model could be a transition from a pure model-based
method to a pure data-driven method. Future research will
focus on developing a machine learning model to estimate
the 2D wave spectrum instead of wave characteristics. In
addition, incorporating the estimation method into control or
path planning of marine vehicle will be investigated.
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