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Abstract

In this master thesis Al-Mg-Si alloys are studied using kinetic Monte Carlo
simulations governed by energy barriers in order to gain insights in the pre-
cipitation process. The work is a continuation of earlier works that modelled
the barriers from cluster expansion on activation energies from density func-
tional theory (DFT) calculations. This work is expanded by implementing a
kinetically resolved activation barrier model that ensures the preservation of
the total energy, and maintaining detailed balance during simulation by expli-
citly including the total energy di�erence in the expression. The two methods
are both trained on the same training data, and simulated using a system
of 25 ◊ 25 ◊ 25 unit cells in a face centred cubic lattice structure containing
0.77% Si and 0.67% Mg at room temperature. The new method introduced
an RMSE of 38.71 meV compared to 9.14 meV for the original method using
the same training data. None of the methods are seen to form clusters during
simulations, but the large drift in energy introduced in the earlier works was
corrected by the new method. A third model barrier seen to form clusters
from earlier works has been tested with interaction coe�cients using DFT
bulk calculations. Simulations using the new coe�cients resulted in no clus-
tering, indicating that the original coe�cients was overestimated an not well
suited for representing this system. The problems with the system getting
stuck during simulation introduced by the cluster expansion method has been
resolved using the second order residence time algorithm which decreased the
computation time with a minimum factor of 3.

The face cubic lattice structure used in the simulation have been expanded
to enable jump into octahedral site, enabling the simulation to include form-
ation of precipitates. However, the lack of clustering using the implemented
methods prevents the precipitates to form. This can most likely be solved by
improving the training set or improving the way coe�cients from the cluster
expansion is chosen.
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Sammendrag

I denne masteroppgaven er Al-Mg-Si legeringer undersøkt ved hjelp av kinet-
isk Monte Carlo simulasjoner styrt av energibarrierer. Arbeidet er en fortset-
telse av tidligere arbeid som modellerte barrierene ved hjelp av klyngeekspans-
jon på aktiveringsenergier fra tetthetsfunksjonalteoriberegninger (DFT). Dette
arbeidet er utvidet ved å implementere en kinetisk løst aktiveringsbarriere som
sikrer at totalenergien er bevart og detaljert balanse er opprettholdt ved å
inkludere totalenergien eksplisitt i uttrykket. De to metodene er begge trent
på samme treningssett og simulert ved å bruke et system med 25 ◊ 25 ◊ 25
kubisk flatesentrerte enhetsceller og legeringen består av 0.77% Si og 0.67%
Mg i romtemperatur. Den nye metoden introduserte en RMSE på 38.71 meV
sammenlignet med 9.14 meV for den originale metoden ved å bruke samme
treningssdata. Ingen av de to metodene har tendenser til danne klynger i løpet
av simuleringen men den store energidriften introdusert i det tidligere arbeidet
ble korrigert av den nye metoden. En tredje barrieremodell som er observert til
å danne klynger har blitt tested med nye interaksjonskoe�sienter ved bruk av
DFT bulkkalkulasjoner. Simuleringer med de nye koe�sientene resulterte med
ingen klynger som indikerte at de originale interaksjonskoe�sientene var over-
estimerte og ikke egnet til bruk i dette systemet. Problemene med at systemet
satte seg fast under simulering introdusert av klyngeekspansjonen, ble løst
ved hjelp av andre ordens residenstidalgoritme som reduserte utregingstiden
med minste faktor 3. Den kubisk flatesentrerte gitterstrukturen brukt i sim-
uleringen har blitt utvidet til å muligjøre hopp til oktahedriske gitterpunkter.
Dette åpner mulighetene til å danne presipitater i dette systemet. Mangel på
dannelsen av klynger ved hjelp av barrieremodellene forhindrer imidlirtid dan-
nelsen av presipitater. Dette kan mest sannsynlig løses ved hjelp av å forbedre
treningsdataen eller forbedre måten koe�sientene fra klyneekspansjonen er
valgt.
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Chapter 1

Introduction

Aluminium alloys are materials widely used by industry due to having high
corrosion resistance, light weight and high strength abilities. The alloys advant-
age of being light-weight but strong a favourable property in the automotive
industry due to cost saving and eco-friendliness [1]. With the increase of in-
terest in lowering the CO2 emissions, the interest of these alloys are on the rise,
motivating continuous advancements in the field. One of the popular types of
these alloys are the Al-Mg-Si alloys, also referred to as 6xxx alloys, which
is aluminium with the addition of silicon and magnesium. The combination
of these three atoms have seen to form beneficial clusters and precipitations,
small coherent structures in the material creating strain e�ects, when exposed
to ageing [2].

Ever since the introduction of the computer, numerical approaches to sim-
ulate the molecular systems has increased in importance along with computa-
tional power. Combining the numerical approaches with experimental research
has proved to be a fruitful combination in order to gain important insights to
the evolutions and properties of these alloys on a molecular level. Albeit the
great interest, numerical models of the kinetics of the solute clustering in Al-
Mg-Si alloys are still lacking in quantity, so developing these algorithms is of
high relevance both for scientific and commercial purposes.

One of the numerical methods used to sample these types of alloys is the
kinetic Monte Carlo method. This statistical way of doing molecular modelling
samples the configurational space according to probabilities of certain moves.
These probabilities are governed by transition rates, which is usually calculated
by the activation energies between two adjacent states.

The method used to calculate the activation energy will therefore majorly
a�ect the outcome of the simulation, motivating the importance of finding an
expression to accurately represent the physically correct activation energies.
The work done in this thesis will continue on the earlier works of Øystein
Nygård during his master thesis [3] in colaboration with the SumAl project
where he expanded a KMC code based on an article of Liang et al. [4] to
calculate activation energies using a machine learning approach. This method
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2 Haltbakk: Kinetic Monte Carlo of Al-Mg-Si alloys.

is called cluster expansion, and the method did well at representing the ac-
tivation energies calculated from DFT, giving it a large potential to resemble
the correct physical activation energies. However, the simulations done using
the new method resulted in no clustering dynamics, and a large non-physical
drift in the logged change of energy. The simulation was also restricted to the
FCC lattice, making it unable to form precipitates with atoms residing on
other sites than on the FCC matrix, such as the favourable —ÕÕ precipitate.
During simulation, the activation energies found from cluster expansion could
be so small that it trapped vacancies in small energy wells, making the system
stuck using CPU-time on non-productive jumps back and forth, resulting in
eventually having to stop the simulation from being finished.

The work in this thesis is an attempt at finding the solutions to the exper-
ienced problems using the cluster expansion method previously implemented,
in order to fully take advantage of the benefits of accurate activation energies
from DFT calculations. The solutions to the problems will be split in three
parts. The first part is trying to resolve the energy drift using a method that
removes the dependency of the direction of the jump. This will be done using
the kinetically resolved activation barrier method, a method that splits the
expression for activation energy into two parts, the average activation energy
and the energy di�erence between the two adjacent states. Using this method
will need a way to calculate the total energy di�erence that is not too compu-
tational expensive. For this, the cluster expansion method will be attempted
to find a good representation of the total energy, as well as trying a simple
expression assuming contributions to the energy di�erence to be from nearest
neighbours only. The second problem addressed will be the problem of the
system getting stuck during simulations. One of the main advantages of kin-
etic Monte Carlo is the ability to do simulations on longer time scales. One
of the goals is therefore to implement an algorithm that prevents unproduct-
ive jumps by predicting the probability for jumps that enables the system to
evolve. By using the probability for unproductive and productive jumps, both
the transition rates and time to escape each state will be able to be scaled to
represent the physical time evolution correctly.

The third problem of the simulation being restricted to the FCC lattice
will be solved by introducing the possibility for a jump to octahedral sites,
which enables the system to form precipitates like —ÕÕ.

The thesis will in chapter 2 introduce the theoretical background of the
Al-Mg-Si alloy and the precipitation process. Furthermore, it will present the
theory and demands of the kinetic Monte Carlo method and introduce the
first and second order time algorithm. The di�erent methods of calculating the
activation energies used in this work is presented, which includes the method
used by Liang [4], cluster expansion, kinetically resolved activation barrier and
the Brøndsted-Evans-Polanyi relation.

The implementation will be presented in chapter 3, where the methods
behind the new implementations will be presented. This includes a general
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introduction to the existing frameworks the new implementations are built
on, the implemented KRA method with the use of the average barrier and the
method for calculating the total energy, second order residence time and the
extension allowing octahedral jumps to happen.

The results from the new implementations is presented in chapter 4. The
chapter will go through the performance of the existing and new methods of
calculating activation energies by benchmarking them against the activation
energies from DFT calculations. The method using KRA includes the results
from the cluster expansion of the total energy, which is compared to an existing
method of calculating total energy for a configuration. Results for simulations
using these expressions activation energy is presented and compared in terms
of clustering, di�usivities and energy evolution. The results from simulations
using the first and second residence time algorithm is presented and compared
in terms of time spent doing an iteration, number of reversals and CPU-time
spent on finishing a simulation. The chapter is closed by discussing the sources
of errors, possible solutions and overall results.

The thesis ends in concluding remarks and thoughts in chapter 5 and
thoughts for future improvement in chapter 6.





Chapter 2

Theory

This chapter will present the background information of the work done in this
thesis, including the precipitation of the Al-Mg-Si alloy, the Kinetic Monte
Carlo method and the di�erent ways of obtaining the activation energy re-
quired to run the simulation.

2.1 Al-Mg-Si alloys

2.1.1 Hardening and precipitation

The strengthening of metal alloys is done doing by a range of di�erent ap-
proaches according to what enhancements are needed and whether the al-
loy is heat treatable or non-heat treatable [2]. Typical enhancements improve
properties like weight, conductivity, strength, and flexibility, resulting in more
environmentally friendly, better functioning, and cheaper technology and ma-
terials [1] [5]. The di�erent methods usually require a combination of di�erent
processes that changes the properties. The strengthening of alloys is widely
used across several industries, and especially aluminium alloys have the ad-
vantage of having a high strength-to-weight ratio. The four general methods
to strengthen metal alloys are by solid solution, dislocation, grain boundary,
and precipitate strengthening [5]. The latter is the focus of this work and is of
great interest across industries.

The aluminium alloy used for this project is under the category of 6xxx
series of alloys. The 6xxx series of alloys consists of the alloying solutes silicon
(Si) and magnesium (Mg), and the alloy usually consists of 0.5-1.3 weight
percentage of solutes [6] [7]. Other alloying elements such as Li, Ag, Zn, Ge, Fe,
Mn, and Cu can also be added to the Al6xxx alloy to increase the strengthening
properties [8] [9].

The Mg and Si solutes added to the alloy will cluster and form precipitates,
small cohesive structures in the material and these new structures create the
interface strain between the Al matrix and the solutes[10]. The precipitation

5



6 Haltbakk: Kinetic Monte Carlo of Al-Mg-Si alloys.

process is in the literature described as a sequence of phases [6][10]

SSSS æ atomic clusters æ GP zones æ —ÕÕ æ —Õ æ —

where the starting point is a supersaturated solid solution (SSSS). The su-
persaturated solutions form by heating the alloy to a temperature just below
melting temperature, forming a solid solution, usually between 400 and 500¶C
[11]. This solid solution is rapidly cooled down in a process called quenching,
which is too fast for the solution to reach equilibrium, and the solution is con-
sequently supersaturated. The next step is exposing the SSSS to ageing which
combines natural ageing at room temperature and artificial ageing at elevated
temperature. The solutes out of equilibrium will start to form clusters in this
process. The di�erent ageing temperatures and times will determine the sizes
and densities of the precipitates, which will determine the properties of the
material. The ageing process is delicate, and over-ageing and under-ageing
(too high or too low temperatures or too high or too low ageing times) can
lead to both unwanted and wanted precipitation forming [12] [10] [13].

The peak strength is usually obtained after a few hours with temperatures
between 150 and 200 ¶C. the increase in strength is caused by the increased
density of the — ” precipitates together with the Guinier-Preston (GP) zones.
These hardening precipitates will with more ageing decrease and form more
stable types [11]. The work in this project focuses on the earlier stages of the
precipitation sequence, more specifically about the —” precipitates.

Figure 2.1: Bright field TEM image of an Al6060 alloy stored for 17 years
at room temperature. a) shows the needling shape of the precipitates and b)
shows a zoom on the —ÕÕ precipitates as structures made of multiple —ÕÕ eyes.
Image taken by Senior researcher at SINTEF Department of Materials and
Nanotechnology, Calin D. Marioara.
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Figure 2.2: HAADF-STEM taken by Calin D. Marioara, Senior researcher
at SINTEF Department of Materials and Nanotechnology. The image shows
three —ÕÕ-eyes breaking the symmetry of the FCC structure. The breaking of
structure causes a strain e�ect.

2.1.2 Al-Mg-Si structure and —ÕÕ
precipitates

Pure aluminium at room temperature has a face centred cubic (FCC) struc-
tured lattice, a close-packed lattice structure. The FCC lattice is illustrated in
figure 2.3, with the corner sites illustrated as white spheres and face centred
sites illustrated as red spheres. The lattice is built out of repetition unit cells,
with each conventional unit cell including 4 identical lattice sites. When adding
a few percentages solutes dispersed in the system, it is still assumed that the
structure is similar to the Al matrix FCC. When the systems start to cluster
and for precipitates, the FCC structure is no longer energetically favourable,
and the crystal structure will change depending on the precipitate.

The beneficial —ÕÕ precipitation has a structure that slightly shifts the lat-
tice cell and forms several eye-looking shapes, as seen in figure 2.2. Similar to
the other metastable precipitates in Al-Mg-Si alloys, the —ÕÕ precipitates are
elongated and coherent in the <100> direction and forms in needle shapes as
seen in the bright field TEM image of the Al6060 alloy in figure 2.1. The cross-
section of the —ÕÕ is typically between 1 and 15nm2 and the length between
30 and 100 nm. The unit cell of this structure di�ers slightly from the FCC
structure and is monoclinic [11]. How it forms and in what composition it
is most stable is still a relevant field of study, and there are continuous up-
dates. Compositions was for a long time believed to be Mg5Si6, but has been
later been found to be Mg4Al3Si4 using HAADF-STEM. However, the most
stable chemical composition has calculated as Mg5Al2Si4 using DFT. [11]. In
unpublished work with density functional theory (DFT) calculations done by
Inga G. Ringdalen, Researcher at SINTEF Industry, Department of Materials



8 Haltbakk: Kinetic Monte Carlo of Al-Mg-Si alloys.

(a) (b)

Figure 2.3: Illustration of the conventional unit cell consisting of cubic lattice
sites (white) and face centred sites (red). Figure b) includes the placement of
the octahedral sites (blue) in the FCC structure. The unit cell includes four
lattice sites in a), with octahedral sites b) this includes 4 extra sites per unit
cell.

and Nanotechnology, multiple ways of forming a —ÕÕ precipitate from an ini-
tial state were observed. One of the observed pathways is shown in figure 2.4,
and the observations are a jump into a corner that creates a formation of 4
Mg that pushes the 5th middle Mg into an octahedral site in the same plane
as 4 Si atoms. This Mg pushes on the surrounding Si atoms, which creates
an o�set, thus creating the observed eye. The octahedral site is as a shift of
(0,0,1

2) relative to the atom sites in the FCC unit cell and is depicted as the
blue spheres in figure 2.3b.

Figure 2.4: Observed steps during DFT calculations for a jump into octa-
hedral sites creating a —ÕÕ-eye First step in this event is a jump to a vacant
position seen in the left picture. In this DFT calculation, the first jump pushes
the Mg in the middle of four Mg into the octahederal site, creating the —ÕÕ-eye
seen in the last step. The layer shared by the Mg in the octahedral site and
the surrounding 4 Si atoms are marked blue and red.
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2.2 Kinetic Monte Carlo

This section will introduce the numerical method used to simulate the Al-Mg-
Si alloys used in this project. The method used for this work is the kinetic
Monte Carlo algorithm, also called the rejection-free Monte Carlo. There are
several methods in order to simulate the behaviour of atomic systems, however
all methods have di�erent utilization based on their strengths and weaknesses
and what is under interest.

Monte Carlo (MC) simulations have been used for various problems since
first introduced by Ulam and Neumann in the ’40s [14]. It is used in a wide vari-
ety of fields including in risk analysis [15], finance [16] and statistical mechanics
[17]. The general idea with these methods is to use random numbers to choose
moves according to their probabilities to explore a pool of possible events.
The most commonly known MC algorithm is the Metropolitan Monte Carlo
algorithm introduced by Metropolis et al. [18]. It is a commonly used method
to study equilibrium properties of physical systems. The method samples a
system by trial and error, where moves that meet a particular condition is
accepted; otherwise, the move is rejected. A drawback for this method is the
lack of an objective definition of time, making it unable to estimate some
time-dependent properties and kinetics. Another commonly used method to
simulate a system on a molecular level is Molecular Dynamics (MD) which
uses the classical equations of motion to propagate the system over time. The
advantage of this method is that it ensures correct dynamical evolution and
can estimate time-dependent properties. However, to have accurate develop-
ment of the system, the time increment has to be small (≥ 10≠15s ), making
it hard to simulate dynamics over longer periods of time. Both these methods
are under development and have consistently improved over the years [19],
making the algorithms more versatile and e�cient.

In the 1960s, a new Monte Carlo method was developed to explore the
dynamic evolution of an atomic system [20]. This algorithm has later gotten
the name kinetic Monte Carlo (KMC) and has become a popular tool to study
material properties such as surface adsorption, di�usion and growth [20].

The KMC algorithm is similar to the Metropolis MC, but it di�ers in KMC
by performing a step at each increment and updating time for each jump to
happen instead of having steps doing rejections. This makes for an e�cient
algorithm for systems where the escape time is significantly long, such as for
systems with higher activation energies.

The steps chosen for the KMC simulation is based on rates to transition
from state i to j, �ij . These transition rates are calculated from the activation
barrier Eact

ij :

�ij = ‹ exp
A

≠
Eeact

ij

kBT

B

(2.1)

where ‹ is the attempt frequency, kB = is the Boltzmann constant, T is
the temperature and Eeact

ij is defined as the energy needed to transition from a
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EactEij

Esaddle

Direction of reaction 

Energy Ej
Ei

EactEji

Figure 2.5: Illustration of the activation energy, which is the energy needed
to perform a jump from site i to site j, Eact

ij = Esaddle ≠ Ej

state i to a state j and is illustrated in figure 2.5. The activation energy is the
energy di�erence between saddle and initial energy path from i to j, Esaddle,
and the configurational energy at state i is:

Eact
ij = Esaddle ≠ Ei (2.2)

The calculation of activation energies will be described in section 2.3.
In order to choose an event from the Ne number of possible events, the

cumulative sum of rates is used:

Ri,k =
kÿ

j=1
�ij (2.3)

which is the sum of all the rates of the possible events. What events to include
in this are defined by the user. For use for simulating alloys, these are usually
defined as the transition between two adjacent states. In order to choose an
event, a number 0 < u Æ 1 from a random distribution is chosen, and the
event that fulfils

Ri,k≠1 Æ uRi,Ne < Ri,k (2.4)

will be the event executed. Figure 2.6 illustrates an example of 7 possible
events, where the event with rate �2 satisfies the condition uR7 and event 2 is
chosen. Note that larger rates give a larger probability to be chosen.
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Figure 2.6: Illustration of the process of choosing which move to make next.
The rates �i corresponds to the rates of each possible move and 0 < u Æ 1 is a
random number. The move i chosen is the one that satisfies �i = uRn, which
in the figure corresponds to the event with rate pointed to by the arrow, �2.

Criteria for correct sampling

An essential requirement for the Monte Carlo of dynamic systems is to cor-
rectly describe the system towards equilibrium as t æ Œ. Since the method
statistically samples the configurational space, the underlying conditions for
reaching equilibrium must be met and the resulting sampled distribution must
correspond to the distribution of the actual system. Newman and Barkema
[21] describe some requirements and sum it up in three criteria: the simulation
steps has to be Markovian, ergodic and obey detailed balance.

For a move from state j to i to be Markovian, the move should only be
dependent on the information about the current state and the possible next
state. How the system ended in its current state should not a�ect the next
transition. Thus the probabilities to transition should only depend on state i
and j, and these transition probabilities should be independent of time. The
probabilities of transitioning from j to i are defined as the rate for a jump to
i over the sum of all the rates Ri,Ne :

–i = �ijqk
j=1 �ij

= �ij
Ri,Ne

(2.5)

which also satisfies the additional constraints that the sum of the probabilities
must be 1:

Neÿ

i

–i = 1. (2.6)

The second criterion of ergodicity means that each state of the config-
uration is possible to reach within finite time. This implies that no state in
the simulation cannot be visited and ensures that states are generated with
their correct Boltzmann probability. The path does not need to be directly
accessible from each state, but it must be able to get there if given enough
steps.

The last mentioned criterion for ensuring correct sampling is the criterion
of detailed balance. Detailed balance is the criterion that ensures that the
equilibrium reached with t æ Œ is the Boltzmann probability distribution.
This is maintained by requiring that the probability of being in state j, pj and
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the probability to transition to state i, –i is the same as being in state i and
transition to state j:

pj–i = pi–j (2.7)

2.2.1 First order time algorithm

Since a jump happens at each KMC iteration, the between events must be ac-
counted for by calculating it accordingly. Bortz et al. [22] introduced a method
for calculating this time using the n-fold way algorithm, also called the first
order residence time, · . This time is equivalent to the average time the system
is expected to remain in a given configuration and is given by

· = 1
Ri,Ne

(2.8)

with Ri,Ne is the sum of all rates for Ne events. The time for the KMC system
with a vacancy concentration Cv and n sites is scaled as

�t = ·

nCv
= ·

C
. (2.9)

Where C is a scaling constant. The vacancy concentration can be written as
an Arrhenius term [23]:

CV (T ) = exp
A

≠ GF
V

kBT

B

(2.10)

where the Gibbs free energy is defined as

GF
V (T ) = HF

V ≠ TSF
V (2.11)

where HF
V is the formation enthalpy and SF

V is the formation entropy for
monovacancies.

2.2.2 Second order residence time algorithm

A common problem with KMC is the trapping of vacancies, also called flick-
ering states. The flickering states occur when the energy of two or several
neighbouring states are significantly lower than others, resulting in vacancy
jumping back and forth between these states because it is the energetically
most favourable and gives the highest rates. An illustration of this can be
found in figure 2.7. These types of jumps are not very productive for a sim-
ulation as the system does not change and the residence times corresponding
to the flickering usually are short. One of the methods of circumventing this is
using a second order residence time algorithm (2RTA) presented in the works
of Athénes et al. [24] and used in other works where flickering was a problem
[25] [26] [27]. What separates this from the first order RTA is the amount of
KMC-steps considered when calculating the transition probabilities. The first
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order uses the rates from the nnn nearest neighbours, while the 2RTA also
uses the nnn nearest neighbours of the nnn nearest neighbours to calculate
these probabilities. The order of the algorithm is how many steps ahead that
is considered, and higher orders come with an increased computational cost.
It is often not considered higher orders than 4 [24].

Flickering state 
Figure 2.7: Figure illustrating the energy landscape and the flickering states
trapped in lower energies.

Two important changes are introduced with the second order RTA:
1. The probability to transition must exclude the probability contribution

arising from the previously counted reversals
2. Residence times needs to account for the time spent in reversals
The sites reached after jumps and reversal is shown in 2.8, where l is the

start position of the vacant site, i are the nearest neighbours of l, and j is the
previously visited state. k are the nearest neighbours of i apart from l.

The probability that a vacancy jumps back to its previous site from i is
calculated from equation (2.5) and denoted –̂i. The probability for a reversal
jump is the probability for the jump to site i and back to site j

—̄i = –i–̂i (2.12)

The probability that the vacancy does not jump back after a jump is

—i = –i(1 ≠ –̂i) (2.13)

The corresponding probability that the vacancy does a reversal jump to any
neighbour is

—̄ =
ÿ

—̄i (2.14)
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j

l

řj
řî

Śi Śi

i

i

i

k

–

Figure 2.8: Illustration of the second order probabilities for a vacancy at site
l. The neighbours possible to transition to is i and j is the last visited site and
a direct jump to j is forbidden. –i is the probability to transition to site i, –̂i

is the probability to jump back to previous site from site i. —i = –i(1 ≠ –̂i) is
the probability to escape via i and —̄ = –i–̂i is the probability for a reversal
jump.

and the probability for a jump to any neighbour without reversal jump is

— =
ÿ

—i (2.15)

Defining the site the vacancy jumped from as j, the probability for second order
jumps (direct jumps to sites di�erent than j or after at least one reversal) can
be written as

1 ≠ –j =
ÿ

i”=j

—i +

Q

a
ÿ

i”=j

—̄i

R

b (1 + ... + —̄n + ...)
A

ÿ

i

—i

B

(2.16)

The first term on the right hand side corresponds to the direct escaping to any
neighbour i ”= j and the second term is the probabilities for n reversal jumps
before escape. Rautiainen et al. [25] use equation (2.16) to find the relative
transition probabilities to jump back to j, Pj , and to other sites i ”= j, Pi”=j :

Pj = 1
1 ≠ –j

S

U

Q

a
ÿ

i”=j

—̄i

R

b (1 + ... + —̄n + ...)—j

T

V

= 1
1 ≠ –j

q
i”=j —̄i

—
—j

(2.17)
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Pi”=j = 1
1 ≠ –j

S

U—i

Q

a
ÿ

i”=j

—̄i

R

b (1 + ... + —̄n + ...)—i

T

V

= 1
1 ≠ –j

C

1 +
q

i”=j —̄i

—

D

—i

(2.18)

which are the transitions probabilities for a second order jump.
The residence time for these jumps must take into account the reversals

jumps. The time to escape, excluding back to site j, is
q

i”=j —i· , with · being
the first order residence time for the vacancy at the current site from equation
2.8. The average time spent doing a single reversal is an average of all the
reverse jumps to the neighbouring sites:

·S =
q

i —̄i(· + ·i)q
i —̄i

(2.19)

where ·i is the first order residence time at site i. The average time spent on
the reversal after the first one is

· (j)
S =

q
i”=j —̄i(· + ·i)

q
i”=j —̄i

(2.20)

Second order mean residence time is thus defined as the average of the time
associated with direct escapes, excluding to site j, and of the average time
spent on reverse jumps prior to escaping, scaled by the probability of a second
order jump:

· (2) = 1
1 ≠ –j

S

U

Q

a
ÿ

i”=j

—i

R

b · +

Q

a
ÿ

i”=j

—̄i

R

b
A

· (j)
S + · + —̄

—
·S

BT

V (2.21)

Furthermore, the residence time scaled for the system is

�t(2) = · (2)

C
(2.22)

with the same C as defined in equation 2.9.

2.3 Determining the activation barrier

This section will present the di�erent methods used by the SKMC code to
calculate the activation energy Eact

ij . The original script was based on the
works of Liang et al. [4] and the method of calculating the activation energy
will be referred to as the Liang method. SKMC was further expanded by the
previous master student Nygård [3] to be able to calculate the barrier using
a Bayesian approach to Cluster Expansion based on works by Sanchez et al.
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Variable Value
‘Mg≠V ac -0.015 eV
‘Si≠V ac -0.025 eV
‘Mg≠Si -0.04 eV
‘Mg≠Mg 0.04 eV
‘Si≠Si 0.03 eV
Ed

Al 1.29 eV
Ed

Mg 1.27 eV
Ed

Si 1.15 eV
Ed

V ac 0.63 eV

Table 2.1: Table showing the values from article by Liang et. al [4] used in
equation (2.23).

and Mueller et al. [28][29]. The work in this project includes introducing a new
method using the kinetically resolved activation barrier. This method is based
on the works of Van der Ven et al. [30] and explicitly includes configurational
energies. This requires a method for calculating the total energies, which is
also presented.

2.3.1 Liang

A simple model for estimating the activation energy from a jump from i to
j as presented in the works of Liang et al. [4] is assuming that Eact

ij depends
on the bonds formed and broken between the vacancy and jumping atom
when performing the jump, and what type of atom jumping. The resulting
expression is

Eact
ij = Ed

Xi
≠Ef

V ac≠

Q

a
ÿ

kœNNj

‘XkV ac +
ÿ

kœNNi

‘XkXi

R

b+

Q

a
ÿ

kœNNi

‘XkV ac +
ÿ

kœNNj

‘XkXi

R

b

(2.23)
where EXi is the theoretical di�usion activation energy for atom Xi jumping
from site i, Ef

vac is the formation energy of the vacancy, and the ‘X,Y is the
chemical interaction energies between the two atoms, X and Y . The two ex-
pressions in the parenthesis e�ectively sums the interactions between the atom
and vacancy and their nearest neighbours, k, before and after they swap. The
values in equation (2.23) is presented in table 2.1. The interaction with Al is
zero by definition.

Calculating interaction coe�cients

The method to calculate the interaction coe�cients used in Liang [4] is based
on the article by Hirosawa et al. [31] and the assumption is that the energy
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to create a bond is the di�erence in the two atoms, X and Y , being nearest
neighbour and being infinitely far apart.Al107X

Al106XY
+
+ Al108

Al107Y

Figure 2.9: Illustration of two atoms, X and Y , in an initial position infinitely
apart and a final state where they are nearest neighbours.

As figure 2.9 illustrates, the configurational energies for the atoms with
no nearest neighbours, with X and Y being nearest neighbours and pure alu-
minium must be calculated. This can be done via DFT calculations of the
bulk. The interaction coe�cient can then be calculated as

‘X,Y = (EAl106,XY + EAl108) ≠ (EAl107,X + EAl107,Y ) (2.24)

Where 108 is the number of total atoms in the simulation cell.

2.3.2 Cluster Expansion

A method implemented in SKMC by earlier master student Øystein Nygård [3]
is a local cluster expansion (CE) of Eact

ij . The method is based on the works of
Sanchez et al. [28] and Mueller et al. [29] and combines a model similar to the
Ising model in combination with Bayesian machine learning to find coe�cients
that can represent the system e�ciently in the simulation. The CE method is
a versatile method of linking configurations in a system to a property value,
and examples of use are formation energies in binary substitutional systems
[32], band gaps [33] and electronic excitations [34]. However, one of the most
important uses is to obtain the total energies for Monte Carlo simulations [35]
[36] [37] The method of CE of the energies takes advantage of the great benefits
and increased accuracy of using first-principles calculations, but without the
increased computational cost it brings.

The main idea of CE is to approximate the contributions certain configur-
ations have on a property, in this case, the energy. This can, in principle, give
an exact solution by calculating every possible configuration and including an
infinite amount of clusters, but in doing so, the CE will lose its advantage of
reducing the computation time. The advantage of this method is that the ef-
fect the di�erent configurations have on a system depends quickly converges,
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and can be truncated accordingly. The included configurations can thus be
chosen on whether they have a significant contribution to the system. These
di�erent configurations are defined as clusters and are usually defined in alloy
simulations by the size, amount of sites included, geometrical shape, types
of atoms that are present in each of these defined clusters. An illustration of
examples of clusters is seen in figure 2.10.

Full con!guration Singlets Pairs Triplets

= + ++ ...

Figure 2.10: Illustration of cluster expansion using sum of contribution of
clusters illustrated in this figure as singlets, pairs and triplets.

Mathematically the cluster expansion of a property consists of a set of
single-site basis functions multiplied to define a basis for a type of cluster and
the corresponding e�ective cluster interaction coe�cients (ECIs) [29]:

F (s̨) =
ÿ

b̨

Vb̨

Ÿ

j

⇥bj ,j(sj) (2.25)

where the b’th basis function is defined as ⇥bj ,j(sj), for site j with site vari-
able sj and the Vb̨ is the ECI for the set of single-site basis functions. The
site variable is a variable that indicates what species resides on site j. The
product of the basis functions

r
⇥bj ,j(sj) is known as the cluster function and

is denoted by
�b̨(s̨) =

Ÿ

j

⇥bj ,j(sj) (2.26)

All clusters b̨ that are symmetrical equivalent are denoted by –, and con-
tributes equally to the value property, and the corresponding ECIs should be
equivalent. The expression for the cluster using equation (2.25) and (2.26) is
thus defined for the – as:

F (s̨) =
ÿ

–

V–

ÿ

b̨œ–

�b̨(s̨) (2.27)

Which is used to express both the cluster expansion for the total energies and
activation energies in the following sections.

CE of the total energy

As mentioned, the CE is most frequently used to calculate the configurational
energies for alloys and is also applied in the SKMC by using the KRA method
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presented later in section 2.4. The clusters defined for the configurational en-
ergy are usually single sites, pairs, triplets or higher order clusters, defined by
the distances between sites, order, and site occupation. What order to include
is chosen according to needs of precision and computation time, and a method
for choosing the most fitting truncating is further explored in [38]. For use in
this work, only single sites and pairs are included.

This choice simplifies (2.27) to only contain pairs, and the expression be-
comes the sum of the coe�cients for atom type and and coe�cients corres-
ponding to all pairs.

Econf =
ÿ

i

‘i +
ÿ

i

ÿ

j<i

‘ij (2.28)

with ‘i being the single-site coe�cient at site i and ‘ij the pair coe�cients
between site i and j which only includes the pairs within the wanted number
of nearest neighbours.

The included clusters in Econf is illustrated in figure 2.11 a and the dis-
tances DNnn, of Nth nearest neighbour, is the distances that defines the pair
clusters. The clusters in this work are only including single sites and pairs up
to the third nearest neighbour.

D1nn D1nn

D2nn

D3nn

(a)

i

k l

j

Dil

Dkl

OlOk

Dik

(b)

Figure 2.11: Figure showing the di�erence between a a) cluster expansion on
the configurational energy marked with red circles and b) cluster expansion
the local contribution to the activation energy for a jump from i to j. CE on
the configurational energy counts the clusters, illustrated as single sites and
pairs with distance Dxnn. The clusters in the CE of the activation energy is
defined by their projected distance Ok and Ol, the distances from atom k and
l to the x-axes defined by the jump direction and the distances between the
jump atom and the neighbouring atom Dik. For the case of pair clusters, the
distance for the two neighbouring atoms Dkl is also included.
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CE of the activation energy

The earlier implemented version of cluster expansion in SKMC is for the activ-
ation energy directly and is discussed in depths in the master thesis of Nygaard
[3]. This is a modified version of the CE of the configurational energy and has
additional restrictions for defining the symmetrical equivalent clusters –. This
is also a local CE, and the included sets of clusters are defined within a dis-
tance from the jumping atom, Xi. Since this local variable depends on what
type of atom is jumping, and which direction, this is also considered when de-
fining the cluster. Figure 2.11 illustrates the di�erence in defining the clusters
for configurational energy and activation energy. As illustrated in 2.11b), the
symmetrical equivalent clusters, –, is defined by the jumping atom i and the
distance between each i and the neighbouring site, and the projected distance,
Ok. The projected distance is defined as the distance from the jumping atom
and the neighbour k projected on the x-axis defined by the jump direction.
The increasing restrictions on symmetry increase the amount of ECIs to be
considered when doing the fitting.

The activation energy for a jump from i to j is in this method given as

Eact
ij = V Xi +

ÿ

–

ÿ

q̨

V q̨,Xi
–

ÿ

k̨œS–ij

nq̨(Xk̨) (2.29)

where V Xi is an e�ective cluster interaction coe�cient (ECI) for the atom oc-
cupying site i, V q̨,Xi

– are the ECIs of corresponding single-site and pair clusters,
q̨ is the decoration vector, S–ij contains vectors of the lattice site indices and k̨
is one of these vectors. The decoration vector, q̨ contains the atoms that defines
the di�erent clusters and contains combinations of the di�erent clusters and
additional vacancies, i.e. [Mg, Si] for a pair cluster with Mg and Si. The cluster
function, nq̨(Xk̨) is defined as

nq̨(Xk̨) =
I

1 for q̨ = Xq̨,

0 else
(2.30)

making the last sets of sums zero if the atoms residing on site k is not defined
in the specific cluster. This will, in practice, sum all the ECI’s of those pairs
and single-sites found within the cut-o� distance.

2.3.3 Finding the coe�cients using DFT-data

In order to find coe�cients that correctly resembles the system in the simu-
lation, the training data must be physically correct and describe the correct
dynamics. The calculations for both the total energies and activation energy
for the training set in SKMC is using density functional theory (DFT), and
all the calculations are done by Inga G. Ringdalen, Researcher at SINTEF In-
dustry, Department of Materials and Nanotechnology. The DFT calculations
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done for this projects are using the Nudged Elastic Band (NEB) [39] and DI-
MER [40] method. These calculations determine the saddle points which can
be used to calculate the activation energies using equation (2.2). The activ-
ation energies, paired with the configuration of the initial state, are used as
input data in the training of the coe�cients.

Bayesian approach

The fitting procedure in SKMC is based on the works of Mueller et al. [29] and
is a Bayesian approach of linear regression. The goal of the fit is to find the
set of ECI’s, V̨ , that best approximate the energies y̨ from the configurations
stored in a data matrix, X. The Bayesian approach is fundamentally built on
Bayes theorem where the probability for finding a set of coe�cients V̨ given
the data matrix X and target values y̨ is:

P (V̨ |X, y̨) = P (y̨|V̨ , X)P (V̨ |X)
P (y̨|X) (2.31)

with the vector V̨ containing all the NV values for the ECIs from equation
(2.27), X is a matrix of size Ns ◊ NV that represents the number of each
symmetrical equivalent cluster and y̨ with the size of the number of structures
in the data set, Ns, is the corresponding activation energy.

The denominator in (2.31) can be considered a constant because this is
the probability for the energy from the training set given the structures in the
training set. P (y̨|V̨ , X) in the equation is maximized by a regular least squares
regression and its intention is to increase the probability for the activation
energy being correct from the training set given the ECIs and the structures
from the training set. The physical insight in the system is in P (V̨ |X), which
is the probability for the ECIs given the structures in the system. This is
also known as the prior distribution. It is possible to maximize P (y̨|V̨ , X) by
minimizing -lnP (y̨|V̨ , X) so the optimal V̨opt is chosen to be

V̨opt = min[≠ln(P (y̨|V̨ , X)) ≠ ln(P (V̨ |X))] (2.32)

Assuming that the activation energies have a normal distributed P (y̨|V̨ , X)
gives

P (y̨|V̨ , X) Ã
Ÿ

k

exp
A

≠(yk ≠ X̨k · V̨ )2

2‡2
k

B

(2.33)

where X̨k and ‡2
k is the row k and corresponding variance of X. Equation

(2.33) is inserted into (2.32) and the first term in (2.32) can be written as

ÿ

k

(yk ≠ X̨kV̨ )2

2‡2
k

(2.34)

The prior distribution is chosen prior to the fitting and holds information of
the values of the ECIs and the values relative to other ECIs. This is achieved
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by choosing a prior that can be represented from a matrix Q, with either such
that -ln(P (V̨ |X)) = V̨ T

QV̨ /2.
If Q is diagonal, the fitting will be the same as the ¸2 regularisation where

Q is the regularisation matrix and the maximum likelihood estimate for V̨ can
be calculated as [29]

V̨optimal = (XT
WX + Q)≠1

X
T

Wy̨ (2.35)

where W is a weighting matrix with size, Ns ◊Ns, storing the inverse variance
and Q is a matrix with size NV ◊ NV .

Using physical intuition

Choosing a good prior distribution is key for a well fitted set of coe�cients.
In the simplest case, Q is set as ⁄I, where ⁄ is a constant penalty term, and
I is the identity matrix [41]. One of the advantages of knowing the properties
of the dataset is the possibility to give some insights that can tune the fit
accordingly. For the CE the increase of number of sites included in a cluster
will decrease the contribution of that cluster, and clusters further away will
contribute less than those closer. This insight can be included in the fitting
procedure by including a prior that includes the relation

Q–– = aDb
– + d“e

– + C (2.36)

where Q–– is the diagonal element of Q, “– is the number of sites that defines
the cluster, and D– is the average distance between all the sites defined in the
cluster, i.e. the jumping atom and the corresponding single sites or pairs. The
hyperparameters, a, b, d, e and C from equation 2.36, are not given and are
fitted with the data in the fitting procedure. However, an important require-
ment in order to reduce P (V̨ |X), is the requirement that the hyperparameter
values are all larger or equal to 0.

Scoring the fit

An important factor for determining coe�cients is not only how small the
errors of the training data is, but also how well the model performs on new
datasets. Decreasing terms like root mean square error (RMSE) will do well
on the training set, however it does not take into account the possibility that
the model might be overfitted. An overfitted model is not flexible to new
configurations and can over– or underestimate contributions configurations
have on the system. A way to measure how well the model performs on a new
system is called cross validation [42]. The method splits the training data into
the training set used for calculating ECI’s, and into a validation set that tests
the performance of the fitted coe�cients. The RMSE of the validation sets are
called the CV score, and lower CV score is indicating a good fit.
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The k-fold cross validation splits the dataset into k partitions, where one
of the partitions are used as validation set and the rest is used as training
data. All the k partitions will be tested as the validation set and the average
of the RMSE for these sets will be given as the CV score.

Another method used for fits with high coe�cient-to-data ratio, is to par-
tition the training set in to Nd partitions, where Nd is the number of entries in
the dataset. This is called the leave-one-out cross-validation (LOOCV). This
tests all elements of the dataset against the fit and has larger computational
cost than the k-fold cross validation.

2.4 KRA-method

The activation energies calculated with the previous methods are only de-
pendent on the local configurations and the ECI’s does not consider the con-
figurational energies Ei and Ej explicitly. The configurational energies are just
implicitly included in the expression for the barrier (2.2), and any errors in
fitting these ECI’s are directly going to impact the system’s energy evolution
and not take in to consideration the underlying thermodynamic processes that
drive the system to equilibrium. This breaks the demands of detailed balance
because the distribution is slightly shifted. Consequently, the energy evolu-
tion will be dependent on the path that the vacancy chooses, and the end
result may be a system with an non-physical final state. A solution to try to
circumvent this is presented in the works of Ven et al. [30], and is used in
later works using di�erent studies [43][44]. The KRA method introduces the
splitting of the expression for the activation energy (2.2) into two parts: the
kinetically resolved activation energy (KRA), Q and the di�erence in total
energy �E = Ej ≠ Ei

From [30] it is given that

Q = Esaddle ≠ 1
n

nÿ

k=1
Ek (2.37)

where k is one reachable endpoint out of n points from Esaddle. For SKMC,
the number of reachable endpoints are 2, i and j, thus

Q = Esaddle ≠ 1
2 (Ej + Ei) =

Eact
ij + Eact

ji

2 (2.38)

Figure 2.12 shows that Q can be interpreted as the average activation
energy for the forward and backward jump and is independent of the direction
of the jump.

After finding Q and �E the forward activation energy can be calculated
as

Eact = Q + 1
2 (Ej + Ei) ≠ Ei = Q + 1

2 (�E) (2.39)
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Esaddle

Direction of reaction 

Energy Ej

Q

Ei
Figure 2.12: Illustration of the kinetically resolved activation energy barrier
with the average activation energy for the jump from i to j and back being
corrected by the total energy di�erence �E = Ej ≠ Ei.

Q can be calculated as a constant for the type of atom jumping, or it
can be approximated depending on local configurations using methods like
cluster expansion. For this work, the latter is chosen. The method used for the
average is the same as the cluster expansion for the activation energy (2.27)
and is fitted using the same Bayesian approach. However, instead of ECI’s, the
coe�cients for each symmetrical cluster – is renamed kinetic e�ective cluster

interactions (KECI’s), K–, representing the e�ect a pair or single-site has
on the average barrier. The fitting is done with training data that pairs the
forward and backward energies with an initial configuration and is fitted with
y being the average of the two energies.

The coe�cients from the CE of the total energies are used to calculate the
total energy di�erence. The simulation of the system would be significantly
slowed down if the configurational energy for the entire system would have to
be calculated for each step. In the simulation only �E is needed, and since
the only change between two states of the system is due to the jump, the only
calculations needed are clusters that include the jump from i and the vacancy
at j.
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2.5 BEP-relation

Another simple method to approximate the activation barrier is using the
Brøndsted-Evans-Polanyi (BEP) relation [45] [46]. This relation is assuming
that the activation barrier is linearly dependent on the configurational energy,
�E = Ej ≠ Ei and a constant E0 dependent on the type of jump atom

Eactij = E0 + k�E (2.40)

where k is a constant. The BEP model is related to the KRA method in
section 2.4 if Q is fixed and the constant k = 1/2. Physically the BEP relation
proposes that the activation energy is not dependent on the transitional state
but the energy of the two end configurations.





Chapter 3

Implementation

This chapter will present the implementations of the methods from chapter 2
which is used to obtain the results for this work. Most of the work done in
this thesis has been the implementation of new methods and expanding the
existing frameworks of the SKMC. The summary of the KMC algorithm in-
cluding the new implementations is illustrated in figure 3.1. The existing KMC
code is work done by Øystein Nygård previous master student at Department
of Physics, NTNU and Jesper Friis Senior Research Scientist at SINTEF In-
dustry, Department of Materials and Nanotechnology. The frameworks and
implementation of observers and cluster expansion is further documented in
the Appendix B of [3].

3.1 Existing frameworks

This section will briefly describe the existing frameworks for the SKMC, which
is the fundamental code the new implementations done in this work is built
on. The earlier implemented frameworks of SKMC is made for easily being
expanded to new functionalities and logging parameters. The detailed version
of the documentation can be found in Appendix B in the works of Nygård [3].

The source code of the KMC simulation is written in C due to the advant-
age of it being computationally fast. The SKMC framework has an Python
interface to be able to start the simulation and to do the CE described in
section 2.3.2. The frameworks of the simulation are built using C structs, en-
abling to save the lattice and parameters in memory to be accessible to the
program throughout the simulation. Python can access these structures by
using Simplified Wrapper and Interface Generator (SWIG)1, which expands
the struct to act as Python classes. The Python interface is made user friendly
with most parameters changeable using flags on the commando line. To be able
to modify the program with di�erent events and methods of calculating the
activation energy, the program is built around the event_generator struct. The

1
Documentation and download can be found at swig.org
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event_generator struct defines the method of calculating the activation energy,
rate, performing the jump and the event_descriptor struct. This adds the pos-
sibility to use multiple types of events and calculators in the same simulation.
The event_descriptor struct is used to check if a jump to a certain site fulfils
the requirement for this type of event.

The existing choices of calculating the activation energies are the Liang
method from the Liang article [4] and CE based on Sanchez et al. [28] and
Mueller et al. [29] described in section 2.3 and is implemented by Nygård [3].
In order to use CE method in the simulation, a json file with the ECIs must
be provided. This json file is an output file from the fitting process described
in section 2.3.2, which is implemented in Python and C by using the same
lattice framework as for the simulation.

The fitting of the ECIs is done on a dataset made from POSCAR files, a file
format from the Vienna Ab inito Simulation Package (VASP). The POSCAR
files needs to be a configuration with the jump atom and the vacant position
provided with the corresponding activation energy for the jump included as
a comment. The POSCAR format is read using the Python package Atomic
Simulation Environment (ASE)2 and is therefore expandable to support files
that ASE is supporting.

The ECIs are saved in a struct defined as Eact_data, which is used when
calculating the contributions that the local configuration has on the system.
This is further described in the Nygårds thesis [3].

The system and parameters are logged using an observer struct that logs
in user set intervals. The observer struct enables all output files to be logged
in a systematic way and is initialized at KMC start.

3.2 KRA method

The KRA method from section 2.4 is briefly described in this section. This is a
new implementation of this work and is initialized from the Python interface.
The implementation is built on the frameworks of the CE code, since the Q
from equation (2.38) is chosen to be based on the same configuration and data
as for the CE of the forward activation energy.

3.2.1 Cluster expansion of Q

As mentioned, the CE used for Q in the KRA method can be defined using the
same struture as the activation energies. The new implementation gives the
user the choice of using the activation energy or the average, Q when creating
the input file used for the fitting procedure. The option using the average needs
the activation energy for the backward jump to be added to the POSCAR files
on the form ’DEnergy_rev=XX.xxxx’. The KECIs resulting from the fitting

2
ASE Package for setting up, manipulating, running and visualizing atomistic simulation.

More info found at https://wiki.fysik.dtu.dk/ase/
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process are similarly to the ECIs from CE of the forward barrier, saved in a
json file that is used during simulation.

3.2.2 Cluster expansion for total energies

The cluster expansion for the total energies is implemented to work for the
same POSCAR files from the training set by using the ASE package and by
including the total energies for the configuration in the POSCAR file.

The configurations in the POSCAR files are initialized as lattice config-
urations with periodic boundary conditions. The use of periodic boundary
conditions ensures that every site has the correct number of neighbouring
atoms. In the current implementation the single-sites and pairs are defined.
The number of each atom type is counted and defines the single-sites. Types
of pairs are pre-defined by saving the pair distance in an array. Combinations
that are equal such as [Mg, Si] and [Si, Mg], are considered the same pair. The
counted configurations are stored using a dataframe using the Python package
pandas3. The dataframe is saved to a CSV file with the columns representing
type of cluster and the row corresponding to a data entry which is used as
input for the fitting process.

The fitting process is done in a separate script using the in-house regression
program used for the activation energies. This is possible by reusing only the
regression part of the earlier implemented code, as this is only dependent on
a input matrix, X and a set of target values y̨. Reusing this code also opens
the opportunities of including a defined prior function as discussed in section
2.3.3.

3.2.3 KRA in the simulation

The KRA method is implemented by using the existing framework of event_generator
. Since this method is similar to the CE method of the activation energy, many
of the functions are reused for this method. Due to the fit of the Q being defined
using the same system as the direct activation energy, calculating Q is used
using the same struct for saving data, Eact_data and initialized from a json file
storing the KECIs.

The ECIs for the total energy di�erence are stored to memory using a sim-
ilar struct as Eact_data , KRA_CE_data defined in listing 3.2. When calculating the
energy di�erence between the state before and after a jump, only the included
nearest neighbours of the vacancy and jump atom are a�ected, leaving rest of
the system is unchanged. This is taken advantage of in the implementation by
only calculating the di�erences in types of neighbour pairs before and after the
jump. Since the number of each atom type is unchanged during the simulation
and thus has no e�ect on the total energy di�erence, this is not included in
the KRA_CE_data struct.

3
Open source library prividing tools for data structures and data analysis. More info at

https://pandas.pydata.org/
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Figure 3.1: Flow chart showing the KMC program with the addition of the
new implementations.
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1
2 /** Struct for storing the ECI coefficients for the cluster

expansion for total
3 energies used calculate the total energy difference .
4 . */
5 typedef struct {
6
7 int n_elem ; /**< Number of different elements */
8
9 double ** coeffs ; /* 2D array storing ’n_elem ’x’n_elem ’

coefficients */
10
11 } pair_coeffs ;
12
13
14 /** Struct for storing the ECI coefficients for the cluster

expansion for total
15 energies used calculate the total energy difference .
16 . */

Code listing 3.1: The struct used to save the data for pair coe�cients.

1
2 typedef struct _KRA_CE_data {
3
4 int n_elem ; /**< Number of different elements in the lattice ,

excluding the
5 vacancy . */
6
7 int n_nn; /**< Number of nearest neighbour included (1NN 2NN 3

NN etc) */
8
9 pair_coeffs *pairs ; /* Pointer coeffs that points to a list of

’n_nn ’ matrices of size
10 ’n_comb ’x’n_comb ’ containing the

coefficients . */
11
12 } KRA_CE_data ;

Code listing 3.2: The struct used to save the CE data for calculating the
total energy di�erence using the KRA method.

3.3 RTA

This section will present the implementation of the algorithm in section ??

used to avoid the direct reversals. The implementation of this algorithm is
not changing the physics of the system, but is enabling for a more e�cient
simulation.

The RTA is implemented so the user can choose to use which order RTA
to use based on how much time the system is expected to spend on reversals.
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This is done by initializing the RTA in the struct seen in listing 3.3. The RTA
struct saves what function to use when choosing the event and calculating
the residence time. For the second order, the function for choosing event also
calculates the —, —̄ and the second order rates from section 2.2.2. These cal-
culations are saved in the second_order_data struct presented in listing 3.4 in
order to be used in calculating the residence time after the event is chosen.

The logging of RTA is done by using the observer struct and logs the
number of jumps, jumps back to previous site and CPUtime spent during
simulation.

1
2 struct RTA{
3 int order ; /* Integer to indicate which order residence time */
4 int (* choose_event )(KMC *kmc , double *R, double u);/**<

Function pointer to the
5 function that chooses the event and returns

the index
6 of the event in the kmc -> events list */
7 double (* get_time )(KMC *kmc , double sum_rates );
8 /**< Function pointer to the funciton that

calculates the
9 residence time. */

10 second_order_data *data; /**< Pointer to the data needed to
calculate residence time */

11 };

Code listing 3.3: RTA implementation in KMC

1
2 /** Struct holding all information needed to do a second order

jump and
3 * and calculate the second order residence time */
4 typedef struct {
5 double sum_beta_bar ; /**< Sum of all ’beta_bar ’ for each event

*/
6 double sum_beta_bar_no_j ;/**< Sum of all ’beta_bar ’ except for

last visited
7 site. */
8 double sum_beta ; /**< Sum of all ’beta ’ for every event */
9 double sum_beta_no_j ; /**< Sum of all ’beta ’ except for last

visited
10 site. */
11 double alpha_j ; /**< The probability for a jump back to

previous visited site
12 */
13 } second_order_data ;

Code listing 3.4: Struct saving the — and —̄ values from section 2.2.2 used
to calculate the second order rates and second order residence time
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3.4 Jump to octahedral sites

The implementation that enables jump into octahedral sites is described in
this section, which is the first step to correctly simulate the creation of the
—ÕÕ precipitate. In order to be able to create the —ÕÕ in the simulation process,
the program has to be adapted to include the possibility for a jump into the
octahedral sites discussed in section 2.1.2. The inclusion of octahedral sites
needs to be included in the lattice from the start, and this is implemented
by including this as an site, consequently doubling the number of sites in the
system. To di�erentiate the octahedral site from the FCC sites, each site is
assigned a site tag in the form of an integer. This enables the program to know
what type of site the atom or vacancy when performing events or calculating
activation energies.

The octahedral event is built around the event_generator struct, enabling
the customization needed to calculate the rate and perform these types of
events.

Since the neighbourlist is calculated from the nearest sites on the lattice
based on distance, the octahedral sites would double the size of the neighbourl-
ist. The code was therefore implemented to have customizable cut-o�s for the
number included octahedrals, thus occupying less memory and reducing the
time spent on looping though the neighbourlists.

3.4.1 Requirements and defining rates for jumps to octahedral

sites

To find if an octahedral event is to be added, the system is implemented to
check if there are any neighbouring octahedral sites that fulfills the pre-defined
requirements of a jump. The requirements currently implemented are defined
from observed jumps in DFT calculations discussed in section 2.1.2. This im-
plementation checks for 4 Si in the same layer surrounding the octahedral
sites, and and if the two remaining sites consists of one vacancy and one Mg
atom. If this is true, the event will be added to the next iteration as a possible
event. The reason for adding the even here and not when adding the other
events to FCC sites is to save computation time. Since the event is defined to
happen only at correct configurations, the activation energies are only neces-
sary to implement using The current implementation does not calculate the
rate using the activation energies, but this is easily implemented using CE or
other methods to calculate the activation energy for the octahedral event.
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Results and discussion

This chapter will present and discuss the results for this work on the SKMC
project, and will compare the new implementations to the work done previ-
ously in SKMC by last years master student Øystein Nygård [3]. The work is
mainly divided into three parts: the three methods of calculating the activa-
tion energies, the ability to jump into octahedral site, and the second order
RTA. The activation energies will be compared in two parts. First part will
go through the results from the fitting process and each energy will be bench-
marked with the DFT calculations. The resulting activation energies will be
used to simulate the system using equal initial configurations. These simula-
tions will be compared in terms of forming of clusters, di�usitivities and energy
evolution.

The results from using enabling a jump to octahedral will be shortly presen-
ted followed by the results from implemented the first and second order RTA
method.

4.1 The training set

All the data for energies used for this work is made from calculations done
by Inga G. Rindalen, Research Scientist at SINTEF Industry, Department of
Materials and Nanotechnology, on a 3◊3◊3 system of unit cells, consisting of
108 atoms of di�erent configurations of Al, Si and Mg, with one or two vacan-
cies. The supercell has periodic boundary conditions and a lattice parameter
a = 4.0396. The calculations are a combinations of DFT calculations using
the The Vienna Ab initio Simulation Package (VASP)1, and using NEB [39]
and DIMER [40] for finding the emigration path.

DFT calculations are performed using the PBE-GGA functional [47] with
a plane wave energy cut-o� of 400 eV. Force convergence was set to 0.01 eV
during ionic relaxation, convergence criterion for the total energy was set to
10≠5 and the gamma sampling of 0.08 k-point per Å was used to model the

1
For more information see https://www.vasp.at/
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Brillouin zone.
To be able to be used by the cluster expansion method without the atom

seeing itself as its own neighbour, the dataset it was padded to be a super cell
of 4 ◊ 4 ◊ 4 unit cells. The resulting dataset is configuration of 256 atoms,
with the extra added atoms being Al. The dataset used in the previous works
of master student Nygård [3] consisted of 480 di�erent jumps and did not
include an extra vacancy. For this project the dataset was expanded to 877
di�erent jumps total, whereas 67 was removed for having more than 35 solutes
or being jump to octahedral. The jumps to octahedral was removed as these
was overrepresented in the training set due to testing, and because the jumps
into octahedral sites are not represented by the FCC lattice system used in the
fitting process. The new datasets consists of larger variety of configurations
compared to the dataset used in earlier works[3] and includes configurations
with one extra vacancy in the system.

The dataset is included with the activation energy for the forward jump
from atom site i to vacant site j, the activation energy for the corresponding
reverse jump and the total energy for the configuration. For the calculations of
the total energy the unpadded version of the dataset was used, as the inclusion
of Al is not represented in the calculated total energy.

The number of solutes in the dataset is shown in table 4.1, which shows
the range of configurations represented by the dataset. The number of datasets
from 0-3 is represented the most by this dataset and larger

# Solutes # Data entries
0-3 586
4-7 97
9-11 77
12-15 24
16-19 21
20-27 12

Table 4.1: Table showing number of solutes present in the dataset. Number
of solutes in the left column is the number of Mg and Si and right column is
number of data points containing the number of solutes.

4.2 Activation energy

This section will present the results from the calculation of the di�erent activ-
ation energies. All the methods except Liang [4] method is based on machine
learning principles of cluster expansion discussed in section 2.3.2. The term
’cluster’ will in this section indicate the di�erent single-site and pair configur-
ations illustrated in figure 2.11 and is not to be confused with clusters formed
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during the simulation process. Both CE and KRA uses the implemented ver-
sion of CE, and earlier results from the CE method with an older dataset
without the extra vacancy can be seen in the master thesis of Nygård [3]. The
current CE and KRA is both done using the expanded training set presented
in previous section.

4.2.1 Forward barrier

This subsection will present the CE of the forward activation energy, Eact
ij ,

with the new dataset. The CE is done using the method presented in section
2.3.2 and using the implemented CE method in the SKMC code.

The range of values of forward activation energies for the dataset are plot-
ted in figure 4.1, with blue corresponding to jump atom being Si, orange to
Mg and green to Al. The activation energies, Eact

ij has a variation of activa-
tion energies with values ranging from 0.1 for the lowest values, to 0.9 for the
largest values. Eact

ij for jumping Al is on average larger than Eact
ij for Si, which

is in turn is on average larger than Eact
ij for Mg.

Figure 4.1: Plot of activation energies from DFT calculations for jumping
atom Al, Mg and Si.

The included clusters defined for the activation energy are single sites
presented in the leftmost table in table 4.2 and pairs who are a combination
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of two of these single-sites with pair distance defined in the rightmost table in
table 4.2. This results in 11 distance and o�set defined single-site clusters and
66 defined pair clusters. Adding the 3 di�erent possibilities for jump atoms,
Al, Mg and Si, and the 3 combinations of atoms and vacancies positioning the
defined sites, the number of total possible ECIs are 1767. This also include the
case of a jump in pure aluminium.

Distance from Xi O�set
2.856 -2.856
2.856 -1.428
2.856 0.0
2.856 1.428
4.040 -2.856
4.040 0.0
4.040 2.856
4.947 4.285
4.947 2.864
5.713 5.713
6.387 5.713

Pair-distance
2.856
4.050
4.960
5.728

Table 4.2: Table presenting the distances from the atom at site i, Xi, and
o�sets described in figure 2.11b, and distance between the pairs used to define
the clusters.

During the fitting process, only the ECIs corresponding to clusters found
in the dataset was used. For the current dataset, 658 di�erent clusters were
used, and the rest was removed before doing the fitting procedure. Of the
810 data entries, 154 was removed for having the same ECI combinations and
energy 0.5 meV within each other. The resulting data matrix X was of shape
658 ◊ 656 representing the number of ECIs and the number of data entries.
The corresponding activation energies is saved in an array as target values, y̨,
of length 656.

The fitting of the hyperparameters presented in equation (2.36) was done
by trying 10 000 combinations of di�erent input parameters. The attempted
values for the power values b and e were integers 0 to 6. For the prefactor for the
distance, a, 100 logarithmically spaced values between 10≠20 and 10≠17 were
used. For prefactor d, 100 logarithmically spaced values between 10≠7 and
101 was used. The constant factor, c, had 100 logarithmically spaced values
between 10≠20 and 10≠18. The scoring method used was LOOCV due to the
large coe�cient-to-data ratio. The trial values was decided from trying a larger
range of values and from the results from previously fitted hyperparameters
[3].

The chosen fit with the CV score and RMSE is presented in table 4.3, along
with the hyperparameters for the fit. The predicted values are benchmarked
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against the DFT calculations in figure 4.2 and the values falling on the line
indicates a good fit. The RMSE is higher than reported using the previous
dataset which was 1.77 meV [3]. The dataset used previously does however not
have the possibility for an extra vacancy, decreasing the number of possible
ECIs to 822, and thus decreasing the coe�cient-to-data ratio.

Value CV RMSE Hyperparameters
Eact

ij 27.14 meV 9.15 meV 1.172 · 10≠18D1
– + 0.2212“2

– + 2.807 · 10≠19

Table 4.3: Table presenting the chosen fit using LOOCV score and RMSE.
The values of the prior function are the hyperparameters defined in equation
(2.36).

Figure 4.2: Fit of the activation barrier using CE with the predicted Eact
ij

on the y-axis and Eact
ij calculated from DFT on the x-axis. The jump atom

at site i are marked with di�erent colors.

The value of hypermeters decided from the fit determines how much the
distance and the order of the clusters impacts the coe�cients. The prefactor, d
and the power, e of the order, “– = {1, 2}, causes the prior function to adjust
the coe�cients down as the order increases. The prefactor of the distance
D– is significantly lower and will thus have a smaller impact on the resulting
coe�cients than the order.

The fitted ECIs, V q̨Xi
– , from equation (2.29) and from the fit presented

in table 4.3 are plotted in figure 4.3 and shows the single-sites plotted to the
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left and pairs being 1st, 2nd, 3rd and 4th nearest neighbours. The distance in
nearest neighbours from the jump atom is denoted by the di�erent symbols
from 1st to 4th nearest neighbours. The absolute value is seen to decrease for
increased distance to the jumping atom. It is also seen to decrease as the dis-
tance between the pairs increases. The largest contributions to the activation
energies are nearest neighbours single-sites with values ranging from 0.13 eV
for the ECI for Al4Si to -0.1eV for the ECI for Mg4Si. The number 4 indic-
ates that both of the ECIs is for the same site relative to the jump atom.
The sites defined in these two clusters are the nearest neighbour of both the
vacancy and the jump atom, indicating that this site has the largest impact
on the activation energy. The type of atom interaction has di�erent e�ects
on the activation energy. The e�ect on the activation energy is positive ECIs
contribute to increasing the barrier, creating a less likely jump. This means
that clusters like Al4Si, a jump for Al with Si as nearest neighbour, decreases
the probability for this jump to happen. The negative coe�cients contribute
to decrease of the activation energy, increasing the probability for the jump
to happen, which is the case for the Mg4Si, meaning a Mg close to Si has
an increased probability to be chosen. The ECIs corresponding to a jump in
pure aluminium, V Xi from equation (2.29), is presented in table 4.4 and is
compared to the values calculated by DFT. These ECIs are the main contrib-
utor to the activation energy with values ≥ 5 times the largest ECI for the
single-site cluster.

The truncating of the cluster expansion is seen to be reasonable as the ECIs
significantly decreases with the order of the clusters, but also the distance from
the jump atom. This indicates that the activation energy is a local dependent
variable and including sites further away would not contribute much to the
activation energy.

Atom ECI DFT
Al 595.470 meV 594.860 meV
Mg 467.646 meV 470.070 meV
Si 515.611 meV 517.880 meV

Table 4.4: Table with the fitted ECIs corresponding to a jump of each atom
in pure aluminium compared to DFT calculations.

4.2.2 Liang

The activation energies calculated using equation (2.23) was benchmarked with
the DFT calculations of Eact

ij and is presented in figure 4.4 a. The interaction
coe�cients used in the Liang [4] method were recalculated with the bulk calcu-
lations calculated from DFT using equation (2.24). The resulting coe�cients
are given in 4.5 the calculated Eact

ij using the new coe�cient is plotted in 4.4



Chapter 4: Results and discussion 41

Figure 4.3: Plot showing the fitted ECIs for the di�erent defined clusters. It
is separated in single-site contributions and pair contribution with xNN in-
dicating the pair being xth nearest neighbour of each other. Di�erent symbols
marks the distance from the jumping atom.

b. The absolute values of the interaction coe�cients calculated from DFT are
for the interaction between atoms seen to be lower than the Liang coe�cients.
The physical interpretation of this is the interaction coe�cients between the
Mg-Si is seen to be more attractive and Si-Si and Mg-Mg to be more repulsive
than the calculated coe�cients using DFT bulk calculation of 108 atoms.

Similarly to the coe�cients from Liang, the activation energies calculated
from DFT is not well described using this method. The range of the activation
energy calculated using the coe�cients from DFT is seen to have a wider range
of activation energies than the coe�cients from Liang. However, none of them
is seen to have as large range as the DFT calculations.

4.2.3 BEP-model

The BEP model briefly introduced in section 2.5 was tested on the dataset
from the DFT calculations. The coe�cients for equation (2.40) was fitted
using the linear regression package from SciKit-learn2 and the BEP relation
was benchmarked against DFT calculations of the activation energies. The
plot of the results for the BEP relation for Al, Mg and Si is shown in figure 4.5

2
Scikit-learn is a free python library for Machine Learning and is found on https://scikit-

learn.org/stable/
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Interaction coe�cient Liang DFT
‘Mg≠V ac -0.015 eV -0.0103 eV
‘Si≠V ac -0.025 eV -0.0446 eV
‘Mg≠Si -0.04 eV -0.02583 eV
‘Mg≠Mg 0.04 eV 0.01441 eV
‘Si≠Si 0.03 eV 0.01416 eV

‘V ac≠V ac 0 -0.00012 eV

Table 4.5: Table showing the interaction coe�cients from article by Liang
et. al [4] compared to interaction coe�cients calculated using equation (2.24)
from DFT calculations.

(a) (b)

Figure 4.4: Plot benchmarking Eact
ij calculated using equation (2.23) against

Eact
ij calculated from DFT calculations. Eact

ij is calculated with interaction
coe�cients a) Liang and b) DFT in table 4.5.

and the RMSE values for each are presented in table 4.6 along with the fitted
coe�cients from equation (2.40). If the activation energy can be modelled
using a linear relationship with �E, the activation energy is following the
BEP relation.

The plot in figure 4.5 shows on average an increase of Eact
ij when increasing

�E as the BEP model predicts, however the variance in the activation energies
is large. Higher or lower activation energies with small energy di�erences are
particularly inaccurate using this model.
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(a) Xi=Si (b) Xi=Mg

(c) Xi=Al

Figure 4.5: Plot of the DFT calculations of Eact
ij on y-axis and energy dif-

ference for the initial and final configuration for a jump �E on the x-axis for
a) Si, b) Mg and c) Al. The blue line is the BEP model from equation (2.40)
fitted to the data using coe�cients presented in table 4.6.

Xi E0 k RMSE
Al 566.05 meV 492.33 meV 8.10 meV
Mg 456.56 meV 479.22 meV 6.63 meV
Si 494.42 meV 503.68 meV 4.87 meV

Table 4.6: Table of the resulting RMSE for the BEP relation atom type Xi

jumping to the vacant position. The coe�cients E0 and k from equation (2.40)
are found using linear regression on the dataset.

The lack of linearity between �E and Eact
ij indicate that the BEP model

does not do well in describing the barriers. The BEP-model assumes the local
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contributions to the activation to be constant for each jumping atom, thus
the results for BEP used in this case shows that the activation energies are
dependent on local contributions and not only di�erences in the total energy
and a constant. This is also supported by literature for binary alloys where ab

inito calculations has shown strong sensitivity to local changes in Al-Li and
Al-Cu alloys [48]. The solutions to this is to include local variations by using
methods like KRA.

4.2.4 KRA

The method of the activation energy for KRA from equation (2.39) is split into
two parts in the SKMC as described in section 3.2 and is first presented as
two separate results in this section. The first part of the results will be the the
process of fitting Q, the average barrier from the forward and backward jump
from equation (2.38). The second part will be the results of the CE of the total
energy from equation (2.28) that is presented and compared to an open source
CE software. The two parts will be combined to (2.39) and benchmarked to
the DFT calculations for Eact

ij .

Fit of Q

The fitting process of Q is similar to the forward activation barrier, and the
clusters defined are the same as used for the forward activation energy defined
in table 4.2. The matrix containing the data for the configurations found in
the dataset, X, is therefore the same. The vector containing the y̨ is defined
as the average barrier, Q, of the jump.

The same prior as for the forward activation energy from equation (2.36),
Q––, is used for this fitting process, and equal input variables for the fitting
of hyperparameters as in section 4.2.1 was used with 10 000 attempts. The
result of fitting the hyperparameters are shown in table 4.7.

Value CV RMSE Hyperparameters
Q 20.11 meV 5.14 meV 6.723 · 10≠20D0

– + 0.1172“2
– + 7.279 · 10≠19

�E CE 78.90 meV 58.78 meV –
Eact

ij (�E from CE) – 38.71 meV –
Eact

ij (�E from IC) – 33.19 meV –

Table 4.7: Table presenting the result of the fit for the average activation
barrier Q, �E and presents the CV score, RMSE and the hyperparameters
used for fitting the ECIs. The two latter entries are the resulting Eact

ij from
equation (2.39) using �E from CE and the interaction coe�cients from 4.5

The hyperparameters in table were used to fit the ECIs and the resulting
CV score using LOOCV and RMSE is presented in table 4.3. A notable dif-
ference from the hyperparameters for Q is the power order of D– which is 0.
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This means that the best fit for hyperparameters is independent on the dis-
tance to the jump atom which might stem from the average barrier should in
reality be dependent on the transitional state, the state between i and j. This
is further discussed in section 4.6. The RMSE and CV of Q is seen to be lower
than of Eact

ij , which is not to expected if each jump was present only once.
However, the datasets consist of both the forward and reversal jump which
contributes to each Q to appear twice in y̨. The result of the cluster expansion
of Q is presented in figure 4.6, where the predicted values are plotted against
the average of (Eact

ji ≠ Eact
ij )/2 from the DFT calculations.

Figure 4.6: Benchmark of the predicted Q from equation (2.2) fitted using
CE with the hyperparameters in table4.7 against Q calculated from DFT.

Fit of Etot

The fit of Etot is done by using the same dataset as used in the fit of Q and
Eact

ij , but only the configurational energy for the system is used. For this the
POSCAR files using the 3 ◊ 3 ◊ 3 super-cells are used in order to remove the
Al atoms that does not contribute to the total energy. The clusters that are
used to find ECIs are single-sites and 1st, 2nd and 3rd nearest neighbour pair
configurations. For this fit the dataset was split in to test data and training
data, with the training data only used for The result of fitting total energies
using the expression for cluster expansion equation (2.28) is presented in table
4.3 and the predicted values are benchmarked with both test data and training
data in figure 4.7.
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Figure 4.7: The predicted Etot using the CE of the total energy from equa-
tion (2.28).

The coe�cients from the CEtot are plotted in figure 4.8. Figure 4.8 a shows
the ECIs corresponding to the single-sites in the configuration. Figure 4.8 b
shows the ECIs for the pair clusters defined on the x-axis. The single-site
clusters are seen to be up to hundred times larger than the pair coe�cients,
indicating that most of the energies is explained by what atom type that is
present in the system. The energy contribution the single-sites has on the
system is in magnitude the range of 1- 5 eV per atom. The lowest coe�cient is
seen to be from Si, indicating that the configurations with increased amount
of Si atoms have a lower total energy. The vacancy the highest value is the
vacancy, but the real e�ect of a vacancy in the system is hard to tell due
to there being maximum two vacancies in the system at all time. The pair
coe�cients is ranging between -0.05 meV and 0.23, where pair of vacancies is
seen to have the largest coe�cients.

The cluster expansion of the total energies, CEtot, is benchmarked against
CLEASE, a Python package created by David Kleiven, PhD Candidate at
Department of Physics at NTNU [49]. The coe�cients used for energy cal-
culations using CLEASE are fitted using CE on DFT calculations performed
with the DFT Python code GPAW3. The configurations used for the DFT

3
More information about the GPAW is found at https://wiki.fysik.dtu.dk/gpaw/
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(a) (b)

Figure 4.8: Plot of ECIs from the fit of (2.28). Figure a) shows the single-site
coe�cients and figure b) shows the pair coe�cients from the 1st, 2nd and 3rd
neighbour.

calculations are combinations of Mg, Si, Al and vacancies. The expansion in-
cludes clusters up to 4 sites and maximum cluster size of 5Å. The resulting
model have a CV score of 6 meV/atom.

The total energy di�erence, �E, between the adjacent states before and
after a jump is benchmarked against the DFT calculations in figure 4.9 a. The
RMSE is of 72.37 meV, which is relatively large considering that �E is ranging
between -380 meV and 390 meV. The corresponding benchmark with CLEASE
is shown in figure 4.9 b and has a lower RMSE of 67.65 meV however still large
relative to the order of �E. CLEASE is using more coe�cients by including
three and 4 sites compare to the maximum order of 2 using the in-house CE.
This might be the source of the increased accuracy of this model. It’s been
proven hard to increase the accuracy further of the values of �E, which might
be due to limitations from the DFT calculation of 108 atoms.

The prediction for the DFT calculations of Etot using both the in-house
and CLEASE version of CE is seen in figure 4.10. Figure 4.10 a) shows the
values are predicted on the line, however the CLEASE prediction seen in 4.10
b is seen to have a slight o�set of ≥2 eV. Since the shift is consistent for the
various structure, the error most likely stems from the coe�cient of Al, since
Al is the atom that has the largest occurrence in all the data entries.

The activation energy

Using the the Q and �E from the fitting procedures Eact
ij is calculated and

the result is benchmarked with the DFT calculations in 4.11. The resulting
RMSE is found in table 4.7. �E has a RMSE that is 10 times as large than
the fit of Q which introduces the errors seen in Eact

ij .
A di�erent approach of calculating the energy di�erence was to utilize

the same principles as Liang [4] for calculating �E. The assumption is that
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(a) . (b)

Figure 4.9: The predicted �E between two adjacent states by using CE and
benchmarked against the DFT calculations. Figure shows the energy di�er-
ences for a) the in-house CE and b) the CE using CLEASE [49].

(a)

e

(b)

Figure 4.10: The predicted Etot for the dataset by using CE and bench-
marked against the DFT calculations. Figure shows the energies for a) the
in-house CE and b) the CE using CLEASE [49].
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Figure 4.11: Benchmarking of the activation barrier using KRA from equa-
tion (2.39) with �E calculated from using CE of the Etot.

the expression for Eact
ij that corresponds to the change in state is able to

approximate �E between the two adjacent states. The �E is thus calculated
from the expressions using the same variable as in the two parenthesis in
equation 2.23:

�E = ≠

Q

a
ÿ

kœNNj

‘XkV ac +
ÿ

kœNNi

‘XkXi

R

b +

Q

a
ÿ

kœNNi

‘XkV ac +
ÿ

kœNNj

‘XkXi

R

b

(4.1)
The coe�cients used for the method are the DFT calculated interaction

coe�cients given in table 4.5. The activation energies using this method is
plotted in 4.12 and the RMSE can be seen in table 4.7. The RMSE for this
method 5.5 meV lower compared to the KRA method using CEtot, which is
high compared to the errors from the fit of Q.

4.3 Simulations

This section will go through the simulation results for using KRA and CE
method using the ECIs found by the fitting in section 4.2. They will compared
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Figure 4.12: Benchmarking of the activation barrier using KRA from equa-
tion (2.39) with�E calculated from interaction coe�cients in table 4.5 against
Eact

ij calculated from DFT.

against the Liang [4] method which was the originally implemented method
for simulating the Al-Mg-Si alloy in SKMC. The comparisons are done by ex-
amining the clustering of the system, the energy evolution and the di�usitives.

The parameters used to initialize the simulation is summed up in table
??. The equilibrium values for the formation enthalpy, HF

V , and formation
entropy, SF

V is taken from the article of Carling et al. [23]. The values for
attempt frequency ‹, is set as the same as Liang et al. article [4] presented
in table 2.1. Simulations are run in a 25 ◊ 25 ◊ 25 FCC lattice with lattice
parameter a = 4.05. The added solute percentage is 0.67 % Si and 0.77 % Mg,
which is similar percentage to the Al6060 alloy. The system will be simulated
in the natural ageing phase of the ageing process, and is therefore set to be
T = 293.15K. All simulations are run using one core and has been run on the
cluster project IDUN [50] and the Linux cluster for Department of Physics,
NTNU.

The simulation will mostly be focused on four di�erent runs and all meth-
ods are run for 107s. The method used in the article by Liang et al. [4] is run
using the coe�cients in table 2.1 and will be referred to as the Liang run.
The cluster expansion method will be run using the coe�cients from the fit
in table 4.3 and will be referred to as the CE run. The kinetically resolved
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Parameter Value (unit)
kB 8.6173 (eV/K)
T 293.15 (K)
a 4.05 (Å)

Si (%) 0.77
Mg (%) 0.67

HF
V 0.66 (eV /K)

SF
V 1.6 kB (eV/K)

CV
a 2.23 · 10≠11

‹Si 1.57 ·1013 (s≠1)
‹Mg 1.86 ·1013 (s≠1)
‹Al 1.66 ·1013 (s≠1)
Size 25 ◊ 25 ◊ 25 (unitcells)

Table 4.8: Initial parameters for simula-
tions presented in this section.

a For Liang method and Liang
method with new coe�cients this is
set at 1.41 · 10≠4 due to continuity
to previous work.

activation barrier method is run using the cluster expansion for the total en-
ergy and using interaction coe�cients from 4.5 to calculate the total energy
di�erence. The benchmark for both methods are given in 4.7 and are referred
to as KRA_CE and KRA_IC run respectively.

4.3.1 Clustering

This subsection will present the time evolution of the clustering observed dur-
ing simulation of the activation energy methods. The clustering of the system
is measured by the number of solutes in each cluster, and the clusters are
defined as configurations of solutes connected through nearest neighbours. For
the results presented in this section, the threshold for being a cluster is size 2
or larger. The small threshold is chosen to be able to compare evolutions with
little to no clustering.

Liang method with new interaction coe�cients

The calculation of the new interaction coe�cients was used tested in a simula-
tion using the same parameters as the Liang method, but using the interaction
coe�cients in table 4.5. The resulting evolution of cluster size during the sim-
ulation is plotted in figure 4.13 and compared with a run using the interaction
coe�cients used by Liang. The evolution is observed to increase for both meth-
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Figure 4.13: Time evolution of the clusters, defined as 2 or more solute as
nearest neighbours, of the Liang method [4] using interaction coe�cients from
Liang and DFT presented in table 4.5 and the rest of the parameters from
2.1.

ods until about 100 seconds into the simulation, where the average size of the
run using interaction coe�cients from DFT is seen to stagnate and fluctuate
between 2 and 2.5 sites per cluster. The run with Liang coe�cients is seen to
increase in average cluster size throughout the run.

In the article by Mørtsell et al. [9] that uses bulk calculations of 500 atoms,
it was found interaction coe�cients between the solutes to be even lower in
magnitude than the coe�cients found using 108 atoms, which indicates that
smaller cells could overestimate the impact of certain interactions. This might
be the cause of the clustering seen using Liang method. Having Mg-Mg and
Si-Si having a large repulsion and Mg-Si having a large attraction would make
structures of altering layers of Mg and Si overestimated favourable. Snapshots
of clusters formed are further presented in next subsection.

Clustering of the methods

Figure 4.14 shows the evolution of the average cluster size and the number of
clusters per volume found in the four di�erent simulations. The Liang method
is already known to form clusters [4][3] and is used as an example of clustering
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to be compared to the rest of the methods. The plot in 4.14 a has addition
to the average number of solutes in the cluster the number of defined cluster
per volume. After 107s, the average cluster size has reached ≥11 solutes and
the cluster number density is decreasing. The decrease of number of clusters
in the system is happening because the clusters are accumulating to the larger
cluster and the system is limited to 900 solutes. A snapshot of the the positions
of the defined clusters at 107s can be seen in figure 4.15 a. The large cluster of
alternating Mg and Si seen in the figure is the stable L10, structure, further
studied in the works of Kleiven and Akola [51].

The average cluster size and the cluster number density for the KRA and
CE methods are seen in figure 4.14 b, c and d. All three methods are seen to
have similar cluster evolutions, where the average cluster size is seen to increase
to 2.3-2.7 solutes per average where it fluctuates for the rest of the simulation.
The cluster number density is seen to have similar evolution, increasing until
it reaches an equilibrium and continue the fluctuating behaviour. Snapshots
showing the position of the clusters for CE, KRA_CE and KRA_IC at 107s
are seen in 4.15 b, c and d, and shows that the are dispersed randomly in the
system and rarely above the size two which is the threshold for being observed
in this figure. This behaviour shows that these three methods does not have
the clustering e�ects, essentially having activation energies that do not see
clusters of Mg and Si as a favourable structure in the system.

4.3.2 Di�usivities

This section will present the di�usitives logged during the simulations using
the di�erent methods of calculating activation energy. The di�usitives logged
during the simulation is the average di�usivity for all the atoms of atom type
Xi. The di�usivity is logged as [19] DX = limtæŒ

È|r̨X(t)≠r̨X(0)|2Í
6t , with r̨X(0)

being the initial position of the atom, r̨X(t) the position after simulated time
t.

The results for the di�usivity for each run is plotted in figure 4.16. As ob-
served in previously works [3], the di�usivities for the Liang run seen in figure
4.16 a, is of the order 10≠25 ≠ 10≠25 after 107s and is decreasing approxim-
ately 3 orders of magnitude during the simulation. The decrease in di�usivity
is most likely due to the solutes getting trapped in clusters, and the amount
of available and moving solutes decreases as the number of solutes in clusters
increase. This behaviour happens because the simulation system has a limited
amount of atoms available. This might impose a problem if the simulation was
to run longer, as the solutes would be inaccessible for the system. Since the
current goal is simulating the early precipitation process, this will not a�ect
the simulations used for this purpose.

The di�usitives for the CE and KRA methods in figure 4.16 b, c and d is
observed to not decrease, and are 4 times order of magnitude smaller than the
Liang run. The magnitude is lower due to CV being chosen to be the same as in
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(a) Liang (b) CE

(c) KRA_CE (d) KRA_IC

Figure 4.14: Evolution of the average cluster size for clusters of size two
or larger. Logged as the average number of solutes in each cluster and the
number of clusters per volume.

Liang article, and t Ã 1/CV is scaling the di�usivity. The di�usitives for Liang
and CE are further discussed in the works of Nygård [3]. For both the forward
CE seen in figure 4.16 b and the Liang 4.16 a, the di�usivity for Si is largest,
followed by Mg and Al. This di�ers from the two KRA methods where DSi

and DMg is observed to be lower and of similar order. For KRA_CE, DSi is
seen to be become lower than DMg, which di�ers from the rest of the runs. The
values from Mantina et al. [52] seen in table 4.9, however, is seen to have DSi

be larger than DMg indicating that the lowering of this value might be wrong.
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(a) Liang (b) CE

(c) KRA_CE (d) KRA_IC

Figure 4.15: Snapshots of the clusters defined as 2 or more solutes connected
as nearest neighbours at 107s.

The general lowering of DSi using KRA methods indicates that the events
with Si is chosen less frequently using KRA than Liang and CE. This could be
happening because structures that are frequently seen in the simulation has
higher barriers using KRA than CE. For example for the case of the activation
energies for both KRA methods seen in figure 4.11 and figure 4.12, the Eact

ij for
a Si jump with barrier ≥ 0.38 ≠ 0.4 is seen to have a larger predicted barrier
than for CE seen in figure 4.2. Similarly, Eact

ij for Si jump have more of these
overestimated barriers using KRA_CE, which could explain DSi being even
lower for this. None of the methods have the ratio between DSi and DAl as
seen in [53].

For the KRA methods the di�usitivity for Al seem to be fluctuating during
the run compared to the other two methods. The value of DAl is also seen to
be lower than CE and Liang.
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(a) Liang (b) CE

(c) KRA, �E from CE (d) KRA, �E from interaction coe�cients.

Figure 4.16: Di�usitives

4.3.3 Energy evolution

This section presents the energy evolutions of the KRA, Liang and CE method
which done by presenting the logged values of the energy di�erences through-
out the simulation. The logged energy will be plotted with a cluster expansions
of the lattice at the time of the logged energy di�erence. The cluster expan-
sion of the lattice is done using CLEASE [49] with coe�cients presented in
section 4.2.4. The energy logging is done using the di�erence in forward and
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Value Liang CE KRA_CE KRA_IC Løvvik et al. [53] Mantina et al. [52]
DAl 6.58 · 10≠25 8.42 · 10≠27 1.20 · 10≠26 9.64 · 10≠27 8.67 · 10≠27 –
DSi 4.47 · 10≠24 2.19 · 10≠25 3.97 · 10≠26 5.40 · 10≠26 2.17 · 10≠28 6.21 · 10≠26

DMg 2.09 · 10≠24 7.72 · 10≠26 4.64 · 10≠26 4.41 · 10≠26 – 1.75 · 10≠27

Table 4.9: Table with the di�usivities in m2s≠1 at the end of the KMC runs
for Al, Mg and Si in room temperature T=293.15K compared to values in
articles from Løvvik et al.[53] and Mantina et al. [52] .

backward energy, �E = Eact
ji ≠ Eact

ij , for each iteration during the simulation.
The start energy is defined as 0, so the energy logged are the di�erence from
the start energy. The these energies are logged with the same parameters as
the POSCAR files used to calculate total energy using CLEASE in order to
calculate the di�erences of energies of the same time interval. To benchmark
the methods, they are plotted against the total energy calculation of the sys-
tem, calculated by CLEASE [49]. The cluster expansion of the total energy
will be referred to as CEtot in order to avoid confusion with the CE method
for the activation energy.

Figure 4.17 a shows the energy evolution using the Liang method. The
evolution is similar to the calculated from CEtot, but slightly shifted. The plot
shows the energy from the log is reduced to -89 eV during the simulated time,
ending up at a slightly lower energy than the energy calculated with CEtot.
The decrease in energy seen is due to more atoms being in clusters which are
energetically favourable, which is seen to be reflected well in the activation
energy of Liang.

In general for the plots 4.17 b, c, and d, the curve for total energy cal-
culated with CEtot flattens, seemingly going to an equilibrium. This point
corresponds to the point where the system stops clustering in figure 4.14 b, c,
d at approximately t = 5 · 106s, and is what is expected for a system that no
longer changes in terms of number of clusters.

The evolution of a simulation using the CE run, seen in figure 4.17 b, shows
the energy logged from the simulation to increase significantly from simula-
tion start which was seen in the works of previous master student Nygård [3]
using the smaller training set. The y-axis are separated due to di�erences in
magnitude. The decrease from initial state is ≥1900 eV for the logging and
≥3.0 eV for the CEtot energy and corresponds to a di�erence of order ≥600.
If run for longer the drifting will increase exponentially while the CEtot will
remain in the same order [3].

Using KRA methods seen in figure 4.17 c and d, the negative drifting
energy is significantly lower than for the CE run. Both methods seem to drift
further after the CEtot has come to an equilibrium. The logged energy from
KRA_CE run can be seen to behave similarly locally to the calculated CEtot,
but systematically scaled by a drifting. For KRA_IC, the energy evolution
is seen to be slightly underestimated during the beginning of the simulation



58 Haltbakk: Kinetic Monte Carlo of Al-Mg-Si alloys.

(a) Liang (b) CE

(c) KRA_CE (d) KRA_IC

Figure 4.17: Energy evolution of the di�erent runs compared using the
logged energy di�erence from KMC and cluster expansion of the total energy
using CLEASE [49]. Note that the energy evolution for CE has two di�erent
y-axis due to very large di�erences.

before seen to continue to decrease after CEtot has stopped decreasing.
The decrease of energy drift seen by introducing the KRA method implies

that the source of this drift are errors from not being able to represent �E in
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the cluster expansion. Introducing the �E explicitly corrects for this, and even
though the expression for �E introduces some errors to the fitted activation
energies, the KRA method is seen to be better at representing the systems
energy evolution.

Seeing both KRA methods have some drifting is most likely because the
CE of the average activation energies is not fully independent of the jump
direction. The clusters defined in the implemented CEact is relative to the
jump atom even though the value it is fitted to is the average. This makes
the average still be dependent on if the jump is from state j or from state i
in figure 2.12. Preferably should the clusters be defined from the transitional
state at Esaddle as the distance from the middle of the jump. This is further
discussed in section 4.6.

4.4 Forming precipitates

The implementation of being able to jump to the octahedral sites was done
by demanding that certain criteria were met for a jump to happen, and the
criterion for being an active octahedral site was set to be an octahedral site
surrounded by 4 Si atoms in the same plane, one vacancy as a nearest neigh-
bour and Mg as a jump atom. Using this requirement on a simulation using
CE resulted in 13 jumps into octahedral sites out of 109 jumps total. These
jumps were seen to be unstable and jumped out shortly after. The configura-
tion where the octahedral jump was seen to happen the most is seen in figure
4.18 a. Figure 4.18 b shows the configuration where the Mg has jumped into
the octahedral site.

(a) (b)

Figure 4.18: Snapshot showing a jump into an octahedral site between a
layer of Si. The Al are not included in the snapshot to increase visibility but
is present in the simulation.

This octahedral jump happens regardless of the activation energy for the
jump into octahedral, and it is therefore not physical. The current configur-
ation of only a layer of Si and 1 vacant position where the jump is seen to
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happen most frequently is not seen to happen using DFT calculations. The
configurations that lead to octahedral jumps to happen in the DFT calcula-
tions which is described in section 2.1.2 is not seen to occur using simulations
using CE or KRA.

The initial belief that the jump needed an extra vacancy in order to form
was debunked with DFT calculations done by Inga G. Rindalen of 5 ◊ 5 ◊ 5
unit cells, where the —ÕÕ was able to be formed from no vacancy.

4.5 Residence time

The results from implementing the second order RTA is presented in this
section and compared to the first order RTA originally used by SKMC. The
average times spent doing one iteration for each method for calculating activ-
ation energy and using di�erent orders of RTA is presented in table 4.10. The
time in this table is calculated as the time spent by the CPU on performing
one KMC step. The CPU used for each simulation is on a Intel(R) Core(TM)
i7-8700K CPU @ 3.70GHz, and each is run using one core. The simulations
are run using no observers to remove variables that might a�ect the time, and
the initialization of the simulation is not included. As expected, and observed
earlier [3], the Liang method is faster than both CE and KRA, and using the
second order RTA increased the time spent for each iteration ≥10 times for
Liang and ≥12 times for CE and KRA. Time spent on each iteration increased
approximately 620% from Liang to CE, and increased ≥7% from CE to KRA.
The increase of time from Liang to CE is due to the increase of calculations
of coe�cients from nearest neighbours, to searching and calculating config-
urations for a neighbour list including up to fifth nearest neighbour. KRA
method increases the time by needing to calculate the total energy di�erence,
but by using only the changes related to the neighbours of the jump atom and
vacancy, only the coe�cients related to first, second and third neighbouring
sites of the vacancy and jump atom is included. This a�ects the simulation
less than the implementation of CE.

The time taken to calculate the transition rates is expected to increase
12 times with the second order RTA since the second order also calculates
the rates of the 12 neighbouring atoms for each possible jump, totalling in
12 ◊ 12 = 144 rates. The fact that the time for each iteration increases less
than 12 times for Liang is because each step in the KMC simulation includes
more calculations such as choosing the event, updating coe�cients and calcu-
lating the time-step, and the calculation activation energy using only nearest
neighbours is corresponding to approximately 80% of the computing time for
the first order. Since calculating the activation energies for KRA and CE is
taking a larger fraction of the time for each step, the increased computing time
for the second order will seen to be closer to 12.

Both Liang and CE was tested and compared using first and second order
and the results are presented in the next subsections. Note that CE and Liang
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Barrier method RTA order CPUtime/iteration (µs) # iterations/second (s≠1)
Liang 1 3 333 000
Liang 2 29 35 000
CE 1 187 5350
CE 2 2297 435

KRA 1 201 4975
KRA 2 2340 427

Table 4.10: Table comparing times spent on average for one step in SKMC
using di�erent methods for calculating activation barrier and orders of resid-
ence time. The simulations were done on one CPU core of Intel(R) Core(TM)
i7-8700K CPU @ 3.70GHz with no observers. The time for setting up the
simulation is not included in the average time.

are run using di�erent CV and is not to be compared with each other in regards
of simulation time.

4.5.1 RTA on the Liang method

In order to compare e�ciency the first and second order RTA, two runs from
each order of Liang is shown in figure 4.19. The simulation used for these
plot are run with the previous parameters used for Liang and the end time
of 105 s. Figure 4.19 a shows the fraction of every jump that is jumping back
to previous site instead of the 11 other possible sites. From first order to
second order, the number of reversals is seen to decrease from happening 75%
of all jumps, to happening 25 % of all the jumps. Figure 4.19 b shows the
percentage of total simulated time for the first and second order. The second
order is seen to complete the simulation three times faster, despite the increase
of computation time spent per iteration.

The smooth curve for both RTA orders in 4.19 b shows no sign of vacancy
trapping that stops the system from evolving. This was not a problem reported
for the Liang method and the reason is most likely due to smaller range in
activation energies as seen in figure 4.4, which is preventing the system from
ending up in an energy well.

To check if the di�usion process is altered by the new method, the di�usit-
ives logged by KMC are compared and showed in figure 4.20. Both di�usitives
is seen to decrease similarly, indicating both methods having the same di�usion
dynamics regardless of the second order finishing three times as fast.

4.5.2 RTA on the CE method

The e�ect of the RTA method for the CE method is shown in figure 4.21. As
seen in figure 4.21 a, CE using first order RTA has a larger fraction of reversals
than Liang, up to 99% of all jumps. This means that 99% of each iteration



62 Haltbakk: Kinetic Monte Carlo of Al-Mg-Si alloys.

(a) (b)

Figure 4.19: Simulation using the Liang [4] method and first and second
order RTA. Figure a) plots the number of reversal per iteration, where 1
indicates all jumps are reversal. The x-axis corresponds to the percentage of
total iterations done in the simulation. Figure b) shows the time spent by the
CPU to complete the simulation.

Figure 4.20: Plots of the di�usitives for Si, Mg and Al logged by KMC using
first and second order RTA for the Liang method. [4]

is non-e�ective and does not allow the system to evolve. The second order
decreases the reversal jumps to only occur 15% of all jumps. The resulting
fraction of reversals is lower than seen for Liang using the second order method.
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The explanation for this is that the probability to jump back, seen in equation
2.17, is scaled by the probability to escape when doing the reversal, —j , and
due to the probability being larger for escape using Liang method, the reverse
jump is more frequently chosen.

(a) (b)

Figure 4.21: Simulation using the CE method and first and second order
RTA. Figure a) plots the number of reversal per iteration, where 1 indicates all
jumps are reversal. The x-axis corresponds to the percentage of total iterations
done in the simulation. Figure b) shows the time spent by the CPU to complete
the simulation. The plateaus seen from plot b) is the vacancy getting trapped
and the system is stuck.

Figure 4.21 b shows the time evolution of simulation time for CE, where the
second order shows an uninterrupted increase of simulation time while the first
order shows plateaus where the system does not increase in simulated time.
These plateaus are where the system is stuck and the vacancies are trapped
jumping back and forward between few adjacent states. These trappings can
be temporarily a�ecting the system, or in some cases, seen to be trapped for
days until the simulation is stopped. The simulated time does not increase
much in these traps since the rates are high and t Ã 1/RNe,i. The plot shows
that these ine�ective trappings of vacancy are removed when using the second
order RTA. The time to complete the simulation was 50 times faster for the
second order, not only due to eliminating reversals like Liang, but also due
to the vacancy not getting trapped which was a frequently occurring problem
with the previous implementation.

The comparison of di�usitives for the two RTA methods is seen in figure
4.22 and similarly to the Liang method, the second order is not seen to alter
the di�usion process by the new rates regardless of being calculated 50 times
as fast. This indicates that the second order RTA can safely be used without
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a�ecting the dynamics of the system.

Figure 4.22: Plots of the di�usitives for Si, Mg and Al logged by KMC using
first and second order RTA for the Liang method. [4]

A vacancy trapping is not purely destructive for a KMC simulation when
the energy wells are large enough. If the vacancy is in an area of solutes
that are contributing to lower activation energies, the trapping ensures that
the vacancy does less of unproductive jumps in pure Al, and do more jumps
moving solutes [48]. For the trapping with CE, however, the vacancy trapping
is between two or three states, and instead of contributing to faster dynamics,
the system is going back and fourth for million of iterations. This is the e�ect
that is removed from doing the second order RTA.

4.6 Discussion of the results, sources of errors and

possible solutions.

This section will take a look at the overall results and discuss their sources of
errors and the possible alternatives and solutions.

4.6.1 Drawbacks of the on-lattice KMC

When using an on-lattice KMC model as in this project, the simulation is
restricted to the FCC lattice. The range of events that are able to be chosen
for this lattice are also predetermined, limiting other possible events like next
nearest neighbours, dislocations or jump to interstitial sites. In order to evolve
the system correctly using this restriction, the calculation of activation energy
must be able to reflect the e�ects of this implicitly while still residing on the
FCC lattice.
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Using the on-lattice KMC for the problem also requires activation energies
that accurately reflects the di�usion process in every stage of the simulation,
including the beginning where the solutes are dispersed in the solid solution,
when the solid starts to form small clusters, and when the precipitates are
formed. This requires fine tuning of parameters with training data that accur-
ately represents each phases, which is non-trivial to do using machine learning
on one set of coe�cients.

The lack of the initial clustering indicates that some part of the simulation
step is missing. The activation energies or the way the activation energies are
calculated using the structure in KMC must therefore lack important details of
the e�ects that solutes in this solid solution has. The rigid FCC structure that
KMC is using might be preventing key events that is initiating the e�ects that
leads to clustering. This is not trivial problem to solve in a simulated system
that is rigid to lattice position, but the implementation of octahedral sites
expands the possibility to include events that are included. However, using
the current dataset and cluster expansion, the configurations seen to make the
jump into octahedral does not occur, so it’s uncertain whether including an
octahedral event using the current dataset would lead to better clustering.

An alternative to remove the problems with FCC restriction is using o�-
lattice KMC methods like k-ART [54]. For these methods the rates are cal-
culated on-the-fly based on the surrounding environment and not calculated
in advance as in traditional KMC methods. This o�-lattice model is enabling
the long-range interactions and lattice deformations that the restrictions of
the on-lattice model does not have. With the on-lattice methods, these e�ects
have to be included implicitly from the methods that are used for calculating
the rates in advance, which is attempted using DFT in this work. Using this
method will remove the restriction that comes with the on-lattice model by
allowing events that are not represented by the FCC lattice, and by remov-
ing the limitations of only including important e�ects implicitly. The major
drawback to this model is the increased computation time. The motivation
for using the on-lattice is due to it fast computation time, and since there is
interest in the long aged precipitation process in Al-Mg-Si alloys, an on-lattice
KMC is to preferred if being able to represent this system. The KMC in this
project is one step further by allowing octahedral jumps, but the lack of clus-
tering using CE and KRA still indicates the need for improvement until these
jumps are done by the correct physics.

4.6.2 Limitations of the training set

Using a super cell of 3◊3◊3 unit cell for the DFT calculation is e�ective for the
quantitative production of datasets, however, it might lack important e�ects
that found in real materials required to see the precipitation and clustering
found in materials. A system of 108 atoms in perfect conditions is a large
simplification of the real physical system. This simplification is most likely not
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able represent all the strain e�ects and long-range interactions that is seen in
a material and the finer details that promotes the clustering and precipitation
dynamics seen in the alloys.

A solution to check the impact of larger super cells would be to create a
training set using larger cells, for example 5 ◊ 5 ◊ 5 unit cells. Since larger
systems require more computation time, a solution would be to reduce the
accuracy with the benefits of a wider range of configurations.

Currently the most of the training set consist of 1-3 solutes, as seen in
table 4.1. This may result in ECIs that are mostly influenced by the e�ects
that 1-3 solutes have on the system. Furthermore, the addition of extra vacan-
cies doubles the amount of coe�cients, increasing the coe�cient-to-data ratio.
Increasing the training set with solutes will reduce the probability for having
ECIs that only is represented by one or two data entries, in turn reducing the
risk of overfitting.

4.6.3 Errors in rate calculations

Liang rates

The methods used for calculating the activation energies comes with limita-
tions. The Liang [4] method uses the assumption that the activation energies
is mostly depending on the change in the interaction with the nearest neigh-
bours. The interaction coe�cients and the method used to calculate them is
therefore responsible for the resulting behaviour during simulation. It is there-
fore important that also the method to obtain the coe�cients accounts for the
correct physics for the system at hand. The interaction coe�cients used by Li-
ang is taken from article by Hiroshawa et al.[31] where the ab inito calculations
were done using 20 atoms. When using the new coe�cients calculated from
DFT in 4.5, the system no longer clusters as seen in figure 4.13. The reason for
this might be the coe�cients from [31] are calculated from a small cell where
the bonds between pair atoms might have a large e�ect on the total energy.
This was further confirmed by checking a second source [9] where it was used
500 atoms in the bulk calculations. The strong interaction coe�cients leads
to an overestimate of the repulsive and attractive e�ects resulting to excessive
clustering.

Cluster Expansion

As mentioned in the previous paragraphs, the lack of clustering using CE could
be due to lattice restrictions and lack of information in the training set. Other
limitations by the CE method is the limitations by the fitting process. Machine
learning processes is sensitive to overfitting when the number of coe�cients
are large compared to the number of entries in the dataset. Using penalized
methods, like Ridge Regression used in SKMC, is an attempt at avoiding the
overfitting, but the e�ciency of the penalization is limited when the number



Chapter 4: Results and discussion 67

of coe�cients is 2 more than the number of data entries as used currently.
Even though the LOOCV score of the data to the dataset is 27.14 meV, the
predicted configurations encountered during the simulation might have high
uncertainty. Expanding the training set to all possible configurations would
be ideal, however when using computational heavy methods like DFT, this is
not practical. A solution to this problem is introduced the recent article of
Kleiven et al. [55]. This model ensures that the CE model is not overfitted
by using a bootstrapping scheme that samples configurations from the Monte
Carlo simulation. This e�ectively tests the ECIs against structures that are
likely to occur while doing the simulation, making the model is less restricted
to the ability of the training set to represent the simulation. This will in turn
requiring less data and reducing the sensitivity to overfitting, which is an
advantage for training sets that require larger resources like the ones needed
for the activation energies used in CE.

Kinetically resolved activation barrier

The KRA method inherits the some of limitations of the CE method by using
the same scheme and training set for the average barrier. Another possible
error in the CE of the average barrier, is how the possible KECIs are defined.
In other works using the KRA method [30][37][48], the possible KECIs are
defined as the distance from the transitional state, the state between i and j,
usually defined as the middle between the two sites. By defining the clusters
from the distance of the jump atom as done in the case of this work, the average
barrier is not linked to the distance from both, but rather the distance from
the jump atom on site i. In other words, if only the configuration of the forward
jump, where the jump atom is at i and vacancy at j, is in the training set,
the KECIs would in reality only represent the jump from site i to site j, as
the distance would be di�erent if the jump atom was at site j and vacancy
at site i. For this work most of the jumps has both the forward and reverse
jump present in the training set, making both impact the KECIs which may
counteract this e�ect. However, this may contribute to overfitting by having
two equal structure twice and the ideal method would have been define the
clusters from the middle of the jump and only have configuration appear once
to avoid similar entries in the training set.

The additional errors that accompanies the KRA method is the errors
that comes with the calculations of �E. To obtain it’s advantage of being in-
dependent on how accurately Esaddle is calculated and represented by CE, the
method used for finding �E must be found using the total energies. This intro-
duces the problem seen by the CE of total energies found in this work. Large
configurations with many atoms results in many structures to be accounted
for using just few coe�cients. The model performs well relative to the total
energy, but lacks the finer details needed to accurately represent �E between
two adjacent states as seen in figure 4.9, introducing errors to the activation
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energies. The problem of overfitting as discussed for the activation energies
are not as relevant for this dataset, as the number of coe�cients for this CE is
drastically reduced. The accuracy may be improved by implementing triplets
and quadruplets, but doing this will significantly reduce the computation time
during simulation.

The reduction of drift in the total energy evolution by using KRA seen in
figure 4.17, shows that the problem from the energy drift stems mostly from
fit of the activation energy. This is most likely due to Esaddle being sensitive to
the local environment as seen from the results from the BEP relation in figure
4.5. The sensitivity to the local environment might introduce uncertainties
when applied to new configurations not seen in the training set, and since the
total energy di�erence is logged as �E = Eact

ji ≠Eact
ij , the logged energy is not

separated from the uncertainties of Esaddle. Separating �E from the fitting
procedure restricts the uncertainties in Esaddle to the value of the average
barrier, Q, and since Q for the two adjacent states is considered the same, this
uncertainty is cancelled in the logging.

Reducing the uncertainties of the Esaddle to new structures would be re-
duced if the training set was improved to represent the simulated system better
using the forward activation energy. The local environments e�ect on the ac-
tivation energy might also be di�erent using larger supercell when calculating
the dataset. Improving the training set or updating the CE fitting regime to
methods like Kleiven et al. [55] would most likely also reduce the level of drift.

It is important to remember the motivation behind the KRA method.
The total energy evolution is not a�ecting the simulation by itself, but the
drift does indicate that there is a skew in the distribution function. This was
presented in section 2.2 as the criterion of detailed balance, which is one of the
fundamentals of doing correct sampling of the system when doing Monte Carlo
simulations. Removing the energy drift does not assure that the time evolution
of the system is correct however, as the main contribution of the evolution is
the accuracy of the activation energies. The KRA method is currently not
representing the activation energies well, which is probably a combination of
both lack of structures and correct long-range e�ects in the training data and
the CE of the total energies being too simple to represent the finer e�ects in
the configuration.
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Conclusion

The objective of this master thesis was to continue from the works of Nygård
[3] on the SKMC project to be able to simulate clustering and precipitation
in Al-Mg-Si alloys using the kinetic Monte Carlo algorithm. This was done
by attempting to solve errors introduced with the cluster expansion method
previously implemented in order to get the system to cluster using physically
accurate activation energies. The motivation for this is to gain insight from
the important precipitation process, which is of interest for both scientific and
commercial purposes.

During the work of this thesis the previously implemented cluster expan-
sion was done using a training set with activation energies from DFT calcula-
tions. The resulting fit had an CV score of 27.14 meV and a RMSE of 9.14 meV
which was a higher error than the works of Nygård using a smaller training set
with less variation of structures. The kinetically resolved activation barrier was
implemented and tested with the goal of correcting an energy drift occurring
due to the cluster expansion method. This involved doing a cluster expansion
on the average barrier for two adjacent states, which resulted in an LOOCV
score of 20.11 meV and RMSE of 5.14 meV. The KRA method included the
need to describe the di�erences in total energies between the adjacent states,
which was solved by using a cluster expansion for the total energy. The cluster
expansion of the total energy had a RMSE of 58.78 meV which introduced
errors to the activation energies that resulted in a RMSE of 38.71 meV. KRA
method was also tested using a simplified model for the total energy di�er-
ence using interaction coe�cients calculated from bulk calculations, and the
resulting activation energy had a RMSE of 33.10 meV.

The expressions for activation energies was used in kinetic Monte Carlo
simulations and the time evolution did not show clustering in room temper-
ature using CE or KRA with the expanded training set. The energy evolution
of the system was seen to obtain a large negative drift with CE but using the
KRA method decreased the drift significantly. There was still some observed
drift that most likely stems from the coe�cients from the average barrier being
defined from the jump atom and not from the transitional state.

69
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The Liang method from article [4] was simulated both using the old in-
teraction coe�cients used in the article and updated interaction coe�cients
calculated from DFT bulk calculations. Using the coe�cients from the article
resulted in the solutes clustering to a L10 structure while new interaction coef-
ficients resulted in no clustering. This indicates that the interaction coe�cients
used by Liang in the article might be overestimated due to being calculated
from bulk calculation using smaller supercells.

The possibility to form —ÕÕ eyes was implemented by adding the possibility
to jump into an octahedral site if the configurations were meeting a predeter-
mined criterion. The jumps into octahedral observed during simulation does
not correspond to the octahedral jumps observed in DFT calculations, and
the lack of clustering prevents structures that has been observed to enable the
octahedral jumps in DFT calculations to form. The implementation still lacks
to do a jump based on physical activation energies, but this is enabled as a
possible expansion.

The problem with vacancy trapping and system getting during simulation
was solved by implementing the second order residence time algorithm. The
implementation increased the time spent each KMC step 10 times for Liang
method and 12 times for KRA and CE method, but the time to finish a
simulation using the second order residence time algorithm was decreased to
1/3 and 1/50 of the time spent during the first order run for Liang and CE
respectively. This was done by e�ectively eliminating 67% and 84% of the
reversal jumps for the Liang and CE method.

The overall conclusions for the work is that the new implementations are
a step further into describing the precipitation process of Al-Mg-Si alloys by
using KMC, but the model is still lacking the important clustering that enables
precipitates like —ÕÕ structures to happen. Better representation of e�ects in
the Al-Mg-Si alloy should be further investigated as the KMC algorithm is
fast and enables long time scales to be explored. Using second order RTA has
improved the simulation time by making it minimum three times as fast and
ensures that simulation using CE does not get stuck during the simulation.
The implementation of octahedral site can easily be expanded to work with
physical rates but since the system does not seem to form configurations that
forms —ÕÕ in the first place, the prioritized next step should be to look at getting
the KMC to represent correct e�ects during simulation by investigating the
e�ects of more varied training set.



Chapter 6

Future

This section will present some of the possible future improvement on the model
that could lead to better simulations with results

6.1 Better representing of CE

The current dataset calculated on a 3 ◊ 3 ◊ 3 might be to small to include
correct information about the strain e�ects of certain configurations. Trying
DFT calculations on larger systems will be a good approach for testing if there
is missing information in the current dataset. If there is found a significant
improvement, a larger dataset using calculations from larger cells should be
considered. Another solution to trying to get better fit using CE is using a
method like Kleiven et al. [55] using the configuration met in a MC simulation
as a bootstrapping element in the procedure.

6.2 Correct formation of —”

The next step in terms of —” formation is to be able to form the precipitate
under the correct conditions from DFT calculations. Currently, the model only
makes a jump when configurations around the jump atom satisfy the pre-
determined conditions. The swap that is made, by jumping in to octahedral
frees a vacancy that is now residing where the jump atom was before the jump.
Currently this vacancy gets trapped, it is not included in the di�usion process
and its not interacting with other vacancies. It should be found a solution
that enables ergodicity ensuring that all sites can be visited, which is one of
the three main requirement for a good KMC model. This means that also the
octahedral site should be able to jump out.

Currently the simulation using CE or KRA never forms the configurations
that is seen to enable the jump to octahedral that jumps, but when the correct
foundations for these types of event is happening the jumps should happen
when they are physically correct. This can probably be done several ways, but
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two are natural two the way the method is implemented. One solution would
be to use the calculation of activation energy for the octahedral jump, making
the octahedral jump be chosen according to its rate, as the rest of events in
the event list. This solution needs the ability for calculating the activation
energies for the octahedral jump as an isolated event, which might be hard to
represent in a training set. This also requires a new cluster expansion including
octahedral sites.

Having —” precipitates as a possible structure also requires that the e�ects
from these being present in the system must be included and represented by
the ECIs.

The activation energies for a jump in octahedral must be included if the
jump is to be motivated by rates, and the e�ect of having —” in the system
must be represented. This could be done by including a dataset with jumps
in and out of the octahedral sites, and creating Eact_data for these types of
jumps.

Another solution is to add a set of configurations that are seen to hap-
pen which is not chosen according to rate but would happen based on if the
configuration is correct.

6.3 Improving KRA

Since Q is not fully independent of direction in the current implementation,
the next step would be to define the ECIs from the configuration at transition
state. The solution would be to define the transition state to be the middle
between the vacancy and the jump atom. Examples in literature where this is
done is the work by Zhang et al. [48].

The current implementation of the total energies do not satisfy the accur-
acy wanted to represent the energy di�erences. Fitting the total energies for
a larger system than 3 ◊ 3 ◊ 3 might give more accurate representation of
the e�ects that solutes has on larger systems. A natural next step for activa-
tion energies is including larger clusters, like triplets or quadruplets. This will
complicate the calculations done during the simulation and will increase the
computation time. Adding prior functions to the Bayesian regression as done
with the local cluster expansion would also be a natural next step in order to
tune the fitting to be more based on physical intuition.
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