
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

Pauline Hardeberg Zimmermann

Documenting skin bruises with
smartphone imaging

Master’s thesis in Electronic Systems Design and Innovation
Supervisor: Lise Lyngsnes Randeberg
June 2021

M
as

te
r’s

 th
es

is





Pauline Hardeberg Zimmermann

Documenting skin bruises with
smartphone imaging

Master’s thesis in Electronic Systems Design and Innovation
Supervisor: Lise Lyngsnes Randeberg
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems





MASTER’S THESIS

Documenting skin bruises with
smartphone imaging

Author:
Pauline Hardeberg
ZIMMERMANN

Supervisor:
Lise Lyngsnes RANDEBERG

Department of Electronic Systems
Faculty of Information Technology and Electrical Engineering

Norwegian University of Science and Technology

June 30, 2021

http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com


ii

Abstract

The aim of this thesis is to develop and test a standardized method of documenting
skin bruises, for the purposes of providing better forensic evidence in court cases
related to physical violence and aiding medical personnel in their decisions about
suspected abuse. Skin bruises are the most common injury caused by physical vi-
olence, which is why they are important indicators and evidence of violence. Ob-
jective and accurate documentation and analysis of skin bruises is critical to recog-
nize abuse in patients and to correctly determine injury mechanisms in court cases
related to physical violence. However, there is no standardized method for docu-
menting and analyzing skin bruises. Bruise images that are admitted into evidence
in court cases are often acquired with smartphones. These images are often of low
quality, which makes it difficult to draw conclusions based on them. To address this,
this project aims to develop an objective method for documenting skin bruises using
smartphone imaging, which includes estimation of bruise size, shape and color.

Participants in the study document their bruises using this standardized method.
They will photograph their bruises following a set of instructions, using their own
smartphone cameras. The color, shape and size of the bruises will be estimated using
image processing techniques. The precision and accuracy of the feature extraction,
as well as the quality of the images and the acquisition method, will be evaluated.

176 images of 26 bruises were acquired. The bruises in the data set are diverse
in terms of size, shape and color. The performance of the feature extraction was
evaluated with respect to precision, accuracy and robustness to changing illumina-
tion. Four image segmentation methods were evaluated based on execution time
and the performance of feature extraction. Of the four methods, k-means clustering
performed the best. The performance of the segmentation methods was found to
depend on the type of bruise and image quality. The computational color constancy
method white patch showed good results in correcting the color of the images. A
ruler detection method was proposed, achieving low error.
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Sammendrag

Målet med denne oppgaven er å utvikle og teste en standardisert metode for doku-
mentasjon av blåmerker. En slik metode kan bidra til å forbedre rettsmedisinsk bevis
i rettsaker som omhandler vold og kan bistå helsepersonell i beslutninger om mis-
tenkt mishandling. Blåmerker er den vanligste skaden forårsaket av fysisk vold, så
dermed er de viktige indikatorer og bevis på vold. Objektiv og nøyaktig dokumen-
tasjon og analyse av blåmerker er kritisk for å kunne gjenkjenne mishandling hos
pasienter og for å kunne bestemme handlingsforløpet i rettsaker som omhandler fy-
sisk vold. De bildene av blåmerker som blir brukt som rettsmedisinsk bevis i retten
er ofte tatt med mobiltelefoner. Disse bildene er ofte av lav kvalitet, noe som gjør
det vanskelig å bruke de til å trekke konklusjoner. Derfor har dette prosjektet som
mål å utvikle en standardisert metode for dokumentasjon av blåmerker ved bruk av
mobilfotografi som inkluderer estimering av blåmerkets størrelse, form og farge.

Deltakere i denne studien skal dokumentere blåmerkene sine med denne stan-
dardiserte metoden. De skal bruke egne mobilkameraer til å fotografere blåmerkene
sine etter et sett med instruksjoner. Deretter, skal blåmerkenes farge, størrelse og
form estimeres ved bruk av bildebehandling. Presisjonen og nøyaktigheten til es-
timeringen, i tillegg til kvaliteten til bildene og fotograferingsmetoden skal eval-
ueres.

176 bilder av 26 blåmerker ble samlet inn. Blåmerkene i datasettet har et mang-
fold av størrelser, former og farger. Estimeringen av disse kvalitetene ble evaluert
med hensyn til presisjon, nøyaktighet og robusthet til lysforhold. Fire bildeseg-
menteringsmetoder ble evaluert basert på kjøretid og ytelsen til estimeringingen av
størrelse, form og farge. K-means clustering hadde best resultater av disse fire meto-
dene. Ytelsen til segmenteringsmetodene avhenger av typen blåmerke og kvaliteten
til bildene. Fargekonstansmetoden white patch ga gode resultater i å korrigere fargen
i bildene. En linjalgjenkjenningsmetode ble utviklet og testet, og den oppnådde høy
nøyaktighet.
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Chapter 1

Introducion

1.1 Motivation

Skin bruises are the most common injury caused by physical child abuse [31, 93],
intimate partner violence [91] and sexual assault [12, 89], which is why they serve
as important indicators and evidence of abuse. Skin bruises can be the only visible
indicator of more serious internal injuries. [118] They may also be a precursor to fatal
or near-fatal injuries in children. [31] Medical personnel in Norway are required by
law [81] to notify Child Protective Services if they suspect that bruises on their child
patients are caused by abuse.

It is important that bruises are interpreted in an objective and accurate way, since
the bruise interpretation may have significant medical and legal consequences. [133]
Failing to recognize bruises as an indicator of physical abuse can be fatal. In 2005,
the three-year-old child Karly Sheehan was taken to the doctor due to suspicious
bruises. The doctor mistakenly concluded that the bruises were self-inflicted. Shee-
han later died as a result of child abuse. [14] As a result of this case, the state of
Oregon introduced Karly’s Law [98] that introduced strict regulations to the inves-
tigation of suspected child abuse. Sometimes bruises on children are mistakenly
classified as abusive, causing misplaced suspicion of child abuse. Parents in Michi-
gan lost custody of their 6-week-old son after their doctor diagnosed the bruises on
the boy’s body as being a result of child abuse. The bruises were later found to be
caused by the straps on a swing. [56] A British couple had their son removed from
their care for more than a year due to bruises on the child’s body. The son was not
returned to their care until after he was examined by a geneticist, who diagnosed
him with a syndrome that causes people to bruise easily. [126]

Accurate bruise documentation is important. [52, 105, 137] Melville et al. [90]
found that the quality of bruise images has a significant effect on the ability of med-
ical professionals to interpret the bruises. Bruise images may serve as forensic ev-
idence in criminal court. Documentation of injuries, such as bruises, is associated
with higher rates of conviction in sexual violence cases. [69] In State v. Hovig (2009)
[6], a child abuse court case, photographs taken of bruises on the victim were con-
sidered persuasive evidence and led to a guilty verdict. In many cases, bruises are
documented by the victims themselves, using smartphone cameras. The quality of
these images is often poor. [34] In some cases, the bruise photographs admitted into
evidence are of such low quality that it becomes difficult to draw any conclusions
based on them. In another child abuse court case, Sweaney v. Ada County (1997)
[5], the bruise photographs were unusable since they "did not accurately portray the
bruise".

There is a need for an accurate and standardized documentation method of skin
bruises. Smartphone camera quality and smartphone ownership have both increased
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in the last years. [116] [103] If the skin bruise documentation method uses smart-
phone imaging, it will be an accessible method and potentially have a higher societal
impact. Smartphone technology is becoming a valid alternative to traditional med-
ical laboratories for gathering medical data, introducing significantly lower costs
and higher availability. [80] The high availability, low cost and high connectivity of
smartphone technology makes it a promising way of democratizing and decentraliz-
ing medical research and care, especially in developing nations and rural areas with-
out access to medical laboratories. [54] Since bruises are already often documented
by the victims themselves, creating a method of self-documentation of bruises with
smartphone imaging can be beneficial.

1.2 Objectives

The main goal of this thesis is to answer the central research question:
Is self-documentation with smartphone imaging a suitable method for documenting skin

bruises?
In order to answer this question, one must first determine was is required of skin

bruise documentation in medical and legal settings and then test whether smart-
phone imaging is sufficient to achieve these requirements. The central research ques-
tion will be answered by achieving the following objectives:

1. Create a data set of bruise images acquired by self-documentation with smart-
phone imaging.

2. Estimate the relevant bruise features (size, shape and color)

3. Evaluate the performance of the feature extraction

4. Evaluate the bruise self-documentation method

1.3 Outline

Chapter 2 covers the theoretical background about skin bruises and image process-
ing that is necessary to follow this thesis. Chapter 3 covers the methodology of this
project. The acquisition of the bruise image data set is covered in Section 3.1, the
pre-processing is covered in Section 3.2 and Section 3.3, the bruise feature extraction
is covered in Sections 3.4 - 3.6, and finally the evaluation is covered in Section 3.7.

The results are presented and discussed in Chapter 4. The data set is covered in
Section 4.1, where the subjects, bruises and bruise images will be discussed. Then,
the image pre-processing results are covered in 4.2. The results of the bruise feature
extraction are covered in Sections 4.3 -4.5. Section 4.6 covers the bruise image seg-
mentation results and the evaluation of the acquisition process is covered in Section
4.7. Finally, the findings are summarized and discussed in Section 4.8.

The final chapter, Chapter 5, of the thesis is the conclusion, in which the achieve-
ment of the aforementioned objectives will be discussed. The major challenges and
possible future work will also be discussed.
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Chapter 2

Theory

This chapter covers the necessary theoretic background to interpret the results of
this thesis. The first section covers the basics of human skin and skin bruises. The
second section covers how skin bruises are documented in forensic and medical set-
tings, providing a basis for the choice of bruise documentation methods in Chapter
3. Section 2.3 covers existing work on bruise image segmentation. Finally, some
image processing concepts are covered in Section 2.4.

2.1 Skin and skin bruises

2.1.1 The biology and optics of skin

Human skin consists of three main layers: the epidermis, dermis and subcutaneous
tissues. [47, 74] The epidermis is the outermost layer and its most important function
is to protect the body from its environment. [42] The middle layer, dermis, mainly
consists of collagen, a type of fibrous protein. [62] The dermis shields the body from
stress and strain. The innermost layer, the subcutaneous tissues, consists of fat tissue
and provides temperature control and a connection to the underlying muscles and
bones. [47] The majority of bruise bleeding occurs in the subcutaneous tissues. [74]

The optical properties of skin depend on the thickness and chemical composition
of these three layers, which varies both between and within individuals. [114] Light
interacts with tissue in two fundamental ways: absorption and scattering. [141]
The optical properties of a material are quantified by its absorption coefficient µa
and scattering coefficient µs. Depending on the chemical composition of the skin,
the light will interact differently with it. Different chromophores (the compounds
that contribute to the perceived color of tissue) interact differently with light. The
absorption spectrum of the skin dictates the penetration depth of light into the skin.
[82] The absorption spectra of several chromophores are known, see Figure 2.1.



4 Chapter 2. Theory

FIGURE 2.1: The molar extinction coefficient of chromophores: oxy-
genated hemoglobin, deoxygenated hemoglobin, methemoglobin

and bilirubin. Taken with permission from [114]

Hemoglobin (red) and melanin (brown/black) are the most important chromophores
in normal skin. [41, 112] Assuming the amount of absorption is sufficiently greater
than the amount of scattering, it is possible to estimate the concentrations of chro-
mophores by observing how light of different wavelengths interacts with tissue.
Hemoglobin, which is found in blood, is one of the main chromophores contributing
to the appearance of skin bruises.

2.1.2 Skin bruises: formation and appearance

Skin bruises are formed when a trauma to the skin causes blood vessels to break
and blood escapes into the surrounding tissue. [124]. This leads to a visible discol-
oration of the skin - a bruise. [100] The epidermis must be intact for the injury to be
considered a bruise. If the epidermis has been ruptured, the injury may instead be
classified as a wound or laceration. [27] Some bruises are accompanied by an edema,
or swelling, where water has gathered under the skin. [137] In these cases, the injury
may be categorized as a hematoma. [27, 128] Small, pinpoint bruises are sometimes
referred to as petecchiae. [127] Petecchiae bruises are caused by bleeding from the
smallest blood vessels, and their size range up to 2 mm in diameter. [100]

Bruises change appearance over time, as the distribution of chromophores in
the tissue changes. In some cases, it can take days for a bruise to become visible.
[102] Some injuries might keep bleeding for some time, causing the amount of blood
and thus the chromophore hemoglobin to increase over time. [128] This causes the
size of the bruise to increase over time. Black et al. [18] generated 18 bruises and
photographed them every other day for 3 weeks. They found bruises to be largest
at an age of 3-7 days on average. Bruises may also change location over time, due to
gravity. [102] Some time after the injury, the inflammatory response is initiated. [121]
Immune cells called macrophages are recruited to the injury site to start breaking
down the hemoglobin. [47] The breakdown of hemoglobin is one of the reasons why
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bruises change color over time. [65] The hemoglobin breakdown process is shown
in Figure 2.2.

FIGURE 2.2: The hemoglobin breakdown process which causes the
change in bruise color over time. Taken with permission from [111]

The temporal color change of bruises does not follow a predictable pattern, how-
ever. It was once believed that one could accurately determine the age of bruises
from their color alone, but that theory has been disproved. [94, 106, 128] In their
study of bruise color and age, Langlois and Gresham [74] found that yellow is the
only bruise color that is significant with regards to its age. They found that if a
bruise has yellow color, it is likely to be older than 18 hours. However, the same
author later stated that it has not been rigorously established when yellow appears
in a bruise. [73] In their study of 25 bruises over 2 months, Randeberg et al. [110]
found that the freshest bruise with yellow coloration was 40 hours old. Stephenson
and Bialas [128] studied 36 bruises in children, and found no presence of yellow in
bruises younger than 1 day old. Schwartz and Ricci [123] state that yellow has been
observed in bruises of ages between 7 days and 2 weeks.

There are other factors than the age of the bruise that determine its color. Shal-
low bruises tend to be more red and deeper bruises tend to be more blue, due to the
wavelength dependence of light penetration in tissue. [19] The composition of the
three skin layers varies throughout the body, which has an impact on bruise appear-
ance. [36] The skin color of the individual has an effect on the color of skin bruises.
[58] Bruises are less visible on darker skin than on lighter skin, due to the presence
of melanin. [34, 144] [128] The appearance of a bruise might depend on the gender
of the individual. According to Vanezis [137] and Black et al. [18], women bruise
more easily than men. The age of the individual has an impact on bruise appear-
ance. Young children bruise more easily than adults, [137] since their skin is thinner
than adult skin. [114] Older adults also bruise more easily, due to an age-related
thinning of the epidermis and increasing fragility of the blood vessels. [140] The ap-
pearance of the bruise will depend on the health of the individual. If the individual
has a bleeding disorder [78], smokes [114] or uses blood-thinning medicine [65], it
will impact the formation and appearance of bruises.

The perceived color of bruises, and all objects, also depend on the the observer.
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Color is not a purely physical phenomenon, but also relies on psychological pro-
cesses. [55] Color vision varies between individuals, due to the differing spectral
sensitivities of the color receptors. [96] The ability to see the color yellow declines
with age [59]. The human visual system is clearly not an objective color sensor,
which further emphasizes that visual inspection of the color of bruises is not suit-
able to determine its age.

2.2 Bruises in forensics and medicine

2.2.1 Bruise documentation

Documenting bruises with imaging is recommended in the case of suspected child
abuse [31, 52, 65, 139], suspected elder abuse [105] and postmortem examination
[137]. The photographs both contribute to the medical record and may serve as
forensic evidence. It is essential that the documentation is accurate [137] and objec-
tive [52].

Digital color imaging is the standard method for documenting bruises. Evans
et al. [40], Harris et al. [51] recommend using the RAW file format when document-
ing skin bruises. JPEG is not recommended due to the compression associated with
this file format. They also recommend the image plane to be parallel to the plane of
the bruise. According to Evans et al. [40] Digital Single Lens Reflex (DSLR) cameras
are preferable to smartphones, since they provide higher quality images.

Cross-polarized imaging has been found to to be the preferred imaging modality
for pediatricians when assessing images of bruises in children. [75] Cross-polarization
is obtained when light passes through two polarizing filters that are perpendicular
to each other. [49] Cross-polarized photography of skin eliminates specular reflec-
tion caused by sweat and oiliness and allows for better visibility of internal tissue
structures such as bruising. [13, 49] Thus the quality of the bruise image acquisi-
tion process can be improved by using cross-polarized light. Baker et al. [15] pho-
tographed 75 bruises with both non-polarized and cross-polarized light. They found
that cross-polarized light enhanced the visibility of bruises. In contrast, Harris et al.
[51] found no significant difference between the quality of bruise size estimation
when cross-polarized and non-polarized light were used.

Documentation of bruises should include the recording of important bruise fea-
tures. The four most commonly mentioned bruise features are color, shape, size and
location on the body. [52, 65, 95, 102, 105, 108, 137, 139] Other factors, such as pres-
ence of swelling [95, 137] and pain [84, 95] are also recommended by some authors.

2.2.2 Bruise size

The size of bruises is an important factor to consider when determining whether a
bruise has been caused by physical abuse. [142] According to Maguire et al. [86],
abusive bruises tend to be larger and accidental bruises tend to be smaller. In their
study of bruising in the elderly, Wiglesworth et al. [142] found that the bruises that
had been caused by physical abuse were significantly larger than the accidental
bruises. However, in a study comparing bruises in physically abused (n = 350) and
non-abused (n = 156) children, [67] found that the mean bruise size in abused chil-
dren was 1.53 cm and 1.57 cm in the non-abused children, indicating no significant
size difference between the two classes.

A scale element such as a ruler should be included in the images, since this makes
bruise size estimation possible. [24, 108, 143] A standard scale recommended by
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the American Board of Forensic Odontology is used by many forensic examiners.
[40, 65] It has also been used in several studies of bruise documentation. [51, 132]

The American Board of Forensic Odontology ruler is shown in Figure 2.3.

FIGURE 2.3: The American Board of Forensic Odontology ruler. Im-
age from [3].

Payne-James et al. [102] recommend using a ForensiGraph ruler, which also in-
cludes a color calibration chart. (See Section 2.2.4 for a discussion of color calibration
charts.) The scale or ruler should be placed next to the bruise and in the same plane
as the bruise. [40, 65, 143] It should be rigid and have a matte finish. [40]

Scale detection is a prerequisite step to bruise size extraction. If a ruler is included
in the image, it must be detected and the distance between the ruler ticks, the ruler
spacing, must be estimated.

Ueda et al. [135] used Discrete Fourier Transform (DFT) to detect ruler spacing.
Their method requires the ruler to be placed horizontally in the image. Bhalerao
and Reynolds [17] also used Fourier analysis for ruler spacing detection. The re-
quirement of the ruler being placed horizontally was removed by including ruler
angle detection. However, their method requires the user to manually select an im-
age block containing the ruler.

Harris et al. [51] and Kemp et al. [68] used the Feret diameter, the longest di-
mension, of bruises as a measure of their size. Vanezis [137] recommends describ-
ing the bruise size in terms of at least two dimensions, such as length and width.
One method of making these measurements is measuring the maximum length of
the bruise and defining width as the maximum bruise width perpendicular to the
length axis. [33] Another measure of size is the area of the bruise. The area can be
calculated by multiplying the length and width of the bruise. However, this assumes
a rectangular bruise shape and will result in bruise areas that are too large. [11] The
area can be computed by overlaying a metric grid over the bruise and counting the
number of squares [72] or by counting the number of pixels in the bruise segment
[64]. Lawson et al. [76] found that there is less variation in bruise size measurements
when the size is measured using bruise images than when the size measurements
are done in vivo.

There is a difference between how bruise size should be documented according
to the literature and how they are described in practice. In Sweaney v. Ada County
(1997) [5], the bruise in question is described as "about 1 1/4 inches long and 1/4
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inch wide". In State v. Hovig (2009) [6] and State v Powell. (1995) [4], the size of
the bruises are described using comparisons to coinage: "approximately the size of
a quarter" and "somewhat larger than a silver dollar", respectively.

2.2.3 Bruise shape

The shape of bruises is an important factor to consider when determining their
cause. [105] Certain bruise patterns are indicative of abuse. [31] The existence of
bruises that have a central clearing may indicate physical abuse. [105] Tramline
bruising is the phenomenon of a bruise with a central linear clearing, or alterna-
tively, two parallel linear bruises. Such bruising can be caused by a forceful impact
with a cylindrical object, like a rod or a baseball bat. [137] An open-handled slap
can also cause tramline bruising, since each finger is a cylindrical object. [65] Bruises
created by a high speed paintball impact tend to have a circular shape with a central
clearing. [18, 112, 113] The central clearing observed in bruises induced by paintball
is caused by the fact that the tissue compression by the paintball itself is not strong
enough to cause bruising. Around the edges of the paintball, tissue shearing occurs,
which causes the area around the paintball impact site to be more bruised than the
central part of the bruise. Another mechanism that causes a central clearing to oc-
cur is a strong localized impact to the tissue. The immune reaction will be stronger
where the damage was strongest, which causes this area to be healed faster and thus
a central clearing develops. [111]

Cluster bruises are more commonly found in cases of physical abuse than in
accidental bruise cases. [67, 86, 93] One type of cluster bruise is a bruise caused by a
forceful grip or grab. Such bruises often consist of 2-4 small round bruises coinciding
with the fingertips of a hand. A thumb bruise may often be found on the other side
of the limb. [65, 124] Bruises that have the shape of a recognizable object are not
likely to be caused by an accident. [38] Petechial bruising, see Section 2.1.2, are often
seen as a part of a strangulation injury. [102]

In court cases, the shape of bruises is often described with geometric terms or by
comparing the shape to an object that may have caused the bruise. In State v Powell.
(1995) [4], the bruise is described as being the shape of a hand print and in [6], the
bruise is described as being mouth-shaped.

2.2.4 Bruise color

As discussed in Section 2.1.2, the color of bruises changes as the bruise heals. The
seemingly predictable temporal color change of bruises is the basis of the traditional
method of determining the age of a bruise. However, various authors disagree on
the specific connection between bruise color and age. Table 2.1 shows three different
schemes for determining the age of bruises based on color.
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TABLE 2.1: The relation between bruise color and bruise age, accord-
ing to different authors. Adapted from Stephenson and Bialas [128]

and Langlois and Gresham [74]

Author Color Age
Adelson [8] Red/blue Initial

Blue/brown 1-3 days
Yellow/green 1 week

Glaister [44] Violet Initial
Dark blue 1-3 days
Green 1 week
Yellow 8-10 days
Normal 2 weeks

Polson et al. [107] Red/dark < 24 h
Greenish ≈ Day 7
Yellowing ≈ Day 14
Normal Up to 30 days

Even though directly determining the age of bruises from their color alone has
been proven inaccurate, the color is still of interest when documenting skin bruises.
The presence of many bruises with different colors may be indicative of child abuse.
[38, 108, 134] Color is the second most mentioned bruise feature, after location, in a
set of court documents analyzed by the author in an unpublished work.

Including a standard color calibration chart in the bruise images facilitates the
estimation of bruise color. [40, 101] Payne-James et al. [102] recommends using the
ForensiGraph [2] that also includes a ruler. Trefan et al. [132] used a GretagMacbeth
Mini Color-Checker [1] in their documentation of bruises in children. Li et al. [77]
used a ColorGauge Nano [37] color chart in their documentation of induced bruises.

Barata et al. [16] found that applying color constancy algorithms to skin lesion
images improved the performance of melanoma classification. Sully et al. [129] used
the eyedropper tool in Adobe Photoshop Elements [7] to apply color correction.

2.3 Bruise image segmentation

Image segmentation is the process of dividing an image into multiple non-overlapping
regions. [131] It is an important prerequisite step to estimation of bruise size, shape
and color. Johnson and Fazel-Rezai [64] used image segmentation as a prerequisite
step to estimation of the size and color of bruises. The chosen image segmentation
method was Otsu thresholding. Otsu thresholding, or Otsu binarization. is a seg-
mentation method that uses grayscale histogram thresholding to divide the image
into two classes: background and foreground. The threshold is chosen in a such a
way that the variance between the two classes is maximized. [99]

Given the threshold t, the class probabilities of the background ω0 and the fore-
ground ω1 are defined by equations (2.1) and (2.2).

ω0 =
t

∑
i=1

pi (2.1)

ω1 =
L

∑
i=k+1

pi (2.2)
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In these equations, pi is the probability of a given gray-level i, defined as the ra-
tion between the number of pixels having that gray-level ni and the total number of
pixels N. L is the number of gray-levels. Otsu thresholding is a global thresholding
method, since the same threshold applies to the entire image. [83]

Otsu thresholding is one of the most popular image segmentation techniques,
[79, 119, 145] since it is one of the image segmentation methods with the lowest
computational complexity. [45] In addition to Otsu thresholding, Johnson and Fazel-
Rezai [64] included a supervised processing step in which the user could tune a
morphological opening filter to remove small specks from the bruise segment and
thus improve the segmentation.

There is a lack of existing work on the topic of bruise image segmentation. There-
fore, inspiration will be taken from two similar image segmentation problems: skin
lesion segmentation and fruit bruise segmentation.

Skin lesions can be a sign of malignant melanoma, a type of skin cancer. Like
bruises, lesions are a discoloration of the skin, but unlike bruises, the discoloration
is situated in the outer layer of the skin - the epidermis. Lesion segmentation is often
the first step in automated lesion image analysis. [28] Automatic lesion segmentation
is challenging due to several factors, including low contrast between the lesion and
the surrounding skin, confounding structures such as blood vessels and hairs and
irregular lesion borders. [29]

Hameed et al. [48] used Otsu thresholding to segment skin lesions. Erkol et al.
[39] used a combination of gray-scale Otsu thresholding and active contours to auto-
matically segment skin lesion images. Active contours, or snakes, is a segmentation
method introduced by Kass et al. [66]. The central idea of active contours is to define
an initial curve, the snake, and then deform it while minimizing an energy function.
[136] The energy function is defined by (2.3).

Esnake = Eint + Eimage + Econ (2.3)

Here, Eint is the internal energy of the snake that depends on the shape of the
snake itself, Eimage is the image energy that depends on edges in the image, and Econ
depends on external constraints. The internal energy depends on two parameters: α
and β. The first, α, dictates the tendency of the curve to contract. The second, β is a
smoothness parameter. If β is set to 0, corners are allowed.

The initial curve is often defined around the object to be segmented, and then
it contracts around the object while minimizing the energy function in (2.3). [30]
The snake is attracted to areas with high image derivatives, which corresponds to
edges in the image. A large number of iterations is required for the snake to get a
stable configuration, making active contours a computationally complex algorithm.
[92] It is recommended to smooth the image, for example with Gaussian blur, before
applying active contours. [136]

Agarwal et al. [10] used k-means clustering to segment skin lesion images. k-
means clustering, first introduced by MacQueen [85], is an unsupervised method
of separating n observations into k clusters where each observation belongs to the
cluster with the nearest cluster mean. The cluster centers are defined such that the
within-cluster variance is minimized. The within-cluster variance var(Cj) of cluster
Cj is defined by (2.4), adapted from [104].

var(Cj) =
Nj

∑
i=1

[d(xij, x̄j)]
2 (2.4)
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Here, Nj is the number of points in cluster Cj, xij is point number i in cluster
Cj, and x̄j is the cluster mean of cluster Cj, and d(xij, x̄j) is the distance between the
point and the cluster mean.

K-means clustering is popular because it is easy to implement and has low com-
putational complexity. [61] Agarwal et al. [10] smoothed the lesion images with a
Gaussian filter before clustering, to decrease the effect of small intensity changes
such as skin hair.

Several authors evaluate the lesion segmentation results by comparing the auto-
matic segmentation with a manual segmentation provided by dermatologists. [39,
122] Hasan et al. [53] used Intersection over Union (IoU) as a measure of similarity
between the automatic lesion segmentation and the ground truth.

Upon searching for skin bruise segmentation methods, the majority of articles
discuss the segmentation of fruit bruise images. Similarly to skin bruises, fruit
bruises are a discoloration caused by an external impact. [23] Du and Sun [35] de-
fined four categories of fruit bruise image segmentation: thresholding, region, edge
and classification-based. Thresholding-based segmentation methods divide the im-
age into segments by comparing pixel values to a given threshold value. One exam-
ple is Otsu thresholding, described above. Region-based approaches define image
regions based on some similarity criterion. There are two main sub-divisions of
region-based segmentation methods: top-down or splitting and bottom-up or merg-
ing. Edge-based segmentation methods use edge detection to find the boundaries
between segments. Classification-based methods divide the image pixels into seg-
ments, or classes, based on classification techniques such as Bayesian classification
and neural networks.

Of the four categories of segmentation methods, thresholding is the most popu-
lar for segmentation of fruit bruises. [83] Satone et al. [120] used Otsu thresholding
to detect bruises in apples. They pre-processed the images with histogram equal-
ization, which is covered in Section 2.4.3 Roy et al. [117] used k-means clustering to
segment fruit bruise images.

2.4 Image processing concepts

2.4.1 Computational color constancy

Human color constancy is our ability as humans to perceive the color of objects or
surfaces to be constant even though the illumination changes. Computational color
constancy is a class of methods attempting to emulate this ability of the human vi-
sual system in computers. [97] The vast majority of computational color constancy
research focuses on estimating the unknown illumination and correcting the image
accordingly. [9]

The most well-known computational color constancy method is the gray world
method [22], which relies on the assumption that, under a neutral light source, the
average color of an image should be achromatic - or gray. [43] Any deviation in the
average color from gray is caused by the illumination. This deviation becomes the
estimate of the illuminant.

Another well known computational method is the white patch method [71]. It
relies on another assumption, namely that the whitest part of an image represents
a perfect reflectance, and thus is equal to the illuminant. The main idea of both of
these methods is to estimate the illuminant (either by the gray world assumption or
the white patch assumption) and then adjust the image accordingly. Both methods
assume that the illuminant is spatially homogeneous.
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2.4.2 Color spaces

Color spaces are a way of representing colors as points in a (most often) three-
dimensional space. [63] The most well known color space is RGB. It is based on
the thrichromatic theory, that any color can be matched by mixing the three color
primaries: red (R), green (G) and blue (B). The straight line that connects black and
white is called the achromatic axis. [25] The International Commission on Illumi-
nation (CIE) defines the three primaries as monochromatic color stimuli with wave-
lengths of 700.0, 546.1 and 435.8 nm, respectively.

One way of measuring the difference between two colors is the Euclidean dis-
tance between two points in RGB space, shown in (2.5).

∆C12 =
√
(R1 − R2)2 + (G1 − G2)2 + (B1 − B2)2 (2.5)

However, this distance does not correspond with the perceived color difference.
This is the motivation behind creating perceptually uniform color spaces, or color spaces
in which the Euclidean distance between two colors corresponds by the color differ-
ence perceived by a human observer. One of the perceptually uniform color spaces
recommended by the CIE is the Lab (or L*a*b*) color space. [32] In this color space,
the three components L, a and b do not correspond to three color primaries. In-
stead, L represents the brightness, or luminance, and a and b represent the hue, or
chromaticity. The color difference in Lab space is calculated by (2.6). [60]

∆E∗
12 =

√
(L1 − L2)2 + (a1 − a2)2 + (b1 − b2)2 (2.6)

According to Hardeberg [50], a color difference ∆E∗12 larger than 3 is perceptible
to the human eye.

2.4.3 Histogram equalization

Histogram equalization is a widely used method of contrast enhancement and a
popular pre-processing step in image processing applications. [70] The main func-
tion of histogram equalization is to flatten the intensity histogram of the image, re-
sulting in higher contrast and an increased dynamic range. The histogram of an
image is a discrete function h(rk) = nk where rk is the k-th intensity level and nk is
the number of pixels in the image having that intensity level. [46] The probability of
a pixel having a given intensity value is given by the fraction nk

n , where n is the total
number of pixels in the image.

Histogram equalization is a mapping s = T(r) transforming the input image r
into an equalized output image s. The transformation is obtained by mapping every
pixel in the image with intensity level rk to have intensity level sk in the output
image, according to equation (2.8).

sk = T(rk) (2.7)

=
k

∑
j=0

nj

n
(2.8)

The sum ∑k
j=0

nj
n represents the discrete cumulative probability distribution of the

image. In other words, histogram equalization is obtained by applying the discrete
cumulative probability function of the image as an image transformation.
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Chapter 3

Methods

The workflow of the project is shown in Figure 3.1.

Acquisition Pre-processing Feature extraction Evaluation

FIGURE 3.1: Project workflow.

The first section covers how the images of bruises are gathered from study par-
ticipants, as well as the acquisition of other relevant data and management of data.
Then, the image processing of these images is covered in the subsequent sections.
Pre-processing includes extraction of region of interest (ROI) and image segmenta-
tion.

The three bruise features that have been selected to be extracted are size, shape
and color. As discussed in Section 2.2, the size, shape, color and location on the
body are the four most commonly mentioned features to be documented. Location
has been excluded as a feature because recognizing bruise location from an image
is a significantly different problem than estimating the size, shape and color of the
bruise.

The final section of this chapter covers the evaluation of the image acquisition
and processing. The precision and accuracy of each feature extraction will be evalu-
ated.

3.1 Data acquisition and management

3.1.1 Subject selection

Study participants are selected based on the following criteria:

• Otherwise healthy adult

• Has a visible bruise

• The bruise is of an accidental nature (not caused by violence)

• The bruise is preferably of known age and origin

Participants are recruited by contacting sports groups and through social media.
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3.1.2 Image acquisition

The images are taken by the study participants, using their own smartphones. Even
though smartphones provide lower quality images than DSLR cameras, see Section
??, it can be expected that more participants own a smartphone than own a DSLR
camera. The bruise images that are used as forensic evidence in criminal court are
often acquired with smartphones. [34]

The instructions given to the participants are included in Appendices A and B.
An alternative version of the instructions was made as it became apparent that the
original instructions were too time-consuming to follow for many participants.

In the original version of the instructions (Appendix A), the participants are
asked to take 10 photos of their bruises (bruise images) and 10 photos of skin on
the opposite side of the body (reference images). The reference images are included
to make estimation of a skin color baseline possible. For both the bruise images and
reference images, 5 images should be taken with flash and 5 without flash. The rea-
son for having 5 repetitions for each imaging condition is to make the estimation of
random error possible. In the simplified version of the instructions (Appendix B),
the reference images are omitted. Further, the participants only take 2 repetitions of
flash and no flash images.

A white paper should be included in each image. The purpose of the white pa-
per is to provide a reference for computational color constancy, which can facilitate
the color estimation of bruises under unknown illumination. As discussed in Sec-
tion 2.2.4, a standardized color calibration chart is preferred. However, such color
charts are not readily available, making them unsuitable for this self-documentation
method. White paper, on the other hand, is commonly found in every home or
workplace.

A ruler should be included in each image. The purpose of the ruler is to make
size estimation of the bruise possible. Again, no standardized ruler is required, since
such rulers are not readily available. Instead, the participants can use any ruler they
have access to.

In the original version of the instructions, the participants are asked to measure
the distance between the smartphone camera and the bruise. This step was removed
in the simplified instructions, as it proved to be difficult.

Originally, participants were required to know when and how their bruise was
caused. This requirement was removed in the simplified instructions, to increase the
number of eligible participants.

There is a trade-off between quality and quantity of data. The original version
of the image acquisition instructions provided better documentation of the bruises,
but the complexity of the instructions potentially caused several participants to not
finish the documentation. If the image acquisition process is too difficult, few people
can be persuaded to do it. By decreasing the quantity of data provided by each
participant, the number of participants could be increased.

The participants are asked to avoid strong shadows and fluorescent light, as
these can cause difficulties when extracting the color of the bruise. They are also
asked to keep the skin in focus, and to have the entire bruise be visible in the bruise
images. Finally, they are asked to try to keep the distance and angle of the phone
constant.
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3.1.3 Questionnaire

The images are collected using Nettskjema, a secure platform for gathering research
data. In addition to the images, relevant data about the participants and their bruises
are gathered through a questionnaire. The following data is gathered:

• Personal: Sex and birth year

• Health: Whether they smoke and whether they use blood-thinning medicine

• About the bruise: Date and time of bruise formation, cause of bruise

• Technical: Type of phone, type of illumination

The questions about the age and cause of the bruise are optional to answer, in
case the particpant does not know the origin of their bruise. They also provide a
possibility for the participant to provide a range of possible times for the creation of
the bruise, in the case of uncertainty. The health questions are motivated by the fact
that health factors impact the appearance of bruises, see Section 2.1.2.

At the end of the questionnaire, some questions about the method itself are in-
cluded. The participants are asked to rank the difficulty of the following tasks:

1. Understand the instructions

2. Find a ruler and white paper

3. Measure the distance between the bruise and camera

4. Photograph the bruise

5. Upload the photos

Each task is ranked on a scale from (1) very easy to (5) very difficult. They are
also given the possibility to provide any other feedback in an open text box.

3.1.4 Data management and privacy

Participants are identified by a Participant ID consisting of one letter and four digits,
for example A0001. The document that connects the participant’s personal informa-
tion with the Participant ID’s is stored separately and will be destroyed within five
years after project completion.

Participants sign an informed consent form before submitting their data. An
ethics approval application was submitted to the Regional Committee for Medical
and Health Research Ethics (REK) [115]. Due to the nature of the project, no ethical
approval is needed.

Bruises are referred to by a separate Bruise ID. By not using the Participant ID, it
is possible for one participant to submit more than one bruise.

3.2 ROI extraction

The region of interest (ROI) must be extracted for each bruise image. ROI extraction
is done according to these criteria:

• The entire bruise should be included in the ROI, unless the bruise is not entirely
visible in the image

https://nettskjema.no/
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• If possible, only the bruise and surrounding skin should be included in the
ROI

• Images from the same series should have as similar ROI’s as possible

Each bruise has two series of images: flash images and no flash images. The
first images in each series is shown to the user using a graphical interface. The user
manually defines a ROI by selecting two corners of the ROI rectangle. Then, the
coordinates of these corners are used to extract ROI’s of the remaining images of
the series. The purpose of this is to increase the similarity of the ROI’s within the
same series, assuming that the camera has not moved significantly between images.
However, this will not always be the cause. Therefore, the user is given the chance
to reject the ROI selection and manually select a new ROI for the remaining images
in the series.

3.3 Segmentation

The bruise images must be segmented before the size, shape and color can be esti-
mated. Image segmentation means dividing an image into segments that belong to
a certain class. More background on segmentation is found in Section 2.3.

The two segmentation classes are bruised skin and healthy skin. Four segmen-
tation methods were selected for comparison: Otsu binarization, k-means cluster-
ing without histogram equalization, k-means clustering with histogram equalization
and active contours. These methods have been selected based on the existing work
on skin bruise, fruit bruise and skin lesion segmentation, see Section 2.3.

3.3.1 Otsu thresholding

The flowchart of Otsu thresholding, also called Otsu binarization, is shown in Figure
3.2. The theory of Otsu thresholding is covered in Section 2.3.

Original
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ROI
extraction

Otsu
binarization

ROI
image

Binary
image

FIGURE 3.2: Otsu thresholding.

Once the region of interest has been extracted, the ROI image is divided into two
classes by Otsu thresholding. Otsu thresholding is implemented in Python [109],
using the cv2.threshold() method from the OpenCV library [20].

3.3.2 K-means clustering

The flowchart of k-means clustering is shown in Figure 3.3 The theory of k-means
clustering is covered in Section 2.3.
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FIGURE 3.3: K-means clustering with and without histogram equal-
ization.

First, the region of interest is extracted. Then, Gaussian blur is applied to two
versions of the image: one version with histogram equalization and one without.
In Figure 3.3, the images with histogram equalization are marked with an H. His-
togram equalization is covered in Section 2.4.3. The reason for including histogram
equalization is that it increases the contrast of images and thus may increase the
visibility of the bruise, improving the segmentation results.

The reason for including a Gaussian blur step is to reduce the effect of small in-
tensity variation in the image, as discussed in Section 2.3. The standard deviation of
the Gaussian blur is chosen dynamically based on image size. The blurred images
are fed into the k-means clustering method. The output of the k-means clustering
method is a cluster image: an image that has been divided into k classes. The seg-
ment that includes the middle pixel is defined as the bruise class and the remaining
segments are merged and defined as the not bruise class. After this merging step,
what remains is a binary image.

The chosen implementation of k-means clustering is the slic() method from
the scikit-image segmentation library [136] in Python [109] Histogram equalization
is also implemented in Python, using the equalize_hist() method from the scikit-
image exposure library. The Gaussian blur is implemented using the gaussian()
method from the scikit-image filters library.

3.3.3 Active contours

The flowchart of active contours segmentation is shown in Figure 3.4. The theory of
active contours is covered in Section 2.3.



18 Chapter 3. Methods

Original
image

ROI
extraction
Circle

extraction Circle Active
contours

Bruise
curve

Bresenham Bruise
polygon

Ray
casting

Binary
image

FIGURE 3.4: Active contours.

First, the initial curve of the algorithm is chosen. In this implementation, the
curve is a circle around the bruise defined by the user. The circle and the original
image are fed into the active contours algorithm. The curve contracts around the
bruise, tending towards areas of the image with high derivatives. When the algo-
rithm stops, it returns a set of points along the final curve. This is an estimate of the
boundary of the bruise.

The points are converted to integers to become pixels in the image. A polygon
representing the bruise is created by connecting each point with a straight line. The
Bresenham algorithm [21] was used to find the connecting lines. Then, in order
to transform the polygon into a bruise segment, the ray casting point in polygon
algorithm [125] was used to fill the polygon.

There are several algorithm parameters that affect the outcome of the active con-
tours method:

• α: A parameter that controls how fast the contour contracts. Higher values =
faster contractions.

• β: Smoothness parameter. Higher values = smoother contour.

• N: Number of points in starting circle.

These parameters are selected before segmenting and not tuned during the seg-
mentation process. The chosen implementation of active contours is the active_contours()
method from the scikit-image segmentation library [136] in Python [109]. Petr Vik-
torin’s Python implementation [138] of the Breseham algorithm was used. Ray cast-
ing was implemented in Python by the author, as no existing implementation was
found.

3.4 Size estimation

Size is the first of three bruise features that are estimated in this project. Two different
size measures have been selected: bruise area and the length and width of the bruise.
As discussed in Section 2.2.2, extracting the size of bruises from images may result
in higher precision than manual measurement of the bruise. [76]
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3.4.1 Ruler detection

In order to calculate the size of the bruise, the size of each pixel must be found. This
is done by measuring the number of pixels between each millimeter tick on the ruler.
The automatic ruler detection method works as follows.

1. Find ruler angle. The image is converted to gray-scale. Then, the edges of
the image are detected using Canny edge detection [26]. Then, the Hough
transform [57] is used to detect lines in the edge image. The angles of each line
is computed. The ruler angle θR is defined as the median angle of all detected
lines.

2. Find ruler location. The image is rotated by θR, such that the ruler is horizontal
in the image. Lines are detected in the same way as in step (1). All lines with
an angle that deviates less than a defined threshold ∆θ from the horizontal
are counted as probable ruler lines. The median y coordinate of these lines is
chosen as the probable y coordinate of the ruler yR.

3. Find ruler tick separation. Nl horizontal lines are scanned around the proba-
ble y coordinate of the ruler yR. The autocorrelation of each line is computed.
The median distance between the autocorrelation peaks d and the median
prominence of the autocorrelation peaks p is computed.

4. Repeat steps (1) to (3) N times. Chose the median distance d that corresponds
to the highest median prominence p. This is the number of pixels per millime-
ter.

This method has been inspired by existing work by Ueda et al. [135] and Bhalerao
and Reynolds [17], described in Section 2.2.2. The existing methods either require the
ruler to be horizontal or the user to mark the location of the ruler, which does not
allow for flexibility in acquisition process. The proposed method does not have such
requirements.

Automatic ruler detection is performed on all bruise images. The prominence
of the autocorrelation peaks is used as a confidence heuristic. The images that have
a low prominence value are deemed as ruler detection failures, and in these cases
manual ruler detection is done. Manual ruler detection is done by asking the user
to mark two points on the ruler. This bypasses the two first steps: finding the ruler
angle and finding the ruler location. The only part that remains is finding the ruler
tick separation.

The conversion to gray-scale is done using the rgb2gray() method from the
scikit-image color library [136]. The Canny edge detection is implemented by using
the canny() method from the scikit-image feature extraction library. The scikit-
image signal processing library is used to compute the ruler tick separation, using
the correlate(), find_peaks() and peak_prominences() methods.

3.4.2 Area

To compute the area of the bruise, one must first compute the area of one pixel. The
area of one pixel is defined by equation (3.1), where Ap is the area of the pixel in
mm2 and ppmm is the number of pixels per millimeter.

Ap =
1

ppmm2 (3.1)
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Then, the area of the bruise is given by the number of pixels within the bruise
segment Np multiplied by the area of one pixel Ap.

Ab = Np × Ap (3.2)

Bruise area is a computationally simple description of the bruise size, but is not
a typical descriptor of bruise size. A more common approach is describing the size
of the bruise in terms of its dimensions, or length and width. This is covered in the
next subsection.

3.4.3 Length and width

Bruises are often described by their length and width [95, 137]. This measure serves
as a description of both the size and shape of the bruise. As described in Section 2.2.2,
one way of measuring the length and width is first identifying the longest dimension
of the bruise and then measuring the width of the bruise along a line perpendicular
to the length axis. The following method is used to compute the length of the bruise.

First, the top, bottom, leftmost and rightmost points of the bruise are identified.
These are shown as blue points in Figure 3.5.

FIGURE 3.5: Bruise length extraction. The extracted length of the
bruise is the green line and the width is the blue line.

Then the midpoints are found: the top-left, top-right, bottom-left and bottom-
right points. These are shown as red points in Figure 3.5. Then, the "corner points"
are identified. These are the points with the y-value of the top/bottom points and
x-value of the left-right points. The rectangle defined by these four corner points
becomes a bounding box around the bruise. The corner points are shown as green
points in Figure 3.5. Then, the midpoints between the red midpoints and the green
corner points are calculated. These are shown as yellow points in Figure 3.5.

Once all the points have been found, the following distances are calculated:

• The distance between the top point and the bottom point

• The distance between the leftmost point and the rightmost point

• The distance between the top-left yellow midpoint and the bottom-right yel-
low midpoint
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• The distance between the top-right yellow midpoint and the bottom-left yel-
low midpoint

The longest distance is identified. A line is drawn between the two points with
the longest distance. This is shown as a red dashed line in Figure 3.5. In this case, the
longest line was the distance between the top-left yellow midpoint and the bottom-
right yellow midpoint. Finally, the line is shortened to only include points within
the bruise segment. The result is the green line in Figure 3.5.

In order to find the width, the length line is rotated 90 degrees around its mid-
point and shortened to only include points within the bruise segment. The result is
the blue line in Figure 3.5.

The width and length in millimeters are computed by multiplying the width and
length in pixels by the length of one pixel, given by 1

ppmm , where ppmm is the number
of pixels per millimeter.

3.5 Shape estimation

Shape is the second of three bruise features that are estimated in this project. Round-
ness has been selected as a shape descriptor.

3.5.1 Roundness

The shape of the bruise can be described by its roundness. One measure of bruise
roundness Rb is the ratio between the width wb and length lb of the bruise, as defined
by (3.3).

Rb =
wb

lb
(3.3)

Length and width extraction is covered in Section 3.4.3. If the ratio is 1, the bruise
has the same length and width. An example of a bruise with a width/length ratio
close to one is shown in Figure 3.6, where the green and blue lines are the extracted
length and width lines.

FIGURE 3.6: An example of a round bruise.
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3.6 Color estimation

Color is the third and final bruise feature that is estimated in this project. As dis-
cussed in Section 2.1.2, the human visual system is not suited to objectively measure
the color of bruises. Therefore it is interesting to develop an imaging-based approach
to do so. Two color measures are used: bruise contrast and average bruise color.

3.6.1 Contrast

The first bruise color descriptor is the contrast between the bruise and the surround-
ing skin. This is done by finding the average RGB value of the bruise segment and
of the surrounding skin. Then, these values are converted to Lab-space. See Section
2.4.2 for a discussion of color spaces. The bruise contrast is defined by equation (3.4),
where Ls is the average luminance of the skin and Lb is the average luminance of the
bruise.

∆L = Ls − Lb (3.4)

Bruises are in general darker than the surrounding skin, so ∆L is expected to be
a positive number. Imaging factors such as shadows can cause this expectation to be
violated.

3.6.2 Average bruise color

The second chosen color descriptor is average bruise color, or the average RGB value
of the bruise segment. Since the color of an object in an image depends on the illu-
mination as well as the reflectance of the object itself, computational color constancy
is applied to remove the contribution of the illumination. Section 2.4.1 covers the
theory of computational color constancy.

Two computational color constancy methods were selected: white patch and
gray world. The two methods are implemented in MatLab [88], using the Color Con-
stancy Toolbox [87]. The performance of the computational color constancy meth-
ods will be evaluated by sampling the color of the white paper in the image. The
method that provides the whitest paper is considered to have performed the best.
Here, whiteness is defined as the closeness to the achromatic axis. (See Section 2.4.2.

3.7 Evaluation

3.7.1 Evaluation of data set

The quality of the bruise images will be evaluated with respect to the following
criteria:

1. Include paper and ruler in image

2. Entire bruise visible

3. Good lighting without prominent shadows

4. Bruise and ruler in focus

5. Ruler parallel to camera and bruise

6. Keep the angle and distance of the camera constant
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3.7.2 Evaluation of acquisition method

The acquisition method will be evaluated by gathering feedback from the partici-
pants, see Section 3.1.3. The average difficulty of each task will be computed, as
well as the standard deviation. The acquisition method will also be evaluated by
investigating how well the instructions were followed, see Section 3.7.1

3.7.3 Evaluation of size estimation

The accuracy of the pixel per millimeter extraction will be evaluated by comparing to
the ground truth provided by measuring the ruler in GIMP [130]. The performance
of the pixel per millimeter extraction method will be evaluated by counting how
often manual ruler detection is needed.

The precision of the bruise area estimation is evaluated by computing the stan-
dard deviation of the area estimates for each bruise. The accuracy of the length and
width estimation is evaluated by comparing to a ground truth provided by measur-
ing the bruise in GIMP [130].

3.7.4 Evaluation of shape estimation

There is no well defined ground truth for the shape of the bruise, other than the
perceived shape provided by the participant in the Nettskjema questionnaire. The
precision of the shape estimation will be evaluated by computing the standard devi-
ation of the roundness estimate for each bruise. The accuracy of the shape estimation
will be evaluated by sampling some round and less round bruises and comparing
their estimated roundness values.

3.7.5 Evaluation of color estimation

The robustness with respect to illumination will be evaluated by comparing the av-
erage bruise color with and without flash. The color difference ∆C f b is found by
calculating the Euclidean distance in RGB space between the average color of the
bruise in the flash images (R f , G f , B f ) and the average color of the bruise in the no
flash images (Rn, Gn, Bn).

∆C f b =
√
(R f − Rn)2 + (G f − Gn)2 + (B f − Bn)2 (3.5)

There is no well defined ground truth for the color of the bruise, other than the
perceived color provided by the participant in the Nettskjema questionnaire. The
precision of the color estimation will be evaluated by computing the standard devi-
ation of the two color measures: contrast and average bruise color for each bruise.
Contrast is a scalar, so the standard deviation will be computed using the built-in
standard deviation method from the math library in Python [109]. In the case of RGB
color, the standard deviation must be calculated explicitly by using the color differ-
ence measure defined by (3.5). The standard deviation will be computed within
each illumination setting (flash and no flash), to separate the effects of illumination
difference and random variation. The color robustness measure encompasses the
variation in color estimate caused by change in illumination, and the color precision
measure encompasses the variation in color estimate caused by random error.
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3.7.6 Evaluation of segmentation

Since there is no segmentation ground truth, the accuracy of the segmentation meth-
ods cannot be evaluated directly. Instead, the four selected segmentation methods
(Otsu thresholding, k-means clustering without histogram equalization, k-means
clustering with histogram equalization and active contours) will be evaluated in-
directly based on the performance of the feature extraction. Each segmentation
method will be ranked from 1 (best) to 4 (worst) in each of the following categories:

• Area precision

• Length accuracy

• Width accuracy

• Roundness precision

• Roundness accuracy

• Contrast precision

• Color robustness

• Color precision

• Segmentation speed

The scores will be weighted such that size, shape, color estimation and segmen-
tation speed are each weighted equally. An average ranking will be calculated, re-
sulting in a final ranking of the four segmentation methods.
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Chapter 4

Results and Discussion

This chapter presents and discusses the results of the image acquisition and image
processing, following the evaluation method covered in Section 3.7 . The acquired
data set is covered in Section 4.1. The region of interest (ROI) extraction is covered
in Section 4.2. The estimation of the three features - size, shape and color - is covered
in Sections 4.3 - 4.5. Based on these results, the bruise image segmentation will be
evaluated in Section 4.6. The acquisition method will be discussed in Section 4.7.
Finally, the results are summarized and discussed in Section 4.8.

4.1 Data set

4.1.1 Subjects

24 participants were recruited through local sports groups and social media. The
distribution of participant ages is shown in Figure 4.1.
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FIGURE 4.1: Distribution of participant ages.

The ratio of female and male participants is shown in Figure 4.2
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FIGURE 4.2: Ratio of female and male participants.

There is a clear bias towards participants of a similar demographic as the au-
thor, the author being female and 24 years old. The age distribution makes sense,
since participants were recruited through social media (where friends have a higher
chance of seeing the post) and university sports (university students tend to be aged
20-30). It is not clear why the vast majority of the participants are female.

All the participants that were recruited have light skin color. This is explained by
the fact that primarily Norwegian participants were recruited. Since the appearance
of skin bruises depends on the underlying skin color (see Section 2.1.2), it would be
preferable to have more skin colors represented in the data set.

4.1.2 Bruises

Two of the participants submitted two bruises, so 26 bruises were gathered in total.
For bruises 5, 20 and 26, the participants submitted follow-up images of their bruises
- e.g. answered the questionnaire at two different times.

An overview of the bruises is shown in Table 4.1. Bruises acquired with the
original instructions are marked with orange, and the bruises documented with the
simplified instructions are marked with blue. See Section 3.1.2 for a description of
the two versions of the instructions.



4.1. Data set 27

TABLE 4.1: Overview of the bruises: bruise ID (BID), features
(size, shape, color and location) and additional information (age and

cause).

BID Size Shape Color Location Age Cause

1 R = 2 cm
Round or
star-shaped

Red, blue, pur-
ple, yellow

Knee 4 d Falling

2 2 x 2 cm
Trapeze-
shaped

Blue-green,
yellow, brown

Elbow 5 d Snowboard

3 2-3 cm Round Brown Knee 7 d Cause
4 D = 4 cm 2 circles Blue-gray Leg 3 d N/A

5
6 x 2-3 cm,
4 x 2 cm

Oval Purple, pink Hip
7 h, 2
d

Exercise

6 7 x 2.5 cm Flat oval
Yellow, green
with purple spots

Knee 3 d
Hit knee
against
table

7 2.5 x 2 cm Triangle Purple Chin 4 d Acrobatics

8
Large
grape

Oval Green, purple Thigh 5 d N/A

9 D = 3 cm Round Brown, red Calf 2 d Poledance

10 < 1 cm
Several
round

Yellow, green,
blue

Arm 18 h Poledance

11
D ≈ 0.2 −
1 cm

Several
round

Blue, yellow, pur-
ple

Thigh 9 d Poledance

12 D ≈ 3 cm
Round,
oval

Yellow Elbow 7 d
Cat bite
through
clothes

13 16 x 9 cm Spotted Blue Thigh 2 d Rugby
14 6 x 4 cm Round Purple Knee 3 d Rugby
15 10 x 5-6 cm Oval Yellow, green Elbow 5 d Acrobatics

16 D ≈ 3 cm
Round, dif-
fuse edges

Purple, blue Arm 2 d
Weight
training

17 D ≈ 4 cm
Round
with protu-
sion

Dark blue-green,
purple

Thigh 3 d
Collision
with oven

18 D = 2 cm Round Blue and yellow Thigh 3 d Biking

19 Small Round
Purple, green,
blue

Arm 4 d
Child bite
through
clothes

20 ≈ 5 x 3 cm
Ellipse
with hole

Purple Calf
8 d; 13
d

Hit table

21 ≈ 2.5 cm Circle Brown Knee 2 d N/A
22 ≈ 14 x 6 cm Oval Blue and red Foot 20 h Dance
23 ≈ 1 x 3 cm Oblong Brown Calf 3 d Volleyball

24 ≈ 3 cm Oblong
Yellow, purple,
blue, green

Arm 5 d
Hit car
door

25 20 x 4-5 cm Elongated Dark blue Thigh 3 d Trampoline

26 ≈ 7 cm Diffuse
Green-yellow;
some blue

Knee
3 d; 5
d

N/A

The participants were given no instructions about how to describe the size, shape
and color of their bruises. Thus there is a large variation in how they have chosen
to describe these features. Most of the participants describe the size of their bruise
using one or more measurements, often radius, diameter or length and width. One
participant described the size of their bruise using a comparison with fruit ("large
grape") and another one simply described it as "small". When describing the shape
of the bruise, most participants compared the outer contour of the bruise to a ge-
ometric shape such as circle or oval. Some participants also included other factors
such as diffuseness and the existence of a central clearing. When describing color,
all participants listed one or more colors present in their bruise.

The colors of the bruises were compared with their ages. The connection between
bruise color and age is discussed in Section 2.1.2, with emphasis on when the color
yellow appears. Figure 4.3 shows the age distribution of yellow bruises, as well as
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the general age distribution of the bruises in the data set.

0 2 4 6 8 10 12 14
Age (days)

0

1

2

3

4

5

6

7

8
N

um
be

r
of

br
ui

se
s

all bruises
yellow bruises

FIGURE 4.3: The age distribution of yellow bruises.

The youngest bruise with observed yellow in it is 2 days old. This fits with the
findings of Langlois and Gresham [74] and Randeberg et al. [110] that were discussed
in Section 2.1.2. The oldest bruise in the data set, with an age of 13 days, had yellow
in it. From the histogram, it is clear that the distribution of yellow bruises is skewed
toward higher ages compared to bruises in general.

Upon inspection of the data set, several bruise classes were recurring. First, clus-
ter bruises. These bruises consist of several smaller bruises in a cluster. This type of
bruises is interesting, since it may be indicative of abuse. (See Section 2.2.3.) Defin-
ing their size and shape can be challenging, since they can both be seen as one large
bruise and as many small ones. Two examples of cluster bruises are shown in Figure
4.4.

(A) Bruise 10 (B) Bruise 11

FIGURE 4.4: Two examples of cluster bruises. (Bruise 10 and 11)
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The second class is "blob"-like bruises. These bruises are one contiguous shape
with well defined edges. They are the most straight-forward to segment. An exam-
ple of a blob bruise is shown in Figure 4.5.

FIGURE 4.5: An example of a blob bruise. (Bruise 17)

Diffuse bruises are probably the most complicated to segment. They have a faint
coloration and the edges are diffuse. Defining their border is difficult both for hu-
mans and machines. An example of a diffuse bruise is shown in Figure 4.6.

FIGURE 4.6: An example of a diffuse bruise. (Bruise 9)

The fourth class of bruises are "central clearing" bruises. These bruises are char-
acterized by having a section of lighter or no discoloration within the bruise. This
class of bruises is interesting to analyze, since the presence of a central clearing may
indicate that the bruise was caused by a violent impact. [105] An example of a central
clearing bruise is shown in Figure 4.7.
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FIGURE 4.7: An example of a central clearing bruise. (Bruise 20)

The final class, complex, only applies to a single bruise. Its shape its too irregular
to fit the description of a blob-like bruise.

FIGURE 4.8: Bruise 25 is classified as a complex bruise due to its ir-
regular shape.

This bruise is significantly more severe than the other bruises in the data set, and
is the only bruise that caused hospitalization of the participant.

The classifications of the bruises in the data set are shown in Table 4.2.
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TABLE 4.2: The classifications of the bruises in the data set.

BID Characteristics
1 Blob
2 Diffuse
3 Diffuse
4 Cluster
5 Blob
6 Blob
7 Blob
8 Blob
9 Diffuse
10 Cluster
11 Cluster
12 Faint
13 Cluster
14 Central clearing
15 Diffuse
16 Blob
17 Blob
18 Blob
19 Blob
20 Central clearing
21 Blob
22 Diffuse
23 Blob
24 Blob
25 Complex
26 Cluster

Bruise characteristics exist on a continuous scale between these classes. Some of
the bruises exhibit both blob-like and diffuse characteristics, for example.

4.1.3 Image quality

176 bruise images were gathered. The quality of the acquired image data set was
evaluated according to the following criteria:

1. Include paper and ruler in image

2. Entire bruise visible

3. Good lighting without prominent shadows

4. Bruise and ruler in focus

5. Ruler parallel to camera and bruise

6. Keep the angle and distance of the camera constant

The results are shown in Table 4.3.
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Bruise Crit. 1 Crit. 2 Crit. 3 Crit. 4 Crit. 5 Crit. 6
1 Yes Yes Yes Yes No No
2 Yes Yes Yes No Yes Yes
3 Yes Yes No Yes Yes Yes
4 Yes Yes Yes Yes No Yes
5 Partial No No Partial Yes No
6 Yes Yes No Yes Yes Yes
7 Yes Yes Yes Yes Yes Yes
8 Yes No No Yes Yes Yes
9 Partial Yes No Partial Yes Yes
10 Yes Yes Yes Yes No Yes
11 Partial Yes No No Yes No
12 Partial Yes No No Partial No
13 Yes Yes Yes Yes Yes Yes
14 No Yes No N/A N/A No
15 Yes No No Yes Yes Yes
16 Yes Yes No Yes Yes Yes
17 Yes Yes Yes Yes No Yes
18 No Yes No N/A N/A No
19 No Yes No N/A N/A No
20 Yes Yes Yes No Yes Yes
21 Partial Yes Yes Yes Yes Yes
22 No Yes No Yes Yes Yes
23 Yes Yes Yes No Yes No
24 Yes Yes Yes Yes No No
25 Yes Yes Yes Yes No Yes
26 Yes Yes No Yes No Yes

TABLE 4.3: Quality of image set

Bruise 5, 9 and 11 got partial scores for criterion 1: Include paper and ruler in
image, because measuring tape was used instead of a ruler. Since measuring tape is
not rigid, it is less suitable for bruise size extraction. (See Section 2.2.2 In the case of
bruise 21, an image of a ruler had apparently been printed on the white paper. In this
case, it is uncertain whether the scale of the printed ruler matches real dimensions.
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FIGURE 4.9: An image of a ruler printed on paper. (Bruise 21)

Bruise 5 got a partial score for criterion 4: Bruise and ruler in focus, because the
ruler is in focus but not the bruise. Bruise 9 and 12 got a partial score for criterion
4: Bruise and ruler in focus, since the ruler was only in focus in some of the images.
Figure 4.10 shows an example of a ruler out of focus. In such cases, extracting the
size of the bruise is impossible.

(A) Bruise 2: unfocused ruler (B) Bruise 5: unfocused bruise

FIGURE 4.10: Two examples of poor focus.

Bruises 3, 5 and 8 are examples of bruises where the images have poor lighting.
Figure 4.11 shows that it is difficult to separate the darkness caused by the shadow
and the darkness caused by the discoloration of the bruise itself, making segmenta-
tion of such bruises challenging. In the case of bruise 8, the flash photography has
caused significant shine on the skin.
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(A) Bruise 3 (B) Bruise 5 (C) Bruise 8

FIGURE 4.11: Three examples of poor lighting.

In the images of bruise 4, both the bruise and the ruler are at an angle from the
image plane, distorting the shape of the bruise. This is shown in Figure 4.12.

FIGURE 4.12: The bruise and ruler are not parallel with the image
plane. (Bruise 4)

The owner of bruise 2 submitted two duplicate images.

4.2 ROI extraction

Region of interest (ROI) was extracted for all bruise images, following the procedure
descried in Section 3.2. In some cases, it was impossible to only have bruise and sur-
rounding skin within the ROI. Two such cases are shown in figure 4.13. In these case,
it is impossible to extract a rectangular ROI that includes the entire bruise without
also including parts of the background.
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(A) Bruise 25 (B) Bruise 15

FIGURE 4.13: In these cases, it is impossible to extract a rectangular
ROI that contains the entire bruise without also including parts of the

background.

In such cases, the three segmentation methods that rely on a rectangular ROI will
likely perform worse.

4.3 Size estimation

Two size measures were selected: bruise area and bruise length and width. Before
extracting the size of the bruise, ruler detection is performed.

4.3.1 Ruler detection

The automatic ruler detection failed on some images due to the acquisition process
and not due to an inherent failure of the method. In the case of some bruises (bruise
2, 11, 20, 23), the ruler was so blurry that it was impossible to determine the spac-
ing between the ruler ticks. In four cases (bruise 14, 18, 19, 21) there was no ruler
included in the images, making ruler detection impossible. These bruises are classi-
fied as "impossible" bruises in Figure 4.14.
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10 bruises

8 bruises

8 bruises

automatic
manual
impossible

FIGURE 4.14: Performance of ruler detection.

In some cases, the automatic ruler detection failed due to errors that would not
prevent a human from correctly determining the ruler spacing. These are marked as
"manual" in Figure 4.14, and manual ruler detection was done. In the case of bruise
9, half of the images had a blurry ruler and were thus impossible to perform ruler
detection on. In the case of bruises 7, 13 and 24, the ruler included both imperial
and metric units. This is a likely source of confusion for the line extraction method.
Some bruises had other lined objects in the images, which may have been mistakenly
identified as the ruler. The images of bruise 4 were taken on a striped bed-sheet, and
the images of bruise 5 included a lined white paper.

Figure 4.15 shows the line detection being confused by the lined paper.
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FIGURE 4.15: Lined paper being a source of confusion for the ruler
detection. The detected lines in the image are highlighted. (Bruise 5)

Once ruler detection had been performed on all possible images, except the im-
possible ones, the extracted values of pixel per millimeter is compared to the ground
truth. The ground truth was defined by measuring the ruler tick separation manu-
ally in GIMP [130]. In the images where the ruler is not parallel to the image plane,
a minimum and maximum value for the number of pixels per millimeter was ex-
tracted.

The following table shows the average error (in pixels) for each bruise.
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Bruise Average error
1 0.5
3 0.8
4 0
5 0
6 0
7 2.75
8 0
9 0.6

10 0
12 0
13 3.2
15 0.25
16 0
17 1.25
22 0
24 4
25 0
26 1.88

TABLE 4.4: Average error, in pixels, of pixel per millimeter extraction.

The average error is quite low, all the values being between 0 and 3.2 pixels.

4.3.2 Area

The bruise area was estimated for each bruise image and segmentation method. The
average bruise area was computed by calculating the mean of all area estimates for
the same bruise and the same segmentation method. The results are shown in Table
4.5.
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TABLE 4.5: Average area (mm2) for each segmentation method.

BID OT KM KH AC
1 1902.15 1006.69 640.21 743.63
3 2129.17 1203.15 1304.86 677.97
4 4392.31 1234.35 1901.18 1648.69
5 11495.15 3823.85 4446.50 1815.59

5.2 7425.00 2480.07 3047.64 1321.84
6 3533.60 1268.29 1099.38 1020.21
7 501.82 227.85 306.82 231.75
8 948.36 373.39 237.28 125.15
9 1417.69 753.24 847.58 212.67

10 5935.48 1521.37 2797.38 935.15
12 362.13 159.17 231.82 42.97
13 7312.37 2348.60 2927.04 3380.80
15 14656.20 4955.78 5972.20 4514.92
16 1186.00 680.51 526.33 297.58
17 1225.39 924.55 611.12 377.92
22 8457.39 2829.86 3401.35 2521.98
24 519.96 478.39 306.98; 141.08
25 21000.81 8545.52 9722.26 N/A
26 2776.55 925.76 1087.32 605.48

26.2 2811.95 917.47 1086.04 820.72

Active contours was not done for bruise 25, which is why the estimate is N/A.
The reason for this is covered in Section 4.6.3.

Defining a ground truth area for each bruise would be subjective and very time-
consuming, so it has not been done. Thus the accuracy of these estimates cannot be
evaluated. Still, one can analyze the trends. Otsu thresholding produced the largest
average area estimate for every single bruise in the data set.

(A) The region of interest (B) Otsu thresholding

FIGURE 4.16: An example of a too large bruise area produced by Otsu
thresholding. (Bruise 5)

In this case, the segmentation method identified the shadow and not the bruise.
Since the segmentation methods assume that the bruise is in the middle of the region
of interest, the white part of Figure 4.16 (B) is classified as the bruise. The area of this
segment is significantly larger than the bruise itself. This is a general problem for
Otsu thresholding, and will be discussed further in Section 4.6.3.
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The precision of the area estimates can be evaluated by computing the standard
deviation of the bruise area estimates for each bruise and segmentation method. The
results are shown in Table 4.6.

TABLE 4.6: Standard deviation of area (mm2) for each segmentation
method. The lowest standard deviation for each bruise is marked

with green.

BID OT KM KH AC
1 926.68 328.07 307.88 776.99
3 1696.30 930.78 1038.66 420.16
4 1216.86 264.82 476.99 307.21
5 3980.21 826.14 537.70 883.76

5.2 1880.39 396.56 1102.31 655.33
6 970.94 68.24 472.65 121.25
7 475.63 244.23 429.89 171.88
8 15.86 68.16 8.82 14.11
9 249.56 92.86 58.51 18.66

10 829.70 307.15 948.12 145.70
12 485.17 213.75 314.36 60.05
13 5765.97 1454.19 1896.07 2265.07
15 5704.02 1738.90 3941.24 968.20
16 492.14 328.28 140.90 209.88
22 3735.45 1145.55 2402.48 476.66
24 27.2 18.4 12.8 83.77
25 5832.01 2666.71 4415.01 N/A
26 127.74 118.60 128.14 23.78

26.2 1266.49 351.00 433.62 395.26

Otsu thresholding did not result in the lowest standard deviation for any of the
bruises. It makes sense that Otsu thresholding caused high values of standard devi-
ation, since the area estimates were also largest for Otsu thresholding.

The other three segmentation methods have equal performances in terms of stan-
dard deviation.

4.3.3 Length and width

The ground truth width and length was extracted for one flash image and one image
without flash for each bruise. This was done to save time, as manually measuring
the length and width of the bruises in all images in the data set would be too time-
consuming. The average of the two ground truth measurements is defined as the
ground truth. Any difference between the two ground truth estimates indicates pos-
sible ambiguity in defining the length and width of the bruise, as well as possible
variation of the camera angle. It is also likely that the change in illumination (flash
no flash) modifies the apparent size of the bruise by changing which parts of it is
visible in the image. The ground truth lengths and widths are presented in Table 4.7.
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TABLE 4.7: Ground truth lengths and widths in millimeters, to one
decimal point precision.

BID Length 1 Length 2 Width 1 Width 2 Length Width
1 27.4 27.5 23.3 24.1 27.5 23.7
3 39.0 41.8 14.7 16.4 40.4 15.6
4 88.0 89.3 53.6 48.1 88.6 50.9
5 117.5 118.6 67.4 62.1 118.1 64.8

5.2 120.9 129.5 58.1 52.5 125.2 55.3
6 98.1 97.4 24.1 24.2 97.8 24.1
7 21.2 25.5 8.1 9.4 23.3 8.7
8 31.6 31.5 21.9 20.4 31.6 21.2
9 32.4 32.4 21.8 18.7 32.4 20.3

10 100.8 101.1 35.6 34.2 100.9 34.9
12 35.9 35.6 21.2 16 35.8 18.6
13 99.5 98.0 39.9 37.6 98.8 38.8
15 80.0 90.8 52.2 49.4 85.4 50.8
16 42.8 37.7 24.0 32.1 40.3 23.5
17 54.5 58.6 36.6 42.3 56.5 39.4
22 149.6 154.8 64.1 64.9 152.2 64.5
24 39.2 26.3 16.7 18.0 37.7 17.3
25 215.1 247.6 72.9 76.1 231.3 74.5
26 109.5 110.2 54.5 47.1 109.9 50.8

26.2 103.6 103.7 48 44.8 103.7 46.4

Some bruises, specifically "blob"-like bruises, have shapes that are fairly straight-
forward to analyze. One example is bruise 6, shown in Figure 4.17. The manually
extracted width and length are marked by red lines.

FIGURE 4.17: Manually extracted width and length. (Bruise 6)

Some bruises have a shape that makes it difficult to define an unambiguous
width and length. For example, bruise 7, shown in Figure 4.18, has at least two
viable candidates for width.
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FIGURE 4.18: The width of some bruises is ambiguous. (Bruise 7)

In such cases, an average width between the two candidates was calculated. In
some cases, the bruise is so diffuse that it is challenging to determine where it begins
and ends. Two such bruises are shown in Figure 4.19.

(A) Bruise 3 (B) Bruise 15

FIGURE 4.19: It is difficult to define the border of diffuse bruises.

The average estimated width and length for each bruise and segmentation method
was computed. The four segmentation methods are abbreviated as follows:

• Otsu = OT

• K means = KM

• K means with histogram equalization = KH

• Active contours = AC

Further, ground truth is abbreviated as GT. The estimated length and width, as
well as the ground truth, for each bruise are presented in tables 4.8 and 4.9. The most
accurate estimate is highlighted for each bruise.
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TABLE 4.8: Estimated length for each segmentation method.

BID OT KM KH AC GT
1 71.7 45.5 33.9 43.2 27.5
3 72.7 46.4 68.3 64.0 40.4
4 111.0 57.0 89.5 101.9 88.6
5 134.4 125.5 146.8 75.6 118.1

5.2 144.1 104.3 113.8 84.1 125.2
6 121.3 55.3 77.8 93.8 97.8
7 37.6 20.9 29.9 34.7 23.3
8 43.4 25.1 22.6 28.0 31.6
9 53.62 34.7 55.5 38.6 32.4

10 117.5 65.1 93.3 76.9 100.9
12 25.06 12.1 17.3 12.5 35.8
13 161.5 67.5 133.0 144.2 98.8
15 86.3 57.5 79.2 82.3 85.4
16 50.4 38.0 38.5 42.1 40.3
17 3.5 40.2 42.8 48.5 56.5
22 164.3 90.3 106.2 136.2 152.2
24 48.1 34.8 31.0 29.1 37.7
25 253.4 138.7 201.8 N/A 231.3
26 91.5 45.3 66.2 59.3 109.9

26.2 102.9 40.4 54.1 74.6 103.7

TABLE 4.9: Estimated width for each segmentation method.

BID OT KM KH AC GT
1 48.1 30.3 23.0 42.3 23.7
3 42.7 33.6 24.1 61.6 15.6
4 51.1 30.9 40.4 98.9 50.9
5 86.7 19.40 38.9 70.1 64.8

5.2 119.5 55.8 57.9 75.0 55.3
6 95.7 31.7 31.8 84.4 24.1
7 23.1 12.1 7.5 32.0 8.7
8 37.6 19.3 10.8 27.4 21.2
9 50.6 32.6 36.7 38.0 20.3

10 61.8 33.6 43.1 75.6 34.9
12 20.2 9.6 7.6 10.9 18.6
13 63.9 46.9 38.8 128.5 38.8
15 49.4 30.3 26.8 78.5 50.8
16 37.3 21.5 14.0 41.4 23.5
17 49.3 30.5 14.0 46.4 39.4
22 65.9 37.2 36.7 115.2 64.5
24 27.2 18.4 12.8 27.5 17.3
25 230.4 84.5 84.5 N/A 74.5
26 75.8 36.7 26.6 47.4 50.8

26.2 91.8 27.8 25.4 69.0 46.4

Otsu thresholding resulted in a too large width estimate in all bruises except
one and a too large length estimates in all bruises except five. It makes sense that
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the length and width estimates were often too large, as the area estimates were also
consistently larger than the other segmentation methods.

Similarly, active contours over-estimated the width in all bruises except two.
However, the length estimates were more evenly spaced around the ground truth.
In other words, active contours seems to over-estimate the roundness of the bruise.
This will be further addressed in Section 4.4.

The estimates from k-means clustering with and without histogram equalization
were more evenly spaced around the ground truth.

In the case of bruise 11, two images with no flash were used to find the ground
truth, as the ruler was out of focus in the flash images. Two flash images were used
for bruises 9 and 12, for the same reason.

4.4 Shape estimation

The average bruise roundness and standard deviation were computed for each bruise
and segmentation method. The average estimated roundness of each bruise is pre-
sented in Table 4.10. Roundness ranges from 1 (width equals length) to 0 (length
infinitely larger than width). There is no defined ground truth of each bruise, so the
accuracy of these estimates cannot be computed exactly.
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TABLE 4.10: Average roundness for each bruise and segmentation
method.

BID OT KM KH AC
1 0.67 0.67 0.73 0.98
2 0.33 0.72 0.24 0.83
3 0.62 0.73 0.39 0.96
4 0.46 0.55 0.46 0.97
5 0.63 0.50 0.26 0.93

5.2 0.84 0.51 0.49 0.89
6 0.79 0.67 0.39 0.90
7 0.72 0.56 0.29 0.94
8 0.86 0.77 0.56 0.98
9 0.95 0.94 0.65 0.98

10 0.52 0.52 0.48 0.99
11 0.87 0.78 0.53 0.59
12 0.59 0.74 0.49 0.94
13 0.38 0.71 0.26 0.89
14 0.64 0.65 0.53 0.80
15 0.59 0.55 0.33 0.95
16 0.74 0.56 0.39 0.98
17 0.75 0.76 0.36 0.95
18 0.73 0.81 0.67 0.93
19 0.63 0.65 0.63 0.79
20 0.53 0.53 0.41 0.98

20.2 0.54 0.66 0.43 0.97
21 0.63 0.65 0.63 0.79
21 0.68 0.72 0.51 0.96
22 0.40 0.44 0.35 0.85
23 0.77 0.60 0.40 0.93
24 0.63 0.53 0.44 0.95
25 0.91 0.62 0.69 N/A
26 0.83 0.81 0.42 0.80

26.2 0.90 0.69 0.48 0.92

Three pairs of comparison bruises are chosen to sample the accuracy of the round-
ness estimation and provide an estimate of the accuracy. In each pair, the first bruise
is significantly rounder than the second. This roundness labeling is done by manu-
ally observing the bruise. The three comparison pairs are as follows: bruise 8 and
bruise 6; bruise 18 and bruise 7; and bruise 19 and bruise 23. It is expected that the
estimated roundness should be higher for the first bruise in each pair.

For the first pair and second pair, the only segmentation method that failed to
correctly identify the first bruise as the roundest was active contours. For the third
pair, both active contours and Otsu thresholding failed. Based on these samples, k-
means clustering with and without histogram equalization scored best in roundness
estimation accuracy. Active contours scored the worst.

Looking at Table 4.10, active contours consistently provides the highest round-
ness estimate. This is related to the finding in Section 4.3.3 that active contours over-
estimates the width of bruises. This bias toward round bruise shapes may be a result
of the initial curve being a circle. Future work should investigate the effect of chang-
ing this initial curve.
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The standard deviation of the bruise roundness is a measure of shape estimation
precision. Low standard deviation indicates high precision. The standard deviation
of the bruise roundness for each bruise and segmentation method is shown in Table
4.11. The lowest standard deviation for each bruise is marked with bold text.

TABLE 4.11: Standard deviation of roundness for each bruise and seg-
mentation method. The lowest standard deviation for each bruise is

highlighted.

BID OT KM KH AC
1 0.08 0.15 0.20 0.02
2 0.07 0.10 0.12 0.16
3 0.14 0.15 0.23 0.02
4 0.22 0.10 0.11 0.03
5 0.26 0.28 0.10 0.03

5.2 0.17 0.20 0.22 0.03
6 0.13 0.38 0.27 0.06
7 0.36 0.16 0.10 0.06
8 0.13 0.04 0.43 0.02
9 0.06 0.04 0.12 0.01

10 0.04 0.12 0.16 0.02
11 0.20 0.05 0.24 0.17
12 0.25 0.11 0.13 0.11
13 0.05 0.10 0.17 0.10
14 0.08 0.18 0.16 0.16
15 0.14 0.25 0.15 0.04
16 0.19 0.18 0.27 0.01
17 0.30 0.07 0.31 0.06
18 0.04 0.17 0.19 0.08
19 0.05 0.06 0.06 0.20
20 0.08 0.07 0.10 0.01

20.2 0.08 0.28 0.24 0.03
21 0.04 0.19 0.05 0.02
22 0.09 0.32 0.16 0.13
23 0.17 0.07 0.16 0.03
24 0.30 0.04 0.12 0.05
25 0.14 0.16 0.14 N/A
26 0.20 0.12 0.23 0.06

26.2 0.08 0.11 0.03 0.07

Active contours has the lowest standard deviation on average. This may be
caused by the methods being biased toward round bruise shapes and thus not vary-
ing much.

4.5 Color estimation

4.5.1 Bruise contrast

The bruise contrast was computed for each bruise image and each segmentation
variation. Bruise contrast is defined as the difference between the luminance of the
skin Ls and the luminance of the bruise Lb. See Section 3.6. The average bruise
contrast is shown in Table 4.12.
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TABLE 4.12: Average bruise contrast

BID OT KM KH AC
1 14.36 13.80 14.42 -0.11
2 0.99 -0.06 -0.60 0.78
3 -9.77 -4.40 -5.43 0.06
4 -2.87 -0.12 -1.17 0.71
5 5.46 5.54 8.89 0.32
5.2 7.50 0.22 2.90 0.19
6 8.25 5.92 6.22 0.88
7 11.71 9.24 11.22 -0.72
8 14.25 9.80 8.03 -0.32
9 -3.14 -3.18 1.78 0.00
10 -14.51 -1.61 -0.27 0.03
11 -13.72 -6.90 -5.54 -0.12
12 -0.43 1.56 -0.39 0.23
13 -4.25 -3.73 -1.29 0.05
14 -6.64 0.29 -6.93 -0.89
15 -21.44 -8.28 -4.99 -0.46
16 20.33 5.19 3.05 -0.89
17 13.49 5.15 8.40 0.02
18 11.24 7.45 6.15 0.98
19 8.95 6.28 6.14 0.10
20 -22.65 -3.32 -7.41 3.46
20.2 -20.11 -8.52 -9.96 6.87
21 5.43 3.29 3.19 0.39
22 15.81 -1.69 0.61 -0.27
23 0.03 0.06 -1.42 -3.00
24 11.36 10.38 12.36 0.00
25 0.07 1.48 7.24 N/A
26 11.22 6.19 3.87 0.44
26.2 -8.38 -1.01 -0.95 0.13

Positive values are excepted, since normally bruises are darker than the sur-
rounding skin. Sometimes this will not be the case in an image, due to the presence
of shadows and other confounding factors.

In the case of bruise 20, a central clearing bruise, all segmentation methods except
active contours resulted in significantly negative contrast values. Figure 4.20 shows
bruise 20 segmented by three of the four segmentation methods: Otsu thresholding
(OT), k-means clustering (KM) and k-means clustering with histogram equalization
(KH).
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(A) The region of interest. (B) OT

(C) KM (D) KH

FIGURE 4.20: Segmentation results for k-means and Otsu threshold-
ing. (Bruise 20)

It is clear why these segmentation methods resulted in negative contrast values.
Since the central clearing is in the middle of the region of interest, and the central
clearing has a similar color to the surrounding skin, the central clearing and the skin
was classified as the bruise. Since the skin and central clearing are lighter than the
bruise, but the classes were switched, the resulting contrast values are negative.

Figure 4.21 shows the segmentation results for the same bruise with active con-
tours.

(A) Bruise 6 (B) Active contours

FIGURE 4.21: Segmentation with active contours. (Bruise 20)
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The segmentation result produced by active contours does not correspond to the
bruise, but it still results in better contrast values than from the other three segmen-
tation methods. This is by chance, since the circle in Figure 4.21b happens to include
more of the dark coloration than the rest of the image. As discussed in Section 4.4,
active contours defaults to a circle-like bruise segments in cases where the edge of
the bruise is not detected.

TABLE 4.13: Standard deviation of bruise contrast. The lowest stan-
dard deviation for each bruise is highlighted green.

BID OT KM KH AC
1 1.96 1.57 1.14 0.10
2 5.17 1.90 0.61 0.21
3 14.29 5.57 5.64 0.27
4 14.19 2.24 5.51 1.64
5 23.82 10.87 9.20 0.48
5.2 26.09 8.06 10.39 0.32
6 0.85 3.45 4.85 0.73
7 1.91 1.49 2.55 1.15
8 3.16 4.02 0.61 1.30
9 10.06 3.17 5.57 0.05
10 2.23 4.55 3.49 0.13
11 3.45 6.35 2.59 0.27
12 10.19 3.17 2.28 1.90
13 7.05 2.39 1.01 0.12
14 20.13 6.33 9.13 3.77
15 2.80 4.41 2.18 0.16
16 6.56 7.58 3.18 3.91
17 1.44 7.33 4.49 0.55
18 3.53 5.49 2.55 1.87
19 0.63 1.13 0.46 0.32
20 4.37 7.50 2.78 1.30
20.2 4.14 7.76 4.14 3.98
21 0.36 0.50 1.08 0.44
22 26.93 4.77 4.74 2.98
23 9.68 3.23 6.18 5.31
24 1.41 2.38 0.95 0.45
25 25.94 4.09 11.75 N/A
26 4.30 3.24 2.43 0.68
26.2 0.31 6.28 7.46 0.49

Lowest standard deviation in active contours. This is related to the low standard
deviation values for roundness estimation. The segmentation done by active con-
tours seems to vary less between repetitions than the other segmentation methods.

Otsu seems to have the highest standard deviation. This can be related to the
bruise segment variation being the largest in Otsu thresholding.

4.5.2 Computational color constancy

White patch (WP) and gray world (GW) color correction was applied to all the bruise
images.
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Figure 4.22 shows a no flash image of bruise 1 with and without computational
color constancy.

(A) Bruise image with no com-
putational color constancy.

(B) Bruise image corrected
with white patch (WP).

(C) Bruise image corrected
with gray world (GW).

FIGURE 4.22: A no flash image of bruise 1, with and without compu-
tational color constancy.

Upon visual inspection, the white paper seems the whitest in the image corrected
with white patch. This makes sense, since the white patch algorithm is based on
identifying the whitest parts of the image and making them white. Using a color
picker, the colors of the white paper are as follows:

• No computational color constancy: (205, 196, 181)

• White patch:(199, 200, 201)

• gray world: (165, 206, 230)

From this, it is clear that the paper is the whitest in the image corrected with
white patch, since there is the least variation in the RGB values. In the case of gray
world, the white paper appears bluish, which is also apparent in the third RGB value
being largest. Figure 4.23 shows another example, the same bruise but this time with
flash.

(A) Bruise image with no com-
putational color constancy.

(B) Bruise image corrected
with white patch (WP).

(C) Bruise image corrected
with gray world (GW).

FIGURE 4.23: A flash image of bruise 1, with and without computa-
tional color constancy.
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Again, the white paper appears bluish in the image corrected with gray world.
However, the difference between the image without computational color constancy
and the image corrected with white patch is less noticeable here.

The color of the white paper was manually sampled in one image from each
bruise. The results are shown in Table 4.14. No white paper was included in the
images of bruises 14, 18, 19, 22, so they have been omitted. The computational color
constancy method that resulted in the whitest paper is highlighted for each bruise.

TABLE 4.14: Comparing the color of the white paper (R,G,B) for white
patch (WP) and gray world (GW)

BID WP GW
1 (199,200,201) (165,206,230)
2 (208,225,221) (187,226,255)
3 (218,224,222) (173,233,255)
4 (202,222,222) (182,217,253)
5 (220,227,227) (203,236,250)

5.2 (216,215,213) (184,216,232)
6 (169,191,198) (166,196,218)
7 (233,230,229) (217,235,227)
8 (228,233,237) (187,244,255)
9 (211,215,223) (148,231,255)

10 (153,156,163) (136,151,166)
11 (197,197,199) (165,203,248)
12 (219,218,219) (193,215,235)
14 (213,211,214) (184,219,244)
15 (196,193,192) (188,198,207)
16 (206,218,220) (196,220,254)
17 (250,248,246) (164,255,255)
20 (219,220,221) (186,209,236)

20.2 (221,227,227) (201,226,246)
21 (164,168,170) (151,168,187)
23 (149,156,155) (127,147,177)
24 (159,173,177) (161,182,197)
25 (255,254,251) (228,255,255)
26 (213,225,226) (190,233,252)

26.2 (219,224,223) (200,225,246)

White patch outperformed gray world in all the images that were sampled. In all
cases except bruise 7, the gray world images are bluish (the B-component is larger
than the R and G-components of the color). This effect may be caused by the fact
that the average color of the image tends toward yellow/orange due to the abun-
dance of skin color in them. According to the gray world assumption, this deviation
from average achromaticity is caused by yellow/orangeish light, which is why the
correction creates a bluish tint on the images. In the case of bruise 7, about a fifth of
the images consists of a blue shirt worn by the participant. In this case, the image
was not yellow/orange on average, and the gray world algorithm did not apply a
bluish tint.
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4.5.3 Average bruise color

The average bruise color difference between flash and no flash images is given in
Table 4.15. This is a measure of the robustness of color estimation with respect
to changing illumination. Each column refers to a combination of segmentation
method (OT = Otsu, KM = K means, KH = K means with histogram equalization, AC
= active contours) and computational color constancy method (WP = white patch,
GW = gray world). The lowest average color difference for each bruise is high-
lighted.

TABLE 4.15: Color robustness: Average bruise color difference be-
tween flash and no flash for white patch (WP) and gray world (GW).

BID WP-OT GW-OT WP-KM GW-KM WP-KH GW-KH WP-AC GW-AC
1 69.24 74.18 76.56 80.88 90.82 93.20 273.55 279.53
2 27.79 29.43 23.93 27.43 29.83 33.58 45.40 44.91
3 39.78 41.16 64.36 66.78 61.83 64.22 6.24 1.51
4 36.81 38.53 25.70 27.17 41.42 43.73 45.98 41.66
5 84.45 85.89 86.16 87.35 82.23 83.35 62.65 61.90

5.2 67.66 69.25 55.32 56.98 91.23 92.73 67.80 66.00
6 33.37 34.46 49.24 50.94 52.76 54.70 26.89 25.54
7 28.37 26.38 23.79 21.70 29.75 27.81 118.19 219.51
8 55.03 52.41 71.31 68.87 43.03 41.14 196.90 194.38
9 14.79 16.21 25.16 25.76 43.92 45.48 3.82 3.77

10 25.27 34.42 38.39 37.51 46.26 45.45 96.41 95.88
11 29.65 11.59 48.45 37.98 28.91 11.64 69.95 68.57
12 31.90 18.21 29.25 9.38 29.71 10.29 132.17 133.94
13 37.13 42.40 45.54 50.49 65.58 69.78 23.99 29.64
14 88.76 86.34 66.51 63.98 85.88 83.37 45.39 47.32
15 18.95 18.80 7.73 8.00 27.99 27.79 65.46 66.02
16 3.32 1.95 9.28 5.09 18.03 20.79 225.03 229.57
17 21.13 13.75 52.48 51.04 41.29 38.75 41.60 36.11
18 107.40 101.16 123.88 117.72 140.71 134.89 65.07 67.60
19 25.78 25.13 17.82 16.44 19.02 17.94 25.09 26.17
20 65.98 67.44 98.19 100.37 67.71 69.33 58.38 59.41

20.2 75.63 76.31 113.79 115.28 83.62 84.45 16.96 13.73
21 35.64 34.96 30.10 29.14 27.59 26.64 131.50 133.12
22 36.93 19.73 34.98 6.21 27.46 7.58 46.75 167.10
23 65.50 71.70 38.72 43.72 53.89 59.81 58.70 54.09
24 9.63 14.08 4.38 4.65 8.98 13.31 7.88 9.14
25 13.48 13.75 7.63 10.01 11.05 12.66 N/A N/A
26 25.05 19.37 23.67 17.94 30.24 24.34 37.38 42.65

26.2 22.96 18.45 66.64 63.68 72.64 69.75 33.05 35.92

The goal of computational color constancy methods is to correct the unknown
illumination to be a canonical light source. If the computational color constancy
methods work perfectly as intended, there should be no bruise color difference be-
tween the flash and no flash image. There are several reasons why this is not the
case. Firstly, the flash and no flash images have been acquired by non-professionals
without using a tripod or other means of maintaining the exact same angle and posi-
tion of the camera. Therefore, the scene will differ by more than just illumination. In
addition to this, the segmentation methods may yield different results based on the
illumination, which will impact the average color of the bruise segment. Finally, nei-
ther white patch nor gray world are perfect methods and their central assumptions
may be violated.

White patch and gray world were compared for each bruise and segmentation
method to see which has the lowest average bruise color difference. There are 29
bruises (26 bruises + 3 sets of follow up images). Interestingly, for every four of the
segmentation methods, white patch performed the best in 15 cases and gray world
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performed the best in 14 cases. Based on this, it is impossible to select one of the
computational color constancy methods as the best one.

No white paper was included in the images of bruises 14, 18, 19 and 22. Gray
world outperformed white patch in all of these bruises. This makes sense, since
white patch relies on a white patch (white paper) being present in the image.

Of the four segmentation methods, k-means clustering with histogram equaliza-
tion performed the worst in terms of color robustness. It is possible that the his-
togram equalization step had different results for flash and no flash images, caus-
ing this discrepancy. In the case of bruise 18, the average bruise color difference
between flash and no flash is significantly higher for k-means clustering with his-
togram equalization than for the other three methods. Figure 4.24 shows the effect
of histogram equalization on flash and no flash images of bruise 18.

(A) No flash, no his-
togram equalization.

(B) No flash, with his-
togram equalization.

(C) With flash, no his-
togram equalization.

(D) With flash, with his-
togram equalization.

FIGURE 4.24: The effect of histogram equalization on flash and no
flash images of bruise 18.

For the no flash image, histogram equalization increased the contrast of the bruise.
The flash image is over-exposed, causing the bruise to less visible. In this case,
histogram equalization did increase the contrast of the bruise, but also heavily in-
creased the contrast of the shadow in the image. This different effect of histogram
equalization on flash and no flash images may explain the low color robustness for
k-means clustering with histogram equalization.

Table 4.16 shows the standard deviation of the color estimates for each segmen-
tation and computational color constancy method. This is a measure of the precision
of the color estimation. The lowest standard deviation for each bruise is highlighted.
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TABLE 4.16: Color precision: Standard deviation of bruise color esti-
mate with white patch (WP) and gray world (GW).

BID WP-OT GW-OT WP-KM GW-KM WP-KH GW-KH WP-AC GW-AC
1 8.07 8.22 18.94 18.95 20.46 20.69 11.53 11.62
2 11.97 12.54 5.90 6.12 2.37 2.44 2.21 2.69
3 31.66 32.44 15.78 16.28 16.92 17.47 2.46 1.45
4 34.35 23.78 7.17 7.83 9.52 10.06 1.59 1.88
5 23.36 24.11 18.71 19.32 19.93 20.54 18.19 17.24

5.2 32.29 32.50 22.54 22.78 22.90 22.96 3.29 3.35
6 2.61 2.54 4.42 4.40 10.74 11.10 32.72 33.46
7 4.39 4.69 5.72 5.61 6.94 7.04 21.13 36.52
8 0.69 0.89 0.67 0.78 0.83 1.16 1.17 1.26
9 8.78 9.26 5.51 5.97 15.72 16.58 0.73 0.72

10 4.20 4.35 13.20 12.93 6.29 6.18 3.04 2.06
11 6.21 6.09 11.82 12.10 9.69 9.59 4.86 5.61
12 17.27 18.21 11.10 11.80 6.14 6.21 26.63 28.82
13 8.53 8.69 5.90 6.02 2.28 2.19 0.93 0.97
14 28.92 29.14 18.33 18.36 19.10 19.07 61.53 61.96
15 1.67 1.55 2.52 2.79 3.23 3.34 0.61 1.29
16 9.88 9.73 22.41 22.63 15.91 16.06 10.41 10.92
17 2.49 3.07 5.28 5.45 7.34 7.41 2.93 4.73
18 14.23 13.86 11.05 10.32 15.65 15.99 5.81 4.64
19 7.85 7.61 5.78 5.70 5.24 5.36 33.99 34.73
20 0.66 0.71 1.55 1.77 2.91 3.14 4.08 4.41

20.2 0.58 0.86 0.69 1.04 0.81 0.97 2.55 2.46
21 1.08 1.12 1.19 1.13 0.50 0.44 1.13 1.15
22 26.61 2.53 8.14 8.13 11.46 5.41 10.30 70.51
23 5.69 5.70 9.51 9.42 10.56 10.59 21.40 21.56
24 7.46 4.90 4.36 1.26 6.40 3.20 12.46 10.19
25 57.95 57.81 15.55 15.76 38.62 38.37 N/A N/A
26 1.18 0.62 1.42 1.73 2.06 2.21 2.26 2.16

26.2 0.63 0.26 1.22 1.12 1.12 0.97 0.62 0.61

White patch and gray world were compared for each bruise and segmentation
method to see which has the lowest standard deviation of bruise color. White patch
outperformed gray world in 17 of the 29 cases for Otsu thresholding, 19 cases for
k-means without histogram equalization and 20 cases for k-means with histogram
equalization and active contours. This indicates that white patch is slightly better at
reducing variation in color between image repetitions.

4.6 Segmentation

4.6.1 Execution time

Execution time in seconds was measured for each of the four segmentation methods
for a selection of the bruise images.

TABLE 4.17: Image dimensions in pixels and execution time in sec-
onds for a selection of bruise images.

Image height Image width OT KM KH AC
2176 4606 0.01 1.79 2.02 66.58
4032 3024 0.003 2.37 2.66 12.39
4608 3456 0.004 2.47 2.90 7.88

Otsu thresholding is the fastest segmentation method of the four selected. This
is to be expected, since (as mentioned in Section 2.3) Otsu thresholding is one of the
segmentation methods with the lowest time complexity, The execution time differ-
ence between k-means with and without histogram equalization is mostly attributed
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to the time taken to perform histogram equalization. Active contours may have such
a high execution time due to the ray casting algorithm that was implemented by the
author and not optimized.

4.6.2 Segmentation method ranking

The four segmentation are ranked by comparing their feature extraction results. This
ranking is shown in Table 4.18. The average ranking is computed by weighting the
four following categories equally: size estimation, shape estimation, color estimation
and execution time. That means that segmentation speed is weighted by a factor of
1, since there is only one ranking in the category of execution time, but area precision
is weighted by a factor of 0.33, since there are three rankings in the category of bruise
size.

TABLE 4.18: Ranking the segmentation methods according to feature
extraction results. 1 is best and 4 is worst.

Parameter OT KM KH AC
Area precision 4 2 3 1
Length accuracy 1 2 3 4
Width accuracy 3 1 2 4
Roundness precision 2 3 3 1
Roundness accuracy 2 1 1 3
Contrast precision 3 3 2 1
Color robustness 3 1 4 2
Color precision 3 2 4 1
Segmentation speed 1 2 3 4
Average ranking 2.15 1.91 2.74 2.57
Final ranking 2 1 4 3

The final ranking of the segmentation methods, from best to worst, is: k-means
clustering without histogram equalization, Otsu thresholding, active contours and
k-means clustering with histogram equalization.

4.6.3 Analysis

The segmentation methods were also compared by visual inspection of the bruises
and segmentation results. Figure 4.25 shows bruise 6, a blob bruise, segmented by
three of the four segmentation methods: Otsu thresholding (OT), k-means clustering
(KM) and k-means clustering with histogram equalization (KH).
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(A) The region of interest. (B) OT

(C) KM (D) KH

FIGURE 4.25: Segmentation results for k-means and Otsu threshold-
ing. (Bruise 6)

Upon visual inspection, k-means clustering was the method among the three
that resulted in the segmented region with the most similarity with the bruise. The
Otsu thresholding could be improved by using a morphological opening operation
to remove the "speckles" around the central segment. The large black area in the
right part of the image is likely caused by the shadow, and causes an overestimation
of the size of the bruise. Since Otsu thresholding uses the grayscale histogram of
the image, and the shadowed skin has a similar graylevel value to the bruise, the
shadowed skin is classified as bruise. In the case of the k-means clustering with
histogram equalization, the segmentation method seems to have segmented the yel-
lowish border around the bruise and not the central bruise itself.

Figure 4.26 shows the segmentation results for the same bruise with active con-
tours.
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(A) Bruise 6 (B) AC

(C) The process.

FIGURE 4.26: Segmentation with active contours. (Bruise 6)

Figure 4.26c shows the process from initial curve (red dashed line) to final snake
curve (blue solid line). The final snake curve does not correspond well with the
bruise in the image. Looking at the rightmost part of the curve, it seems to follow
the edge of the limb. Apparently this edge was the most salient edge within the
initial curve, attracting the curve in that direction. Had the initial curve been placed
slightly to the left, this may not have happened.

Figure 4.27 shows bruise 1, another blob bruise, segmented by three of the four
segmentation methods: Otsu thresholding (OT), k-means clustering (KM) and k-
means clustering with histogram equalization (KH).
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(A) The region of interest. (B) OT

(C) KM (D) KH

FIGURE 4.27: Segmentation results for k-means and Otsu threshold-
ing. (Bruise 1)

Looking at Figure 4.27b, it is clear that the skin hair of the participant interfered
with the segmentation process. Since the skin hair and the bruise have similar gray
level values, they are classified as the same class by the thresholding operation. This
is less of a problem for k-means clustering, which takes both the color of the pixels
(R, G, B) and their location (x, y) into account.

Figure 4.28 shows the segmentation results for the same bruise with active con-
tours.
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(A) Bruise 1 (B) Active contours

(C) The process.

FIGURE 4.28: Segmentation with active contours. (Bruise 1)

The active contours curve has contracted somewhat from the initial curve, but
does not seem to have detected the bruise. The resulting segment is significantly
larger than the bruise.

Figure 4.29 shows bruise 11, a cluster bruise, segmented by three of the four
segmentation methods: Otsu thresholding (OT), k-means clustering (KM) and k-
means clustering with histogram equalization (KH).
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(A) The region of interest. (B) OT

(C) KM (D) KH

FIGURE 4.29: Segmentation results for k-means and Otsu threshold-
ing. (Bruise 11)

Again, Otsu thresholding suffers from the presence of shadows. It correctly iden-
tifies some parts of the bruise, but the entire right side of the image is mistakenly
classified as a bruise due to the shadow there. K-means clustering has completely
failed to identify the shape of the bruise. K-means clustering with histogram equal-
ization, however, corresponds somewhat with the shape of the bruise. Histogram
equalization increases the contrast of the image, which may have improved the
recognition of the bruise. The effect of histogram equalization is shown in Figure
4.30.

(A) No histogram equal-
ization.

(B) With histogram
equalization.

FIGURE 4.30: The effect of histogram equalization. (Bruise 11)

Figure 4.35 shows the segmentation results for the same bruise with active con-
tours.
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(A) Bruise 6 (B) AC

(C) The process.

FIGURE 4.31: Segmentation with active contours. (Bruise 11)

In this case, active contours completely failed to recognize the bruise. In the case
of bruise 6, the edge at the end of the limb was identified and attracted the snake
curve. In this case, the difference the limb and the background is less pronounced.
The curve seems to have simply contracted without being attracted to any edge in
particular.

Figure 4.32 shows bruise 9, a diffuse bruise, segmented by three of the four seg-
mentation methods: Otsu thresholding (OT), k-means clustering (KM) and k-means
clustering with histogram equalization (KH).
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(A) The region of interest. (B) OT

(C) KM (D) KH

FIGURE 4.32: Segmentation results for k-means and Otsu threshold-
ing. (Bruise 9)

In this case, it is difficult to assess the accuracy of the segmentation, since the
bruise is so faint. Figure 4.33 shows a larger view of the bruise. It is difficult to
precisely define the borders of the bruise.

FIGURE 4.33: Bruise 9, larger view.

Even though the bruise is faint, it is clear that Otsu thresholding and k-means
clustering with histogram equalization have not correctly identified the bruise, which
is in the middle of the region of interest. They seem to have been affected by the
shadows in the image. K-means clustering without histogram equalization corre-
sponds somewhat better with the bruise, but is still quite inaccurate. Histogram
equalization caused a worse segmentation performance in this case, since it en-
hanced the contrast of the skin hairs and not the bruise. Figure 4.34 shows the effect
of histogram equalization.
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(A) No histogram equal-
ization.

(B) With histogram
equalization.

FIGURE 4.34: The effect of histogram equalization. (Bruise 9)

Figure 4.35 shows the segmentation results for the same bruise with active con-
tours.

(A) Bruise 9 (B) AC

(C) The process.

FIGURE 4.35: Segmentation with active contours. (Bruise 9)

Even though the active contours segmentation resulted in a more plausible bruise
segment than the other three methods, it is not clear that the bruise was actually de-
tected by the methods. As is seen in Figures 4.26 and 4.35, active contours segmen-
tation tends to end with a circle-like bruise segment unless a salient image edge is
detected.

In the case of bruise 25, the one bruise classified as complex, a circle could not be
defined that both included the entire bruise and stayed within the boundaries of the
image. Since the bruise covered the majority of the image, the region of interest is not
much smaller than the original image. Figure 4.32 shows bruise 25, segmented by
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three of the four segmentation methods: Otsu thresholding (OT), k-means clustering
(KM) and k-means clustering with histogram equalization (KH).

(A) The region of interest. (B) OT

(C) KM (D) KH

FIGURE 4.36: Segmentation results for k-means and Otsu threshold-
ing. (Bruise 25)

As discussed in Section 4.2, it was not possible to extract a rectangular region
of interest that included the entire bruise without also including parts of the back-
ground. It is clear that the ruler in the left part of the image was detected by all of the
segmentation methods. It is also difficult to assess the accuracy of the segmentation,
since it is unclear where the borders of the bruise are. It seems like the bruise may
continue out of the upper edge of the image, but this may also just be a shadow.

It is clear that the performance of the segmentation methods depends on several
factors: the type of bruise, the quality of the image and the presence of confounding
factors such as skin hair. Otsu thresholding struggles with images that have skin
hair or prominent shadows in them. Figure 4.37 shows examples of this.
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(A) Bruise 20: hair (B) Bruise 1: hair

(C) Bruise 11: shadow (D) Bruise 9: shadow

FIGURE 4.37: Examples of shadows and skin hair interfering with
Otsu thresholding.

4.7 Acquisition method

The participants were asked to rank the difficulty of doing each of these tasks.

1. Understand the instructions

2. Find a ruler and white paper

3. Measure the distance between the bruise and camera

4. Photograph the bruise

5. Upload the photos

Each task is ranked on a scale from (1) very easy to (5) very difficult. The aver-
age difficulty, standard deviation and most common difficulty rating of each task is
shown in Table 4.19.

TABLE 4.19: Rating the difficulty of the bruise documentation tasks.

Task Average difficulty Standard deviation Mode
1 1.64 0.85 1
2 1.86 0.74 2
3 3.10 0.94 3
4 2.45 1.16 1
5 1.45 0.81 1

As was expected, Task 3: Measure the distance between the bruise and camera was the
most difficult task. It was removed from the simplified instructions for this reason.
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For tasks 1, 4 and 5, very easy was the most common answer. However, the average
difficulty of Task 4: Photograph the bruises is 2.45, which indicates that some partic-
ipants found it difficult. Indeed, Task 4 had the highest number (7) of participants
answering difficult. Only Task 3 was given the highest difficulty rating, very difficult,
and this only happened once.

Bruises 14, 18, 19 and 22 were documented without a ruler and white paper. In-
terestingly, the participants who documented bruises 14 and 18 answered that find-
ing a ruler and white paper was easy and very easy, respectively, even though none
of their images included a ruler or white paper. They both also answered that un-
derstanding the instructions was easy and very easy. None of them gave any further
feedback. The person who documented bruise 22 included a ruler, but no white pa-
per. They answered that both understanding the instructions and finding a ruler and
white paper was very easy.

The person who documented bruise 19 did not answer the question about the
difficulty of finding a ruler and white paper. They answered that understanding the
instructions was difficult. In the feedback text box, they wrote that it was not clear
how they should use the paper and ruler.

In section 4.1.3 the acquired image set was evaluated with respect to the follow-
ing criteria:

1. Include paper and ruler in image

2. Entire bruise visible

3. Good lighting without prominent shadows

4. Bruise and ruler in focus

5. Ruler parallel to camera and bruise

6. Keep the angle and distance of the camera constant

Each criteria can either be completely fulfilled, partially fulfilled or not fulfilled,
which is denoted by 1, 0.5 and 0, respectively. The average score, standard deviation
and mode of each criteria was computed. The results are shown in Table 4.20.

TABLE 4.20: Average scores for each image quality criterion.

Criterion Average score Standard deviation Mode
1 0.75 0.38 1
2 0.92 0.27 1
3 0.46 0.51 0
4 0.65 0.46 1
5 0.60 0.49 1
6 0.65 0.39 1

Of the six criteria, Criterion 2: Entire bruise visible has the highest average score.
In fact, only two participants did not fulfill this criterion. Criterion 3: Good lighting
without prominent shadows has the lowest average score, and is the only criterion that
was failed by the majority of the participants. Only 12 participants fulfilled Criterion
3. This indicates that it was difficult to achieve good lighting without prominent
shadows.
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4.8 Summary and discussion of findings

176 images of 26 bruises were acquired from 24 participants. The bruises in the data
set are diverse in terms of size, shape and color. Five bruise classes were identified:
blob, cluster, diffuse, central clearing and complex.

Some of the images in the data set are of low quality due to errors in the acquisi-
tion process. The acquisition method was evaluated by assessing the quality of the
acquired image set and by gathering feedback from the participants. The partici-
pants found measuring the distance between the bruise and camera to be the most
difficult, which is why it was excluded from the simplified instructions. Some partic-
ipants failed to include a white paper and ruler, but reported that including a white
paper and ruler was easy. This indicates that they both did not read the instructions
carefully and did not read the questionnaire questions carefully. Participants found
it difficult to keep the ruler parallel to the camera and bruise, as well as achieving
good lighting without prominent shadows.

Each bruise image was segmented using the four selected segmentation meth-
ods: Otsu thresholding, k-means clustering, k-means clustering with histogram equal-
ization and active contours. Based on the segmented images, the three selected fea-
tures (size, shape and color) could be estimated.

In some cases, it was impossible to extract a region of interest (ROI) which in-
cludes the entire bruise without also including parts of the background. The perfor-
mance of Otsu thresholding and k-means with and without histogram equalization
rely on the assumption that the region of interest only contains two classes: bruise
and skin. This assumption is violated in these cases.

Ruler detection is the first step of bruise size estimation. Automatic ruler detec-
tion was done for 10 bruises, manual ruler detection was done for 8 bruises, and
ruler detection was impossible for 8 bruises. In the case of the impossible bruises,
there was either no ruler present in the images, or the ruler was so blurry that de-
termining the spacing between the ruler ticks was impossible. In the cases were
manual ruler detection was done, automatic ruler detection failed due to errors that
would not prevent a human from correctly determining the spacing between the
ruler ticks. Such errors include using a lined white paper and rulers with both im-
perial and metric units. Good results were obtained for the 18 bruises where ruler
detection, automatic or manual, was done. The average error, in pixels, was between
0 and 3.2 pixels for all of the bruises.

Two size measures were calculated for each bruise: bruise area and bruise width
and length. There is no ground truth for the bruise area, so the accuracy could not
be evaluated. Instead, the standard deviation of the area estimation was calculated.
Otsu thresholding provided the largest area estimate for every single bruise in the
data set, and had the highest standard deviation. Shadows proved to a problem
for Otsu thresholding. Since Otsu thresholding uses the grayscale histogram of the
image, and shadowed skin may have a similar gray level value to the bruise, shad-
ows were sometimes mistakenly classified as bruises - resulting in a too large size
estimate.

A ground truth length and width was extracted for each bruise, such that the ac-
curacy of the bruise length and width estimation could be evaluated. As in the area
estimates, Otsu thresholding often resulted in too large length and width estimates.
K-means with and without histogram equalization produced length and width es-
timates that were more evenly spaced around the ground truth. Active contours
over-estimated the width of most bruises, while the length estimates were closer to
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the ground truth. This is caused by the fact that the active contours method seems
to default to a circle-like shape when it fails to detect a clear bruise edge.

The tendency of active contours to produce circle-like bruise segments is also ev-
ident in the roundness estimates. Active contours consistently provided the highest
roundness estimates and the lowest standard deviation of roundness. There is no
ground truth for the roundness of the bruises, but three pairs of comparison bruises
were defined to sample the accuracy of the roundness estimation. Active contours
performed the worst in these comparisons. K-means with and without histogram
equalization performed the best.

Two color measures were calculated for each bruise: bruise contrast and average
bruise color. Since there is no ground truth for either of these measures, the accuracy
of the color estimation could not be evaluated. The precision of the contrast estima-
tion was evaluated by calculating the standard deviation. Active contours resulted
in the lowest standard deviation for the majority of the bruises. This is likely related
to the low standard deviation of shape estimation.

Two computational color constancy methods, white patch and gray world, were
applied to all the bruise images. They were evaluated by comparing the whiteness of
the paper. White patch outperformed gray world in all cases. This is to be expected,
since the assumption of white patch was fulfilled by including a white paper in the
scene, but the assumption of gray world was not necessarily fulfilled.

The robustness of the average color estimation was assessed by comparing the
average bruise color with and without flash for each segmentation method and com-
putational color constancy method. White patch and gray world had very similar
performances. In the four cases where no white paper was included, gray world
outperformed white patch. The precision of the average color estimation was as-
sessed by computing the standard deviation of the color estimates. Here, white
patch slightly outperformed gray world on average. Overall, white patch seems
like a better choice given that a white paper has been included in the image. K-
means clustering with histogram equalization produced the worst results in terms
of robustness of average color estimation. This may be due to the effect of histogram
equalization being different for flash and no flash images.

The four segmentation were ranked based on the aforementioned feature ex-
traction results and their execution time. The final ranking, from best to worst, is:
k-means clustering without histogram equalization, Otsu thresholding, active con-
tours and k-means clustering with histogram equalization. As discussed in Section
4.6.3, the performance of the segmentation methods depended on the bruise type.
Otsu thresholding struggles with shadows and skin hair, but outperforms the other
segmentation methods in recognizing cluster bruises.
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Chapter 5

Conclusion

5.1 Objectives

The objectives of this project are as follows:

1. Create a data set of bruise images acquired by self-documentation with smart-
phone imaging.

2. Estimate the relevant bruise features (size, shape and color)

3. Evaluate the performance of the feature extraction

4. Evaluate the bruise self-documentation method

The first objective was achieved successfully. The data set consists of 26 bruises
and 176 bruise images.

The second objective was also achieved. The size, shape and color was estimated
for every bruise, using several different image processing techniques. The proposed
ruler detection method provided high precision in the images where the ruler was
in focus. Two computational color constancy methods, white patch and gray world,
were compared for the purpose of improving the robustness of bruise color estima-
tion. Of the two, white patch performed the best in every single bruise.

The performance of the feature extraction was evaluated by computing the pre-
cision and accuracy of the estimated size, shape and color of the bruises. Four image
segmentation methods, Otsu thresholding, k-means clustering, k-means clustering
with histogram equalization and active contours, were compared and ranked. Of
the four, k-means clustering performed the best.

Finally, the fourth objective was achieved. The bruise self-documentation method
was evaluated by inspecting the quality of the acquired images and by gathering
feedback from the participants. Achieving good lighting without significant shad-
ows proved to be the most difficult part of the method. Further, measuring the
distance between the bruise and the camera was reported as being difficult.

The main goal of this thesis was to answer the central research question: Is self-
documentation with smartphone imaging a suitable method for documenting skin bruises?
Further research is needed to answer that question with certainty. It is clear that a
well-written set of instructions is needed in order for the images to be of high enough
quality to extract the bruise features well. Smartphone imaging as a technology is
likely suitable, but whether the bruise features can be reliably and accurately ex-
tracted regardless of smartphone model, lighting conditions and other factors such
as skin color and bruise type is yet to be determined. This will be addressed in future
work, see Section 5.2.
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5.2 Challenges and future work

The largest challenge to the image segmentation was the poor lighting in the bruise
images. More than half of the bruises were photographed in poor lighting condi-
tions. In many images, the shadows on the skin were darker than the bruise, making
image segmentation difficult. This could be improved by altering the instructions.
The instructions should make the importance of good lighting more clear. The ex-
ample image included in the instruction document showed a bruise image with poor
lighting, providing a poor example for the participants. Another common challenge
was rulers being out of focus or having both imperial and metric units, making the
ruler detection method difficult. This could again be improved by clearly specifying
the type of ruler and that it should be in focus in the instructions.

Another challenge was the existence of confounding factors on the skin, such
as body hair and skin pigmentation (moles). This challenge is harder to counter-
act, since asking the participants to remove such confounding factors would be too
invasive. Future work could include skin hair detection to deal with this challenge.

In some cases, a rectangular region of interest which includes the entire bruise
without also including the background could not be extracted. These ROI’s de-
creased the quality of the segmentation methods that relied on the assumption that
there are only two classes within the ROI. This could be avoided by allowing for par-
allelogram shaped ROI’s. Similarly, the active contours segmentation method could
be improved by allowing other initial curves than circles, for example ellipses. Auto-
matic optimal parameter selection could improve the performance of both k-means
and active contours. Otsu thresholding could have been improved by including a
morphological opening step, in which small specks of the segment are removed,
as done by [64], discussed in Section 2.3. Future work should also consider other
segmentation methods, such as watershed.

Assessing the performance of the segmentation proved challenging, as there was
no true ground truth for the bruise segmentation. In future work, a ground truth will
be acquired by having an expert manually segment the bruise images.

The chosen shape measure, roundness, only considers the length and the width
of the bruise. Future work should also consider the interior of the bruise, so that
recognition of central clearing bruises is possible. It is also of interest to recognize
other typical bruise shapes, such as cluster bruises. The chosen method of length
and width estimation can also be improved further.

The chosen color measures, bruise contrast and average bruise color, inherently
assume that the color of the bruise is homogeneous. Many of the bruises have more
than one color present. If a bruise is half yellow, half blue, the average bruise color
descriptor will categorize the bruise as green. Future work should identify other
color measures. In addition to the bruise contrast, the difference in the Lab-space
L component between the bruise and the surrounding skin, one could compute the
Lab color difference ∆E∗

ab and the chromaticity difference along the two Lab chro-
maticity axes.

Other computational color constancy methods than white patch and gray world
will be tested in the feature, including machine learning and gamut mapping based
methods.

The histogram equalization did often not work as intended. Future work could
include testing adaptive histogram equalization.

The age and cause of each bruise was gathered. Future work will include ana-
lyzing the correlation of the bruise features (size, shape and color) with the age and
cause of the bruises.
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A future data set will be acquired with a more standardized setup, where the
images are taken by the researcher and not the participants. A color calibration card
will be used instead of a white paper, and a camera tripod will be used to keep the
angle and position constant. The images will have higher quality, since issues such
as out of focus rulers and bad lighting can be avoided. In a future project, the reli-
ability of feature extraction will be evaluated by documenting the same bruise with
different camera models and lighting environments and see how this affects the ex-
tracted features. This will assess whether it is possible to reliably extract bruise fea-
tures under uncontrolled circumstances. It is also of interest to gather bruise images
from a more diverse set of skin colors.



Self-documentation of bruises  Pauline Hardeberg Zimmermann 

 

SELF-DOCUMENTATION OF BRUISES: STEP BY STEP 

YOU WILL NEED 

 A phone with a functioning camera 
 A white paper and a ruler 
 A bruise on your arms or legs that you remember when and how was made 

WHAT YOU WILL DO 

1. Distance: Write down the approximate distance between the skin and the phone 
2. Bruise photos: Take 10 photos of your bruise. (Fig 1, instructions below) 
3. Reference photos: Take 10 photos of your skin on the opposite side of your body. (Fig 2) 
4. Upload: Upload the photos in Nettskjema. See link at the bottom. 

The reference photos are used to account for varying skin colors. 

HOW TO TAKE THE PHOTOS 

 5 photos with flash, 5 photos without flash (Both bruise photos and reference photos) 
 Try to keep the distance and angle of your phone constant. 
 The entire bruise should be visible in the bruise photos. 
 The ruler and the paper should be visible in all photos. 

We need many photos to account for varying lighting conditions. 

SUGGESTIONS (NOT MANDATORY) 

 Avoid strong shadows or fluorescent light. 
 The skin should be in focus. 
 Store the bruise photos and reference photos in separate folders, to make it easier 

WHEN YOU ARE DONE: NETTSKJEMA 

 Upload the photos here: https://nettskjema.no/a/bruise-images-e 
 Answer some questions here: https://nettskjema.no/a/bruise-questions-e 

Figure 1: 
 Example setup with a fake bruise 

Figure 1: Example set up. The bruise, 
paper and ruler are visible in the 

photo. 

Figure 2: (A) Reference photo 
should be on the opposite side 
of the body wrt the (B) bruise 
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Self-documentation of bruises  Pauline Hardeberg Zimmermann 

 

 

SELF-DOCUMENTATION OF BRUISES: STEP BY STEP 

YOU WILL NEED 

 10 minutes 
 A phone with a functioning camera 
 A white paper and a ruler 

 

WHAT YOU WILL DO 

1. Bruise photos: Take 4 photos of your bruise. (Fig 1, instructions below) 
2. Upload: Upload the photos in Nettskjema. See link at the bottom. 

 

HOW TO TAKE THE PHOTOS 

 2 photos with flash, 2 photos without flash  
 Try to keep the distance and angle of your phone constant. 
 The entire bruise should be visible. 
 The ruler and the paper should be visible. 

 

SUGGESTIONS (NOT MANDATORY) 

 Avoid strong shadows or fluorescent light. 
 The skin should be in focus. 

 

WHEN YOU ARE DONE: NETTSKJEMA 

 Upload photos and answer questions here: https://nettskjema.no/a/bruises-el  

 

Thank you! 

Figure 1: Example set up. The bruise, 
paper and ruler are visible in the 

photo. 
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