Hans Olav Lofstad

A Study of Artificial Neural Networks
on 8-bit Microcontrollers

Master’s thesis in Electronic Systems Design
Supervisor: Guillaume Dutilleux
Co-supervisor: Amund Aune, Asgeir Schanke, Erling Holten Wiken

June 2021

2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o

2
(%]
—
[}

2
C

o)
C

ke
Bo
:
o

zZ

b0 v
£ E
—
g &
59
c .2
o c
= 2
v
59
O ow
3L
s]
-OJ—J
c
Sa
=
& £
g%
o)
cn0
9]
l_
c
S
=1
©
I
—_
L
£
G
5]
=
(9]
(]
[N

@ NTNU

Norwegian University of @ MICRDCHlp

Science and Technology

Hans Olav Lofstad

A Study of Artificial Neural Networks
on 8-bit Microcontrollers

Master’s thesis in Electronic Systems Design

Supervisor: Guillaume Dutilleux

Co-supervisor: Amund Aune, Asgeir Schanke, Erling Holten Wiken
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

@ NTNU

Norwegian University of
Science and Technology

Abstract

The topics of machine learning and 8-bit microcontroller units (MCUs) are gener-
ally regarded as incompatible, due to the limited computational resources avail-
able. Artificial neural networks (ANNs) are an exception to this general statement,
seeing as the resource demanding process of this technique happens during its
training phase, while performing model inference requires significantly less pro-
cessing power. ANNs can therefore be trained on a computationally resourceful
machine, and later deployed on the 8-bit MCU.

This thesis explores the feasibility of running such networks on 8-bit MCUs. An
implementation process is presented, as well as different optimization techniques
to limit the data and program memory requirements for the system. Several tests
are presented, evaluating the performance of the deployed models, and the im-
pacts of different optimization techniques.

The thesis concludes with stating ANNs on 8-bit MCUs as well within the realm
of feasibility. Accuracy drops for deployed models are shown to be virtually non-
existent, and inference times are shown with typical values below 50ms.

iii

Sammendrag

Temaene om maskinlering og 8-bit mikrokontrollere blir generelt ansett som inkom-
patible, som fglge av den begrensede prosesseringskraften man har tilgjengelig.
Kunstige nevrale nettverk er et unntak av dette generelle utsagnet, som et resultat
av at den ressurskrevende prosessen skjer under treningsfasen av nettverket. Be-
hovet for prosesseingskraft er betydelig redusert nar nettverket er ferdig trent, og
implementert til & utfgre dens designerte oppgave. Slike nevrale nettverksmodel-
ler kan derfor trenes pa en maskin med tilstrekkelig prosesseringskraft, og deretter
overfgres til en 8-bit mikrokontroller.

Denne masteroppgaven utforsker mulighetene for a kjgre slike nevrale nettverk
pa 8-bit mikrokontrollere. En implementasjonsprosess blir presentert, i tillegg til
forskjellige optimaliseringsteknikker, med formal a begrense behovet for program-
og dataminne. Flere tester blir presentert, som undersgker ytelsen til de nevrale
nettverkene pa 8-bit systemer, og som undersgker pavirkningen av de forskjellige
optimaliseringsteknikkene.

Oppgaven konkluderer med at 8-bit mikrokontrollere er godt rustet til a kjgre
kunstige nevrale nettverk. Implementasjonene viser til at prediksjonsngyaktigheten
i nettverkene ikke endres mellom maskinen det trente pa, og mikrokontrolleren
det kjgrer pa. Eksekveringstiden til nettverksprediksjonene har vist typiske verdier
lavere enn 50ms.

Preface

The following work presents a masters thesis, written in the occasion of finaliz-
ing a master degree in Electronic Systems Design at the Norwegian University
of Science and Technology (NTNU). The thesis is written in collaboration with
Microchip Technology Inc., who supplied guidance and expertise on 8-bit micro-
controllers, as well as general supervision in the direction of the thesis. The su-
pervisors from Microchip Technology include Amund Aune, Asgeir Schanke and
Erling Holten Wiken. Guillaume Dutilleux served as the thesis supervisor from
NTNU, and provided guidance in report writing, and the general direction of the
thesis.

vii

Contents

Abstract e e iii
Sammendrag e e A
Preface e vii
Contents e e e e e e e ix
Figures e e e e e Xi
Tables e e xiii
Code Listings i i it e e e e e e XV
ACTONYINS o i o i et e e e e e e e e e e e e e e e e e e e xvii
Glossary e Xix
1 Introduction 1
1.1 Problem Statement 1
1.2 Background. e 1
1.2.1 Motivation o vt i e e e e e 1

1.2.2 8-bit Motivation and Current State of Research 2

1.3 Author Qualifications and Intended Audience 3

2 Theory of Artificial Neural Networks S5
2.1 CoreConcept. i i it i e e e e e e S
2.2 Network Topology i i e e e 6
2.3 Activation, Weightsand Biases 7
2.4 Activation Functions 7
2.5 Learningin ANNs e 9
2.5.1 Backpropagation, Optimizers and Loss Functions 10

2.5.2 Choosing a Loss/Cost Function 11

2.5.3 Batch Size, Epochs and Learning Rate 13

2.6 Layer Types o v i i e e e e e e e e e e e e 14
2.6.1 Convolutional Layers 14

2.6.2 PoolingLayers 15

2.7 ANN Optimization Techniques 16

3 Implementing ANNson 8-bit MCUs 17
3.1 Choice of Microcontroller 17
3.2 Choosing Neural Network Frameworks 18
3.2.1 Framework for Model Training 18

3.2.2 Framework for MCU Inference 18

3.3 Implementing a Simple ANN Using the NNoM Library 20

X

X HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers
3.3.1 Defining and Training ANN Model Using Tensorflow Keras . 21

3.3.2 Converting Model for MCU Using NNoM 22

3.3.3 Running Modelon MCU 23

4 Testing Using MNIST Classification Models 25
4.1 Implementing MNIST Handwritten Digit Classifier 25
4.2 TestingandResults 26
4.2.1 Testing Framework 26

4.2.2 Dense Keras Models - Size and Accuracy 27

4.2.3 MCU Network Accuracyouuuuuunenen.. 30

4.2.4 Compiler Optimizer Settings 30

4.2.5 Pruning Impact on Accuracy and Compression. 32

5 Optimization and Design Considerations Discussion 37
5.1 Quantization v v it et e e e e e e e e e e e e e e 37
5.2 Pruning 38
5.3 Network Topology and Memory Consumption 39
5.4 Avoiding Integer Overflows 40
5.4.1 Remapping Dataset ValueRange 40

5.4.2 Selective Choice of Activation Functions 41

5.5 Optimization Through Data Preprocessing 41
5.6 Compiler Optimizers v, 42

6 Further Discussion 43
6.1 Alternative Embedded AI Solutions 43
6.2 MCU Network ACCUTaCy v v v v it e e e et e et e 44
6.3 Additional NNoM Functionality 44

7 Conclusion 47
Bibliography e 49
A MNIST MCU Inference Test Code - PC Python Implementation 53
B MNIST MCU Inference Test Code - MCU C Implementation 57
C Dense Keras Models - Size and Accuracy 61
D Pruning TestCode 65

Figures

2.1
2.2

2.3

3.1

4.1

4.2

4.3

4.4

4.5

4.6

Topology of a basic feed-forward Artificial Neural Network.
The three most common activation functions for hidden layers. X-
axis is input value, y-axisisoutput. [6]
The convolution process visualized. The convolutional filter (yel-
low) convolves over the input data (blue), which grants the result-
ingdataarray (red). e

Topology of network defined for the Sensor System example.

Size and accuracy of densely connected networks, with two hidden
layers and varying layer widths.
Size and accuracy of densely connected networks, with three hid-
den layers and varying layer widths.
The relative accuracy achieved on the MCU, compared to the ac-
curacy achieved from the raw Keras model on the PC.
The orange plane represents the compression achieved from the
NNoM conversion alone. The color varied surface plot represents
the total compression achieved by both pruning the model, and
performing the NNoM conversion. Initial and final sparsity (X and
Y-axes) refer to pruning settings.
This surface plot represents the compression factor achieved by ap-
plying pruning to an MNIST classification model. The sparsity set-
tings of the pruning operation are varied along the X and Y-axes. . .
The blue plane represents the initial model accuracy achieved be-
fore performing any optimization routine. The color varied surface
plot represents the accuracy achieved after the model has been
pruned. Initial and final sparsity (X and Y-axes) refer to pruning
SEHINES. e e e e e e e e e e e

Xi

6

14

22

28

34

Tables

2.1 Table of the most commonly used activation functions for a selec-

tion of network types. 9
4.1 Training parameters for networks in figure 4.1 and figure 4.2. ... 27
4.2 Network Structure for figure 4.1. Figure 4.2 has a similar structure,

but with an additional hiddenlayer. 30
4.3 Training parameters for networks in figure 4.3. 32
4.4 Network Structure for figure 4.3. 32
4.5 Inference time and flash usage statistics for different GCC compiler

OpPtIMIZAtion SELtINGS. . « « v v v v v v e e e e e e e e e e e e e e 36

xiii

Code Listings

3.1 Generating dataset for the Sensor System example. Test data is gen-
erated using the same code, but with the sample amount reduced

to a total of 1000 samples. 21
3.2 Example of incompatible activation function declaration. 22
3.3 Defining ANN model for Sensor System example. 22
3.4 Function call for converting Tensorflow Keras models into an MCU

friendly format. 23
3.5 Example C code for running inferenceon MCU. 24
4.1 Loading and preprocessing MNIST data for densely connected net-

WOrKS. . . e 26

XV

Acronyms

Al Artificial Intelligence. 2, 5, 6, 43, 44
AIfES Artificial Intelligence for Embedded Systems. 19, 20, 38, 45

ANN Artificial Neural Network. 1-3, 5-9, 11, 16-18, 20, 21, 23, 25-27, 30, 37,
39, 40, 44, 45, 47, 48

API Application Programming Interface. 11, 17, 18, 21, 23, 40
BCE Binary Crossentropy. 12, 22

CCE Categorical Crossentropy. 12, 13
CNN Convolutional Neural Network. 14-16, 45

CPU Central Processing Unit. 17

MAE Mean Absolute Error. 12

MCU Microcontroller Unit. xix, 1-3, 17-20, 23, 25-27, 30, 32, 37-41, 43-45, 47,
48

MSE Mean Squared Error. 11, 12

MSLE Mean Squared Logarithmic Error. 12

NNoM Neural Network on Microcontroller. 19-23, 25, 26, 37, 38, 40, 41, 44, 45,
47, 48

RNN Recurrent Neural Network. 7, 8, 45

SCCE Sparse Categorical Crossentropy. 13, 25

SH Squared Hinge. 12

XVii

Glossary

cloud computed AI Cloud computed Al refers to resource constrained devices
executing machine learning algorithms, by remotely communicating with a
more powerful system, and outsourcing the heavy processing tasks. 1

edge computed AI Edge computed Al refers to microcontroller units performing
machine learning algorithms, without outsourcing the processing to more

powerful systems. 2

forward-pass Forward-pass refers to the operation of porting a pretrained neural
network to a resource constrained device, such as a MCU. 19

inference In machine learning, inference refers to the process of running a model,
by inputting data, and prompting it to return a prediction. 16, 18, 19

XiX

Chapter 1

Introduction

1.1 Problem Statement

The aim of this thesis is to evaluate the feasibility of implementing Artificial Neural
Networks (ANNSs) on 8-bit architecture Microcontroller Units (MCUs). Implement-
ing neural networks on such resource constrained devices pose a number of chal-
lenges. These challenges will be identified, and possible solutions will be presen-
ted. The work will focus on implementation, and finding techniques and best prac-
tices to optimize the ANN performance on 8-bit MCUs.

1.2 Background

The topic of machine learning and ANNs seem to get more relevant by the day.
These topics have long been associated with a need for great processing power, an
association that holds true to a certain degree. Most machine learning algorithms
require powerful processors to execute, but there is a clear exception to this gen-
eral rule; namely ANNs. Before such an algorithm can be deployed, it needs to
undergo a training phase, where the network learns the desired behavior for an
application. The training phase does require a significant amount of processing
power. However, when the training is complete, the network only requires a frac-
tion of said processing to execute. This allows for networks to be trained on power-
ful systems, and later transferred and run on resource constrained devices. This
trait makes ANNs particularly well suited for embedded applications, where pro-
cessing power is a scarce resource. This thesis will tackle the challenge of imple-
menting ANNs on 8-bit MCUs.

1.2.1 Motivation

Machine learning on 8-bit MCUs have traditionally been performed through cloud
computed Al, where the MCU remotely outsources the heavy processing tasks to
a more powerful system. This method comes with a set of weaknesses, which

2 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

renders the technique unsuited for certain applications. Edge computed Al is a con-
trasting technique to cloud computing, where all processing occurs on the MCU.
Edge computing could prove to be a suitable alternative to cloud computing for
applications where the latter is unsuited. According to [1], key reasons why cloud
computing might be unsuited is privacy, latency, and network congestion. Some
applications might be collecting sensitive data, which poses the issue of privacy.
In cloud computed systems, the MCU transmits data wirelessly to a cloud server.
This data could potentially be collected by unauthorized parties, which depending
on the application at hand, could pose security threats. This issue would be elim-
inated in an edge computed system, seeing as no data leaves the MCU wirelessly.
Another potential issue is that of response latency. Wireless communication intro-
duces a number of networking variables that will affect the response time of the
cloud server. These variables do not affect an edge computed system, which will be
able to deliver results with a more predictable latency. If a system consists of mul-
tiple nodes, all of which rely on cloud computing, one might eventually experience
issues with network congestion. In such a case, transferring some, or all nodes to
an edge computed solution, will help improve the performance and stability of the
system. In addition, sending information wirelessly is a power demanding task,
which might prove overwhelming for some battery powered solutions. Replacing
cloud computed ANNs with an edge computed alternative could significantly im-
prove the battery lifetime of such devices. Lastly, it is worth noting that cloud
systems are expensive to implement compared to edge computed systems. Edge
computed nodes only cost as much as the MCU and potential supporting hard-
ware, while a cloud server will require a larger investment to implement.

Cloud computing is a solution that provides a great deal more computing power.
Computationally heavy tasks could certainly be executed with lower latency times
in cloud servers, compared to resource constrained MCUs. There is no definitive
answer to which approach is better in general, but rather a consideration that
needs to be made on an application specific level.

1.2.2 8-bit Motivation and Current State of Research

Another key aspect of the thesis topic is that of MCU architecture. MCUs are com-
monly designed with 8-bit, 16-bit or 32-bit architectures, all with varying strengths
and weaknesses. Compared to 32-bit MCUs, 8-bit is more cost effective, consumes
less power, is easier to work with (implementation-wise), and usually carries a
smaller form factor. 32-bit MCUs have greater clock speeds, computing power,
and generally more internal memory. Due to the superior computing power and
internal memory, 32-bit MCUs have traditionally been the architecture of choice
for embedded Artificial Intelligence (AI) applications. In fact, the vast majority of
research done on embedded Al have been focused on 32-bit MCUs. The author
was not able to locate a single published resource exploring implementation de-
tails, different trade-off aspects, or the general feasibility of ANNs on 8-bit MCUs.
A small number of publications and demonstration videos have been found, show-

Chapter 1: Introduction 3

casing a proof of concept, without emphasis on implementation and performance
details. [2] presents an 8-bit ANN implementation that successfully tracks the
maximum point of solar irradiance, for use with solar energy harvesting. It does
not present details surrounding the 8-bit aspect, but serves as yet another proof of
concept. This thesis thus serves to fill the void, and to provide a thorough invest-
igation of implementation methods, optimization, performance, and the general
feasibility of ANNs on 8-bit MCUs.

1.3 Author Qualifications and Intended Audience

At the start of this thesis project, the author had no previous knowledge or exper-
ience on the subject of ANNs. He did however start out with proficiency in both
Python programming, and C programming for MCUs. Additionally, seeing as this
is a masters thesis, the author started with the qualifications provided by a five
year degree in electronics, with a major in sensor systems. The thesis assumes
that the reader is familiar with general programming concepts, with a main fo-
cus on the programming languages Python and standard C. Previous experience
with MCU programming is also assumed, as well as experience with general en-
gineering concepts. The thesis does not assume knowledge of ANNs. All relevant
machine learning concepts will be presented in chapter 2.

Chapter 2

Theory of Artificial Neural
Networks

2.1 Core Concept

The fundamental theory presented here is largely based on material from [3] and
[4]. These sources, with emphasis on the latter; are recommended for further reading,
should the reader be interested in learning more.

ANNSs are a popular type of Al that are conceptually modeled after the way human
brains work. The brain consists of intricate networks of a special cell type called
neurons, which communicate with one-another using electrochemical signals. A
neuron will emit an electrochemical signal based on the excitement it receives
from other neurons. ANNs borrow from this concept. In short, a ANN is a network
consisting of a number of digital neuron models, interconnected in a certain topo-
logy (see figure 2.1). Each neuron model receives a number of input signals, and
outputs a single resulting signal. This output is thus fed to the next layer of neur-
ons, whose outputs are influenced by the signal received from the initial neuron.
Follow the arrows in figure 2.1 to see the directions of data flow.

A network will receive an input, which excites the network neurons in a certain
way, and in the end grants a resulting output. This input can be sensor data, im-
ages, or any other desired data type. A commonly used example is the process of
recognizing handwritten digits. The network is fed images of handwritten digits,
and is tasked with returning an integer value from 0 to 9. In order to do this the
network needs to be trained, so that each neuron knows at which input data it
should "fire" (binary high signal), and when not to. The training is done by feeding
the network a large dataset of such images, and then simply allowing the network
to guess the correct output. Each image has a label attached to it, containing the
correct answer for the particular image. Each time the network attempts a guess,
it adjusts the firing threshold of the neurons individually, in an attempt to improve
at the task. Initially the network will have a success rate of about 10%, which in an
output range of 10 elements is pure guesswork. It will however improve gradually
for each image it analyzes. After repeating this process several thousand times, it

6 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

Input Layer Hidden Layer Output Layer

(o
9
(0

Figure 2.1: Topology of a basic feed-forward Artificial Neural Network.

s AL
o

5]
s

will eventually become quite good at the task. The accuracy will certainly depend
on several different factors, such as network topology, size of dataset, and a wide
variety of other factors. The current state of the art handwritten digit classifying
networks reach an accuracy level upwards of 99.84% [5].

One of the major advantages of ANNS is the ability to treat it somewhat as a black
box. They can solve complex problems with just the need of example data, while
the programmer can abstract away a great deal of the details. Imagine having
to solve the handwritten digit problem without the use of such Al; This would
no doubt be a challenge. As opposed to other Al techniques, ANNs require very
little computing power to run. The resource intensive part of ANNs occur during
training, which potentially is a one-time process.

2.2 Network Topology

The topology of the network is usually organized in layers, and are categorized
as an input layer, an output layer, and a number of hidden layers in between.
The network architect can vary the number of hidden layers, and the number of
neurons in each layer of the model, based on the particular use-case. The abilities
of the network rely heavily on this topology. The network in figure 2.1 has three
nodes in its input layer, which means it accepts a total of three data points as
input. This network would not be able to handle image data, considering each
pixel of the image would require its own input node. The output layer in turn has

Chapter 2: Theory of Artificial Neural Networks 7

a layer width of two. This of course only allows for two output values, e.g. true or
false. For the handwritten digit classifier one would need ten output nodes, one
for each digit.

The hidden layers in between is where the network properties are decided. Differ-
ent use-cases require different topologies to perform well. It is difficult to properly
generalize how to design a network given a use-case, as this is a problem largely
solved through experience, and trial-and-error. However, researching which topo-
logies have been successful for similar tasks is a much used approach.

The figure 2.1 network is a feed-forward ANN. This means that the information
only flows in one direction, from a high layer to a lower layer. This differs from
what is known as Recurrent Neural Networks (RNNs). RNNs are networks where
one or more nodes loop in the backwards direction. Sending information back to
previous layers gives the network a form of short-term memory. This is very useful
for applications such as speech recognition, where previous words matter a great
deal when deciphering the meaning of a sentence.

2.3 Activation, Weights and Biases

This subsection is written with a basis in the most basic form of ANNs, namely
densely connected networks. This is a network where every node in a layer sends
its output to every node in the next layer. Figure 2.1 displays such a network.
Each connection between two nodes holds its own unique weight. The weight is
a number that specifies how much influence that particular connection has on
the activation of the receiving node. The activation is, in short terms, the output
value of the node. In addition, each node has a bias, which can be thought of as
a threshold for how great the activations at the input of a node need to be, in
order to activate said node. The activation (output value) of a node is determined
by applying an input function on the node inputs, and feeding this result to an
activation function (see section 2.4). The input function can be calculated by taking
the weighted sum of all the inputs of a node, and then adding the bias. Every
connection n of the total input count n,,, at the node input, has an activation
value q,, and a weight w,. The node itself has a bias b. The input function f;,
then becomes:

fin=0 wa%a,)+b (2.1)
n=0

2.4 Activation Functions

As mentioned in section 2.3 the input function is usually coupled with an activa-
tion function when determining the activation level of a node. To clarify, activation
functions are utilized in every network type, and is not specific to densely connec-
ted networks. The following is based on material written by Dr. Jason Brownlee

8 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

-10.0 -75 =50 =25 0.0 2.5 5.0 5 =100 =75 =50 &5 0.0 25 5.0 75 =100 =18 <50 ~i5 0.0 25 5.0 7.5

(a) ReLU (b) Sigmoid (¢) Tanh

Figure 2.2: The three most common activation functions for hidden layers. X-axis
is input value, y-axis is output. [6]

[6]. The information is summed up in table 2.1.

There are several different types of activation functions, which work well for dif-
ferent applications. Choosing the right activation function will help the network
train more efficiently, which in turn makes the network perform better. Activation
functions are usually defined for each layer, and the output from every node in
that layer will then pass through the defined activation function, before propagat-
ing to the next layer. The first distinction to make is between the hidden layers
and the output layer, and which activation functions serve their respective pur-
pose. It is most common for all hidden layers in a neural network model to share
the same activation function, and for the output layer to have a different one. The
three main activation functions used for the hidden layers are called ReLU, Sig-
moid and Tanh (see figure 2.2). ReLU is the most commonly used of the three, and
is viewed as the default activation function. Sigmoid and Tanh were the defaults
of their time, in roughly the early 1990s and the 2000s respectively[6]. However,
they all have their their use-cases in modern neural networks. In short, the recom-
mendation is to use ReLU for most cases, except for in RNNs, where both Sigmoid
and Tanh are commonly used[6].

The activation functions for the output layer is selected based on the type of out-
put the network generates. Regression and classification are two common problem
types in machine learning. Regression problems attempt to predict a numerical
variable, and as a result it needs only one node in its output layer. This output
node will hold the predicted numerical value. For such problems it is advised to
use the linear activation function[6], whose output value is the same as its input
value.

Classification problems revolve around placing some kind of input data into a
fitting category (class). For example, if the input data is an image of an apple,
then the ANN should place this in the apple class, and not the strawberry class.
There are a few more factors to consider when choosing an activation function
for classification problems. This problem type can be subdivided into three more
categories:

e Binary classification

Chapter 2: Theory of Artificial Neural Networks 9

o One output node; Two classes; Input belongs exclusively in one (mu-
tually exclusive). Use the Sigmoid activation function[6].

e Multi-class classification

o Three or more output nodes; Three or more classes; Input belongs
exclusively in one (mutually exclusive). Use the Softmax activation
function[6].

e Multilabel classification

o Two or more output nodes; Two or more classes; Input can belong in
several (mutually inclusive). Use the Sigmoid activation function[6].

Both binary and multilabel classification problems are suitably solved by the Sig-
moid activation function. The reason for this is that the Sigmoid will return a
number between zero and one. This value can be interpreted as a probability of
class membership. Each output node has such a value, representing how likely the
network believes the input value to belong in that particular output class. For the
case of binary classification, where there is only one output node, a value close to
zero points to one class, and a value close to one points to the other. Multi-class
classification suits use of the Softmax function. The reason for this is that all the
outputs are mutually exclusive, meaning the input data can only belong in one of
the output classes. The Softmax function will assign a probability value between
zero and one to each of the output classes. What separates this from the Sigmoid
function is that, all the output probabilities using Softmax sums up to one. The
class with the highest predicted probability is thus the mutually exclusive predic-
tion.

Activation Functions

Hidden Layers Output Layer
Feed-Forward Recurrent Regression | Classification
ReLU Sigmoid or Tanh Linear Binary: Sigmoid

Multi-class: Softmax
Multilabel: Sigmoid

Table 2.1: Table of the most commonly used activation functions for a selection
of network types.

2.5 Learning in ANNs

One of the great advantages of ANNs is their ability to learn on their own, by
simply feeding it example data. This process does of course not happen on its
own, and involves a fair bit of calculus to perform. The most common approach
when creating an ANN is to use premade libraries, such as Tensorflow and PyT-
orch, which has state of the art learning algorithms implemented. It is therefore

10 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

outside the scope of this thesis to explore the details of such algorithms. Should
however the reader be interested in exploring this topic, it can be recommended
to watch the video series by Grant Sanderson (3Bluel1Brown on YouTube) on the
topics of gradient decent and the backpropagation algorithm [7]. The book Arti-
ficial Intelligence: A Modern Approach[3], chapter 18.7, also provides a detailed
explanation of these concepts. The following sub-chapter will present and refer
to these concepts on a high abstraction level, and will be used to explain central
learning parameters one would encounter while using machine learning libraries
such as Tensorflow.

2.5.1 Backpropagation, Optimizers and Loss Functions

The loss function is used to measure how good a prediction from the network is,
by comparing the prediction to the label of the input data. Put in the context of the
handwritten digit problem; if the input image depicts the digit four, it is expected
that the output node representing this digit will return a probability close to one.
Similarly, for the image of a four, one would expect all other output nodes to
return a probability close to zero. The loss function calculates a performance score,
called the loss, based on the difference between this expected output value, and
the actual output value. A very simple loss function would be the absolute value
of this difference. E.g. if the input is a four, and the output node representing
this digit returns 0.85 probability, then the loss for that particular node, for that
particular training example, would be calculated:

loss = abs(1—0.85) =0.15

This is just one example of a loss function, among several that are commonly used.
In order to learn, the network needs to tweak its different weights and biases
until the generated output matches the expected output. The loss function is the
mechanism that informs the network of which weights and biases to adjust, in
order to perform better. For an arbitrary training example, the loss is calculated
for each output node. The value of the loss indicates how much the individual
nodes wishes to increase or decrease their respective output value. In order to
influence this, the node will indicate that it wishes to adjust certain weights in its
input connections, which in turn would nudge the output value for this particular
training example in the right direction. The output node will also indicate to the
relevant nodes in the previous layer, which activations should be higher or lower.
The nodes in the second to last layer will then perform this same operation, by re-
questing changes to weights in their input connections, and activations according
to its own calculated loss. This loss calculation is based on the difference between
the current activation value of the node, and the sum of the activation change
requests from all the nodes in the output layer. This operation will work its way
through every layer of the network. This is called the backpropagation algorithm.
Once this has been done for every training example, the individual weight change
requests are averaged, and these average values are ultimately used when updat-
ing the weights of the network.

Chapter 2: Theory of Artificial Neural Networks 11

This averaged list of weight changes can be seen as the negative gradient of the
network, indicating which changes to make in order to minimize the overall net-
work loss. This approach at minimizing the network loss is know as gradient des-
cent. The concept of optimizers are central in ANN theory, and gradient descent is
the foundation for the most commonly used optimizers. At its core, training neural
networks is an optimization problem, where the goal is to find the weight and bias
settings at which the overall network loss is at a minimum. The most commonly
used evolution of the gradient descent algorithm is the ADAM optimizer, and can
be regarded as a default choice of optimizer. There are however times where one
would prefer to use a different optimizer, but this falls outside the scope of this
thesis. Dr. Jason Brownlee covers the topic of choosing a suitable optimizer for
different use-cases, and is a recommended read for those interested [8].

2.5.2 Choosing a Loss/Cost Function

The recommendations made in this subsection are based on material written by Dr.
Jason Brownlee[9 | and Peltarion[10].

A noteworthy distinction often encountered is that of loss function and cost func-
tion. A loss function is, as described previously in this chapter, an evaluation that
happens on a node level. A cost function on the other hand is used to measure the
overall network performance. These terms do however get mixed up frequently,
and are often used interchangeably. A reason for this is that a cost function con-
tains a loss function term, but adds a new layer of functionality. For example,
the cost function might take the squared difference of each output node in the
network, and then average these values. The result is then a single value which
represents the overall loss of the network. In this case the loss function is the
operation happening at the node level, namely the term which squares the dif-
ferences. This, combined with the averaging term, makes up the cost function.
The ANN training presented in this thesis utilizes the Tensorflow Keras Applica-
tion Programming Interface (API), which refers to both loss and cost, as losses.
The following will present recommendations for which cost function to use for
different situations. The choice of cost function, quite similarly to the choice of
activation function, depends on the type of prediction problem, which is either
regression or classification (see section 2.4 for definitions).

Regression - The default loss function for regression problems is the Mean Squared
Error (MSE). This cost function squares the difference between the predicted value
and the actual value at the output node, and averages the results across a set of
training examples. This cost function punishes the network for large numerical
mistakes, due to the differences being squared. This is an efficient approach for
most use-cases, and it is therefore recommended to use MSE unless the network
has clear reasons not to. See [11] for further details on MSE.

One reason to not use MSE is if the output variable has a large numerical range of
possible correct values. E.g. if the network for one input has the correct answer 25,

12 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

and for another input the correct answer 1500. In this example the possible span
of output values is significant, numerically speaking. Since MSE punishes large
numerical differences, it might be better to use a different loss function. Mean
Squared Logarithmic Error (MSLE) introduces a logarithmic term into MSE, which
makes the cost function respond to percentual differences between expected and
actual output, as opposed to numerical differences. See [12] for further details on
MSLE.

If the dataset in question contains several outlier results, it might affect the train-
ing performance. A cost function used to remedy this is the Mean Absolute Error
(MAE), which uses the absolute value of the differences, and averages this across
several training examples. This cost function will reduce the effect outlier results
may have on the network performance. See [13] for further details on MAE.

Binary Classification - The default choice of cost function for binary classification
is called Binary Crossentropy (BCE). In classification problems the output value is
interpreted as a probability of class membership. In the case where such networks
are structured with only one output node, a value close to one indicates one class,
while a value close to zero indicates the other. In such cases, BCE determines a
cost value based on the difference between the target value (either zero or one)
and the actual output value, averaged over several training examples. It is recom-
mended to use BCE for binary classification, unless there are good reasons not to.
See [14] for further details on BCE.

When using BCE the network returns probabilities of class membership. If the net-
work architect is uninterested in these probability values, and is only interested
in the binary true/false output, then the Squared Hinge (SH) cost function might
be a good alternative to BCE. SH finds the maximum margin between the differ-
ent classes, so that the network is fully confident that the prediction presented at
the output is correct. This does of course not mean that the output will always
be correct, but the network will still be just as certain in its prediction. This cost
function is best used in combination with the Tanh activation function. See [15]
for further details on SH.

Multi-class Classification - The default choice of cost function for multi-class classi-
fication problems is called Categorical Crossentropy (CCE). This cost function will
output a class membership probability to each of the network output nodes. Using
CCE the sum of said output values will always equal to 1, indicating that only one
class can be the correct one. CCE is in principle similar to BCE, but is in contrast
tailored towards three or more output classes. When using CCE it is important that
the training examples are one-hot encoded. Take the handwritten digit problem
as an example, which is a classic multi-class classification problem. The training
examples each contain an integer label representing the digit displayed in the im-
age. When using CCE this integer needs to be converted to a one-hot encoding.
This means converting the label to a vector of ten elements, where every element
except one is zero. If the training example contains the digit four, then element

Chapter 2: Theory of Artificial Neural Networks 13

number four in this vector needs to be a one, and every other element a zero. This
is what is referred to as one-hot encoding. See [16] for further details on CCE.
One-hot encoding can in some cases be impractical. E.g. in some cases a network
might have thousands of output classes, which for one-hot encoding would mean
each training example holding a vector containing thousands of elements. This
would pose significant memory requirements on the system in use. An alternative
would be to use Sparse Categorical Crossentropy (SCCE). This cost function per-
forms the exact same operation as CCE, but does not require the one-hot encoding.
This spares the training procedure from the excessive memory requirements that
can come from CCE.

The recommendations presented here are not an exhaustive list of possibly suit-
able cost functions, but provide an overview of the ones most commonly used for
different problem categories.

2.5.3 Batch Size, Epochs and Learning Rate

Section 2.5.1 states that the weights of a model are adjusted only after the back-
propagation algorithm has been executed on every training example in the data-
set. In practice this is not the case. For datasets containing several thousand train-
ing examples, evaluating each of these simultaneously would require a significant
amount of memory. To overcome this obstacle the concept of training batches is
introduced. The dataset is divided into batches containing a user defined num-
ber of training examples. The backpropagation algorithm is then applied to each
batch separately, and the weights are updated after each batch evaluation. Typical
values for batch size are 32, 64, 128 and 256 training examples, but is not limited
to any of these settings. The batch size does not need to be a power of two, and
can be both greater and lower than the provided example values.

Another parameter one encounters when training a model is epochs. Epochs define
how many times the network should evaluate each training example. If the epoch
parameter is set to 50, the network will evaluate every training example 50 times.
When training a model one needs to find a balance between three parameters,
namely batch size, epochs and learning rate. The latter defines the gradient des-
cent step size used by the optimizer. A typical starting value for the learning rate
might be 0.001. Increasing the batch size generally means that the learning rate
should be increased, and similarly reduced when decreasing batch size. A larger
batch size will lead to reduced training time, but could negatively impact the train-
ing results. To increase the batch size without sacrificing results, one can increase
the number of epochs [17]. This in turn will lead to longer training times, and so
this is a matter of balance. Selecting appropriate values for these parameters is
largely done through experimentation.

14

HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

14

11

14

14

IS

10

10

10

Figure 2.3: The convolution process visualized. The convolutional filter (yellow)
convolves over the input data (blue), which grants the resulting data array (red).

2.6 Layer Types

There are several different layer types commonly used in neural networks. Up
until now the only layer discussed has been the densely connected layer, where
the output of a node is connected to the input of every node in the next layer. A
large subset of layer types will not be presented, and the focus will target the ones
relevant throughout this thesis. The theory presented is based on sources [18] and
[19].

2.6.1 Convolutional Layers

Convolutional layers are the building blocks that make up Convolutional Neural
Networks (CNNs), which are famed for their abilities in image recognition tasks
(although useful in other applications). As discussed previously, the densely con-
nected layers receive a one dimensional vector of inputs, and outputs a single
value. Convolutional layers receive a two dimensional array of inputs, and out-
puts a two dimensional array of slightly smaller sizel. Take as an example the
handwritten digit problem; a CNN will receive a picture of a digit as an input, and
forward the image data to the first convolutional layer. The purpose of this layer
is to enhance certain features from the image (e.g. edges and circles). This is done
through a process called convolution (hence the layer name).

The network architect specifies a number of filters for each convolutional layer.
These filters are two dimensional arrays containing a set of weights. The convolu-
tion operation happens by sliding the filter over the input data, multiplying each
filter element with the input data point it currently covers, and then adding the
resulting value from each of the individual multiplications. This resulting value is
then placed in a two dimensional array of its own. Figure 2.3 displays an example

IThis refers to 2D convolutional layers. Both 1D and 3D convolutional layers exist, but are not
as common.

Chapter 2: Theory of Artificial Neural Networks 15

of such an operation. Here, the yellow filter covers the input data so that the top
leftmost "tile"? of both arrays align. Each filter value is thus multiplied with the
input value tile it is currently covering. When each individual multiplication is
summed up, it grants an output value, which is seen in the top leftmost tile of the
red output array. Once this operation is done, the filter window slides one tile to
the right, and performs the same operation. Once the filter has convolved over the
top row of the input data for three iterations, it slides back to its leftmost position
and down one tile. This is due to the filter dimensions exceeding the dimensions
of the input data if it were to slide further to the right, which is not allowed in
a standard convolutional operation. This is why the output array is of size 3x3,
instead of 4x4 like the input array.

As mentioned, the network architect specifies how many such filters should be
included in the convolutional layer, all of whom are initialized with an individual
set of weights. Each filter would accept the full input array, and, independently
from other filters, perform a convolutional operation on the data. Each of the filter
outputs combined make up what is called a feature map. As mentioned, the role
of the convolutional layers is to extract features in the input data; and the idea is
that each filter, after the network is trained, will have a sensitivity to its own dis-
tinct feature. The feature map is a three dimensional array containing each of the
filter outputs. This feature map is commonly put through one or more additional
convolutional layers, which has the effect of extracting more advanced features
for each layer it is passed through (to a certain extent). Take as an example a
network that is trained on pictures of human faces. The first convolutional layer
might detect edges, and the next layer might use the information about edges to
extract the oval contour of the face. A few layers down the line, the network might
be able to detect the full human face, even highlighting features such as the nose
and eyes.

After each convolutional layer the feature map is passed through an activation
function, whose output is also referred to as a feature map. Commonly used ac-
tivation functions in such cases are ReLU and Tanh. Two parameters one encoun-
ters when implementing CNNs are kernel size and stride. Kernel size refers to the
dimensions of the convolutional filter (the kernel size in figure 2.3 is 3x3). Stride
refers to the step length of the filter; more precisely how many tiles it shifts after
each convolution. The example above has a stride of one.

2.6.2 Pooling Layers

A challenge with convolutional layers is that they might become sensitive to the
absolute pixel positioning of the different features, instead of the relative position-
ing. In high resolution images, small visually perceived positional changes could
mean a significant offset in pixel indices. A remedying measure is to down sample
the image, effectively reducing the amount of pixels in the image, while retaining
the most vital information. Fewer pixels would mean smaller pixel index offsets.

2These tiles can more realistically be thought of as pixels in an image.

16 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

Pooling layers are the most commonly used down sampling technique in CNNs.
There are two main types of pooling layers, namely max pooling and average
pooling. Both can be visualized in the same way as the convolutional operation
in figure 2.3. Imagine a window passing over the input array, but in contrast to
the convolutional filter, this window does not have any weights. Instead, it takes
the maximum value (max pooling), or calculates the average value (average pool-
ing), of the input tiles covered by the window, and places the resulting value in
an output array. The window continues to slide over the input data in the same
fashion as during convolution, whilst performing the selected pooling operation.
For pooling layers the network architect needs to specify the pooling type, stride,
and pool size. Stride and pool size are similar to that described in section 2.6.1,
although in convolution, pool size is referred to as kernel size. Pooling layers are
normally applied after a convolutional layer and its activation function. It is very
common to set a pool size of 2x2, and a stride of 2 [19].

2.7 ANN Optimization Techniques

A core component of implementing neural networks on resource constrained devices,
is the process of optimization. There are two main techniques that are commonly
used, namely quantization and pruning. Both aim to decrease the memory re-
quirements of the neural networks, in order to fit more nodes and layers, while
using as little resources as possible. Libraries such as Tensorflow and PyTorch use
32-bit float values to store weights, biases and other data. This means allocat-
ing four bytes of storage for every variable, regardless of the magnitude of its
stored value. Quantization addresses this issue, and converts every variable in
the model to 8-bit integers, thus reducing the size of the model by a factor of 4
[1]. Quantization also brings the benefit of a significant computational speedup,
potentially reducing the model inference® time by a factor greater than 3 [20].
Note that this speedup factor applies when using the quantization functionality
within Tensorflow, and does not necessarily apply to other libraries. Quantization
is either done while the network is training, called quantization aware training;
or after the training is done, which is called post-training quantization.

ANN predictions are determined by the fine-tuned weights and biases within the
network. Each connection carries a unique weight that contributes to the final
prediction; although, not every weight carries the same significance. Pruning is
a technique that identifies connections within the network that carry less signi-
ficance towards the final output, and then removes said connections. Removing
connections means reducing the number of variables stored in the network, which
in turn reduces the model size.

3In machine learning, inference refers to the process of running a model, by inputting data, and
prompting it to return a prediction.

Chapter 3

Implementing ANNs on 8-bit
MCUs

The following chapter will present the basics of implementing ANNs on MCUs.
This includes how to choose a suitable MCU for the task, and which neural net-
work frameworks to use. A simple implementation example will be presented, to
highlight important design considerations; and to familiarize the reader with the
relevant APIs, which is needed before diving deeper in chapters 4 and 5.

3.1 Choice of Microcontroller

There are a few key factors to consider when selecting an MCU on which to imple-
ment a neural network. The arguably most important factors are program memory
and data memory, which can become a scarce resource in large networks. Pro-
gram memory refers to the memory where the program code is stored, while data
memory refers to the storage location of runtime variables. When choosing a MCU
to perform experiments for this thesis, the author decided not to use devices that
are top of the line for such applications. This decision being under the philosophy
that, if neural networks are successfully implemented on less powerful hardware,
then the relevant shortcomings and issues would be more pronounced, and thus
easier to identify. If ANNs are deemed feasible on less powerful hardware, then
surely top of the line devices are feasible for use as well.

The author decided to use an ATmega4809 MCU; a device that holds 48kB of pro-
gram memory, and 6.1kB of data memory. This is an 8-bit AVR device, running
with an internal CPU clock of 20 MHz. These specifications are neither bottom
nor top of the line, and should therefore provide a satisfying reference for the
capabilities of neural networks in 8-bit MCUs. An example of a more powerful
device well suited for ANN applications is the AVR128DB64, with 128kB of pro-
gram memory, and 16.4kB of data memory. This device will not be evaluated in
this thesis, but serves as a device recommendation for the reader.

17

18 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

3.2 Choosing Neural Network Frameworks

As mentioned in section 1.2, the reason why ANNs is a promising machine learning
approach for MCUs, is that the networks require relatively little processing power
to run once the network training is complete. The solution is therefore to train
the networks on a powerful PC, before transferring it to a resource constrained
MCU. To accomplish this one needs both a training framework for the PC, and an
inference framework for the MCU. The following section presents the selection
process of these frameworks.

3.2.1 Framework for Model Training

There are a few key criteria when choosing a neural network framework to use
for MCU model training. An important selling point to those who are new to ma-
chine learning and ANNSs, is an easy to use API. In the same spirit of usability, the
framework should be well documented. Different optimization features, such as
quantization and pruning, should be well implemented, to facilitate for maximum
resource utilization on the MCU. The two most popular frameworks used to date
are Tensorflow and PyTorch, both of which are mainly implemented as Python lib-
raries. Both libraries are well documented, and support pruning and quantization.
Tensorflow is actively developing a sub-package called Tensorflow Lite, which is
aimed towards mobile applications. Smart phones and other mobile systems are
in context regarded as resource constrained devices, and are frequently imple-
mented with 32-bit processors. Tensorflow Lite was attempted implemented as
an inference framework on the ATmega4809, but proved to be incompatible (see
section 3.2.2). Tensorflow Lite does however still provide a state of the art toolkit
for reducing the size of ANN models. The compression factors of Tensorflow Lite
and PyTorch have not been directly compared.

Tensorflow is widely regarded as a less intuitive library than PyTorch, however,
as of 2019, Tensorflow natively supports the Keras API. Keras is a high level API,
which has long been praised for its simplicity, and its usability for quickly pro-
totyping neural network models. Considering Tensorflow both supports Keras,
and provides a toolkit as extensive as Tensorflow Lite, one could conclude that
Tensorflow is slightly more suited for the application in question. Another factor
to consider, however, is that Tensorflow and PyTorch save models in different file
formats. When choosing an inference framework for the MCU (see section 3.2.2),
one might discover that certain libraries only support one or the other format. The
Tensorflow Lite sub-package also defines its own format, which is not necessarily
compatible with inference frameworks listed as Tensorflow compatible. This could
thus be a decisive factor in both training and inference framework selections.

3.2.2 Framework for MCU Inference

Once a model has been trained, it can be ported to a MCU using an appropriate
inference framework. Such a framework refers to a code base written to optimize

Chapter 3: Implementing ANNs on 8-bit MCUs 19

for size, using uint8 types wherever possible, instead of float32. A few companies,
like Cartesiam, offer this forward-pass® as a paid service, but do not necessarily
grant access to the framework source code. Such paid services will therefore not be
considered. Implementing an inference framework from scratch was considered,
but this was deemed too time consuming for the limited time frame of this thesis
project.

The open source market for such frameworks is thinly populated, where most solu-
tions are underdeveloped and unmaintained. One exception to this is the Neural
Network on Microcontroller (NNoM) library [21] written by Jianjia Ma. This is
an open source project that performs forward-pass for MCUs. It is designed to
work seamlessly with Tensorflow, allowing the user to convert a model from the
Tensorflow format to an MCU friendly format by the call of a single function. It
supports a wide variety of functionality, including different layers types, activation
functions and loss functions. NNoM is by no means a perfect library. The docu-
mentation is of poor quality, and the provided application examples are outdated,
and are no longer functional. There are a number of aspects to consider when
designing a model in Tensorflow, to make it compatible with NNoM, which are
either poorly documented, or not documented at all. These aspects are detailed
in section 3.3. The library does not seem to be in active development, based on
the commit frequency on GitHub. There is therefore a risk that the library might
break with future Tensorflow releases , without NNoM being maintained for con-
tinued support. As mentioned, NNoM supports the Tensorflow format, but it does
not support Tensorflow Lite models. This is turn leads to NNoM not being able to
utilize the optimization tools provided by Tensorflow Lite. NNoM does however
have built-in quantization functionality, so this is no large issue.

Another promising framework is one developed by Fraunhofer IMS, called Ar-
tificial Intelligence for Embedded Systems (AIfES). As of writing this thesis the
library is unreleased, but is scheduled for open source release sometime during
the summer of 2021. Some details of the library has been gathered through con-
versation with the library author. At release, the library will support the dense
layer type, with convolutional layers being scheduled for a later date. Similarly to
NNoM, it will support the Tensorflow model format, but it is unknown if it will
support Tensorflow Lite. It is said to support quantization, but no more details are
know about this. [22]

Tensorflow Lite was attempted implemented as an inference framework on the
MCU. The official documentation does state that the framework requires a 32-bit
processor [23], so these attempts were, unsurprisingly, unsuccessful. The reason
for this incompatibility is not stated.

1Forward-pass refers to the operation of porting a pre-trained neural network to a resource
constrained device, such as a MCU.

20 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

Inference Library Discussion

As of writing, the only suitable MCU inference framework the author could find
was NNoM. It is important to note that this library was likely developed with 32-bit
MCUs in mind, considering the lack of published work for 8-bit MCU ANNs. The
library documentation does not mention which MCU architecture it was developed
for, which is likely a deliberate decision, as to not restrict the library to one or the
other. The reason why very few alternatives to NNoM exists, might be the large
appeal and popularity of Tensorflow Lite. Up until now there has been no need
for competing ANN inference frameworks, due to the existence and consistent
development of Tensorflow Lite. As described above, Tensorflow Lite proved less
than trivial to implement on the ATmega4809, and is therefore, as of writing,
not a contender for the 8-bit implementations. AIfES will hopefully prove to be a
suitable choice on release, but this remains to be seen.

Although NNoM has flaws, it is still more than capable of providing a proof of
concept, and to serve as a reference point when determining the feasibility of
ANNSs on 8-bit MCUs. NNoM will therefore be used for ANN implementations
throughout this thesis.

3.3 Implementing a Simple ANN Using the NNoM Library

This chapter provides an introduction to using the NNoM library, to implement
ANNs on MCUs. This includes special design considerations one needs to make
during the network structuring and training phase, as well as how to generate the
MCU model, and ultimately perform inference on the MCU. This will be presented
through a simple example, as to not complicate the procedure with unnecessary
network complexity. The example simulates a simple security system, designed to
detect movement. The imagined movement sensor has a tendency to occasionally
report false positives, and false negatives. To remedy this, the system is fitted
with two such sensors, placed in close proximity. The system will only report a
"movement detected" if both sensors are triggered. Such a task could naturally be
solved using a logical AND operation, but for the sake of this example it will be
solved using a densely connected neural network.

Generating Dataset

In order to train a neural network, one needs a labeled dataset for training, con-
taining representative input data, and the desired output data. Listing 3.1 shows
how the training dataset for this example was generated. The Python script gen-
erates 10 000 training examples, of which 5% indicate "movement detected", and
the remaining 95% indicate no movement. The test data was generated in the
same fashion, with the same label distribution, although only containing 1000 test
examples. After the data is generated, the Python lists are converted to Numpy
arrays, which is a requirement from Tensorflow. Finally the data is shuffled, to

20
21
22
23
24
25

Chapter 3: Implementing ANNs on 8-bit MCUs 21

ensure the different label occurrences are evenly distributed in the dataset. The
value range of the dataset is set to [—64,64], due to design considerations that
will be presented in chapter 5.

import numpy as np
from sklearn.utils import shuffle

R LT Training data -------------- #
train_samples = []
train_labels = []

Movement detected

for 1 in range(500):
train _samples.append([64,64])
train_ labels.append(1)

No movement detected

for 1 in range(500):
train _samples.append([64, -64])
train samples.append([-64, 64])
train_labels.append(0)
train_ labels.append(0)

for 1 in range(9000):
train samples.append([-64,-64])
train_ labels.append(0)

train _samples = np.array(train_samples)
train_labels = np.array(train_labels)

train samples, train labels = shuffle(train samples, train labels)

Code listing 3.1: Generating dataset for the Sensor System example. Test data is
generated using the same code, but with the sample amount reduced to a total
of 1000 samples.

3.3.1 Defining and Training ANN Model Using Tensorflow Keras

Listing 3.3 shows the definition of a densely connected network, using Python
and the Keras API. The example uses the Sequential model type, due to its simpli-
city and readability. Both the Sequential and Functional model types have been
verified to work with NNoM. The topology of the defined network has been visu-
alized in figure 3.1. When defining a network for NNoM, it is important that every
layer and activation function is declared explicitly. It is very common when train-
ing ANNSs using Keras, to declare activation functions through an argument to the
preceding layer, as shown in listing 3.2. NNoM will not recognize layers declared
is such a manner, and the format in listing 3.3 must therefore be followed.

The output of the network can take one of two values, either "movement detec-
ted", or "no movement detected"; which implies that this is a binary classification
problem. As presented in section 2.4, the activation function to use on the out-
put layer for binary classification problems, is Sigmoid. Similarly, as presented

O (o] ~ (@)} 921 » w [\ —

e T e e e
g A WO N = O

16

22 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

Hidden 1 Hidden 2

Output

-
KR
-

Figure 3.1: Topology of network defined for the Sensor System example.

in section 2.5.2, the loss function to use for such problems, is BCE. The meth-
ods model.compile and model.fit applies the loss function and remaining training
parameters, and the training is carried out through model. fit.

Dense(units=4, activation='relu’)

Code listing 3.2: Example of incompatible activation function declaration.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Activation, Dense, InputlLayer
from tensorflow.keras.optimizers import Adam

model = Sequential([
InputLayer(input_shape=(2,)),
Dense(units=4),
Activation(’'relu’),
Dense(units=4),
Activation(’'relu’),
Dense(units=1),
Activation('’sigmoid’)

1)

model.compile(optimizer=Adam(learning rate=0.001), loss='binary crossentropy’,
metrics=['accuracy’])

model.fit(x=train_ samples, y=train labels, validation split=0.1, batch size=64,
epochs=10, shuffle=True, verbose=2)

Code listing 3.3: Defining ANN model for Sensor System example.

3.3.2 Converting Model for MCU Using NNoM

The NNoM library is divided in two parts; one part implemented in Python, and
one in standard C. The Python package handles the conversion from Tensorflow

w [\ —

Chapter 3: Implementing ANNs on 8-bit MCUs 23

model to an NNoM model, by generating a .h header file containing the network
structure, weights and biases. The C library serves as the inference framework on
the MCU. Listing 3.4 shows the function call for generating the NNoM model. It
takes the Tensorflow model object as its first argument, and as its second argument
it takes a set of representative data. The latter refers to a subset of the data used to
either train or test the network, which is representative of data the network could
expect as input. The NNoM documentation claims 1000 training examples to be
optimal [24]. The last argument is an optional save path to store the generated
header file. This is typically a path to the MCU project folder.

A limiting factor one might encounter during this implementation step, is the lim-
itations of the built-in quantization functionality in NNoM. The library does con-
vert all weights and variables in the model to int8 types, but does not ensure that
node output values will not exceed the limits of 8-bit resolution. This means that
the network architect has to manually ensure values in the network will never
exceed the range of [—127,127]. If a node output exceeds this range, the int8
variables will overflow. The generate_model function in listing 3.4 provides useful
console printouts to monitor exactly this, which displays the maximum and min-
imum output values for each layer. Using this information, one can remedy the
problem through a number of design choices, some of which will be presented in
section 5.4.

from nnom.scripts import nnom utils

nnom utils.generate model(model, test samples[:1000], mcu path, quantize method=’
max_min”)

Code listing 3.4: Function call for converting Tensorflow Keras models into an
MCU friendly format.

3.3.3 Running Model on MCU

Once the NNoM ANN model is created, it can be implemented on the MCU through
the NNoM C API. This is done by including the NNoM folder in the desired MCU
project, specifically the subfolders inc, port, and src. The includes in the library
are referenced from the root directory, so the inc and port folders must be manu-
ally added to the project include paths. As mentioned in section 3.3.2, the neural
network model generated by NNoM is defined within a .h header file. The ANN
model can be defined on the MCU by including this header file, and executing
the embedded nnom_model create function. Listing 3.5 shows how to define the
model, enter input data, run the model, and finally read out the resulting model
prediction. Due to the simplicity of the example problem, this model performs at
an accuracy level of 100%. This performance level is much harder to achieve in
more complex models.

o N o bW =

I e T o T e T o SO = S S S
~ (o)) 9} » w [\ — o O

24 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

#include <avr/io.h>
#include "weights.h"
#include "nnom.h"

int main(void)

{

nnom_model t model;
model = nnom_model create () ;

nnom_input data[0] = 64;
nnom_input data[l] = —64;
model run(model);

uint8 t result = nnom_ output_data[O0];

while (1) ;

Code listing 3.5: Example C code for running inference on MCU.

Chapter 4

Testing Using MINIST
Classification Models

In order to test the feasibility of ANNs on MCUs, the MNIST dataset of handwrit-
ten digits will be implemented. This dataset is commonly referred to as the "Hello
World" of machine learning, and is often used as an example application when
showcasing certain machine learning methods. Several tests were performed us-
ing this application as a reference point, which will be presented in this chapter.

4.1 Implementing MNIST Handwritten Digit Classifier

The MNIST dataset [25] contains a total of 60 000 images, all depicting a hand-
written digit. The images are comprised of a 28x28 pixel grid, containing only a
single color channel (grayscale). The objective of the model in question will be
to recognize which digit is written in each image. All models were trained using
Tensorflow Keras, and forward-pass to MCUs were performed using NNoM. This
process is outlined in section 3.3, and will not be detailed in the following sections.

Densely Connected Network

The densely connected networks trained during this chapter vary in structure and
size. What they do share, however, is the output layer, and the training parameters.
Each MNIST model has an output layer with ten nodes, one for each digit. This
indicates that the problem is a multiclass classification problem. As presented in
section 2.4, this means the output activation function should be softmax. The loss
function has been similarly set according to the problem type, to SCCE (see section
2.5.2).

The raw MNIST data is formatted as a two dimensional array, with a shape of
28x28 pixels. Dense layers cannot handle multi-dimensional data, and so the
data needs to be "flattened" before training. This refers to converting the two-
dimensional array, to a one-dimensional array, by appending each row of the ori-
ginal array to a Python list. Eventually this will result in a list of 784 elements.

25

19

26 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

Listing 4.1 shows the function call of load_flat_images, which loads a preflattened
dataset. An alternative to this is to use the Flatten layer available in Keras. The
numerical pixel values are originally in the range [0,255], and are therefore sub-
tracted 127, in order to fit the data within int8 type variables (NNoM require-
ment). The data is then divided by eight, to avoid integer overflow in the model.
The reasoning behind the last step will be explored further in section 5.4.

import numpy as np

from utils import load label data, load flat images

R R T Load datasets ---------------------- #
train data = np.array(load flat images(’training’))
train data = ((train_data) - 127)/8

train data = train data.reshape(50000, 784, 1)

train_labels = np.array(load label data(’training’, 50000, 0))

valid data = np.array(load flat images(’valid’))
valid data = ((valid data - 127))/8
valid data = valid data.reshape(10000, 784, 1)

valid labels = np.array(load label data(’training’, 10000, 50000))

test data = np.array(load flat images(’test’))
test data = ((test data - 127))/8
test data = test data.reshape(1000, 784, 1)

test labels = np.array(load label data(’test’, 1000, 0))

Code listing 4.1: Loading and preprocessing MNIST data for densely connected
networks.

4.2 Testing and Results

4.2.1 Testing Framework

A framework for testing the MCU implementations was developed, in order to
efficiently asses the accuracy and performance of the different ANN models. The
framework consists of two components; one running on the PC, and one running
on the MCU. Each image in the MNIST dataset consists of 784 bytes. In order to re-
liably test the accuracy of ANN models on the MCU, one needs to run inference on
a few hundred such images. The ATmega4809 has a maximum program memory
of 48kB, which would quickly be exhausted should the MNIST images be stored
directly on the MCU. This has been solved by opening a communication chan-
nel between the PC and the MCU, utilizing the USART protocol. The PC transfers
MNIST image data to the MCU, and the MCU returns the model prediction after
running inference on the received data. In addition to model prediction, the MCU
will return the execution time of the inference routine. This is done by using the
TimerO module on the ATmega4809. A timestamp is recorded before starting the
model inference routine, and another timestamp is recorded after finished execu-
tion. The total execution time is thus calculated as the difference between the two

Chapter 4: Testing Using MNIST Classification Models 27

timestamps. Software drivers for the USART and Timer module were generated
using Atmel Start; a code generation tool for SAM and AVR devices. The PC Py-
thon implementation uses the PySerial package [26] to perform perform the serial
communication. The Python code can be found in Appendix A, and the MCU C
code can be found in Appendix B. In addition to the code designed for testing ANN
models on the MCU, a number of purpose made scripts were developed to test cer-
tain specific metrics (e.g. pruning efficiency). These scripts will be referenced as
their respective test results are presented later in this chapter.

4.2.2 Dense Keras Models - Size and Accuracy

The results in figure 4.1 and figure 4.2 were obtained by training a number of
densely connected networks, each with similar network parameters, only varying
the number of nodes in the hidden layers. This was done twice; once with two
hidden layers (figure 4.1), and once with three hidden layers (figure 4.2). The
networks are trained to predict handwritten digits from the MNIST dataset. The
common training parameters for all networks can be seen in table 4.1. The net-
work structure can be seen in table 4.2. Note that the accuracy is measured using
the raw Keras model, and does not necessarily reflect the accuracy each respective
model would achieve on the MCU. The diameter of each data point reflects the
relative size of the models, so that a large circle represents a large model, and
a small circle represents a small model. The Python code used to generate these
results can be seen in Appendix C.

Model Type Sequential

Epochs 10

Optimizer Adam

Learning Rate 0.001

Batch Size 64

Loss Function Sparse Categorical Crossentropy

N Training Examples 50 000
N Validation Examples 10 000
N Test Examples 1000

Table 4.1: Training parameters for networks in figure 4.1 and figure 4.2.

Layer 2 Width

28 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

Model size and accuracy at different layer widths (depth = 2)

120]
112]
104]
96
88
80
721
64
56
48
40
321
24

16 A

¢
e o
=9 ©
e ¢
«

L B e e e e B e Eo e o e L S e s p Sy S S -7 7T T 77T

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Layer 1 Width

Point size represents model size (large model --> large point)

Figure 4.1: Size and accuracy of densely connected networks, with two hidden
layers and varying layer widths.

0.8

0.6

0.4

0.2

0.0

Model Accuracy

Chapter 4: Testing Using MNIST Classification Models

Model size and accuracy at different layer widths (depth = 3)

;

! e

o
£

@,

'.“’;g

&8
@ e /@

29

T 120

T 100

!
o
o

!
N
o

C
X

20

120

0

Point size represents model size (large model --> large point)

(DO © @ O

Figure 4.2: Size and accuracy of densely connected networks, with three hidden

layers and varying layer widths.

Layer 3 Width

0.9

0.8

0.7

o
o

o
U
Model Accuracy

0.4

- 0:3

- 0.2

30 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

InputLayer(input_shape=(28,28,1))
MaxPool2D (pool_size=(2,2), strides=2)
Flatten()

Dense(units=width layer 1)
Activation(relu’)

Dense(units=width layer 2)
Activation(relu’)

Dense(units=10)

Softmax()

Table 4.2: Network Structure for figure 4.1. Figure 4.2 has a similar structure,
but with an additional hidden layer.

4.2.3 MCU Network Accuracy

Figure 4.3 displays the relative accuracy achieved on the MCU, compared to the
accuracy achieved from the unoptimized Keras model on the PC. The MCU model
is quantized, but not pruned. The relative accuracy metric is calculated from the
following equation, where A is the estimated model accuracy:

A _ Amcu
MCU Relative — A
Keras

Each data point was produced by training a MNIST handwritten digit classifying

model using Tensorflow Keras, and then using the NNOM library to convert said

model into an MCU format. A, is the estimated accuracy achieved on the MCU,
after performing inference on 300 test examples. Ag,,4 is the estimated accuracy
achieved on the PC, after performing inference on 1000 test examples. The relative

MCU accuracy plotted in figure 4.3 is produced by applying the above equation to

each trained model. Each network shares the same training parameters and struc-

ture, which can be seen in table 4.3 and table 4.4 respectively. The only varying
factor is the number of nodes in the single hidden layer, which are in the range

[4,32], with an increment of one. The test was run twice, with the blue curve

representing the results from the first run, and the orange curve representing the

second run.

4.2.4 Compiler Optimizer Settings

Code for the ATmega4809 was compiled using the AVR GCC compiler, which
provides a set of different code optimization routines. Model size and inference
execution time was measured, after compiling and uploading the ANN solutions
to the MCU with different optimization settings. The optimization settings are in-
voked by the following compiler flags: [-O1, -O2, -O3, -Os]. Three different ANNs
were used in the test, all with a single hidden layer, and with similar training
parameters. The only varying network parameter is the width of the hidden layer.
Flash usage was measured using a Python tool called pymcuprog, and inference

1.0+

0.9

0.8

0.7 1

0.6

0.5

0.4

0.3

Chapter 4: Testing Using MNIST Classification Models

Relative MCU Accuracy

31

—— Run 1l
—— Run 2

5 10 15 20 25 30
Number of Nodes in Layer

Figure 4.3: The relative accuracy achieved on the MCU, compared to the accuracy
achieved from the raw Keras model on the PC.

32 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

Model Type Sequential

Epochs 10

Optimizer Adam

Learning Rate 0.001

Batch Size 64

Loss Function Sparse Categorical Crossentropy

N Training Examples 50 000
N Validation Examples 10 000

Table 4.3: Training parameters for networks in figure 4.3.

InputLayer(input_shape=(784))
Activation('tanh’)
Dense(units=Hidden layer width)
Activation(relu’)

Dense(units=10)

Softmax()

Table 4.4: Network Structure for figure 4.3.

time was measured using the ATmega4809 on-board Timer0O module. Table 4.5
displays the test results.

4.2.5 Pruning Impact on Accuracy and Compression

Tests were performed to investigate the accuracy loss, and compression gain, that
follows a pruning operation. The tests were performed on both wide and deep
networks, without any significant variation in results. The pruning routine used
followed an example presented by Tensorflow [27]. The pruning parameters "ini-
tial sparsity" and "final sparsity" were varied incrementally, and the model accur-
acy and compression gain were recorded for each increment. Figure 4.4 and 4.6
show the results of the tests. The compression factor is calculated by dividing the
initial model file size, by the resulting model size after finished optimization. Note
that no attempts were made to optimize the initial model accuracy, and that the
results must be interpreted relatively. It is also noteworthy that no accuracy val-
ues were estimated using an MCU, and that the accuracy potentially achieved on
an MCU might differ. The code used to generate the test results can be seen in
Appendix D.

Chapter 4: Testing Using MNIST Classification Models 33

Total Compression vs. NNoM Compression

Figure 4.4: The orange plane represents the compression achieved from the
NNoM conversion alone. The color varied surface plot represents the total com-
pression achieved by both pruning the model, and performing the NNoM conver-
sion. Initial and final sparsity (X and Y-axes) refer to pruning settings.

Compression Factor

34 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

Pruning Compression at Varying Sparsity Settings

11.5295

=
Ul
N
©
o

11.5285

1.5280

T1.5275

T1.5270

Figure 4.5: This surface plot represents the compression factor achieved by apply-
ing pruning to an MNIST classification model. The sparsity settings of the pruning
operation are varied along the X and Y-axes.

ion Factor

Pruning Compress

Chapter 4: Testing Using MNIST Classification Models 35

Initial Accuracy vs. Prune Accuracy

T 0.90

1 0.85

T 0.80

T 0.75

T 0.70

T 0.65

Figure 4.6: The blue plane represents the initial model accuracy achieved before
performing any optimization routine. The color varied surface plot represents the
accuracy achieved after the model has been pruned. Initial and final sparsity (X

and Y-axes) refer to pruning settings.

Model Accuracy

36

HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

Layer Width = 8 01 02 03 Os
Inference Time [ms] 9.06 8.04 8.09 7.01
Program Memory Usage [B] | 23120 | 22976 | 25152 | 21984
Layer Width = 32 01 02 03 Os
Inference Time [ms] 31.44 | 27.39 | 27.44 | 23.14
Program Memory Usage [B] | 42192 | 42064 | 44240 | 41072
Layer Width = 40 O1 02 03 | Os
Inference Time [ms] 38.91 | 33.89 - | 28.51
Program Memory Usage [B] | 48560 | 48416 | - | 47424

Table 4.5: Inference time and flash usage statistics for different GCC compiler

optimization settings.

Chapter 5

Optimization and Design
Considerations Discussion

There are several different optimization techniques and design considerations one
can deploy to utilize as much of the MCU resources as possible, with as few trade-
offs as possible. These did however prove less than trivial to implement. Several
issues related to this arose during the coarse of writing this thesis. The issues were
addressed, and guidelines on how to work around said issues were developed. The
following chapter will present and discuss these guidelines, as well as the different
optimization techniques and design considerations. The performance of different
techniques will be discussed in reference to the results presented in chapter 4.

5.1 Quantization

Quantization is an absolutely necessary optimization technique for ANNs on 8-bit
devices. This technique converts all variables in the desired model from float32
types, to int8 or uint8 types. Tensorflow normally performs quantization through
the Tensorflow Lite subpackage, but this functionality also exists within the Tensor-
flow Model Optimization package, commonly referred to as tfmot.

Tensorflow Lite has the drawback of using its own tflite file format. NNoM does
not support the tflite format, and so this quantization functionality cannot be used
with said inference framework. The tfmot package does not work with NNoM
either. When tfmot quantizes a model, it prepends the layer names with "quant ",
and seemingly alters other structure names in the quantization process. NNoM re-
lies heavily on the layer names for identification, and will therefore not be able to
process such models. Attempts were made to revert these altered identifiers, but
the efforts did not results in a successful NNoM compilation. NNoM does however
provide a quantization routine itself, which works as advertised. This is both a
positive and a negative aspect of NNoM. This built-in quantization routine simpli-
fies the implementation process, and abstracts away the quantization operation
to such a degree, that the user can practically disregard this step. It does how-

37

38 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

ever remove the customizability from the quantization. As mentioned in section
2.7, one can either quantize a model during training, called quantization aware
training; or after the training is finished, called post-training quantization. Due to
the NNoM incompatibility issues, only post-training quantization is implement-
able. This can be a significant drawback, as quantization aware training has been
shown to produce more accurate models than post-training quantization [28].
There is no apparent technical reason why the optimization functionality in Tensor-
flow Lite should be incompatible with 8-bit MCUs, this is simply an issue with
NNoM. It is therefore useful to note that other frameworks, such as AIfES, might
support tflite models. It is hard to determine whether or not Tensorflow Lite would
improve model compression significantly, however, the compression achieved us-
ing the built-in quantization routine does reduce the model size by a factor greater
than three. This result is achieved consistently by training a model using Keras,
then converting said model using NNoM, and finally comparing the file size of the
keras .h5 file, and the NNoM .h file.

5.2 Pruning

Figures 4.4, 4.5, and 4.6 show results that explore the benefits potentially achieved
through pruning. It is apparent from figure 4.4 that one can gain a significant im-
provement to the model compression by performing a pruning operation. Figure
4.6 does however showcase the cost of such a compression gain. There is a seem-
ingly constant accuracy drop, regardless of the sparsity settings used. In the case
of this particular MNIST model, the post pruning accuracy drop is at 5%. This
test was performed on several different networks, both wide and deep, and each
test showed similar results. It is worth noting that the test was only performed on
MNIST classification models, and that these metrics might show different results
for datasets with smaller input data.

Another interesting result is that seen in figure 4.5. This plot shows that the com-
pression factor achieved from pruning alone is, in a practical sense, constant. By
inspecting the Z-axis of the graph one can see that the increments are practically
negligible. The sparsity settings are seemingly irrelevant for the model compres-
sion factor. By closer inspection of figure 4.6 it seems like the same can be said for
the model accuracy drop. It is therefore interesting to see the significant impact
sparsity settings has on the results in figure 4.4. The significance of the sparsity
settings only become apparent when further compressing the model through the
NNoM quantization routine. Due to the quantization functionality being embed-
ded in NNoM, and the fact that NNoM defines its output model in a .h header file,
the pruning had to be performed before the quantization. The dependency shown
in figure 4.4 would likely not be present if the order of these operations were
reversed, but this is not possible when using the NNoM library. Whether or not
this dependency is reflected in the post-quantization model accuracy, is unknown.
This was not tested due to difficulties in automating programming of the MCU,
which would be necessary to test the accuracy of NNoM generated models.

Chapter 5: Optimization and Design Considerations Discussion 39

Pruning might allow for larger models to fit on the MCU, but these large models
would need to have a high initial accuracy to justify the accuracy drop following
a pruning operation. These pruning metrics might however change for different
network configurations that have not been tested here. There are many different
variables that factor in when training such networks, any of whom might affect
the outcome of these tests. More testing is therefore needed before concluding
whether or not pruning is beneficial for ANNs on MCUs.

5.3 Network Topology and Memory Consumption

A central question in the MCU ANN feasibility debate is how deep, and how wide
networks can be, before the MCU memories are saturated. The short answer is
that, it depends on the size of the input data, the size of the network, and the
size of the program and data memory on the MCU in question. The long answer
requires a deeper look into which network aspects impact the network size. Fig-
ures 4.1 and 4.2 showcase the results from training several networks with varying
depth and width, and then measuring the model size and accuracy of each. An in-
teresting takeaway from these figures is that the model size increases significantly
more when increasing the width of the first hidden layer (X-axis in figure 4.1),
compared to increasing the width of subsequent layers. This is due to the size of
the images in the MNIST dataset. As a result of using densely connected layers,
each node in the first hidden layer will receive all 784 bytes of image data, which
in turn will be reduced to a single output value from each node. Each of the input
connections to the first hidden layer holds a weight. This means that increasing
the layer width with a single node, means adding 784 weights to the network. In
turn, the the number of weights associated with the input of the second hidden
layer, will be dependent on the number of nodes in the first layer. For example;
since each node only has one output, if the first layer has 32 nodes, then the in-
put to each node in the next layer will carry 32 weights. This is significantly less
than 784 weights per node, and as a result, for models with large input data (like
MNIST), the first hidden layer will be the most significant layer in terms of model
size. This will mostly affect the program memory of the MCU. The data memory
seems to be affected too, but attempts at measuring this proved to be unsuccess-
ful. The data memory limitations have proved to be a bottleneck when loading
large networks, but further details of these limitations have not been identified
successfully.

For an MNIST model with a single hidden layer, and unaltered input data size, the
ATmega4809 has been shown to fit networks with up to 40 nodes in the hidden
layer, before running out of program memory. Subsequent layers can however be
much wider, since the memory cost per node is lower. The memory cost of these
layers can be roughly calculated using the logic presented above. The program
memory increases in an expected manner when creating deeper networks, and it
seems that the limiting depth factor is data memory. However, as stated before,
more testing is needed before concluding with any statements about data memory.

40 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

5.4 Avoiding Integer Overflows

One of the more limiting factors when running ANNs on MCUs is the resolution
available in 8-bit integer types. A large portion of this problem is handled by quant-
izing the model before deployment, but the quantization routine does not account
for the output values of individual nodes. Even though each weight in the model is
scaled to fit inside 8-bit integers, there is no guarantee that the node input function
(equation 2.1) will output a value limited by the same range. This can potentially
cause integer overflows, effectively making the nodes in question output vastly
different values from what is intended. This could in turn cause the network to
drop significantly in prediction accuracy. Luckily, in the case of NNoM, there are
mechanisms in place to warn the user when this happens. NNoM provides useful
printouts when converting the Keras model using the NNoM Python API. These
printouts show the maximum and minimum values output from each layer in the
model. Since the NNoM C-framework is implemented using int8 types, these layer
outputs must be within the range of [—127,127].

5.4.1 Remapping Dataset Value Range

There are a few steps one can take, should a model exceed this 8-bit limit. One
such step is to remap the values in the dataset to a smaller range. The MNIST
dataset has values in the range [0,255], which at first glance seems to be fitting
for 8-bit applications. However, this leaves no wiggle room for the internal model
calculations, which means that any positive contribution from a node will cause
an integer overflow. The first adjustment one should make is to center it around
zero, with equal parts positive and negative values', which for the MNIST dataset
would grant the range [—127,127]. The next adjustment should be to downscale
each data point by a constant factor. This factor depends on the original scale of the
data range, and on the structure of the network being trained. Listing 4.1 shows
how the data was scaled for the tests performed in chapter 4. For the case of the
MNIST classification model, a scaling factor of 8 was deemed suitable. Choosing
this scaling factor is a matter of balance. A larger scaling factor means a smaller
numerical range. In other words, this leads to a loss in numerical resolution, which
might negatively impact the network performance. In non-resource-constrained
devices it is common to scale the training data between zero and one. In the
case of systems using float32 types, this would provide great accuracy due to its
ability to represent decimal places. This is not possible with integer types, so a
range between zero and one would grant a resolution of exactly two values. The
selection of this scaling value thus has to be balanced for each network, so that the
numerical resolution is as large as possible, while still avoiding integer overflows.
Some applications are more affected by a resolution loss than others. The MNIST
classification model is minimally affected by the drop in resolution, but a fine-

IThis step is specifically for NNoM, which uses int8 type variables, and is not relevant for frame-
works implemented with uint8 types.

Chapter 5: Optimization and Design Considerations Discussion 41

tuned sensor network might suffer significant consequences as a result. In such
cases it is wise to retain as large a resolution as possible, and rather utilize the
technique presented in section 5.4.2 to avoid integer overflows.

5.4.2 Selective Choice of Activation Functions

Another step to prevent integer overflows is to be selective of which activation
functions are used in the hidden layers of the network. The ReL.U activation func-
tion (see figure 2.2) will return a value equal to the input value, for all values
greater than zero; and will return zero for all negative input values. This could
potentially create a sort of cascading effect, where an initial large value contrib-
utes to a large node output, which then becomes a significant factor in the input
function of the next node. This could lead to increasing output values for each
successive layer, eventually causing an integer overflow. Tanh and Sigmoid on the
other hand have output values in ranges [—1, 1] and [0, 1] respectively. This will
prevent the aforementioned cascading effect, since node output values are restric-
ted to an upper activation limit of magnitude one. Section 2.4 presents theory of
which activation functions to choose for different use-cases. However, due to to
the integer overflow challenge, these recommendations and best-practices might
need to be set aside in order to account for this factor. When using ReLU on non-
resource-constrained devices, it is recommended to scale the data points of the
dataset to a range of [0,1] [6], which would also cancel the cascading effect. As
discussed earlier however, this is not possible when using integer data types. This
is an indication that ReLU might be unsuited for use on 8-bit MCUs. It is important
to note that this cascading effect is in no way guaranteed to occur, and in several
situations ReLU could be used without causing an integer overflow. Another note
is that Tanh and Sigmoid produce values between -1 and 1, which are unsuited for
use on 8-bit MCUs. The author has not been able to decipher how NNoM handles
the non-integer nature of these activation functions. Through testing it has been
confirmed that these activation functions work as expected when running on an
MCU, and are therefore presented as a good and functional tool for preventing
integer overflows.

5.5 Optimization Through Data Preprocessing

As previously discussed in section 5.3, it is clear that for networks with large input
data (like MNIST), that the width of the first hidden layer is the most significant
factor in the total model size. This effect can be reduced by downsampling the
input data before feeding it to the network. This would reduce the number of
data points for each training example, which in turn means fewer data points
input to each node in the first hidden layer. This strategy is not necessarily ap-
plicable to all use-cases, and one has to ensure no vital data is filtered out. It can
be very efficient for use in image recognition tasks, where removing every other
pixel does not necessarily take away any crucial information from the image. The

42 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

same can be said for audio recognition, where downsampling would have the ef-
fect of removing high-frequency information. This is a consideration the network
architect needs to address before utilizing such a technique. E.g. in the case of a
large sensor network, where each sensor carries vital information; then a down-
sampling operation would filter out irreplaceable data. This is in contrast to e.g.
image recognition, where the data is only reduced in resolution. Tensorflow Keras
does have built-in downsampling layers, called pooling layers (see section 2.6.2).
A similar technique to downsampling, often used in image recognition, is to re-
duce the dimensionality of the image data. Images are normally structured with
three separate color channels (e.g. red, green and blue), which all carry the same
number of pixels. This effectively triples the necessary image size. Unless the ap-
plication is dependent on color information, it is common to convert the image
to an array of grayscale values. This retains the releavant image data, with color
information filtered out, at a size reduction of factor three.

5.6 Compiler Optimizers

Table 4.5 presents the results of two different performance metrics, using four dif-
ferent compiler optimization settings. The first observation when reviewing the
results is that, the choice of compiler optimizer could have a significant influence
on both model inference time, and on the program memory usage. The one com-
piler setting that proves superior over the other three, based on the metrics at
hand, is the Os setting. It shows both the lowest inference time, and the lowest
program memory usage. Accuracy tests were also performed for each of the op-
timizer settings, which at no point showed signs of change. As a disclaimer it is
worth noting that the author has very limited knowledge on the inner workings of
compilers and its optimization algorithms. Different optimization settings might
bring different side-effects and trade-offs, which are not reflected in the chosen
metrics of this test. Such potential side-effects did not present themselves during
testing, and the author has no reason to believe different optimizer choices will
cause problems.

Chapter 6

Further Discussion

6.1 Alternative Embedded Al Solutions

Section 1.2.1 presented motivations for exploring the feasibility of 8-bit edge com-
puted Al, where key arguments were privacy, latency, and power consumption.
No tests performed throughout this thesis challenged the arguments of privacy
or power consumption, so there is no basis to conclude whether or not the two
hypotheses still stand. It is however very likely that they do stand, considering
[1] concluded that edge computed Al does reduce the total power consumption
of the MCU, and that data privacy is more secure. This work was done for 32-
bit processors, but there is no reason to believe it does not hold true for 8-bit.
Especially considering power consumption, and the fact that 8-bit MCUs are gen-
erally more power efficient than 32-bit devices. The argument of latency is how-
ever worth discussing more in detail. Table 4.5 presents the results of the GCC
compiler optimizer tests, which feature both program memory usage, and model
inference time. The latter gives a clear indication to how inference time changes
with model width. Tests have also shown that the inference time increases very
little with depth, and that once again, the size of the input data, and the width of
the first hidden layer, are the most significant factors in deciding the magnitude
of the inference time. Considering that the results in table 4.5 reflect the perform-
ance of an MNIST classification model, which is a resource intensive application;
and that a layer width of 40! shows a maximum inference time of 38.9ms; it is
safe to assume that the inference time of a typical MCU application (using densely
connected layers), with a clock speed of 20MHz, is well below 50ms. The question
of whether or not this is an improvement to the latency achieved through cloud
computed Al, is still difficult to answer. The latency of cloud computed Al varies
vastly with a number of factors, such as the connection speed between MCU and
cloud server; severity of interference in the area of operation; and the processing
power of the cloud server. It is therefore hard to get an accurate estimate of this
latency value. Something that is clear, however, is that the MCU inference time is

140 is the maximum width possible with the current MCU, and the MNIST dataset. See section
5.3 for details.

43

44 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

very consistent. Edge computed Al is not reliant on networking or other external
factors, and as a result it has an inference time almost deterministic in nature.
This is highly advantageous for applications where a predictable inference time is
important.

6.2 MCU Network Accuracy

The results presented in figure 4.3 attempts to demystify the behavior of the MCU
model accuracy drop, when converting the Keras model to an MCU model. The
test was initially designed to determine whether or not there is a predicable nature
to the accuracy drop, but what can be observed is that the behavior is seemingly
erratic. The test was performed twice, under the exact same conditions, with very
different results. What becomes clear from these results is that, if the same net-
work is trained several times, the resulting accuracy of the MCU models can vary
vastly between each cycle. Another noteworthy observation is that several res-
ults show signs of non-existent accuracy drops. The results that do show signs
of significant accuracy drops can, seemingly, be retrained to improve the relative
accuracy score. It is also observable that the erratic behavior seems to diminish
with increasing layer width. In summary, the MCU models can be implemented
with close to no accuracy drop, so long as the network architect is aware of this
behavior.

Whether or not this erratic trend is an issue directly linked to the inner workings
of NNoM, is unknown. It is worth noting that some of the results in figure 4.3
indicate a relative accuracy above one, seemingly having gained accuracy in the
NNoM conversion process. This is believed to be due to the accuracy tests on the
MCU being performed on 300 test examples, and the Keras model being tested on
1000. This is a weakness in the test procedure that was discovered post-testing.
The trend of the results are however not affected by this, and still remains valid.
In general, the accuracy of an ANN is decided by the design quality of the network.
Throughout this thesis focus was not on achieving the best possible accuracy for a
network, but rather optimize it as best possible. The accuracy estimates presented
in this thesis should therefore be regarded in a relative fashion, and not be seen as
an indication to an MCUs ability to solve the MNIST classification problem. There
are several techniques that solve this problem in a much more impressive manner,
some of which are discussed in section 6.3.

6.3 Additional NNoM Functionality

Throughout this thesis the main target of investigation has been densely connec-
ted networks. Although very useful, they can be limiting in certain applications.
For instance, densely connected layers are not equipped to handle temporal data,
but rather just a snapshot in time. It has no memory of previous predictions. Dense
networks have proven to be well equipped to handle the MNIST classification

Chapter 6: Further Discussion 45

problem, so recognizing single digits or letters are well within the realm of feas-
ibility. The problem arises when faced with the task of recognizing full words,
which would require the network to string together several individual character
predictions. This would require a form of short-term memory in the network, and
this is exactly what RNNs provide. NNoM does support recurrent functionality,
but this has not been tested due to time constraints. If proved to be functional,
this could open a door to much more complex tasks for the MCU. This includes
tasks such as speech and sound recognition, temporal analysis of sensor data, and
general time series predictions. Recurrent functionality is reportedly also planned
for implementation in AIfES [22].

Although dense networks are able to handle image data, it does not mean it is
the best suited layer type for the job. CNNs are widely known for their ability to
generalize on image data. NNoM does have full support for convolutional layers.
This functionality has been tested thoroughly, and works just as advertised. The
MCU managed to achieve accuracy levels upwards of 99% for the MNIST classi-
fication problem, using CNNs. In the authors experience, CNNs require less pro-
gram memory to run compared to dense networks, but require a greater amount
of data memory. These layer types are much more computationally demanding
during inference, due to the convolutional calculations (see section 2.6.1), which
in turn means longer inference times. A rough estimate of a typical inference time
is 300ms. Image recognition is not a typical task for an 8-bit MCU, but it is clearly
capable of handling the task, should a suitable use-case present itself. AIfES have
reported CNNs as a planned future implementation[22]. In addition to RNNs and
CNNs, NNoM does also support a variety of pooling layers.

The inclusion of this extra functionality further points to a positive feasibility re-
port for ANNs on 8-bit MCUs. The RNN functionality has not been tested, and
could potentially require a greater amount of data memory, or it could pose other
unforeseen issues. If it proves to work as hoped, it would open a door to a new
world of possibilities, with more complex functionality on the table. The inclusion
of CNNs do speak in favor of feasibility, but less so due to the limited use-cases
for image recognition in the 8-bit market.

Chapter 7

Conclusion

This thesis has explored the feasibility of running ANNs on 8-bit MCUs. The feas-
ibility was evaluated through implementation of several MNIST handwritten digit
classifying models, which was run on an ATmega4809 AVR MCU. As previously
discussed, this device is neither a top of the line product for ANN applications,
nor a low end product. The achieved performance on this device is therefore rep-
resentative for the performance one expects on an 8-bit MCU. Solving the MNIST
classification problem requires an input data length of 784 values. It is uncom-
mon for 8-bit MCUs to handle applications with input data of such length, and it
is therefore important to note that the MNIST classifier represents a computation-
ally heavy task compared to a typical 8-bit MCU application.

The size of the input data, and the width of the first hidden layer, are the two
major factors impacting the size of the final model. Reducing these factors are
the most efficient model compression measures. Quantization reduces the model
size by a factor of approximately 3, with seemingly no accuracy drop. This is a
promising result, seeing as quantization is a vital step in transferring models to
an 8-bit system. Pruning reduces the model size by a factor of approximately 1.5,
but comes at the cost of a significant accuracy drop. As a result, the use of pruning
might be hard to justify, seeing as other optimization techniques can grant better
compression results at a smaller accuracy cost. Different compiler optimization
settings (using AVR GCC) have also been shown to impact both program memory
usage, and inference execution time.

Avoiding integer overflows has proved to be an important consideration when
designing ANNs for 8-bit MCUs. This issue is a matter of balance between input
data resolution, and the maximum/minimum output values from each layer in the
model. In order to minimize layer outputs, one has to reduce the resolution of the
input data. This issue can also be remedied by strategically selecting activation
functions for layers with output values on the edge of the 8-bit scale.

Converting the pre-trained Tensorflow Keras models to MCU compatible NNoM
models impacted the prediction accuracy in a seemingly erratic manner. In some

47

48 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

cases the accuracy would drop by more than 40%; but it was shown that retraining
the network, without altering any parameters, could remove this drop completely,
granting a relative accuracy of 100%. In conclusion; as long as the network fits
within the available MCU program and data memory, one can achieve the same
model accuracy on the MCU, as on the non-resource-constrained device it was
trained on. Model inference time was shown to be a function of mainly input data
size, and width of the first hidden layer. Table 4.5 shows the effect of varying the
latter. Network depth is also a factor in this regard, but with a relatively small im-
pact. Based on the tests presented in this thesis, a typical inference time for a dense
ANN running a MNIST classifier on an MCU, with a clock speed of 20MHz, using
the NNoM framework, is in the rough range of 1ms to 50ms. Considering that the
MNIST application is, as discussed, computationally demanding, it is safe to say
that no typical 8-bit MCU application will exceed an inference time of 50ms?. It is
difficult to generalize a conclusion for the achievable network depth and width,
since these parameters are dependent on the MCU memory sizes, the application
at hand, and the choice of layer types. The results and discussions in chapters 4
and 5 do however provide indications as to what is achievable.

It is clear that 8-bit MCUs are computationally capable of performing ANN in-
ference. Other embedded ANN implementation methods, as presented in section
1.2, can provide better performance for different applications. 8-bit MCUs do how-
ever prove to be a contender for a range of use-cases. Key areas where 8-bit MCUs
are strong contenders, are application that require predictable inference times,
low power consumption, and data privacy. Such requirements rule out any cloud
computed solutions. 32-bit MCUs will provide greater computing power, allowing
for larger networks, and lower inference times. 8-bit MCUs are cheaper, consume
less power, and provide low system complexity. The latter is therefore a superior
alternative, if it satisfies the application requirements for memory size and infer-
ence time.

The results and implementations presented in this thesis strongly indicate that
running ANNs on 8-bit MCUs is well within the realm of feasibility.

This applies to the software and hardware setup stated, and would change for decreased clock
speeds, and MCUs with larger memories running larger networks.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

M. Merenda, C. Porcaro and D. Iero, ‘Edge machine learning for ai-enabled
iot devices: A review,” Sensors, jourvol 20, number 9, 2020, ISSN: 1424-
8220. DOI: 10.3390/5s20092533. url: https://www.mdpi.com/ 1424 -
8220/20/9/2533.

A. Laudani, E R. Fulginei, A. Salvini, G. M. Lozito and E Mancilla-David,
‘Implementation of a neural mppt algorithm on a low-cost 8-bit microcon-
troller,’ in 2014 International Symposium on Power Electronics, Electrical
Drives, Automation and Motion, 2014, pages 977-981. DOI: 10 . 1109/
SPEEDAM.2014.6872101.

S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach. Upper
Saddle River, New Jersey 07458: Pearson, 2010.

M. Nielsen, Neural networks and deep learning. url: http://neuralnetworksanddeeplearning.
com/index.html (urlseen 19/04/2021).

Paperswithcode, Image classification on mnist. url: https://paperswithcode.
com/sota/image-classification-on-mnist (urlseen 12/04/2021).

J. Brownlee, How to choose an activation function for deep learning. url:
https://machinelearningmastery.com/choose-an-activation- function-
for-deep-learning/ (urlseen 15/04/2021).

G. Sanderson, Neural networks, 2017. url: https://www. youtube.com/
playlist?1ist=PLZHQObOWTQDNU6R1 67000Dx ZCJIB-3pi (urlseen 19/04/2021).

J. Brownlee, How to choose an optimization algorithm.url: https://machinelearningmastery.
com/tour-of-optimization-algorithms/ (urlseen 26/04/2021).

J. Brownlee, How to choose loss functions when training deep learning neural
networks. url: https://machinelearningmastery.com/how- to- choose-
loss - functions - when - training - deep - learning - neural - networks/
(urlseen 27/04/2021).

Peltarion, Loss functions. url: https://peltarion.com/knowledge- center/
documentation/modeling- view/build-an-ai-model/loss- functions
(urlseen 29/04/2021).

Peltarion, Mean squared error. url: https://peltarion.com/knowledge-
center/documentation/modeling - view/build - an - ai- model/ loss -
functions/mean-squared-error (urlseen 29/04/2021).

49

50

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

Peltarion, Mean squared logarithmic error (msle). url: https://peltarion.
com/ knowledge - center /documentation/modeling - view/build - an -
ai-model/loss- functions/mean-squared- logarithmic-error- (msle)
(urlseen 29/04/2021).

Peltarion, Mean absolute error. url: https://peltarion.com/knowledge-
center/documentation/modeling - view/build - an - ai - model/ loss -
functions/mean-absolute-error (urlseen 29/04/2021).

Peltarion, Binary crossentropy. url: https://peltarion.com/knowledge-
center/documentation/modeling - view/build - an - ai- model/ loss -
functions/binary-crossentropy (urlseen 29/04/2021).

Peltarion, Squared hinge. url: https://peltarion.com/knowledge-center/
documentation/modeling-view/build-an-ai-model/loss- functions/
squared-hinge (urlseen 01/05/2021).

Peltarion, Categorical crossentropy. url: https://peltarion.com/knowledge-
center/documentation/modeling - view/build - an - ai- model/ loss -
functions/categorical-crossentropy (urlseen 03/05/2021).

Peltarion, Run a model. url: https://peltarion.com/knowledge-center/
documentation/modeling-view/run-a-model (urlseen 03/05/2021).

J. Brownlee, How do convolutional layers work in deep learning neural net-
works? url: https: //machinelearningmastery . com/ convolutional -
layers-for-deep-learning-neural-networks/ (urlseen 06/05/2021).

J. Brownlee, A gentle introduction to pooling layers for convolutional neural
networks. url: https://machinelearningmastery.com/pooling- layers-
for-convolutional-neural-networks/ (urlseen 06/05/2021).

Tensorflow, Post-training quantization. url: https://www. tensorflow.
org/lite/performance/post training quantization (urlseen20/05/2021).

J. Ma, A higher-level Neural Network library on Microcontrollers (NNoM),
version v0.4.2, october 2020. DOI: 10.5281/zenodo.4265016. url: https:
//doi.org/10.5281/zenodo.4265016.

P Gembaczka, personal communication, 16 march 2021.

Tensorflow, Tensorflow lite for microcontrollers. url: https://www.tensorflow.
org/lite/microcontrollers (urlseen 29/05/2021).

J. Ma", A higher-level Neural Network library on Microcontrollers (NNoM).
url: https://github.com/majianjia/nnom.

Y. LeCun, C. Cortes and C. Burges, The mnist database of handwritten digits.
url: http://yann.lecun.com/exdb/mnist/ (urlseen 28/01/2021).

C. Liechti, Pyserial. url: https://pypi.org/project/pyserial/.

Tensorflow, Pruning in keras example. url: https://www.tensorflow.org/
model optimization/guide/pruning/pruning with keras (urlseen
09/03/2021).

Bibliography 51

[28] Tensorflow, Quantization aware training. url: https://www.tensorflow.
org/model optimization/guide/quantization/training (urlseen01/06/2021).

Appendix A

MNIST MCU Inference Test Code
- PC Python Implementation

1| import serial
2| import numpy as np
from tqdm import tqdm

w

4| from random import randint

5| from utils import load image data, load label data, flatten_images
6

7| START _TOKEN = OxAA

8| END_TOKEN = OxAB

9

10/ CONV = 1

11| DENSE = 0

12
13{ class MCU:

14

15 The MCU class handles all low-level communication between the PC and the MCU.

16 It handles all data returned from the MCU, and sorts said data into appropriate
data containers.

17 Different relevant parameters like MCU Clock Speed, and USART baud rate, are

also stored in the MCU class.

20 def init (self):

21 self.clock speed = 20000000

22 self.baud rate = 115200

23

24 #----- Timer/Counter TCA (16-bit) ----- #

25 # Size of the count register in the TCA module (16-bit)

26 self.TCA CNT sz = np.power(2, 16)

27 # Clock prescaler for the TCA module

28 self.TCA clk prescaler = 1024

29 # Time period of the TCA. Time needed to overflow timer once (in seconds)
30 self.TCA period s = self.TCA CNT sz*(self.TCA clk prescaler/self.

clock speed)

32 self.mcu = self.mcu = serial.Serial(’'COM3’, self.baud rate, timeout=10)

53

33

35
36
37
38

40
41
42
43
44
45
46

47

48

49
50

51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75

76
77
78

54

HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

self.DATA PKG SZ =5
self.data package = bytearray()

self.prediction = 255
self.mnist_execution_ time = 0

self.indices = {
"prediction": 1,
"exec_time": [2,3]

def initiate transfer(self, image flat bytes, conv_or dense):
This function handles sending and reception of a pre-structured data
package to/from the MCU.
The PC sends an image from the MNIST dataset to the MCU, which runs
inference on said image,\
as well as measure other desired parameters (e.g. execution time).
MCU responds \
with a data package containing the various measured parameters.\
Every data parameter received from the MCU is stored in appropriate
class variables.

:param image flat bytes: Image from the MNIST dataset. \
The image must data must be in the bytes format, and must be a one-

dimmensional vector.

#--------- Message Construction ---------- #

message = bytearray()

message.append (START TOKEN)

message.append(conv_or dense)

message.extend(image flat bytes)

message.append (END TOKEN)

R Serial Transmission ----------- #
self.mcu.write(message)
self.data package = self.mcu.read(self.DATA PKG SZ)

#--------- Extract received data --------- #
if (self.data package[0] == START TOKEN) and (self.data package[-1] ==
END TOKEN) :
self.predction = self.data package[self.indices["prediction"]]

The 16-bit value received from the TCA is in register values,

and needs to be converted to seconds

exec_time msb = self.data package[self.indices["exec time"][0]]

exec_time lsb = self.data package[self.indices["exec time"][1]]

CNT diff = (exec_time msb << 8) | exec time lsb

self.mnist execution time = (CNT diff * self.TCA period s) / self.
TCA CNT sz

else:
print(self.data package)

The

79

80
81
82
83
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122

123

124

125

126

Chapter A: MNIST MCU Inference Test Code - PC Python Implementation 55

raise Exception("Invalid data returned from MCU. Missing START or END
token.")

class MCUMnistModel:
MCUMnistModel provides a high level interface to the MNIST Model running on the
MCU. \
This includes both model inference, and model testing.

:param conv_or _dense (int): 1 for cnn, 0 for dnn
def init (self, conv_or _dense):
self.conv_or dense = conv_or_dense
n_test data = 1000
self.test labels = np.array(load label data(’'test’, n test data, 0))
self.test data = np.array(load image data(’'test’, n test data, 0))

Cannot transfer negative values over USART.
The values are therefore adjusted to int8 range on the MCU

if conv_or_dense == CONV:
self.test data = self.test data / 4
elif conv_or _dense == DENSE:

self.test data = self.test data / 8

self.test data flat = flatten images(self.test data)
self.test data bytes = []
for image in self.test data flat:

self.test data bytes.append(bytearray(image))

self.mcu = MCU()

def run_complete test(self, n_accuracy smpls):
Run a full test of the MNIST model on the MCU. Results are printed to
stdout.
_, accuracy_percentage = self.evaluate model accuracy(n accuracy smpls)
execution time = self.evaluate execution time()
print("\n\n Test Results")
print("---------------- ")
print("Accuracy:\t {:.2f}%".format(accuracy percentage))
print("Execution time:\t {:.2f}ms".format(execution time*1000))

def predict single image(self, image index):

Takes a single image from the MNIST dataset, sends it to the MCU for
inference, \

and receives the model prediction in return from the MCU.

:param image index (int): Index of the desired image from the MNIST dataset
(values in range [0, 999])
:return prediction (int): Number predicted by the MCU

127

128
129
130
131
132

133
134
135
136
137
138
139
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166

167
168

169
170
171
172

56

HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

:return label (int): Label for the image in question, displaying which
number was written in the image
if image_index >= 1000:
raise Exception("Image index out of range.")

self.mcu.initiate transfer(self.test data bytes[image index], self.
conv_or_dense)
label = self.test labels[image index][0]

return self.mcu.predction, label

def evaluate model accuracy(self, n test samples):

Runs inference on the MCU with a desired number of test samples. \

The MCU returns its prediction for each image, which is then compared to
its corresponding label. \

Finally the total model accuracy is calculated.

:param n_test samples (int): Number of samples to include in accuracy test
:return accuracy: Model accuracy

:return accuracy percentage: Model accuracy in percentage

correct predictions = 0

incorrect predictions = 0

print("Evaluating model accuracy...")
for 1 in tqdm(range(n_test samples)):
model prediction, label = self.predict single image(1i)
if model prediction == label:
correct predictions +=1
else:
incorrect predictions += 1

accuracy = (correct predictions/n_test samples)
accuracy percentage = accuracy*100
return accuracy, accuracy percentage

def evaluate execution time(self):

Returns the execution time of the model inference on the MCU. \

The MCU measures this using a 16-bit onboard timer module, and transmits
the resulting execution time. \

This value represents the execution time of the model inference alone, and
excludes any conditioning code.

:return mnist execution time: Execution time of model inference on MCU (in
seconds)

print("Evaluating model inference execution time...")

self.predict single image(randint(0,999))

return self.mcu.mnist execution_ time

O (ee} ~N (o) 9} S w [\ —

e e e e T e e =

Appendix B

MNIST MCU Inference Test Code
- MCU C Implementation

#include <stdio .h>
#define F_CPU 20000000UL
#include <util/delay.h>

// weights.h is the header file generated by NNoM,
// which contains the ANN model definition
#include "weights.h"

#include "atmel start.h"

#include "nnom.h"

#define START TOKEN OxAA
#define END TOKEN OxAB

uint8 t predict_digit (nnom_model t model, int8 t image data);

nnom_model t model;
uintl6_t image_size = 784;
uint8 t prediction = 255;

uintl6_t timer_ start = O;
uintl6_t timer_end = 0;
uintl6_t execution time = O0;

int main(void)

{

atmel start init();
_delay_ms(20);

nnom_model t model;
model = nnom_model create () ;

uint8 t receiving transmission = O;

int8 t image data[784];
uint8 t serial data = 0;

57

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

58

}

ui

{

HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

while (1)

{
serial data = USART 0 _read();

// If received data contains start token,
// start collecting data
if (serial data == START TOKEN)
{
receiving transmission = 1;
uintl6 t i = 0;

// Read data packet header byte informing whether or not data

// should be processed for a dense network, or a convolutional
one

uint8 t cnn_or_dnn = USART 0 _read();

// Collect data until end token is received
while (receiving transmission)
{

serial data = USART 0 read();

if (serial data != END TOKEN)

{

image data[i] = cnn_or dnn ? serial data-—32 : serial data 16

i++;
else {receiving transmission = 0;}

}

// Perform inference on ANN model, and measure execution time
timer_start = TCAO.SINGLE.CNT;

prediction = predict digit(model, image data);

timer_end = TCAO.SINGLE.CNT;

execution time = timer end — timer start;

// Transmit results to PC over USART
USART _0_write (START TOKEN) ;
USART_ O write(prediction);
USART_0_write ((execution time&0xff00)>>8);
USART 0 write(execution time&0xff);
USART_0_write (END_TOKEN) ;
}
}

nt8 t predict digit(nnom model t model, int8 t image data)

// Place image data in model input array, and execute inference
memcpy(nnom_input _data, image data, image size);
model run(model) ;

// Extract the index of the node with the greatest output value.
// The numerical index value represents the predicted digit
uint8 t highest value = 0;

uint8 t high value index = O0;

J

89
90
91
92
93
94
95
96
97
98

Chapter B: MNIST MCU Inference Test Code - MCU C Implementation

for (uint8 t i = 0; i < 10; i++)
{
if (nnom_ output data[i] > highest value)
{
highest value = nnom_ output_data[i];
high value index = i;
}
}

return high value_index;

}

59

Ao0WN

9]

Appendix C

Dense Keras Models - Size and
Accuracy

This appendix displays the Python code used to generate results seen in section
4.2.2.

import numpy as np

import tensorflow as tf

import os

from utils import load image data, load label data

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Flatten, MaxPool2D, InputLayer, RelU,
Softmax

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.models import load model

physical devices = tf.config.experimental.list physical devices(’'GPU")
tf.config.experimental.set memory growth(physical devices[0], True)

learning rate = 0.001
batch size = 64
epochs = 10

LT LOE0 0ElE2@ s 2222222222222 --== #
n_train_data = 50000

train data = np.array(load image data(’training’, n_train data, 0))
train data = ((train data) - 127)/8

train_labels = np.array(load label data(’training’, n_train data, 0))

n_valid data = 10000

valid data = np.array(load image data(’training’, n valid data, 50000))
valid data = ((valid data) - 127)/8

valid labels = np.array(load label data(’training’, n_valid data, 50000))

n_test data = 1000

test data = np.array(load image data(’test’, n_test data, 0))
test data = ((test data) - 127)/8

test labels = np.array(load label data(’test’, n _test data, 0))

62 HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

34| def train _dense(save path, n layers, width 11=0, width 12=0, width 13=0):

35 if n_layers ==

36 model = Sequential([InputLayer(input shape=(28,28,1)),

37 MaxPool2D(pool size=(2,2), strides=2),

38 Flatten(),

39 Dense(units=width 11), RelLU(),

40 Dense(units=10), Softmax()])

41 elif n_layers ==

42 model = Sequential([InputLayer(input shape=(28,28,1)),

43 MaxPool2D(pool size=(2,2), strides=2),

44 Flatten(),

45 Dense(units=width 11), RelLU(),

46 Dense(units=width 12), RelLU(),

47 Dense(units=10), Softmax()])

48 elif n_layers ==

49 model = Sequential([InputLayer(input shape=(28,28,1)),

50 MaxPool2D(pool size=(2,2), strides=2),

51 Flatten(),

52 Dense(units=width 11), RelLU(),

53 Dense(units=width 12), RelLU(),

54 Dense(units=width 13), RelLU(),

55 Dense(units=10), Softmax()])

56 else:

57 raise Exception("Invalid number of layers.")

58

59 model.compile(optimizer=Adam(learning rate=learning rate), loss=’
sparse_categorical crossentropy’, metrics=["accuracy’])

60 model.fit(x=train data, y=train labels, validation data=(valid data,

valid labels), batch size=batch size, epochs=epochs, verbose=2, shuffle=True)
61

62 model.save(save path)

63

64 model.evaluate(test data, test labels)

65 _, model accuracy = model.evaluate(test data, test labels, verbose=0)
66

67 return model, model accuracy

68
69| def dense structure test():

70 folder_path = 'tests/model structure/dense/’

71 save path = folder path + 'mnist dense.h5’

72 f = open(folder path + ’'DenseStructureTest.csv’,’'w’)

73 f.write(’'n layers,Layerl Width,Layer2 Width,Layer3 Width, ")
74 f.write('Model Accuracy,Model Size,Learning Rate,Batch Size,Epochs\n’)
75

76 layer widths = [1,2,4,8,16,32,64,128]

77 layer2 widths = [0]

78 layer3 widths = [0]

79 progress = 0

80 1 = len(layer _widths)

81 total models to train = 1 + 1**2 + 1**3

82 for n_layers in range(1,4):

83 if n_layers ==

84 layer2 widths = layer widths

85
86
87
88
89
90
91

92

94
95
96

97

98

99
100
101
102
103
104
105
106
107
108
109
110

Chapter C: Dense Keras Models - Size and Accuracy

elif n_layers ==
layer3 widths = layer widths

for width 11 in layer widths:
for width 12 in layer2 widths:
for width 13 in layer3 widths:

63

_, model accuracy = train dense(save path, n layers, width 11,

width 12, width_13)

model = load model(save path)
model size = os.path.getsize(save path)

progress += 1

print("Evaluated {} models out of {}".format(progress,

total models to train))

print("n_layers:", n_layers
print("width 11:", width 11
print("width 12:", width 12
print("width 13:", width 13)

fowrite("{}, {},{}, {}, {3, {}, {3, {}, {I\n". format (n_layers,

f.close()

width 11,

width 12,

width 13,

model accuracy,
model size,
learning rate,
batch size,
epochs))

w

O 0 N o b

Appendix D

Pruning Test Code

This appendix displays the Python code used to generate results seen in section
4.2.5.

import os

import numpy as np

import tensorflow as tf

from utils import load label data, load flat images
from optimization import prune_model

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Activation, Dense, InputLayer
from tensorflow.keras.optimizers import Adam

from tensorflow.keras.models import load model

from nnom.scripts import nnom utils

from tgdm import tqdm

physical devices = tf.config.experimental.list physical devices(’'GPU")
tf.config.experimental.set memory growth(physical devices[0], True)

R AR E R Load datasets ---------------------- #
train data = np.array(load flat images(’training’))

train data ((train_data) - 127)/8

train data = train data.reshape(50000, 784, 1)

train_labels = np.array(load label data(’training’, 50000, 0))

valid data = np.array(load flat images(’valid’))
valid data = ((valid data - 127))/8
valid data = valid data.reshape(10000, 784, 1)

valid labels = np.array(load label data(’training’, 10000, 50000))

test data = np.array(load flat images(’'test’))
test data = ((test data - 127))/8
test data = test data.reshape(1000, 784, 1)

test labels = np.array(load label data(’'test’, 1000, 0))

def train dense(save path):
model = Sequential([
InputLayer(input shape=(784)),

65

50

51
52

54
55
56
57
58
59
60

61

62

64
65

66
67

68
69
70
71
72

74
75

76
77
78
79
80
81
82

66

def

def

def

HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

Activation(’'tanh’),
Dense(units=32),
Activation('relu’),
Dense(units=32),
Activation(’'relu’),
Dense(units=32),
Activation(’'relu’),
Dense(units=32),
Activation('relu’),
Dense(units=10),
Activation(’'softmax’)

1)

model.compile(optimizer=Adam(learning rate=0.001), loss=’

sparse categorical crossentropy’, metrics=['accuracy'])
model.fit(x=train data, y=train labels, validation data=(valid data,
valid labels), batch size=64, epochs=10, verbose=2, shuffle=True)

model.save(save path)

model.evaluate(test data, test labels)

_, model accuracy = model.evaluate(test data, test labels, verbose=0)

return model, model accuracy

prune_dense model (model, initial sparsity, final sparsity, batch size, epochs,
save_path):

prune_model(model, ’'dense’, initial sparsity, final sparsity, save path,

batch size, epochs)

pruned_model = load model(save path)

pruned model.compile(optimizer="adam’,
loss=tf.keras.losses.SparseCategoricalCrossentropy(
from logits=True),
metrics=["'accuracy’'])

_, pruned model accuracy = pruned model.evaluate(test data, test labels,

verbose=0)
print('Pruned model accuracy:’, pruned model accuracy)

pruned model.save(save path)
return pruned model, save path, pruned model accuracy

dense _nnom_model converter(model, header path):
nnom utils.generate model(model, test data[:100], header path, quantize method=
"max_min")

get folder size(start path = "."):
total size = 0
for dirpath, dirnames, filenames in os.walk(start path):
for f in filenames:
fp = os.path.join(dirpath, f)

83
84
85
86
87
88
89
90
91

92

93

94
95
96
97
98
99
100
101
102
103

104
105

106
107
108
109
110
111
112
113
114

116
117
118
119
120

121
122
123
124
125
126
127
128

Chapter D: Pruning Test Code 67

def

skip if it is symbolic link
if not os.path.islink(fp):
total size += os.path.getsize(fp)

return total size

run_test():

model path = ’'tests/pruning/sparsity test/dense/run_3/dense sparsityTest model.
h5’'

nnom _model path = 'tests/pruning/sparsity test/dense/run 3/

weights dense sparsityTest.h’

pruned_model save path = 'tests/pruning/sparsity test/dense/run 3/

dense sparsityTest pruned model’

_, model accuracy = train _dense(model path)

model = load model(model path)

_, model accuracy = model.evaluate(test data, test labels, verbose=0)

unpruned file size = os.path.getsize(model path)
dense nnom_model converter(model, nnom model path)
nnom_compression factor = unpruned file size / os.path.getsize(nnom model path)

f = open("tests/pruning/sparsity test/dense/run_3/PruningSparsityTest.csv", "w

f.write("Initial Model Accuracy,Pruned Model Accuracy,Pruning Compression
Factor,NNOM Compression Factor,Total Compression Factor,Initial Sparsity,Final
Sparsity,Batch Size,Epochs\n")

batch size = 64
epochs = 10
for final sparsity in tqdm(range(10)):
final sparsity = final sparsity/10
for initial sparsity in range(10):
initial sparsity = initial sparsity/10

pruned model, prune path, prune accuracy = prune_dense model(model,
initial sparsity, final sparsity, batch size, epochs, pruned model save path)

pruned file size = get folder size(pruned model save path)
pruning compression factor = unpruned file size/pruned file size

dense _nnom _model converter(pruned model, nnom model path)
tot compression factor = unpruned file size/os.path.getsize(
nnom_model path)

fowrite("{}, {3, {3, {3, {3, {3, {3, {3\n". format (model_accuracy,
prune_accuracy,
pruning compression factor,
nnom_compression_ factor,
tot compression factor,
initial sparsity,
final sparsity,

68

129
130
131
132

f.close()

HOL: A Study of Artificial Neural Networks on 8-bit Microcontrollers

batch size,
epochs
))

@ NTNU

Norwegian University of @ MICROCHIP

Science and Technology

