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Abstract

Control-bounded analog-to-digital converter (ADC) is a recently intro-
duced concept that approaches the conversion problem differently com-
pared to most conventional ADC architectures. While the promising
properties of the these converters have been studied on a theoretical level
for a few years, no transistor level implementation have, to the author’s
knowledge, been reported so far.

In this thesis, we bring control-bounded conversion concept one step
closer to a complete transistor level implementation. The established
theoretical framework is expanded and applied in the analysis of the con-
sidered circuit implementations. A custom software library is developed,
facilitating efficient design, simulation and evaluation of control-bounded
converters. The theoretical analysis is supported by circuit simulations.

Rather than achieving a complete transistor-level implementation, the
goal of this thesis is to explore possible low-power designs of a scalar
control-bounded converter. The main result is therefore the overview of,
and some possible solutions to, critical design challenges associated with
the considered high-level architecture.

Specifically, a low-noise amplifier (LNA) driven, passive integrator is pro-
posed as an alternative to placing the amplifier outside the ADC. The
remaining stages could be implemented with low-power Gm-C integrators
and their current consumption depends on the load capacitance seen at
the transconductors output. Design challenges regarding accurate analog
signal summation with small capacitors are studied in detail.

Floating-gate, voltage addition requires less active components, but volt-
age buffers might be required to disable unwanted charge flow in the
circuit. An output resistance of about 1kΩ is required for the buffers not
to disturb the capacitive voltage division and degrade performance. Out-
put current summation avoids this issue, but some additional complexity
might be required to implement the small transconductance necessary for
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Abstract

low power consumption. Finally, it is discovered that comparator offset
voltage will trigger even order harmonic distortion in the transconductors
and comparator offset cancellation is therefore required.

To address the question of whether a control-bounded converter is suited
for outperforming current state-of-the-art ADCs, more detailed research
on transistor level is required. Hopefully, this thesis provide a useful back-
ground for doing exactly that.
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Sammendrag

Kontrollbegrenset analog-til-digital omforming (control-bounded ADC)
er et nylig introdusert konsept som skiller seg fundamentalt fra de fleste
konvensjonelle omformingsarkitekturer. Disse omformerne har blitt stud-
ert p̊a et teoretisk niv̊a i flere år, men det er, s̊a vidt forfatteren vet,
foreløpig ikke rapportert noen implementasjon av en slik omformer p̊a
transistorniv̊a.

I denne avhandlingen fører vi dette nye konseptet ett steg nærmere en
fullstendig implementasjon p̊a transistorniv̊a. Det etablerte teoretiske
rammeverket er utvidet og anvendt i analyser av ulike kretsimplemen-
tasjoner. Et egenutviklet programvarebibliotek bidrar til å effektivisere
prosessen med design, simulering og evaluering av kontrollbegrensede
A/D-omformere. Kretssimuleringer støtter oppunder resultatene fra den
teoretiske analysen.

Målet med denne avhandlingen er ikke å presentere en fullstendig im-
plementasjon, men å utforske mulige design av en skalar, kontrollbe-
grenset A/D-omformer, optimalisert for lavt effektforbruk. Det viktig-
ste resultatet fra denne avhandlingen er derfor oversikten over, og noen
mulige løsninger til, kritiske designutfordringer assosiert med den aktuelle
høyniv̊aarkitekturen.

Nærmere bestemt foresl̊as en passiv integrator, drevet av en lavstøyforsterker,
som et alternativ til å plassere forsterkeren fullstendig p̊a utsiden av A/D-
omformeren. De resterende trinnene kan realiseres med Gm-C-integratorer,
hvis strømforbruk vil være avhengig av den totale kapasitansen sett fra
utgangen av transkonduktoren. Designutfordringer vedrørende presis ad-
disjon av analoge signaler med små kondensatorer er studert i detalj.

Spenningsaddisjon med flytende styreelektrode (eng. gate) krever færre
aktive komponenter, men spenningsbuffere kan være nødvendig for å
unng̊a problemer med uønsket ladningsflyt i kretsen. For ikke å forstyrre
den kapasitive spenningsdelingen og dermed redusere ytelsen, m̊a disse
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Sammendrag

bufferene ha en utgangsmotstand p̊a om lag 1 kΩ. En alternativ løsning
kan være å summere strømmer p̊a transkonduktorenes utganger. Dette
eliminerer behovet for spenningsbuffere, men noe ekstra kompleksitet kan
være nødvendig for å implementere en liten nok transkonduktans, som er
en forutsetning for lavt effektforbruk. Det er ogs̊a oppdaget at en forsyvn-
ing i komparatorenes terskelspenning vil trigge harmonisk forvrengning
av partals orden. Kansellering av denne terskelspenningsforsyvningen vil
derfor være nødvendig i en fremtidig implementasjon.

Mer detaljert forskningsarbeid p̊a transistorniv̊a er nødvendig for å besvare
spørsmålet om hvorvidt en kontrolbegrenset A/D-omformer er egnet for
å utkonkurrere de fremste av dagens løsninger innenfor A/D-omforming.
Vi h̊aper at denne avhandlingen vil tjene som et nyttig utgangspunkt for
å gjøre nettop det.

vi
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Chapter 1

Introduction

The need for digitalization of weak analog sensor outputs is present in any
electronic system processing information from its physical surroundings.
For most applications, the amount of energy spent on this operation is
critical, and a lot of research is invested in the design of power efficient
receiver front-ends.

Although many variations exist, a common approach is to have an ADC
preceded by a LNA and possibly an anti-aliasing filter. The LNA will ease
the ADC requirements in terms of noise, distortion and input impedance.
This simplifies the ADC design, and even though the LNA will consume
a considerable amount of power itself, the total power consumption of
the receiver front-end might be reduced.

As an example, using an LNA with a gain of 10 would reduce the signal-
to-noise ratio (SNR) requirements of the ADC by 20 dB. As discussed
in e.g. [1], the power consumption of high SNR A/D converters tend to
quadruple per extra bit of accuracy. Including the LNA could therefore
be an attractive alternative to increasing the ADC accuracy.

However, it is important to remember that the performance of the re-
ceiver front-end is determined solely by how accurately the digital out-
put of the ADC resembles the analog input signal. The LNA serves as
an intermediate step in the conversion process and its presence is needed
because of limitations associated with many conventional A/D convert-
ers. Potentially reduced power consumption could therefore be gained
by using a different architecture, better suited for handling the sensor
output directly. A promising candidate is the newly introduced concept
called control-bounded conversion.

1



Introduction

1.1 Control-Bounded Conversion

Control-bounded A/D conversion [2–5] offers an interesting perspective
on the aforementioned challenge. As emphasized in [5, 6], the main in-
gredient of a control-bounded ADC is analog gain, stabilized by a digital
control. The performance of the overall ADC is linked to the amount of
gain in the analog system, and how tight the digital control manages to
bound its internal voltage and current signals.

The increased signal magnitude obtained by placing an LNA outside the
ADC will challenge the linearity of the following active component. In
a control-bounded converter, the same amount of gain could be used
to activate a digital control, thereby limiting the magnitude processed
by the next stage. As a consequence of its output being digitally stabi-
lized, the amplifier would contribute directly to the conversion process,
while still relaxing the noise and linearity requirements on the following
components by the same amount. The control-bounded converter could
therefore seem to be naturally well-suited for the problem of digitizing
weak sensor outputs.

1.1.1 High-Level Design Strategy

The control-bounded converter builds on the fact that analog amplifi-
cation in combination with digital control amounts to an implicit A/D
conversion. As explained by Hampus Malmberg [5]:

The digital control might be primitive, but as it systemati-
cally offloads fixed-sized portions of the accumulated internal
analog system states over time, its combined effect results in
a sophisticated digital representation of the internal analog
system state trajectory.

The final digital output signal is obtained by filtering these control sig-
nals through a digital estimator. The digital estimator solves the inverse
problem by figuring out which analog input that most likely triggered
the observed sequence of control actions.

This inverse problem could only be solved precisely if the behaviour of
the system is known. This knowledge could be ensured by designing the
analog system such that it accurately implements a pre-defined trans-
fer function. However, this approach would quickly result in a circuit
consuming more power than strictly necessary for realizing the desired
behaviour.

2



1.2. Scope

An alternative is to rely of digital calibration to measure the behaviour
of the analog system. In conventional A/D converters, digital calibration
is often realized by measuring errors in critical component values, before
correcting the digital output codes in an additional post-processing step.
As an example, in [7], a 9 bit successive approximation register (SAR)
ADC calibrates it self at start-up by using the 5 smallest capacitors to
measure the errors on the 5 most significant ones.

For a control-bounded converter, it does not make sense to refer to these
component variations as errors. While the quantization accuracy of a
SAR ADC relies on precise capacitor matching, the performance of a
control-bounded converter simply depends on the amount of analog am-
plification. Component variations will certainly affect the analog transfer
function, but different does not necessarily mean worse. Rather than cor-
recting errors, a digital calibration would synchronize the assumptions of
the digital estimator with the true behaviour of the analog system.

This forms the background for the proposed design strategy. Instead of
fighting against component variations with clever design techniques, we
accept these variations as a natural part of the analog system. The goal is
to save power and area by avoiding extra circuitry whose only objective
is to make the system behaviour robust against process, voltage and
temperature (PVT) variations. A digital calibration is then assumed to
measure the resulting analog system behaviour.

1.2 Scope

The goal of this thesis is to provide a useful background for a future low-
power implementation of a control-bounded converter. The conversion
concept has been studied on a theoretical level for several years, but no
transistor-level implementation is reported so far. In this thesis, we con-
sider possible low-power implementations for the analog system and the
digital control for a scalar control-bounded converter. Design challenges
regarding the transistor-level implementations of the individual active
components, as well as the interaction between them, are considered.

The Leapfrog ADC, proposed in [5], serves as the high-level architecture
for the analog system. The main objective of the presented work is to
explore power efficient solutions for the implementation of this system
on transistor-level. Circuit schematics are not presented as a proposed
implementation, but serves as a useful basis for discovering implementa-
tion challenges not previously thought of. The ultimate goal is to provide
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a better overview of the critical implementation challenges for a future
implementation of a power efficient, control-bounded converter.

In line with the proposed design strategy, a digital calibration algorithm
will be assumed to measure the resulting behaviour of the analog system.
The implementation of this calibration is part of an ongoing research
project at ETH Zürich and is beyond the scope of this thesis. The imple-
mentation of the digital estimator is not considered, but a rough estimate
of the digital power consumption is discussed together with some ideas
for future improvement.

1.3 Specifications

The application setting the specifications for the presented work is med-
ical ultrasound imaging. The ADC is designed to interface directly with
a piezoelectric transducer element providing a single-ended output sig-
nal. The transducer has a resonance frequency of 4.8 MHz, at which the
output capacitance is about 700 fF and the output rms noise voltage is
16 nV/

√
Hz. The maximum output swing is 40 mV peak-to-peak. The

specifications are summarized in table 1.1.

Table 1.1: Design specifications

Parameter Symbol Value Comment

Center Frequency fca 5 MHz
Bandwidth B 5 MHz 2.5− 7.5MHz
Maximum signal swing bu 40 mV Peak-to-peak

Input ref. noise voltage vni(f) < 16 nV/
√

Hz Noise figure 3dB
Input capacitance Cin < 10fF At 5MHz
Signal to noise ratio SNR > 68 dB Full scale input
Second harmonic distortion HD2 < −50 dBc
Technology 22 nm FDSOI CMOS

1.4 Main Contributions

The main contributions of this thesis are the insight obtained by con-
sidering a low-power implementation of a control-bounded converter on
transistor level, together with the theoretical analysis and developed soft-
ware tools. In particular, we highlight the following contributions:

4



1.5. Related Work

• An LNA driven, passive integrator is proposed as a solution for the
first integration stage. This approach achieves the input impedance,
noise and linearity performance of a conventional LNA, while si-
multaneously contributing to the conversion process as its output
is stabilized by a digital control.

• An overview of design challenges associated with low-power, ana-
log signal summation with Gm-C integrators is obtained. Floating-
gate voltage summation requires voltage buffers (or possibly other
techniques) to disable unwanted charge flow in the system. Output
current summation comes with the challenges of realizing small
transconductors and attenuation circuits might be required.

• It is discovered that comparator offset voltage will trigger even
order harmonic distortion in the open-loop transconductors, and
offset cancellation is required for future development.

• The analytical stability guarantee of [5] is extended to the con-
sidered Leapfrog architecture. The analysis consider more general
transfer functions and include several non-ideal effects such as com-
parator offset, digital delay and clock jitter.

• A custom python framework for general purpose analog circuit de-
sign is written and used to interface with existing resources for
simulating control-bounded converters. Together with the experi-
ence of “best practice” python based, analog design methodology,
these tools provides a platform efficient development in the future.

1.5 Related Work

This thesis is in many ways a continuation of a previous project pre-
sented in [6]. That project was the author’s first introduction to control-
bounded conversion and a significant part of the work was dedicated to
understanding the concept. The remaining part of the thesis was cen-
tered around architectures particularly suited for multi-channel receiver
systems.

This work builds on the previous project in the sense that we assume
the reader to be somewhat familiar with the control-bounded conversion
concept. However, instead of focusing on multi-input A/D converters,
this thesis is concerned with the scalar input case.

Furthermore, the doctoral thesis of Hampus Malmberg [5] constitutes the
main source of information on the topic. His thesis gives a comprehensive

5



Introduction

introduction to control-bounded converters and proposes several ADC ar-
chitectures suited for various applications. One of them is the Leapfrog
ADC, which forms the background for the high-level architecture con-
sidered in this thesis. The Leapfrog ADC is an extension of the Chain-
of-integrators ADC, treated in both [6] and [5]. This basic architecture
is a useful textbook-example of a control-bounded converter and certain
results obtained in this work is compared to the Chain-of-integrators for
reference.

1.5.1 References to Conventional Converters

As discussed in [6], the control-bounded converter shares some similar-
ities with conventional oversampling A/D converters, in particular the
continuous-time Σ∆ ADC. Being familiar with these converters is not
at all a prerequisite for following this thesis and they are therefore not
treated as a part of the background material. However, in order to con-
nect the presented material to already existing knowledge, certain parts
of the thesis will contain references to the design of Σ∆ converters. We
point out similarities to place the control-bounded converter in a familiar
context, and we discuss differences to highlight the potential for innova-
tive solutions and increased performance. For an introduction to topic,
several excellent sources exist, e.g [8] or [9].

6



1.6. Outline

1.6 Outline

The remaining part of the thesis is structured as follows.

• Chapter 2 gives a concise introduction to the control-bounded
conversion concept. The material is a less comprehensive version
of chapter 3 in [6] and is included here to establish the necessary
terminology and background theory.

• Chapter 3 presents the proposed high-level hardware architecture
together with an analysis of important non-idealities.

• In Chapter 4, we present a short description of the software tools
used for the presented simulations.

• Chapter 5 presents the considered low-power circuit implementa-
tion. Simulation results are presented along the way to support the
theoretical analysis.

• Chapter 6 Provides a discussion of digital power consumption and
relevant topics that did not fit naturally in the other parts of the
thesis.

• Finally, Chapter 7 concludes the thesis and presents the current
plan for future development.

7
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Chapter 2

Control-Bounded A/D
Conversion

This thesis is a continuation of the work presented in [6] and the reader
is therefore assumed to be somewhat familiar with the control-bounded
conversion concept. However, for the sake of completeness, a concise in-
troduction is given in this chapter.

The control-bounded conversion concept is developed by prof. Hans-
Andrea Loeliger et al., at the Signal and Information Processing Lab-
oratory (ISI), ETH Zürich. The latest contribution to the topic is the
doctoral thesis of Hampus Malmberg [5] which serves as the main source
of information for this chapter.

This chapter is structured as follows. The fundamental principle of the
control-bounded converter is introduced with an intuitive analogy to neg-
ative feedback amplifiers in section 2.1. In section 2.2 the basic building
blocks of the converter is presented, before each of them are studied
independently in sections 2.3 to 2.5.

2.1 An Intuitive Analogy

Before establishing the formal language used to describe the control-
bounded converter, an intuitive analogy is given in this section. Consider
the classic negative feedback amplifier of figure 2.1, where a fraction of
the output is fed back to amplifiers inverting input. By assuming the
amplifier has infinite gain, this will at any time equalize the voltage on
its two inputs. In other words, the amplifier will do what ever necessary

9



Control-Bounded A/D Conversion

to make x(t) = 0 for all times t. What the amplifier does to accomplish
this is what we observe as the output y(t).

−

+

x(t)R1

u(t)
y(t)

R2

Figure 2.1: A negative feedback amplifier

The beauty of this approach lies in the fact that the observed amplifica-
tion is nearly independent of the internal characteristics of the amplifier.
Given that the amplifier has sufficiently high gain within the bandwidth
of interest, the amplification is given solely by the feedback network. In
the circuit of figure 2.1, what the amplifier does will depend on how we
choose the resistors R1 and R2, yielding an effective amplification of

y(t)

u(t)
= −R2

R1

(2.1)

When the true gain of the amplifier is not infinite, the negative input will
have some small non-zero value, and the gain-error is the value of x(t)
seen at the output y(t).

Intuitively, the control-bounded converter could be thought of as the con-
cept of negative feedback amplification, extended to A/D conversion. In
a control-bounded converter, we use digital feedback to force the analog
inputs, x(t), of several amplifying elements to zero. The system responsi-
ble for this operation is called the digital control. The analog input of the
ADC is digitalized by observing what the digital control does to ensure
x(t) = 0 for all times t. As for negative feedback amplifiers, x(t) will
always have some non-zero value and the quantization error of the ADC
is exactly the magnitude of x(t) observed at the output.

In a negative feedback amplifier, what the amplifier does to force x(t) = 0
is the output y(t) directly. However, in a control-bounded converter, the
amplification happen over multiple stages and the voltage on several
nodes of the analog system is forced to zero by multiple digital control
actions. In consequence, what the digital control does is only indirectly
related to the final ADC output, and a (rather complicated) digital filter
is required to reconstruct the output from these digital control signals.

10
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Despite these practical complications, the fundamental principle of oper-
ation closely resemble that of a negative feedback amplifier. The analogy
could therefore be useful to keep in mind while studying the formal intro-
duction to control-bounded conversion in the remainder of this chapter.

2.2 Fundamentals

A control-bounded ADC consists of three main components; an analog
system (AS), a digital control (DC) and a digital estimator (DE). Their
interaction is illustrated in figure 2.2. The input signal u(t), here assumed
to be scalar, enters the analog system which provides amplification within
the frequency band of interest. The internal states of the analog system is
observed by the digital control through the (vector valued) control obser-
vation s̃(t). The control observation is sampled and quantized, resulting
in the control signal s[k]. The analog version of this signal is called the
control contribution s(t) and is applied to the analog system to counter-
act the internal state growth. The digital estimator observes the control
signals s[k], from which it reconstructs an estimate û(t) of the input
signal u(t).

AS S/H

D/A

DE

DC

u(t)
s̃(t) s[k]

û(t)

s(t)

Figure 2.2: The main building blocks of a control-bounded ADC. Figure
from [6].

2.3 Analog System

The analog system is described using the state-space model notation as
illustrated in figure 2.3.

The core of the analog system is the state vector x(t) ∈ RN which is
related to the input signal u(t) and the control contribution s(t) ∈ RM

by the differential equation system

ẋ(t) = Ax(t) + Bu(t) + Γs(t). (2.2)

11
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B +
∫∫∫

Γ̃T

CTA

Γ

u(t)
x(t)

y(t)

s̃(t)

s(t)

Figure 2.3: State space model of the analog system. The dashed lines
represent conceptual signals that only exist inside the digital estimator.
Figure from [5].

The components of x(t) represents internal currents or voltages on dif-
ferent nodes of the analog system, and the system matrix A ∈ RN×N

describes how the state vector evolves over time. The two inputs, u(t)
and s(t), enters the system through the input matrix B ∈ RN×1 and the
control input matrix Γ ∈ RN×M respectively. The dimension of the state
vector, N , is sometimes referred to as the system order.

The control observation s̃(t) , Γ̃Tx(t) ∈ RM is related to the state vector
through the control observation matrix Γ̃T. The output signal y(t) ,
CTx(t) ∈ RÑ is a purely conceptual quantity that is used by the digital
estimator to reconstruct the estimate û(t) of u(t).

The system of differential equations (2.2) results in an analog transfer
function (ATF) vector, where the i-th element gives the transfer function
from u(t) to output i. The transfer function is given by

G(ω) = CT (jωIN −A)−1 B ∈ CÑ×1, (2.3)

and the analog impulse response vector is then obtained from the inverse
Laplace transform as

g(t) = CT exp(At)B ∈ RÑ×1, (2.4)

where exp(.) refers to the matrix exponential.

12



2.4. Digital Control

2.4 Digital Control

The digital control stabilizes the analog system by forcing the magnitude
of the state vector x(t) to stay within some predefined boundary. A
conceptual block diagram is shown in figure 2.2, where the digital control
consist of a sample-and-hold circuit, a one-bit quantizer and a digital-to-
analog converter. Although a practical implementation may realize all the
functionality in a single component, this structure is a useful illustration.

The control signal s[k] is generated by sampling and quantizing the con-
trol contribution s̃(t) with a clock period T , and passed on to the digital
estimator. The second output of the digital control is the analog control
contribution s(t), which in this thesis is assumed to be generated by a
non-return to zero (NRZ) D/A converter.

2.4.1 Effective Digital Control

To quantify the performance of the digital control, we introduce the
boundaries bu and bx. We say that the input signal is bounded if

|u(t)| ≤ bu ∀t (2.5)

and equivalently that the state vector is bounded if it satisfies

||x(t)||∞ ≤ bx ∀t. (2.6)

The digital control is then called effective if it manages to keep the state
vector bounded, given a bounded input. The system is called unstable at
a time t, if the magnitude of an element of x(t) exceeds bx.

As shown in appendix A, the solution to the state-space equations (2.2)
may be written as

x(t) = g̃(t) · x(0) + (g̃ ∗Bu)(t) + (g̃ ∗ Γs)(t), (2.7)

where
g̃(t) , exp(tA), (2.8)

and exp(.) refers to the matrix exponential. In (2.7) x(0) is the value of
the state vector at the beginning of a control period t ∈ [0, T ).

Let
X , {x̃(t) : ||x̃(t)||∞ < bx ∀t} (2.9)

be the set of all bounded state vectors, and let

U , {v(t) : |v(t)| < bu ∀t} (2.10)

13
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be the set of all bounded input signals. The condition for effective control
may then be expressed as

max
x(t)∈X ,u(t)∈U ,t∈[0,T )

||g̃(t) ·x(0) + (g̃ ∗Bu)(t) + (g̃ ∗Γs)(t)||∞ < bx. (2.11)

By the triangle inequality, this expression is upper bounded as

max
x(t)∈X ,u(t)∈U ,t∈[0,T )

||g̃(t) · x(0) + (g̃ ∗Bu)(t) + (g̃ ∗ Γs)(t)||∞ ≤

max
x(t)∈X ,t∈[0,T )

||g̃(t) · x(0) + (g̃ ∗ Γs)(t)||∞ + max
u(t)∈U ,t∈[0,T )

||(g̃ ∗Bu)(t)||∞.

(2.12)

From the right side of (2.12) we define

R(t) , max
||x(0)||∞∈[−bx,bx]

||g̃(t) · x(0) + (g̃ ∗ Γs)(t)||∞ (2.13)

and
G(t) , max

u(t)∈U
||(g̃ ∗Bu)(t)||∞ (2.14)

as the remainder term and growth term respectively.

The remainder term itself consists of two components, g̃(t) · x(0) and
(g̃ ∗ Γs)(t). The fist part, g̃(t) · x(0), describes the part of the evolution
of the analog state vector coming from the initial state at the beginning
of the control period. The digital control observes a quantized version
of Γ̃x(0) and produces s(t) in response. The second term, (g̃ ∗ Γs)(t),
expresses the effect of this control contribution on the state trajectory.
The goal of the digital control is to make the sum of these contributions
as small as possible, which is achieved by minimizing R(t) for t ∈ [0, T ).

The growth term gives the contribution of the input signal u(t) to ||x(t)||∞
at a time t ∈ [0, T ). As this contribution is not visible to the digital con-
trol until the beginning of the next control period, the magnitude of G(t)
must be kept sufficiently low by properly scaling the gain of the analog
system and the length of the control period, T .

Using these terms, the condition for effective digital control is given by,

max
t∈[0,T )

(R(t) +G(t)) < bx. (2.15)

For certain architectures, this expression could be translated into a set of
design equations, and an analytical stability guarantee may be achieved.
This will be exemplified in section 3.5. Finally, note that it is sufficient
to ensure (R(t) +G(t)) < bx for a single control period t ∈ [0, T ), as this
would imply that the initial state of any subsequent control period would
also be bounded (given a bounded input).
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2.5 Digital Estimator

The digital estimator is producing the final output of the ADC by recon-
structing an estimate û(t) of u(t). Although the actual output of the ADC
will be discrete in time, the output estimate is denoted as a continuous-
time signal. This notation is chosen because the digital estimator creates
a continuous-time mathematical model of the input signal, and the fi-
nal digital output estimates may be computed from this model at an
arbitrary time interval, independent of the control period T .

The estimate is based on the control signals s[k], and the knowledge of
the the corresponding control contribution s(t) and the analog system
parameters. As the implementation of the digital estimator is beyond
the scope of this thesis, a detailed description of the estimation filter
is not part of the necessary theoretical background for the remaining
chapters. Instead of providing a formal treatment of the estimation filter
problem, this section is therefore limited to an intuitive explanation of the
operation principles, and the reader is referred to [6] or [5] for details. The
key takeaways from this section are the filter properties that influence the
overall ADC performance such as bandwidth and signal-to-noise ratio.

As emphasized in the beginning of this chapter, digitally stabilized analog
gain amounts an implicit A/D conversion. The analog system is designed
such that, in the absence of any control, its internal states would quickly
saturate when fed an input signal. The digital control prevents this from
happening by applying the control contribution s(t) to counteract the
internal state growth. The combined effect of these control actions over
time contains information about the input signal, available to the digital
estimator by solving the inverse problem. In other words, by combining
the observed control actions with the knowledge of the complete system
behaviour, it figures out which input signal that most likely triggered the
observed s[k].

2.5.1 Transfer Functions and Filter Bandwidth

The filter that solves this problem happens to be a Wiener filter. The
impulse response and frequency response vector of this filter is denoted
by h(t) : R→ RÑ×1 and H(ω) : R→ CÑ×1 respectively. In practice, the
filter is implemented recursively as a variation of the Kalman smoothing
algorithm, and the impulse response is not used directly in the compu-
tation of û(t). However, a study of the frequency response vector H(ω)
reveals useful insight in critical aspects of the ADC performance and is
therefore included in this section.
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It was shown in [6] that the final output of the estimation filter may be
written as

û(t) = (h ∗ g ∗ u)(t)− (h ∗ y)(t) (2.16)

where h(t) and g(t) are the impulse response vector of the estimation
filter and the analog system respectively, and u(t) and y(t) are the true in-
put signal and the (conceptual) output of the analog system. As the ana-
log system is assumed to greatly amplify the input signal, ||(g ∗ u)(t)||∞
is assumed to be large compared to ||y(t)||∞. This justifies the approxi-
mation

û(t) = (h ∗ g ∗ u)(t)− (h ∗ y)(t) (2.17)

û(t) ≈ (h ∗ g ∗ u)(t), (2.18)

which forms the basis of the derivation of h(t). Any deviation of y(t)
from 0 will introduce an error in the estimate, meaning that −y(t) is the
conversion error seen at the output of the analog system. This error does
not add directly to the final estimate, but is filtered by h(t). From the
Fourier transform of (2.17),

Û(ω) = H(ω)G(ω)︸ ︷︷ ︸
STF

U(ω)−H(ω)︸ ︷︷ ︸
NTF

Y (ω), (2.19)

we recognize H(ω) and G(ω)H(ω) as the noise transfer function (NTF)
and signal transfer function (STF) vector respectively.

With û(t) as in (2.17), the estimation filter is determined by

h(t) = argmin
h̄

E[(û(t)− u(t))2], (2.20)

when u(t) and y(t) are modelled as independent, centered and wide-sense
stationary stochastic processes. The resulting frequency response vector
is given by

H(ω) = NTF =
GH(ω)

||G(ω)||22 + η2
, (2.21)

and the signal transfer function becomes

STF = H(ω)G(ω) =
||G(ω)||22

||G(ω)||22 + η2
∈ R. (2.22)

The parameter η is used as a design variable to set the bandwidth of the
estimation filter. We define the bandwidth of the filter in terms of the
critical frequency ωc as

||G(ωc)||22 = η2. (2.23)
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This definition is meaningful for systems where there exist only one ωc >
0 such that ||G(ωc)||22 = η2 and ||G(ω)||22 > ||G(ωc)||22 ∀ ω ∈ [0, ωc).

When designing the analog system, it might not be intuitive what value
of η that results in the desired filter bandwidth. Hence it is usually more
efficient to work with ωc, or equivalently fc = ωc

2π
, directly and then

calculate the corresponding η from (2.23) when the ATF is known.

2.5.2 Conversion Noise Power

An analytic treatment of the conversion noise power seen at the output
of a control-bounded ADC is found in [5]. The analysis approximates
the conversion error signal, y(t), as being a stationary stochastic pro-
cess, bandlimited to a bandwidth B. Hence, the PSD matrix of y(t) is
approximated by

SyyT ≈ σ2
y|BIM , (2.24)

where σ2
y|B is the standard deviation of y(t) within the bandwidth of

interest.

From this approximation, the conversion noise power observed at the
ADC output is given by

Pε|B ≈
σ2
y|B

2π

∫
ω∈B

1

||G(ω)||22
dω. (2.25)

Although the validity of this approximation is limited, it reveals a useful
insight in the parameters affecting the overall ADC performance. As σ2

y|B
is related to the magnitude of the analog state vector x(t), it is mini-
mized by tightening the state boundary bx. The value of the integral is
minimized by increasing the gain of the analog system. Equation (2.25)
therefore show that low conversion noise is achieved by the combination
of high analog gain and a tight state bound.

The bandwidth of the estimation filter will also influence the amount of
conversion noise seen at the ADC output. In conventional oversampled
converters, lowering the cut-off frequency of the decimation filter would
decrease the total conversion noise, at the expense of reduced bandwidth.
The same trade-off is also present in control-bounded ADCs, which is
seen by considering the ratio between the STF and NTF at the critical
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frequency,

STF(ωc)

||H(ωc)||2
=

||G(ωc)||22
||G(ωc)||22 + η2

(
||G(ωc)||2

||G(ωc)||22 + η2

)−1

(2.26)

= ||G(ωc)||2 (2.27)

= η. (2.28)

2.5.3 Thermal Noise

The influence of thermal noise on the final ADC output is analysed in
[5]. In the analysis, a single thermal noise source, z(t), is modelled as a
stationary stochastic process with flat PSD

Sz(ω) = σ2
z|B, (2.29)

within the frequency band of interest B. The noise source enters at some
point in the analog system, and gz(t) denotes the vector of impulse re-
sponses from this noise source to the output y(t). It is shown in [5] that
the thermal noise error signal seen at the ADC output is given by

εz(t) = (h(t) ∗ gz(t) ∗ z)(t). (2.30)

The contribution to the output noise power is then given by

Pεz , E[εz(t)
2] (2.31)

=
σ2
z|B

2π

∫
B
H(ω)Gz(ω)Gz(ω)HH(ω)Hdω (2.32)

=
σ2
z|B

2π

∫
B

|G(ω)HGz(ω)|
(||G(ω)||22 + η2)

2dω, (2.33)

where Gz(ω) is the elementwise Fourier transform of gz(t). Assuming un-
correlated noise sources, the total contribution of multiple such thermal
noise sources z1(t), z2(t), . . . is given by Pεz1 + Pεz2 + . . . .

2.5.4 Instability

As a final remark, we include a short qualitative discussion of the es-
timation filters behaviour when the analog systems becomes unstable.
As the estimator makes the assumption ||x(t)||∞ < bx ∀t, the estimator
will not be able to detect state vector magnitudes above this threshold.
If |xi(t)| > bx for a certain period of time, the estimator will assume
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|xi(t)| = bx during that time interval. This assumption limits the de-
tectable magnitude of the input signal.

However, due to the low-pass behaviour of H(ω), the estimator will al-
ways provide a smooth output. If for instance u(t) is a sinusoidal signal
with a magnitude |u(t)| > bu, causing |x1(t)| to periodically exceed bx,
the output will still be approximately harmonic and no sharp clipping
will occur. If |u(t)| >> bu, the magnitude of u(t) will be estimated with
very poor precision and harmonic distortion will appear in the output
spectrum. However, if ||x(t)||∞ barely exceeds bx for a short period, the
event might not even be noticeable at the output. In other words, the in-
stability of a control-bounded converter is a non-binary thing, where the
quality of the output is gradually reduced with the degree of instability.
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Chapter 3

High-Level Architecture

In [6], the Chain-of-integrators ADC was presented as the first example
of a control-bounded A/D converter. The simple structure is convenient
for analysis as well as implementation purpose. However, a disadvantage
of the simple chain structure is ths lack of feedback between the different
states. Any error introduced early in the chain will add directly to the
output. Moreover, the transfer function of the analog system has real
poles only, limiting the achievable frequency response to the familiar
−20NdB per decade.

The Leapfrog ADC presented in [5] addresses the mentioned issues by
implementing the analog system as a Leapfrog filter, treated in e.g. [10].
In the Leapfrog filter, all states are connected to each other through the
parallel arrangement of a forward and a backward chain structure. The
filter has the convenient property of minimum sensitivity of components
variations on the transfer function in the pass band [10]. This struc-
ture also enable complex pole pairs in the transfer function and hence a
sharper transition between the pass- and stop-band. As expected from
conventional feedback theory, this structure shows improved tolerance to
harmonic distortion at the expense of reduced DC-gain.

3.1 General Structure

The general structure of the analog system is illustrated in figure 3.1.
The integrators of the analog system are represented by their respective
transfer function β

s+ρ
. The integrator gain, β, relates to the unity gain

frequency, fu, of the integrator by β = 2πfu. The finite DC-gain of inte-
grator i is represented by ρi, and the DC-gain of the integrator is given
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sN(t)

fclk

· · ·

Figure 3.1: The general structure of the Leapfrog ADC

by A0i = βi/ρi.

The Leapfrog ADC differs from the Chain-of-integrators by the addi-
tional feedback paths between neighboring states. The feedback from xi
to xi−1 is achieved through αi, feeding a portion of xi back to the input of
integrator (i− 1). Each integrator is stabilized by a local digital control,
which is represented by a clocked comparator in figure 3.1. The output of
comparator i is the control-contribution si(t) which is scaled by a factor
κi before entering the integrator input.

3.2 Parametrization

The evolution of the state vector is described by

ẋ(t) = Ax(t) + Bu(t) + Γs(t), (3.1)

where

A =


−ρ1 β1α2

β2 −ρ2 β2α3

β3 −ρ3
. . .

. . . . . . βN−1αN
βN −ρN

 , (3.2)

B =
(
β1 · · · 0

)T
, (3.3)

and

Γ =

κ1β1

. . .

κNβN

 . (3.4)

For this local digital control, the control observation s̃(t) coincides with
the state vector x(t) meaning that the control observation matrix Γ̃T =
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IN . As discussed in [6], the output matrix is either

CT = CT
s ,

(
0 · · · 0 1

)
∈ R1×N (3.5)

or
CT = CT

m , IN , (3.6)

where the latter gives the best performance while the former is convenient
for theoretical analysis.

3.3 Transfer Function Analysis

As one of the main motivations for the Leapfrog ADC was the ability
to implement complex poles in the transfer function, the mathematical
relationship between the system parameters and the ATF is a neces-
sary design tool. However, a complete analytical analysis of the ATF
with arbitrary parameters βi, ρi and αi would result in a rather complex
expression, obscuring the essential principles determining the system be-
haviour. The approach of this section is therefore to consider a simple
special case of the analog system, and treat any deviations as perturba-
tions of this starting point. This way, we also reduce the large number
of parameters in (3.2) to a few degrees of freedom, facilitating a more
efficient design process.

The general expression for the transfer function of the analog system is
given by equation (2.3) and may be written as

G(ω) = CT (jωIN −A)−1 B (3.7)

= CT adj (jωIN −A)

det (jωIN −A)
B, (3.8)

where adj(A) and det(A) denotes the adjoint and determinant of a ma-
trix A respectively. To simplify the analysis, only the scalar output case,
i.e. CT = CT

s is considered. In this case the ATF is a scalar and it was
shown in [5] that it may be written as

G(ω) =

∏N
`=1 β`
pN(ω)

, (3.9)

where
pN(ω) = det (jωIN −A) (3.10)

is the N -th order polynomial obtained from computing the determinant
of (jωIN −A).
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3.3.1 A Special Case

The remaining part of the analysis will be centered around the special
case where

β1 = β2 = · · · = βN = β, (3.11)

α2 = α3 = · · · = αN = −
ω2
p

4β2
, (3.12)

and
ρ1 = ρ2 = · · · = ρN = 0. (3.13)

According to [5], the poles of this system is given by

pN(ω) =
N∏
k=1

(
jω − jωp cos

(
kπ

N + 1

))
. (3.14)

This particular parametrization describes a system where all integrators
have infinite DC-gain and the same integrator gain β. Moreover, the
feedback coefficient α is equal for all integrators and relates to β through
the pole frequency parameter ωp by equation (3.12).

From equation (3.14) it is clear that this system has complex conjugated
pole pairs, placed at the imaginary axis in the s-plane. Additionally, for
odd numbers of N there will also be a pole at the origin. The highest
frequency pole, given by ωp,max = ωp cos

(
Nπ
N+1

)
, will approach ωp asymp-

totically as the system order N is increased. The lower frequency poles
will be distributed according to (3.14), and the spacing between the poles
will decrease with pole frequency.

Figure 3.2 shows the ATF, NTF and STF of the Leapfrog ADC for N =
3, N = 5 and N = 8. In this system, β = 2π40 MHz, the bandwidth is
set to fc = 10 MHz, cf. (2.23), and ωp = 2πfc. The figure confirms the
above analysis, showing that the highest pole frequency approaches the
cut-off frequency of the STF as the filter order is increased.

To see the advantage of complex poles in the NTF, consider figure 3.3,
which compares the transfer functions of a 4th order Leapfrog to that
of a Chain-of-integrators. The parameters β, ωp and fc are the same as
in figure 3.2. The figure shows that the peak of the NTF is approxi-
mately 10dB higher for the Chain-of-integrators than for the Leapfrog.
The DC gain of the plain chain structure is higher due to the lack of neg-
ative feedback, causing a much greater suppression of conversion noise
for low frequencies compared to the Leapfrog. However, the more evenly
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Figure 3.2: Comparison of Leapfrog noise and signal transfer functions
for different system orders

distributed quantization noise suppression of the Leapfrog will typically
increase the overall performance in the presence of thermal noise.

Finally it should be noted that the Leapfrog ADC will have ripples in the
pass band. The origination of these ripples is understood from equation
(2.22) when considering that G(ω) is not strictly decreasing in ω. At
the pole frequencies, ||G(ω)||2 = ∞ and STF = 1. Between the pole
frequencies, ||G(ω)||2 < ∞ =⇒ STF < 1, which is seen as pass band
ripples.

For a given bandwidth, the amount of ripples depends on the parameter
ωp. Figure 3.4 shows the NTF and STF for the 4th order Leapfrog with
three different choices of ωp for the same fc. The ripples may be limited
by reducing ωp at the expense of a weaker quantization noise suppression.
In this thesis, ωp = 2πfc is considered an adequate trade-off.

3.3.2 On the Choice of High-Level Architecture

The Leapfrog filter is one example of an analog system that enables
the implementation of an arbitrary transfer function G(ω). As for Σ∆
modulators, a target loop-filter transfer function could be realized with
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Figure 3.3: Comparison between the noise and signal transfer function of
the Leapfrog and the Chain-of-integrators ADC, for a 4th order system
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a number of different architectures. However, the choice of architecture
in a Σ∆ modulator is mainly related to practical considerations such as
linearity and stability [8]. These issues arise from the fact that a (single
stage) higher order Σ∆ modulator has only one quantizer in combination
with a rather complex loop filter. The choice of architecture will have
significant impact on the signal magnitudes processed by different active
components, and consequently the linearity and system stability.

As each gain element of the control-bounded converter is stabilized by a
dedicated control-loop, its stability and linearity is not as sensitive to the
choice of architecture, compared the Σ∆ modulator. There are probably
other analog systems than the Leapfrog with interesting and favorable
properties, but we argue that the choice of architecture is not as critical
for the design of a control-bounded converter as for a Σ∆ modulator. The
Leapfrog structure was chosen for the sake of convenient implementation
and because a theoretical analysis already exists.

Furthermore, the special case given by equations (3.11) to (3.13) is a
considerable limitation of the design space associated with the Leapfrog
analog system. Except for tuning ωp to set the trade-off between pass-
band ripples and quantization noise suppression, no effort has been made
to find an optimal pole placement.

As highlighted previously in this thesis, a key part of the design strategy
is to rely on digital calibration to avoid spending power on implementing
high-precision analog circuitry. The involved parameters will be allowed
to have significant variations over process, voltage and temperature and
the analog transfer function should be designed with a sufficient perfor-
mance margin to account for these variations. With this design strategy,
finding an optimal set of parameters is of limited interest, as the resulting
implementation will have considerable variations around this optimum
anyway.

3.4 Deviations from Ideality

The special case treated above is considered the ideal case for the Leapfrog
ADC, as all integrators have infinite DC gain. This can of course not be
the case for real integrators, and the effect of finite DC gain is therefore
analysed in this section. We also study the effect of nonlinearities in the
integrators on the overall ADC performance.
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3.4.1 Finite DC Gain

The effect of finite DC-gain could be treated analytically be computing
3.10 for ρ1−N 6= 0. In the special case of ρ1 = ρ2 = · · · = ρN = ρ, the
poles of the system are given by

pN(ω) =
N∏
k=1

(
(jω + ρ)− jωp cos

(
kπ

N + 1

))
. (3.15)

In this case, all poles have the same frequency as in the case of infinite
DC-gain, but their position is shifted to the left of the imaginary axis
by ρ Hz. When the integrators have different DC-gain, the expression
for pN(ω) is more involved, but the intuition is the same; the poles are
shifted off the imaginary axis, causing more shallow notches in the noise
transfer function.

The effect on the noise and signal transfer functions is illustrated in
3.5, for different values of the DC-gain A0. The transfer functions are
computed for a 4th order system where β and ωp is the same for all
integrators. The pole displacement off the imaginary axis is clearly seen
for the case of A0 = 100. The poles are visible in the NTF, but the
notches are not as deep as for the system having a DC-gain of 1000.
When A0 = 10, the poles are no longer visible in the transfer function.
Note also that due to the small ||G(ω)||2, STF < 1 for ω < ωc.

For reasons that will be clear when considering transistor level imple-
mentations in a later chapter, it is of special interest to analyze the
transfer functions of a system with very small DC-gain only in the first
integrator stage. The transfer functions of such a system is illustrated
in figure 3.6. The figure shows a system where the first integrator has a
DC-gain of A01 = 10 while the remaining 3 integrators has a DC-gain of
A0(2−4) = 100. The system where A0 = 100 for all integrators is included
for reference. Although the shape of the NTF is clearly affected by the
small A01, the STF is almost identical for the two systems. The key take-
away from this figure is that a small DC-gain of the first integrator could
be tolerated, conditioned on a higher A0 in the later stages.
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3.4.2 Harmonic Distortion

The effect of nonlinear integrators on the overall system performance is,
to the best of our knowledge, not treated in literature. This is studied
by evaluating a behavioural simulation of the analog system using the
Spectre circuit simulator [11]. In this simulation, the integrators are im-
plemented as Gm-C integrators, where the transconductors are modelled
as ideal voltage-controlled current-sources and the input voltage of the
transconductor is integrated by charging the capacitor C, as shown in
figure 3.7. In the ideal case, io(t) = Gmvi(t) and

vo(t) =
1

C

∫ t

0

Gmvi(τ)dτ. (3.16)

The nonlinear behaviour is studied by including a second order term in
the I-V relationship of the transconductor, such that

io(t) = Gmvi(t) +G2v
2
i (t). (3.17)

−

+

Gm

vi io

C

vo

Figure 3.7: Ideal Gm-C integrator used to study nonlinearity

If we assume the input vi(t) to be a sinusoidal given by vi(t) = A cos(ωt),
then

io(t) = GmA cos(ωt) +G2A
2 cos2(ωt) (3.18)

=
1

2
+GmA sin(ωt) +G2

A2

2
cos(2ωt). (3.19)

The second order harmonic distortion of the transconductor is then given
by

HD2 =
A

2

G2

Gm

. (3.20)

The actual inputs to the integrators of figure 3.1 is however far from
sinusoidal. Even with a one-tone test signal, the one-bit control loop
will typically dominate the integrator inputs, making the analysis non-
trivial. Nevertheless, the simple result of (3.20) is still useful as a basis
for comparison with simulation results.
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The effect of nonlinearity is studied by simulating a 4th order Leapfrog
ADC, where all integrators are modelled with infinite DC-gain of A0 =
100. The bandwidth is fc = 10 MHz, all integrators has β = 2π40 MHz
and ωp = 2πfc. A second order coefficient G2 = Gm/10 is added to the
transconductor model of one of the integrators. A sinusoidal with an
amplitude of 100mV is applied to the input. The estimated power spectral
density (PSD) of û(t) is shown in figure 3.8, when the nonlinearity is
introduced in the first (black), second (red) and third (green) integrator.
The theoretical NTF is included for reference. A quantitative summary
is given in table 3.1.
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Figure 3.8: Simulated PSD of û(t) for the Leapfrog ADC, when the first
(black), second (red) and third (green) integrator has a nonlinear coeffi-
cient of G2 = Gm/10

As expected, the system is mostly sensitive to nonlinearities introduced
in the first integrator. When only the first integrator has a nonlinear term
of G2 = Gm/10, an HD21 = −48dB appear in the PSD of the ADC output.
As a reference, the theoretical expression of equation (3.20) evaluates to

HD2r1 = 20 log

(
100 mV

2

1

10

)
= −46 dB. (3.21)

Hence, the harmonic distortion generated by the first integrator seem
to add more or less directly to the final ADC output. The fact that
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Table 3.1: Summary of Nonlinearity Analysis

Parameter
Non-Linear Integrator

First Second Third

HD2 −48dB −94dB N.A.
SNR −74dB −72dB −75dB
SNDR −48dB −71dB −75dB

the HD21 < HD2r1 could be understood by considering that the con-
trol contribution constantly counteracts the state growth, such that the
magnitude processed by the first integrator will always be somewhat less
than the amplitude of the input signal.

Furthermore, due to the feedback-loops of the system, part of the second
harmonic energy is “smeared out” in the power spectrum, giving rise to
an increased noise floor compared to the theoretical NTF. This effect is
particularly evident when the nonlinear term is introduced in the second
integrator. In this case, the HD2 is reduced to −94 dB at the expense of
a slight increasement in conversion noise. As a result, the SNR is almost
equal to the signal-to-noise-and-distortion ratio (SNDR) in this case.

To put this number in perspective, consider the HD2 obtained by dividing
HD21 by the DC-gain of the first integrator. This would give a second
harmonic of

HD2r2 = −48 dB− 20 log (100) = −88 dB, (3.22)

which is 6 dB higher than the observed HD22.

When only the third integrator has a nonlinear contribution, the HD2
is no longer visible in the final output of this simulation, and the power
spectrum follows the theoretical NTF closely.

In summary, harmonic distortion generated by the first integrator of the
analog system appear to add more or less directly to the final ADC out-
put. The components implementing this integrator should therefore have
as good linearity performance as the overall ADC. However, the Leapfrog
ADC seem to be very robust against harmonic distortion introduced by
the remaining integrators, which could therefore be implemented with
relaxed requirements.
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3.5 Stability

In [5], an analytical analysis of the conditions for effective digital control
for the Chain-of-integrators ADC is given. It is shown that the local
digital control ensures global stability by recursively bounding each state
of the analog system, and conditions for the parameters T , β and κ are
given.

In this section we extend the analysis to cover the Leapfrog analog sys-
tem. We show that the same recursive argument applies, even though
there are additional feedback paths in the analog system. Although an
ideal integrator is a simple first order system, any physical implementa-
tion will have additional poles and zeros in the transfer function. The
analysis will therefore consider a more general transfer function for the
integrators. The implications of digital delay, clock jitter and comparator
offset on the stability will also be considered.

The overall goal of this section is show the following:

• For any practical integrator implementation, effective control may
be guaranteed by proper choice of control gain κ and control period
T .

• With the same conditions on κ and T , if the system becomes un-
stable due to a strong input signal, the system will always recover
to a stable state when the magnitude of the input is decreased.

3.5.1 Conditions for Effective Digital Control

The conditions for effective digital control could in principle be found
from (2.15), by evaluating R(t) and G(t) for the system described by
(3.2)-(3.4). However, the calculation would be rather involved due to
the matrix exponential in g̃(t) = exp(tA), and a recursive approach is
therefore preferred for the sake of a tractable analysis.

Initial Assumptions

The stability of the system could be analyzed recursively by treating x2(t)
as a second input signal, independent of x1(t). Although this assumption
is obviously not true, it can only make the analysis more conservative as
stability in this case must be ensured for the worst possible x2(t). The
situation is illustrated in figure 3.9, which shows the first stage of the
Leapfrog analog system with x2(t) modelled as an extra input and the
integrator gain, β1, factorized out of the integration node.
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When β1 is factorized out of the impulse response, we refer to the re-
maining factor as the normalized impulse response, denoted by g̃1(t). For
an ideal integrator with an infinite DC-gain, g̃1(t) = 1. However, a finite
DC-gain could be represented by a leakage term, ρ, in the normalized
impulse response, such that g̃1(t) = e−ρt. Furthermore, the normalized
step response will be denoted by

step1(t) = (g̃1 ∗ uh)(t), (3.23)

where uh(t) refers to the Heaviside step function.

In the following analysis, the normalized impulse response is assumed to
be non-negative and upper bounded as

0 ≤ g̃1(t) ≤ 1 ∀t ∈ [0, T ). (3.24)

A justification of this assumption is given in appendix B.

u(t)

x2(t)

+ g̃1(t)

κ1

α2

β1

<

x1(t)

s1(t)

fclk

Figure 3.9: The first stage of the Leapfrog analog system, when the in-
tegrator gain β1 is factorized out of the integration node and x2(t) is
modelled as an additional independent input signal.

Evaluating the Growth and Remainder Term

Let
R1(t) = max

x1(0)∈[−bx,bx]
|g̃1 · x1(0) + (g̃1 ∗ β1κ1s1)(t)|, (3.25)

and

G1(t) = max
u(t)∈U ,x2(t)∈X

|(g̃1 ∗ β1u)(t) + (g̃1 ∗ β1α2x2)(t)| (3.26)

denote the growth and remainder term for the first stage, respectively.
By the assumption of equation (3.24), the remainder term is bounded as
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R1(t) ≤ max
x1(0)∈[−bx,bx]

|x1(0) + (g̃1 ∗ β1κ1s1)(t)|, (3.27)

By the triangle inequality, G1(t) is upper bounded as

G1(t) ≤ Gu
1(t) +Gx2

1 (t), (3.28)

where
Gu

1(t) , max
u(t)∈U

|(g̃1 ∗ β1u)(t)| (3.29)

and
Gx2

1 (t) , max
x2(t)∈X

|(g̃1 ∗ β1α2x2)(t)| (3.30)

is the growth term contribution from the input u(t) and the second state
x2(t) respectively. The condition for effective digital control is then writ-
ten as

max
t∈[0,T )

(Gu
1(t) +Gx2

1 (t) +R1(t)) < bx. (3.31)

Before (3.31) can be evaluated, the worst case (but bounded) signals
u(t) and x2(t), for t ∈ [0, T ), must be determined. For a system with
normalized impulse response g̃1(t), max

t∈[0,T )
|x1(t)| is maximized by the input

signal

u(t) =

{
bu if g̃1(t) ≥ 0

−bu if g̃1(t) < 0
(3.32)

and

x2(t) =

{
bx if g̃1(t) ≥ 0

−bx if g̃1(t) < 0
(3.33)

Hence, by the assumption of equation (3.24), the growth terms is evalu-
ated as

Gu
1(t) = max

u(t)∈U
|(g̃1 ∗ β1u)(t)| = buβ1step1(t) (3.34)

and

Gx2
1 (t) = max

x2(t)∈X
|(g̃1 ∗ β1α2x2)(t)| = bxβ1α2step1(t) (3.35)

In the following, assume that the threshold of the digital control is such
that

s1(t) =

{
+1 if x(0) ≥ 0

−1 if x(0) < 0
(3.36)
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When evaluating the remainder term, two extreme cases must be consid-
ered. The first case is when x(0) ≈ 0, causing the contribution from the
control to superimpose with the growth term. The second extreme case is
when x(0) = bx, at which the control must reduce the magnitude of the
state at a rate higher than the growth rate. As a result, the remainder
term could be expressed as

R1(t) = max
x1(0)∈[−bx,bx]

|g̃1(t) · x1(0) + (g̃1 ∗ β1κ1s1)(t)| (3.37)

≤ max
x1(0)∈[−bx,bx]

{κ1β1step1(t), bx − κ1β1step1(t)} (3.38)

The Conditions for Effective Control

The conditions for effective control is then found by evaluating the ex-
pression (3.31) for the two extreme cases, giving

(bu + α2bx + κ1) · β1step1(T ) < bx (3.39)

and
(bu + α2bx − κ1) · β1step1(T ) + bx < bx, (3.40)

which may be simplified to

κ1 > bu + α2bx (3.41)

step1(T ) <
1

β1

bx
bu + α2bx + κ1

. (3.42)

For a given integrator, the control gain κ1 could then be chosen accord-
ing to (3.41) and finally the control period T according to (3.42). This
approach will ensure that the next node of the system also receive a
bounded input. By applying this approach to each stage, an effective
control is recursively guaranteed for the whole analog system.

Finally, it is worth to note that for systems with α < 0, the additional
feedback paths of the Leapfrog analog system reduces the requirements
on the digital control, relative to that of the Chain-of-integrators. In other
words, if a digital control is effective on a Chain-of-integrators analog
system, introducing feedbacks α < 0 will only improve the stability.

3.5.2 Digital Delay and Clock Jitter

Let t = 0 denote the time when a new control contribution enters the
analog system. If the control loop was completely delay-free, then s(t), t ∈
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[0, T ) would be produced by the digital control as a response to Γ̃x(0).
However, in a real system there will be some delay ∆T from the digital
control is activated by the clock signal, to the control contribution enters
the analog system. This could be accounted for by replacing x1(0) by
x1(−∆T ) in the above analysis, which would not change the result.

Clock jitter will cause the control period to vary with time. A stability
margin could be introduced to account for this effect by lowering the
(target) clock period T . An effective control could then be guaranteed,
also when T is increased from its nominal value.1

3.5.3 Comparator Offset Voltage

In the analysis of section 3.5.1, the digital control observing x1(t) was
assumed to have a threshold at x(0) = 0. In a real circuit implementation
however, there will be an offset on the threshold voltage. By returning to
the two worst-case scenarios of the remainder term, equation (3.37), it is
evident that a threshold offset will only influence the case when x(0) ≈ 0.
Assume the (worst case) threshold voltage of the comparator is δc, such
that equation (3.36) modifies to

s1(t) =

{
+1 if x(0) ≥ δc

−1 if x(0) < δc
(3.43)

In consequence, the conditions for effective control modifies to

κ1 > bu + α2bx (3.44)

step1(T ) <
1

β1

bx − |δc|
bu + α2bx + κ1

. (3.45)

Equation (3.45) shows that an offset in threshold voltage could be ac-
counted for by reducing the βT product. To maintain the stability guar-
antee, a reduction of |δc|

bu+α2bx+κ1
is required. Reducing T , by increasing the

clock frequency, will typically increase the power consumption, whereas
reducing β amounts to increased conversion noise power, cf. (2.25). The
required reduction in the βT product could be reduced by allowing a
larger state magnitude, i.e. increasing bx. This would however also in-
crease conversion noise according to equation (2.25).

1It is worth to note that although digital delay and clock jitter is not a big issue
from a stability point of view, it would have a significant impact on the quality û(t)
if not accounted for by the digital estimator.
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However, if the system is designed such that an offset of δc does not make
the control ineffective, the quality of û(t) will not be affected at all. Note
also that this holds for static as well as time-varying offsets, given that
the maximum offset voltage is upper bounded by δc.

3.5.4 Return to Stability

It is a common issue that if a higher order Σ∆ modulator becomes un-
stable, it might never return to stability, even when the magnitude of
u(t) is decreased [9]. We now show that if κ1 and T is chosen according
to (3.41) and (3.42), the Leapfrog analog system will always return to
stability if |u(t)| is reduced below bu.

Let κ1 = bu+α2bx+δκ, where δκ > 0 is the margin on the control gain cf.
equation (3.41). From (3.42), the control period is then upper bounded
by

step1(T ) <
bx

β1 (bu + α2bx + κ1)
(3.46)

=
bx

β1 (2(bu + α2bx) + δκ)
(3.47)

=
1

β1

(
2
(
α2 + bu

bx

)
+ δκ

bx

) (3.48)

Assume that |x2(0)| = bx + δx2 > bx due to the recent presence of an
unbounded input signal. To show that the system will return to stability,
we again consider the two extremes, i.e. when |x1(0)| ≈ 0 and when
|x1(0)| = bx + δx1. For the first case, it must be shown that |x1(T )| <
bx + δx2 for |x1(0)| = 0. This would imply that the next input to the
subsequent stage is less than its previous output, which by recursion
ensures that the system will return to stability. In this case, |x1(T )| is
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given by

|x1(T )| < (bu + α2(bx + δx2) + κ1)β1 · step1(T ) (3.49)

= α2δx2β1 · step1(T ) + (bu + α2bx + κ1)β1 · step1(T )︸ ︷︷ ︸
<bx by (3.39)

(3.50)

< α2δx2β1 · step1(T ) + bx (3.51)

< α2δx2β1 ·
1

β1

(
2
(
α2 + bu

bx

)
+ δκ

bx

) + bx (3.52)

= δx2
α2

2
(
α2 + bu

bx

)
+ δκ

bx

+ bx (3.53)

< δx2 + bx (3.54)

For the other extreme scenario, |x1(0)| = bx + δx1 > bx. It must now be
shown that |x1(T )| < bx + δx2 + δx1, as this would by the same argument
ensure that the system returns to stability. |x1(T )| is now given by

|x1(T )| < (bu + α2(bx + δx2)− κ1)β · step1(T ) + bx + δx1 (3.55)

= α2δx2β1 · step1(T )︸ ︷︷ ︸
<δx2

+ (bu + α2bx − κ1)β · step1(T ) + bx︸ ︷︷ ︸
<bx by (3.40)

+δx1

(3.56)

< bx + δx2 + δx1, (3.57)

which concludes the proof.

3.5.5 Tuning Parameters by Computer Simulations

As seen from expression (2.25), the overall performance of the ADC is
improved by increasing the gain of the analog system. Increasing the
gain for a given control period T , would imply increasing the βstep1(T )
product. The conditions (3.41) and (3.42) guarantees that the system
will remain stable for any combination of a bounded input signal and
initial state vector. Designing the system for a stability guarantee will
for most of the time result in a large stability margin, meaning that there
are potential performance increasement not being utilized. The preferred
way of tuning κ and T is therefore through extensive use of computer
simulations, thereby accepting a risk of instability for certain bounded
input signals. The theoretical conditions presented above will however
still serve as a useful starting point.
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It should be noted that even though the conditions for effective control is
violated, the system will still recover to stability the same way as shown
in section 3.5.4. To see this, assume that κ1 and T is such that condition
(3.41) and (3.42) is violated. Furthermore, assume that the system is
self-stable, i.e. stable when u(t) = 0 ∀t, which requires step1(T ) < 1/βκ.
Given that the assumption of equation (3.24) still holds, there will exist
other boundaries b̂u < bu and b̂x < bx for which an effective control is
still guaranteed. Suppose that ||x(t)||∞ exceeds bx at some time t due to
a an input b̂u < |u(t)| < bu. By replacing bu and bx by b̂u and b̂x, the
same argumentation as above could be used to show that the system will
return to stability when the magnitude of the input signal is reduced.
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Chapter 4

Software Tools

The scope of this thesis is limited to design considerations for the analog
system and the digital control of the Leapfrog ADC. However, as the
control signals s[k], relates to the final ADC output û(t) in a nontriv-
ial way, an offline implementation of the digital estimator is needed for
evaluating the performance of these systems. For this purpose, we use
the recently published Python package Control-Bounded A/D Conver-
sion Toolbox, written by Hampus Malmberg [12]. The package provides
tools for simulating a parametric system on a state-space equation level,
evaluating transfer functions as well as several different implementations
of the digital estimation filter.

4.1 Python Based Analog Design Environ-

ment

To interface with this toolbox, a custom Python framework for ana-
log circuit simulation, called Python based Analog Design Environment
(PADE), is developed. The package is primarily written for personal us-
age and the documentation is currently thereafter. The curious reader
might check out the latest version on github [13]. The package aims to
provide a Python-alternative to the most essential functionality of the
Cadence Virtuoso Analog Design Environment, which is considered the
industry standard of software tools for analog circuit design. The package
covers three main topics, schematic generation, simulation and evalua-
tion.

Circuit schematics are generated in an object-oriented way, using the
four abstract classes Design, Cell, Terminal and Net. A component is
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declared as a new class inheriting from Cell. In the constructor, subcells
are instantiated and stored as attributes, by connecting their terminals
to internal nets of the cell. Finally, a testbench is declared as a new class
by inheriting from Design. Inside its constructor, components, stimuli
and supply voltage are connected to nets, similar to the construction of
a cell.

The convenience of this approach is that the design procedure could
easily be parameterized and repetitions can be executed in for-loops.
This way, major changes on both component and system level may be
achieved by modifying a few parameters on top level. Chain-structures
like the Leapfrog analog system is particularly well-suited for this design
methodology, as the order of the system is controlled by a single param-
eter N . The unity-gain frequencies of the different integrators could also
be controlled efficiently by parameterizing W/L ratios of the transistors,
bias currents and capacitor values. This approach has shown to be signif-
icantly time-saving, compared to the conventional method of manually
drawing circuit schematics in a graphical user interface.

Spectre is used for circuit simulations in this project, and the interface to
the simulator is handled by the a custom Spectre class. The constructor
takes a design object, a list of analyses to run and eventual options and
info statements. The Spectre object compiles the netlist and runs the
simulation using the command line interface, typically at a remote server.

The raw simulation data are parsed using the psf-utils python package
written by Ken Kundert [14]. The functionality of this package is wrapped
in a custom PSFParser class, which includes some additional helper func-
tions for accessing traces from different analyses, corner simulations etc.
The framework integrates with Numpy and Scipy for evaluation raw data,
and Pandas for convenient representation of results.

Monte Carlo (MC) simulations is performed using the montecarlo anal-
ysis statement of spectre. For corner simulations, the same simulation is
run several times with different settings specified for process file, temper-
ature and eventually supply voltage.

To limit the amount of code needed for a single simulation script, this
functionality is handled in the high-level Test class. For the reader that
is experienced with Cadence Virtuoso, the Test class is equivalent to
the Explorer view. A Test object is instantiated with a Design, analy-
ses, corners (or MC) settings and expressions. By running the test, the
expressions are evaluated for each corner/MC run and a result table is
generated. The complexity of the expression could be anything from a
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simple np.abs() to a function performing offline calibration, running the
reconstruction filter, calculating PSD and returning SNR and harmonic
distortion. Due to the versatility of the Test class, the amount of code
needed for simulating a new design is limited, and a single top-level script
could be used on several different designs.

The simulation process typically start by declaring a testbench class in-
heriting from Design. This testbench class is then instantiated in a top
level script, from which simulation, parsing and evaluation is handled. A
few examples are available on GitHub.

4.2 Offline AC Calibration

The digital estimator is parameterized by the matrices A,B,CT,Γ, Γ̃,
the bandwidth parameter η and the control period T . Even for a nom-
inal computer simulation, finding the matrix coefficients that actually
describes the implemented system might be cumbersome, as several ca-
pacitors and transistor parameters will be involved. Furthermore, even
minor changes in the circuit might affect several parameters and recalcu-
lation of matrix coefficients would therefore be time a consuming task.

The fact that the parametrization of the digital estimator at any time
need to match the behaviour of the analog system, introduce an addi-
tional complicating factor when working with control-bounded convert-
ers. Errors due to wrong filter coefficients could show up as harmonic
distortion or increased noise floor in the power spectrum of û(t). It could
therefore be hard to tell if the observed errors comes from the actual
circuit implementation, or just the wrong filter coefficients.

To address these issues, an offline calibration algorithm is implemented.
The algorithm calibrates the system in the frequency domain using a lin-
earized ac analysis. The algorithm calibrates the A and B matrices, but
the control matrix Γ is still calculated manually. The A and B matrices
are calibrated using a simple ac source at the input of the analog system
and the system does not need any modifications before calibration. Cal-
ibrating the control matrix Γ would on the other hand require multiple
runs, with an ac source connected to one of the control signal inputs for
each run. As the coefficients of Γ typically relates to β by some scale
factor, it was considered more convenient to calculate these parameters
manually.

The ac analysis performs a frequency sweep of length L from f1 to fL.
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The input vector

U(jω) = (U(jω1), U(jω2), · · ·U(jωL)) ∈ C1×L, (4.1)

the state matrix

X(jω) =


X1(jω1) X1(jω2) · · · X1(jωL)
X2(jω1) X2(jω2) · · · X2(jωL)

...
XN(jω1) XN(jω2) · · · XN(jωL)

 ∈ CN×L (4.2)

and its derivative

Ẋ(jω) =


jω1X1(jω1) jω2X1(jω2) · · · jωLX1(jωL)
jω1X2(jω1) jω2X2(jω2) · · · jωLX2(jωL)

...
jω1XN(jω1) jω2XN(jω2) · · · jωLXN(jωL)

 ∈ CN×L

(4.3)
is created from the simulation output.

From (2.2) we write

Ẋ(jω) = BU (jω) + AX(jω) (4.4)

Ẋ(jω) =
[
B A

] [U(jω)
X(jω)

]
(4.5)

[
U(jω)T X(jω)T

] [BT

AT

]
= Ẋ(jω)T (4.6)

The system of linear equations (4.6) will typically not have an exact
solution. Let

ˆ̇X(jω)T ,
[
U(jω)T X(jω)T

] [BT

AT

]
. (4.7)

We then formulate the calibration as a least squares problem and find
the coefficients of A and B such that the average square error (ASE)

ASE =
1

NL

∑
n,`

∣∣∣ ˆ̇X(jω)Tn,` − Ẋ(jω)Tn,`

∣∣∣2 (4.8)

is minimized. The matrix [B A]T that minimizes (4.8) is given by the
linear equations[

U (jω)T X(jω)T
]H ˆ̇X(jω)T =

[
U(jω)T X(jω)T

]H
Ẋ(jω)T (4.9)
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which is solved using the Scipy linear algebra package (see e.g. [15] for
reference on higher dimensional least squares problems).

The choice of start and stop frequency, f1 and fL, and the number of
frequency points, L, will have a significant impact on the quality of the
calibration. The frequency range should at least include the unity gain
frequency of the integrators as well as any pole frequencies. The frequency
range used in this implementation was f1 = 100kHz and f2 = 1GHz.
Increasing L will typically yield better performance at the expense of
increased simulation and computation time. L = 1000 is considered an
adequate trade-off in this thesis.

The calibration algorithm has shown to estimate the parameters β, α, κ
and ρ with very high precision. The remaining matrix coefficients how-
ever, whose true value is zero, might be given with large non-zero values.
These coefficients are therefore manually zeroed before initializing the
digital estimator.

4.3 Project Specific Software

As PADE is written to be a general purpose toolbox for analog circuit
design, any control-bounded ADC specific functionality is placed in a
separate repository. Due to confidential, technology-specific information,
this repository is not available to the public.

The repository contains top-level scripts, project-specific libraries and
utility functions. The library contains class declarations inheriting from
Design (testbenches) and Cell (components). It has been find convenient
to keep the top-level scripts as general as possible and keep architecture
specific parameters inside the testbench classes. The ac calibration al-
gorithm described above is placed in the utility module together with
functions for running the estimation filter, evaluating PSD etc.

45



Software Tools

46



Chapter 5

Design Considerations

Chapter 3 introduced the Leapfrog analog system and digital control
on a behavioural level. The essential theoretical background and effects
of important non-idealities on the transfer function was studied. In this
chapter we explore the design space associated with the implementation
of this system on transistor level.

Several crucial design choices remains for the transition from this system
of state-space equations to an electrical circuit implementation. Up until
this point of the thesis, we have treated all signals, u(t), x(t), s(t) etc.,
as unitless, information carrying quantities. When creating a circuit im-
plementation of the desired state-space model, these information signals
must be assigned to currents or voltages of different nodes of the analog
system. The different physical properties of the two domains introduce
an additional complicating factor into the design process.

In a future continuation of this project, a complete ADC will be designed
to meet the specifications listed in table 1.1 with the smallest possible
power consumption. Rather than achieving a complete functional imple-
mentation, the primary focus of this work have been to look for unconven-
tional solutions exploiting the unique properties of the control-bounded
conversion framework. By exploring challenges and opportunities with
different architectures we seek to provide a useful background for future
development.

The chapter is structured as follows. Section 5.1 is concerned with the
choice of integrator topology for the first stage of the system. In sec-
tion 5.2, we study architectural implementation challenges associated
with the implementation of the summation nodes and behavioural sim-
ulation results is presented. section 5.3 presents circuit ideas for the in-
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volved active components and the effect of their non-ideal behaviour on
the overall ADC performance is studied. Finally, section 5.4 concludes
the chapter and summarize the key results of the design considerations.

5.1 The First Integrator

As with most conventional low-power ADCs, thermal noise will be a
major performance limiting factor. The general effect of thermal noise
was analyzed in section 2.5.3 and equation (2.33) gives the contribution
to the total output noise power for a thermal noise source entering at
some position of the analog system. As expected, the noise contribution
is most significant for the sources entering early in the signal flow, where
||Gz(ω)||2 is largest. Although the effect of non-linear active components
is not analysed analytically, we showed in section 3.4.2 that the output
estimate is mostly sensitive to harmonic distortion in the first stage.
Together with the need for single-ended to differential conversion, these
requirements makes the first integrator a critical design challenge.

The analog system of a control-bounded converter shares several similar-
ities with the loop filter of continuous-time Σ∆ modulators in terms of
the analog signal processing tasks required. State-of-the-art solutions for
these modulators is therefore a natural place to look for inspiration on
the design of the control-bounded converters analog system.

5.1.1 Discussion of Prior Works

For applications where a low input impedance is tolerated, an operational
transconductance amplifier (OTA)-RC based integrator is a popular choice
due to its excellent linearity performance [16]. However, according to the
specifications of table 1.1, high capacitive input impedance is required,
which excludes this topology at least for the first stage.

Gm-C based integrators on the other hand, provides inherently high in-
put impedance, but additional linearization techniques are typically re-
quired due to the non-linear open-loop Gm-cell. Source degeneration is
a popular way of linearizing the transconductor at the expense of in-
creased current consumption. A spurious-free dynamic range (SFDR) of
about 90 dB is reported in state-of-the-art Gm-C based Σ∆ modula-
tors [17–19]. For a degeneration resistance of Rs, an effective transcon-
ductance of Gm,eff ≈ 1

Rs
is achieved, given that gm1 >>

1
Rs

when gm1 is
the transconductance of the input transistors. However, this implies that
the noise generated by this resistor will add directly to the input referred
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noise voltage of the transconductor [20]. Reducing this noise contribution
by reducing Rs would require a higher gm1 for the same linearity perfor-
mance. A significant bias current would therefore be required in order to
simultaneously achieve sufficient linearity and noise performance.

A discussion of additional linearization techniques for Gm-C based Σ∆
modulators is found in [20]. These are all based on using the feedback
DAC of the modulator to reduce the input voltage magnitude processed
by the transconductor. As the digital control of the Leapfrog ADC pro-
vides a one-bit feedback, the voltage swing reduction achievable from this
approach is in our case limited.

An alternative approach is to use an RC low-pass filter as a passive
integrator, which is shown to be an energy-efficient alternative to a power-
hungry OTA at the ADC input [21, 22]. However, due to the resistive
input impedance, this solution cannot be applied directly when a high
capacitive input impedance is needed.

5.1.2 LNA Driven, Passive Integrator

The proposed solution is shown in figure 5.1. It comprises a passive RC
integrator, driven by an LNA. This approach achieves single ended to
differential conversion and utilizes the good linearity and low noise per-
formance of the OTA, without the need for a resistive input. The input
signal u(t) is amplified by −C1

C2
and the integration is obtained by charg-

ing Cβ1 through the resistor Rβ1. The voltage on this capacitor is treated
as the first stage signal x1(t), which is observed and stabilized by a local
digital control.

Two solutions are considered for the interface between the control signal
s1(t) and the state x1(t). The architecture presented in [21] use a resis-
tive DAC (RDAC) for the modulator feedback. Adapting this solution to
the 1-bit control-bounded converter would result in the implementation
marked red on figure 5.1. The main disadvantage of this approach is that
the comparator used for digital control would need to drive a resistive
load, and a voltage buffer would be required at its output. Moreover,
connecting an additional resistor to the x1 node would influence the
behaviour of the passive integrator. This might not be a fundamental
problem, but the reconstruction filter would need some modifications in
order to account for this effect.

A simpler solution from an implementation point of view, is to feed the
control signal to the virtual ground of the OTA via a capacitor Cκ1 (in-
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dicated in blue on figure 5.1). As Cκ1 could be very small, the design
requirements on the comparator is relaxed, enabling a more power effi-
cient implementation. The two main disadvantages of this approach is
related to noise and OTA bandwidth requirements. The binary control
contribution requires the OTA output to settle within a small fraction
of the control period T . Furthermore, the control signal s1(t) will be
connected to either positive or negative supply, and the noise on these
lines will add in parallel to the input signal. Whether or not this can be
tolerated needs further investigation and will depend on the application.

−

+
−
+

C1

C1

u(t)

C2

C2

Rβ1

Cβ1

Rβ1

Cβ1

+

−
x1(t)

+

−
va(t)

Cκ1

s−1 (t)

Cκ1

s+
1 (t)

Rκ1

s−1 (t)

Rκ1

s+
1 (t)

Figure 5.1: A schematic of the LNA driven, passive integrator. Two dif-
ferent solutions for the interface to the control signal s1(t) are indicated
in red and blue.

With the capacitive control input, the frequency domain relation between
u(t), x1(t) and s1(t) of figure 5.1 is obtained as

X1(jω)

jω +
1

RβCβ︸ ︷︷ ︸
ρ1

 = U(jω)
C1

C2

1

RβCβ︸ ︷︷ ︸
β1

+S1(jω)
Cκ
C2

1

RβCβ︸ ︷︷ ︸
κ1β1

. (5.1)

By comparison with (3.1) we recognize ρ1 = 1
RβCβ

, β1 = C1

C2

1
RβCβ

and

κ1 = Cκ
C1

. The DC-gain of the integrator, A0, is the same as the closed loop
gain of the LNA. The maximum closed loop gain of the LNA is limited
by the supply voltage and the maximum swing of the input signal.
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5.2 Subsequent Integrators

The relaxed design requirements of the remaining integrators should be
utilized for minimal power consumption. It will become apparent that a
main challenge with the considered architectures is the implementation
of the summation node. OTA-RC integrators would in this sense have
been an attractive alternative as currents could easily be summed at the
virtual ground of the OTA. However, the negative feedback requires the
amplifier to have a unity gain frequency much greater than that of the
integrator, limiting the integrator’s power efficiency [22]. Furthermore, a
power-area trade-off is unavoidable when determining the resistor values.
Although decent performance could probably be achieved with proper cir-
cuit design, solutions involving resistors and negative feedback amplifiers
are not considered for the remaining integrators in this thesis.

The Gm-C integrator could on the other hand allow for high power effi-
ciency due to the open-loop configuration and is considered as a promis-
ing candidate for the remaining integrators of the analog system. Analog
summation is however not straightforward with this integrator topology
and linearity requires some extra attention. The remainder of this section
is concerned with the challenges associated with signal summation, and
linearity is revisited together with circuit ideas and simulation results
later in this chapter.

The two approaches for analog summation with Gm-C integrators con-
sidered in this thesis, are floating-gate voltage summation and output
current summation. Each approach is analyzed analytically, and expres-
sions for the parameters β, α and κ are given. Based on the analysis,
a discussion of potential implementation challenges is provided together
with behavioural simulations.

5.2.1 Floating-Gate Voltage Summation

Figure 5.2 shows one section of (a single ended equivalent of) the Leapfrog
analog system, when the summation nodes are realized using floating gate
voltage summation. Let vfg,k denote the voltage on the floating gate node.

Furthermore, let
←−
C βk,

←−
C α(k+1) and

←−
C κk denote the effective capacitance

seen from vfg,k towards Cβk, Cα(k+1) and Cκk respectively. Cκk is assumed

to be driven by an ideal voltage source, such that
←−
C κk = Cκk. Cα(k+1)

will be connected to CL(k+1), but by assuming Cα(k+1) << CL(k+1), we
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approximate
←−
C α(k+1) ≈ Cα(k+1).

←−
C βk is given by

←−
C βk =

CL(k−1) · Cβk
CL(k−1) + Cβk

(5.2)

Gmk· · ·
xk−1(t)

Cβk
vfg,k

CL(k−1)

ixk

xk(t)

CLk

· · ·

Cκk

sk(t)

Cα(k+1)
xk+1(t)

CL(k+1)

Figure 5.2: A single ended equivalent of one section of the Leapfrog analog
system, realized with Gm-C integrators and floating-gate voltage sum-
mation.

Establishing Voltage Relations

When the voltage on, e.g. xk−1, changes by ∆vx(k−1), a charge ∆Qβk =
Cβk(∆vx(k−1) −∆vfg,k) will flow through the capacitor Cβk. This charge
will be distributed among the remaining capacitance connected to the
floating-gate node, inducing a voltage change ∆vfg,k =

∆Qβk
Cκk+Cα(k+1)

. As a

result, the contribution from xk−1 to the floating-gate voltage is given by

vfg,k
vx(k−1)

=
Cβk

Cκk + Cα(k+1) + Cβ
(5.3)

By similar arguments, the feedback contribution from xk+1 and the con-
trol contribution from sk are given by

vfg,k
vx(k+1)

=
Cα(k+1)

Cκk + Cα(k+1) +
←−
C βk

, (5.4)

and
vfg,k
vsk

=
Cκk

Cκk + Cα(k+1) +
←−
C βk

(5.5)

respectively.

52



5.2. Subsequent Integrators

Let
−→
C Lk denote the effective load capacitance seen from the output of

transconductor k. The matrix coefficients βk, βkαk+1 and βkκk are then
given by multiplying equations (5.3) to (5.5) by Gmk/−→CLk.

In contrast to sk, the voltage on xk−1 and xk+1 is not generated by volt-
age sources, but by capacitors being charged by current sources. In con-
sequence, the voltage on these nodes will also be affected by any voltage
change on vfg,k. The contribution from sk to xk−1 and xk+1 is given by

vx(k−1)

vsk
=
vfg,k
vsk

vx(k−1)

vfg,k
=

CκkCβk
CβkCL(k−1) + (Cκk + Cα(k+1))(Cβk + CL(k−1))

(5.6)
and

vx(k+1)

vsk
=
vfg,k
vsk

vx(k+1)

vfg,k
=

CκkCα(k+1)

(
←−
C βk + Cα(k+1) + Cκk)(Cα(k+1) + CL(k+1))

,

(5.7)
respectively. A similar contribution exist from xk+1 to xk−1 via Cα(k+1).

Parasitic Paths

The contribution from s1 described by (5.6) and (5.7) does not fit the
state-space model described by (3.1). These signal paths are in this the-
sis referred to as parasitic paths and their implications on the system
behaviour is analysed in the following.

The voltage on xk−1 is being monitored by a local digital control and
the disturbance caused by sk will affect the decision made by this con-
trol loop. This effect is could be modelled as a time-varying offset volt-
age in the comparator observing the voltage on xk−1. Assume sk(t) ∈
{+Vdd,−Vdd}. The maximum effective offset voltage, δcκ, caused by this
parasitic path is then given by

δcκ = Vdd
CκkCβk

CβkCL(k−1) + (Cκk + Cα(k+1))(Cβk + CL(k−1))
. (5.8)

As shown in section 3.5.1 this effect could be accounted for by adjusting
the parameters T , β and κ according to equations (3.44) and (3.45).

As the contribution from sk to xk−1 goes via vfg,k, this parasitic path
does not influence the system beyond the modulated offset voltage. 1. In

1If another feedback capacitor Cα(k−1) is connected to xk−1, this statement is
not strightly true, as a part of the contribution from sk would flow through this
capacitor and influence xk−2. However, this effect would typically be very small and
is considered negligible for the sake of a tractable analysis.
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other words, the effect of this parasitic path is only related to stability,
and the contribution from sk to xk, and thereby the rest of the system,
is unaffected.

However, for the contribution from sk to xk+1 via Cα(k+1), the situation is
different. In addition to modulating the offset voltage of the comparator
observing this node, the contribution will propagate further via Cβk+1.
Even though this contribution will be small, if the effect is not modelled
by the digital estimator, it will introduce error in the reconstruction of
û(t).

Determining Capacitor Values

The integrator gain β, the control gain κ and the feedback factor α
are all dependent on the ratio between the capacitors Cβ, Cκ, Cα and
CL. In section 3.3.1, ωp = 2πfc was considered a reasonable value for
the pole frequency parameter, ωp. Furthermore, to maintain sufficient
quantization noise suppression over the full filter bandwidth, an initial
value for the unity gain of the integrators could be fu = 4fc =⇒ β = 4ωp.
From equation (3.12), the resulting feedback factor α is given by

|α| =
ω2
p

4β2
≈ 1

4 · 42
≈ 0.015 (5.9)

In figure 5.3a, αk+1 is plotted against the load capacitor CL(k−1) for dif-
ferent values of Cβk. Cα(k+1) is set to 0.5fF which is assumed to be close
to the minimum capacitor value of the technology. The control gain is set
to κ = 0.1, which amounts to a state-boundary bx ≈ Vdd/10 cf. equation
(3.41). Based on these values for Cα(k+1) and κ, equations (5.2) to (5.5)
are used to evaluate αk+1 as a function of CL(k−1), for different values of
Cβk. It is clear from the plot that a Cβk of about 60 − 70fF is required
in order achieve a sufficiently small feedback factor α of about 0.015.

Figure 5.3b shows the induced comparator offset δcκ, normalized to Vdd,
as a function of CL(k−1) for Cβk = 70fF. To limit the required reduction
in the βT product, a reasonable limit for the tolerable induced offset
could be δcκ < bx/100. Assuming bx = Vdd/10, figure 5.3b shows that a load
capacitor of several pF would in this case be required. Such a big load
capacitor would have a significant impact on the power consumption of
the transconductors.
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(a) The feedback parameter α plot-
ted against CL(k−1) for three differ-
ent values of Cβk
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(b) The induced comparator off-
set δcκ, normalized to Vdd, plotted
against CL(k−1) for Cβk = 70fF

Figure 5.3: Evaluation of δcκ and αk+1 for different capacitor values

Parasitic Path and Passive Integrator

As a final note on the floating-gate voltage summation, we consider the
parasitic path in combination with the passive integrator described previ-
ously in this chapter. Figure 5.4 gives a simplified picture of the situation
when an LNA driven, passive integrator of the first stage is connected to
a transconductor with floating-gate voltage summation at the input. The
LNA is modelled as an ideal voltage source, va, and x1(t) is integrated
by charging Cβ1 through the resistor Rβ1.

Gm
Rβ1

ix1

x1(t)
Cβ2

vfg,2

va Cβ1

· · ·

Cκ2

s2(t)

Figure 5.4: An LNA driven, passive integrator connected to a transcon-
ductor with floating-gate voltage summation

The charge feedthrough from the control contribution s2(t) via Cβ2 will
influence the voltage on x1. In addition to inducing an offset on the
comparator monitoring x1(t), this will also influence the current flowing
through the resistor Rβ1. This effect is more problematic than the induced
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offset voltage, as the fundamental behaviour of the passive integrator is
modulated by the control contribution s2(t).

Behavioural Simulations

To support the statements of this section, a behavioural simulations of
the considered architecture is presented. The simulations are all obtained
using the Cadence library analoglib, which provides ideal models for
amplifiers (voltage-controlled voltage source), transconductors (voltage-
controlled current source) etc. The comparator is implemented in Ver-
ilogA and the code is given in appendix C. Figure 5.5 shows a single
ended equivalent of the system used to obtain the following simulation
results. Table 5.1 shows the essential simulation parameters. The spectre
netlist, which also contains all source and component values, is given in
appendix D.1.

To disable the parasitic paths described above, ideal voltage buffers are
inserted as indicated in the figure. The comparators with input xk(t)
and output sk(t) are excluded from the illustration. Note the absence
of feedback from x2(t) to x1(t). This feedback path is removed due to
equation (5.9) which would have required C1 and C2 to be very large in
order to achieve a sufficiently small feedback factor.

Table 5.1: Parameters used for the behavioural simulation

Parameter Symbol Value Comment

Supply voltage Vdd 0.8V
Input amplitude bu 10mV Sinusoidal
Filter bandwidth fc 10 MHz
Control period T 2ns fs = 500 MHz
Integrator gain β 2π40 MHz All integrators
Control gain κ 10mV All integrators
Feedback factor α −0.015 β = 4ωp = 8πfc
FFT length 16384 samples

Figure 5.6 shows the estimated PSD of û(t) together with the theoretical
NTF, given by equation (2.21). The estimated SNR and SNDR is 80dB
and 79dB respectively.

This ideal simulation verifies the operating principle of the considered
high-level architecture and serves as a basis of comparison for other sim-
ulations presented later in this thesis. Furthermore, this simulation gives
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Figure 5.6: Estimated PSD of û(t) plotted together with corresponding
theoretical NTF. Obtained from an ideal circuit simulation of a 4th order
Leapfrog ADC with LNA driven, passive integrator and floating-gate
voltage summation
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a demonstration of the AC calibration algorithm described in section 4.2
which is used to determine the filter coefficients before reconstructing
û(t) from s[k].

To see the effect of the induced comparator offset discussed above, con-
sider figure 5.7 which shows a snapshot of x2(t), x4(t) and s3(t) for differ-
ent values of Cβ when CL = 40fF. In this simulation, the buffers Bβ3 and
Bβ4, cf. figure 5.5, is removed from the simulation, enabling the parasitic
path from s4(t) to x3(t) and from s3(t) to x2(t). To more clearly illustrate
the effect of δcκ, the feedback paths are disabled by zeroing Cα3 and Cα4.

In figure 5.7a, Cβ = 100fF, causing a large induced comparator offset δcκ,
in line with the plot of figure 5.3b. The effect of δcκ is clearly visible in
figure 5.7a, as s3(t) has a significant impact on x2(t). In consequence, the
digital control fails to ensure |x2(t)| < bx. As seen in the lower window of
figure 5.7a, the increased magnitude of x2(t) propagates further, causing
even greater stability problems for x4(t).

In figure 5.7b Cβ = CL/10 and the effect of δcκ is barely visible in the snap-
shot of x2(t). Hence, x2(t) is properly bounded by s2(t) and an effective
control is also observed for the last state of the system, x4(t).

The estimated power spectra corresponding to the simulations of fig-
ure 5.7 are shown in figure 5.8 together with the theoretical NTF. Note
that this system has all poles at the origin, as the feedback paths through
the Cα’s are disabled. For Cβ = 4fF the PSD closely follow the NTF, in-
dicating that the performance of the ADC is not notably affected by
the induced comparator offset δcκ. However, for Cβ = 100fF, the stabil-
ity issue caused by the (in this case large) δcκ degrades the quality of
the output estimate. This simulation supports the statement that the
induced comparator offset is a stability issue only, and that the amount
of influence from sk(t) to xk−1(t) that could be tolerated depends on the
stability margin of the system.

Buffer Output Resistance

The behavioural simulations above use ideal voltage buffers to disable
the parasitic signal paths. If the voltage buffers were to be implemented
as source-followers, they would have a gain less than unity and a non-
zero output impedance. The reduced gain would reduce the value of the
parameters β and α, but this would not be a fundamental problem for
any reasonable gain slightly less than 1.

The non-zero output impedance, is on the other hand more problem-
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Figure 5.7: Snapshot of x2(t), x4(t) and s3(t) for CL = 40fF and different
values of Cβ, illustrating the induced comparator offset δcκ.
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Figure 5.8: Estimated PSD of û(t) corresponding to the simulations of
figure 5.7

atic. Figure 5.9 illustrates a section of the system when the buffers has a
non-zero output impedance Ro. This resistance will introduce an expo-
nential settling of the voltage vfg,k. As this behaviour is not modelled by
the reconstruction filter, the accuracy of the final ADC output will be
reduced.

To see this effect, consider figure 5.10 which shows the estimated SNR
and SNDR as a function of the buffer output resistance. Apart from the
modified buffers, the simulation setup is identical to that of figure 5.6.
When the output resistance is less than 1kΩ, the quality of the output
is not notably affected. However, as Ro approaches 10kΩ the SNR and
SNDR falls of rapidly.

In this simulation, Cκ and Cα was 1.6 fF and 1 fF respectively. An even
smaller output resistance would be required for higher capacitors, in order
to obtain the same settling time.

61



Design Considerations

Gm

Buffer

· · ·
vx(k−1)

Cβ(k−1)

Ro
Cβk

vfg,k

vx(k−1)

· · ·

Cκk

sk(t)

Figure 5.9: One section of the system in figure 5.5, when the buffer Bβk

has a non-zero output resistance Ro.
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Figure 5.10: Estimated SNR and SNDR as a function of buffer output
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5.2.2 Output Current Summation

An alternative to input voltage summation is to add currents at the out-
put of the transconductors. Figure 5.11 shows the single ended equivalent
of one section of the analog system, when the summation node is real-
ized at the transconductor output. In this implementation, β, α and κ
are given by

βk =
Gmβk

CLk
, αk =

Gmαk

Gmβk

, and κk =
Gmκk

Gmβk

. (5.10)

Gmβk· · ·
xk−1(t)

CL(k−1)

iβk ixk xk(t)

CLk

· · ·

Gmκk

Gmαk

iκk

iαk

sk(t)

xk+1(t)

Figure 5.11: A single ended equivalent of one section of the Leapfrog
analog system, realized with Gm-C integrators and output current sum-
mation.

The advantage of this approach is that the contributions from sk(t) and
xk+1(t) is actually confined to xk(t). Hence, the issues with the parasitic
paths discussed above is omitted.

A disadvantage however, is the increased number of active components
required. To minimize the power consumption, it is desirable to keep CLk
as small as possible, such that the same βk could be realized with a lower
Gmβk. However, equation (5.9) implies that Gmαk should be almost 100
times smaller than Gmβk. There will presumably be a practical lower limit
for Gmαk, below which transistors must be made impractically long for
the transconductor to function properly. It might therefore be necessary
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to increase Gmβk and CLk, and consequently power consumption, because
of design issues related to Gmαk.

Furthermore, as Gmκk is driven by the binary control contribution sk(t),
it is in fact acting as a 1-bit current digital-to-analog converter (DAC),
driving a high-impedance load. To limit errors due to charge feedthrough
and charge injection, it might be necessary to reduce the swing of the volt-
age signal driving Gmκk [23]. Some additional complexity might therefore
be required for implementing this solution.

Behavioural Simulations

A single ended equivalent of a 4th order Leapfrog analog system with
output current summation is shown in figure 5.12. The spectre netlist
used for simulating this system on a behavioural level is given in ap-
pendix D.2 and the quantitative performance of this simulation is equal
to that of figure 5.5 for the same parameters β, κ and α.
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5.2.3 Conclusions on Analog Signal Summation

In this section, design challenges associated with the implementation of
the Leapfrog analog system using Gm-C integrators has been studied.
The underlying motivation has been to utilize the relaxed requirements
on these components for minimal power consumption. In general, the
effective Gm is proportional to the bias current of the transconductor. As
the integrator gain is given by β = Gm/CL, the power efficiency of the Gm-
C integrator is ultimately determined by the size of the load capacitor
seen by the transconductor. Realizing analog signal summation with very
small capacitors is however not trivial, and two different approaches is
studied in detail; output current summation and floating-gate voltage
summation.

Summing currents at the transconductors outputs requires additional
transconductors for converting the voltage signals x(t) and s(t) into the
current domain. For the transconductor driven by the 1-bit comparator,
Gmκ, some additional complexity will be required to reduce the input
voltage swing and avoid charge injection errors. Due to the small feedback
factor α, the feedback transconductor, Gmα, would be required to have an
effective transconductance about 100 times smaller than that of the main
transconductor, Gmβ. The current consumption of Gmβ might therefore
be limited by a practical lower limit for Gmα. Alternatively, the input of
Gmα could be attenuated at the cost of additional complexity.

The additional transconductors could be avoided by summing voltage
signals directly at the floating-gate input of the transconductors, using
capacitive voltage division. However, due to the bidirectional nature of
the capacitors, this approach is giving rise to what we refer to as parasitic
signal paths in the system. A brute force way of handling this issue is
to increase the load capacitors of the Gm-C integrators, at the cost of
a significant increasement in power consumption. Voltage buffers could
be implemented to disable the parasitic paths, but a considerable power
consumption could be required for sufficiently low output impedance.

From the discussion above, it is evident that more research is needed
to decide on an optimum solution. The challenges associated with the
implementation of the mentioned buffers, transconductors and attenu-
ators should be investigated to obtain an impression of required power
consumption. It could also be desirable to combine the considered archi-
tectures, by using e.g. voltage summation for the control contributions
and current summation for the feedback contribution. Furthermore, the
summation need not be performed the same way throughout the chain. It
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could be favorable to use e.g. current summation for the more sensitive,
early stages, and voltage summation towards the end of the system.

5.3 Circuit Ideas

This section presents transistor level circuit ideas for the implementa-
tion of the active components involved in the architectures considered
in this thesis. Specifically, circuit schematics and (pre-layout) simulation
results for the OTA, transconductor and a clocked comparator is pro-
vided. Rather than optimizing the design of a few components, the goal
of this work has been to seek an overview of the critical implementation
challenges associated with the considered architecture. The schematics
are therefore not presented as a proposed implementation, but as exam-
ples providing increased insight in practical design issues. Last but not
least, the presented transistor level simulations verifies several analytical
results presented earlier in the thesis.

The specifications listed in table 1.1 forms the background for the re-
quirements on the components considered in this section. In particular,
the target bandwidth is 10 MHz, the total input referred noise voltage
of the whole ADC should be less than 16 nV/

√
Hz and the second order

harmonic distortion should be below −50 dBc. The specifications form a
basis for the initial circuit design, although they will not be completely
satisfied by the circuit ideas presented in this chapter. No particular ef-
fort have been made to find an optimum division of the noise budget in
this thesis, but it is reasonable to allow the first integrator to contribute
with the main bulk of the total noise.

Throughout this section, several simulation results is presented to verify
and illustrate different properties of the considered implementations. If
not specified otherwise, the following applies to all simulations of this
section:

• The architecture is a differential version of the system described
by figure 5.5 and the essential simulation parameters are given by
table 5.1.

• Ideal models are used for all components. The OTA, transconduc-
tors and voltage buffers are implemented using ideal models for
voltage-controlled voltage and current sources. The verilogA model
for the comparator is given in appendix C.

• Nominal values are used for process parameters and component
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mismatch and transient noise is disabled in the simulation.

5.3.1 OTA

The amplifier used in the simulations of this section is an inverter based,
current-mirror OTA, with local positive feedback. The schematic is shown
in figure 5.13 and spectre netlist and some additional design details are
given in appendix E.

The current-mirror amplifier with local positive feedback is chosen as an
initial architecture because of its high energy efficiency. The transistorM4

provides a local positive feedback, boosting the impedance on the drain of
M3. As a result, the small-signal current-mirror ratio is enhanced without
altering the large signal ratio, increasing the effective transconductance,
Gm,eff , for the same bias current [24]. Inverter-based OTAs are popular
in low-power applications [25, 26] and inverters are used at the input to
further increase Gm,eff for the same bias current. Some key performance
metrics of the OTA is given in table 5.2.

M1a M1b

M2a M2b

Mbp1

Mbn1

M3a M3bM5a M5bM4a M4b

M6a M6b

v+
i v−i

Vcmfb VcmfbVbp

Vbn

v+
o v−o

Vdd

Vss

5 : 1 1 : 51 : 0.8 0.8 : 1

Figure 5.13: Schematic for inverter based, current-mirror OTA with local
positive feedback.

Figure 5.14 shows the estimated PSD obtained by a simulation when the
ideal amplifier is substituted by the current-mirror OTA. It is evident
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Table 5.2: OTA performance metrics

Parameter Symbol Value Comment

Input referred noise voltage Vni 25 nV/
√

Hz At 5 MHz
Open-loop gain Av0 700V/V At DC
Unity gain frequency fu 2.5GHz CL = 20fF
Current consumption IDC 30µA
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Figure 5.14: Estimated PSD of û(t) plotted together with corresponding
theoretical NTF. Obtained by simulating the system of figure 5.5 when
ideal models are used for all components except for the OTA.
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that the amplifier suffers from significant harmonic distortion. From this
particular simulation, the second and third harmonic was estimated to
HD2 = −76dB and HD3 = −68dB respectively. The second (an other
even order) harmonic arises from the single-ended to differential conver-
sion, as the inputs does not perfectly track each other when the amplifier
has a finite open-loop gain. Note that the spectrum of figure 5.14 does
not follow notch of the theoretical NTF as expected from the linearity
analysis of section 3.4.2.

The actual linearity performance of the OTA should be evaluated over
component mismatch and process variations. However, as the harmonic
distortion is significant even in the nominal corner without mismatch,
the linearity should probably be improved for a future implementation.

As seen from table table 5.2, the input referred noise voltage of the OTA
alone exceeds the specifications for the complete ADC given by table 1.1
and the thermal noise performance therefore needs improvement. Fur-
thermore, flicker noise is not considered in this work and chopping might
be required to reduce the in-band 1/f noise.

Feeding the control contribution s1(t) to the amplifier input will con-
stantly challenge its transient response. A snapshot of the OTA output
va(t) and the first state signal x1(t) is shown in figure 5.15. It is clear
that the step response of the OTA oscillates before settling. Although the
frequency of these oscillations are far beyond the unity-gain frequency of
the passive integrator, the non-ideal waveform of va(t) might have a non-
negligible effect on the state-signal x1(t).

Part of the errors observed in the spectrum of figure 5.14 could therefore
originate from transient effects, such as ringing and slew-rate limitations,
rather than harmonic distortion generated by the amplifier. Setting re-
quirements for the transient behaviour and analyzing the impact on the
final ADC output remains for a future implementation.
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Figure 5.15: Snapshot of OTA output va(t) and the first state-signal x1(t)
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5.3.2 Transconductor

The main objective for the design of the transconductor used in the
Gm-C integrators of figure 5.5 is to utilize the relaxed requirements on
noise and linearity for reduced power consumption. The maximum input
magnitude processed by a certain transconductor, which depends on the
unity gain of the preceding integrator and the control period T , is in
this thesis considered a design variable. Power demanding linearization
techniques could then be avoided by co-optimizing the transconductors
inherent linearity and the state boundary bx.

The schematic for the transconductor considered in this thesis is given in
figure 5.16. Spectre netlist and some additional design details are given
in appendix F and a summary of some key performance metrics is listed
in table 5.3.

M1a M1b

Mbn1

M2a M2b

M3a M3b

Vss

Vbn

Vdd Vdd

v+
i v−i

Vdd

Vcmfb

i+oi−o

Figure 5.16: Transconductor schematic

The transconductor comprises a single differential pair (M1) with an ac-
tive load (M3). The cascode/common-gate transistors, M2, are included
to limit the Miller-effect on the gate-drain capacitor Cgd1 of the input
transistors. The transconductor achieves a DC-gain of about 150. In
the absence of M2, Cgd1 would have been boosted from about 200aF to
more than 20fF, thereby becoming a dominating capacitor at the floating
gate node. The DC-gain, and thereby the gate-drain capacitance, follow
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the same frequency response as the overall Gm-C integrator. When the
transconductor is used together with floating-gate voltage summation, as
in figure 5.5, this effect would introduce a significant frequency depen-
dency in the voltage division described by equations (5.3) to (5.5). With
the cascode transistor, the voltage-gain from the gate to the drain of M1

is reduced well below 10, considerably reducing this unwanted effect.

Table 5.3: Transconductor performance metrics

Parameter Symbol Value Comment

Input referred noise voltage Vni 70 nV/
√

Hz At 5 MHz
DC-gain A0 150V/V
Load capacitor CL 20fF
Unity gain frequency fu 43MHz
Current consumption IDC 0.5µA Bias current

A trade-off between noise and linearity exist when determining the ra-
tio between the effective transconductance and the bias current, Gm/Ib.
Figure 5.17 shows the simulated Gm as a function of differential input
voltage for different values of Gm/Ib. The result is obtained by sweeping
the differential input voltage of a single transconductor, and evaluating
the current flowing between the shorted outputs. Gm is then found as
the derivative of the I-V relationship. Gm/Ib is varied by changing the W/L
ratio of the input transistors.

As expected, the figure shows that the effective transconductance decays
more rapidly with input voltage for higher values of Gm/Ib. The input
referred noise voltage is on the other hand reduced by increasing Gm for
a given bias current. In this thesis, Gm/Ib = 12 is chosen as an initial value.
However, for a future implementation, optimizing this trade-off will be
an important part of the system design.

For a given transconductor a suitable value for the state boundary bx
must be determined. This parameter could be modified by varying the in-
tegrator gain β for a given control period T . As increasing the gain of the
analog system reduces the conversion noise power (cf. equation (2.25)),
it is in generally favorable to use as high bx as possible.

Figure 5.18 shows the simulated SNDR as a function input signal ampli-
tude bu, when the transconductors are implemented as in figure 5.16 and
ideal models are used for the remaining components. For each value of
bu, the control gain κ is scaled such that bx = bu. This way, the magni-
tude processed by the integrators is decreased in proportion to the input
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signal. As the conversion noise power is proportional to the magnitude of
the state vector (cf. equation (2.25)), the expected behaviour from this
simulation is that the SNDR remains more ore less constant up to a point
where distortion generated by the transconductors begin to dominate the
conversion error.
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Figure 5.18: Simulated SNDR as a function of input signal amplitude bu.

The simulation shows that this is indeed the case. The estimated SNDR
stays well above 70 dB for bu ≤ 10 mV and drops rapidly higher val-
ues of bu. For this particular transconductor, bx = 10 mV seem to be a
reasonable value for the state boundary.

Thermal Noise

The effect of thermal noise for a general control bounded converter was
analysed in section 2.5.3. Although equation (2.33) shows that the ADC
is most sensitive to noise sources entering early in the system, translat-
ing the expression into a simple and useful design equation is not trivial.
However, based on general experience with chain-structures, it is rea-
sonable to expect that the input referred noise voltage generated by the
second integrator is divided by the DC-gain of the first integrator when
referred back to the input of the ADC. Using the considered OTA and
transconductor implementation, we now test this assumption.
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In the following simulation, the OTA driven, passive integrator is imple-
mented with a DC-gain of 10. A conservative estimate for the expected
thermal noise power is obtained by only considering the contribution
from the first two integrators, with a noise bandwidth equal to the filter
bandwidth fc = 10 MHz. The expected value for the input referred noise
power is then

Pn =
[
(25 nV/

√
Hz)2 + (7 nV/

√
Hz)2

]
· 10 MHz. (5.11)

By applying a sinusoidal input with amplitude 10 mV, and consequently
a signal power of Ps = 1

2
(10mV)2, the expected SNR is

SNR = 10 log

(
Ps
Pn

)
= 38.7dB. (5.12)

Thermal noise performance is studied by simulating the system of fig-
ure 5.5 with transistor implementations of the OTA and all the transcon-
ductors, and ideal models for the comparators. A noise bandwidth of
fn = 2fs = 1GHz was specified in the simulation 2.

The estimated SNR of the final output of this simulation was 39.2dB, i.e.
0.56 dB higher than the theoretically expected value. This indicates that
dividing the input referred noise voltage by the accumulated DC-gain
of the previous integrators, gives a reasonably accurate estimate of the
contribution to the total noise power.

2This noise bandwidth was chosen by varying the bandwidth over several simula-
tion runs, finding a frequency beyond which the SNR did no longer decrease.
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5.3.3 Comparator

According to the analysis of section 3.5.3, the performance of the com-
parator comprising the local digital control, is only indirectly related to
the quality of the final ADC output. Noise (in terms of a time-varying
input offset voltage) and (static) offset voltage will require a reduction in
the βT product and/or the state boundary bx, in order to maintain an
effective control. According to equation (2.25), these adjustments will in-
crease the conversion noise power, and the properties of the comparator
will therefore somehow influence the performance of system. However,
the increased conversion noise obtained by e.g. lowering the integrator
gain β, could be compensated by extending the system order. As there
is no direct path from the comparator noise to the final ADC output,
the approach of this thesis is to realize the comparator with a minimal
power consumption, and compensate for increased conversion noise on a
system level.

The comparator considered in this thesis is a standard StrongARM latch
[27]. The schematic of the comparator core and the output latch is shown
in figure 5.19 and the spectre netlist is given in appendix G. The Stron-
gARM latch is chosen because of low static power consumption and rail-
to-rail output. As an initial value, chosen for low dynamic power con-
sumption, all devices have the same dimension W

L
= 150 nm

20 nm
.

Some key performance metric is given in table 5.4. The standard de-
viation of the offset voltage is estimated by running 1000 Monte Carlo
simulations with statistical distributions for component mismatch and
the root mean square (RMS) noise voltage is estimated from multiple
transient simulations with a noise bandwidth of 200GHz.

The average current consumption is estimated by simulating the com-
parator with a sinusoidal input, with amplitude 10 mV and a frequency
equal to half the clock frequency fs = 500 MHz. This input signals forces
all inverters to toggle every clock period, and the estimate therefore serves
as an upper limit for the power consumption. Out of the total current
consumption of 5.3 µA, about 1.2 µA was consumed by the StrongARM
latch core, while 4.1 µA was consumed by the inverters and the output
latch. No particular effort has been made to optimize this design and
there are probably room for reducing the current consumption of the
comparators digital output components.
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Figure 5.19: StrongARM latch core and output latch

Table 5.4: StrongARM latch performance metrics

Parameter Symbol Value Comment

Input referred noise voltage Vni 1.82 mV RMS
Offset voltage σvo 28 mV Std. dev.
Avg. current consumption, tot I0 5.3µA
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Comparator Offset Voltage

While section 3.5.3 analysed the effect of comparator offset voltage on an
architectural level, the analysis did not take nonlinearities of the integra-
tors into account. When the comparators have a static offset voltage, the
elements of x(t) will swing around some constant DC-value instead of
being centered around zero. When the integrators are implemented with
open-loop transconductors, this DC-offset will introduce an asymmetry
in the operating point of the transconductors, leading to even order har-
monic distortion in the I-V relationship.

To study this effect, the system is simulated with a static offset voltage
included in the ideal comparator model and all Gm-C integrators are
implemented with transistor level transconductors. The comparator offset
voltage is swept from −8mV to 8mV. For each offset value, the second
and third order harmonic distortion is evaluated from the PSD of û(t).
The result of this simulation is shown in figure 5.20. The simulation
shows that third order harmonic distortion (HD3) is dominating over
second order harmonic distortion (HD2) for very small offset voltages.
When the offset voltage increase above a few millivolt, the two harmonic
components become comparable in magnitude.
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Figure 5.20: Simulated harmonic distortion generated by transconductors
as a function of comparator offset voltage

The amount of offset that could be tolerated will depend on the lin-
earity of the transconductors and a higher offset voltage could typically
be accepted at the expense of increased power consumption. However,
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linearizing the transconductors to handle a large DC-offset would imply
extending its linear region, without utilizing this for increased gain and
state vector magnitude. It is therefore probably more efficient to min-
imize the offset voltage in the comparator itself, and utilize the linear
region of the transconductors for actual signal swing.

By comparing the plot of figure 5.20 to the estimated σvo of table 5.4,
it is evident that the comparator would need some kind of offset cancel-
lation in order to function properly with the open-loop transconductors.
Techniques for offset cancellation is described in e.g. [27, 28] and should
be studied in a future implementation.

Simulation Results

The estimated SNR/SNDR obtained by replacing the ideal compara-
tor with the StrongARM latch was 52 dB/36 dB. Compared to the be-
havioural simulation, this simulation is therefore showing a significant
increasement in both noise floor and harmonic distortion.

As discussed in the introduction of this section, the theoretical analysis
suggest that the comparator comprising the digital control of a control-
bounded converter is a less critical component, as noise and offset voltage
could be compensated on a system level. The key take-away from the
results of this section is that the comparator requires more careful atten-
tion than what is suggested by the theoretical analysis. Understanding
the root cause of the observed performance degradation and investigating
possibilities for efficient comparator implementation is highlighted as an
important topic for future development.

5.4 Conclusions on Design Considerations

In this chapter, various design challenges associated with the implementa-
tion of a Leapfrog ADC has been considered. The underlying motivation
for the considered design choices has been to reach the specifications of
table 1.1 with the lowest possible power consumption. Practical issues
related to the implementation of the individual components, as well as
the interaction between them, have been studied. We now summarize the
most important findings of this chapter.

For the first integrator of the analog system, an (to the best of our
knowledge) unconventional LNA driven, passive integrator is considered
a promising alternative to placing the LNA completely outside the ADC.
By low-pass filtering and bounding the amplifier output with a digital
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control, the LNA contributes directly to the conversion process while si-
multaneously limiting the signal magnitude processed by the following
node of the system. Even when this integrator has a DC-gain of only 10,
the requirements on the subsequent integrator is significantly relaxed.

These relaxed requirements should be utilized for reduced power con-
sumption, and open-loop transconductors is considered a promising can-
didate for the remaining integrators. The two considered approaches for
signal summation both has some additional challenges that needs further
investigation. Implementation of voltage buffers and additional transcon-
ductors, together with investigating an optimized combination of the two
summation techniques, is highlighted as an important part of the future
development.

Additional design challenges has been discovered by considering circuit
examples for the involved active components. When the control contri-
bution, s(t), is fed to the input of the LNA, transient effects such as
overshoot and slew-rate might have a considerable impact on the inte-
grator performance. These properties must be considered together with
noise and linearity. As an alternative approach, s(t) could be inserted
as a current signal at the amplifier output, at the expense of tougher
requirements on the comparator.

The considered transconductor implementation seem to be sufficiently
linear when the state-vector is bounded by ±10 mV, without any addi-
tional linearization techniques. The thermal noise could be reduced by
increasing the transconductors Gm/Ib, at the expense of reduced linear-
ity. This trade-off should be considered together with tuning the state
boundary bx for an optimum solution.

An interesting discovery is that offset voltage in the comparator will
trigger even order harmonic distortion in the transconductors, and offset
cancellation is therefore required for the comparators. A simulation with
the comparators implemented as a standard StrongARM latch showed
a significant reduction of SNDR. A deeper understanding of how the
properties of the comparator relates to the overall ADC performance is
required for a future implementation.
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Chapter 6

Final Discussions

Some final discussions that did not fit naturally in other parts of the
thesis are given in this section.

6.1 Digital Power Consumption

The implementation of the digital estimator is not considered in this the-
sis. However, in a future implementation of a complete control-bounded
ADC, the power consumed by the digital filtering must be considered in
the total power budget. All simulations presented in this thesis have used
a control of fs = 500 MHz, which correspond to an oversampling ratio of
25.

To obtain a rough estimate of the required digital power consumption,
an implementation of the reconstruction corresponding to a third order
Leapfrog ADC is considered 1. The filter was synthesized in 28nm CMOS
from a SystemC implementation using the Stratus high-level synthesis
software tool [29]. The resulting filter had about 5500 logical gates and
the estimated power consumption was approximately 1.3mW for a clock
frequency fs = 500 MHz and 0.8V supply voltage.

To obtain a rough model for the digital power consumption, let Q =
CLVdd be the charge that flows during the switching of a single logic
gate, for a total load capacitance CL. With a clock frequency fs, the
dynamic current consumption could be estimated as Id ≈ fsCLVdd and
consequently the power consumption as

P = Vdd · Id ≈ fsCLV
2
dd. (6.1)

1The filter was implemented and synthesized by David André Bjerkan Mikkelsen.
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Assuming 1 fF per logic gate, this model would predict a power consump-
tion of about 1.8mW, for the synthesized filter with 5500 gates.

With a reconstruction filter consuming at the order of 1mW, the analog
power will make up a small fraction of the total power consumption. For-
tunately, several ideas exist for reducing the digital power consumption
that was not considered in the implementation referenced here.

6.1.1 Downsampling and FIR Filter

First of all, the mentioned filter implementation produced full resolution
output samples at a rate equal to the clock frequency. This is would
normally not be necessary and incorporating decimation into the recon-
struction filter would yield a significant reduction in the amount of com-
putations required.

Furthermore, in [5], various implementations of the digital estimator is
proposed. The algorithm used in the mentioned filter implementation was
a parallel IIR version, but an FIR version is also available. As the control
signals are {+1,−1}-valued, the FIR version offers zero multiplications,
at the expense of more additions. The FIR version is also convenient
for downsampling, as this would amount to computing the output esti-
mates at a rate lower than the acquisition rate of the digital estimator.
Determining the most power efficient filter algorithm and incorporating
downsampling is a topic for a future project.

6.1.2 Technology Scaling and Low-Level Synthesis

As the considered filter implementation was synthesized from SystemC,
the number of gates could probably be reduced by writing register-
transfer level (RTL)-code directly. In addition, implementing the filter
in the same 22nm process (rather than 28nm) is also expected to reduce
the power consumption as the total capacitance decrease with smaller
transistors.

6.1.3 Overcomplete and Phase Delayed Digital Con-
trol

To reduce the required sampling frequency, conventional oversampling
converters often utilize multi-bit quantizers, at the expense of increased
linearity requirements [9]. Multi-bit quantizers could have been employed
in control-bounded converters as well, but the required component preci-

84



6.2. Flicker Noise

sion would increase in a similar manner as for conventional oversampling
converters [5].

As an alternative to multi-bit quantizers, the overcomplete digital control
is proposed in [5]. The basic idea is to have several single-bit quantiz-
ers jointly stabilizing the entire analog system (in contrast to the local
control loops considered in this thesis). In an overcomplete digital con-
trol, each quantizer will observe a mixture of all the analog state vector
components. This is achieved by mapping x(t) to a higher dimension via
the control observation matrix Γ̃ ∈ RN×M , where M > N . The output
of these quantizers are then combined via Γ ∈ RN×M before entering the
nodes of the analog system.

It is shown in [5] that the overcomplete control has a similar effect on con-
version noise as the use of multi-bit quantizers, but without the increased
linearity requirements. The cost is the increased number of single-bit
quantizers as well as the necessary analog implementation of the matri-
ces Γ and Γ̃. The gain from overcomplete control could presumably be
further enhanced by combination with a multiphase clock, such that the
quantizers operate with a phase delay relative to each other.

These are new concepts that is part of an ongoing research project at
ETH Zürich, but they are mentioned here to show some existing ideas for
reducing clock frequency and digital power consumption. A lot of research
remains to determine wether or not this will be an effective solution
for an integrated circuit implementation. However, these are interesting
ideas that truly utilize the flexibility of the control-bounded conversion
framework, and associated design challenges should be investigated for a
future implementation.

6.2 Flicker Noise

The noise analyses and simulations of this thesis has only taken ther-
mal noise into account. Flicker noise may be a dominating noise source
within the frequency band of interest and chopping might be considered,
at least for the first integrator. However, chopping will typically reduce
the effective input impedance [20]. This and other practical issues needs
further investigation in a future development and should be considered
together with the final choice of integrator topology.

85



Final Discussions

86



Chapter 7

Conclusions and Future Work

In this thesis, design challenges associated with the implementation of
(the analog part of) a control-bounded converter have been studied. The
considered high-level architecture is a Leapfrog analog system with a
scalar input and a local digital control. With the goal of minimal power
consumption, possible circuit implementations is analysed analytically
and theoretical results are supported by (pre-layout) schematic simula-
tions.

An effective design process is facilitated by a custom made python frame-
work, supporting design, simulation and evaluation of analog circuits
on a schematic level. The python package is written as a general pur-
pose, python based analog design environment, but the object-oriented
design methodology has appeared to particularly well-suited for control-
bounded converters. By doing the analog circuit design entirely in python,
it is possible to integrate with other useful resources such as the control-
bounded conversion toolbox [12], which is used for transfer function anal-
ysis and post-filtering.

The already existing theoretical background of the Leapfrog ADC has
been expanded with the analysis of several non-idealities, not previously
treated in literature. The effect of nonlinear integrators on the overall
ADC performance is analyzed and the analytical stability guarantee has
been extended to include comparator offset voltage, digital delay and
clock jitter. The effect of finite DC-gain in the integrators is studied and
it has been shown that a small DC-gain of 10 could be tolerated in the
first integration stage, conditioned on higher DC-gain in the remaining
integrators.

The theoretical analysis led to the proposal of the LNA driven, passive in-
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tegrator, achieving the linearity and noise performance of a conventional
LNA, while being stabilized by a local digital control loop. Gm-C inte-
grators have been considered for the remaining integration nodes. By de-
signing for a low Gm/Ib, the considered transistor-level implementation is
sufficiently linear for handling a peak-to-peak input magnitude of 20 mV,
without any additional linearization techniques. Increased thermal noise
performance could be traded for reduced linearity, which in turn could
be compensated by lowering the analog state vector boundary.

Considering transistor-level implementations of the involved active com-
ponents has revealed new implementation challenges. For example, re-
ducing the number of active elements by using capacitors for voltage
summation comes with the challenge of unwanted charge-flow, degrad-
ing the system performance. Current summation avoids this issue, but
requires additional transconductors and attenuation circuits. Offset volt-
age in the comparator will trigger even order harmonic distortion when
the integrators are implemented as open-loop transconductors.

By discovering these implementation issues, we have gained a better un-
derstanding of the fundamental challenges limiting the achievable power
efficiency of the considered architecture. Together with convenient soft-
ware framework and the theoretical analysis, this thesis will hopefully
provide a useful background for future development.

7.1 Future Work

The implementation of a low-power, control-bounded ADC will be con-
tinued in Ph.D-project, starting in September 2021. In this thesis, several
implementation challenges is pointed out together with some possible so-
lutions for the analog part of the converter. In order to limit the power
consumption of the overall ADC, it has also become apparent that the
clock frequency must be reduced in order to lower the digital power con-
sumption. A key challenge is therefore to choose between the existing
ideas for future improvement, such that some of the low-power potential
of the control-bounded ADC could be demonstrated within a reasonable
implementation time.

Despite the remaining challenges, the considered implementation of the
analog system seem to be a promising low-power solution. By investigat-
ing possible implementations of the mentioned voltage buffers, attenu-
ation circuits and low-Gm transconductors, a reasonably power-efficient
analog system could probably be realized. The comparator requires some
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more attention, and other architectures than the StrongARM latch should
be considered. In particular, a power- and area-efficient offset cancellation
is required.

The overcomplete control is highlighted as a promising solution for reduc-
ing clock frequency and possible low-power implementations should be
investigated in a future development. A functional analog system would
be necessary for demonstrating this functionality. However, showing pos-
sible solutions for reduced power consumption on the digital side should
probably be prioritized rather than pushing the power consumption of
the analog system to a minimum.
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Appendix A

Solution to the State-Space
Equations

The solution to the system of ordinary differential equations (2.2) may
be evaluated using the Laplace transform and the matrix exponential
function. The Laplace transformation of (2.2) gives

jωX(jω)− x(0) = AX(jω) + BU(jω) + ΓS(jω) (A.1)

X(jω) = (jωI −A)−1 (x(0) + BU(jω) + ΓS(jω)) (A.2)

The term (jωI −A)−1 can be written as a power series

(jωI −A)−1 =
1

jω

(
I − A

jω

)−1

=
I

jω
+

A

(jω)2
+

A2

(jω)3
+ · · · . (A.3)

From the inverse Laplace transform of (A.3), we define

g̃(t) , L−1
{

(jωI −A)−1} = 1 + tA +
(tA)2

2!
+ · · · = exp(tA), (A.4)

where exp(.) refers to the matrix exponential.

The time-domain solution to (2.2) is then given by

L−1 {X(jω)} = L−1
{

(jωI −A)−1 (x(0) + BU(jω) + ΓS(jω))
}

(A.5)

x(t) = g̃(t) · x(0) + (g̃ ∗Bu)(t) + (g̃ ∗ Γs)(t) (A.6)
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Appendix B

On the Impulse Response of a
Non-ideal Integrator

This appendix gives a justification of the assumption of equation (3.24)
used in the stability analysis of section 3.5. The analysis assume the
normalized impulse response of the integrator to be non-negative and
upper bounded by 1 throughout the control period T .

An ideal integrator with infinite DC-gain has a normalized impulse re-
sponse g̃(t) = 1 ∀t, and a finite DC-gain could be modelled by including
the leakage term ρ, such that g̃(t) = e−ρt. However, any real circuit imple-
mentation will have additional poles and zeros in the transfer function,
giving rise to a more complex impulse response. The purpose of this ap-
pendix is to support the assumption 0 ≥ g̃(t) ≤ 1 ∀t ∈ [0, T ), even when
the integrator is realized by a real circuit implementation.

First of all, the assumption g̃(t) ≤ 1 ∀ ∈ [0, T ) follows from the definition
of the normalized impulse response g̃(t). For an integrator with impulse
response g(t) = βe−ρt, the normalized impulse response g̃(t) = e−ρt is
clearly upper bounded by 1. For a system with a more complicated im-
pulse response, we define

β , max
t≥0

g(t) (B.1)

such that g̃(t) ≤ 1 ∀t is still satisfied.

The second part of the assumption, g̃(t) ≥ 0 ∀t ∈ [0, T ), might not
be true for certain implementations. Figure B.1a shows the normalized
magnitude of the impulse and step response of a system whose transfer
function has real poles only. In consequence, the step response settles
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exponentially without any oscillations and g̃(t) ≥ 0 ∀t. Figure B.1b on
the other hand, shows the impulse and step response of a system with a
mixture of real and complex conjugated poles and zeros in the transfer
function. As a result, the step response oscillates before settling, causing
a periodic sign change in g̃(t).
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(a) A system with real poles only
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(b) A system with complex poles

Figure B.1: Impulse response and step response, normalized to their max-
imum amplitude.

For a system where g̃(t) oscillates around zero, we assume the control
period T to be chosen such that g̃(t) ≥ 0 ∀t ∈ [0, T ). This might not
be true for certain implementations, but we argue that this will be a
reasonable assumption for most systems approximating the behaviour of
an ideal integrator.
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Appendix C

VerilogA Model for the Ideal
Comparator

module comparator fd ( in p , in n , c lk , gnd , vdd , out p , out n , r s t n ) ;
parameter dly = 0 , tt ime = 10p ;
input in p , in n , c lk , gnd , vdd , r s t n ;
output out p , out n ;
e l e c t r i c a l in p , in n , c lk , gnd , vdd , out p , out n , r s t n ;
r e a l val p , val n , thre sh ;
r e a l sample p , sample n , v r s t ;

analog begin
thresh = V( vdd ) / 2 ;
@( c r o s s (V( c l k )− thresh , −1)) begin

v r s t = V( r s t n ) ;
i f ( v r s t > thresh ) begin

sample p = V( in p ) ;
sample n = V( in n ) ;
i f ( sample p >= sample n ) begin

va l p = V( vdd ) ;
va l n = 0 ;

end
e l s e begin

va l n = V( vdd ) ;
va l p = 0 ;

end
end
e l s e begin

va l p = thresh ;
va l n = thresh ;

end
end
V( out p ) <+ t r a n s i t i o n ( val p , dly , tt ime ) ;
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V( out n ) <+ t r a n s i t i o n ( val n , dly , tt ime ) ;
end

endmodule
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Appendix D

Spectre Netlist for
Behavioural Leapfrog
Simulations

D.1 Floating-Gate Voltage Summation

// Generated f o r : s p e c t r e
// Design l i b r a r y name : CBC
// Design c e l l name : t b l f i d e a l
s imu la tor lang=s p e c t r e
g l o b a l 0
in c lude ”$SPECTRE MODEL PATH/ des ign wrapper . l i b . s c s ” s e c t i o n=

t t p r e

// Library name : CBC
// Ce l l name : i d e a l o t a
// View name : schematic
subckt i d e a l o t a avdd avss vin vip vop von
A vop von vip vin vcvs gain =10.0k
ends i d e a l o t a

a h d l i n c l u d e ”/home/ f r e d r i e f / p r o j e c t s / v e r i l o g a / comparator fd /
v e r i l o g a / v e r i l o g a . va”

// Library name : CBC
// Ce l l name : comparator idea l
// View name : schematic
subckt comparator idea l in p in n c l k gnd vdd out p out n

r s t n
parameters dly tt ime
Q0 in p in n c l k gnd vdd out p out n r s t n comparator fd dly
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=0 tt ime=tt ime
ends comparator idea l

// Library name : CBC
// Ce l l name : gm fd idea l
// View name : schematic
subckt gm fd idea l in p in n out p out n gnd
parameters gm
G0 out n out p in p in n vccs type=vccs gm=gm
ends gm fd idea l

// Design l i b r a r y name : CBC
// Design c e l l name : t b l f i d e a l
VDD vdd 0 vsource dc =800.0m type=dc
VCLK c lk 0 vsource type=pu l s e va l0 =800.0m val1=0 per iod =2.0n

r i s e =1.0p f a l l =1.0p
VS u 0 vsource type=s i n e s inedc=0 ampl=10.0m f r e q =488.28125k

mag=1 delay=2e−06
VSTUP vstup 0 vsource type=pu l s e va l0=0 val1 =800.0m per iod=1

width =1.0u f a l l =1p r i s e =1p
VDELAY vdelay 0 vsource type=pu l s e va l0=0 val1 =800.0m per iod

=1 width =2.0u f a l l =1p r i s e =1p
VDELAY N vdelay n 0 vsource type=pu l s e va l0 =800.0m val1=0

per iod=1 width =2.0u f a l l =1p r i s e =1p
VSTUP N vstup n 0 vsource type=pu l s e va l0 =800.0m val1=0

per iod=1 width =1.0u f a l l =1p r i s e =1p
C1P u zp c a p a c i t o r c =20.0 f
C1N 0 zn c a p a c i t o r c =20.0 f
C2P zp otaon c a p a c i t o r c =2.0 f
C2N zn otaop c a p a c i t o r c =2.0 f
A0 vdd 0 zn zp otaop otaon i d e a l o t a
ROP otaop x0n r e s i s t o r r =300.0k
RON otaon x0p r e s i s t o r r =300.0k
CL0P x0p 0 c a p a c i t o r c =132.62911924 f
CL0N x0n 0 c a p a c i t o r c =132.62911924 f
Q0 x0p x0n c l k 0 vdd s0p s0n vde lay n comparator idea l dly=0

tt ime=1p
Ck0p s0p zp c a p a c i t o r c =312.5a
Ck0n s0n zn c a p a c i t o r c =312.5a
Gm1 vfg1p vfg1n x1p x1n 0 gm fd idea l gm=−2.513274123u
CL1P x1p 0 c a p a c i t o r c =20.0 f
CL1N x1n 0 c a p a c i t o r c =20.0 f
Q1 x1p x1n c l k 0 vdd s1p s1n vde lay n comparator idea l dly=0

tt ime=1p
xbuf1p x0 bufp 0 x0p 0 vcvs gain=1
xbuf1n x0 bufn 0 x0n 0 vcvs gain=1
Cb1p x0 bufp vfg1p c a p a c i t o r c =64.0 f
Cb1n x0 bufn vfg1n c a p a c i t o r c =64.0 f
Ck1p s1p vfg1p c a p a c i t o r c =1.6 f
Ck1n s1n vfg1n c a p a c i t o r c =1.6 f
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Gm2 vfg2p vfg2n x2p x2n 0 gm fd idea l gm=−2.513274123u
CL2P x2p 0 c a p a c i t o r c =20.0 f
CL2N x2n 0 c a p a c i t o r c =20.0 f
Q2 x2p x2n c l k 0 vdd s2p s2n vde lay n comparator idea l dly=0

tt ime=1p
xbuf2p x1 bufp 0 x1p 0 vcvs gain=1
xbuf2n x1 bufn 0 x1n 0 vcvs gain=1
Cb2p x1 bufp vfg2p c a p a c i t o r c =64.0 f
Cb2n x1 bufn vfg2n c a p a c i t o r c =64.0 f
rbuf2p vr2p 0 x2p 0 vcvs gain=1
rbuf2n vr2n 0 x2n 0 vcvs gain=1
Cr2p vr2n vfg1p c a p a c i t o r c =1.0 f
Cr2n vr2p vfg1n c a p a c i t o r c =1.0 f
Ck2p s2p vfg2p c a p a c i t o r c =1.6 f
Ck2n s2n vfg2n c a p a c i t o r c =1.6 f
Gm3 vfg3p vfg3n x3p x3n 0 gm fd idea l gm=−2.513274123u
CL3P x3p 0 c a p a c i t o r c =20.0 f
CL3N x3n 0 c a p a c i t o r c =20.0 f
Q3 x3p x3n c l k 0 vdd s3p s3n vde lay n comparator idea l dly=0

tt ime=1p
xbuf3p x2 bufp 0 x2p 0 vcvs gain=1
xbuf3n x2 bufn 0 x2n 0 vcvs gain=1
Cb3p x2 bufp vfg3p c a p a c i t o r c =64.0 f
Cb3n x2 bufn vfg3n c a p a c i t o r c =64.0 f
rbuf3p vr3p 0 x3p 0 vcvs gain=1
rbuf3n vr3n 0 x3n 0 vcvs gain=1
Cr3p vr3n vfg2p c a p a c i t o r c =1.0 f
Cr3n vr3p vfg2n c a p a c i t o r c =1.0 f
Ck3p s3p vfg3p c a p a c i t o r c =1.6 f
Ck3n s3n vfg3n c a p a c i t o r c =1.6 f

dc dc maxiters =150 maxsteps =10.0k wr i t e=”s p e c t r e . dc” annotate
=s t a t u s

ac ac s t a r t =1.0M stop =100.0M annotate=s t a t u s save=s e l e c t e d
log =1.0k f o r c e=a l l

tran tran cmin=0 wr i t e=”s p e c t r e . i c ” w r i t e f i n a l =”s p e c t r e . f c ”
method=gear2on ly annotate=s t a t u s maxiters=5 save=s e l e c t e d
stop =34.768u sk ipdc=no s t r o b e f r e q =500.0M acnames=ac
act imes =1.5e−06 s t robede l ay =1.0n

i c x0p=0.4 x0n=0.4 x1p=0.4 x1n=0.4 x2p=0.4 x2n=0.4 x3p=0.4
x3n=0.4

s imulatorOpt ions opt ions p s f v e r s i o n =”1.1.0” r e l t o l =1e−6
vabs to l=1e−9 i a b s t o l=1e−12 gmin=1e−42

save s0p s0n s1p s1n s2p s2n s3p s3n x0p x0n x1p x1n x2p x2n
x3p x3n u

TempOp opt ions temp=27
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D.2 Output Current Summation

// Generated f o r : s p e c t r e
// Design l i b r a r y name : CBC
// Design c e l l name : t b l f c s
s imu la tor lang=s p e c t r e
g l o b a l 0
in c lude ”$SPECTRE MODEL PATH/ des ign wrapper . l i b . s c s ” s e c t i o n=

t t p r e

// Library name : CBC
// Ce l l name : i d e a l o t a
// View name : schematic
subckt i d e a l o t a avdd avss vin vip vop von
A vop von vip vin vcvs gain =10.0k
ends i d e a l o t a

a h d l i n c l u d e ”/home/ f r e d r i e f / p r o j e c t s / v e r i l o g a / comparator fd /
v e r i l o g a / v e r i l o g a . va”

// Library name : CBC
// Ce l l name : comparator idea l
// View name : schematic
subckt comparator idea l in p in n c l k gnd vdd out p out n

r s t n
parameters dly tt ime
Q0 in p in n c l k gnd vdd out p out n r s t n comparator fd dly

=0 tt ime=tt ime
ends comparator idea l

// Library name : CBC
// Ce l l name : gm fd idea l
// View name : schematic
subckt gm fd idea l in p in n out p out n gnd
parameters gm
G0 out n out p in p in n vccs type=vccs gm=gm
ends gm fd idea l

// Design l i b r a r y name : CBC
// Design c e l l name : t b l f c s
VDD vdd 0 vsource dc =800.0m type=dc
VCLK c lk 0 vsource type=pu l s e va l0 =800.0m val1=0 per iod =2.0n

r i s e =1p f a l l =1p
VS u 0 vsource type=s i n e s inedc=0 ampl=10.0m f r e q =488.28125k

mag=1 delay=2e−06
VSTUP vstup 0 vsource type=pu l s e va l0=0 val1 =800.0m per iod=1

width =1.0u f a l l =1p r i s e =1p
VDELAY N vdelay n 0 vsource type=pu l s e va l0 =800.0m val1=0

per iod=1 width =2.0u f a l l =1p r i s e =1p
VSTUP N vstup n 0 vsource type=pu l s e va l0 =800.0m val1=0
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per iod=1 width =1.0u f a l l =1p r i s e =1p
C1P u zp c a p a c i t o r c =20.0 f
C1N 0 zn c a p a c i t o r c =20.0 f
C2P zp otaon c a p a c i t o r c =2.0 f
C2N zn otaop c a p a c i t o r c =2.0 f
A0 vdd 0 zn zp otaop otaon i d e a l o t a
ROP otaop x0n r e s i s t o r r =100.0k
RON otaon x0p r e s i s t o r r =100.0k
CL0P x0p 0 c a p a c i t o r c =397.88735773 f
CL0N x0n 0 c a p a c i t o r c =397.88735773 f
Q0 x0p x0n c l k 0 vdd s0p s0n vde lay n comparator idea l dly=0

tt ime=1p
CK0P s0p zp c a p a c i t o r c =625.0a
CK0N s0n zn c a p a c i t o r c =625.0a
Gm1 x0p x0n x1p x1n 0 gm fd idea l gm=−2.513274123u
CL1P x1p 0 c a p a c i t o r c =20.0 f
CL1N x1n 0 c a p a c i t o r c =20.0 f
Q1 x1p x1n c l k 0 vdd s1p s1n vde lay n comparator idea l dly=0

tt ime=1p
IDAC1 s1p s1n x1p x1n 0 gm fd idea l gm=−39.26990817n
Gm2 x1p x1n x2p x2n 0 gm fd idea l gm=−2.513274123u
CL2P x2p 0 c a p a c i t o r c =20.0 f
CL2N x2n 0 c a p a c i t o r c =20.0 f
Q2 x2p x2n c l k 0 vdd s2p s2n vde lay n comparator idea l dly=0

tt ime=1p
IDAC2 s2p s2n x2p x2n 0 gm fd idea l gm=−39.26990817n
GMA2 x2p x2n x1p x1n 0 gm fd idea l gm=39.26990817n
Gm3 x2p x2n x3p x3n 0 gm fd idea l gm=−2.513274123u
CL3P x3p 0 c a p a c i t o r c =20.0 f
CL3N x3n 0 c a p a c i t o r c =20.0 f
Q3 x3p x3n c l k 0 vdd s3p s3n vde lay n comparator idea l dly=0

tt ime=1p
IDAC3 s3p s3n x3p x3n 0 gm fd idea l gm=−39.26990817n
GMA3 x3p x3n x2p x2n 0 gm fd idea l gm=39.26990817n

dc dc maxiters =150 maxsteps =10.0k wr i t e=”s p e c t r e . dc” annotate
=s t a t u s

ac ac s t a r t =1.0M stop =100.0M annotate=s t a t u s save=s e l e c t e d
log =1.0k f o r c e=a l l

tran tran cmin=0 wr i t e=”s p e c t r e . i c ” w r i t e f i n a l =”s p e c t r e . f c ”
method=gear2on ly annotate=s t a t u s maxiters=5 save=s e l e c t e d
stop =34.768u sk ipdc=no s t r o b e f r e q =500.0M acnames=ac
act imes =1.5e−06 s t robede l ay =1.0n

s imulatorOpt ions opt ions p s f v e r s i o n =”1.1.0” r e l t o l =1e−6
vabs to l=1e−9 i a b s t o l=1e−12 gmin=1e−42

save s0p s0n s1p s1n s2p s2n s3p s3n x0p x0n x1p x1n x2p x2n
x3p x3n u

TempOp opt ions temp=27
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Appendix E

OTA Details

To provide a complete background for how the simulation results of sec-
tion 5.3.1 was obtained, some additional design details for the OTA of
figure 5.13 is given in this appendix.

Because the OTA is used with capacitors in both feedback and feed-
forward (cf. figure 5.1), there is no DC-path from the gate of the input
transistors M1,2 to ground. Gate-leakage of M1 and M2 would therefore
cause the input common-mode voltage to drift towards one of the rails. To
avoid this issue, thick-oxide I/O devices are used for the input transistors.
To set the desired voltage on the input node, the input inverters are reset
during start-up, by connecting the gate and drain of M1,2 using ideal
switches.

Furthermore, to keep the bias transistor Mbp1 from entering the triode-
region, the threshold voltage of M2 is lowered by connecting its bulk to
−2V. As a rather complex circuit would be required for generating a
stable voltage of −2V in a real implementation, a different solution is
preferred in a future development.

The bias voltages, Vbn and Vbp, are generated by the circuit of figure E.1a,
and ideal models are used for the current sources. All device dimensions
are given in figure E.1b. The common-mode feedback (CMFB) network is
realized by two ideal, noiseless resistors of 1 MΩ, connected between the
outputs and the Vcmfb node of figure 5.13. The complete spectre netlist
for the OTA is given in appendix E.1.
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OTA Details

Mbp2

Mbn2

Vbp

Vbn

...

2.1 µA 8.3 µA

...

(a) Bias circuit for OTA

(b) OTA transistor dimensions

Device Size (W/L) Unit

M1
508/100 nm

M2
2830/100 nm

M3,4,5
112/200 nm

M6
414/200 nm

Mbn
115/200 nm

Mbp
1280/200 nm

Figure E.1: OTA bias circuit and device dimensions.
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E.1. Netlist

E.1 Netlist

// Library name : CBC
// Ce l l name : OTA
// View name : schematic
subckt OTA gnd inn inp outn outp vdd vstup
VNEG vneg 0 vsource dc=−2 type=dc
M1A outp1 inn dn vdd nch io m=1 w=508.0n l =100.0n
M1B outn1 inp dn vdd nch io m=1 w=508.0n l =100.0n
M2A outp1 inn dp vneg pch io m=1 w=2.83u l =100.0n
M2B outn1 inp dp vneg pch io m=1 w=2.83u l =100.0n
MBN dn biasn gnd gnd nch m=1 w=115.6n l =200.0n
MBP dp biasp vdd gnd pch m=1 w=1.28u l =200.0n
M3A outp1 outp1 gnd vdd nch m=1 w=111.8n l =200.0n
M3B outn1 outn1 gnd vdd nch m=1 w=111.8n l =200.0n
M4A outn outp1 gnd vdd nch m=5 w=111.8n l =200.0n
M4B outp outn1 gnd vdd nch m=5 w=111.8n l =200.0n
M5A outn bp vdd gnd pch m=1 w=414.0n l =200.0n
M5B outp bp vdd gnd pch m=1 w=414.0n l =200.0n
M6A outp1 outn1 gnd vdd nch m=800.0m w=111.8n l =200.0n
M6B outn1 outp1 gnd vdd nch m=800.0m w=111.8n l =200.0n
IBN vdd biasn i s o u r c e dc=2.1u type=dc
IBP biasp gnd i s o u r c e dc=8.3u type=dc
MBN2 biasn biasn gnd gnd nch m=1 w=115.6n l =200.0n
MBP2 biasp biasp vdd gnd pch m=1 w=1.28u l =200.0n
RCMFBA outp vcmfb r e s i s t o r r =1.0M
RCMFBB outn vcmfb r e s i s t o r r =1.0M
SWIN outp1 inn vstup 0 r e l a y ropen =100.0P r c l o s e d =1.0
SWIP outn1 inp vstup 0 r e l a y ropen =100.0P r c l o s e d =1.0
ends OTA
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Appendix F

Transconductor Details

Some additional design details for the transconductor of figure 5.16 is
given in this appendix.

As the transconductor is used with floating-gate voltage summation,
thick-oxide I/O devices are used for the input transistors M1 to limit the
gate-leakage. The DC-voltage of the floating input is set by connecting
the transconductors input and output during start-up. The bias circuit
generating the voltage Vbn is shown in figure F.1a. The same bias voltage
is used for the continuous-time CMFB circuit shown in figure F.1b. The
common-mode reference voltage, Vcmref , is set to 500 mV.

The spectre netlist for the transconductor and the CMFB circuit, which
also contains all device dimensions, are given in appendices F.1.1 and F.1.2.
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Mbn2

Vbn

Vss

...

250 nA

(a) Bias circuit

Mc1a Mc1bMc2a Mc2b

Mc3a Mc3b

Mc4b

Mc4a

Vbn

Vcmref

Vcmfb

Vdd

Vdd

VssVss

v+
o v−o

(b) Common-mode feedback circuit

Figure F.1: Schematic for bias and CMFB circuit
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F.1. Netlist

F.1 Netlist

F.1.1 Transconductor

subckt gm basic nch vip vin outp outn avss avdd vbp vstup n
parameters Ib
m0 t a i l vbn avss avss nch m=2 w=300.0n l =1.0u
m0c vbn vbn avss avss nch m=1 w=300.0n l =1.0u
m1a casa vip t a i l avdd nch io m=1 w=300.0n l =300.0n
m1b casb vin t a i l avdd nch io m=1 w=300.0n l =300.0n
m2a outn avdd casa avss nch m=1 w=200.0n l =1.2u
m2b outp avdd casb avss nch m=1 w=200.0n l =1.2u
m3a outn vbp avdd avdd pch m=1 w=400.0n l =400.0n
m3b outp vbp avdd avdd pch m=1 w=400.0n l =400.0n
SWA outn vstup n vip 0 pch m=1 w=40.0n l =20.0n
SWB outp vstup n vin 0 pch m=1 w=40.0n l =20.0n
IB avdd vbn i s o u r c e dc=Ib type=dc
VOCM vocm avss vsource dc =400.0m type=dc
CMFB avdd avss outp outn vbp vocm CMFB Ib =250.0n
ends gm basic nch

F.1.2 Common-Mode Feedback

subckt CMFB avdd avss vop von vcmfb vcmref
parameters Ib
m1a d1 vop t a i l a avss nch io m=1 w=500.0n l =300.0n
m1b d1 von t a i l b avss nch io m=1 w=500.0n l =300.0n
m2a vcmfb vcmref t a i l a avss nch io m=1 w=500.0n l =300.0n
m2b vcmfb vcmref t a i l b avss nch io m=1 w=500.0n l =300.0n
m3a t a i l a vbn avss avss nch m=1 w=300.0n l =1.0u
m3b t a i l b vbn avss avss nch m=1 w=300.0n l =1.0u
m4a d1 d1 avdd avdd pch m=1 w=300.0n l =300.0n
m4b vcmfb vcmfb avdd avdd pch m=1 w=300.0n l =300.0n
IB avdd vbn i s o u r c e dc=Ib type=dc
m3c vbn vbn avss avss nch m=1 w=300.0n l =1.0u
ends CMFB
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Appendix G

StrongARM Latch Netlist

G.1 StrongARM Latch Core

subckt salms avdd dvdd avss c l k inn inp outn outp bulkn bulkp
mn1 v ipdra in inp s bulkn nch m=1 w=150.0n l =20.0n
mn2 v indra in inn s bulkn nch m=1 w=150.0n l =20.0n
mn3 latchp latchn v ipdra in bulkn nch m=1 w=150.0n l =20.0n
mn4 latchn latchp v indra in bulkn nch m=1 w=150.0n l =20.0n
mp1 latchp latchn avdd bulkp pch m=1 w=150.0n l =20.0n
mp2 latchn latchp avdd bulkp pch m=1 w=150.0n l =20.0n
mnck s c l k avss bulkn nch m=1 w=150.0n l =20.0n
mpsw1 v ipdra in c l k avdd bulkp pch m=1 w=150.0n l =20.0n
mpsw2 latchp c l k avdd bulkp pch m=1 w=150.0n l =20.0n
mpsw3 latchn c l k avdd bulkp pch m=1 w=150.0n l =20.0n
mpsw4 v indra in c l k avdd bulkp pch m=1 w=150.0n l =20.0n
inv1 dvdd avss la tchp inv1n inv w=150.0n l =20.0n m=1
inv2 dvdd avss la tchn inv1p inv w=150.0n l =20.0n m=1
la t ch dvdd avss inv1n inv1p lop lon r e s e t l a t c h
inv3 dvdd avss lop outn inv w=150.0n l =20.0n m=1
inv4 dvdd avss lon outp inv w=150.0n l =20.0n m=1
ends salms

G.2 Reset Latch

subckt r e s e t l a t c h dvdd avss inp inn outp outn
m1a outn inp avss avss nch m=1 w=150.0n l =20.0n
m1b outp inn avss avss nch m=1 w=150.0n l =20.0n
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m2a outn outp dvdd dvdd pch m=1 w=150.0n l =20.0n
m2b outp outn dvdd dvdd pch m=1 w=150.0n l =20.0n
ends r e s e t l a t c h
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