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Abstract

Before brewing, coffee has to be roasted. Coffee roasters want as much control over the roasting
process as possible. Today the coffee roasting process is mostly hand-tuned with little to no
instrumentation. The chemical composition of coffee is crucial to its taste and smell. The
concentration of important chemicals in coffee can be determined using hyperspectral imaging.
We develop a roasting method to minimize variance in roast spectra and a hyperspectral imaging
technique to minimize estimated roast spectrum variance. Roasting for a specific time gives a
lower spectral variance than roasting until first crack, which is a common roasting technique.
Based on our roasting method and randomized parameter search theory, we roast coffee to build
a data set for prediction of roast spectra. We use this data set to train models that can predict
the spectrum of coffee based on how it is roasted. Linear regression models can predict the roast
spectra with R? = 0.58 — 0.74. These spectra can, in turn, be used to predict the chemical
composition of the roast before roasting when combined with chemometric models.
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Chapter 1

Introduction

Coffee is a product with great diversity, albeit good or bad. As with any product, producers want
to make the product as good as possible. Today coffee roasting is a craft based on experience. To
arrive at a desired roast, you have to experiment until you arrive at what you want, wasting both
time and coffee. Predicting the properties of a roast before roasting would save some of these
expenses. Spectroscopy is an established technique for monitoring roast quality and has already
been used for chemometrics in green and roasted coffee. The next step in a priori chemometrics of
coffee is to use the spectrum of green coffee to predict the effect of roasting on coffee roasts. It will
enable a priori chemometrics of coffee roasts when combined with already existing chemometric
models. Our first step towards a priori chemometrics of coffee roasts is reviewing the literature
to get an overview of what chemical concentrations are measurable in coffee using spectroscopy
and how coffee is best stored. Since we want to estimate the spectrum of coffee as accurately
as possible, we want to keep the variance in the spectrum of each roast to a minimum. To
achieve a low variance in the spectrum, we quantify the variance in the spectrum measured by
hyperspectral imaging within and between roasts. Based on the variances, we choose an imaging
and roasting method. Finally, we roast and image coffee based on our optimized technique using
a ROEST sample roaster, shown in figure 1.2 and two hyperspectral cameras(SWIR320(962nm-
2493nm) and VNIR1800(404nm-995nm), Norsk Elektro Optikk AS). A sample of beans captured
with a VNIR camera through a microscope lens is shown in figure 1.1.

1.1 Background

The quality of coffee is affected by all steps in its processing and how it is treated in between.
Coffee beans are actually seeds. When planted, they can grow into trees bearing fruit after three
to four years. Since different places have different growth conditions, the origin of coffee affects its
qualities. When the coffee cherries are deep red and ripe, they are ready for harvest. The cherries
are either picked selectively or all at once. A larger variance in ripeness gives a larger variance
in quality. After harvest, coffee is either first dried and then have its skin and pulp removed in
what is called a natural process, or its skin and pulp is removed before drying in what is called a
washed process. Finally, beans are sorted by size and put in jute bags or other containers before
shipping to a supplier that distributes the coffee to roasters. To do a priori chemometrics of
coffee both chemometrics and spectrum predictions are needed. Spectroscopy has been applied
to coffee, measuring: caffeine (Nogales-Bueno et al. [2020],Huck et al. [2005]) theobromine [Huck
et al., 2005], moisture [Davrieux et al., 2008], ash [Pizarro et al., 2004], sucrose [Santos et al.,
2016], lipid [Pizarro et al., 2004], melanoid [Nogales-Bueno et al., 2020], phenolic [Nogales-Bueno
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Figure 1.1: BLEND beans roasted for seven minutes captured through a microscope lens using
a VNIR camera, the image is shown in standard RGB.



1.1. BACKGROUND )

ErapRm——— L S SRR

NexT EVENT DEVELOPMENTTIME

CHARGE 00:50

ANDARD AUTOMATIC ROAST ACTI

06:00

AR TEMP (1220 0:01)

2201 C

Figure 1.2: The ROEST sample roaster is a lab tool for coffee roaster made to roast 100g samples
of coffee at a time.
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et al., 2020], and chlorogenic [Nogales-Bueno et al., 2020] content. When analysing coffee samples
roasted at different points in time it is important to have an estimate of how rapidly coffee spectra
change before and after roasting. Abreu et al. [2019] have used Raman spectroscopy to compare
coffee storage conditions. Smrke et al. [2017] have examined how roasted coffee degases over the
course of 400 hours. These two studies are important in planing the timeline for our experiments.

1.2 Goals and Research Questions

What defines good coffee is not clear, but what is clear is that quality is chemistry-dependent. To
give roasters more control of the quality of their roasts, we want to enable a priori chemometrics
of coffee roasts.

Goal A priori chemometrics of coffee roasts.

Coffee beans have structure. The two most obvious parts of a coffee bean are the crack and
the body. We do not know if the chemistry in the crack and the body is affected differently by
roasting. We know that hyperspectral imaging can be used for chemometrics of coffee roasts.
Can hyperspectral imaging be used with clustering to detect bean and background and to find
structures of different materials on the surface of coffee beans?

Research question 1 Can clustering be used to detect coffee beans and structures of different
materials on their surface?

For the prediction of roast spectra to make sense, the spectra of coffees with different roast
profiles have to be separable using the hyperspectral cameras we have at our disposal. Their
separability is dependent on their spectral variance.

Research question 2 How large is the within-roast variance of coffee roasts?

Before roasting coffee to build a data set for a priori spectroscopy, we want to know how we
can roast coffee with minimal between-roast variance for roasts with identical roast profiles.

Research question 3 What roasting method minimizes the between-roast variance?

Finally, we want to know how accurately we can predict roast spectra based on the spectrum
of the green coffee beans before roasting and the roast profile defined by the roast parameters.

Research question 4 How accurately can we predict roast spectra?



Chapter 2

Theory

There are three steps in coffee roasting analysis: roasting, imaging, and analyzing. First, we
describe the roasting process and how we can control it. Next, we define the profiles we use in
our experiments before defining a hyperspectral camera’s field of view and resolution. Last but
not least, we present the rationale behind our analysis and decision methods.

2.1 Coffee Roasting

After harvest, coffee berries have their pulp removed either through a washed or natural process
and are dried until reaching around 10% humidity. Then it is time for roasting. We use the
ROEST sample roaster, shown in figure 1.2, which is based on conductive heating of coffee beans
and control heat transfer through temperature and airflow in the roasting chamber. It has a
rotating roasting chamber, a fan that sucks out air from the roasting chamber, and a heating
element. The three parameters: air temperature, fan rpm, chamber rpm as a function of time
defines a roasting profile.

2.1.1 The Effect of Roasting on Coffee Beans

During roasting, it is evident that phase transitions occur. The two most apparent transitions
are the first and second crack, which are both hearable. A little bit of gas is released from the
coffee beans in a pop during the first crack (FC). The second crack is more violent than the first,
with bursts of vapor erupting from the beans after releasing some of their oils. Roasters use these
cracking sounds as indicators of where the beans are in the roasting process and typically decide
to halt the roasting based on when the first crack happens. Roasting until first crack tends to
produce pleasant roasts for most beans. In addition to the hearable phase transitions there are
some visible ones. When coffee beans reach about 170 degrees they turn yellow, and when they
reach 190 degrees they turn brown. After becoming brown they gradually become black.

2.2 Coffee Storage

From Abreu et al. [2019] we know that green beans change over time, but the change does not
affect the quality of coffee within periods shorter than a month, and the change is smaller for coffee
stored in plastic bags than for coffee stored in paper bags. Using a gravimetric method Smrke
et al. [2017] have studied degassing of roasted coffee beans. Degassing was exponential, with a

5
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time constant between 153 and 377 hours depending on the roast profile used. Smrke et al. [2017]
found that a Weibull distribution with k& < 1 was a better fit for their gravimetric timeseries,
especially for quick dark roasts. This can be explained by two main exponential degassing
processes, where one of them has a time constant of 37 hours. Dark and quick roasts have
a short degassing time. When it comes to ground coffee, ROSS et al. [2006] did not find a
significant quality difference in ground coffee two weeks after grinding.

2.3 Hyperspectral Imaging

Hyperspectral images (HSI) are images with a reflectance spectrum in each pixel. This spectrum
can be used to analyze the composition of the material in each pixel, meanwhile having an image
with many pixels shows us the spatial distribution of materials in the image.

2.3.1 Infrared Spectroscopy

When we image an object illuminated by a known light source, we get information about its
composition through what light it absorbs. Molecules have different vibrational and rotational
energy states, with energy gaps E, between them matching the energy of infrared light. Even
though there are many such vibrational states, only the ones where the electric dipole moment
changes during vibration absorb infrared light. This is the selection rule for infrared spectroscopy.
It is important to note that the energy gaps between the states always have some spread. There
is a fundamental uncertainty in any energy state, and on top of that, the energy gap can be
broadened by bonds with other molecules or other forces. The absorption spectrum, showing how
much light of specific frequencies is absorbed in a medium, is characteristic for different molecules.
Figure 2.1 shows the visible/near infrared(NIR) absorption bands of common molecules in coffee.

2.3.2 Absorbance

When trying to estimate the concentration of a chemical in a medium, we assume that the
absorbance A of light is proportional to the concentration of the chemical p and the path length
x of light in the medium. A= opz so that the intensity of the light in the medium is given by
Beer Lambert’s law (2.1).

I(.’E) = I(]eigpm (21)

2.3.3 Reflectance

In our hyperspectral images, we do not capture an absorption spectrum but a reflectance spec-
trum R. The reflectance spectrum consists of light being specularly reflected from the sample
Rg and light transmitted through the sample’s surface Ry, absorbing and scattering within the
sample before ending up on the camera sensor. Specularly reflected light is light that is reflected
from the surface, never entering the sample. When light is specularly reflected, it keeps its po-
larization, so we can use polarization filters to filter out most of it. If the sample is not flat,
more specularly reflected light can get through the polarization filter. The absorption spectrum
A and the reflectance spectrum without specular reflection Ry is related through (2.2)

A= —lOglo(RT) (2.2)
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Figure 2.1: There are many molecules in coffee that have absorption peaks of different width in
the visible/near infrared spectrum, the narrowest peaks are about 10-20nm wide. (adapted from
Ribeiro et al. [2011] and B.G. Osborne [1993])



8 CHAPTER 2. THEORY

d/2

v
< /2 A
~

Figure 2.2: The relation between angle of view « and field of view d is given by (2.3)

2.4 Optics

Any spectroscopic system has some optical components. At the core of a dispersive hyperspectral
imaging system, a detector array captures light to form an image. One of the spatial dimensions
of the detector array represents a spatial direction in the focus plane of the camera, while the
other one represents the spectrum of each point along the spatial direction in the focus plane.
A line of light captured through the camera lens is spatially selected before it is dispersed into
the orthogonal dimension through a dispersive element. The focus length of the camera lens
determines the field of view and the depth of focus of the camera.

2.4.1 Angle and Field of View

Camera systems typically specify an angle of view, which describes how wide the camera can
see. The angle of view « is illustrated in figure 2.2, where x is the distance from the lens and
d is the field of view. If we know the angle of view « of a camera and want to find the field of
view d in the focus plane when using a lens with focus length F we can use (2.3)

d =2F tan« (2.3)

2.4.2 Resolution

There are two types of resolution, optical resolution and digital resolution. The optical resolution
is given by the point spread function of an optical system. When combined with digitalization
in a camera, the coarsest resolution is the resolution of the system. Digital resolution r4 field of
view d divided by number of pixels N as given by (2.4).

rd = (24)

d
N
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2.5 Numerical Derivatives and Smoothing

The derivative f'(z) of a function f(x) with respect to a variable z is defined as the change in
f for an infinitesimal change in x as given by (2.5). The best approximation to the derivative of
a series is the difference between each step divided by the steplength [ (2.6).

2.
dz—0 dzx (2.5)

In series measurements, there is always some noise. If we know something about the signals we
are looking for, we can filter out some of the noise. Common noise filtering techniques in digital
signal processing include: infinite/finite impulse response filtering, discrete Fourier transform
filtering, wavelet transform and empirical mode decomposition. A finite impulse response filter
is defined by how the signal s affects the filtered signal f(s) through the impulse response function
h (2.7).

o0

fi= ) sivhy (2.7)

j==o0

Sometimes, it is convenient to define a function sparsely using a small set of points and
interpolating between points that define the function. A much-used interpolation is the natural
cubic spline. It has knots in all the points (x, y) in the data and is piece-wise cubic in between the
knots. The function has to be linear before the first knot and after the last one while also being
continuous up to the 2nd order derivative in all knots. This leaves only one parameter to be fit for
each piece in between the knots. Mathematically the cubic spline with K knots at x = §,Vk € K
is given by (2.8), where by (z) = z, ba(z) = 22, b3(z) = 22, bpr3(7) = (7 — Epa3)?Va > &4 3VEk €
1 K]

y = Bo+ B1b1 (J,) + 6262(1') + ,Blbl(.’L') —+ ...+ ﬁK+3bK+3(.’L’) (2.8)

2.6 Error Metrics

To assess how good a model is in terms of predicting some quantity we need an error metric,
for example the root mean square error (RMSE). If RMSEs are on different scales they are not
comparable, to compare such models we use the coefficient of determination R?2

2.6.1 Root Mean Squared Error

The root mean square error is a common error metric in regression analysis. It compares an
estimated vector y with true values y, where N is the length of the vectors.

N
RMSE(y,y) = % > i — i) (2.9)

i=1
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2.6.2 Coeflicient of Determination

The coefficient of determination R? is a measure of how much of the variation in the response
a prediction model can explain. The definition of R? is given by (2.10), where y;; is the true
value of y; at index j, §;; is the predicted value of y; at index j and ; is the mean of y;. When
predicting roast frequencies, ¢ indicates wavelength, j indicates roast, and y is the reflectance or
2nd derivative of reflectance.

Sii(yij — vig)*

R2<$’7Y) =1- —
i (yij — 7i)?

(2.10)

2.6.3 Adjusted Coefficient of Determination

We define the adjusted coefficient of determination R?* as (2.11), where o2 is variance in the
response y, which is known to be inexplainable based on the predictors. The adjusted coefficient
of determination excludes errors known to be inexplainable so that variation in the response,
which is impossible to predict, does not punish the prediction model.

S (yij — 9ij)* — on

R2* -1 4
5ij(yij — 9:)* — o3

(2.11)

2.7 Statistical Learning

In statistical learning, we talk about predictors x and responses y. The goal of a prediction
problem is to predict the response from the predictors. When trying to solve a prediction
problem, it is smart to start with a simple model. Linear models are basic models that perform
well for many applications. They assume that the response is linear in the predictors Y = AX +b.
Sometimes we expect the response to be nonlinear in the predictors, and it is tempting to look
for nonlinear models. However, nonlinear models suffer from the curse of dimensionality, the
more complex the model, the more cursed. The number of coefficients of an ordinary least
squares polynomial regression is polynomial so that a polynomial fit of degree D based on N
predictors has O(NP) coefficients. To make a sensible regression, the number of coefficients
should be smaller than the number of observations. Otherwise, the prediction model is free to
choose coefficients to fit the signal and noise in the data perfectly, yielding a misleading model.
In regression problems with many predictors, it is typically wise to transform the predictors and
penalize the model’s coeflicients.

2.7.1 Standard Normal Variate Scaling

Standard normal variate(SNV) scaling is a much used technique to make variables comparable.
It scales a variable x so that its standard deviation becomes 1, as in (2.12), where sd(x) is the
standard deviation of x.

X

SNV (x) = e

(2.12)

2.7.2 Evaluating Statistical Models

The empirical performance of a statistical model is stochastic. Therefore it is best practice to
use at least two layers of acceptance in any model selection process. Both training and testing
of a model should resemble its intended use case, and the steps should use non-overlapping data
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sets. The first acceptance criterion for a model is based on cross-validation error, while the next
one is based on an independent test error. This means that for a model to be accepted, it has
to be selected through cross-validation and then accepted by testing.

2.7.3 Fisher Test

A fisher test (F test) compares two sets of samples and gives a p-value for how likely it is that
all the samples originate from the same distribution.

2.7.4 K-Fold Cross-Validation

k-fold cross-validation is a common validation technique, where training data x is split in k folds.
For i € [1,k] a model is trained on z;V(j € k) # ¢ and tested on z;. The average validation
error of all the validation errors is called the cross-validation error. The standard deviation of
the cross-validation error using RMSE is the standard deviation of the validation errors divided
by Vk, assuming identically distributed independent variances in the validation errors.

2.7.5 Ordinary Least Squares Regression

Ordinary least squares regression(OLSR) tries to minimize RMSE(y,y) of a regression model
¥y =a+ px.

2.7.6 Principal Component Regression

Predictors in problems of high dimensionality are often correlated. If predictors are correlated
enough, most of the variation in the predictors can be explained by a few linear combinations
of the predictors called principal components. Selecting the r components that explain most of
the variance in the predictors X is equivalent to finding V, the r most important eigenvectors
of XTX. The Echard-Young theorem states that the best rank r approximation to X is X ~
UDVT. The columns of U are the 7 first eigenvectors of X, D is the r x r diagonal matrix of
the first r singular values of X, and V is the r most important eigenvectors of the correlation
matrix X7 X. Using the principal components of X for regression is called principal component
regression(PCR). In many applications, the predictors used in the principal component analysis
have different units. Variances of variables with different units are typically incomparable, so the
predictors are typically scaled to have unit variance. The first principal component is the unit
vector in X, along which the variance is largest. Principal component z; is the unit vector in
the subspace of X orthogonal to the last principal components 21, ...z;_1 along which X varies
the most.

2.7.7 Partial Least Squares Regression

Partial least squares regression(PLSR) is based on using the components of the predictors that
are most correlated to the response to predict the response. The procedure to find the latent
variables explaining most of the variance in the response starts with computing qASj =< T,y >
for all predictors j. The first latent variable is z; = Y j ggj:cj. y is regressed on 2z to find zs
regression coefficient ;. Next z;...x, are orthogonalized with respect to z1, and so on.
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2.7.8 Shrinkage Methods

The error e(y) = var(y) + b*(y) of a model comes from its variance var(y) = E[(E(y) — 9)?]
and its bias b(y) = E[E(y) — g]. The Gauss-Markov theorem tells us that the mean square
error estimator is the best unbiased estimator. However, if we introduce some bias, we might
reduce the variance more than the square bias increases resulting in reduced error, this is called
reqularization. Having many predictors makes a model vulnerable to variance. If two variables
are negatively correlated, one of the coefficients may be very large and positive while the other
coefficient is very large and negative. Shrinkage methods regularize by penalizing the coefficients
B. A common class of penalization is L, penalization, where /3s are chosen based on the criterion
(2.13). Lg is best subset selection, L; is lasso regression and Ls is ridge regression. Just as in
principal component analysis, predictors are SNV scaled before the coefficients are calculated.

B = argmin(}_(vi — o= 3_(2:38:5))° + A3 _(151") (2.13)

? J

2.7.9 Neural Networks

The last decade has seen many applications of ever more advanced neural networks. The idea be-
hind neural networks is to apply a neat property of nonlinear functions to approximate arbitrary
functions. A neural network is just a set of matrix multiplications and transformations relating
predictors X to responses Y through (2.14), where C; are matricies and ; are some functions. If
the functions o; are locally bounded nonpolynomial piecewise continuous functions, the network
can approximate arbitrary continuous functions with arbitrary accuracy.

Y :O'N(CN...O'l(Clo'o(C()X))) (2.14)

2.7.10 Parameter Searching

When mapping a function in a parameter space it is tempting to do a grid search, which makes
sense if the parameter space is one dimensional, but provides unsatisfactory little information
if the parameter space is of higher dimensionality and the importance of the parameters are
not equal. Random sampling is much better than grid search for sampling functions of high
dimensionality, especially when the predictors are of unequal importance. This principle is
explained by Bergstra and Bengio [2012], focusing on the application of random searching in

hyper-parameter tuning for neural networks and is beautifully illustrated in 2.3.

2.7.11 Hierarchical Clustering of Spectra Using Complete Linkage

We cluster the spectra of pixels based on their scaled dot product. If two have an identical shape
their dot product will be 1. A cluster is a set of one or more spectra. In hierarchical clustering
all N spectra start out as leaf nodes in a forest of N trees. To connect trees we use the complete
linkage criterion, which measures the longest distance between all pairs of spectra in a pair of
trees. In each iteration the two trees with the largest overlap are connected in a new root node.
All trees are connected in N — 1 iterations.
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Figure 2.3: Grid and random sampling of nine points to estimate a function f(x,y) = g(z) +
h(y) = g(x) with low effetive dimensionality. Above each square g(z) is shown in green, and left
of each square h(y) is shown in yellow. With grid search, nine samples only sample g(z) in nine
places. With random search, all nine samples explore g(x) in distinct places. This failure of grid
search is the rule rather than exception in high-dimensional spaces. Adapted from Bergstra and
Bengio [2012]
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Chapter 3

Method

Our study of coffee is an iterative process. Our end goal is a priori chemometrics of coffee roasts,
and we know that Nogales-Bueno et al. [2020] have used hyperspectral cameras for estimation of
extractable content of bioactive compounds in coffee beans. Using a hyperspectral camera with
a spectral resolution of 3.25 nm, they estimate caffeine, chlorogenic, and phenolic content from
the 950-1650 nm spectral band of roasted coffee beans. We intend to figure out how accurately
we can estimate the post-roasting spectra of coffee beans R,.,qsteq based on their pre-roasting
spectrum Rgrcen, and roast profile. In our work, we first image roasts of the same bean variety
roasted for different amounts of time to check if we can see a difference between the roasts.
We also use these images to check how large the spectral variance between different samples
from the same roast is compared to the spectral variance between images of the same beans in
different orientations. Then we check if we can find clusters of different materials on the surface
of the coffee beans. Next, we choose a roasting method based on a variance analysis experiment
before roasting coffee beans in different ways to produce a data set we can use to train prediction
models. Finally, we test a range of prediction models to predict raw reflectance spectra, and
2nd derivative transformed spectra which are used for phenolic estimation by Nogales-Bueno
et al. [2020]. In addition to the work we have done for spectral prediction, we have also imaged
coffee after grinding and brewing. This enables an analysis of the relation between the spectra
of whole bean, ground, and brewed coffee. This chapter first presents our hyperspectral imaging
setups, our coffee roaster, and how it controls the roasting process. Then we present how we
treat our samples before, during, and after imaging and roasting. We image all samples using
two hyperspectral cameras.

3.1 Coffee Beans and Sample Roaster
We use a ROEST sample roaster for coffee roasting, always roasting 100g+1g of coffee at a

time. We use five varieties of coffee for our roasting experiments: ETIOPIA, PERU, BLEND,
PE-2020-038_ARS, which are all washed, and PSS-CO-2020-116, which is naturally processed.

3.2 Roasting Using the ROEST Sample Roaster

In our study of coffee, we look at 100g samples of coffee drawn from different batches of green
coffee, shown in figure 3.1, where each batch consists of coffee beans of one specific variety.
When roasting it is important that the temperature in the chamber dropTemp is stable before

15
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Table 3.1: The ROEST standard eight minute profile with start temperature dropTemp and end
temperature endTemp is defined by a natrual cubic spline (2.8) through these points in time t
and temperature T.

t T

0 dropTemp

30 dropTemp - 60

40 dropTemp - 60

90 | dropTemp - 60 + 48.95T
300 | dropTemp - 60 + 366.79+
520 | endTemp

the beans are dropped into the chamber via the hatch shown in figure 3.2. We drop the beans
into the chamber immediately after loading them into the hatch, so that they do not heat up
before the roasting starts. The temperature in the ROEST sample roaster is preprogrammed and
controlled automatically. When a sample is roasted, it becomes a roast. After dropTime seconds
in the roasting chamber the roast is dropped into a ventilated aluminium traytray and is rapidly
cooled, shown in figure 3.3. Beans typically lose about 7% of their mass during roasting, mostly
water and their silverskin, collected in a chaff collector, shown in figure 3.4. Different samples
roasted the same way are different roasts. We image either whole samples or sub-samples, shown
in figure 3.5.

3.2.1 The ROEST Standard Profile

For roasting we have used ROESTSs standard eight-minute temperature profile ROEST (dropTemp,end Temp,dropT
which is defined by a natural cubic spline through the points in table 3.1, with time t, temper-

ature T, dt = 480 and dT = endTemp - dropTemp + 60. dropTime is the time at which the

beans are dropped into the aluminium tray to cool, it is measured in seconds. When roasting

until first crack ROEST (dropTemp,endTemp,FC) dropTime is choosen dynamically and is set

to the time at which first crack occurs + 50 seconds. Fan and chamber rpm are the same for all

temperature profiles.

3.3 Coffee Storage

We have to keep an eye on what happens to coffee before roasting and between roasting and
imaging. We know from Abreu et al. [2019] that coffee beans are best stored in plastic bags,
so we use polyethylene bags for storage. The time it takes for coffee stored in plastic bags to
change significantly in terms of sensory quality is longer than two months. We never store coffee
for more than a week between imaging the green beans and roasting, keeping our storage time
well within the bounds given by Abreu et al. [2019]. The time window between roasting and
imaging is much shorter. Smrke et al. [2017] reports that degassing of some of the compounds
in coffee is exponential with a time constant as low as 37 hours, which is why we are careful to
image coffee beans we roast within 12 hours after roasting. When coffee is ground, it degases
more rapidly.
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Figure 3.1: Four batches of different coffee varieties, each in their own bag.
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Figure 3.2: A sample is loaded in to the hatch of the ROEST sample roaster immediately before
dropping into the roasting chamber.
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Figure 3.3: A roast is cooled in an aluminium tray after roasting.
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Figure 3.4: During roasting coffee beans loose their silverskin. The ROEST sample ROASTER
collects the silverskin in a chaff collector.
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Figure 3.5: Half of a green bean sample is loaded into a dish.
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Table 3.2: Accessories we use with the SWIR camera in our imaging setup.
HySpex ”flicker-free” DC
linear light source
Translationstage:
8MT195-540-10
8SMC1-USBh

Stepper Motor Controller
Background Black Fabric

Lamps

Stage

Motor Controller

Table 3.3: Accessories we use with the VNIR camera in our imaging setup.
Illumination technologies

Lamps 3900
Standa
Stage 100833

8SMC4-USB-B8&-1
Motor Controller
Background Black Cardboard

Motor Controller

3.4 Coffee Bean Spectrum Measurements

Previous work ( Nogales-Bueno et al. [2020],Zhang et al. [2018a]) have used averaged coffee bean
spectra for estimation of chemical composition. We do the same to make our models compatible
with the ones used in Nogales-Bueno et al. [2020] and limit our analysis scope. Zhang et al. [2018b]
have found that image averaging yields better chemometric results than single pixel classification.
To assess how much better image averaging is than point spectroscopy, we calculate the pixel-wise
reflectance spectrum variance over all images.

3.5 Hyperspectral Imaging Setups

We image coffee using two different hyperspectral camera setups, one with a SWIR 320me(Norsk
Elektrooptikk, 962nm-2493nm) camera, shown in figure 3.6, and one with a VNIR 1800(Norsk
Elektrooptikk, 405nm-995nm) camera, shown in figure 3.7. The SWIR camera is mounted on a
moving stage together with lamps over the sample. In contrast, the VNIR camera is mounted
in a stationary configuration with samples mounted on a moving stage underneath. A reference
reflectance sample (Spectralon Diffuse Reflectance Standard) of reflectance R = 0.99 is included
in all images to enable calculation of the reflectance spectrum in all pixels of the images. The
SWIR camera setup in the 30cm lens configuration is shown in figure 3.6 and the VNIR setup
is shown in figure 3.7. Both setups use microscope lenses and no polarization filters to capture
images for clustering analysis. For all other experiments, both cameras use 30cm lenses and
polarization filters in cross-polarized configuration. We put the beans in NIR-UV transparent
dishes for imaging, as shown in figure 3.8 and focus the camera on the bean surface. The
accessories used for the cameras are listed in table 3.2 and 3.3, while the specs of the cameras
are listed in table 3.4 and 3.5.
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Figure 3.6: The SWIR320 962nm-2493nm hyperspectral camera is mounted over the sample with
a 0.99 reflectance reference beside it.

Table 3.4: Specifications of the SWIR320 camera.

Spectrum 962nm-2493 nm
Spectral resolution | 6.00 nm
AOV 16°

Bit resolution 16 bit
30 c¢m lens

FOV 84 mm
30 cm lens

resolution 263 pm
Microscope lens

FOV 17 mm
Microscope lens

resolution 53 pm
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Figure 3.7: The VNIR1800 405nm-955nm hyperspectral camera is mounted over the sample with

a 0.99 reflectance reference beside it.
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Table 3.5: Specifications of the VNIR1800 camera.

Spectrum 405nm-995nm
Spectral resolution | 3.26 nm
AOV 17°

Bit resolution 16 bit
30 cm lens

FOV 86 mm
30 cm lens

resolution 168 pum
Microscope lens

FOV 12 mm
Mlcros<.:0pe lens 24 i
resolution

3.6 Using clustering to Find Regions of Interest

Zhang et al. [2018a] shows that the spatial distribution of the spectrum decays radially from the
centre of coffee beans when their crack is facing away from the camera, we want to investigate if
clustering can detect regions of interest on the surface of coffee beans in our images. We image
eight different coffee roasts roasted from t = 0 — 7 minutes at one-minute intervals. All eight
samples are of BLEND variety and are roasted using a ROEST(220,250,t) standard profile. We
image the beans using a microscope lens to enable the clustering to find small-scale structures.
We use hierarchical clustering with complete linkage.

3.7 Within-Roast Variance

Because we do not find prominent hyperspectral structures that are small in space, we decide to
use a 30cm lens instead of the microscope lens to capture the rest of the images in our study. By
increasing the field of view in this way, more of the variation in the beans is captured by having
more beans in each image. Having switched lenses, we also add cross-polarized filters to the light
sources and lenses before capturing images to look at the variance between images of the same
coffee beans and between beans from the same roast.

3.7.1 Preparation and Imaging

In this experiment, we use the same eight samples of BLEND variety roasted for zero to seven
minutes using a ROEST(220,250,t) standard profile as in the clustering experiment. We want to
know how separable the spectra of our roasts are, which is determined by how large the variance
in the spectrum of a roast is. We estimate the variance of the spectrum based on the orientation
of the beans when the hyperspectral image is captured and based on what subset of beans from
a sample we are imaging. To estimate the variance in the spectrum based on what subset of a
roast we image, we draw three random samples from each roast. Each roast has between 90g
and 100g of beans, and each sample is half of the beans from a roast drawn randomly amongst
all beans in the roast. To estimate the variance in the spectrum based on the orientation of
the beans, we capture three images of each sample, stirring in the dish of beans in between to
randomize the orientation of the beans. We go through this process using both the SWIR and
the VNIR camera. One sample of each roast is shown in figure 3.8.
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Figure 3.8: Coffee beans roasted from zero to eight minutes, left to right, using the ROEST
standard roasting profile defined by table 3.1 with dropTemp = 220 and endTemp = 250

3.7.2 Within-Roast Variance Analysis

Since clustering does not reliably separate bean and background or find meaningful patterns, we
settle for a hand-tuned reflectance threshold for bean/background separation. For all 30cm lens
images, we calculate the mean spectrum, the variance in the spectrum and make an image of the
deviation from the mean spectrum of the image. From the images of the same beans in different
orientations, we calculate the variance in the spectrum based on orientation, and from samples
from the same roasts, we calculate the variance in the spectrum based on what sample of beans
is randomly selected for imaging.

3.8 Between-Roast Variance

Before roasting beans to make prediction models, we want to know what roasting method is
best in terms of minimal spectral variance and check whether the variance comes from the green
beans or from roasting.

3.8.1 Roasting Beans for Variance Analysis

To test whether the variance in the spectrum of beans roasted using two different methods comes
from the green beans or from roasting, we image twelve PE-2020-038_ARS bean samples. Then we
roast the beans using two roasting methods, six using the first crack method ROEST(220,250,FC)
and six for exactly six minutes ROEST(220,250,360), before imaging them again. In this way,
we can compare the variances between the samples before and after roasting to determine if one
roasting method causes more variance in the spectrum than the other one. We increase the size
of a sample to include all beans in a roast so that all beans in each roast are imaged, eliminating
the small variance arising from sample selection. Each sample is imaged three times with stirring
in between. To investigate the effect of variety on the spectral variance caused by roasting, we
also roast three additional samples of PE-2020-038_ARS, BLEND, ETIOPIA and PERU coffee
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NIR spectra of twelve PE-2020-038_ARS samples, six roasted and 6 green

Reflectance
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Figure 3.9: SWIR reflectance spectra of green and FC roasted PE-2020-038_ARS beans. Roasted
beans clearly have a higher overall reflectance than green beans.

using the first crack method to investigate if there is a difference in spectral standard deviation
based on variety.

3.8.2 Comparing Variances

Using a fisher test, we test whether the variances of the roasts are similar or not. We also use
a fisher test to check if the variances can be explained by the green bean variance being scaled
equally for all roasts. The scaling test is motivated by the fact that the mean of the SWIR
spectrum increase when the beans are roasted, as shown in figure 3.9, however the mean of the
VNIR spectrum decreases, as shown in figure 3.10.

3.9 Building a Dataset for A Priori Chemometrics of Cof-
fee and Exploring Its Potential

We know that the variance based on what sample from a roast is selected for imaging is similar to
the variance based on orientation. We know that roasting based on time yields lower spectral vari-
ance than roasting based on FC. We are ready to build a data set for a priori chemometrics of cof-
fee. Our goal is to predict Ryoqsted based on Rgreern, and ROEST (dropTemp,endTemp,dropTime).

3.9.1 Building a Dataset for A Priori Chemometrics of Coffee

We want to enable a priori chemometrics of coffee to help make good coffee. This means we
should limit the roasting of coffee beans to make roasts that are consumable. Since coffee needs
to be heated to 190 degrees to be roasted, our lower bound for endTemp is 200 degrees. To
stay within the operational temperature of the roaster, we limit endTemp to maximum 300
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UV-VIS spectra of twelve PE-2020-038_ARS samples, six roasted and 6 green
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Figure 3.10: VNIR reflectance spectra of green and FC roasted PE-2020-038_ARS beans. Roasted
beans clearly have a lower overall reflectance than green beans.

degrees. dropTemp is bounded to be minimum 200 degrees to ensure that the beans reach
roasting temperature before dropping and maximum 240 degrees, since that is the maximal start
temperature of the roasting machine. dropTime is kept within 360-480s, as this is the standard
roast-time window for coffee. The beans we have available to build the data set are 25 ETIOPIA,
16 PERU, 12 BLEND, 1 PE-2020-038_ARS, and 1 PSS-CO-2020-116 samples. Since we expect
that some of the roast parameters are more important than others, we randomly sample the roast
parameters to produce roast profiles for all the bean samples. To image all the roasts within
the lab hours we have available, we decide to image only one sample of green beans from each
variety before roasting. All of the beans in the experiment are roasted and imaged within five
days. The green beans are imaged at day three to make them as comparable to the other beans
as possible. All images include all beans from the samples we image. Each sample is imaged
three times with stirring in between.

3.9.2 Data Split

Before doing any analysis of the data whatsoever, we split the data into a training and a test
set. To ensure the data sets are as independent as possible, we split them based on date while
also ensuring that not all bean varieties are present in the training set. This is helpful for testing
generalizability. The training set contains all roast spectra from days 1, 2, and 4, while the test
set contains all roast spectra from days 3 and 5. In the training set, there are 10 BLEND roasts,
15 ETIOPIA roasts, and 15 PERU roasts. The test set has 2 BLEND roasts, 1 PERU roast, 10
ETIOPIA roasts, 1 PE-2020-038_ARS roast, and 1 PSS-CO-2020-116 roast.
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3.9.3 Preprocessing of Data for Different Prediction Models

We now have a data set with predictors dropTemp, endTemp, dropTime and Rgreen, and re-
sponses R, oqsteq- For each roast there are three different spectra R,.oqsteq, all having identical

predictors. To make linear models to predict G(-) we scale the response R, oqsted = %L““E%)V)\.
green

So that Rgeern, - G(dropTemp, endTemp, dropTime, Ryreen) = Rg,,vewl?,voasted = R,oasted- When
calculating 2nd derivative spectra we choose to use length five sliding windows in the smoothing
of the derivative with weights [0.05,0.15,0.60,0.15,0.05] to closely resemble the smoothing used
by Nogales-Bueno et al. [2020] with a width of 30nm for the SWIR spectra and a 12.5nm width
for the VNIR spectra. These widths are similar to narrow peaks in the visible/NIR absorption
spectrum of common chemicals in coffee shown in figure 2.1. For most of our models we do no
additional scaling, except for predictors for the lasso models, the 2nd derivative PCR and PLSR,
models and all neural networks, which are all standard normal variate scaled. The training set
is always used as a scale for the test set, again, to test for generalizability.

3.9.4 Prediction Models

To do a priori chemometrics of coffee roasts, we first need to predict the spectrum of roasted
coffee from the spectrum of green coffee and roast profile. Our approach to predicting

Ry oasted(dropTemp, end Temp, dropTime, Ryreen) is testing multiple common statistical learning
models. We test linear regression(lin. reg.) of Ryoqsteq using only dropTemp, endTemp, and
dropTime as predictors, with and without interaction(int.) between the roast parameters. We
test linear regression of Ryogsteqd(A) based on dropTemp, endTemp, dropTime, and Rgreen(A),
with and without interaction between the roast parameters. We test principal component re-
gression(PCR), partial least squares regression(PLSR), and lasso regression of R,,qsteq based on
dropTemp, endTemp, dropTime, and Rgreen, With interaction between the roast parameters for
PCR and PLS, but not for lasso. Finally, we test a neural network regression of R,.qsteq based on
dropTemp, endTemp, dropTime, and Ry, een. The neural network takes the green bean spectrum
and the roast parameters as input and outputs the roast spectrum. The hidden layers are two
dense ReLU activated layers with dropout layers after each of them. For all models except the
neural network models we try two kinds of models: models with an additive effect on the response
Ry oasted = F(+), and models with a multiplicative effect on the response Ryoqsted = Rgreen - G(+)-
Additive models try to predict the roast spectrum directly, while multiplicative models try to
predict how the green bean spectrum is scaled by roasting.

3.9.5 Model Training

When training statistical models, we use 10-fold cross-validation to calculate a cross-validation
error and standard deviation so that we are less likely to choose using an overfitted model. We
use the standard deviation of the cross-validated error to find its one standard deviation interval.
After testing different models for a prediction problem, we choose the simplest model with one
standard deviation cross-validation error interval overlapping with the model with the lowest
cross-validation error. To find the best number of principal components at each frequency for
the PCR and PLSR, as well as the best penalty A for the lasso model, we use another layer of 9-
fold cross-validation. More than one hyper-parameter needs to be tuned for the neural network,
so we use randomized hyper-parameter tuning. We choose to tune the width of the dense layers,
the dropout rate of the dropout layers, and the batch size used in training the network. These
five parameters are random-uniformly sampled with widths between 16 and 256, dropout rates
between 0 and 1, and batch size between 1 and 120.
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3.9.6 Model Evaluation

We test models based on two kinds of data: Raw reflectance spectra and the 2nd derivative
of reflectance spectra. To make fair comparisons between prediction models for raw spectra
and prediction models for 2nd derivative spectra, we use the coefficient of determination R?
(2.10), and the adjusted coefficient of determination R** (2.11). To evaluate R** we need to
estimate the inexplainable variance o2. We set 02 to the maximum of within-roast variance in
the test set, and the between-roast variance from the between-roast variance experiment. For
each transformation, for each camera, we choose our preferred model through cross-validation.
However, the highest error of the test and validation error is the error that best indicates how
well the model performs.

3.10 Ground and Brewed Coffee

Both ground and brewed coffee were imaged using the 30 cm lens setup with polarisation filters.
The coffee was ground using a handheld Bodum blade grinder, and the coffee was brewed on a
Moccamaster filter coffee brewer. We never stored ground coffee for more than eight hours before
imaging or brewing. We do not include these spectra in our analysis, but they are available for
future work.



Chapter 4

Results

In total, we have captured over one thousand images of coffee, making up over 1TB of hyper-
spectral data. In this chapter we are going through the results from our experiments step by
step. First, we look at the separability of beans of the same variety roasted for different amounts
of time. Then we look at variances in the reflectance spectrum of the roasts R,oqsted, between
different samples from the same roast, between images with beans from the same sample in dif-
ferent orientations, and between different samples of beans from the same batch before and after
roasting. We use these results to design an experiment to investigate how well we can estimate
the spectra of roasted coffee beans as we take our first step toward a priori chemometrics of coffee
roasts.

4.1 Clustering of Regions of Interest on the Surface of Cof-
fee Beans

Clustering does not find regions of interest on the surface of coffee beans that we deem helpful
for our analysis, indeed it does not even separate bean and background. The structures found
are large enough to be captured using a 30cm lens. The topology of coffee beans rather than
their structure dominates the spatial distribution of their spectrum.

4.2 Something Goes Wrong, But No Worries

For the rest of our images, we use polarization filters on both cameras. Unfortunately, we use
a VNIR polarization filter on the SWIR camera, filtering the light in an unintentional way. On
the flip side, the spectrum of the reflectance reference is filtered the same way as the coffee, and
the normalization in the reflectance calculation undoes the unintended filtering.

4.3 Separability and Within-Roast Variance

After choosing to use the 30cm camera lens for imaging, we look at coffee roasts of beans from
the same batch roasted using profiles defined by ROEST(220,250,t) with t spaced at one-minute
intervals. The standard deviation in the spectrum between sub-samples from the same roast
is 0.01 reflectance units and is much smaller than the gap between the roasts. The standard
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Mean reflectance of coffee beans with standard deviation.
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Figure 4.1: Mean spectra of BLEND beans roasted from 0 to 7 minutes at one minute intervals
with inner standard deviation bars showing the within sample standard deviation and outer
standard deviation bars showing between sample standard deviation, both within the same roast.
The spectra are separable.

deviation in the spectrum of the same sub-samples in different orientations is 78% of the stan-
dard deviation between sub-samples from the same roast. The difference between the roasts is
large enough to discriminate them from each other, especially when taking pictures of multiple
orientations, as seen in figure 4.1. The figure shows the mean reflectance spectra of coffee roasted
for one to seven minutes at one-minute intervals and the standard deviation of the reflectance
at each frequency. There are two standard deviation bands, the inner one is calculated based on
all images of the same sub-sample, and the outer one is based on all images of the same roast.

4.4 The Best Roasting Method

Roasting twelve samples of PE-2020-038_ARS coffee, six using the ROEST(220,250,360) method
and six using the ROEST(220,250,FC) method, we find that the ROEST(220,250,360) method
yields the lowest spectral variance in the raw spectrum while there is no difference in the 2nd
derivative spectrum. All standard deviations within each sub-batch before and after roasting
with 95% confidence intervals are listed in table 4.1 and table 4.2. The standard deviation of the
six-minute roasts is 0.0056, and the standard deviation of the FC roasts is 0.0067. The p-value
of an F test, testing if the variances are the same, is less than 2.2e-16. The F test of whether
the increase in standard deviation arises from a scaling of the green bean standard deviations
by the same factor is also less than 2.2e-16. The six-minute process also has a lower variance in
the VNIR images with a standard deviation of 0.0051. The FC standard deviation is 0.0071; the



4.5. PREDICTING ROAST SPECTRA 33

Table 4.1: This table shows standard deviations of the reflectance spectrum for the FC and
time roasting methods. Standard deviations with 95% confidence interval(CI) upper and lower
bounds(ub,lb) are listed in in units of reflectance units. The standard deviations are calculated
for the FC and the time sub-batch before and after roasting, both between the samples in each
sub-batch and within each sample within the sub-batch.

Camera | Set of samples | Sub-batch | roasted/green | Variation | CI1b | CI ub
SWIR between-sample | FC green 0.0034 0.0033 | 0.0035
SWIR between-sample | FC roasted 0.0067 0.0065 | 0.0068
SWIR between-sample | time green 0.0031 0.0030 | 0.0032
SWIR between-sample | time roasted 0.0056 0.0055 | 0.0057
SWIR within-sample FC green 0.0027 0.0027 | 0.0027
SWIR within-sample FC roasted 0.0044 0.0044 | 0.0045
SWIR within-sample time green 0.0021 0.0020 | 0.0022
SWIR within-sample time roasted 0.0036 0.0035 | 0.0036
VNIR between-sample | FC green 0.0046 0.0045 | 0.0046
VNIR between-sample | FC roasted 0.0071 0.0070 | 0.0073
VNIR between-sample | time green 0.0052 0.0051 | 0.0053
VNIR between-sample | time roasted 0.0051 0.0050 | 0.0052
VNIR within-sample FC green 0.0041 0.0040 | 0.0042
VNIR within-sample FC roasted 0.0036 0.0035 | 0.0037
VNIR within-sample time green 0.0049 0.0048 | 0.0050
VNIR within-sample time roasted 0.0047 0.0046 | 0.0048

difference between these standard deviations is even more significant than the difference between
the SWIR standard deviations and can not be explained by scaling the spectrum. These results
mean that roasting for six minutes using the ROEST standard profile is more reliable than
roasting until first crack. The spectral standard deviation of different bean varieties roasted
using the FC method is shown in table 4.3, we see that variety is more important than roast
method in terms of variance with PERU roasts having a very small standard deviation.

4.5 Predicting Roast Spectra

Our goal is to predict the spectrum of roasted coffee R,.oqsteq based on the spectrum of green coffee
Rgreen and the roast parameters dropTemp, endTemp and dropTime. When training models to
predict the raw spectrum of roasted coffee, we found that multiplicative models R, oqsted =
Rgreen - G(-) strictly outperformed additive models Ryoqsted = F(+), while opposite for models
predicting the 2nd derivative spectrum. Therefore we only display the results of multiplicative
models for the raw spectrum models and additive models for the 2nd derivative spectrum models.
Table 4.5 and 4.6 show RMSE and R? for raw spectrum and 2nd derivative models, evaluated on
the training set with cross-validation, evaluated on the test set, evaluated exclusively on known
bean varieties in the test set, and exclusively on unknown varieties in the test set. The last
two columns show the performance of models trained and evaluated on a single variety only.
For the test error R** is also reported. The models are either with or without interaction(int.)
between the roast parameters. All models except the ordinary linear(lin.) regression(reg.) models
include Rgyycen as predictor. Two of the ordinary linear regression models include Rgrcen(A). For
the SWIR raw spectrum data the between-roast variance from the between-roast experiment is
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Table 4.2: This table shows standard deviations in the 2nd derivative of the reflectance spectrum
with respect to frequency for the FC and time roasting methods. Standard deviations with 95%
confidence interval(CI) upper and lower bounds(ub,lb) are listed in in units of reflectance units
per square wavelength step. The standard deviations are calculated for the FC and the time
sub-batch before and after roasting, both between the samples in each sub-batch and within each
sample within the sub-batch.

Camera | Set of samples | Sub-batch | roasted/green Star.lda.trd CI1b CI ub
deviation

SWIR between-sample | FC green 8.643e-5 7.659e-5 | 9.758e-5
SWIR between-sample | FC roasted 7.799e-5 7.138e-5 | 8.526e-5
SWIR between-sample | time green 7.499e-5 6.971e-5 | 8.072e-5
SWIR between-sample | time roasted 8.096e-5 7.255e-5 | 9.038e-5
SWIR within-sample FC green 6.811e-5 5.678e-5 | 8.173e-5
SWIR within-sample FC roasted 4.427e-5 3.846e-5 | 5.097e-5
SWIR within-sample time green 5.538e-5 5.145e-5 | 5.963e-5
SWIR within-sample time roasted 6.414e-5 5.483e-5 | 7.505e-5
VNIR between-sample | FC green 1.569¢-5 1.424¢-5 | 1.729¢-5
VNIR between-sample | FC roasted 1.353e-5 1.218e-5 | 1.503e-5
VNIR between-sample | time green 1.610e-5 1.480e-5 | 1.752e-5
VNIR between-sample | time roasted 1.356¢-5 1.161e-5 | 1.583e-5
VNIR within-sample FC green 1.389¢-5 1.278e-5 | 1.510e-5
VNIR within-sample FC roasted 1.119e-5 1.007e-5 | 1.245e-5
VNIR within-sample time green 1.502-5 1.372e-5 | 1.645e-5
VNIR within-sample time roasted 1.236e-5 1.083e-5 | 1.412e-5

Table 4.3: The standard deviation in the spectra of roasts of the same variety roasted with the
same profile using the FC method.
Bean Variety

Standard deviation

PE-2020-038 4 RS 0.0055
BLEND 0.0057
PERU 0.0037
ETIOPIA 0.0047
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Table 4.4: The performance of our preferred prediction models in terms of R?

Model R?
SWIR raw spectrum 0.67
VNIR raw spectrum 0.74

SWIR 2nd derivative spectrum | 0.61
VNIR 2nd derivative spevtrum | 0.58

higher than the within-roast variance in the test set, so between-roast variance is used as the
inexplainable error in the calculation of R%*. In the VNIR raw spectrum data, the SWIR and
the VNIR 2nd derivative spectrum data it is opposite. The R? of our preferred prediction models
are listed in table 4.4

4.5.1 SWIR Spectrum Prediction Results

Simple linear regression of R,.qsteq based solely on process parameters without interaction is the
simplest model with an estimated cross-validation RMSE that overlaps with the lowest cross-
validation RMSE of the raw spectrum SWIR models in table 4.5. It has a cross-validation RMSE
of 0.043, with a one standard deviation interval of [0.040,0.045].

4.5.2 VNIR Spectrum Prediction Results

Simple linear regression of R.,.,qsteq based solely on process parameters without interaction is
the simplest model with an estimated coss validation RMSE that overlaps with the lowest cross-
validation RMSE of our models in table 4.5. It has a cross-validation RMSE of 0.038 on the
VNIR data, with a one standard deviation interval of [0.035,0.040].

4.5.3 SWIR 2nd Derivative Spectrum Prediction Results

Simple linear regression of R,.qsteq based solely on process parameters without interaction is
the simplest model with an estimated coss validation RMSE that overlaps with the lowest cross-
validation RMSE of our models in table 4.6. It has a cross-validation RMSE of 3.21e-4 on the
SWIR data, with a one standard deviation interval of [3.04e-4,3.37e-4]

4.5.4 VNIR 2nd Derivative Spectrum Prediction Results

Simple linear regression of R,,qsteq based solely on process parameters without interaction is
the simplest model with an estimated coss validation RMSE that overlaps with the lowest cross-
validation RMSE of our models in table 4.6. It has a cross-validation RMSE of 4.09¢-05 on the
VNIR data, with a one standard deviation interval of [3.55e-5,4.57e-5].
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Table 4.5: Raw roast spectrum prediction performance. The best models are highlighted in bold font. NAs indicate
that the model is missing. (+) signs indicate that unseen R? is greater than seen R?. Hyperparameters are listed
on the form (widthl,dropl,width2,drop2,batch_size).

Model

Val.
RMSE

Val.
R2

Test
RMSE

Test
R2

Test
R2*

Seen
RMSE

Seen
R2

Unseen
RMSE

Unseen
R2

Single
RMSE

Single

SWIR
lin. reg.
without int.

0.0425

0.67

0.0431

0.71

0.71

0.0447

0.69

0.0301

0.86 4

0.0510

0.59

SWIR
lin. reg.
with int.

0.0433

0.65

0.0483

0.64

0.64

0.0509

0.60

0.0248

0.90 +

0.0554

0.52

SWIR

lin. reg.

with Rgreen(A)
without interaction

0.0391

0.72

0.0484

0.63

0.64

0.0471

0.65

0.0562

0.51 -

0.0510

0.59

SWIR

lin. reg.

with Rgreen(A)
with int.

0.0381

0.73

0.0533

0.56

0.56

0.0508

0.60

0.0677

0.28 -

0.0554

0.52

SWIR
PCR
with int.

0.1195

-1.65

0.0437

0.70

0.70

0.0461

0.67

0.0225

0.92 +

0.0497

0.61

SWIR
PLSR
with int.

0.0382

0.73

0.0449

0.69

0.69

0.0474

0.65

0.0231

0.92 +

0.0498

0.61

SWIR
LASSO reg.

without int.

0.0408

0.69

0.0452

0.68

0.68

0.0466

0.66

0.0345

0.81 +

0.0530

0.56

SWIR

Neural network
(61,0.91,
70,0.35,7)

0.0758

-0.07

0.1144

-1.04

-1.05

0.0849

-0.12

0.2264

-7.00 -

0.0844

-0.11

VNIR
lin. reg.
without int.

0.0376

0.74

0.0332

0.86

0.86

0.0349

0.85

0.0196

0.95 4

0.0321

0.87

VNIR
lin. reg.
with int.

0.0407

0.69

0.0347

0.85

0.85

0.0365

0.83

0.0186

0.96 +

0.1106

VNIR

lin. reg.

with Rgreen(A)
without int.

0.0355

0.77

0.0352

0.84

0.85

0.0338

0.86

0.0431

0.77 -

0.0321

0.87

VNIR

lin. reg.

with Rgreen(A)
with int.

0.0379

0.73

0.0362

0.84

0.84

0.0350

0.85

0.0432

0.77 -

0.1106

-0.53

VNIR
PCR
with int.

0.0410

0.69

0.0332

0.86

0.86

0.0347

0.85

0.0212

0.94 +

0.0607

0.54

VNIR
PLSR
with int.

0.0390

0.72

0.0325

0.87

0.87

0.0338

0.86

0.0226

0.94 +

0.0607

VNIR
LASSO reg.

without int.

0.0393

0.71

0.0382

0.82

0.82

0.0394

0.81

0.0295

0.89 +

0.0372

0.83

ATNTTD
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Table 4.6: 2nd derivative roast spectrum prediction performance. The best models are highlighted in bold
font. NAs indicate that the model is missing. (+) signs indicate that unseen R? is greater than seen R2.
Hyperparameters are listed on the form (widthl,dropl,width2,drop2,batch_size).

Val. Val. Test Test | Test | Seen Seen | Unseen | Unseen | Single Single

Model RMSE | R? RMSE | R? R?** | RMSE | R? RMSE | R? RMSE | R?

SWIR
lin. reg 3.21e-4 | 0.611 | 3.39e-4 | 0.64 | 0.67 | 3.51e-4 | 0.61 | 2.47e-4 | 0.81 + | 3.75e-4 | 0.56
without int.

SWIR
lin. reg. 3.38¢e-4 | 0.568 | 3.43e-4 | 0.63 | 0.66 | 3.60e-4 | 0.59 2.02e-4 0.87 + 8.68e-4 | -1.38
with int.

SWIR

lin. reg.

with Rgreen(A)
without int.

3.18e-4 | 0.617 | 3.52e-4 | 0.61 | 0.64 | 3.66e-4 | 0.58 2.37e-4 0.82 + 4.20e-4 | 0.44

SWIR

lin. reg.

with Rgreen(A)
with int.

3.35e-4 | 0.575 | 3.52¢-4 | 0.61 | 0.64 | 3.67e-4 | 0.58 2.37e-4 0.82 + 7.81e-4 | -0.93

SWIR

PCR 3.16e-4 | 0.623 | 3.64e-4 | 0.58 | 0.61 | 3.85e-4 | 0.53 1.86e-4 0.89 + 3.75 0.56

SWIR

PLSR 3.08¢-4 | 0.641 | 3.8le-4 | 0.54 | 0.57 | 4.04e-4 | 0.48 1.72¢-4 0.91 + 3.76e-4 | 0.55

SWIR
LASSO reg. 3.16e-4 0.622 | 3.56e-4 0.60 | 0.63 | 3.7le-4 0.57 2.33e-4 0.83 + 8.24e-4 -1.15
without int.

SWIR

Neural network
(102,0.64,
41,0.38,19)

1.47e-3 | -7.21 7.54e-2 | -2e4 | -2e4 | 1.45e-3 | -5.61 | 0.206 -leb - NA NA

VNIR
lin. reg. 4.09e-5 | 0.584 | 3.77e-5 | 0.71 | 0.73 | 3.98e-5 | 0.68 | 1.97e-5 | 0.92 4+ | 3.21e-5 | 0.79
without int.

VNIR
lin. reg. 4.25e-5 0.551 | 3.98e-5 0.68 | 0.70 | 4.23e-5 0.64 1.66e-5 0.94 + 7.73e-5 -0.21
with int.

VNIR

lin. reg.

with Rgreen(A)
without int.

3.71le-5 | 0.658 | 3.96e-5 | 0.68 | 0.70 | 3.48e-5 | 0.75 6.22e-5 0.21 - 3.21e-5 | 0.79

VNIR

lin. reg.

with Rgreen(A)
with int

3.79e-5 | 0.642 | 4.18e-5 | 0.65 | 0.66 | 3.67e-5 | 0.73 6.62e-5 0.11 - 7.73e-5 | -0.21

VNIR

PCR 3.68e-5 | 0.663 | 3.48e-5 | 0.76 | 0.78 | 3.44e-5 | 0.76 3.72e-5 0.72 - 4.35e-5 | 0.62

VNIR

PLSR 3.73e-5 | 0.6564 | 3.49e-5 | 0.75 | 0.77 | 3.52e-5 | 0.75 3.25e-5 0.79 + 3.88e-5 | 0.70

VNIR
LASSO reg. 4.08e-5 0.586 | 4.10e-5 0.66 | 0.68 | 4.31e-b 0.62 2.42e-5 0.88 + 4.64e-5 0.56
without int.

VNIR

Neural network
(51,0.49,
217,0.24,97)

1.00e-4 | -1.48 1.37e-2 | -4ded | -4ed | 1.17e-4 | -1.77 | 0.0374 -3ed - NA NA
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Chapter 5

Discussion and Conclusion

We go through how our results answer our research question and what future work is needed to
reach our goal of a priori chemometrics of coffee roasts.

5.1 Using Clustering to Detect Beans and Cracks

Hierarchical clustering based on whole spectra with complete linkage does not separate bean and
background or find the cracks of the coffee beans. Since the cracks in the coffee beans are easy to
see by eye, they are probably easy to detect if looking at the correct wavelengths. However, since
an intensity threshold can reliably separate beans and background, we decide that clustering is
overkill. The radial spatial pattern found by clustering is reported in the literature Zhang et al.
[2018a] and can also be seen in an image of the euclidian deviation from the mean spectrum in
an image of coffee beans from one of our experiments shown in figure 5.1.

5.2 Within-Roast Variance Analysis

Our within-roast variance analysis finds that roasts roasted for zero to seven minutes at one-
minute intervals are easily separable, as shown in figure 4.1. Relievingly we find that most of the
variance within a sample of coffee can be captured within a smaller sample. At the same time,
we notice the importance of imaging the coffee beans in multiple orientations.

5.3 Between-Roast Variance Analysis

Our between-roast variance analysis very clearly shows that roasting for a specific time is superior
to roasting until first crack in terms of spectral variance. We therefore decide to parameterize
profiles based on roast time.

5.4 Roast Spectrum Prediction Analysis

Our prediction models are capable of explaining much of the variance in the spectrum of roasted
coffee. We show that roast spectrum prediction is possible and that even models trained on
only three different Ry,ccr, can make use of it in predictions of roasts with new Rgreen. Our
discussion of neural network performance is very limited, as they performance is too bad to be
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Image of deviation from mean spectrum for BLEND sample 5
Roast parameters 227, 245, 392

Figure 5.1: An image showing the euclidian distance from the mean spectrum to the spectru of
each pixel over an image of coffee beans. The spectrum deviates most from the mean spectrum
on the edges of the beans and in their centre.

worth our attention. Here we summarise the most important observations from the prediction
model experiment.

e Making one model for each bean variety in the test set is mostly worse than making a joint
model.

e Since R? ~ R?* the error in the predictions can not be attributed to inexplainable variance.

e We observe that the test error is mostly lower than the validation error for the linear models
not knowing Rgyeen, but greater for the basic linear regressions that include it, as indicated
by the (+) signs in table 4.5 and 4.6.

5.4.1 The Effect of Only Having Three Distinct Values for Ry .,

Our regularized models can use more parameters than there are samples in our training data.
When having more predictors than samples in a training set, we can typically choose coefficients
to achieve a perfect fit. However, Ry,cen, only takes three distinct values, effectively reducing the
number of degrees of freedom it introduces to three. Therefore the degrees of freedom are always
less than the number of parameters in the models trained on the whole training set. Models
trained on only one variety can still have more predictors than samples, but regularization with
cross-validation helps choose models with low dimensionality. Since single-variety models can
have too many predictors, we see that single-variety models with interaction between the roast
parameters have a very low predictive power. The single-variety regularized models perform
better than the non-regularized ones, and only the 2nd derivative SWIR single variety lasso
model has no predictive power. Neural networks can benefit from more parameters than samples,
so we are not concerned on their behalf.
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5.4.2 The Effect of Including R,

The fact that models not including Ryycern, have better performance on the test set than similar
models including Rgycen suggests that the models that include Ry cc,, are mislead by Rgrcen. We
do, however, see that PCR, PLSR and lasso are all able to predict Rm;sted quite well despite
knowing Rgreen. This could be because the models learn that Rgpce, is unimportant, but it is
not. Not using Ry, een as predictors lowers the cross-validation R? of the raw SWIR PLSR model
from 0.73 to 0.63. The fact that test R? and R?* are close to identical indicates that our data
has a high quality.

5.4.3 RMSE of Raw Spectrum Models Trained on Only a Single Vari-
ety

The RMSE of the basic SWIR linear regression model without interaction models trained on
only a single variety of beans is high, compared to the normal one. This indicated that the
information conveyed by bean variety is unimportant compared to having more training data.
The same can not be said for the VNIR version of the basic linear regression, where the single
variety model has the same performance as the normal one, indicating that the variation in the
data is captured well enough in a smaller data set.

5.4.4 RMSE of 2nd Derivative Spectrum Models Trained on Only a
Single Variety

The RMSE of the basic SWIR linear regression model without interaction models trained on
only a single variety of beans is high, compared to the normal one. This indicated that the
information conveyed by bean variety is unimportant compared to having more training data.
The same can not be said for the VNIR version of the basic linear regression, where the single
variety model has a lower error than the original one, indicating that variety is important.

5.4.5 Very Low Unseen Variety Error

The errors of our prediction models on unseen bean varieties are lower than the error on seen
varieties for most models, as indicated by the (+) signs in table 4.5 and 4.6. All of the models
taking Rgreen(A) as input without regularization, except the 2nd derivative SWIR models, have
worse performance on unseen bean varieties than on seen bean varieties. Unregularized models
are typically bad at generalization, so we are surprised that the 2nd derivative SWIR models
perform better on unseen bean varieties than on seen ones. We can see that all the green beans
have characteristic spectra in figure 5.6, 5.7 and 5.9, but the same is not true for 5.8, where
information about bean variety is much less prominent. Even though the green bean spectra are
characteristic, they are roughly the same size, as seen from figure 5.2, 5.3, 5.4 and 5.5. It seems
like most of the regularized models have managed to pick up the most important information in
the spectrum. Only neural networks are fooled by the discrepancy in the spectra, as seen by the
abysmal prediction errors of the neural networks on unseen bean varieties in table 4.5 and 4.6.

5.4.6 The Spectral Distribution of Error

We see that the errors in our raw spectra are largest where the variance in the spectrum is
largest in the data set, as seen when comparing figure 5.11 with 5.10 and figure 5.13 with 5.12.
The same is true fro the 2nd derivative spectra, as seen when comparing figure 5.15 with 5.14
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SWIR reflectance spectra of all green bean varieties
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Figure 5.2: SWIR mean reflectance spectrum of all green bean varieties. The spectra are very

similar.
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VNIR reflectance spectra of all green bean varieties
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Figure 5.3: VNIR mean reflectance spectrum of all green bean varieties. The spectra are very

similar.
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SWIR 2nd derivative reflectance spectra of all green bean varieties
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Figure 5.4: SWIR mean 2nd derivative reflectance spectrum of all green bean varieties. The
spectra are very similar.
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WNIR 2nd derivative reflectance spectra of all green bean varieties
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Figure 5.5: VNIR mean 2nd derivative reflectance spectrum of all green bean varieties. The
spectra are very similar.
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Deviation from SWIR mean raw reflectance spectrum for all green bean varieties

Variety — BLEND — ETIOPIA — PE-2020-038_ARS — PERU — PSS-CO-2020-116

0.010

E 0.0001

§ | e e

2 Ty P
-0.0051 (2 "‘*ﬂ"'
0.0101

1000 1500 2000 2500

Wavelength[nm]

Figure 5.6: Deviation from the mean Rycer, SWIR raw reflectance spectrum for all green bean
varieties. The spectra are characteristic for bean variety.
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Deviation from VNIR mean raw reflectance spectrum for all green bean varieties
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Figure 5.7: Deviation from the mean Rg,een, VNIR raw reflectance spectrum for all green bean
varieties. The spectra are characteristic for bean variety.
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Deviation from SWIR mean 2nd derivative reflectance spectrum for all green bean varieties
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Figure 5.8: Deviation from the mean Rgyeen, SWIR 2nd derivative reflectance spectrum for all
green bean varieties. The spectra are hard to distinguish.
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Deviation from VNIR mean 2nd derivative reflectance spectrum for all green bean varieties
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Figure 5.9: Deviation from the mean Rgqce, VNIR 2nd derivative reflectance spectrum for all
green bean varieties. The spectra are hard to distinguish, but easier than for figure 5.8.
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SWIR reflectance spectra of all images in trainig and test data
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Figure 5.10: SWIR reflectance spectra of all images in the test and training set are plotted with
varieties in different colours. The spectra have similar shape, but have a large variation.

and figure 5.17 with 5.16. This indicates that the models have not learned to pick up the most
distinct differences between the roasts.

5.4.7 Applicability with Already Existing Models

We have made spectral prediction models predicting the spectral ranges 962-2493 nm and 405-
995 nm. The error of our prediction models are not uniformly distributed over the spectral
ranges they predict. To determine how well our models perform in synergy with the models of
Nogales-Bueno et al. [2020] we need to look at how good they are at predicting the frequencies
that are used by Nogales-Bueno et al. [2020], as shown in figure 5.18. Our errors are larger in
the relevant region than otherwise, but so is the variance in the response, which means lowers
the effect on R%. To make models with synergy with Nogales-Bueno et al. [2020] one should
make models using an error metric which punishes errors according to the weights of the latent
vectors of the PLSR models of Nogales-Bueno et al. [2020]. However, our end goal is making a
prediction model that can be used to predict all of the SWIR and VNIR spectrum, so that it
may be used with any chemometric model. If the error is low enough it is no longer a point in
training our prediction models for synergy with specific models.

5.4.8 Point Spectroscopy vs. Hyperspectral Imaging

From the standard deviation bands in figure 4.1 we see that very little extra information is
captured by drawing more samples from a roast. The pixel-wise standard deviation is around
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Reflectance prediction error for all spectra in the SWIR test set
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Figure 5.11: Reflectance prediction error for the basic linear regression model on the SWIR test
data is plotted with different colours for each bean variety. We see that the error primarily comes
from the 1000-1400nm region, which is also most important for chemometry.
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VNIR reflectance spectra of all images in trainig and test data
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Figure 5.12: VNIR reflectance spectra of all images in the test and training set are plotted with
varieties in different colours. We see that spetra of one of the PERU samples are consistently
different from the rest of the spectra. We have inspected the regions of interest and the masks
for the images used to calculate the mean spectrum of the beans without finding any errors. The
spectra are similar in shape with large variation.
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Reflectance prediction error for all spectra in the VNIR test set
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Figure 5.13: Reflectance prediction error for the basic linear regression model on the VNIR test
data is plotted with different colours for each bean variety. We see that the error is larger for
high frequencies, which makes sense, since the reflectance spectrum is highest in this area.
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2nd derivative spectra of all SWIR images
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Figure 5.14: 2nd derivative reflectance spectra of all SWIR data. The spectra are similar in
shape with a large variation.
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Relative SWIR test error of the 2nd derivative based linear regression model
without interaction and green bean reflectance
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Figure 5.15: 2nd derivative reflectance spectrum prediction error of the basic linear regression
model on the SWIR test data. The errors are largest where the variation on the 2nd derivative
reflectance data is largest.
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2nd derivative spectra of all VNIR images
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Figure 5.16: 2nd derivative reflectance spectra of all SWIR data. The spectra are similar in
shape with a large variation.
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Relative VNIR test error of the 2nd derivative based
linear regression model without interaction and green bean reflectance
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Figure 5.17: 2nd derivative reflectance spectrum prediction error of the basic linear regression
model on the VNIR test data. The errors are largest where the variation on the 2nd derivative
reflectance data is largest.
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0.07, so one could naively sample 00512 = 189 pixels from the image to shrink the variance to be
lower than the between-roast variance, however pixels close to each other are not independent,
so to get a representative image the area covered by point measuring would have to be large to
lower the variance sufficiently.

5.4.9 Sticky Beans

During roasting, we find that up to 0.3% of the beans from each roast stuck in the roasting
chamber and are not released until after the next roast, as seen in figure 5.19. We do our best
to get rid of double roasted beans, but for similar consecutive roasts, they might be too similar
to discern. The double roasted beans we discover are from dark roasts prior to the roast we find
them in. We suspect that the dark roasted beans get stuck in the roasting chamber because of
the sticky oils on their surface, which are not present for light roasts.

5.4.10 Thoughts on Spectral Calculations

We started detecting regions of interest with the microscope setup, where we imaged a monolayer
of beans. In later experiments, we increased the bean dose in each dish so that there are
much smaller patches of not-bean pixels in each image. We kept finding regions of interest for
comparability, even though it might be better not to. We had to adjust the intensity threshold
based on the roast degree of the beans doing our best to optimize the trade-off between capturing
the whole bean and leaving out the background. Averaging the whole image would lead to more
reproducible results.

5.5 Conclusion

We have come closer to a priori chemometrics of coffee roasts. Most importantly, we have found
that:

e The spectral standard deviation between different orientations is 78% of the spectral stan-
dard deviation between different samples of the same roast.

e Roasting for a specific time gives lower variance in the raw spectrum than roasting until
first crack.

e The spectral variance between different roast with the same roast profile and bean variety
is [list of variances]

e We can predict the 962-2493 nm reflectance spectrum of roasted coffee with RMSE = 0.039
and R? = 0.67

e We can predict the 405-995 nm reflectance spectrum of roasted coffee with RMSE = 0.038
and R? = 0.74

e We can predict the 2nd derivative of the 962-2493 nm reflectance spectrum of roasted coffee
with RMSE = 3.39¢-4 and R? = 0.61

e We can predict the 2nd derivative of the 405-995 nm reflectance spectrum of roasted coffee
with RMSE = 4.09e-5 and R? = 0.58
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Figure 5.19: Some beans get stuck in the roasting chamber and come out much darker than the
other beans in the next roast.
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5.6 Clustering

We did not separate material structures using clustering, indeed we did not separate bean and
background. A reflectance threshold was able to separate beans and background.

5.7 Within-Roast and Between-Roast Variance

Both within-roast variance and between-roast variance are small enough to allow for accurate
prediction of roast spectra when using averaged hyperspectral images. Using pixel sized point
spectroscopy would have given an almost 200 times greater variance.

5.8 The Best Roasting Method

The most important conclusion we can make from our experiments is that roasting for a specific
time gives more consistent results in terms of reflectance spectrum than roasting using the FC
method. Roasting based on time should be used when trying to make reproducible results, while
the FC method is useful to help find a good roast time.

5.9 A Priori Spectroscopy

Our prediction models can predict raw roast spectra in the near-infrared and UV-visible based
on very few samples and only three roast parameters, generalizing to two unseen bean varieties.

5.10 Future Work

We captured a limited data set in our work, made no use of spatial information, did not compare
our clustering results to a naive baseline, and did not draw samples of pixels from our images
to test the performance of virtual point spectroscopy. To actually do a priori spectroscopy our
models have to be combined with a chemometric model.

5.10.1 Combine our Model With Chemometric Models

The predictions from our models can be used as input to a vast range of chemometric models,
this is what we intend our work to be used for.

5.10.2 Sample the Images

To get a proper measurement of how many pixels are needed to reduce the variance of an image
to a desired threshold our pictures can be used to sample random pixels and check it empirically.
If we want to evaluate a point spectroscopy method with points of a given size we can also use
sampling.

5.10.3 Establish a Baseline

We should establish a baseline by making predictions based on averaging the whole image.
Averaging the whole image might be better than regions of interest first if enough of the image
is covered by beans. Predictions based on whole image spectra should be used as a baseline to
compare any region of interest spectra to.
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5.10.4 Make Use of Spatial Information

We have not made use of the spatial information in our hyperspectral images. Different parts of
the beans are affected differently by roasting. For example, we know that the silverskin of the
beans is shed during roasting. If we can classify different parts of the beans before and after
roasting to compare how they are affected, we might make better predictions of roast spectra.

5.10.5 Gather More Data

We suspect that our data set is too limited to make much better predictions of roast spectra
based on image averaging. More data should be collected to make better prediction models,
especially if higher complexity is required. More roast profiles seem to be more important than
more varieties, since our models generalized well to new varicties.
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