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ABSTRACT 
From a mathematical viewpoint, the frequency domain analysis 

of vessel motion responses due to wave actions incorporates the 

integration of system dynamics idealized in terms of response 

amplitude operators (RAOs) for 6 DOF rigid body motions and 

an input wave spectrum to yield the response spectrum. Various 

quantities of interest can be deduced from the response spectrum 

and further used for decision support in marine operations, 

extreme value and fatigue analysis. The variation of such 

quantities, owing to the uncertainties associated with the vessel 

system parameters, can be quantified by performing uncertainty 

propagation (UP) and consequent sensitivity analysis (SA). This 

study, emphasizes and proposes a computational-efficient way of 

assessing the sensitivity of the system model output with respect 

to the uncertainties residing in the input parameters by operating 

on a surrogate model representation. In this respect, the global 

sensitivity analysis is effectively carried out by deploying an 

efficient non-intrusive polynomial chaos expansion (PCE) 

surrogate model built using a point collocation strategy. 

Successively, the coherent and effective Sobol’ indices are 

obtained from the analytical decomposition of the polynomial 

coefficients. The indices, eventually, are employed to 

quantitatively gauge the effects of input uncertainties on the 

output 6 DOF vessel responses.  

 

Keywords: frequency domain analysis, polynomial chaos 

expansion, uncertainty propagation, sensitivity analysis, Sobol’ 

indices 

 

NOMENCLATURE 
𝐹𝐷  Frequency Domain 

C3S               Copernicus climate change service 

CDS              Climate Data Store 

QoI                Quantities of Interest 

UP                 Uncertainty Propagation 

SA                 Sensitivity Analysis 

PCE               Polynomial Chaos Expansion 

RMS              Root mean square 

𝐶𝑜𝐺               Center of Gravity 

𝑋𝐶𝐺                    Longitudinal coordinate of CoG 

𝑌𝐶𝐺                    Transverse coordinate of CoG 

𝑍𝐶𝐺                    Vertical coordinate of ZCG 

𝑀                   Vessel mass 

𝐼44                  Roll moment of inertia 

𝐼55                  Pitch moment of inertia 

𝐼66                 Yaw moment of inertia 

𝛽33                Additional linearized heave  

                      damping coefficient 

𝛽44                 Additional linearized roll  

                      damping coefficient 

𝛽55                 Additional linearized pitch  

                      damping coefficient 

𝛽33,𝑐𝑟             Critical heave damping coefficient 

𝛽44,𝑐𝑟             Critical roll damping coefficient 

𝛽55,𝑐𝑟             Critical pitch damping coefficient 

𝑄                    Independent physical space inputs 

𝑋                    Independent/Correlated physical space inputs 

𝑈                    Independent inputs in standard normal space 

OLS               Ordinary Least Squares 

 

 

 

1. INTRODUCTION 
The usual practice to predict the behavior of a physical asset 

(ship/offshore structures) in the open ocean is to establish a 

representative computational model and perform numerical 

evaluations. The computational model is solely based on solving 
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the differential equations that satisfy the governing physics. To 

this end, in the present paper, the main focus is dedicated towards 

the employment of the frequency domain approach for the vessel 

response evaluation. On the negative side, this model is based on 

numerous assumptions on initial and boundary conditions, 

together with the consideration of linearity properties, and 

thereby the resulting predictions may deviate considerably from 

the real physical behavior. Equally important are the 

uncertainties associated with the metocean characteristics that 

impart appreciable randomness to the vessel behavior. Thus, 

from an operational viewpoint, it is regarded vital to account for 

the uncertainties arising from all sources to quantitatively assess 

their relative effects on the response quantities of interest and 

make crucial operational decisions. In the current paper, the 

primary response quantities of interest (QoI) are the response 

RMS of 6 DOF rigid body motions. With that being said, the 

central focus is dedicated towards the evaluation of sensitivities 

of vessel QoIs with respect to each input uncertainty and the 

underlying interactions between them. The input uncertainty, 

here, particularly refers to the system uncertainty, (i.e) system 

parameters will be modelled as random variables and consequent 

effects on the response will be studied. 

 

In view of assessing the effects of input uncertainty on the model 

response, two different classes of methods can be adopted. 

Regression-based methods use regression coefficients to assess 

the input uncertainty effect on the output. In other words, the 

relationships and correlation between the input and the output 

quantities are estimated, which, in turn are utilized to measure 

the uncertainty. These methods have some serious drawbacks in 

that they are effective only when there exists a linear relationship 

between the input and output. In presence of a strong non-linear 

connection, their predictions in relation to response sensitivity 

deteriorate and become rather questionable. The other class of 

methods, known as Variance based methods, or widely called as 

Analysis of Variance, make use of indices that measure the 

resulting model sensitivity by representing the conditional 

variance of the output with respect to each uncertain input 

parameter and various combinations of them. Unlike the 

regression methods, the variance-based indices are known to be 

effective for non-linear problems as well.  Fourier amplitude 

sensitivity test (FAST) indices and Sobol’ indices fall into this 

family. In the present study, prominent attention is given to the 

usage of Sobol’ indices. The conventional way of estimating 

Sobol’ indices is to perform a full Monte Carlo analysis 

involving few thousand high-fidelity runs. In this respect, the 

indices’ calculation aggravates the problem of computational 

complexity, if the primary physical model is computationally 

expensive to evaluate [1].  

 

Sudret (2007) developed a theoretical framework through which 

the Sobol’ indices can be estimated from the polynomial 

coefficients in a cost-efficient way and employed the same for 

assessing the sensitivity of a foundation model [1]. Soon after its 

development, successful applications of polynomial based global 

sensitivity analysis have been achieved in different disciplines. 

To quote a few, Blatman (2007) applied this on truss & frame 

structural models, Deman et al. (2016) performed sensitivity 

analysis with 78 input variables in the field of hydrogeology, 

Mai(2016) applied this concept for uncertainty analyses in the 

field of earthquake engineering [2] [3] [4]. Nonetheless, in 

Marine Technology, so far, very few uncertainty studies 

involving PCE have been carried out. Even those studies, are 

mostly restricted to applications within slender marine 

structures, refer Sauder (2018), Pinghe Ni et al. (2017) & Paredes 

et al. (2020) [5] [6] [7]. Wei et al. (2019) conducted a sensitivity 

study using PCE and performed subsequent uncertainty 

optimization on a bulk carrier model [8].   

 

Having stated the previous works in Marine engineering using 

PCE, a novel attempt is initiated, as part of this study, to utilize 

the potential capabilities of PCE surrogates as part of onboard 

decision support systems for offshore supply vessels.  The results 

will be utilized as a basis for conducting surrogate-assisted 

model calibration using actual vessel measurements. In other 

words, highly sensitive parameters relative to each response 

mode are properly identified and subjected to calibration while 

disregarding the parameters that are of little significance.  

 

Section 2 discusses the theoretical framework related to the 

frequency domain analysis, background on global sensitivity 

analysis, polynomial chaos expansions and obtaining Sobol’ 

indices from PCE. Section 3 describes the practical steps 

involved in performing the uncertainty study. Section 4 starts 

with the selection of the optimal surrogate through proper 

convergence study, followed by the elaborate discussions on the 

influence of system uncertainties on the model response. 

Decisive inferences on utilization of the obtained results for 

model calibration are given in the conclusion section. 

 

 
2. THEORY 

 

2.1 Frequency domain analysis 

DNV-GL (2010) presents the semi-empirical structure of 

Jonswap spectrum as a peak enhanced Pierson-Moskowitz 

spectra given as [9]: 

𝑆𝜁(𝜔) =  𝐴𝛾
5
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where 𝐻𝑠 represents the significant wave height, 𝜔𝑝 =
2𝜋

𝑇𝑝
 

denotes the angular spectral peak frequency, with 𝑇𝑝 being the 

wave peak period. 𝛾 is the non-dimensional peak shape 

parameter with an average value of 3.3. 𝜎 denotes the spectral 

width parameters with 𝜎 = 𝜎𝑎  𝑓𝑜𝑟 𝜔 ≤ 𝜔𝑃 and 𝜎 =
𝜎𝑏 𝑓𝑜𝑟 𝜔 > 𝜔𝑃. 𝐴𝛾 is a normalizing factor with a value equal to 

1 − 0.287𝑙𝑛 (𝛾). Also, if the  
𝑇𝑃

√𝐻𝑆
 value is greater than 5, it has 

been suggested to use 𝛾 = 1. 
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In open ocean, the wave energy is spread around the main wave 

propagation direction, i.e resulting in short-crested seas. 

Accordingly, the effect due to the directional nature of energy 

spread, can properly be represented in the calculations only 

through translation of the 1 D spectrum into a directional 

spectrum based on the expression contained in Eq.2 [10].    

 

  
𝐷(𝜃) =  

2

𝜋
𝑐𝑜𝑠2(𝜃 − 𝜃𝑅)𝑓𝑜𝑟 −

𝜋

2
+ 𝜃𝑅 𝑡𝑜 

𝜋

2
+ 𝜃𝑅

𝐴𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  ( 2 ) 

The relative wave heading/direction, 𝜃𝑅, defined with respect to 

mathematical vessel axis is given as [11] 

 
                      𝜃𝑅 = 180 +  𝑉𝜃 −  𝜃𝑀    ( 3 ) 

 𝜃𝑀 is the mean wave direction defined according to 

oceanographic-axis conventions, 0° as waves coming from the  

North and 180° as waves coming from the South [12]. 𝑉𝜃 is the 

vessel heading, which is also defined clockwise from the 

reference North.  The addition of 180 is to convert the 

oceanographic based axis to the mathematical vessel coordinate 

system followed in transfer function computations, since the 

latter considers 180° as head waves and 0°  as following waves. 

This concept is illustrated in Figure 1. 

 

               
Figure 1 Representation of relative wave direction, 𝜃𝑅, calculated with 

respect to vessel’s mathematical coordinate system, is shown 

graphically for a 𝑉𝜃 close to 30° and 𝜃𝑀 close to 60°. 

Successively, 𝑆𝜁(𝜔, 𝜃) =  𝑆𝜁(𝜔)𝐷(𝜃)   ( 4 ) 

The setup in Eq.4 presents the 2D wave spectral formulation. The 

motion transfer function from the wave elevation 𝜁at a reference 

point to the motion response 𝑍 can be written as follows: 

 
𝐻𝜁𝑍(𝜔, 𝜃) =   𝐻𝐹𝑍(𝜔). 𝐻𝜁𝐹(𝜔, 𝜃)    ( 5 )  

HFZ(ω) = ((−𝜔2 (𝑀̿ + 𝐴̿(𝜔)) + 𝑖𝜔𝐵̿(𝜔) + 𝐶̿)   )
−1

 represents 

the transfer function from the first order wave load 𝐹 to the 

motion response 𝑍 and  HζF(ω, θ) is the transfer function from 

the wave elevation 𝜁at a reference point to the first order wave 

load 𝐹 . M̿ is the mass matrix, A̿ refers to the added mass matrix, 

B̿ represents the damping matrix, C̿ denotes the stiffness matrix 

[13]. The absolute value |HζZ(ω, θ)| is employed in Eq.6. Usage 

of 3D panel method, a technique belonging to the family of 

potential flow based approaches, has been considered for 

deriving solutions to the above mentioned equations, for vessels 

with zero mean forward speed. It uses the Green’s theorem to 

reduce the three-dimensional potential equation to a two-

dimensional surface integral equation. Then, the corresponding 

solution to integrals can be obtained by distribution of sources 

on the surface [14]. Wamit 7, a hydrodynamic code, based on 

boundary element method has been employed for the 

computations [15].  

 

The 2D response spectrum 𝑆𝑦(𝜔, 𝜃) can, then, be formulated as 

in Eq.6. Performing integration along the directional axis results 

in the 1D response spectrum 𝑆𝑦(𝜔). A successive integration 

along the frequency axis produces the zero-order spectral 

moment 𝑚0. Finally, the root mean square (RMS) value, the 

primary quantity of interest in this study, can be evaluated by 

taking the square root of  𝑚0. Relevant equations are as follows: 

           𝑆𝑦(𝜔, 𝜃) =  𝑆𝜁(𝜔, 𝜃)|𝐻𝜁𝑍(𝜔, 𝜃)|
2
  ( 6 ) 

               𝑆𝑦(𝜔) =  ∫ 𝑆𝑦(𝜔, 𝜃) 𝑑𝜃 
2𝜋

0
   ( 7 ) 

           𝑅𝑀𝑆 =  √𝑚0   =  √∫ 𝑆𝑦(𝜔)𝑑𝜔
∞

0
  ( 8 )   

2.2 Global sensitivity analysis using Sobol’ indices 
 
Sobol’ indices are variance-based measures that can quantify the 

model response variation with respect to the influence of each 

uncertain input parameter along with the effects arising from the 

occurrence of underlying interactions among the random 

parameters. 

Let us consider that the output response of a model subjected to 

probabilistic inputs can be represented in the form [3]: 

 

𝑌 = ℳ(𝑄) =  ℳ0 + ∑ ℳ𝑖(𝑄𝑖) + ∑ ℳ𝑖𝑗(𝑄𝑖 , 𝑄𝑗) +1≤𝑖<𝑗≤𝐷
𝐷
𝑖=1

                       … + ℳ1,…,𝐷 (𝑄) = ℳ0 + ∑ ℳ𝑙(𝑄𝑙)                  𝑙≠∅ ( 9 ) 

 

Where 𝑄 represents the vector of different independent random 

inputs. It signifies the physical space inputs and should 

necessarily be independent and D is the number of input 

variables. ℳ0 denotes the mean value of response.  𝑙 =
{𝑖1, … , 𝑖𝑠} ⊂ {1, … , 𝐷}  represents the index sets.   𝑄𝑙 is a 

subvector of 𝑄, which consists only of elements with indices 

corresponding with the index set 𝑙 [3]. The  decomposition of the 

variance of the output ℳ(Q), on the condition that ℳ(Q) 

satisfies the orthogonality property, can be written as [16, 17]: 

 
𝑉 = 𝑉𝑎𝑟[ℳ(𝑄)] =  ∑ 𝑉𝑖 + ∑ 𝑉𝑖𝑗 + ⋯ +1≤𝑖<𝑗≤𝐷

𝐷
𝑖=1

                                          𝑉1,…,𝐷 = ∑ 𝑉𝑙                  𝑙≠∅    ( 10 ) 
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On dividing the individual terms in Eq.10 by the total variance 

𝑉,  

 
     ∑ 𝑆𝑖 + ∑ 𝑆𝑖𝑗 + ⋯ + 𝑆12…𝐷1≤𝑖<𝑗≤𝐷 = ∑ 𝑆𝑙 =𝑙≠∅ 1𝐷

𝑖=1  ( 11 )  

  

The items 𝑆 give the sensitivity of the output response in relation 

to the uncertain input parameters.  The total sensitivity should be 

equal to 1, which is composed of the main effects and 

interactions. From Eq.11, the first order sensitivity indices or the 

main effects are given as [16]: 

                                            𝑆𝑖 =  
𝑉[𝐸[𝑌|𝑄𝑖]]

𝑉[𝑌]
   ( 12 ) 

These indices identify the individual effects of each uncertain 

parameters on the model response without considering the 

interactions.   The second order indices, Sij, measure the 

interactions between the random inputs (𝑄𝑖 , 𝑄𝑗) and report their 

ensuing effects on the output. Mathematically, they can be 

framed as [16]: 

 

                           𝑆𝑖,𝑗 =   
𝑉[𝐸[𝑌|𝑄𝑖,𝑄𝑗]]

𝑉[𝑌]
− 𝑆𝑖 − 𝑆𝑗   ( 13 ) 

The remaining extensions in Eq.11 correspond to the higher 

order indices, which gauge the effects on the model response due 

to interactions among larger combination of input random 

variables [3]. Calculation of higher-order indices demands 

extreme computational work and nearly impossible for higher-

dimensional problems [5].  

 

The total sensitivity indices quantify the complete effect of the 

parametric uncertainty on the model response, i.e. including first 

order effects and all interactions. Owing to the complex 

computations associated with the estimation of higher order 

sensitivity indices in Eq.11, most often, the total sensitivity index 

of a variable 𝑖 is computed using the simple expression contained 

in Eq.14. [17] [16] 

                              𝑆𝑇,𝑖 = 1 −  
𝑉[𝐸[𝑌|𝑄~𝑖]]

𝑉[𝑌]
  ( 14 ) 

𝑄~𝑖, denotes all other input parameters other than 𝑄𝑖 .  The 

normal practice, in most sensitivity studies, is to evaluate the first 

order and total order indices [16]. Traditionally, the Monte Carlo 

approach is used to estimate the Sobol’ indices [1] [16] [17]. The 

Monte Carlo approach demands a larger number of simulation 

runs to obtain a reasonable value for these indices. In order to 

circumvent this problem, Sudret (2007), proposed a 

computational efficient procedure by obtaining the Sobol’ 

indices directly from the polynomial coefficients by means of 

Polynomial Chaos Expansion (PCE). This is based on the fact 

that PCE possess orthogonal properties which is an important 

requirement for carrying out Sobol’ decomposition.  [1] [2] [5]. 

 

 

 

2.3 Polynomial Chaos Expansion 
 
According to polynomial chaos expansion (PCE), the 

probabilistic response behavior of a physics-based model can be 

represented as an expansion series consisting of orthogonal 

polynomials as follows [1]: 

 
             𝑌 = ℳ(𝑋)  ≈ ℳ𝑃𝐶(𝑈) =  ∑ 𝑐𝛼𝛹𝛼(𝑈)∞

𝛼=0    ( 15 ) 

Where Y = {𝑦1, … . , 𝑦𝑇}  ∈  𝑅𝑇 , contains the output quantities of 

interest (here 𝑇 ≥ 1), which in this paper imply RMS value of 

each output response component. 𝑋 represents the physical input 

space which can either be independent or correlated. The PC 

surrogate (ℳPC) functions on the independent standard space 

variables, therefore, standard probabilistic transformation 

techniques can be pursued for variable mapping from one space 

to another. Ψα(U) indicates multivariate polynomials, that are 

orthonormal with respect to the standard probability space of 

independent input variables (𝑓𝑈(𝑢)). So 𝐸[𝜓𝑎𝜓𝛽] = 𝛿𝛼𝛽 , 𝛿𝛼𝛽 =

1 𝑖𝑓 𝛼 = 𝛽, 0 𝑖𝑓𝛼 ≠ 𝛽. cα signifies the polynomial coefficients. 

In the current work, it is of especial interest to employ 

orthonormal Hermite polynomials defined on the standard 

normal space(U) with zero mean and unit variance. From the 

computational point of view, it is considered practical to reduce 

the infinite expansion series in Eq. 15 to a finite number of terms. 

Following this fact, the series is truncated to 𝑃 terms where 𝑃 

denote 
(𝐷+𝑝)!

𝐷!𝑝!
.   D refers the number of input variables/input 

dimensions and p is the highest p-th order term of the Hermite 

polynomials [1] [2] [3] [18] 

 
                  𝑌 ≈  ∑ 𝑐𝛼𝛹𝛼(𝑈)𝑃−1

𝛼=0 =ℳ𝑃𝐶(𝑈) ,𝛼 ∈ 𝐴  ( 16 ) 

Here, 𝐴 denotes a multi-indices set 𝛼 = (𝛼1, … . , 𝛼𝐷). Successively, 

the orthogonality property of the polynomial bases facilitates the 

computation of statistical moments from the polynomial 

coefficients. Theoretical representations for deducing the mean 

from polynomial coefficients is presented in Eq.17 [2] [3]. 

 
                 𝜇𝑃𝐶 = 𝐸[ℳ𝑃𝐶(𝑈)] =  𝑐0    ( 17 ) 

The variance is computed by [5] 

 
 ℳ𝑃𝐶(𝑈) − 𝐸[ℳ𝑃𝐶(𝑈)] = ∑ 𝑐𝛼𝛹𝛼(𝑈)𝑃−1

𝛼=1   ( 18 ) 

𝑉𝑃𝐶 = 𝑉𝑎𝑟[ℳ𝑃𝐶(𝑈)] = 𝐸[(ℳ𝑃𝐶(𝑈) − 𝐸[ℳ𝑃𝐶(𝑈)])2] ( 19 ) 

𝑉𝑃𝐶 =  ∑ 𝑐𝛼
2𝑃−1

𝛼=1 𝐸[𝜓𝛼
2(𝑈)] =  ∑ 𝑐𝛼

2𝑃−1
𝛼=1     ( 20 ) 

The skewness and kurtosis coefficients can be effectively 

computed using the formulations in Eq.21 & Eq.22 

 

             𝛿𝑃𝐶 =  
1

𝜎𝑃𝐶
3 𝐸[(ℳ𝑃𝐶(𝑈) − 𝜇𝑃𝐶)3]   ( 21 ) 

             𝜅𝑃𝐶 =  
1

𝜎𝑃𝐶
4 𝐸[(ℳ𝑃𝐶(𝑈) − 𝜇𝑃𝐶)4]   ( 22 ) 
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Here, the standard deviation, 𝜎𝑃𝐶 =  √𝑉𝑃𝐶 . Eq.21 & Eq.22 are 

cost effective alternatives to the conventional way of evaluating 

skewness and kurtosis from Hermite polynomials [2]. From the 

surrogate representations, the response PDF can also be obtained 

in addition to the statistical moments. This is achieved by 

conducting ‘𝑁𝑢’ Monte Carlo runs on the polynomial model, 

followed by constructing a kernel formulation based on the 

resulting response values [2] [18]. 

 

               𝑓𝑌̂(𝑦̂) =  
1

𝑁𝑢ℎ
∑ 𝐾(

𝑦̂−𝑦̂(𝑗) 

ℎ

𝑁𝑢
𝑗=1 )    ( 23 ) 

Where 𝐾 is a positive kernel function and ℎ represents the 

bandwidth parameter. 𝑁𝑢 represents the large sample size 

extracted from the standard probability space. ŷ(j)
=

 ℳPC(𝑢(𝑗)), 𝑗 = 1,2, … , 𝑁𝑢. 

 

Quasi-Random sequences: 

Evaluation of polynomial coefficients mandates stochastic 

response output from the actual frequency domain model for 

different combinations of uncertain inputs. For this purpose, the 

experimental design samples from the input probability space are 

obtained using Quasi-random/low-discrepancy sequences. These 

sequences are pursued to achieve a fast convergence rate. Strong 

attention is devoted towards the usage of Sobol’ sequences 

owing to its efficiency in handling higher-dimensional 

problems(𝐷 ≥ 10). An one-dimensional Sobol’ sequence is 

represented using the following expression [2]  

 

               𝑣(𝑖) =  
𝑏0

2
+

𝑏1

22 + ⋯ +
𝑏𝑚

2𝑚+1, 𝑏𝑛 ∈ {0,1}   ( 24 ) 

The Sobol’ sequence can be extended to ‘D’ dimensions by 

carrying out D permutations of the one-dimensional sequence. 

Usually, the collocation points are generated from the standard 

normal space and transformed to points in physical space, which, 

in turn are used to perform simulations on the high-fidelity model 

[1].  

Computing the coefficients: 

Constructing a PCE model by making use of the point 

collocation approach is of main interest. With regards to this, the 

coefficients are estimated based on the principle of least squares 

minimization, which is a regression-oriented approach.  

 
                       𝑌 = ℳ(𝑋) =  ∑ 𝑐𝛼𝛹𝛼(𝑈)𝑃−1

𝛼=0 +  𝜀   (25 ) 

Here, the term 𝜀 represent the residual error with zero mean. 

Consequently, the coefficients 𝑐𝛼 , are computed so that they 

minimize the difference between the approximation and the 

actual response, which can be obtained by [1]: 

 

                       𝑎𝑟𝑔𝑚𝑖𝑛𝐸[(ℳ(𝑋) −  𝑐𝑇𝛹(𝑈))
2

]   ( 26 ) 

2.4 Sobol’ decomposition of Polynomial Chaos 
Expansion 
 
Having reformulated the actual model output in the form of 

polynomial basis functions as in Eq.16, the multivariate 

polynomials, 𝛹𝛼(𝑈), can be presented as a tensor product of the 

univariate polynomials associated with each input variable. 

  

                    𝛹𝛼(𝑈) =  ∏ 𝜓𝛼𝑖

(𝑖)(𝑈𝑖)𝐷
𝑖=1    ( 27 ) 

Where  𝜓𝛼𝑖

(𝑖)
 is the polynomial in the 𝑖-th input variable that are 

orthonormal with respect to 𝑓𝑈𝑖
(𝑢𝑖). Where 𝑓𝑈𝑖

(𝑢𝑖), 𝑖=1,2,…D, 

represent the marginal PDFs.    Let us define the set of multi-indices 

𝐴𝑙 which corresponds to the index set 𝑙, 𝐴𝑙 = {𝛼 ∈ 𝐴: 𝛼𝑘 ≠ 0, 𝑘 ∈

𝑙, 𝑙 = {𝑖1, … , 𝑖𝑠} ⊂ {1, … , 𝐷}}.  It follows that ⋃𝐴𝑙 = 𝐴( in Eq. 16). 

The derivation of the Sobol’ indices – the first, second and total 

order indices, can effortlessly be achieved by performing basic 

operations on the polynomial coefficients as follows [3].  

 

1st order- 𝑆𝑖̂ =  ∑
𝑐𝛼

2

𝑉𝑃𝐶
𝛼∈𝐴𝑖

 ,  𝐴𝑖 = {𝛼 ∈ 𝐴: 𝛼𝑖 > 0, 𝛼𝑗≠𝑖 = 0}   ( 28 ) 

2nd order-  𝑆𝑖𝑗̂ =  ∑
𝑐𝛼

2

𝑉𝑃𝐶
 𝛼∈𝐴𝑖𝑗
, 𝐴𝑖𝑗 = {

𝛼 ∈ 𝐴: 𝛼𝑖 , 𝛼𝑗 > 0

, 𝛼𝑘≠𝑖,𝑗 = 0
}  ( 29 ) 

Total Order - 𝑆𝑖̂
𝑇

=  ∑
𝑐𝛼

2

𝑉𝑃𝐶
𝛼∈𝐴𝑖

𝑇 , 𝐴𝑖
𝑇 = {𝛼 ∈ 𝐴: 𝛼𝑖 > 0} ( 30 ) 

2.5 Sparse polynomial chaos expansions 
 

The PC expansion scheme presented in Eq.16, which itself has 

only finite number of terms, becomes cumbersome to deal with 

for higher dimensional problems owing to the huge number of 

generated expansion terms in compliance with the increasing 

polynomial order and random variables. The amount of high-

fidelity simulation runs for a reliable sensitivity study must 

concur with the following qualitative thumb rule [18]:  

 
                          𝑁 ≥ 2 ∗ 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝑇𝑒𝑟𝑚𝑠 (𝑃)  ( 31 )                       

Simulation numbers smaller than this limit will probably result 

in an under determined system. Extensive PC expansions, 

therefore, demand massive computational runs. As a means to  

deal with this problem, the following approach is also pursued in 

this paper. 

Hyperbolic Truncation : As per this truncation strategy, the PC 

expansion terms in Eq 16. can be reduced by setting proper q-

norms according to Eq.32: [2] [3] 

 

                           ‖𝛼‖𝑞 =  (∑ 𝛼𝑖
𝑞𝐷

𝑖=1 )
1/𝑞

 ≤ 𝑃  ( 32 ) 

Specification of q-norm dictates the quantity of truncation. When 

𝑞 = 1, the number of terms will be identical to that of Eq.16. By 

having reduced norm values between  0 < 𝑞 < 1, the number of 

terms will be minimized accordingly. 𝑞 value lesser than 1 

reduces the quantity of basis terms representing the interaction 

between the variables [3]. The preserved terms, after truncation, 

happen to fall under a hyperbola, hence, the term hyperbolic 

truncation is applied. An illustration of the concept is given in 

Figure 2. 
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Figure 2 The retained basis terms with full expansion (q=1) and after 

truncation (q=0.8, q=0.5) are shown pictorially for polynomial 

expanison of order 4. First two dimensions are considered in X & Y axis 

respectively. X & Y axes represent the degree of the polynomials in each 

dimension. 

3. ANALYSIS SETUP 

 

For the uncertainty study, an offshore vessel named Olympic 

Challenger is chosen. In this regard, a representative numerical 

model of the same which is compatible with Wamit based 

hydrodynamic analysis has been utilized. The details of the 

model are summarized in the Table 1 [19].    

 

The real vessel data, latitude & longitude, time and heading of 

the Olympic Challenger are utilized for the present study. 

Metocean conditions for the corresponding vessel position and 

time are read from the C3S-CDS ERA 5 reanalysis dataset [12]. 

The given vessel’s position and time did not exactly coincide 

with the ERA 5 grid, so linear interpolation is used to find the 

metocean parameters at the same location & time as of the real 

asset. (𝐻𝑠 − 3.1𝑚, 𝑇𝑝 − 10.35 𝑠, 𝜃𝑀 − 226 𝑑𝑒𝑔). Panel model 

of the vessel is displayed in Figure 3.  Positive X-axis points 

forward (x=0 at Lpp/2), positive Y-axis is pointing towards port 

side and positive Z-axis points upwards with z = 0 in the still 

water plane. 

   

 
Figure 3 Panel model of the vessel 

 Table 1 Details of the numerical vessel 

model 

Length, LOA 105.9 𝑚 

Length, Lpp 94.7 𝑚 

Breadth,B 21 𝑚 

Draught, T 6.28 𝑚 

Volume 8999 𝑚3 

Waterplane Area 1842 𝑚2 

Total no.of panels 3232 

                                                                                                                       

 

          
Figure 5 Wave spectrum with 𝛾 = 1  and the resulting response 

spectrum for heave using the given sea state values, vessel heading and 

mean value of system parameters. 126 wave frequencies and 37 wave 

directions are used in the spectra.  

The frequency domain analysis accounting for short crested seas 

represents the primary high-fidelity analysis. For conducting 

simulations, the numerical setup has to be fed with metocean, 

vessel heading and system parameters as input. The 2D wave 

spectrum and the resulting 2D heave response spectrum, 

simulated based on the high-fidelity analysis using the given sea 

states, vessel heading and mean value of system parameters are 

shown in Figure 5. 2D spectra are built using 126 wave 

frequencies and 37 wave directions. By using trapezoidal 

integrations, the response RMS is obtained as per the procedure 

stated in Section 2.1. Same steps are followed to estimate the 

response RMS, the quantities of interest, for all rigid body 

modes. 

 

The method for assessing the sensitivity of the vessel QoIs by a 

surrogate follows a two-step process. Firstly, the stochastic 

output resulting from uncertain inputs has to be propagated into 

the surrogate model. This entails assigning random distributions 

to the uncertain inputs. The distributions for each input quantities 

are listed in Table 2. The mean and standard deviation ranges are 

approximately adapted from Han et al. (2020), where these 

ranges are proposed for a similar offshore vessel [20].  

 

Table 2 Summary of uncertain system parameters together with their 

respective distributions. The explanation of the terminologies used are 

given below the table. 

  𝛽𝑦𝑦,𝑐𝑟  = 2√(M̿ + A̿𝑦𝑦)C̿𝑦𝑦 , yy = 3,4,5 

𝐶𝑜𝐺  Center of Gravity 

𝑋𝐶𝐺    Longitudinal coordinate of CoG 

𝑌𝐶𝐺    Transverse coordinate of CoG 

𝑿𝑪𝑮(𝒎)      Normal(𝜇 = −1.38 , 𝜎 = 0.71% 𝑜𝑓 𝐿𝑝𝑝) 

𝒀𝑪𝑮(𝒎)      Normal(𝜇 = 0, 𝜎 = 0.8% 𝑜𝑓 𝐵) 

𝒁𝑪𝑮(𝒎)      Normal(𝜇 = 1.7, 𝜎 = 2.66% 𝑜𝑓 𝑇) 

𝑴(𝒌𝒈)      Normal(𝜇 = 9223770, 𝜎 = 1.67% 𝑜𝑓 𝜇 ) 

𝑰𝟒𝟒(𝒌𝒈𝒎𝟐)      Normal(𝜇 = 6.14𝑥108, 𝜎 = 1.67% 𝑜𝑓 𝜇 ) 

𝑰𝟓𝟓(𝒌𝒈𝒎𝟐)      Normal(𝜇 = 6.28𝑥109, 𝜎 = 1.67% 𝑜𝑓 𝜇 ) 

𝑰𝟔𝟔(𝒌𝒈𝒎𝟐)      Normal(𝜇 =  6.25𝑥109, 𝜎 = 1.67% 𝑜𝑓 𝜇 ) 

   𝜷𝟑𝟑(
𝒌𝒈

𝒔
)      Normal(𝜇 = 8% 𝛽33,𝑐𝑟, 𝜎 = 1.33% 𝛽33,𝑐𝑟) 

𝜷𝟒𝟒(𝒌𝒈
𝒎𝟐

𝒔
) 

     Normal(𝜇 = 9% 𝛽44,𝑐𝑟, 𝜎 = 1.17%  𝛽44,𝑐𝑟) 

𝜷𝟓𝟓(𝒌𝒈
𝒎𝟐

𝒔
) 

     Normal(𝜇 = 8% 𝛽55,𝑐𝑟, 𝜎 = 1.33% 𝛽55,𝑐𝑟) 

Figure 4 Location of the 

vessel is highlighted using 

red pointer. The vessel is 

positioned at lat-59.41°, 

lon – 5.26°and time –       

08-01-2020T00:35:00. 

Vessel heading – 305.95 

deg 
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𝑍𝐶𝐺    Vertical coordinate of ZCG 

𝑀      Vessel mass 

𝐼44     Roll moment of inertia 

𝐼55      Pitch moment of inertia 

𝐼66      Yaw moment of inertia 

𝛽33     Additional linearized heave damping coefficient 

𝛽44     Additional linearized roll damping coefficient 

𝛽55     Additional linearized pitch damping coefficient 

𝛽33,𝑐𝑟  Critical heave damping coefficient 

𝛽44,𝑐𝑟  Critical roll damping coefficient 

𝛽55,𝑐𝑟  Critical pitch damping coefficient 

 

Estimation of the joint distribution is carried out using 𝑁 

marginals listed in Table 2, with the assumption that the 

variables are independent. This signifies the physical space of 

input variables. Here, only the system parameters are modelled 

as random variables, whereas the sea state parameters are kept 

deterministic. Parallelly, a joint distribution, consisting of 𝑁 

standard independent normal marginals, is formed and herein 

referred to as the standard normal space. In succession, 

orthogonal polynomials belonging to the Hermite family are 

generated with respect to the standard normal space using a three 

terms recursion scheme. By deploying Sobol’ sampling, a low 

discrepancy/quasi-random scheme, samples are drawn from the 

normal space.  Now, the normal samples are transformed to 

produce physical space samples based on the formulation 𝑥 =
 𝐹𝑋

−1(F𝑈(𝑢)) [1]. In one case study, correlation between the 

variables in the physical space is also considered. For that 

analysis, the samples are generated from physical space and 

transformed to normal space by the formulation 𝑢 =
 𝐹𝑈

−1(F𝑋(𝑥)) [21]. Usage of Rosenblatt transformation is 

considered. The high-fidelity model is run using the physical 

samples. 
 

 
Figure 6 Illustrative flowchart showing the sequential procedure 

followed for performing polynomial surrogate based sensitivity analysis 

Afterwards, using the random response output from the high-

fidelity model and the standard normal samples, the coefficients 

of the orthogonal polynomial sequence are estimated by 

employing a least squares minimization strategy. This first-step, 

consequently, results in engendering of a response surrogate that 

can mimic the behaviour of the high-fidelity model. In this 

manner, the PC surrogate is built for all response QoIs. The 

second-step, performing sensitivity analysis, can be initiated by 

decomposing the coefficients of the polynomial surrogate. A 

graphical illustration of the work sequence is shown by a 

flowchart in Figure 6. The whole analysis has been carried out 

with the help of Python based packages [22] [23] [24].  

 

4. RESULTS AND DISCUSSION 
 

4.1 Convergence Study 
 
With the aim of attaining reliable sensitivity results, a full-

fledged convergence study is performed to ensure the usage of 

the optimal number of high-fidelity runs and polynomial order 

for performing sensitivity analysis. In total, there are 10 random 

variables used for the sensitivity study. The number of generated 

terms, therefore, in respect of each polynomial order along with 

their truncated versions are presented in Table 3. 

 

Table 3 Number of generated terms with respect to different 

polynomial versions 

Pol P2 P3 P3 

q-0.8 

P4 P4 

q-0.8 

P4 

q-0.5 

Terms 66 286 76 1001 296 86 

 

By using the mean and standard deviation obtained from the 

polynomial coefficients associated with the surrogate built for 

roll RMS, the confidence interval(𝜇 ± 𝜎) is constructed for 

various ranges of high-fidelity runs starting from 50 to 1000. 

Though for OLS, the minimum number of simulation samples 

required should be higher than the number of polynomial terms, 

the mean and standard deviation for all the polynomial 

surrogates, irrespective of the number of terms they posses,are 

presented for all sample numbers inorder to justify the 

convergence study.   From the plots, the full 2nd order polynomial 

with 66 terms has reached convergence from 100 runs onwards 

and remained stable throughout. Inaddition, Monte Carlo runs on 

the high-fidelity model are also conducted and the confidence 

intervals are presented until 10000 runs. The mean and standard 

deviation of full 2nd order polynomial surrogate with 100 runs 

are 2.077  & 0.282 deg respectively, and the Monte Carlo results 

for 10000 runs show values of 2.081 & 0.287 deg respectively 

for mean and standard deviation. Thereby, the full PC model of 

order 2 has been chosen for further  studies. Concerning the 

number of high-fidelity runs required to train the surrogate 

model, 200 runs is selected for constructing surrogates for all 

rigid body modes. Even though the convergence has been 

achieved earlier for roll in Figure 7, the selection is based on a 

conservative assumption. Moreover, the choice of 2nd order 

polynomial with 66 terms and 200 simulation runs also satisifies 

the qualitative thumb rule condition.  

 

The truncated polynomial candidates (q=0.5) corresponding to 

PC model of order 2 and 3 achieved convergence before the full 

PC 2nd order model. However, they produced identical values for 

the first order and total sensitivity indices for all the modes. In 

other words, they did not capture the small interaction effects 
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existing between the variables for certain modes. The related 

results are presented in the Appendix section. 

 

 
Figure 7 Convergence rate of different polynomial versions with 

respect to different number of high-fidelity simulation runs(50-1000). 

In addition, crude MonteCarlo runs are conducted on the high-fidelity 

model and results are presented for samples ranging from 50-10000. 

With the main intention to present the interactions between the 

variables using a PC model that requires least number of runs, 

full PC expansion of order 2 that reached convergence sooner is 

chosen. Notwithstanding, if only the prediction of main effects 

(first order indices) is important in a study, truncated PC 

expansions can be efficiently used.  

 
4.2 Sensitivity of rigid body motions due to system 
uncertainty. 
 
The first order and total order indices are presented for all rigid 

body modes in Figure 8. 2% value of the respective index is 

added on top of each index as confidence interval inorder to mark 

the uncertainty associated with the choice of  distributions 

considered for the input parameters. The analysis takes into 

account the relative wave heading at 259.96°, which could be 

regarded as a beam sea. Therefore, many system parameters 

seem to contribute to the response variation in sway, roll and yaw 

motions, as these are the responsive modes in a beam sea. The 

CoG parameters, most importantly, are significantly contributing 

to the response variation in 2,4,6 modes, as these parameters are 

present in the mass and stiffness matrices and are responsible for 

the changes in mean wetted surface.  

 

With regards to the heave and pitch motion, almost 97.2%  and 

96.5% of the response variations are driven by their respective 

damping coefficients alone, with trivial contributions from other 

parameters. The vessel mass imparts substantial variation in 

translational modes. This applies, especially in surge and sway, 

where it bestows around 52.7% and 48.3% variations 

respectively. Likewise, the yaw moment of inertia drives 47.7% 

of the yaw variation. However, relevant moments of inertia in 

roll and pitch motion fail to impart considerable effect. In 

physical conditions, the motion modes 1,3,5 and 2,4,6 are 

integrated. The sensitivity indices clearly depict the 

interrelations, for instance, 𝜷𝟓𝟓 appears to influence almost 

34.2% variation in surge response, roll moment of inertia 

exercises little effect (1.64%) on sway motion and 𝜷𝟑𝟑 offers 

slight variations to pitch response. 
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Figure 8 First order and total order sensitivity indices are presented 

consecutively for each rigid body motion – 1. Surge, 2. Sway, 3. Heave, 

4. Roll, 5. Pitch, 6. Yaw. 200 High fidelity runs are made to construct 

the surrogate 

Interactions, however negligible, are also present between the 

parameters for 2,4,6 motion modes, which is evident from the 

slightly higher total indices than the corresponding first order 

indices. For illustration, the roll damping and ZCG in roll mode 

are faintly interacting with each other, as second order index with 

0.6% is present for these parameters. Nevertheless, for all modes, 

contributions from the first order indices are mostly dominating, 

signifying that the coefficients related to the interaction terms are 

inconsequential compared to the main terms. Figure 9 showing 

the polynomial coefficients for all the modes explain the trifling 

higher order terms with little/nil fluctuations.  

 
Figure 9 Polynomial coefficient values from the surrogates of 6 rigid 

body modes. Surrogate built from the full polynomial expansion of 

order 2 trained with 200 samples.  

The sensitivity indices appear to be highly dependent upon the 

chosen uncertainty ranges of the system parameters and their 

values may vary with the increase in the uncertainty range.  

 

 Besides the sensitivity indices, the statistical moments and the 

95% value are evaluated from the polynomial coefficients and 

presented in Table 4. For the considered sea state values, all other 

rigid body modes, except roll, exhibit insignificant scattering 

from the mean value. Especially sway mode, which shows very 

low level of scatter, despite receiving contributions from many 

system parameters. Roll motion shows 13.6% deviation from the 

mean value, which is quite considerable. The numeric figures 

related to higher order moments indicate that all the response 

modes tend to reflect the Gaussian nature, however, the roll 

response is slightly deviating from the Gaussian behaviour.  

 

Table 4 Statistical moments and 95% RMS value from the polynomial 

surrogates corresponding to each rigid body motion. Units of surge, 

sway and heave are in ‘m’, and of roll, pitch and yaw are in ‘deg’. 

Skewness and kurtosis are dimensionless quantities. 

 Surge Sway Heave Roll Pitch Yaw 

Mean 0.242 0.415 0.56 2.077 0.722 0.372 

STD 0.005 0.006 0.014 0.283 0.022 0.006 

Skewness 0.095 0.079 0.162 0.278 0.193 0.102 

Kurtosis 3.013 3.037 3.035 3.210 3.050 3.060 

95 % val. 0.254 0.435 0.603 3.432 0.784 0.401 

 

 

 4.3 Roll RMS variation to 𝛽44 increments 

 

Using three different cases, the response sensitivity to 

𝛽44 increments is studied using statistical measures in this 

section. The first case is run using the same random parameters 

as listed in Table 2. In the next two cases, the mean value of 𝛽44 is 

supplemented with additional 5% sequentially, while the 

standard deviation is kept the same. 95% roll RMS value read 

from the polynomial coefficients, evidently, indicates that the 

increase of 𝛽44 to 5% suppresses the roll exterme RMS by 

around 15-20%. It can seen in Table 5. 

 

Table 5 Statistical moments & 95% RMS value obtained from 

polynomial coefficients corresponding to roll surrogate  

 𝜇 = 9% 𝛽44,𝑐𝑟 𝜇 = 14% 𝛽44,𝑐𝑟 𝜇 = 19% 𝛽44,𝑐𝑟 

Mean 2.077 deg      1.563 deg     1.269 deg 

STD 0.283 deg      0.185 deg     0.139 deg 

Skewness 0.278      0.171     0.147 

Kurtosis 3.210      3.109     3.086 

95% value 3.43 deg     2.68 deg     2.27 deg 

.  

 
Figure 8 Response PDF constructed for the considered three cases 

using the Gaussian kernel associated with the kernel density estimation. 

100,000 RMS values simulated from the respective surrogates are 

displayed in the X-axis 

Additionally, the response PDF is constructed for each case by 

performing 100,000 runs on the respective PC model and 

enveloping the obtained results with a Gaussian kernel. The 

curves are displayed in Figure 10. PDF curves attained from the 
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kernel density estimation clearly portray 18-25% reduction in the 

mean value of roll response together with higher concentration 

of responses adjacent to the mean for increasing 𝛽44 values. In 

like manner, the higher order moments given in Table 5, suggest 

that the roll behaves more Gaussian with 𝛽44 increments 

 

 
4.4 Effect on sensitive indices on introduction of 
artificial correlation 

 

In the previous cases, assumption of independence between the 

variables is considered on account of the fact that the actual 

correlation between system variables is not known. From a 

physical perspective, some of the variables are correlated to each 

other, and consequently the correlation might influence the 

resulting response.  In the current section, thereby, the model 

response sensitivity is assessed by introducing artificial 

correlation. For sway motion, three different cases are studied. 

One with the assumption of independence between the variables 

as before, whereas the other two cases have been assigned with 

15% and 30% correlations respectively. A multivariate normal 

distribution, assigned with the prescribed correlations between 

the paramters XCG,YCG,ZCG,M, 𝐼44 ,𝛽44 and zero correlation  

for rest of the variables, is utilized. Only the parameters that may 

induce changes to the sway response are selected for prescribing 

correlation, whereas the parameters having nil/negligible effects 

are given zero correlation. This selection is duly based on the 

results presented in Section 4.2.  

 
Figure 9 For three different correlation cases, total sensitivity indices 

for all input paramters are given for sway RMS.  

Table 6 Statistical moments obtained from the polynomial coefficients 

corresponding to the sway surrogate 

 𝜌 = 0 𝜌 = 0.15 𝜌 =0.3 

Mean 0.4146 m 0.4146 m 0.4147 m 

Std 0.006 m 0.006 m 0.006 m 

Skewness 0.079  0.125  0.198 

Kurtosis 3.037 3.065 3.121 

 
A representation of the total sensitivity indices for the three cases 

is given in Figure 11.  The gradual enhancement of 15% 

correlation results in a 11-14% corresponding decline in the total 

effect of YCG on sway response. In contrast, the sheer 

contribution of XCG and ZCG to system response variation 

escalates with the stepwise accumulation of correlation. The total 

index corresponding to other parameters did not display any 

substantial changes. Thus, it leads to the conclusion that 

correlation directly influences only the importance of the CoG 

parameters on the system response.  

Table 6 containing higher order moments suggests a faint 

deviation of the sway response from the Gaussian behaviour with 

respect to increased correlation. Numerical figures on mean and 

standard deviation imply that they are not reactive to the increase 

in correlation, which is indicative of the fact that the overall sway 

RMS is not affected much by the presence of correlation.   

 
4.5 Response sensitivity to variations in incoming 
wave directions 

 

All the previous analyses exclusively take into account a relative 

wave direction of 259.96° . In continuation, the parametric effect 

on system response in relation to various relative directions have 

been studied in detail. 7 different cases are studied keeping Hs 

and Tp the same as before, but relative directions(θR) are 

changed from 0 to 180° in intervals of 30°. In Figure 12, for each 

rigid body motion, the total sensitivity indices corresponding to 

each incoming wave direction are presented. As can be seen, 

sway, roll and yaw modes are highly responsive to the changes 

in the wave directions. 
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Figure 10 Total sensitivity indices corresponding to different relative 

directions are presented for all rigid body motions. 1. Surge, 2. Sway, 3. 

Heave, 4. Roll, 5. Pitch, 6. Yaw. 

Massive changes in the importance of parameters can evidently 

be witnessed for these modes. Take for instance, in quantative 

terms, for sway mode, the Xcg parameter contributes to just 

0.4% of response variation in beam seas. In sharp contrast, the 

same parameter is responsible for causing around 47.6% and 

45.8% variations in head and following seas respectively. In 

addition, ZCG and vessel mass also exhibit directional 

dependency, presenting substantial effects on sway response in 

beam seas, but, showing a decreasing trend for other directions. 

In a similar fashion, abrupt changes in the CoG parameters and 

damping coefficient are clearly visible for the roll mode. The 

ZCG bestows more than 54 % response variation for waves 

approaching at 90°, while it contributes only around 15 % and 

17% response variation for waves arriving at 0° and 180° 

respectively. XCG shows kindred effects for sway and roll, (i.e), 

displaying symmetrically increasing behaviour with minimum at 

90°, while, a symmetrically decreasing trend with a maximum at 

90° can be witnessed for the yaw mode. 2,4,6 are the most 

reactive modes in beam seas, thus, most of the parameters have, 

either a maximum or minimum at 90°. Apart from these, 

parameters corresponding to modes like surge, heave and pitch 

do not demonstrate appreciable modifications and remain less 

reactive to directional changes. Only some CoG and damping 

coefficient parameters exhibit slight variations. Thus, it leads to 

the conclusion, that the parameters associated with the response 

variations in modes 1,3,5 have little sensitivity to the wave 

directions. 
 

5. CONCLUSION 
 

In this study, the Sobol’ indices generated from polynomial 

coefficients were efficiently applied for measuring the 

contribution of each uncertain parameter on the response QoIs. 

Based on the convergence studies and also with the intent to 

capture interaction effects between the variables, full polynomial 

expansion of order 2 was selected. For the chosen sea state, the 

sway, roll and yaw modes, were most sensitive to the parametric 

uncertainty. Specifically, significant level of scatter was 

observed for roll motion, thereby, deeming it the most critical 

parameter affected by the system uncertainties. Furthermore, the 

variations of the roll response on exposure to different mean 

value ranges of 𝛽44 were considerable, and as a consequence, the 

calibration of 𝛽44 is considered extremely vital for reliable roll 

response prediction. CoG parameters and roll damping 

coefficient appeared to be heavily dependent on wave directions. 

Specifically, extreme changes in the contributions of CoG 

parameters to response variation were observed for different 

directions. The results, therefore, stress the need to switch the 

parameters while performing surrogate assisted model 

calibration with respect to different incoming wave directions. 

All the analyses, in this study, have been conducted using a 

deterministic value for 𝐻𝑠 & 𝑇𝑝.  A further extension would be 

to model all the metocean parameters as random variables and 

quantitatively measure the resulting interactions between system 

and metocean parameters. This would pave the way for 

identification of the sea state dependent system parameters, and 

consequently, would facilitate reliable model calibration.  
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APPENDIX 
 

 
Figure 11 First order and total sensitivity indices for Roll RMS. 

Truncated version of 2nd order PC model with 21 terms is used. 50 

simulation samples are utilized to train the surrogate. As can be seen, 

the truncated version fails to capture the interaction between the 

variables. 

 
Figure 12 First order and total sensitivity indices for Roll RMS. 

Truncated version of 3nd order PC model with 31 terms is used. 100 

simulation samples are utilized to train the surrogate. The total indices 

are identical to the first order indices indicating that the interactions 

are absent. 

 


