
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Kevin A. Vinding
Autom

atic Extraction of Com
plex Bus Structures from

 RTL

Kevin Aleksander Vinding

Automatic Extraction of Complex Bus
Structures from RTL

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Per Gunnar Kjeldsberg
Co-supervisor: Berend Dekens, Eivind Fylkesnes

June 2021

M
as

te
r’s

 th
es

is

Kevin Aleksander Vinding

Automatic Extraction of Complex Bus
Structures from RTL

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Per Gunnar Kjeldsberg
Co-supervisor: Berend Dekens, Eivind Fylkesnes
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

Modern system on chip is becoming more complex, and as a result, harder to design, test,
and verify. Consequently, the bus structure, connecting the various components in systems
on chips, is more complex. This thesis aims to aid the development and verification of
bus structures by extract information on the complex bus structures and present it in a
beneficial and readily available way. The information is to be extracted directly from the
RTL design, representing the actual implementation instead of an abstract representation
from the documentation. Furthermore, the solution should be as simple and automated as
possible to lessen the burden of implementing the solution in both new and existing designs.
All this allows the users to explore and validate the bus system and the modules connected
to the bus system, improving the workflow.

The thesis’ solution is to exploit the simulation engine to extract bus-related information
during simulation. The solution introduces small snippets of extraction code to enhance the
already existing design. During simulation, the extraction code collects the information and
exports it. A separate processing tool imports the extracted information and processes it into
more user-friendly data. The user can then explore the bus structure and generate diagrams
depicting connections and relationships between modules in the system.

A case study was performed on the solution, implementing it on a complex bus system
provided by Nordic Semiconductor. The results are promising, as the solution can extract
information quickly and easily. The extracted information matches the available documenta-
tion for the system as well. The solution requires access to the modules connected to the bus
system and the bus system itself and is best suited for systems with the source code available
for the user. The solution has the potential for expansion with additional functionality and
types of information it can extract.

v

Sammendrag

Moderne system on chip blir mer og mer kompliserte, og av den grunn, vanskeligere å designe,
teste, og verifisere for. En konsekvens av dette er at busstrukturene som kobler de forskjellige
komponentene i chipen sammen har også blitt mer komplisert. Formålet med avhandlingen
er å ekstrahere informasjon rundt komplekse buss strukturer og presentere det på en nyttig og
lett tilgjengelig måte. Informasjonen hentes direkte fra RTL design, noe som representerer den
faktiske implementasjonen framfor en abstrakt representasjon hentet fra dokumentasjonen.
Dessuten skal løsningen være enkel og automatisk slik at det er mindre arbeid å iverksette
løsningen i både nye og eksisterende design. Alt dette lar brukeren utforske og validere
bussystem og moduler koblet til bussystemene, noe som forbedrer arbeidsflyten.

Avhandlingens løsning er å utnytte simuleringsmotoren for å hente ut bussrelatert in-
formasjon under simulasjon. Løsningen oppnår dette ved å introdusere små kodebiter for å
gjennomføre uthenting av informasjon i designet. Under simulasjon vil koden samle sammen
informasjonen og eksportere den. Et separat verktøy importerer denne informasjonen og
prosesserer den til mer brukervennlig data. Brukeren kan da utforske bussystemet og generere
diagram som beskriver koblinger og forhold mellom moduler i systemet.

En casestudie ble gjennomført, hvor løsningen ble implementert i et kompleks bussystem
fra Nordic Semiconductor. Resultatene er lovende, hvor løsningen kan hente ut informasjon
raskt og enkelt. Den ekstraherte informasjonen stemmer godt overens med den tilgjengelige
dokumentasjonen for systemet. Denne løsningen krever tilgang til modulene som er koblet
til bussen, samt bussystemet selv, og passer dermed best for systemer med tilgjengelig
kildekode. Løsningen har også potensialet for utvidelse, både for funksjonalitet og hvilken
type informasjon som er ekstrahert.

vii

Preface

This thesis was written in the spring of 2021 with no preliminary work in collaboration
with Nordic Semiconductor, who provided the thesis with access to their bus systems and
designs initially developed for their products. Throughout the thesis, it became clear that the
potential for this thesis was more than what could be handled by one person over a semester.
The most prominent issue is the case studies, whereas the thesis only considers a single case.
The idea was to use an open-source SoC as additional cases, but there were no available
open-source SoC to use. With little time left, no additional cases could be presented that
would bring value to the thesis. The author has made an effort to describe potential features,
additions, and changes in the future works chapter.

The author would like to thank Per Gunnar Kjeldsberg from the Norwegian University
of Science and Technology for acting as supervisor for the thesis and supporting the writing
of the thesis. The author would also like to thank Berend Dekens and Eivind Fylkesnes from
Nordic Semiconductor for guidance and support in developing the solution presented in this
thesis.

ix

Contents

Abstract v

Sammendrag vii

Preface ix

List of Abbreviations xvii

1 Introduction 1
1.1 Objectives . 2
1.2 Scope and Limitations . 2
1.3 Main Contributions . 3
1.4 Structure of the Thesis . 3

2 Background 5
2.1 Busses . 5
2.2 AMBA . 10
2.3 SystemVerilog . 11
2.4 Simulations . 15
2.5 Parsing . 19
2.6 Related Work . 19

3 Discussion of Potential Solutions 21
3.1 What Information Should Be Extracted . 21
3.2 Solutions . 25

3.2.1 Parsing of HDL Code . 26
3.2.2 Netlist Signal Tracing . 26
3.2.3 Modified Simulation Tools . 27
3.2.4 Extraction Through Simulation . 27

4 Extracting Bus Information 31
4.1 Brief Overview of the Extraction Solution . 32
4.2 Implementing the Extraction Code in Original Modules 35
4.3 Extraction Macros for Reading & Writing to Busses 40

4.3.1 Sequence of Operations . 41
4.3.2 Write Operations . 42
4.3.3 Read Operations . 44
4.3.4 Relaying of Signals . 45

4.4 Extraction Macros for Interconnecting Modules 47
4.5 Exporting the Extracted Information . 50

xi

xii CONTENTS

5 Processing Bus Information 53
5.1 Brief Overview of the Processing Solution . 53
5.2 Using the Processing Tool . 54
5.3 Importing Extracted Information . 58
5.4 Processing . 59

5.4.1 Obtaining a List of Modules . 60
5.4.2 Obtaining a List of Connections Between Modules 60
5.4.3 Obtaining a List of Masters and Slaves 61

5.5 Visualisation . 65

6 Case Study - System from Nordic Semiconductor 69

7 Future Works 75

8 Conclusion 77

A Extraction Source Code 79

B Processing Tool Source Code 85

Bibliography 103

List of Figures

2.1 An abstract example of a system that uses a bus for communication (left), and
one that does not (right). 6

2.2 Example of a centralised bus implementation. 6
2.3 Example of a distributed bus implementation. 7
2.4 Example of several busses connected by bridges. 8
2.5 Example of an AHB matrix bus system, taken from [1] 8
2.6 A bus split into data-, address-, and control bus, which is further split into

read and write busses. 9
2.7 Example of an AMBA bus system with an AHB and APB connected via a

bridge. 10
2.8 Example of simulation time being much slower than real time. 16
2.9 All event regions in a single simulation time unit, taken from [2]. 17
2.10 Example of how events in the active region are handled. 18
2.11 Simple example of parsing data into a data structure using a set of rules. . . 19

3.1 Example of connection information from a simple bus structure. 22
3.2 Example of connection information on a bridge between two simple bus struc-

tures. 22
3.3 Example of module-related information from a simple bus structure. 23
3.4 Example of bus related information from a simple bus structure. 23
3.5 Example of interconnection information from a simple bus structure that con-

sists of a matrix. 24
3.6 Example of address map information, where only Module B can access a

specific part of Memory Module C. 25
3.7 Extraction code is placed in design files, and produces bus information through

simulations. 28
3.8 The flow of the split solution, where one part handles extraction and the other

handles the processing. 29

4.1 Example of a stimulus signal on a bus causing two of the modules to respond. 32
4.2 A bus with a processor and a couple of RAM modules. 32
4.3 A bus with a processor and a couple of RAM modules, organised in files. . . . 33
4.4 The bus system from Figure 4.3, with extraction code implemented into the

modules. 34
4.5 The bus system from Figure 4.4 during simulation. 34
4.6 Simple diagram of a interconnecting module, with two masters and two slaves

connected to it. 36
4.7 Sequence of operations during extraction, where each type of operation is

assigned to a specific delta-cycle. 41

xiii

xiv LIST OF FIGURES

4.8 The signal is relayed across the bridge by associating the input value with the
output value. 46

5.1 The interface of the processing tool when opened. 54
5.2 List of available commands for the processing tool. 54
5.3 Example of the processing tool importing a file at startup. 55
5.4 Example of the processing tool importing a file. 55
5.5 Example of the listcon command, listing all connections in the bus structure. 56
5.6 Example of a connection diagram generated from extracted data using the

gencon command. 57
5.7 Example of a master-slave diagram generated from extracted data using the

genmas command. 58
5.8 Example of two nodes connected by an edge. 65

6.1 Block diagram of the application core of the nRF5340 Bluetooth SoC, taken
from [3] . 70

6.2 The resulting block diagram showing connections between masters and slaves
for the Nordic Semiconductor subsystem. 73

Source code

2.1 An initial procedure block. 11
2.2 Example of an delay of 10 time units. 11
2.3 An initial block with a fork-join construct. 12
2.4 An initial block with a fork-join construct containing two process that run

concurrently. 12
2.5 Example of force and release statements . 13
2.6 Example of the $display task. 13
2.7 Example of the $display task with format specification. 13
2.8 Example of a macro using ‘define . 14
2.9 Example of a macro using ‘define and an argument list 15
2.10 A nonblocking assignment that can cause an update event. 15
4.1 Template for where to place extraction code in an arbitrary module. 35
4.2 Example of a interconnect-matrix, defining which port is connected to each

other. 37
4.3 Example of extraction code placed in an interconnecting module. 38
4.4 Example of extraction code placed in a master module. 38
4.5 Example of extraction code, where a signal is relayed across a bridge module. 39
4.6 Function for getting a unique integer value. 40
4.7 Macro for writing an value to a data bus. 42
4.8 Macro for releasing a data bus after a force assignment. 43
4.9 Collection of force, read, and release operations for a single data bus. 43
4.10 Collection of force, read, and release operations for an array of data busses. . 44
4.11 Macro for reading a data bus and exporting the information. 44
4.12 Macro for reading an array of data busses and exporting the information. . . 45
4.13 Macro for relaying a signal across a module by associating the value on the

data bus going in and out. 46
4.14 Macro for relaying signasl across a module by associating the value on the data

bus arrays going in and out. 47
4.15 Macro for mapping out the connections between bus arrays. 48
4.16 Macro for marking whether the bus is intended for masters or slaves. 49
4.17 Macro for marking whether the array of busses are intended for masters or

slaves. 49
4.18 Template for structuring data points from extraction processes. 50
4.19 Macro for writing a data point to the standard output. Accepts up to two

values. 51
4.20 Macro for writing a data point to the standard output. Accepts a value and a

string. 51
5.1 Function for converting a string into a data point. 59
5.2 Function for obtaining a list of modules from raw data. 60

xv

xvi SOURCE CODE

5.3 Function for obtaining a list of connection between modules from raw data. . 61
5.4 An excerpt from the Bus class detailing the values stored in the class. 61
5.5 First step of get_master_list: Obtain a list of interconnecting modules. . . . 62
5.6 Second step of get_master_list: Obtain information produced by intercon-

necting modules and relays. 63
5.7 Third step of get_master_list: Group values from relays modules with the

interconnecting ports. 63
5.8 Fourth step of get_master_list: Determine which masters and slaves are

connected to the busses. 64
5.9 Fifth step of get_master_list: Determine which slave is connected to which

master. 64
5.10 Function for generating a diagram of modules and connection between them. 66
5.11 Function for generating a diagram of masters, slaves, and their relationships. 67
6.1 The extraction code applied to AHB_multi_layer_top.sv 71
6.2 The extraction code applied to cpu_top.sv . 71
6.3 The extraction code applied to subsystem_top.sv 72
6.4 The extraction code applied to AHB_bridge_top.sv 72
A.1 bus_info_extract.sv . 84
B.1 bus_tool.py . 92
B.2 bus_info_processor.py . 99
B.3 bus_info_parser.py . 101
B.4 datapoint.py . 102

List of Abbreviations

ACE AXI Coherency Extensions

AHB Advanced High Performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

API Application Programming Interface

ASB Advanced System Bus

AXI Advanced eXtensible Interface

CHI Coherent Hub Interface

CPU Central Processing Unit

DMA Direct Memory Access

HDL Hardware Description Language

IP Semiconductor Intellectual Property

NBA Nonblocking Assignment

PDF Portable Document Format

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RTL Register-transfer Level

SoC System on Chip

VHDL VHSIC Hardware Description Language

VLN Virtual Logic Netlist

XML Extensible Markup Language

xvii

Chapter 1

Introduction

With the increasing popularity of system on chip (SoC), we see more and more modules
interconnected in complicated structures. Often these connections are made using busses;
They allow data and signals to transfer between modules by having a single connection
running between them. The modules have to agree on when and who can use the bus.
The benefit, however, is a reduction of wires running between the ever-increasing amount of
modules in a system, compared to having individual point-to-point connections [4].

A bus system design usually starts as a specification describing how the different modules
should communicate at a relatively high abstraction level. The bus system follows these
descriptions to ensure that it behaves correctly. Unfortunately, one specification does not
mean just one possible solution; One can have systems that behave the same but are entirely
different. Consequently, anyone who wants a more detailed overview of a bus system must
review code and simulation reports to piece this information together. With increasingly
large projects, the effort necessary to obtain this information escalates with the size of the
system. [4, 5, 6].

The fact that there are many people involved in the development of systems amplifies the
problem. With extensive and complicated systems, the teams developing them must be larger
than ever. Most systems require not only a large team but also people from various disciplines
as well. Everyone contributes with their share, translating a description of intended behaviour
into an implementation, making it hard to accurately view the bus system’s state.

A simple solution could be to manually review the design and extract information around
the bus system. The downside of this is that it is costly, slow, and prone to human error.
A far more efficient and attractive solution would be to have this task automated. Having a
tool at one’s disposal to extract the needed information directly from the design could be a
great asset to any workflow.

1

2 CHAPTER 1. INTRODUCTION

1.1 Objectives
This thesis aims to solve the problem of getting a good grasp of complex bus structures from
intricate design. In other words, it needs a way of both acquiring and present information
related to bus systems that is beneficial to the user. A good example of bus-related informa-
tion is the structure of the bus systems, describing which modules can communicate through
the bus. This information can, in turn, support the development of the design and evaluate
the busses themselves.

The problem presents several issues that a potential solution must address. One issue
is obtaining the information related to busses; The potential solution needs a reliable way
of extracting the desired information from the intricate designs. It is also essential that
the extraction is universal; The solution should be applicable for different designs without
significant changes to the solution or the design. What specific information will be of interest
to extract needs to be defined as well.

Depending on the extraction solution, there might be a need to process the extracted
information as well. There can be various reasons for it: there could be significant amounts
of unorganised information, it could be in a non-readable state, and so on. Naturally, this is
an issue that is highly dependant on the rest of the solution but is worth considering.

1.2 Scope and Limitations
This thesis will present a solution that addresses the issues described in Section 1.1. The goal
is to thoroughly describe how each issue can be solved, with the collective effort recognised as
the complete solution. Since there are no known previous attempts at solving this problem,
arguing for the solution through a comparison would be difficult. This thesis will perform
case studies as an alternative, pitting the solution against various complex bus structures.

A designer creating hardware typically uses hardware description languages (HDLs).
There are several languages available, with VHDL and Verilog as the dominant ones. The
bus systems used in the case studies, and the system they are implemented in, have been
written in SystemVerilog. As such, the thesis will use SystemVerilog as its HDL. Besides,
SystemVerilog brings many enhancements to the Verilog language, which can be beneficial to
the solution [7, 2].

There are many different types of busses available for the designer, with some more
popular than others. As such, this thesis will focus on the AMBA bus; This is an open-source
communication standard widely used in the industry [8]. It will also support the thesis to have
a consistent reference point throughout the solution. Even though this thesis uses a specific
communication standard, the general solution should be translatable to other standards.

1.3. MAIN CONTRIBUTIONS 3

1.3 Main Contributions
• Presenting possible solutions for extracting information related to bus systems from

RTL design.

• Developed a solution for extracting information related to the bus system by exploiting
the simulation engine.

• Developed a solution for processing the extracted data and visualise it through auto-
matically generated diagrams.

• Preformed a case study of the proposed solution using complex bus systems provided
by Nordic Semiconductor.

1.4 Structure of the Thesis
Chapter 2 introduces the various background theory and information recommended for un-
derstanding the thesis, including related works. Chapter 3 discusses what information would
be beneficial to extract, possible solutions for doing so, and what solution this thesis proposes.
Chapter 4 presents the first half of the solution: extracting information from RTL. Similarly,
Chapter 5 presents the other half of the solution: processing and exploring the extracted data.
Chapter 6 performs a case study, evaluating the solution against more complex bus structures
in a system provided by Nordic Semiconductor. Chapter 7 describes possible improvements
and addition that can be made to the solution in future works. Finally, Chapter 8 presents
the conclusion to the thesis.

Appendix A contains the source code for the extraction solution described in Chapter 4.
Similarly, Appendix B contains the source code for the processing tool described in Chapter 5.

Chapter 2

Background

This chapter describes the theory behind the various concepts and tools that the thesis
utilises. The aim is to provide one with the necessary background for understanding the rest
of the thesis.

Section 2.1 describes the theory behind busses and typical components in busses. Sec-
tion 2.2 describes the AMBA standard and its various protocols for bus communication.
Having an overview of the AMBA standard is helpful for the cases study in Chapter 6, which
uses AMBA busses. Section 2.3 describes the SystemVerilog language and specific properties
in detail, which are extensively used in the thesis. Section 2.4 summarises the theory behind
hardware simulation. The proposed solution of the thesis utilises key features of hardware
simulation where a thorough understanding is helpful. Finally, section 2.6 presents various
papers describing related works to the thesis.

2.1 Busses

Busses are the most used communication type between components on-chip, such as pro-
cessors, memory modules, and hardware accelerators. It is defined by having all components
connect to the same communication system. Thus, one can consider the communication
system a shared resource that components can reserve for communicating with other compon-
ents. From an abstract view, one can consider a single collection of wires that all components
take turn using. The benefit of this approach is the significant reduction in wires needed
to establish communication between many components. The alternative would be to have
a specific connection between each component that should communicate. Figure 2.1 shows
both cases, where it is clear that the system not using a bus requires many more connections.
In addition, a bus system is easy to expand, where new components only have to connect to
the existing bus system, whereas non-bus systems need a connection to each component it
wants to talk to [4].

One typically categorise each component connected to a bus as a master or a slave.
Master components are the ones that initiate communication with other modules, where it
typically wants to supplement or request information. A processor is an excellent example
of components that, in most cases, are categorised as a master. The role of the slave, on the
other hand, is to do whatever the master wants it to do. An example of a slave could be a
memory component, where a master can request data residing in the memory. There are also
cases where a component can be considered both a master and a slave. A good example is a
DMA; It requires instructions to know what data to fetch, hence a slave, but also be able to
initiate communication with the memory, hence a master [4].

5

6 CHAPTER 2. BACKGROUND

Figure 2.1: An abstract example of a system that uses a bus for communication (left), and
one that does not (right).

The idea of all components connecting to the same wires is more of an abstract represent-
ation of a bus. Such a solution would rely heavily on the components to not interrupt each
other. In practice, a bus system will consist of several other components to take care of the
access and arbitration; Two prominent ones are the arbiter and decoder.

The arbiters job is to allocate access to the bus for masters. When multiple masters
request access simultaneously, it is up to the arbiter to mediate. An arbiter typically follows
a scheme for determining access, such as a priority scheme where one master can have a higher
priority than others. The decoder’s job is to determine which slave the master is trying to
communicate with; This is typically a case of translating the destination address from the
master and picking the slave corresponding to that address [4].

Figure 2.2 shows a simple bus system that uses an arbiter and a decoder. Bus systems
that have a single pair of arbiter and decoder that supports all components, as in Figure 2.2, is
called a centralised implementation. An alternative is a distributed implementation, shown in
Figure 2.3, where each component has an arbiter or decoder; The advantage is that modules
need fewer wires going in and out, but it requires more logic to implement.

Figure 2.2: Example of a centralised bus implementation.

2.1. BUSSES 7

Figure 2.3: Example of a distributed bus implementation.

At its simplest, a bus system can be a single bus connected to all components. Only a
single master can use the bus, and thus all other components must wait their turn. If there is
little traffic on the bus or requests are evenly distributed, such a system is probably enough.
In other cases, one can have components that need frequent access to specific slaves or have
long periods of communications at the time. It can be beneficial to move those components
to their own busses, freeing up the original bus to work in parallel [4].

Consider the case where one have several busses, and components on different busses
need to communicate. The solution is to use an intermediate component called a bridge.
Its purpose is to translate and transmit communication between different busses. Figure 2.4
shows an example where multiple busses are connected using bridges, also referred to as
a hierarchical topology. A great feature of using bridges is that busses based on different
protocols and implementations can communicate. For example, it is not unusual to have
components residing in different domains with different frequencies or voltages. Another
example is when specific components use a power-saving bus, while others use a bandwidth-
optimised one. A bridge allows one to translate the communication from one domain or
protocol to another [4].

An alternative to structure the bus system hierarchically, typically in cases that desire
high bandwidth, is the matrix topology. In short, the components connects to multiple
busses that run in parallel. Access to busses is allocated as needed, allowing communication
to occur in parallel [4, 1]. Figure 2.5 shows an example using an AHB matrix (from the
AMBA protocol [8]). The matrix topology allows both processors to access various slaves
simultaneously since the bus system can allocate them to different busses.

There are nowadays many bus protocols defining the properties and operations of a bus
system. There can be many different properties defined in a protocol; The width of the
busses, how data transfer, and how communication is initiated and performed are a few
examples. There are many different bus protocols available, with some more popular than
other [9]. Some examples are the Wishbone bus made by Silicore Corporation [10] and the
various AMBA standards made by ARM [8].

8 CHAPTER 2. BACKGROUND

Figure 2.4: Example of several busses connected by bridges.

Figure 2.5: Example of an AHB matrix bus system, taken from [1]

2.1. BUSSES 9

While one can consider the bus as a single collection of wires, it is not unusual to split
the bus into three smaller sub-busses, each with its purpose. They are typically named data-,
address-, and control bus, as depicted in Figure 2.6. The data bus purpose is to transmit
data values between components. The address bus purpose is to transmit the destination of
the data values. Finally, the control bus contains all signals that do not fit with the other
two sub-busses. The protocol typically defines what the control bus contains, for instance,
signals for requests from masters and acknowledgement from slaves. It is not unusual for
protocols to split the data- and address bus further into individual read- and write busses,
improving concurrency [4]; This is also shown in Figure 2.6.

Figure 2.6: A bus split into data-, address-, and control bus, which is further split into read
and write busses.

10 CHAPTER 2. BACKGROUND

2.2 AMBA
AMBA [8], or Advanced Microcontroller Bus Architecture, is a widely used, open, on-chip
communication standard. Arm developed the first version of the standard in 1995 and has
since had several iterations with AMBA 5 as its newest. The core idea behind AMBA is
reusability, addressing the problem of using ad hoc solutions for communication between
modules. Utilising a modular design with flexible interfaces, AMBA helps reducing design
time and allows the design to be more portable [11, 12].

The AMBA 2.0 standard introduces the AHB (Advanced high-performance bus) and APB
(Advanced peripheral bus) protocols. AHB is designed for high-performance modules, acting
as the backbone of the bus system, while APB is intended for low-power peripherals. The
system can save power by placing peripherals on an APB and use bridges for communication
with the more high-performing AHBs [4, 13]. Figure 2.7 shows an example of an AHB and
APB connected through a bridge.

Figure 2.7: Example of an AMBA bus system with an AHB and APB connected via a bridge.

A variant on the AHB protocol is the Multi-layer AHB [14]. It is based on the AHB
protocol and implements a matrix for concurrent communication; This allows for multiple
transactions to occur concurrently, as described in Section 2.1 and Figure 2.5.

2.3. SYSTEMVERILOG 11

2.3 SystemVerilog
This thesis uses the SystemVerilog language to describe hardware. Since it contains many
valuable features used heavily in the thesis, it will be beneficial to explore these features in
detail. SystemVerilog is an extension of the Verilog language. Its purpose is to expand on
the language and add several valuable features, such as improved verification and assertions.
The Accellera Standards Organization first developed SystemVerilog before IEEE Standards
Association adopted it [7].

It is important to note that SystemVerilog, along with Verilog, is a language intended to
describe digital circuits and systems. They differ from ordinary programming languages in a
few aspects, but the most noteworthy is the execution of the code. Traditional languages, such
as C, execute one statement at a time, while Verilog and SystemVerilog allow for statements
to execute in parallel. This sense of concurrency in HDL is to emulate hardware behaviour,
which is concurrent by nature. However, note that code within blocks (e.g., initial, always) are
still executed sequentially. Since SystemVerilog and Verilog have been made with hardware
in mind, it is less suitable for more traditional, high-level task associated with languages such
as C [15, 16].

Initial procedure

The initial construct declares a procedure that runs at the start of the simulation and only
runs once. A initial procedure can last beyond the zero time slot through delays. Typically,
one would use this procedure to initialise the system and prepare for the rest of the simulation.
Listing 2.1 shows how an initial procedure block will look like; Code that should run from
the start of the simulation is placed within the block [2].

1 initial begin
2 // Code that should run at the start of the simulation, and only once.
3 end

Listing 2.1: An initial procedure block.

Delay

The delay control allows the simulation to postpone the execution of a process. It is defined
by the # symbol, followed by the delay value in simulations time units. Listing 2.2 shows an
example where an initial process is postponed by 10 time units.

1 initial begin
2 // Code executed at time 0
3 #10;
4 // Code executed at time 10
5 end

Listing 2.2: Example of an delay of 10 time units.

12 CHAPTER 2. BACKGROUND

There is a special case for delay control when the delay value is zero; This is called a
zero delay. The code after a zero delay is still executed within the same time slot, but the
simulation postpones the process by a delta cycle. In other words, the execution of the
process is postponed until other processes within the same time slot is finished executing (or
delayed themselves) [2]. Section 2.4 explains delta cycles and the benefit of zero delays in
more detail.

Fork-Join

Statements inside a block are executed sequentially by default. However, one can create
concurrent processes inside a block by the use of the fork-join constructs. As an example,
consider Listing 2.3; An initial block has, in addition to its statements, a fork-join block that
also have statements inside. The statements outside of the fork-join will execute sequentially,
while the statements inside the fork-join will execute concurrently.

1 initial begin
2 // Statements that run sequentially
3 fork
4 // Statements that run concurrently
5 join
6 end

Listing 2.3: An initial block with a fork-join construct.

It is possible to take it even further and create concurrent processes inside the fork-join
blocks, whose statements run sequentially. Listing 2.4 shows an example where two separate
processes are executed concurrently inside the fork-join block. The statement run sequentially
inside the process, but concurrently with the other process [2].

1 initial begin
2 // Statements that run sequentially
3 fork
4 begin : process_1
5 // Statements that run sequentially, but concurrently with process_2
6 end
7 begin : process_2
8 // Statements that run sequentially, but concurrently with process_1
9 end

10 join
11 end

Listing 2.4: An initial block with a fork-join construct containing two process that run
concurrently.

2.3. SYSTEMVERILOG 13

Force and Release

The force assignment is a type of continuous procedural assignment that has the special
property of overriding any value already present on variables or nets. Once a variable or
net receives a forced value, it can only obtain a new value by another force assignment.
To remove the effects of the force assignment, one has to use the statement release. Once a
variable or net is released, it will keep its assigned value until another assignment is executed.
However, should the variable or net be under the influence of another continuous assignment,
the release will cause it to revert to its original value. Listing 2.5 shows an example where a
variable var_1 is assigned a value through the force assignment, before it is released again [2].

1 force var_1= val_1;
2 // var_1 is assigned the value val_1 until it is released.
3 release var_1;

Listing 2.5: Example of force and release statements

Display

The $display task prints text and values to the standard output of the simulation, which is
typically a console or a log. It also appends a newline-character at the end of the information,
as opposed to the $write, which appends nothing. It is a pretty simple task, as one only has
to provide the information to print. Listing 2.6 shows an example of a string that is printed
to the standard output.

1 $display("This string is printed to the standard output.");

Listing 2.6: Example of the $display task.

It is possible to inject values into the string printed by the $display task. Many different
escape sequences allow one to inject various data types. Consider the example in Listing 2.7;
Using the escape sequences %s and %h, we can inject a string and a hexadecimal value into
the printed string, respectively [2].

1 logic [31:0] val_1 = 32;
2 $display("The variable %s has the value %h.", "value 1", val_1);
3 //This will print: The variable value 1 has the value 00000020.

Listing 2.7: Example of the $display task with format specification.

14 CHAPTER 2. BACKGROUND

Macro

SystemVerilog includes a variety of compiler directives to include code into existing files.
One that is of significant interest for this thesis is a text macro substitution facility called
‘define. Text is associated with a macro name, and the macro name is substituted with the
text during compilation. In other words, it behaves similar to copying and pasting code into
source files. A handy application is that one can use ‘define to associate blocks of code with a
macro name. Listing 2.8 shows an example of a macro used to display a string. We associate
the $display task with the name print_a_string, which allows us to inject the code wherever
we want by calling that macro. Note that line 7 to 9 shows how line 2 to 4 will look like
when the compiler has made the substitution.

1 `define print_a_string $display("Hello World");
2 initial begin
3 `print_a_string
4 end
5

6 //Equivalent to:
7 initial begin
8 $display("Hello World");
9 end

Listing 2.8: Example of a macro using ‘define

The text macros in SystemVerilog also has an argument feature, where the user can
substitute parts of the macro with the arguments. It is important to understand that the
argument list does not work like the argument list of a function; The arguments passed are
not a value or a pointer but text interpreted as code. Consider the example in Listing 2.9;
It shows a multi-line text macro with three arguments intended for summing two terms and
printing the sum. When calling the macro, we also provide arguments, which in our case
are two integers. Line 13 to 17 shows that the macro name is substituted with the code also
substitutes the argument names with the integer variables. In essence, macros allow the user
to create template-like code, where the user can "fill in the blanks" by passing variables and
even pieces of code as arguments [2].

2.4. SIMULATIONS 15

1 int value_1;
2 int output;
3 `define add_together(term, sum) \
4 sum = term + term; \
5 $display("The sum of %d and %d is %d", term, term, sum);
6

7 initial begin
8 value_1 = 2;
9 `add_together(value_1, output);

10 end
11

12 //Equivalent to:
13 initial begin
14 value_1 = 2;
15 output = value_1 + value_1; \
16 $display("The sum of %d and %d is %d", value_1, value_1, output);
17 end

Listing 2.9: Example of a macro using ‘define and an argument list

2.4 Simulations
Simulations are an essential tool for the verification of a design’s behaviour. It is a software
that translates design and test benches into predicted behaviour in the shape of a series of
scheduled events or processes. The simulation allows one to verify that everything works as
intended and to get a sense of the design without having to implement it as hardware [17, 18].

It is important to emphasise that it is not a hardware implementation but software
intended to simulate the hardware. In many cases, simulation is the first step of verification
during the design process, as it allows the user to make changes and get reasonably quick
feedback. In addition, simulation is limited only by the available computer resources and time;
Any design can be simulated. The downside of simulation is that it is a slow process [18].

SystemVerilog uses events and processes in its simulations. Processes are typically born
from primitives in the SystemVerilog language, such as the initial-block, and are supposed to
represent a part of the hardware. Note that all processes are concurrent, as in they execute
simultaneously. The reason for concurrency is because processes are supposed to represent
hardware, which runs concurrently by nature. Events are updates or evaluations of variables
and net values of the design. In other words, events are what happens inside processes. As an
example, consider the nonblocking assignment in Listing 2.10. The value on reg2 is assigned
to reg1. reg1 will cause an update event if its value changes due to the assignment [19, 2].

1 reg1 <= reg2;

Listing 2.10: A nonblocking assignment that can cause an update event.

16 CHAPTER 2. BACKGROUND

A vital part of simulations is the management of time. As mentioned, the processes are
supposed to run concurrently, which is impossible on a single processor. Instead, we define a
time unit called simulation time. It represents the time relative to the progress made by the
simulated hardware. As an example, consider Figure 2.8; By the time the simulation time
has reached its first nanosecond, 45 ns has already been spent in "reality" by the processor
running the simulation. With simulation time defined, we can simulate concurrency by simply
not allowing "time" to move before the simulation has handled all events that occur at that
moment [19, 2].

Figure 2.8: Example of simulation time being much slower than real time.

The easiest way of describing an event-based simulation is through a series of regions
containing the events to happen. For each time slot, the simulation software iterates through
all the events in the regions. By definition, the order events are handled inside a region is
random. Once all events have been handled, the simulator moves on to the next time slot.
Each region has its purpose, and the simulator handles them in a specific sequence, as shown
in Figure 2.9. Which region an event gets scheduled to depends on the context and what
statement it is; For instance, updates to the nonblocking assignment in Listing 2.10 would
be assigned to the NBA region. Note that the simulator can loop back into previous regions,
as events can be rescheduled [19, 2].

This thesis is only interested in two of the regions: the active region and the inactive
region. The active region contains events that are to occur immediately, while the inactive
region contains events from processes subject to a zero-delay (i.e., #0). During simulation,
events from the active region will execute until the active region is empty. Then, any
events scheduled in the inactive region is moved to the active region, leaving the inactive
region empty; This repeats until both regions are empty, moving the simulation forwards and
eventually into a new simulation time slot [19, 2].

2.4. SIMULATIONS 17

Figure 2.9: All event regions in a single simulation time unit, taken from [2].

18 CHAPTER 2. BACKGROUND

As an example, consider Figure 2.10, where the following transpire:

1 Both process A and B are in the active region. However, process B reschedules to the
inactive region.

2 Process B is now in the inactive region. Eventually, the remaining processes in the
active region, i.e., process A, finishes and the region become empty.

3 All processes in the inactive region, i.e., process B, are moved back to the active region.

4 When process B finishes, both regions will be empty, and the simulation can move on.

Figure 2.10: Example of how events in the active region are handled.

An important feature is that of rescheduling a process into the inactive queue. As
mentioned, imposing a zero-delay using #0 causes a process to become inactive. We call
it a zero delay because while we postpone the execution, it is still happening within the
simulation time unit. Doing so allows the user to pause the execution of a process, but not
to the extent of progressing simulation time. Each iteration through the events in the active
region is called a delta cycle. In other words, when using #0, we can say the process is
postponed by a delta cycle [19, 2, 18].

We have focused on the simulation theory of SystemVerilog, as this thesis uses System-
Verilog as its HDL. However, other popular languages, such as VHDL and SystemC, also
uses the process-oriented approach. Thus, we can find much of the discussed theory in other
languages in some shape or form [18].

2.5. PARSING 19

2.5 Parsing
Parsing is the act of translating regular text into more manageable data. It typically takes
the shape of a data structure, made up of bits of information extracted from the text. The
parser’s job is to determine what parts of a text, or string, is viable information and where
they fit in the data structure. The concept of parsing is simple at the surface. Data is feed
to a parsing program, typically as a sequence of characters. Following specified rules, the
parsing program analyses this data and converts it into a data structure. Figure 2.11 shows
an example of a simple parser. It uses a simple rule of looking for keywords in the data,
which is "age" and "height", and produces a data structure with the values associated with
the keywords.

Figure 2.11: Simple example of parsing data into a data structure using a set of rules.

The challenge of parsing lies in determining the rules, or grammar, when both data and its
associated structure becomes complex. Consider the case of text written in a human-readable
language, such as English. There is a multitude of words and combinations of words that
can be produced. They can take on a different meaning depending on context and sentences.
Deriving sensible data without a rigid structure to the text and the rules, such as looking for
specific keywords and sentence structure, would be a difficult task at best. Similar arguments
can be made for parsing text written in computer languages [20].

2.6 Related Work
Safaan et al. [21] proposed two ways of obtaining a connectivity specification. The goal was
to provide information to generate connectivity assertions, which could be used for formal
verification to validate connections in a system-on-chip. The first approach is to use an
IP-XACT library. IP-XACT libraries are documentation for describing IPs, written in XML
format. The idea is to compile the library with an XML compiler, then traverse and extract
the connectivity specification. However, this approach requires that the design is complete
and fully documented or have an older version of the design with the documentation available.

The second approach Safaan et al. proposes is to consider the synthesised netlist of the
design. It retrieves the design hierarchy and uses signal tracing between ports to map out the
connectivity specification. Since it uses the design files directly, any updates would require
new processing. A case study performed with a black-boxed processor showed promising
results. There were, however, cases of mismatch between the IP-XACT library and its actual

20 CHAPTER 2. BACKGROUND

implementation. Also, the extraction program for the netlist extraction should be tested with
more designs.

Rachamalla et al. [22] explores the virtual logic netlist (VLN) concept. A VLN acts as a
skeleton version of a regular netlist because it preserves the structural hierarchy of the design
but does not contain any of the logic. The purpose of using a VLN is that it avoids the
need to synthesising the RTL design before it can be analysed. Using an extraction engine,
it extracts a VLN from RTL code in less time than synthesising it. Once the user obtains the
VLN, the user can exploit existing back-end tools to analyse the netlist. The solutions were
evaluated on several cores of a processor and achieved an error rate of less than 2%. It is
worth mentioning that there are limits to what this method can analyse. The user only has
the design’s structural information; Analysis of metrics such as power consumption would
not be feasible.

Große et al. [23] developed a solution for visualising designs written in SystemC code. The
tool’s motivation is to help the process of understanding and debugging of designs through
visualisation, especially in the early stages of development. Their solution’s key feature is the
ability to extract structural information of a design through a modified SystemC simulation
kernel. The tool loads the information into a database that it can use for various operations,
such as debug features and custom design rule checkers. The tool also provides a way of
including source code references to the SystemC design. The paper also described case
studies on a scalable arbiter design and a RISC CPU.

Hosny and Baher [24] also developed a prototype for visualising design similar to Große
et al., but for code written in SystemVerilog. The motivation is to visualise the design
for easier debugging processes and to ease code maintainability. The solution divides its
concept into three stages: extracting data from SystemVerilog code, visualising the data, and
query after specific information. A design crawler handles the extraction, written in C and
coupled with a SystemVerilog API. It crawls through the design and extracts the desired
data. The web application handles the visualisation, showing the design as a mind map. The
user can also manipulate the visualisation. The query features allow the user to search for
specific information, such as finding continuous assignments from the SystemVerilog code.
The prototype, at the moment, can handle basic SystemVerilog constructs, with plans in the
future for adding assertions, coverage, and support for VHDL.

These papers all have the common aim of extracting an overview of the hierarchical
relations between components from a design. The difference is how they achieve this, and to
some degree, its purpose. While this thesis goal is, to some extent, different, the idea is the
same: figure out how different components relate to one another. Another way of describing
it is that the thesis is not looking for hierarchical relations but information related to bus
systems. A point to be made is that while they explore different approaches, few provide
thorough studies and experiments to validate the solution. Therefore, one can consider this
problem to be at an experimental stage, where a good solution cannot be entirely determined
yet. The goal of this thesis is to provide one of these solutions.

Chapter 3

Discussion of Potential Solutions

Section 1.1 presented the problem that this thesis is trying to solve: extracting information
about bus systems from intricate designs. It described various issues that relate to the
problem that one should consider when developing a solution. In summary, it is what
information one would want to obtain, how to do so, and what to do with the obtained
information. In some sense, these three issues make up the core of the problem this thesis is
trying to solve. This chapter aims to discuss these issues and potential solutions that address
these issues, along with the solution chosen for this thesis.

3.1 What Information Should Be Extracted

The first issue the thesis addresses is what information should a potential solution extract.
A thorough definition of the various types of information that would be of interest will help
define a potential solution. The goal of a solution is, after all, to deliver a good overview
of the bus system and its various properties; One would want to extract the information
which delivers that. This thesis has determined what information is of value by studying bus
system theory and conversations with designers at Nordic Semiconductors. Of course, what is
of interest might differ between companies and their designers, but this section should cover
a lot of it.

Ideally, a potential solution should be able to obtain all information presented in this
section, or at least have the possibility to do so later. However, as this thesis has limited
time and resources, it can not cover everything presented in this section. That which is left
out is considered for future works and improvements. The information that is of interest is
as follows:

Connection between modules

The first type of information to be considered is connections between modules and busses.
One of the defining features of a bus structure is that many modules are connected to the
bus in order to communicate with one another. Therefore, having a good overview of these
connections are essential in managing complex bus structures. Figure 3.1 shows an example
that lists the connections from a simple bus structure.

One can further expand on the idea and include another component often used with
busses: bridges. As mentioned in Section 2.1, bridges connect two separate busses, allowing
modules on one bus to reach other modules on other busses. Understanding which bus
connects to which bus will help determine the reach a module has. Figure 3.2 shows a simple
example of this, where a bridge is connecting two busses.

21

22 CHAPTER 3. DISCUSSION OF POTENTIAL SOLUTIONS

Figure 3.1: Example of connection information from a simple bus structure.

Figure 3.2: Example of connection information on a bridge between two simple bus structures.

Module Properties

The next type of information of interest is the modules themselves. A module is a collective
term and can be everything from CPU’s and RAM’s to tailored hardware. The types and
amounts of information that a solution can extract vary widely as well. This thesis deems it
beneficial to mainly include that which impacts the bus system, such as whether the module
is a master or a slave. Other information unrelated to the bus system is ignored to better
focus on the topic at hand.

There are two pieces of information related to modules that would be useful in the context
of bus systems. The first one is the name of the module. It allows one to identify the module
and, in most cases, help to describe its purpose. For instance, a module called "RAM_1"
is almost certainly a memory module consisting of random-access memory. Figure 3.1 used
names to identify modules, such as "Module A" and "Module C".

3.1. WHAT INFORMATION SHOULD BE EXTRACTED 23

The second module-related information of interest is whether it is a master, a slave, or
both. As mentioned in Section 2.1, one can label modules as masters and slaves, based on
whether they can request a data transfer or receive such a request. For example, Figure 3.3
shows a case where both name and type is retrieved from a simple bus structure, consisting
of a CPU and a RAM module.

Figure 3.3: Example of module-related information from a simple bus structure.

Bus Properties

It will be beneficial to include information surrounding the busses themselves; This is inform-
ation that describes the bus wires, such as the bus names and what type of protocol they
follow. A bus can also be referenced by different names, depending on the module. Knowing
which names a bus is referred to can be beneficial in identifying them, especially in a system
with multiple busses. One can also consider properties that can vary between instances of a
bus protocol, such as data- and address width. Figure 3.4 shows an example of a bus, where
the modules have different names for the bus.

Figure 3.4: Example of bus related information from a simple bus structure.

24 CHAPTER 3. DISCUSSION OF POTENTIAL SOLUTIONS

Including this type of information might be considered excessive considering that the
information should be readily available to the designer. However, it has its merits in the
broader picture, supporting other information types in creating a complete overview; This
benefit is even more apparent in a more complex system that utilises several busses.

Matrices and Interconnection

As one explores more complicated bus protocols, one can run into the matrix topology as
described in Chapter 2.1. In this topology, which bus that transfer data between modules can
change depending on the bus system’s current situation. When a master needs a connection
to a slave, the bus systems allocate an available bus. In that sense, it does not have a
permanent connection but is "connected" nonetheless. A good example is the AHB multi-layer
bus matrix, where several busses run in parallel.

With matrices, one can end up in a situation where it appears, from a top-down view,
that everything connects to everything. While it might be the case for some systems, others
will place restrictions on which slaves a master can access. It is similar to which module
connects to which bus, as described earlier in this section. Extracting information on which
slave a master can reach would be helpful. Figure 3.5 shows an example, where a bus that
uses a matrix maps its "connections" between each master and slave. Similar arguments can
be made for interconnecting modules, which typically defines which master connects to which
slave in a bus system. Extracting this information would be beneficial for the user.

Figure 3.5: Example of interconnection information from a simple bus structure that consists
of a matrix.

3.2. SOLUTIONS 25

Address Map

Like interconnections and matrices can have restrictions on which slave a master has access
to, there may be restrictions on which address space a master can access. An example of
this could be a specific area of a memory module accessible only by the CPU. When such
restrictions are present in a bus system, it can be helpful to map them out. Figure 3.6 shows
an example of a memory module that splits its available memory into two partitions. Module
B has access to both partitions, but Module A has only access to the latter one.

Figure 3.6: Example of address map information, where only Module B can access a specific
part of Memory Module C.

3.2 Solutions

The previous section dealt with what one expects of a solution in terms of the results it would
produce; In other words, what information should it extract. Naturally, a good solution
should produce this information or at least have the possibility to do so in the future. It is
an important aspect, but hardly the only one that needs consideration. There is more to a
solution than what it can output. A good example is that the solution should be easy and
practical to use. It might go without saying that the better solution requires minimal effort to
use and understand. However, it also has another benefit to our specific situation. Complex
RTL design is seldom conceived by a single person these days. As briefly mentioned in
Chapter 1, these designs are a team effort. Consider a situation where the potential solution
requires additional code, or changes, to the RTL. One probably has to involve multiple people
to achieve this. A confusing solution could lead to a poorly implemented solution, increasing
the risk of human error.

The rest of this chapter is dedicated to present the various solutions the thesis have
considered for implementation. Most take inspirations from the related works discussed in
Chapter 2.6, angled towards the case of extracting bus-related information instead of a hier-
archical relationship between modules. Of course, they all have their flaws and advantages,
but it is the solution presented in Section 3.2.4, describing extraction through simulation,
that is implemented in this thesis.

26 CHAPTER 3. DISCUSSION OF POTENTIAL SOLUTIONS

3.2.1 Parsing of HDL Code

The first and perhaps the most obvious solutions to this thesis’s problem is that of using
parsing. The idea is to use a parser program to scan through the design source code. The
parser would locate and extract information related to the bus, and organise it into a data
structure.

Parsing programs are not dependent on a programming language. In other words, a
parsing program that parses hardware code can itself be written in a high-level language.
The solution can then benefit from all the features a high-level language brings to the table.
In our case, input data would be the HDL source code where the parser program would scan
through it methodologically. Another benefit is that it is a fairly automatic process; The
user decides which files are to parse, and the tool does the job. There was a similar approach
by Hosny and Baher [24], as shown in Chapter 2.6. They used a parser program, written
in C, to systematically scan through SystemVerilog code and extract the hierarchical design
structure. From the prototype they developed, it seemed to be a decent proposition for design
extraction.

The biggest drawback to this potential solution is the complexity of the input data. Using
HDL source code means the grammar used for parsing would also be quite complex. In
the attempt by Hosny and Baher, they tried to use a SystemVerilog API and work with
the simulator to extract the desired information. While the solution worked, it lacked
the support of more advanced language features at its current state. The issue is further
complicated because there are likely different coding conventions between different teams and
their implementations. There is likely even a different coding style and preference between
people within the same team. Taking this into consideration, developing a solution that
works for many different designs will be difficult. It is this high complexity of the parsing
grammar prevents this solution from being an optimal one.

3.2.2 Netlist Signal Tracing

Safaan et al. [21] explored the concept of using the netlist as a source for extraction of
information (besides exploring IP-XACT documentation) in Chapter 2.6. The concept is as
follows: a program extracts modules and their ports from a netlist. This netlist is synthesised
from the RTL that is of interest. Afterwards, it uses signal tracing to map out which module
is connected to which module.

As with parsing, this solution benefits from being fairly automatic. The user should only
need to provide the relevant sources of extraction, which, in our case, is the netlist of our
design. The downside of using the netlist is that it requires the user to synthesise the design
beforehand. For larger designs, this can be a time-consuming task. Considering that every
change that affects the bus system would also require one to re-synthesise the design anew is
off-putting.

Another point to be made is that the solution presented by Safaan et al. focused primarily
on connections between modules in general. While it did categorise some signals as busses, its
definition of a bus was any collection of wires with the same source- and destination module.
This thesis has a much more precise definition of busses and what information it wishes to
extract; The solution proposed by Safaan et al. will, as such, be insufficient, without some
additional functionality aimed at extracting the information types presented in Section 3.1.

3.2. SOLUTIONS 27

3.2.3 Modified Simulation Tools

Große et al. [23] brought up an interesting solution in Chapter 2.6; The idea is that a
simulation tool will, at some point, acquire and figure out a lot of the information that
they where after. The extraction does not happen from the RTL but by the simulation tools
"simulating" the RTL. The way Große et al. extracts the information is by modifying an
existing simulation kernel to provide the information at initialisation.

A significant advantage of this solution is that an existing tool can handle a big part of
the work. It removes some of the complexity that has troubled previous potential solutions
as well. As the extraction happens upon initialisation of the simulation tool, time spent
extracting can be reduced by finishing the simulation after initialisation.

There are, however, a downside to modifying a simulation tool: one needs to have a
good knowledge of how the tool operates and obtains the information we want. To further
complicate things, there might be difficulties in adapting Große et al. solution to fit the thesis’
more specific bus-related information. For instance, Große et al. had a problem obtaining the
names on ports and resorted to parsing the source files for names. Similar problems would
occur in our case as well, where the names of busses would be beneficial to obtain.

3.2.4 Extraction Through Simulation

The final solution, and the one implemented in this thesis, is extraction through hardware
simulation. It is inspired by the solution presented by Große et al. [23], but with a significant
difference: one does not alter the simulation tool itself. Instead, the solution introduces small
code snippets in strategic places in the code describing the RTL. During simulation, these
code snippets perform necessary operations and extract the relevant information. In some
sense, one could say we are enhancing the RTL with extraction code. Figure 3.7 visualises this
solution, where design files with extraction code are simulated and produce information. Note
that the solution ignore other simulation results, as they do not contribute to the solution.

A common issue amongst the alternative solutions in the previous solutions was their
complexity. For instance, the parsing solution in Section 3.2.1 required a thorough under-
standing of the HDL syntax to make the correct interpretations. The solution by extraction
through simulation reduces this complexity and removes a significant amount of the work
as the simulation tools make the necessary interpretations. Furthermore, by defining the
extraction behaviour as part of the simulation, one keeps the benefits of allocating work to
the simulation tools while avoiding the complexity of modifying the tools themselves. Another
benefit is that the solution is not bound to one specific simulation tool, making the solution
more universal.

An important characteristic of this solution is that it will only cover the part of the design
it is implemented in. In other words, it is up to the user to implement the solution where
it needs to be implemented. Such an approach is not without its flaws. Should the user
accidentally implement the solution only partially, it might, in the worst case, go unnoticed.
The resulting output would then be incomplete. On the other hand, one could argue that
this approach gives the user more control, allowing them to choose which part of a design is
covered by the solution. Ultimately, it is an issue that should be kept in mind.

28 CHAPTER 3. DISCUSSION OF POTENTIAL SOLUTIONS

Figure 3.7: Extraction code is placed in design files, and produces bus information through
simulations.

3.2. SOLUTIONS 29

The code snippets introduced into HDL uses the same language as the HDL itself. While
HDL is suitable for extraction code, more high-level functionalities, such as visualisation, will
be challenging. For that reason, this thesis chooses to split the solution in half: one part for
extraction and one part for processing and visualisation. The processing and visualisation
are better implemented as a separate tool, written in a high-level language. One needs to
take into account that the processing tool must import the extracted information as well.
Figure 3.8 shows how the extraction part uses the RTL to produce bus information; The
processing tool imports the extracted information, processes it, and produces diagrams and
analyses.

Figure 3.8: The flow of the split solution, where one part handles extraction and the other
handles the processing.

To better cover the reasoning and implementation of the solution, the details of each
part of the solution are distributed between two chapters. Chapter 4 will describe the
implementation of the extraction solution, showing how one can apply the solution to an
RTL design to extract bus-related information. Chapter 5 will describe the implementation
of the processing tool, importing the information obtained from the extraction solution, and
performing various operations on it.

Chapter 4

Extracting Bus Information

The concept of the extraction solution is not that different from a testbench. The basic
functionality of a testbench is to generate stimulus, apply it to the device under test, then
capture the response and check for correctness [16]. The thesis’ solution aims to stimulate
the RTL so that the response contains the information that the user wants to extract.
The user can then use this information to get better insight into the bus system by, for
instance, importing it into the processing tool described in Chapter 5. The issue of extracting
information then becomes a question of what stimulus must be applied to generate a response
containing this information.

One can categorise the stimuli for the solution into two types: one where one module
applies a stimulus and other modules replies, and one where the module returns internal
properties and values. Which type of stimulus to use for which type of bus-related information
is a matter of using the right tool for the job.

The first type of stimulus can also be considered a series of write- and read operations.
Since it has the advantage of readily implemented bus systems in the design, one can exploit
this structure between the modules. Typically, one module will write a signal to the bus; Any
module connected to the bus would perceive this signal and respond accordingly. Consider the
example in Figure 4.1. A signal is stimulating the bus connected to module A and B. When
these two modules register the signal on their ports, they respond accordingly. Module C is
not connected to the bus and does not respond. Using operations like this can help extract
bus-related information, such as which module connects to a specific bus.

The second type of stimulus does not rely on other modules but instead returns values and
properties that can be found inside the module. The use of SystemVerilog’s macros, explained
in Chapter 2.3, simplifies this. It plays on the template-like nature of macros, allowing the
user to use port- and variable-names directly into the extraction code without knowing its
inner workings. Functionality like this is helpful when developing a solution that different
people can use for different systems without significant modifications to the solution.

The following section will provide an overview of the solution before moving on to a more
in-depth explanation of how the solution can be implemented in Section 4.2. Afterwards,
the rest of the chapter is dedicated to explaining the extraction code and how the various
SystemVerilog macros works.

31

32 CHAPTER 4. EXTRACTING BUS INFORMATION

Figure 4.1: Example of a stimulus signal on a bus causing two of the modules to respond.

4.1 Brief Overview of the Extraction Solution
To help better understand this thesis’ solution for extracting bus information from RTL
design, we will look at a small example. It is a simple bus with three modules: a processor
acting as a master module and a pair of RAM modules acting as slaves. The bus and its
modules are depicted in Figure 4.2.

Figure 4.2: A bus with a processor and a couple of RAM modules.

The system in Figure 4.2 is more of an abstract representation of how the modules connect
to one another. When looking at it from a source code perspective, it would look more like
the diagram in Figure 4.3. The modules and bus are organised in files, written in HDL, and
often further divided into sub-modules internally. The RAM modules use the same source
code to create two separate instances of the same module. All three modules are connected
to the bus system, containing everything needed for a bus to operate.

4.1. BRIEF OVERVIEW OF THE EXTRACTION SOLUTION 33

Figure 4.3: A bus with a processor and a couple of RAM modules, organised in files.

The extraction code presented in this thesis can extract the following information:

• Which module connects to a particular bus.

• Whether a module is a master, a slave, or both.

• Which slave modules can a master reach through the bus system.

• The names of the modules and wires.

As described earlier, the solution is implemented by including snippets of extraction code
into the modules. Which modules are masters or slaves are defined in the bus system module
(i.e., bus_top.sv in Figure 4.3), along with which module a master can reach through the
bus system. It makes sense to place extraction code into the bus system to extract that
information. Further, which module is connected to the bus is defined by both the bus system
and the modules connected; This means that there should be extraction code in both the bus
module and the modules connected to the bus to extract that information. Figure 4.4 shows
the example from Figure 4.3, but now with extraction code snippets added to the modules.

Once the extraction code is in place, one can run the simulation to extract the information.
Each code snippet acts on its own, collecting the information and export it to the simulation
log; This is depicted in Figure 4.5. The example shown here is quite simple, but more
complicated bus systems follow the same implementation idea. The only real difference is
that there are more modules to consider, which means more modules that requiring snippets
of extraction code. However, the code is autonomous and does not need further intervention
once implemented, even when expanding the implementation with additional busses and
modules.

34 CHAPTER 4. EXTRACTING BUS INFORMATION

Figure 4.4: The bus system from Figure 4.3, with extraction code implemented into the
modules.

Figure 4.5: The bus system from Figure 4.4 during simulation.

4.2. IMPLEMENTING THE EXTRACTION CODE IN ORIGINAL MODULES 35

4.2 Implementing the Extraction Code in Original Modules
A single SystemVerilog file contains all extraction code necessary for extracting and support-
ing the extracting of bus-related information. The thesis includes the file as Appendix A.
Keeping the extraction code in a single file makes it easier to include it in projects, where
the alternative would be to spread it over several files. However, if the extraction code is
expanded greatly in the future, it might be necessary to expand it over multiple files. To use
the extraction code, include the file with the other source code of the RTL. The files location
is of no importance as long as the other files can reach it, but the main project folder of the
RTL is a good place to start.

The extraction code utilises mostly macros, using arguments to alter the code. For
instance, a macro designed to read a bus value will accept the instance name of the bus
as an argument, injecting it into the code where needed. Whenever the users want a specific
operation, they can call on these macros. An interesting feature of our extraction code macros
is that they are designed to run concurrently. In addition, the extraction code should run at
the beginning of the simulation. These two properties are in order to execute the extraction
as early and as fast as possible, reducing the risk of interference from other simulation tasks.
Section 4.3.1 goes into further details. When adding extraction code to a module, both
properties can be achieved easily by encapsulating the extraction code in an initial- and
fork-join block; Listing 4.1 shows this structure. Simply put, all extraction macros presented
in this chapter should be placed within an initial and fork-join blocks.

1 module m (
2 // Input and output of the module
3);
4

5 initial begin
6 fork
7 // Place extraction code here
8 join
9 end

10

11 // The rest of the module ...
12

13 endmodule

Listing 4.1: Template for where to place extraction code in an arbitrary module.

When writing a signal to wires, the solution uses SystemVerilog assignment statement
force. While it overrides any other values or assignments on the wire, it can not propagate out
of a module unless defined as an output. Since the solution uses values from force statements
for determining connections between modules, the wires written to must be defined as outputs.
Luckily, most bus systems have data busses that go both from master to slave or slave to
master; This can either be a single bi-directional data bus or a pair of data busses. The thesis
will use data busses to carry the forced signals.

36 CHAPTER 4. EXTRACTING BUS INFORMATION

Alternatively, one could use other wires present in a module. As long as the module
defines them as outputs, they would deliver similar results. The appeal of using data busses
is that they are almost guaranteed to be present in the module. In addition, data busses are
wide enough to hold a wide variety of values, which Section 4.3.2 explains why it would be
helpful. One could also implement a brand new set of wires, specifically for the extraction
code. Unfortunately, a separate connection could misrepresent the bus system. Consider
a case where a bus is disconnected, either through a bug or intentional, but the separate
wires are not; The separate connection would still represent the bus as connected, essentially
providing wrongful information.

While not shown in this section, most of the macros are disabled by default. For the
extraction code to be enabled, one has to include the definition
"ENABLE_BUS_EXTRACTION "; This can be done either directly in the SystemVerilog
files or as a simulation property. Disabling the extraction code prevents it from interfering
with the design outside of the extraction process. The extraction code also has a macro called
"FINISH_SIMULATION_EARLY " that ends the simulation after the extraction process to
reduce the simulation time. Note that the macros that extract information automatically
export it by writing to the standard output, which in most cases are the console or log. The
reasoning behind this and how the information is structured is detailed in Section 4.5.

Interconnecting Modules

The first step is to implement the extraction code in the interconnecting modules in the
bus system; These are the modules that typically contain arbiters and decoders. Essentially,
masters and slaves connect to these modules when they use the bus system, as shown in
Figure 4.6. One can derive much information from these modules, and thus it forms the basis
of the extraction implementation.

Figure 4.6: Simple diagram of a interconnecting module, with two masters and two slaves
connected to it.

4.2. IMPLEMENTING THE EXTRACTION CODE IN ORIGINAL MODULES 37

There are three operations one would want to execute from this module. The first is to
stimulate a signal on the bus wires going out to all the masters and slaves. Doing so allows one
to find out which modules connect to the bus system by evaluating which module responds to
the signals. The evaluation itself is not done in the extraction code but rather in the processing
tool covered by Chapter 5. This operation can be recognised as the "write-and-respond"
operation described at the introduction of this chapter, where the interconnecting module
writes, and masters and slaves respond.

An alternative is having the masters write to the bus and slaves respond to the signal. The
result would be pretty similar to the one achieved by the thesis solution. However, having the
masters write to the busses would require one to spread these operations between the master
modules. It would increase the designer’s risk of forgetting to implement the operation into a
module, whereas collecting all the operations in one module would help negate that risk. In
addition, the interconnecting module is most likely an IP reused in other RTLs. Placing most
of the extraction code in the interconnecting module would mean less work and complexity
when implementing the extraction code in later RTLs that reuse the interconnecting module.

The second operation to implement in the interconnecting module is to mark which port
goes to masters and which goes to slaves. The interconnecting module needs to keep track
of which port goes to what type of module to treat them correctly. That information can
be extracted from the module and used to identify what type of module is at the other end
of a port. It is important because writing and reading the bus does not determine who is a
master and who is a slave by itself.

Finally, one should implement the operation that extracts the interconnecting matrix of
the module; In other words, the information that details which slave a master can reach
through the interconnecting module. As we can see in Figure 4.6, even the simplest of bus
systems does not have a direct connection to the slaves since there is logic in-between to
mediate access between modules. In some bus systems, the interconnections are dictated by
a matrix, such as the one shown in Listing 4.2. Doing so allows one to make changes to the
interconnections with ease. The example in Listing 4.2 shows a matrix where the first master
would only connect to the first slave, but the second master can reach both.

1 int unsigned NUMBER_OF_MASTERS = 2;
2 int unsigned NUMBER_OF_SLAVES = 2;
3

4 bit CONNECTIONS [NUMBER_OF_SLAVES-1:0][NUMBER_OF_MASTERS-1:0] =
5 '{ '{1'b1, 1'b0}, '{1'b1, 1'b1} };

Listing 4.2: Example of a interconnect-matrix, defining which port is connected to each other.

While some bus systems will have stated their interconnection in a clear and concise
matrix, others might have their interconnections hard-coded into the design. A typical
example would be tool-generated bus systems, where the user provides parameters and a
tool generates the bus system from them. As such, there will not be an available matrix like
the one shown in Listing 4.2. A solution could be to infer the interconnections from the logic;
This would be a much more complicated solution, especially considering that there will not
be a practical solution translatable between different bus systems. Unfortunately, the thesis’
solution does not have functionality for handling this specific problem and are left for future
works.

38 CHAPTER 4. EXTRACTING BUS INFORMATION

In Listing 4.3 there is an example of how the extraction code could look implemented
in an interconnecting module. All three operations are declared as macros performing the
specified behaviour and are explained in detail in Section 4.4. The macro
"FORCE_AND_RELEASE_BUS_ARRAY " writes a signal on each element of an array,
which in this case is two collections of data busses going out of the module. The macro
"MARK_BUSSES_AS_MASTER" marks the data busses as busses going to a master. The
equivalent macro "MARK_BUSSES_AS_SLAVE" does the same for slaves. Finally, the
macro "INTERCONNECT_BUSSES" maps the ports that can reach each other using the
CONNECTION matrix. Note that since these macros are executing concurrently, the order
does not matter as long as they are inside the fork-join block.

1 initial begin
2 fork
3 `FORCE_AND_RELEASE_BUS_ARRAY(DataReadMasters, NUMBER_OF_MASTERS,

DATA_WIDTH, "DataReadMasters",)↪→

4 `FORCE_AND_RELEASE_BUS_ARRAY(DataWriteSlaves, NUMBER_OF_SLAVES,
DATA_WIDTH, "DataWriteSlaves",)↪→

5 `MARK_BUSSES_AS_MASTER(DataReadMasters,)
6 `MARK_BUSSES_AS_SLAVE(DataWriteSlaves,)
7 `INTERCONNECT_BUSSES(CONNECTIONS, DataWriteSlaves, DataReadMasters,

)↪→

8 join
9 end

Listing 4.3: Example of extraction code placed in an interconnecting module.

Master/Slave Modules

The implementation has the interconnecting module broadcasting signals in every direction
there is a bus. It is only natural that there are masters or slave modules to respond at
the other end. Since we put most of the extraction work in the interconnecting module,
the necessary code for master and slave modules are quite small in comparison. Essentially
the module only has to read the busses coming into the module, independent of whether
it is a master or slave. Listing 4.4 shows an example of a master module reading its data
bus "DataRead". The information that is obtained by reading the bus is exported to the
simulation log, as detailed in Section 4.3.3.

1 initial begin
2 fork
3 `READ_BUS(DataRead, "DataRead",)
4 join
5 end

Listing 4.4: Example of extraction code placed in a master module.

4.2. IMPLEMENTING THE EXTRACTION CODE IN ORIGINAL MODULES 39

Bridges and Relaying Modules

Sometimes, there will not be a direct connection between the master or slave and the
interconnecting module. A typical case would be when modules are in different domains,
and a bridge is needed to connect modules across domains. It might differ from case to
case whether one considers these modules as masters and slaves or not. Either way, it
can be helpful to bypass bridges so that signals written by the interconnecting module
can reach modules on the other side. In order to do so, the solution provides a macro
for "relaying" a signal across a module. It works on the same principle of the interconnect
macro "INTERCONNECT_BUSSES", seen in Listing 4.3, where both the input and output
ports are associated with each other, only here we mark them as relays.

Listing 4.5 shows an example where a master module connects to an interconnecting
module through a bridge. The extraction code writes a signal on the DataMasterRead bus
output, and reads the signal coming in on the DataSlaveRead input bus. The macro "RELAY "
associate the signal coming in from the interconnecting module with the signal itself wrote
out to the master or slave module. An external tool can determine a connection between
the input and output of the in-between module based on this information, as we will see
in Chapter 5.4. Section 4.3.4 explains the macro in further details. Note that the RELAY
macro does not have built-in read and write operations, so they must be declared separately,
as shown in the example.

1 module bridge (
2 // ...
3 input [31:0] DataSlaveRead,
4 output [31:0] DataMasterRead
5);
6

7 initial begin
8 fork
9 `FORCE_AND_RELEASE_BUS(DataMasterRead, "DataMasterRead",)

10 `READ_BUS(DataSlaveRead, "DataSlaveRead",)
11 `RELAY(DataSlaveRead, DataMasterRead,)
12 join
13 end
14

15 // ...
16 endmodule

Listing 4.5: Example of extraction code, where a signal is relayed across a bridge module.

40 CHAPTER 4. EXTRACTING BUS INFORMATION

Some Thoughts on the Implementation

The goal of this implementation is to be as small and simple as possible. For that reason,
only the master and slaves modules, together with the interconnecting module and bridges,
are registered. One could, alternatively, expand on the writing and reading of busses. For
instance, one could write and read at both ends, detecting that busses have been appropriately
implemented and not partially connected. It is also possible to expand on what information
to extract and what modules to include in the extraction; This would most likely take shape
as new macros introduced alongside the existing ones. However, the aim was for a simplistic
solution, and the thesis has settled for the implementation described. Chapter 7 describes
what could be improved and added to the solution in greater details.

It is also worth noticing that we place the more complex behaviour in modules that
typically end up as IPs, such as bridges and interconnecting modules; This is a deliberate
decision, as it simplifies the extraction process in future projects. A majority of the extraction
code will already be implemented when the IPs are reused in other RTLs.

4.3 Extraction Macros for Reading & Writing to Busses
Section 4.2 briefly mentioned that the way one determine which module connects to the bus is
by writing a value to that bus and check which module can read that value. For that purpose,
the extraction code has a few macros for writing to- and reading the bus. In both cases, the
macros handle any necessary operations, and the user only has to supplement with a few
arguments, like the instance-name of the bus wires. Each value that is written to a set of
bus wires is to be unique as well. By doing so, one essentially give each bus an identification
number. One can determine that a module is connected to the bus wires when the module
can read the unique value on the bus. It also lets one associate different sets of wires with
one another, as shown in Section 4.3.4 and 4.4.

The extraction code enforces unique numbers on each write operation through a function
that returns a unique integer number on every call. As one can see in Listing 4.6, it is simply
a function that increments a global integer and returns the value. Each write operation will
call on getNewForceValue to get a unique value. Since the incrementing global integer is
located in the extraction code, one will only have one instance of it, thus enforcing a unique
value on each call to getNewForceValue.

1 integer forceValue = 1;
2

3 function integer getNewForceValue();
4 return forceValue++;
5 endfunction : getNewForceValue

Listing 4.6: Function for getting a unique integer value.

4.3. EXTRACTION MACROS FOR READING & WRITING TO BUSSES 41

An alternative could be to use random values instead of an incrementing value. HDLs
such as SystemVerilog have built-in system methods to produce random values intended for
test benches and similar; This could produce a smaller and less complex code. However, this
thesis wants to enforce unique values on each write operation, and a random-method would
not provide that. The property of uniqueness is the only property we are interested in and
are vital for the extraction solution. Therefore, using the random-methods is not sufficient
for our solution. One could try to create a method that ensures uniqueness amongst the
randomly generated values, but it would likely be more complex than the solution presented
in Listing 4.6.

4.3.1 Sequence of Operations

Before one can delve into the inner workings of the read and write operations used in the
extraction code, one must first understand the execution order of these operations. In short,
we allocate specific time slots for certain operations to make sure everything executes as
intended. Note that this sequence of operations relies on the theory and properties of RTL
simulation, presented in more detail in Chapter 2.4.

One of the properties of our solution is that it should be as little interference with the
RTL as possible. The way the thesis solves that problem is by disabling the extraction code
when not extracting information. The same is true the other way around; Neither the RTL
nor other simulation tools should interfere with the extraction. Ideally, the solution should
be universal, without a great need to modify the extraction code for each case. One can not
make too many assumptions on how the RTL will behave during simulation, as it will differ
between RTLs, and even between iterations of the same RTL. Therefore, it is better to avoid
interference altogether.

The thesis’ solution is to have all read- and write operations occur in the first time unit
of the simulation. Specifically, one asserts (writes) values in the first delta-cycle, read values
in the second, and deassert values in the third cycle. Figure 4.7 visualises this, where each
operation is assigned to a specific delta-cycle time-slot. One needs a time slot for deassertion
since the implementation use the force command for assertion. The force command will
override any other assignments until deasserted using the command release. In that sense,
one could also label the last time slot as a clean-up slot.

Figure 4.7: Sequence of operations during extraction, where each type of operation is assigned
to a specific delta-cycle.

42 CHAPTER 4. EXTRACTING BUS INFORMATION

Having all write operations happen before one read ensures that it does not accidentally
read an "empty" data bus before writing to it. This solution is also quick and effective, as
one do not have to simulate the RTL over a long period. One can end the simulation after
the first time unit, as all operations happen on the three first delta cycles.

The obvious downside to this solution is that it is rigorous. Each operation, or macro,
must follow the sequence of operations. Each instance of the macros executing the operations
must happen at the beginning of the simulation. Additionally, each instance of the macros
must execute concurrently to avoid it schedule its operations at a later delta cycle.

An alternative is to not use such a strict sequence of operations within such a small time
frame. For example, one could expand the time frame to last more than a single delta cycle.
However, there is not much merit to this, as it only serves to make the extraction time longer
and increase the possibility of interference from the RTL or simulation. Another alternative
could be to avoid assigning a time slot for each operation altogether. Consequently, the
extraction code would have to implement some form of a control unit to keep track. This
unit would have to make sure modules would not read a bus that has not been written yet.
Such a unit would only bring more complexity to the solution without improving beyond
what is covered with the thesis’ original proposal to limit operations by delta cycles.

4.3.2 Write Operations

As one might guess, write operations enforces a specific value onto a set of wires. A feature
for the extraction code is that the value should override all other assignments continuously
until the extraction process finishes; This is done by utilising the force and release statements
for SystemVerilog. Any assignments by a force statements overrides other assignments and
stays that way until deassigned with the release statement.

Listing 4.7 shows the macro FORCE_VALUE_ON_BUS for forcing a specified value on
a data bus and exports the operation as information to the simulation log. It uses the instance
name of the data bus, the value written to the bus, and the module’s name as arguments.
The module name has a default value that is the hierarchical path of the module (or, more
specifically, the caller of the macro). In addition, one should release the data busses when
finished with the extraction; Listing 4.8 shows the macro RELEASE_BUS that does just
that.

1 `define FORCE_VALUE_ON_BUS(DATA_BUS, VALUE, MODULE_NAME=$sformatf("%m")) \
2 `ifdef ENABLE_BUS_EXTRACTION \
3 force DATA_BUS = VALUE; \
4 `WRITE_VALUES_TO_LOG(MODULE_NAME, `INFO_FORCE, VALUE,) \
5 `endif

Listing 4.7: Macro for writing an value to a data bus.

There are other assignment statements in the SystemVerilog language that could be used
as an alternative to force, like the assign method. However, only the force method can deliver
both a continuous and overriding assignment. Only a force method can override anything
already assigned by an force method in the SystemVerilog language. For that reason, the
thesis considers force the most reliable type of assignment for the operations it has in mind,
even though it requires one to release the bus afterwards.

4.3. EXTRACTION MACROS FOR READING & WRITING TO BUSSES 43

1 `define RELEASE_BUS(DATA_BUS) \
2 `ifdef ENABLE_BUS_EXTRACTION \
3 release DATA_BUS; \
4 `endif

Listing 4.8: Macro for releasing a data bus after a force assignment.

In Section 4.3.1 it was specified that macros must follow a strict sequence of operation
during execution. In the writing operation, we need to use the force method in the first delta
cycle and the release method in the third delta cycle. In addition, it would be beneficial to
read the bus written to in the second delta cycle, as it can verify that the written value is
present on the bus. Listing 4.9 shows an macro where all three operations, organises so that
they follow the timing defined in Section 4.3.1. Note that it uses #0 delay to reschedule to
the next delta cycle. It also uses the getNewForceValue from Listing 4.6 to get a unique value
for each write operation.

1 `define FORCE_AND_RELEASE_BUS(DATA_BUS, BUS_NAME="",
MODULE_NAME=$sformatf("%m")) \↪→

2 `ifdef ENABLE_BUS_EXTRACTION \
3 begin \
4 static int value_to_force = getNewForceValue(); \
5 `FORCE_VALUE_ON_BUS(DATA_BUS, value_to_force, MODULE_NAME) \
6 #0; \
7 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME, `INFO_READ,

DATA_BUS, BUS_NAME) \↪→

8 #0; \
9 `RELEASE_BUS(DATA_BUS) \

10 end \
11 `endif

Listing 4.9: Collection of force, read, and release operations for a single data bus.

The data busses can sometimes be arranged in an array. Since Listing 4.9 is intended for
a single data bus, one can instead use the macro FORCE_AND_RELEASE_BUS_ARRAY
from Listing 4.10. This macro is a bit more complicated, as it must take certain measures
to work around the limitations of the force statements. First of all, it needs to create a local
variable to contain the values to be written. The reason is that the force does not allow
automatic variables. The macro also needs more arguments, specifically the size of the array
and the data bus’s width, to function. Since one should use the force, read, and release
operations in all cases where one writes a value to a data bus, it makes sense to use the
macros presented in Listing 4.9 and 4.10.

44 CHAPTER 4. EXTRACTING BUS INFORMATION

1 `define FORCE_AND_RELEASE_BUS_ARRAY(DATA_BUS_ARRAY, ARRAY_SIZE, BUS_SIZE,
BUS_NAME="", MODULE_NAME=$sformatf("%m")) \↪→

2 `ifdef ENABLE_BUS_EXTRACTION \
3 begin \
4 logic [ARRAY_SIZE-1:0][BUS_SIZE-1:0] ValueForBusArray; \
5 foreach (ValueForBusArray[i]) begin \
6 ValueForBusArray[i] = getNewForceValue(); \
7 end \
8 force DATA_BUS_ARRAY = ValueForBusArray; \
9 foreach (ValueForBusArray[i]) begin \

10 `WRITE_VALUES_TO_LOG(MODULE_NAME, `INFO_FORCE,
ValueForBusArray[i],) \↪→

11 end \
12 #0; \
13 foreach (DATA_BUS_ARRAY[i]) begin \
14 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME,

`INFO_READ, DATA_BUS_ARRAY[i],
$sformatf("%s[%0d]", BUS_NAME, i)) \

↪→

↪→

15 end \
16 #0; \
17 `RELEASE_BUS(DATA_BUS_ARRAY) \
18 end \
19 `endif

Listing 4.10: Collection of force, read, and release operations for an array of data busses.

4.3.3 Read Operations

Reading a value from bus wires is pretty straightforward. The macro reads the value currently
present on the data bus, then export that information to the simulation log. Listing 4.11
shows a macro like that, which accepts a data bus instance, a bus name, and a module name
as arguments. Note that it uses similar arguments as those for the write macros in Listing 4.7.

1 `define INFO_READ "ReadBus"
2

3 `define READ_BUS(DATA_BUS, BUS_NAME="", MODULE_NAME=$sformatf("%m")) \
4 `ifdef ENABLE_BUS_EXTRACTION \
5 begin \
6 #0; \
7 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME, `INFO_READ,

DATA_BUS, BUS_NAME) \↪→

8 end \
9 `endif

Listing 4.11: Macro for reading a data bus and exporting the information.

4.3. EXTRACTION MACROS FOR READING & WRITING TO BUSSES 45

The first thing to notice is that the only thing that the macro really does is call the export
macro, which writes specified value and text to the log with the data bus value as its argument.
In addition, it marks the information as "ReadBus"-information, or in other words, a value ob-
tained by reading a data bus. The specifics of theWRITE_VALUE_AND_TEXT_TO_LOG
are handled in Section 4.5. In Section 4.3.1, we stated that read operations must happen
on the second delta-cycle of the simulation. We do so by calling the delay #0, effectively
postponing execution to the next delta cycle.

The macro READ_BUS from Listing 4.11 is intended to be used for a single data-buss.
If the busses are organised in an array, one can use the macro READ_BUS_ARRAY from
Listing 4.12 instead. The principles are pretty much the same as for the READ_BUS macro.
The only difference is that it iterates through the data bus array, reading one at a time.

1 `define READ_BUS_ARRAY(DATA_BUSSES, BUS_NAME="",
MODULE_NAME=$sformatf("%m")) \↪→

2 `ifdef ENABLE_BUS_EXTRACTION \
3 begin \
4 #0; \
5 foreach (DATA_BUSSES[i]) begin \
6 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME,

`INFO_READ, DATA_BUSSES[i], $sformatf("%s[%0d]",
BUS_NAME, i)) \

↪→

↪→

7 end \
8 end \
9 `endif

Listing 4.12: Macro for reading an array of data busses and exporting the information.

There are not many alternatives when it comes to how one would execute the read
operation. It observes the data bus at a specified time slot and registers the value as an
entry in the log. One could argue there are different ways of doing the extraction in general,
but that is better to discuss this in more relevant sections.

4.3.4 Relaying of Signals

A type of module one often finds in bus systems is bridges, an interconnecting module that
converts bus communication between different domains. For example, there might be domains
with different operating frequencies. Some logical operations are often necessary to convert
the signal before it can cross between domains and have to use bridges to do so. Whether
one would consider them masters and slaves depends on the definition, but it is helpful to
allow a signal to pass through the bridge.

The thesis solution is to relay the signal across the intermediate modules, effectively
bypassing them. It does so by reading the input signal, writing a new signal to the output,
and associating these two values as "connected". Figure 4.8 illustrates this concept. Note
that we are not connecting these signals physically but are stating that any signal on the
input will eventually reach the output.

46 CHAPTER 4. EXTRACTING BUS INFORMATION

Figure 4.8: The signal is relayed across the bridge by associating the input value with the
output value.

Listing 4.13 presents the code for relaying a signal across a module. It is quite similar to
the "read"-macros presented in Section 4.3.3. The difference is that it accepts both a data
bus going in and a data bus going out. It also categorises the information as a "relay" type
of information.

1 `define INFO_RELAY "Relay"
2

3 `define RELAY(DATA_BUS_IN, DATA_BUS_OUT, MODULE_NAME=$sformatf("%m")) \
4 `ifdef ENABLE_BUS_EXTRACTION \
5 begin \
6 #0; \
7 `WRITE_VALUES_TO_LOG(MODULE_NAME, `INFO_RELAY, DATA_BUS_IN,

DATA_BUS_OUT) \↪→

8 end \
9 `endif

Listing 4.13: Macro for relaying a signal across a module by associating the value on the data
bus going in and out.

As with the other macros that accept a data bus, one should consider the cases where
several busses are arranged into an array. In those cases, one can use the macro in Listing 4.14.
It is pretty similar to the macro presented in Listing 4.13, only it iterates through each
element of the arrays. Note that the macro in Listing 4.14 require the data bus arrays to be
of the same size. Another expectation is that the array elements pairs up sequentially; I.e.,
DATA_BUSSES_IN[0] signal relays to DATA_BUSSES_OUT[0], DATA_BUSSES_IN[1]
signal relays to DATA_BUSSES_OUT[1], and so on.

An alternative solution could be to pass the value in the input directly to the output.
Doing so would be more of actually relaying a signal across the module. There is, however,
an issue with this approach. The sequence of operations defined in Section 4.3.1 does not
allow writing after reading. Relaying the value requires knowing the value written on the
input before writing it to the output. Thus, we would have to redefine when one can do what.
For example, the implementation could iterate through the sequence of operations as many
times as needed to allow the signal to propagate through the bridges. Doing so would bring
a whole new layer of complexity to the extraction solution without improving the existing
solution.

4.4. EXTRACTION MACROS FOR INTERCONNECTING MODULES 47

1 `define RELAY_ARRAY(DATA_BUSSES_IN, DATA_BUSSES_OUT,
MODULE_NAME=$sformatf("%m")) \↪→

2 `ifdef ENABLE_BUS_EXTRACTION \
3 begin \
4 #0; \
5 foreach (DATA_BUSSES_IN[i]) begin \
6 `WRITE_VALUES_TO_LOG(MODULE_NAME, `INFO_RELAY,

DATA_BUSSES_IN[i], DATA_BUSSES_OUT[i]) \↪→

7 end \
8 end \
9 `endif

Listing 4.14: Macro for relaying signasl across a module by associating the value on the data
bus arrays going in and out.

4.4 Extraction Macros for Interconnecting Modules
Section 4.2 described the interconnecting module as the module containing arbiters, decoders,
and anything else needed to interconnect the modules. In other words, the interconnecting
module contains a large part of the bus system. Consequently, the interconnecting module is
an excellent source for bus-related information that we can extract. However, the challenge
lies in how and where one can extract the information inside the module; This is further
complicated because different bus systems will have different implementations of the inter-
connecting module. Therefore, basing the extraction on the logic and how the bus system is
implemented will not translate well between systems.

The thesis’ solution is to exploit the connectivity list that often implemented with the
interconnecting module. This list typically takes the shape of an array or matrix, defining
which slave a master can access. The way it extracts this information is by associating ports
with each other, similar to the relaying in Section 4.3.4. By following the connectivity list, one
can map out the connections. Listing 4.15 shows the macro that has a connection matrix (i.e.,
a multi-dimensional array) and two bus arrays as arguments. It iterates through the busses
and exports the pairs that are connected. Typically, one would have busses going to masters
in one array and busses going to the slaves in the other. Which array should be considered first
or second depending on how the CONNECTION_MATRIX is structured, as one can expect
the connection matrix to be on the form [Size_of_first_array-1][Size_of_second_array-1]
CONNECTION_MATRIX.

48 CHAPTER 4. EXTRACTING BUS INFORMATION

1 `define INFO_INTERCONNECT "Interconnect"
2

3 `define INTERCONNECT_BUSSES(CONNECTION_MATRIX, FIRST_BUS_ARRAY,
SECOND_BUS_ARRAY, MODULE_NAME=$sformatf("%m")) \↪→

4 `ifdef ENABLE_BUS_EXTRACTION \
5 begin \
6 #0; \
7 foreach (FIRST_BUS_ARRAY[i]) begin \
8 foreach (SECOND_BUS_ARRAY[j]) begin \
9 if (CONNECTION_MATRIX[i][j] != 0) begin \

10 `WRITE_VALUES_TO_LOG(MODULE_NAME,
`INFO_INTERCONNECT,
FIRST_BUS_ARRAY[i],
SECOND_BUS_ARRAY[j]) \

↪→

↪→

↪→

11 end \
12 end \
13 end \
14 end \
15 `endif

Listing 4.15: Macro for mapping out the connections between bus arrays.

As with previous macros, one uses the value written to a bus to identify it. That means
that one must use the write macros from Section 4.3.2 in addition to the interconnect macro
in Listing 4.15. The implementation example, presented in Section 4.2, is a good example of
this.

While one can determine which port on the interconnecting module is connected, we can
not determine which port leads to masters or slave from interconnections alone. As such, a
more manual approach is needed. The thesis’ solution provides macros for the user to mark
ports and busses manually. Listing 4.16 shows a couple of macros that marks whether a
bus wire is intended for a master or a slave. It is similar to the read-macros presented in
Section 4.3.3, as it extracts the value on the bus and marks it with the relevant type. In
addition, the thesis has defined macros for data busses arranged in arrays in Listing 4.17.

4.4. EXTRACTION MACROS FOR INTERCONNECTING MODULES 49

1 `define INFO_MARK "MarkBus"
2

3 `define MARK_BUS_AS_MASTER(DATA_BUS, MODULE_NAME=$sformatf("%m")) \
4 `ifdef ENABLE_BUS_EXTRACTION \
5 begin \
6 #0; \
7 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME, `INFO_MARK,

DATA_BUS, "Master") \↪→

8 end \
9 `endif

10

11 `define MARK_BUS_AS_SLAVE(DATA_BUS, MODULE_NAME=$sformatf("%m")) \
12 `ifdef ENABLE_BUS_EXTRACTION \
13 begin \
14 #0; \
15 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME, `INFO_MARK,

DATA_BUS, "Slave") \↪→

16 end \
17 `endif

Listing 4.16: Macro for marking whether the bus is intended for masters or slaves.

1 `define MARK_BUSSES_AS_MASTER(DATA_BUSSES, MODULE_NAME=$sformatf("%m")) \
2 `ifdef ENABLE_BUS_EXTRACTION \
3 begin \
4 #0; \
5 foreach (DATA_BUSSES[i]) begin \
6 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME,

`INFO_MARK, DATA_BUSSES[i], "Master") \↪→

7 end \
8 end \
9 `endif

10

11 `define MARK_BUSSES_AS_SLAVE(DATA_BUSSES, MODULE_NAME=$sformatf("%m")) \
12 `ifdef ENABLE_BUS_EXTRACTION \
13 begin \
14 #0; \
15 foreach (DATA_BUSSES[i]) begin \
16 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME,

`INFO_MARK, DATA_BUSSES[i], "Slave") \↪→

17 end \
18 end \
19 `endif

Listing 4.17: Macro for marking whether the array of busses are intended for masters or
slaves.

50 CHAPTER 4. EXTRACTING BUS INFORMATION

4.5 Exporting the Extracted Information
So far, this thesis has explored how to extract various types of information from RTL.
Another vital task is to be able to view and export this information outside of the simulation
environment. It would not be of much use to extract information if the user could not view it.
In addition, the solution aims to process the extracted information into more useful data in a
separate tool, covered in more detail in Chapter 5. All information is exported by writing said
information to the simulation log. The idea is that collecting all the extracted information
into the log allows the user to import the information by parsing the text. It is also easily
achievable by using the SystemVerilog $display system task, which prints text to the standard
output, which in most cases are the simulation log.

The solution chooses to organise its extracted information into small data points before
exporting it to the simulation log. The idea is that each operation described earlier in this
chapter will produce a small data point describing the operation and its result. For instance,
the read operation from Section 4.3.3 would produce a data point that describes itself as a
read operation, which module called the operation, and the value it read (i.e., the result).
Since data points would be similar to other operations, we can generalise it into the structure
shown in Listing 4.18.

#bus#<name of module>#<type of information>#<value 1>#<value 2>#

Listing 4.18: Template for structuring data points from extraction processes.

The generalised structure has fields intended for specific information; One field is intended
for the module name that calls the operation, one field for defining what type of information
it is, and two fields for values resulting from the operation. It also uses the character # as a
delimiter and bus as a keyword to identify the text as a data point related to the extraction
solution.

There are a few benefits to use a generalised template for exporting the information into
data points. It allows one to call the same functions or macros whenever it extracts new
information. It is also helpful for any tool that imports the information, as it is easier to
parse into the tool. The drawback is that the extracted information can be overwhelming
without some form of processing. Since our approach divides the information into tiny bits,
the results are a long and complex list of data points that can be difficult to interpret. As
a consequence, the processing tool in Chapter 5 becomes even more important in order to
produce a result that is useful for the user. One does not have to follow the structure we have
defined in Listing 4.18 either. It could be both simpler or more complex, without significant
changes to the solution complexity. In most cases, it is a matter of personal opinion. However,
as stated earlier, the structure chosen for this solution is based on its simplicity and how easy
it is to parse.

As mentioned, the solution export the extracted information to the standard output
through the $display system task. Listing 4.19 shows an macro that uses the generalised
data point structure presented in Listing 4.18, along with a $display task. It accepts up to
two values, in addition to the module name and type of information.

There are cases where one wants to include a string of text as one of the values. It would
not be ideal to use the macro in Listing 4.19, as it expects an integer and would interpret it
as one. Instead, one can use the macro in Listing 4.20; This macro accepts both a value and
a string. The read operation from Section 4.3.3 is a good example, where the name of the
bus is included with the value when writing the data point.

4.5. EXPORTING THE EXTRACTED INFORMATION 51

1 `define WRITE_VALUES_TO_LOG(MODULE_NAME, TYPE_OF_INFORMATION, VALUE_1,
VALUE_2 = 0) \↪→

2 `ifdef ENABLE_BUS_EXTRACTION \
3 $display("#bus#%s#%s#%h#%h#", MODULE_NAME, TYPE_OF_INFORMATION,

VALUE_1, VALUE_2); \↪→

4 `endif

Listing 4.19: Macro for writing a data point to the standard output. Accepts up to two
values.

1 `define WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME, TYPE_OF_INFORMATION, VALUE,
TEXT) \↪→

2 `ifdef ENABLE_BUS_EXTRACTION \
3 $display("#bus#%s#%s#%h#%s#", MODULE_NAME, TYPE_OF_INFORMATION,

VALUE, TEXT); \↪→

4 `endif

Listing 4.20: Macro for writing a data point to the standard output. Accepts a value and a
string.

While we export the extracted information to the standard output, it is also possible to
create and use a new file for this purpose. However, it would require that the operations
open and close the file every time it is used, impacting the extraction time. Alternatively, it
could be opened at the start of the extraction and have a global handle that the operations
can reference before closing it at the end of the extraction. Although it is slightly more
complicated, it is not that different from using the standard output.

Chapter 5

Processing Bus Information

Chapter 4 dealt with the extraction of bus-related information from RTL. The extraction
solution exported that information into a text file, intended for further processing at a
higher level; That is the purpose of the tool described in this chapter. The processing
tool is a script written in the high-level programming language Python [25], intended for
importing, processing, and operating on the extracted data. These operations allow the user
to understand better and visualise the information extracted from the RTL. This thesis chose
Python, as it is quick to get up and running, and there are many existing libraries, called
modules, available to support the solution. However, one could use other high-level languages
such as C instead, without any significant impact on the solution. The difference would
be that one must use different libraries and possibly implement more of the functionality
themselves. In addition, the thesis utilise the graph visualisation tool Graphviz [26] to
visualise the extracted information. It is open-source, with python modules readily available
for integration into the solution.

The processing tool imports the text file by parsing and structuring it into more usable,
raw data. Since the raw data is organised as many small data points, one also needs to
process it. The goal of the processing is to make it more compact and manageable. After the
raw data has been processed, the tool has everything it needs to operate on and visualise the
extracted information. The source code for the processing tool can be found in Appendix B.
Section 5.1 will give a brief overview of the solution, before moving on to more detailed
explanations.

5.1 Brief Overview of the Processing Solution
The idea behind the processing tool is as follow: after the information in Chapter 4 have
been extracted and exported into a text file, the processing tool would import and process
it. Once that is done, the user could both look through the information and perform various
operations.

When the user imports a text file into the tool, the first thing that happens is that the
text is parsed for data points defined in Chapter 4.5. The parser looks for data points in
the text and stores them in a list, passed on to the processing part of the tool after parsing.
The processor iterates through the data points and creates new lists with more specific
information. Some information can be taken directly from the data points, but other types
of information must be deduced from the data points. After processing is finished, the tool
has some data lists that it can use and operate on.

53

54 CHAPTER 5. PROCESSING BUS INFORMATION

The tool is written so that all parsing and processing happens when a file is imported.
Afterwards, the user can execute any operations they want by giving the relevant command.
Section 5.2 describes the available commands in the tool and how one would use them, while
the subsequent sections describe how the commands work in detail.

5.2 Using the Processing Tool

As mentioned earlier, the processing tool is a python script containing everything one needs
to process and operate on the extracted information. The tool does not use a graphical user
interface but instead a command line with an interpreter. The implementation in this thesis
uses a Linux computer and command line for the examples. All operations are assigned a
specific command for the user to use. In addition, there are a few arguments that can be
used upon the startup of the script.

To open the tool, one calls on the main python file bus_tool.py together with the inter-
preter, as shown in Figure 5.1. At this stage, there is no data imported into the tool. The
option for reducing the length of the names on modules are on by default and are covered in
more detail in Section 5.5.

Figure 5.1: The interface of the processing tool when opened.

Since each operation is assigned a command, having a way of viewing available commands
can be helpful. The help command allows one to view a list of available commands, as shown
in Figure 5.2. It also lists available arguments for the user when starting the processing tool,
such as importing a file at startup. To exit the application, one can use either the quit or the
exit command.

Figure 5.2: List of available commands for the processing tool.

5.2. USING THE PROCESSING TOOL 55

Importing the Information

There are two ways for the user to import information into the processing tool. The first one
is to use the argument -i, followed by the file name, during startup. The processing tool will
then automatically import the file at startup. Figure 5.3 shows an example where the import
argument is used to import the file log_nordic.txt at startup.

Figure 5.3: Example of the processing tool importing a file at startup.

If the tool is already up and running, the user can import a file by using the import
command, followed by the file name. It works in the same way as using the import argument,
as shown in Figure 5.4.

Figure 5.4: Example of the processing tool importing a file.

When the tool imports a file, it also automatically processes the data. Since this process
is automatic, the user does not have to supplement with any additional information. Once a
file is imported, the user can operate on the data.

56 CHAPTER 5. PROCESSING BUS INFORMATION

Listing the Data

The tool contains several commands that allow the user to browse the processed data in the
form of lists. The commands are as follows:

• listmod: List all modules involved in the extraction process. For instance, masters,
slaves, and bridges.

• listcon: List all connections between modules. These connections are coherent to the
read and write operations in Chapter 4.3, used for the extraction code. For each
connection, it lists the write source (i.e., the module that wrote the signal to the
connection) and the read sources (i.e., the modules that observed the value on the
connection). In addition, the names given to the connection by modules are included
where applicable. Figure 5.5 shows an example of the command. As such, these
connections are not equivalent to busses but are a direct connection between modules.

• listmas: List all master modules, along with slaves that the masters connect to.

Figure 5.5: Example of the listcon command, listing all connections in the bus structure.

5.2. USING THE PROCESSING TOOL 57

Visualising the Data

The tool provides two commands for generating diagrams of relevant information, stored
as a PDF file. The first one is the gencon command that generates a connection diagram;
This visualises the various modules and the connections between modules. In a sense, it
is a visualisation of the connection list generated from the listcon command. Figure 5.6
shows an example of such a diagram, albeit at a low resolution due to its size. While not
straightforward, it does provide a visual way of exploring the RTL.

Figure 5.6: Example of a connection diagram generated from extracted data using the gencon
command.

The other visualisation operation is the genmas command. It generates a master-slave
diagram depicting which slave module a master module can reach. In some ways, one can
consider this a condensed version of the diagram shown in Figure 5.6, with the added feature
of detailing who is a master and who is a slave. Figure 5.7 shows an example of a diagram
generated from the genmas command. The module the arrowhead points at is the slave,
while the source of the arrow is the master. Note that this is generated from the same data
as the diagram from Figure 5.6.

58 CHAPTER 5. PROCESSING BUS INFORMATION

Figure 5.7: Example of a master-slave diagram generated from extracted data using the
genmas command.

5.3 Importing Extracted Information

The goal of the processing tool is to give the user a platform for processing and to operate on
the extracted information from Chapter 4. However, one must first import the information
into the tool, preferably in a state that is easy to utilise. The thesis’ solution is to parse
the information exported from the extraction code through a text file. A text file is easy to
write and read from, and the implementation can be flexible in how information is stored
and parsed.

An alternative could be to connect the processing tool directly to the extraction code. Sys-
temVerilog has introduced interfaces specifically for communicating with C routines, allowing
SystemVerilog to call on the routines as if they were an ordinary SystemVerilog routine [16].
Such a solution would be a great deal more complicated, especially considering that we only
need to move data from one platform to another. It is, however, an interesting prospect
to consider if one wants to integrate the processing part into the extraction solution from
Chapter 4.

Chapter 4.5 defined a strict structure for organising the extracted information. All
information is divided into small data points, defined by the template in Listing 4.18. The
information making up the data point had to follow a specific order as well. Using a
predetermined keyword allows the parser to quickly identify the beginning of a data point from
the imported text file; This is especially useful when the extracted information is exported
with other redundant information, for instance, through the simulation log. With a predefined
delimiter to split apart different fields in the data point, it is easy to parse the strings into
usable data. Listing 5.1 shows the function used to convert a string into a data point. It
starts by looking for the keyword. If found, it then splits the string into sub-strings and
assigns each sub-string to a field in a new data point.

5.4. PROCESSING 59

1 def string_to_data_point(string):
2 keyword_index = string.rfind(KEYWORD)
3 if keyword_index != -1:
4 string_after_keyword = string[keyword_index + KEYWORD_LENGTH:]
5 split_string = string_after_keyword.split(DELIMITER)
6 new_data_point = dp.DataPoint(split_string[0], split_string[1],

split_string[2], split_string[3])↪→

7 return new_data_point
8 else:
9 # No valid data point can be extraced from string

10 return None

Listing 5.1: Function for converting a string into a data point.

The benefit of having such a strict structure on the data points when exported is that
it knows what information is located where in the string without having to do rigorous test
for values and determine its nature. In addition, it gives the implementation a much simpler
parser, where the most demanding work is to locate the data points. Note that we are using
a class for storing the data points, which can be found in Listing B.4, along with the source
code for the parser in Listing B.3.

The end goal of the parser is to create a list of data points that can be processed rather
than a long string full of redundant information. Of course, one could pass the string directly
to the processing part of the tool, but some form of parsing would still be needed; We would
essentially shift the problem to a different part of the code without solving it.

5.4 Processing
After the tool imports and parses the extracted information, it is still a long list of data
points that are cumbersome to use. The goal of the processing part of the tool is to reduce
the size and compact the information into a more coherent collection of data. As a result,
it will be easier to operate on, handle, and view. This section will refer to the parsed but
unprocessed information as raw data.

Section 5.2 presented three commands for viewing information as lists. The user can view
lists of modules, connections between modules, and master-slave pairs. It is these three lists
we want to create from the raw data obtained in Section 5.3.

One can break down the processing operations as a series of iterations through the
raw data. In each iteration, the tool will look for specific pieces of information. For
instance, in one iteration, it might be looking for all data points classified as read-operations
from Chapter 4.3.3, and one operation might be looking for data points classified as write
operations from Chapter 4.3.2. The idea is that for each iteration, the tool can collect
information from the data points and make deductions, and produce a list of relevant data
for the user.

60 CHAPTER 5. PROCESSING BUS INFORMATION

5.4.1 Obtaining a List of Modules

Obtaining a list of modules present in a bus design is a simple matter. The tool iterates
through the raw data and records the names of each module before returning it as a list.
Listing 5.2 shows a function that does just that. Since sets in python do not allow duplicates,
it produces a list of unique names.

1 def get_modules_from_data_points(list_data_points):
2 modules = set()
3 for data_point in list_data_points:
4 modules.add(data_point.name)
5 return modules

Listing 5.2: Function for obtaining a list of modules from raw data.

5.4.2 Obtaining a List of Connections Between Modules

The purpose of the connections list is to describe the wires going between modules. In other
words, the connected modules in this list physically connected with nothing else in between;
This should not be confused with the more abstract list detailing which master is connected
to which slave, described in Section 5.4.3

Chapter 4.3 looked at how one could use writing and reading operations to map out
connections in a bus system. One module would write a unique value to its bus wires, and
other modules would detect the value on the same bus. If one module could read what another
had written, it is apparent that they are physically connected. The aim of the function in
Listing 5.3 is to make that deduction from the raw data.

The function iterates through the raw data list and notes all data points describing a
read or write operation. It wants to group operations that read or write the same value,
which would mean the modules are connected. Using those values as keys creates entries
in a dictionary collection, with a bus-class to store which module read or wrote the value.
Listing 5.4 shows the values that can be stored in the bus class. The __write_source and
read_source are intended to hold the names of the modules performing the write and read
operations, respectively. The __value are intended for holding the value it reads and writes,
while names holds the names that are given to the bus wires by modules, typical couples with
the read operation. Note that there are class functions that are not shown here but can be
found in Listing B.2. Once the function has iterated through all raw data points, it returns
the dictionary.

5.4. PROCESSING 61

1 def get_busses_from_data_points(list_data_points):
2 busses = dict()
3 # Iterate through all data points that are read- or write operations.
4 for data_point in list_data_points:
5 if data_point.info_type == INFO_READ or data_point.info_type ==

INFO_FORCE:↪→

6 if verify_value(data_point.value_1):
7

8 # Create new entry if not in dict
9 if data_point.value_1 not in busses:

10 busses[data_point.value_1] = Bus(data_point.value_1)
11

12 # Add info to entry
13 if data_point.info_type == INFO_READ:
14

busses[data_point.value_1].add_read_source(data_point.name)↪→

15 busses[data_point.value_1].add_name(data_point.value_2)
16 elif data_point.info_type == INFO_FORCE:
17

busses[data_point.value_1].set_write_source(data_point.name)↪→

18 return busses

Listing 5.3: Function for obtaining a list of connection between modules from raw data.

1 class Bus:
2 __value = ""
3 __write_source = ""
4 names = set()
5 read_sources = set()

Listing 5.4: An excerpt from the Bus class detailing the values stored in the class.

5.4.3 Obtaining a List of Masters and Slaves

This function allows the user to obtain a list describing all master modules in a bus system
and which slave modules the masters can reach through the bus system. As opposed to
the connection list described in Section 5.4.2, this list focuses on providing a simplification
over real connections. Obtaining such a list requires considerable amounts of iterations and
processing, as it essentially works its way through the connection list to "connect the dots".
The function get_master_list implements this functionality and can be found in its entirety in
Listing B.2. The thesis will show excerpts from this function while explaining its functionality
throughout this section.

In summary, the function uses the interconnecting module from Chapter 4.4 as the starting
point. It takes the bus wires going out of the interconnecting module and traces them to
the master- and slave modules on the other end. If there are relay modules in-between, as
described in Chapter 4.3.4, it bypasses them and continues the tracing. Once the function has
mapped out the connections, the function can deduce which master is connected to which

62 CHAPTER 5. PROCESSING BUS INFORMATION

slave from information extracted from the interconnecting module. Finally, the function
returns the deduced master-slave information as a list.

The first step of the function is to determine which modules are interconnecting modules;
The function does this by looking for the modules that produce interconnecting-related
information. In Listing 5.5, the function iterates through the raw data and adds modules
that produce data points related to interconnections to a set collection.

1 interconnect_modules = set()
2 for data_point in datapoints:
3 if data_point.info_type == INFO_INTERCONNECT:
4 interconnect_modules.add(data_point.name)

Listing 5.5: First step of get_master_list: Obtain a list of interconnecting modules.

In Chapter 4.4, there were three types of information produced by interconnecting mod-
ules:

• The values the extraction code writes to the ports and wires going out of the intercon-
necting module.

• Whether the ports intended for a master or a slave.

• Which ports interconnect with each other. I.e., if a module connected to the port, what
other modules on other ports can it reach.

The second step is to extract all this information from the raw data and place them in lists
that are easier to access and search through; Listing 5.6 shows this. In addition, the function
gathers the information from relay modules and store them in a separate list.

The function has a list of values that each is associated with a port on the interconnecting
modules. As mentioned earlier, the way the function determines that a master or slave is
connected to the interconnecting module is by reading the same value that the interconnect
wrote to one of its ports. However, there might be a relay in-between. The function handles
the in-between modules by iteration through the raw data list, looking for relays with a value
that matches the interconnecting ports’ value. If that is the case, the output of the relay
replaces the value we have on the interconnecting module; The function repeat this action
until there are no more relays in between. Listing 5.7 shows this functionality.

The fourth step is to figure out which master and slave modules are connected to the
interconnect ports or the relay modules. Once again, the function iterates through the raw
data list and picks out any read operations that are not already classified as interconnecting-
or relay modules. If the value read by a module matches either an interconnect or relay
module, it is added to the list. This is shown in Listing 5.8.

Finally, the function has obtained all information in order to determine which masters
and slaves are connected. It is now just a matter of collecting the information into an
organised list returned to the user. Listing 5.9 shows the function iterating through the
master-, interconnect-, and slave lists to add the slaves to the masters’ list before returned
by the function.

Throughout the function, separate classes. The primary function of these classes is to
store data in variables and sometimes bring a bit more elaborate add and append functions
to those variables. All classes used in the function can be found in Listing B.2.

5.4. PROCESSING 63

1 interconnections = list()
2 interconnect_ports = set()
3 relays = list()
4 relay_names = set()
5 for data_point in datapoints:
6 # Get value and type
7 if data_point.info_type == INFO_MARK:
8 interconnect_ports.add(Port(data_point.value_1,

data_point.value_2))↪→

9 # Get interconnections
10 if data_point.info_type == INFO_INTERCONNECT:
11 interconnections.append(Connection(data_point.value_1,

data_point.value_2))↪→

12 # Get relays
13 if data_point.info_type == INFO_RELAY:
14 relays.append(Connection(data_point.value_1,

data_point.value_2))↪→

15 relay_names.add(data_point.name)

Listing 5.6: Second step of get_master_list: Obtain information produced by interconnecting
modules and relays.

1 interconnect_updated = True
2 while interconnect_updated:
3 interconnect_updated = False
4 # Check every interconnecting port up against the relay list
5 for p in interconnect_ports:
6 for r in relays:
7 # On hit, change the value, and change any value in the

interconnecting as well↪→

8 if p.value == r.source:
9 interconnect_updated = True

10 old_value = p.value
11 p.value = r.target
12 for i in interconnections:
13 if i.target == old_value:
14 i.target = r.target
15 if i.source == old_value:
16 i.source = r.target

Listing 5.7: Third step of get_master_list: Group values from relays modules with the
interconnecting ports.

64 CHAPTER 5. PROCESSING BUS INFORMATION

1 masters = dict()
2 slaves = list()
3 for data_point in datapoints:
4 if data_point.info_type == INFO_READ and data_point.name not in

interconnect_modules and data_point.name not in relay_names:↪→

5 for p in interconnect_ports:
6 if data_point.value_1 == p.value:
7 if p.port_type == "Slave":
8 slaves.append(Slave(data_point.name,

data_point.value_1))↪→

9 elif p.port_type == "Master":
10 if data_point.name not in masters:
11 masters[data_point.name] =

Master(data_point.name)↪→

12

masters[data_point.name].master_values.add(data_point.value_1)↪→

Listing 5.8: Fourth step of get_master_list: Determine which masters and slaves are
connected to the busses.

1 # Add interconnection values
2 for m in masters:
3 for i in interconnections:
4 if i.source in masters[m].master_values:
5 masters[m].slave_values.add(i.target)
6 elif i.target in masters[m].master_values:
7 masters[m].slave_values.add(i.source)
8 # Add slaves
9 for m in masters:

10 for s in slaves:
11 if s.value in masters[m].slave_values:
12 masters[m].slaves.add(s.name)
13

14 return masters

Listing 5.9: Fifth step of get_master_list: Determine which slave is connected to which
master.

5.5. VISUALISATION 65

5.5 Visualisation
An important part of the processing tool is generating diagrams of the extracted information.
It helps giving the information a visual perspective. In order to do so, the thesis has proposed
to automatically generate diagrams based on the list produced in Section 5.4. The processing
tool uses Graphviz to generate diagrams based on the extracted information. It is an graph
visualisation software that uses an abstract language called the DOT langauge to describe
its graphs and diagrams. Using these descriptions, it can generate diagrams [26]. In order
to convert the processed lists into a DOT description, the tool uses a python package also
called Graphviz. The package provides various functions to interact with Graphviz software
and produce DOT descriptions that can be read by the Graphviz software [27].

In short, the DOT language uses nodes and edges to make up its diagrams, as shown
in Figure 5.8. The Graphviz python-package provides functions to both create nodes and
edges, and enhance them with different visual styles, text, and behaviour during generation
of diagrams.

Figure 5.8: Example of two nodes connected by an edge.

The tool offers two operations to generate diagrams. One is for generating a diagram of
the connection of modules, as described in Section 5.4.2. Listing 5.10 shows the function for
generating the connection diagram. Note that the function uses the os python package to
call on Graphviz software on the computer, as well as viewing the resulting PDF file.

Similarly, the other operation generates a diagram of the master and slave relations,
described in Section 5.4.3; The function in Listing 5.11 describe this behaviour. Aside from
using different list as a basis, the functionality is pretty similar to the function in Listing 5.10.

66 CHAPTER 5. PROCESSING BUS INFORMATION

1 def generate_connection_diagram():
2 if data_loaded:
3 print('Translating buss list into connection list...')
4 connections = pro.get_connections_from_buss_dict(busses_dict)
5 print('Done')
6 print('Creating DOT file...')
7 dot = Digraph() #Use property engine=<layout_name> for different

layout engines↪→

8 dot.attr('graph', splines='ortho')
9 dot = add_modules_to_dot(dot, module_set)

10 dot = add_connections_to_dot(dot, connections)
11 print('Done')
12

13 output_file_name = remove_extension_from_name(data_name)
14 dot.save('{}.gv'.format(output_file_name))
15 os.system('/cad/gnu/anaconda/3-2.4.0/bin/fdp -Goverlap=scale -Tpdf

{0}.gv -o {0}.pdf'.format(output_file_name))↪→

16 print('Diagram saved as {0}.pdf and
{0}.gv'.format(output_file_name))↪→

17

18 if y_n_input("Do you want to view the file? [y/n] >> "):
19 os.system('okular {}.pdf'.format(output_file_name))
20 return
21 else:
22 print('Error: No data have been loaded.')
23 return

Listing 5.10: Function for generating a diagram of modules and connection between them.

5.5. VISUALISATION 67

1 def generate_master_diagram():
2 print('Creating DOT file...')
3 dot = Digraph()
4 dot.attr('graph', splines='ortho')
5 dot.attr('node', shape='box')
6 dot.attr('edge', penwidth='3')
7

8 for m in masters:
9 reduced_master_name = reduce_hierarchical_path_name(masters[m].name)

10 if enable_reduced_names:
11 dot.node(masters[m].name, label=reduced_master_name)
12 else:
13 dot.node(masters[m].name, label=masters[m].name)
14 #dot.node(masters[m].name)
15 for s in masters[m].slaves:
16 reduced_name = reduce_hierarchical_path_name(s)
17 if enable_reduced_names:
18 dot.node(s, label=reduced_name)
19 else:
20 dot.node(s, label=s)
21 #dot.node(s)
22 dot.edge(masters[m].name, s)
23

24 output_file_name = remove_extension_from_name(data_name)
25 dot.save('{}.gv'.format(output_file_name))
26 print('Done')

Listing 5.11: Function for generating a diagram of masters, slaves, and their relationships.

Chapter 6

Case Study - System from Nordic
Semiconductor

This case will consider the subsystem provided by Nordic Semiconductor. This is a system
encapsulating an Arm Cortex CPU and a bus system to connect the CPU to other modules
and peripherals. The thesis will consider how the solution is implemented into the system,
and what results can be obtained from the implementation. For the rest of this section,
we will refer to the system provided by Nordic Semiconductor as the subsystem. Due to
confidentiality, internal signal names and structures have been changed for inclusion in this
thesis.

The nRF5340 Bluetooth SoC utilises the subsystem in question. Since the nRF5340 have
publicly available documentation, the thesis will use it to verify the extracted information [3].
Figur 6.1 shows the block diagram of the application core for the nRF5340. The diagram
shows that the chip uses an AHB Multi-Layer bus from the AMBA standard [14]. In addition,
it uses both AHB and APB busses from the AMBA standard [13], but the main focus of this
case is the AHB Multi-Layer bus. Chapter 2.2 explains all three protocols in detail.

69

70 CHAPTER 6. CASE STUDY - SYSTEM FROM NORDIC SEMICONDUCTOR

Figure 6.1: Block diagram of the application core of the nRF5340 Bluetooth SoC, taken
from [3]

71

Implementation

The modules used for busses are implemented with reuse in mind. Therefore, one can apply
the extraction code to the IP, and all instances of the IP will use it. First of all, the source
file for the extraction solution macros, found in Appendix A, is included in the project files
for the subsystem. The inclusion is done through config files, referencing the extraction file
and making the proper definitions to enable extraction.

Starting with the AHB Multi-Layer bus itself, the thesis implement the extraction code
intended for interconnecting modules, as shown in Chapter 4.4, to the top module of the bus
files. One would want it to propagate a signal to all modules connected, mark each port as
master or slave, and define which master can reach which slave. Listing 6.1 shows the snippet
of code containing the extraction code.

1 initial begin
2 fork
3 `INTERCONNECT_BUSSES(CONNECTIONS, ahbHWDataSlave, ahbHRDataMaster,)
4 `FORCE_AND_RELEASE_BUS_ARRAY(ahbHRDataMaster, MASTERS,

AHBDATAWIDTH,"ahbHRDataMaster",)↪→

5 `FORCE_AND_RELEASE_BUS_ARRAY(ahbHWDataSlave, SLAVES,
AHBDATAWIDTH,"ahbHWDataSlave",)↪→

6 `MARK_BUSSES_AS_MASTER(ahbHRDataMaster,)
7 `MARK_BUSSES_AS_SLAVE(ahbHWDataSlave,)
8 join
9 end

Listing 6.1: The extraction code applied to AHB_multi_layer_top.sv

The processor is one of the modules connected to the bus and should thus read it. Using
the macros presented in Chapter 4.3.3, the thesis implements the extraction code in the
processor top module as shown in Listing 6.2.

1 initial begin
2 fork
3 `READ_BUS_ARRAY(ahbHRDataMaster, "ahbHRDataMaster",)
4 join
5 end

Listing 6.2: The extraction code applied to cpu_top.sv

The other modules and peripherals (i.e., masters and slaves) shown in Figure 6.1 is not
part of the subsystem. Instead, the subsystem has ports that the external modules and busses
can use. However, this means one does not have a module one can enhance with extraction
code. Instead, the thesis consider each port as a module, applying the extraction code from
Chapter 4.3.3. The macros allow custom names so that one can mark the ports as their
intended modules and busses. It is necessary since all the ports reside in the same module,
and the default name is the module path. The extraction code snippet for the other masters
and slaves is shown in Listing 6.3

72 CHAPTER 6. CASE STUDY - SYSTEM FROM NORDIC SEMICONDUCTOR

1 initial begin
2 fork
3 `READ_BUS_ARRAY(bridge_1_ahbHWData, "bridge_1_ahbHWData",

"EXTRAM_Slave")↪→

4 `READ_BUS_ARRAY(bridge_2_ahbHRData, "bridge_2_ahbHRData",
"EXTRAM_Master")↪→

5 `READ_BUS_ARRAY(bridge_3_ahbHWData, "bridge_3_ahbHWData",
"EXTPERI_Slave")↪→

6 `READ_BUS_ARRAY(bridge_4_ahbHRData, "bridge_4_ahbHRData",
"EXTPERI_Master")↪→

7 `READ_BUS_ARRAY(interface_1.ahbHRData, "interface_1.ahbHRData",
"DMA_Master")↪→

8 `READ_BUS_ARRAY(interface_2.ahbHRData, "interface_2.ahbHRData",
"DMAEXT_Master")↪→

9 `READ_BUS_ARRAY(interface_3.ahbHWData, "interface_3.ahbHWData",
"SRAM_Slave")↪→

10 `READ_BUS_ARRAY(interface_4.ahbHWData, "interface_4.ahbHWData",
"PERIAHB_Slave")↪→

11 `READ_BUS_ARRAY(interface_5.ahbHRData, "interface_5.ahbHRData",
"RAM_Master")↪→

12 `READ_BUS_ARRAY(interface_6.apbPWData, "interface_6.apbPWData",
"PERIAPB_Slave")↪→

13 join
14 end

Listing 6.3: The extraction code applied to subsystem_top.sv

There are several bridges in the subsystem. As shown in Chapter 4.3.4, one can relay the
signals across the bridges. Listing 6.4 shows a code snippet from one of the AHB bridges.
While there are several bridges in the subsystem, the implementation is similar to the one in
Listing 6.4, only with different names.

1 initial begin
2 fork
3 `FORCE_AND_RELEASE_BUS(HRDATAS, "HRDATAS",)
4 `FORCE_AND_RELEASE_BUS(HWDATAM, "HWDATAM",)
5 `READ_BUS(HWDATAS, "HWDATAS",)
6 `READ_BUS(HRDATAM, "HRDATAM",)
7 `RELAY(HWDATAS, HWDATAM,)
8 `RELAY(HRDATAM, HRDATAS,)
9 join

10 end

Listing 6.4: The extraction code applied to AHB_bridge_top.sv

73

Notice that signals are relayed both on the master side and the slave side of the bridge.
Since the bridge is a module intended for reuse in other designs and instances, it makes sense
to implement the extraction code on both sides; One does not know which side of the bridge
a signal might come from, so it is better to cover both.

Results

Figure 6.2 shows the diagram of connections between masters and slaves, processed from the
extracted data of the subsystem. Note that the arrowhead indicates the slave, and the master
is at the other end of the line.

Figure 6.2: The resulting block diagram showing connections between masters and slaves for
the Nordic Semiconductor subsystem.

74 CHAPTER 6. CASE STUDY - SYSTEM FROM NORDIC SEMICONDUCTOR

There are promising similarities to the original block diagram from Figure 6.1. As
expected, the CPU is the main master module, connecting to most other slaves in the system.
Masters that connects from peripherals can also access peripherals on the AHB and APB
busses bridged to the multi-layer. The same can be said for DMA masters. Note that the
GPIO module is outside of the system, and would be accessed through the PERIAHB_Slave
port.

It is relatively simple to implement the extraction code in the subsystem. In addition, a lot
of the extraction code is placed in reusable modules with several instances in the subsystem,
reducing the amount of work necessary. However, it is difficult to make a proper estimate
of how long the implementation took, as the subsystem was used extensively to develop the
extraction code.

Chapter 7

Future Works

Throughout the implementation of the solution presented by this thesis, it has become
apparent that it has the potential for both changes and additional features. This chapter
aims to provide an overview of these potential additions to the solution that could be done
in the future when more time and resources are available.

Chapter 3.1 detailed many different types of information that would be interesting to
extract from RTL. While some of them are present in the implemented solution, others are
not. For instance, the implementation does not include the design’s address maps, nor is there
much information on the bus wires themselves. Both are a valid proposition for additional
information to extract in the future. Of course, there might be even more types of information
that would be interesting, depending on the bus system. These have to be worked out in
future implementations.

When it comes to the processing tool from Chapter 5 there is much potential. It could
be helpful to have more control over the data residing in the tool, such as selecting a subset
of the data and editing parameters and values. Introducing new operations is not limited
to handling the current information in new ways but should also include ways of handling
new types of extracted information. It could be beneficial to expand and change how the
information is processed to be more efficient and process new types of information imported
into the tool. The tool itself could be more user-friendly as well, perhaps by including a
graphical user interface. It could also be considered to use a different graphics generator or
even write one from scratch to control how the diagrams and images are generated.

Another helpful addition to the solution would be to consider more cases for the case
study. Ideally, the cases should have different bus systems from different sources. More cases
would evaluate the quality of the solution and how universal the solution is. It would also
help uncover flaws in the solution that are not apparent at first.

An interesting case is that of generated bus systems. These are systems that have been
automatically generated from a set of parameters provided by the user. Depending on the
tool, the generated source code might not be available to the user; This poses some difficulties
for the current solution, as it depends on implementing extraction code into the source code.
Future iterations of the solution might change or include extracting information from both
automatically generated busses and busses that do not have readily available source code.

75

Chapter 8

Conclusion

This thesis addressed the issue of obtaining a good grasp of complex bus structures typically
found in a more complex system on chips. The goal was to find a solution that could do so
automatically and was simple and easy to implement and use. The solution proposed by this
thesis was to implement extraction code into the RLT design and exploit the simulation engine
to extract the information during simulation. In addition, the thesis conceived a separate
tool to process and handle the information after extraction, importing the information from
HDL into a more high-level language environment.

The results from the case study with the Nordic Semiconductor systems are promising.
The solution managed to extract and process the information on the bus system that cor-
responded to the documentation of the said system. Considering that the bus system used
in the Nordic case is reasonably complex shows that the solution can manage complex bus
systems. However, it will be necessary with more and varied cases to evaluate the quality of
the solution. One interesting case is that of automatically generated bus systems, where the
source code is not necessarily readily available.

In addition to expanding the case study to include more cases, the solution also has
potential for expansion. The extraction code can be expanded to include more types of
information it can extract, ways of dealing with automatically generated bus systems, and
how it handles extraction. The processing tool can be expanded with more additional features
as well. In conclusion, the solution shows promise, both in how it can extract information
from complex RTL design and the potential expansion of functionality.

77

Appendix A

Extraction Source Code

1 //==
2 // Name : Bus Structure Extraction Enhancement Code
3 // Created : Kevin Vinding
4 // Description : Macros used for extracting meta-information on
5 // bus structures.
6 //==
7 `ifndef BUS_EXTRACTION_SV
8 `define BUS_EXTRACTION_SV
9

10 // Types of information:
11 `define INFO_READ "ReadBus"
12 `define INFO_FORCE "ForceValue"
13 `define INFO_INTERCONNECT "Interconnect"
14 `define INFO_MARK "MarkBus"
15 `define INFO_RELAY "Relay"
16

17

18 integer forceValue = 10;
19

20 function integer getNewForceValue();
21 return forceValue++;
22 endfunction : getNewForceValue
23

24

25 // -- Writes values to log
26 `define WRITE_VALUES_TO_LOG(MODULE_NAME, TYPE_OF_INFORMATION, VALUE_1,

VALUE_2 = 0) \↪→

27 `ifdef ENABLE_BUS_EXTRACTION \
28 $display("#bus#%s#%s#%h#%h#", MODULE_NAME, TYPE_OF_INFORMATION,

VALUE_1, VALUE_2); \↪→

29 `endif
30

31 // -- Writes text (with associated value) to log
32 `define WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME, TYPE_OF_INFORMATION, VALUE,

TEXT) \↪→

79

80 APPENDIX A. EXTRACTION SOURCE CODE

33 `ifdef ENABLE_BUS_EXTRACTION \
34 $display("#bus#%s#%s#%h#%s#", MODULE_NAME, TYPE_OF_INFORMATION,

VALUE, TEXT); \↪→

35 `endif
36

37 // -- Forces the value VALUE on DATA_BUS. Parameter MODULE_NAME defaults to
the hierarchical path of the caller.↪→

38 `define FORCE_VALUE_ON_BUS(DATA_BUS, VALUE, MODULE_NAME=$sformatf("%m")) \
39 `ifdef ENABLE_BUS_EXTRACTION \
40 force DATA_BUS = VALUE; \
41 `WRITE_VALUES_TO_LOG(MODULE_NAME, `INFO_FORCE, VALUE,) \
42 `endif
43

44 // -- Forces a random value on DATA_BUS. Parameter MODULE_NAME defaults to
the hierarchical path of the caller.↪→

45 `define FORCE_RANDOM_VALUE_ON_BUS(DATA_BUS, MODULE_NAME=$sformatf("%m")) \
46 `ifdef ENABLE_BUS_EXTRACTION \
47 begin \
48 static int rand_value = $random(); \
49 `FORCE_VALUE_ON_BUS(DATA_BUS, rand_value, MODULE_NAME) \
50 end \
51 `endif
52

53 // -- Releases DATA_BUS after a value has been forced by e.g., using
FORCE_RANDOM_VALUE_ON_BUS(...).↪→

54 `define RELEASE_BUS(DATA_BUS) \
55 `ifdef ENABLE_BUS_EXTRACTION \
56 release DATA_BUS; \
57 `endif
58

59 // -- Forces a random value on DATA_BUS, waits 2 delta-cycles, then releases
DATA_BUS.↪→

60 // Parameter MODULE_NAME defaults to the hierarchical path of the caller.
61 `define FORCE_AND_RELEASE_BUS(DATA_BUS, BUS_NAME="",

MODULE_NAME=$sformatf("%m")) \↪→

62 `ifdef ENABLE_BUS_EXTRACTION \
63 begin \
64 static int value_to_force = getNewForceValue(); \
65 `FORCE_VALUE_ON_BUS(DATA_BUS, value_to_force, MODULE_NAME) \
66 #0; \
67 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME, `INFO_READ,

DATA_BUS, BUS_NAME) \↪→

68 #0; \
69 `RELEASE_BUS(DATA_BUS) \
70 end \
71 `endif
72

73 // -- Forces random values on all busses in DATA_BUS_ARRAY, and releases
them after 2 delta-cycles.↪→

81

74 // -- Note: The data-bus array is expected to be on the form:
[ARRAY_SIZE-1:0][BUS_SIZE-1:0] DATA_BUS_ARRAY↪→

75 `define FORCE_AND_RELEASE_BUS_ARRAY(DATA_BUS_ARRAY, ARRAY_SIZE, BUS_SIZE,
BUS_NAME="", MODULE_NAME=$sformatf("%m")) \↪→

76 `ifdef ENABLE_BUS_EXTRACTION \
77 begin \
78 logic [ARRAY_SIZE-1:0][BUS_SIZE-1:0] ValueForBusArray; \
79 foreach (ValueForBusArray[i]) begin \
80 ValueForBusArray[i] = getNewForceValue(); \
81 end \
82 force DATA_BUS_ARRAY = ValueForBusArray; \
83 foreach (ValueForBusArray[i]) begin \
84 `WRITE_VALUES_TO_LOG(MODULE_NAME, `INFO_FORCE,

ValueForBusArray[i],) \↪→

85 end \
86 #0; \
87 foreach (DATA_BUS_ARRAY[i]) begin \
88 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME,

`INFO_READ, DATA_BUS_ARRAY[i],
$sformatf("%s[%0d]", BUS_NAME, i)) \

↪→

↪→

89 end \
90 #0; \
91 `RELEASE_BUS(DATA_BUS_ARRAY) \
92 end \
93 `endif
94

95 // -- NEw read-bus macro. Change name to READ_BUS when appropiate
96 `define READ_BUS(DATA_BUS, BUS_NAME="", MODULE_NAME=$sformatf("%m")) \
97 `ifdef ENABLE_BUS_EXTRACTION \
98 begin \
99 #0; \

100 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME, `INFO_READ,
DATA_BUS, BUS_NAME) \↪→

101 end \
102 `endif
103

104 // -- New read-bus-array macro. Change name to READ_BUS_ARRAY when
appropiate↪→

105 `define READ_BUS_ARRAY(DATA_BUSSES, BUS_NAME="",
MODULE_NAME=$sformatf("%m")) \↪→

106 `ifdef ENABLE_BUS_EXTRACTION \
107 begin \
108 #0; \
109 foreach (DATA_BUSSES[i]) begin \
110 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME,

`INFO_READ, DATA_BUSSES[i], $sformatf("%s[%0d]",
BUS_NAME, i)) \

↪→

↪→

111 end \
112 end \

82 APPENDIX A. EXTRACTION SOURCE CODE

113 `endif
114

115 // -- Finish the simulation early.
116 `define FINISH_SIMULATION_EARLY() \
117 `ifdef ENABLE_BUS_EXTRACTION \
118 #1; \
119 $display("Simulation ends early due to bus structure extraction.");

\↪→

120 $finish(); \
121 `endif
122

123 // -- Uses a connection matrix to define which bus in FIRST_BUS_ARRAY array
are connected to which↪→

124 // bus in SECOND_BUS_ARRAY array (after a delta-cycle).
125 // -- Note: CONNECTION_MATRIX first dimension must equal that of the

FIRST_BUS_ARRAY. Similarly,↪→

126 // the second dimension must equal SECOND_BUS_ARRAY.
127 `define INTERCONNECT_BUSSES(CONNECTION_MATRIX, FIRST_BUS_ARRAY,

SECOND_BUS_ARRAY, MODULE_NAME=$sformatf("%m")) \↪→

128 `ifdef ENABLE_BUS_EXTRACTION \
129 begin \
130 #0; \
131 foreach (FIRST_BUS_ARRAY[i]) begin \
132 foreach (SECOND_BUS_ARRAY[j]) begin \
133 if (CONNECTION_MATRIX[i][j] != 0) begin \
134 `WRITE_VALUES_TO_LOG(MODULE_NAME,

`INFO_INTERCONNECT,
FIRST_BUS_ARRAY[i],
SECOND_BUS_ARRAY[j]) \

↪→

↪→

↪→

135 end \
136 end \
137 end \
138 end \
139 `endif
140

141

142 // -- Defines that DATA_BUS_OUT is an relay-value of DATA_BUS_IN
143 `define RELAY(DATA_BUS_IN, DATA_BUS_OUT, MODULE_NAME=$sformatf("%m")) \
144 `ifdef ENABLE_BUS_EXTRACTION \
145 begin \
146 #0; \
147 `WRITE_VALUES_TO_LOG(MODULE_NAME, `INFO_RELAY, DATA_BUS_IN,

DATA_BUS_OUT) \↪→

148 end \
149 `endif
150

151 // -- Defines that DATA_BUSSES_OUT is relay-values of DATA_BUSSES_IN
152 // Note: DATA_BUSSES_IN must be same size as DATA_BUSSES_OUT

83

153 `define RELAY_ARRAY(DATA_BUSSES_IN, DATA_BUSSES_OUT,
MODULE_NAME=$sformatf("%m")) \↪→

154 `ifdef ENABLE_BUS_EXTRACTION \
155 begin \
156 #0; \
157 foreach (DATA_BUSSES_IN[i]) begin \
158 `WRITE_VALUES_TO_LOG(MODULE_NAME, `INFO_RELAY,

DATA_BUSSES_IN[i], DATA_BUSSES_OUT[i]) \↪→

159 end \
160 end \
161 `endif
162

163 // -- Mark the DATA_BUS as Master
164 `define MARK_BUS_AS_MASTER(DATA_BUS, MODULE_NAME=$sformatf("%m")) \
165 `ifdef ENABLE_BUS_EXTRACTION \
166 begin \
167 #0; \
168 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME, `INFO_MARK,

DATA_BUS, "Master") \↪→

169 end \
170 `endif
171

172 // -- Mark the DATA_BUS as Slave
173 `define MARK_BUS_AS_SLAVE(DATA_BUS, MODULE_NAME=$sformatf("%m")) \
174 `ifdef ENABLE_BUS_EXTRACTION \
175 begin \
176 #0; \
177 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME, `INFO_MARK,

DATA_BUS, "Slave") \↪→

178 end \
179 `endif
180

181 // -- Mark several DATA_BUSSES as Master
182 `define MARK_BUSSES_AS_MASTER(DATA_BUSSES, MODULE_NAME=$sformatf("%m")) \
183 `ifdef ENABLE_BUS_EXTRACTION \
184 begin \
185 #0; \
186 foreach (DATA_BUSSES[i]) begin \
187 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME,

`INFO_MARK, DATA_BUSSES[i], "Master") \↪→

188 end \
189 end \
190 `endif
191

192 // -- Mark several DATA_BUSSES as Slave
193 `define MARK_BUSSES_AS_SLAVE(DATA_BUSSES, MODULE_NAME=$sformatf("%m")) \
194 `ifdef ENABLE_BUS_EXTRACTION \
195 begin \
196 #0; \

84 APPENDIX A. EXTRACTION SOURCE CODE

197 foreach (DATA_BUSSES[i]) begin \
198 `WRITE_VALUE_AND_TEXT_TO_LOG(MODULE_NAME,

`INFO_MARK, DATA_BUSSES[i], "Slave") \↪→

199 end \
200 end \
201 `endif
202

203 `endif

Listing A.1: bus_info_extract.sv

Appendix B

Processing Tool Source Code

1 ###
2 # Name: Bus Tool (main file)
3 # Author: Kevin Vinding
4 # Description: Main file for analysing and visualising the meta-information

obtained from extraction code.↪→

5 ###
6 import sys
7 import getopt
8 import os
9 import bus_info_parser as bip

10 import bus_info_processor as pro
11 from graphviz import Digraph
12

13 CMD_PDF = '/cad/gnu/anaconda/3-2.4.0/bin/dot -Tpdf bus_structure.gv -o
graph.pdf && okular graph.pdf'↪→

14

15 data_loaded = False
16 enable_reduced_names = True
17 enable_debug_mode = False
18 data_name = 'None'
19 module_set = set()
20 busses_dict = dict()
21 masters = dict()
22

23

24 def add_modules_to_dot(dot, list_of_modules):
25 dot.attr('node', shape='box')
26 for module in list_of_modules:
27 reduced_name = reduce_hierarchical_path_name(module)
28 if enable_reduced_names:
29 dot.node(module, label=reduced_name)
30 else:
31 dot.node(module, label=module)
32 return dot
33

85

86 APPENDIX B. PROCESSING TOOL SOURCE CODE

34

35 def add_connections_to_dot(dot, list_of_connections):
36 for con in list_of_connections:
37 if con.source != "" and con.target != "":
38 if con.bidirectional:
39 dot.attr('edge', dir='none', style='solid', penwidth='5') #,

penwidth = 2, style='solid')↪→

40 else:
41 dot.attr('edge', dir='forward', style='solid', penwidth='1')

#, penwidth=1, style='dashed')↪→

42 dot.edge(con.source, con.target)
43 return dot
44

45

46 def reduce_hierarchical_path_name(hierarchical_name):
47 separate_hier_name = hierarchical_name.split('.')
48 return separate_hier_name[len(separate_hier_name)-1]
49

50

51 # Ask a yes/no-question, then return answer as bool
52 def y_n_input(question):
53 while True:
54 answer = input(question).lower()
55 if answer == 'y' or answer == 'yes':
56 return True
57 elif answer == 'n' or answer == 'no':
58 return False
59 else:
60 print('Invalid answer. Use "y" or "n".')
61 return
62

63

64 # Remove extension from file name (e.g., .txt or .pdf)
65 def remove_extension_from_name(name):
66 return name.split('.')[0]
67

68

69 # Generates a diagram of the (imported) data as a .pdf file
70 def generate_connection_diagram():
71 if data_loaded:
72 print('Translating buss list into connection list...')
73 connections = pro.get_connections_from_buss_dict(busses_dict)
74 print('Done')
75 print('Creating DOT file...')
76 dot = Digraph() #Use property engine=<layout_name> for different

layout engines↪→

77 dot.attr('graph', splines='ortho')
78 dot = add_modules_to_dot(dot, module_set)
79 dot = add_connections_to_dot(dot, connections)

87

80 print('Done')
81

82 output_file_name = remove_extension_from_name(data_name)
83 dot.save('{}.gv'.format(output_file_name))
84 os.system('/cad/gnu/anaconda/3-2.4.0/bin/fdp -Goverlap=scale -Tpdf

{0}.gv -o {0}.pdf'.format(output_file_name))↪→

85 print('Diagram saved as {0}.pdf and
{0}.gv'.format(output_file_name))↪→

86

87 if y_n_input("Do you want to view the file? [y/n] >> "):
88 os.system('okular {}.pdf'.format(output_file_name))
89 return
90 else:
91 print('Error: No data have been loaded.')
92 return
93

94

95 # Generate a diagram detailing masters and slaves connected to the masters
96 def generate_master_diagram():
97 print('Creating DOT file...')
98 dot = Digraph()
99 dot.attr('graph', splines='ortho')

100 dot.attr('node', shape='box')
101 dot.attr('edge', penwidth='3')
102

103 for m in masters:
104 reduced_master_name = reduce_hierarchical_path_name(masters[m].name)
105 if enable_reduced_names:
106 dot.node(masters[m].name, label=reduced_master_name)
107 else:
108 dot.node(masters[m].name, label=masters[m].name)
109 #dot.node(masters[m].name)
110 for s in masters[m].slaves:
111 reduced_name = reduce_hierarchical_path_name(s)
112 if enable_reduced_names:
113 dot.node(s, label=reduced_name)
114 else:
115 dot.node(s, label=s)
116 #dot.node(s)
117 dot.edge(masters[m].name, s)
118

119 output_file_name = remove_extension_from_name(data_name)
120 dot.save('{}.gv'.format(output_file_name))
121 print('Done')
122

123 print('Creating PDF file...')
124 os.system('/cad/gnu/anaconda/3-2.4.0/bin/fdp -Goverlap=scale -Tpdf

{0}.gv -o {0}.pdf'.format(output_file_name))↪→

125 print('Done')

88 APPENDIX B. PROCESSING TOOL SOURCE CODE

126

127 if y_n_input("Do you want to view the file? [y/n] >> "):
128 os.system('okular {}.pdf'.format(output_file_name))
129 return
130

131

132 # Toggles whether the name reduction is applied or not.
133 def toggle_name_reduction():
134 global enable_reduced_names
135 toggle = False
136 if enable_reduced_names:
137 print('Name reduction is currently ENABLED')
138 toggle = y_n_input('Disable reduction of names? [y/n] >> ')
139 else:
140 print('Name reduction is currently DISABLED')
141 toggle = y_n_input('Enable reduction of names? [y/n] >> ')
142

143 if toggle:
144 enable_reduced_names = not enable_reduced_names
145

146

147 # Checks the command line agruments and takes correspondingly actions
148 def check_command_line_args():
149 global enable_reduced_names
150 global enable_debug_mode
151 import_file_path = ""
152 import_at_init = False
153

154 try:
155 opts, args = getopt.getopt(sys.argv[1:],"ni:d")
156 except:
157 print('Error: Invalid arguments.')
158 return
159

160 for opt, arg in opts:
161 if opt == '-i':
162 import_at_init = True
163 import_file_path = arg
164 elif opt == '-n':
165 enable_reduced_names = False
166 elif opt == '-d':
167 enable_debug_mode = True
168

169 if import_at_init:
170 import_file(import_file_path)
171 return
172

173

174 # Print the set of modules obtained from data

89

175 def list_modules():
176 if data_loaded:
177

print('--------------------------MODULES-------------------------------')↪→

178 for mod in module_set:
179 if enable_reduced_names:
180 print(reduce_hierarchical_path_name(mod))
181 else:
182 print(mod)
183

print('--')↪→

184 else:
185 print('Error: No data have been loaded.')
186 return
187

188

189 #Print the dictionary of busses obtained from data
190 def list_connections():
191 if data_loaded:
192

print('--------------------------CONNECTIONS---------------------------')↪→

193 for bus in busses_dict:
194 nb = pro.Bus(busses_dict[bus].get_value())
195 if enable_reduced_names:
196 for r in busses_dict[bus].read_sources:
197 nb.add_read_source(reduce_hierarchical_path_name(r))
198 for n in busses_dict[bus].names:
199 nb.add_name(reduce_hierarchical_path_name(n))
200

nb.set_write_source(reduce_hierarchical_path_name(busses_dict[bus]
.get_write_source()))

↪→

↪→

201 else:
202 nb = busses_dict[bus]
203

204 if enable_debug_mode:
205 print(nb)
206 print("")
207 else:
208 print('Name(s) of Connection: {}\n\tWrite Source: {}\n\tRead

Source(s): {}\n'.format(↪→

209 nb.names, nb.get_write_source(), nb.read_sources
210))
211

print('--')↪→

212 else:
213 print('Error: No data have been loaded.')
214 return
215

90 APPENDIX B. PROCESSING TOOL SOURCE CODE

216 #Print the dictionary of master modules, and what slaves is connected to
them.↪→

217 def list_masters():
218 if data_loaded:
219

print('--------------------------MASTERS-------------------------------')↪→

220 for m in masters.values():
221 new_m = m
222 if enable_reduced_names:
223 new_m.name = reduce_hierarchical_path_name(new_m.name)
224 new_slaves = set()
225 for s in new_m.slaves:
226 new_slaves.add(reduce_hierarchical_path_name(s))
227 new_m.slaves = new_slaves
228

229 if enable_debug_mode:
230 print(new_m)
231 else:
232 #print(m.slaves)
233 print('Master: {}\nSlaves: {}\n'.format(new_m.name,

new_m.slaves))↪→

234 #print(masters[m])
235

print('--')↪→

236 else:
237 print('Error: No data have been loaded.')
238 return
239

240 # Imports a specified textfile
241 def import_file(filename):
242 global data_name
243 global data_loaded
244 global module_set
245 global busses_dict
246 global masters
247

248 print('Parsing {}...'.format(filename))
249 data_points = bip.parse_text_file(filename)
250 if data_points == -1:
251 print('Import failed')
252 return
253 print('Done')
254

255 print('Obtaining list of modules...')
256 module_set = pro.get_modules_from_data_points(data_points)
257 print('Done')
258

259 print('Obtaining list of busses...')
260 busses_dict = pro.get_busses_from_data_points(data_points)

91

261 print('Done')
262

263 print('Obtaining list of masters and their slaves...')
264 masters = pro.get_master_list(data_points)
265 print('Done')
266

267 data_name = filename
268 data_loaded = True
269 print('Processing finished. Imported {}

modules.'.format(len(module_set)))↪→

270 return
271

272

273 # Prints a list of all available commands to the user
274 def get_commands():
275

print("""--------------------------COMMANDS------------------------------↪→

276 import <filename.txt>\tImport meta-information from specified textfile.
277 listmod\t\t\tDisplay a list of all modules from extracted data.
278 listcon\t\t\tDisplay a list of all connection between modules.
279 listmas\t\t\tDisplay a list of all masters, and slaves connected to the

master.↪→

280 genmas\t\t\tGenerate a pdf image of the relationship between masters and
slave.↪→

281 gencon\t\t\tGenerate a diagram of the connection between modules in the
system.↪→

282 togname\t\t\tToggle whether name reduction is enabled or not.
283 help\t\t\tShows this list of available commands.
284 quit\t\t\tQuits the tool. (Can also use 'exit'.)
285 --------------------------ARGUMENTS-----------------------------
286 -i <filename.txt>\t\tImport file at initialization of the tool
287 -n\t\t\t\tTurn off name reduction at startup
288 -d\t\t\t\tStart tool in debug mode
289 --""")
290 return
291

292

293 # main loop
294 print('Processing tool for extracted bus information')
295 print('---')
296 check_command_line_args()
297 print('Data loaded: {}'.format(data_name))
298 print('Reduced Names: {}'.format(enable_reduced_names))
299 if enable_debug_mode:
300 print('DEBUG MODE')
301 print('---')
302

303 while True:
304 command = input('>> ').lower()

92 APPENDIX B. PROCESSING TOOL SOURCE CODE

305 if command == 'help':
306 get_commands()
307 elif command == 'quit' or command == 'exit':
308 sys.exit(0)
309 elif command == 'listmod':
310 list_modules()
311 elif command == 'listcon':
312 list_connections()
313 elif command == 'listmas':
314 list_masters()
315 elif command == 'genmas':
316 generate_master_diagram()
317 elif command == 'gencon':
318 generate_connection_diagram()
319 elif command == 'togname':
320 toggle_name_reduction()
321 elif command.split(' ')[0] == 'import':
322 import_file(command.split(' ')[1])
323 else:
324 print('Invalid command. Type "help" for list of available

commands.')↪→

Listing B.1: bus_tool.py

93

1 ###
2 # Name: Bus Info Processor
3 # Author: Kevin Vinding
4 # Description: Processes and maps out bus information based on datapoints

obtained from bus_info_parser.py↪→

5 ###
6 import datapoint as dp
7

8 INFO_READ = "ReadBus"
9 INFO_FORCE = "ForceValue"

10 INFO_INTERCONNECT = "Interconnect"
11 INFO_MARK = "MarkBus"
12 INFO_RELAY = "Relay"
13 NAME_DELIMITER = '.'
14

15 # Get a set of modules from a list of data points
16 def get_modules_from_data_points(list_data_points):
17 modules = set()
18 for data_point in list_data_points:
19 modules.add(data_point.name)
20 return modules
21

22

23 # Reduce the name by only include the last region of the name
24 def reduce_name(name):
25 split_name = name.split(NAME_DELIMITER)
26 return split_name[len(split_name)-1]
27

28

29 # Verify that a value is an int and not the value 0
30 def verify_value(string_value):
31 try:
32 value_as_int = int(string_value, 16)
33 if value_as_int == 0:
34 return False
35 else:
36 return True
37 except:
38 return False
39

40

41 # Get a dictionary of busses bewteen modules from a list of data points,
with the written value as key↪→

42 def get_busses_from_data_points(list_data_points):
43 busses = dict()
44 # Iterate through all data points that are read- or write operations.
45 for data_point in list_data_points:

94 APPENDIX B. PROCESSING TOOL SOURCE CODE

46 if data_point.info_type == INFO_READ or data_point.info_type ==
INFO_FORCE:↪→

47 if verify_value(data_point.value_1):
48

49 # Create new entry if not in dict
50 if data_point.value_1 not in busses:
51 busses[data_point.value_1] = Bus(data_point.value_1)
52

53 # Add info to entry
54 if data_point.info_type == INFO_READ:
55

busses[data_point.value_1].add_read_source(data_point.name)↪→

56 busses[data_point.value_1].add_name(data_point.value_2)
57 elif data_point.info_type == INFO_FORCE:
58

busses[data_point.value_1].set_write_source(data_point.name)↪→

59 return busses
60

61

62 # Update an existing connecton list with a new connection
63 def update_connection_list(connection_list, new_connection):
64 for connection in connection_list:
65 # If it's inside list, discard the new connection
66 if connection == new_connection:
67 return connection_list
68 # If it's the inverted instace, update it to be bidirectional
69 if connection.get_inverted() == new_connection:
70 connection.bidirectional = True
71 return connection_list
72 # Else add to the list
73 connection_list.append(new_connection)
74 return connection_list
75

76

77 # Get a list of connections between modules, based on a buss dictionary
78 def get_connections_from_buss_dict(dict_busses):
79 connections = list()
80 for bus in dict_busses:
81 for read_source in dict_busses[bus].read_sources:
82 if read_source != dict_busses[bus].get_write_source():
83 new_connection =

Connection(dict_busses[bus].get_write_source(),
read_source, dict_busses[bus].get_ran_name())

↪→

↪→

84 connections = update_connection_list(connections,
new_connection)↪→

85 return connections
86

87

88 # Retrieve a list of masters and which slave is connected to them

95

89 def get_master_list(datapoints):
90 # 1: get which modules are interconnecting modules
91 interconnect_modules = set()
92 for data_point in datapoints:
93 if data_point.info_type == INFO_INTERCONNECT:
94 interconnect_modules.add(data_point.name)
95

96 # 2: get the values on its ports, which are master/slave
97 # and which master interconnect to which slave
98 interconnections = list()
99 interconnect_ports = set()

100 relays = list()
101 relay_names = set()
102 for data_point in datapoints:
103 # Get value and type
104 if data_point.info_type == INFO_MARK:
105 interconnect_ports.add(Port(data_point.value_1,

data_point.value_2))↪→

106 # Get interconnections
107 if data_point.info_type == INFO_INTERCONNECT:
108 interconnections.append(Connection(data_point.value_1,

data_point.value_2))↪→

109 # Get relays
110 if data_point.info_type == INFO_RELAY:
111 relays.append(Connection(data_point.value_1,

data_point.value_2))↪→

112 relay_names.add(data_point.name)
113

114 # 3: Update port values to use relay-values if neccessary
115 interconnect_updated = True
116 while interconnect_updated:
117 interconnect_updated = False
118 # Check every interconnecting port up against the relay list
119 for p in interconnect_ports:
120 for r in relays:
121 # On hit, change the value, and change any value in the

interconnecting as well↪→

122 if p.value == r.source:
123 interconnect_updated = True
124 old_value = p.value
125 p.value = r.target
126 for i in interconnections:
127 if i.target == old_value:
128 i.target = r.target
129 if i.source == old_value:
130 i.source = r.target
131

132 # 4: Get which module reads the value out of interc.
133 masters = dict()

96 APPENDIX B. PROCESSING TOOL SOURCE CODE

134 slaves = list()
135 for data_point in datapoints:
136 if data_point.info_type == INFO_READ and data_point.name not in

interconnect_modules and data_point.name not in relay_names:↪→

137 for p in interconnect_ports:
138 if data_point.value_1 == p.value:
139 if p.port_type == "Slave":
140 slaves.append(Slave(data_point.name,

data_point.value_1))↪→

141 elif p.port_type == "Master":
142 if data_point.name not in masters:
143 masters[data_point.name] =

Master(data_point.name)↪→

144

masters[data_point.name].master_values.add(data_point.value_1)↪→

145

146 # 5: Collect everything and return
147 # Add interconnection values
148 for m in masters:
149 for i in interconnections:
150 if i.source in masters[m].master_values:
151 masters[m].slave_values.add(i.target)
152 elif i.target in masters[m].master_values:
153 masters[m].slave_values.add(i.source)
154 # Add slaves
155 for m in masters:
156 for s in slaves:
157 if s.value in masters[m].slave_values:
158 masters[m].slaves.add(s.name)
159

160 return masters
161

162

163 class Master:
164 name = ""
165 master_values = set()
166 slave_values = set()
167 slaves = set()
168

169 def __init__(self, name):
170 self.name = name
171 self.master_values = set()
172 self.slave_values = set()
173 self.slaves = set()
174

175 def __repr__(self):
176 return 'Name: {0}\n\tMaster Value: {1}\n\tSlave Values:

{2}\n\tSlaves: {3}'.format(↪→

177 self.name, self.master_values, self.slave_values, self.slaves

97

178)
179

180 def __str__(self):
181 return 'Name: {0}\n\tMaster Value: {1}\n\tSlave Values:

{2}\n\tSlaves: {3}'.format(↪→

182 self.name, self.master_values, self.slave_values, self.slaves
183)
184

185

186 class Slave:
187 name = ""
188 value = ""
189

190 def __init__(self, name, value):
191 self.name = name
192 self.value = value
193

194

195 class Port:
196 value = ""
197 port_type = ""
198

199 def __init__(self, value, port_type):
200 self.value = value
201 self.port_type = port_type
202

203

204 class Bus:
205 __value = ""
206 __write_source = ""
207 names = set()
208 read_sources = set()
209

210 def __init__(self, value):
211 self.__value = value
212 self.__write_source = ""
213 self.names = set()
214 self.read_sources = set()
215

216 def __repr__(self):
217 return 'Name: {0}\n\tValue: {1}\n\tWrite Source: {2}\n\tRead

Sources: {3}'.format(↪→

218 self.names, self.__value, self.__write_source, self.read_sources
219)
220

221 def __str__(self):
222 return 'Name: {0}\n\tValue: {1}\n\tWrite Source: {2}\n\tRead

Sources: {3}'.format(↪→

223 self.names, self.__value, self.__write_source, self.read_sources

98 APPENDIX B. PROCESSING TOOL SOURCE CODE

224)
225

226 def add_read_source(self, name_of_source):
227 self.read_sources.add(name_of_source)
228

229 def set_write_source(self, name_of_source):
230 if self.__write_source == "":
231 self.__write_source = name_of_source
232 return
233 else:
234 print('Warning: Tried to overwrite write-source "{}" with "{}"

(Bus value: {}).'.format(self.__write_source,
name_of_source, self.__value))

↪→

↪→

235 return -1
236

237 def get_write_source(self):
238 return self.__write_source
239

240 def get_value(self):
241 return self.__value
242

243 def add_name(self, name_of_bus):
244 self.names.add(name_of_bus)
245

246 def get_ran_name(self):
247 if len(self.names) == 0:
248 return "None"
249 else:
250 ran_name = self.names.pop()
251 self.names.add(ran_name)
252 return ran_name
253

254 class Connection:
255 source = ""
256 target = ""
257 name = ""
258 bidirectional = False
259

260 def __init__(self, source, target, name=""):
261 self.source = source
262 self.target = target
263 self.name = name
264 self.bidirectional = False
265

266 def __repr__(self):
267 return "Source: {0}, Target: {1}, Name:{3}, Is Bidirectional:

{2}".format(↪→

268 self.source, self.target, self.bidirectional, self.name
269)

99

270

271 def __str__(self):
272 return "Source: {0}, Target: {1},Name:{3}, Is Bidirectional:

{2}".format(↪→

273 self.source, self.target, self.bidirectional, self.name
274)
275

276 def __eq__(self, other):
277 if self.source == other.source and self.target == other.target:
278 return 1
279 else:
280 return 0
281

282 def get_inverted(self):
283 inv_connection = Connection(self.target, self.source, self.name)
284 inv_connection.bidirectional = True
285 return inv_connection

Listing B.2: bus_info_processor.py

100 APPENDIX B. PROCESSING TOOL SOURCE CODE

1 ###
2 # Name: Bus Info Parser
3 # Author: Kevin Vinding
4 # Description: Opens text file containing extracted bus information, parses

the text, and returns it as↪→

5 # a list of data points.
6 ###
7 import datapoint as dp
8 import os
9

10 KEYWORD = '#bus#'
11 KEYWORD_LENGTH = len(KEYWORD)
12 DELIMITER = '#'
13

14

15 # Parses a text file for data points and returns them as a list
16 def parse_text_file(file_name):
17 data_point_list = list()
18 try:
19 text_file = open(file_name, 'r')
20 except:
21 if os.path.isfile(file_name):
22 print('Error: File "{}" could not be opened!'.format(file_name))
23 else:
24 print('Error: File "{}" does not exist!'.format(file_name))
25 return -1
26

27 while True:
28 current_text_line = text_file.readline()
29 if not current_text_line:
30 # End of text-file
31 break
32

33 new_data_point = string_to_data_point(current_text_line)
34 if new_data_point is not None:
35 data_point_list.append(new_data_point)
36

37 text_file.close()
38 return data_point_list
39

40

41 # Parses string for a data point and converts it into a data point
42 def string_to_data_point(string):
43 keyword_index = string.rfind(KEYWORD)
44 if keyword_index != -1:
45 string_after_keyword = string[keyword_index + KEYWORD_LENGTH:]
46 split_string = string_after_keyword.split(DELIMITER)

101

47 new_data_point = dp.DataPoint(split_string[0], split_string[1],
split_string[2], split_string[3])↪→

48 return new_data_point
49 else:
50 # No valid data point can be extraced from string
51 return None

Listing B.3: bus_info_parser.py

102 APPENDIX B. PROCESSING TOOL SOURCE CODE

1 # Class for organizing information as data points
2 class DataPoint:
3 name = ""
4 info_type = ""
5 value_1 = ""
6 value_2 = ""
7

8 def __init__(self, name, info_type, value_1, value_2):
9 self.name = name

10 self.info_type = info_type
11 self.value_1 = value_1
12 self.value_2 = value_2
13

14 def __repr__(self):
15 return "Name: {0}, Information Type: {1}, Value 1 = {2}, Value 2 =

{3}".format(↪→

16 self.name, self.info_type, self.value_1, self.value_2
17)
18

19 def __str__(self):
20 return "Name: {0}, Information Type: {1}, Value 1 = {2}, Value 2 =

{3}".format(↪→

21 self.name, self.info_type, self.value_1, self.value_2
22)

Listing B.4: datapoint.py

Bibliography

[1] T. Martin, The Designer’s Guide to the Cortex-M Processor Family. Newnes, second ed.,
2016.

[2] “IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and
Verification Language,” IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012),
pp. 1–1315, 2018.

[3] Nordic Semiconductor, “nRF5340 Product Specification v1.1.” https://www.
nordicsemi.com/Products/Low-power-short-range-wireless/nRF5340, 2021. [On-
line; accessed 19-May-2021].

[4] S. Pasricha and N. Dutt, On-chip communication architectures: system on chip
interconnect. Morgan Kaufmann, 2010.

[5] W. Chen, J. Ray, S.and Bhadra, M. Abadir, and L. Wang, “Challenges and trends in
modern SoC design verification,” IEEE Design & Test, vol. 34, no. 5, pp. 7–22, 2017.

[6] Y. Chen and S. Y. Kung, “Trend and challenge on System-on-a-Chip designs,” Journal
of Signal Processing Systems, vol. 53, pp. 217–229, 2008.

[7] S. Sutherland, S. Davidmann, and P. Flake, SystemVerilog for Design: A Guide to Using
SystemVerilog for Hardware Design and Modeling. Springer Science & Business Media,
second ed., 2006.

[8] Arm Ltd., “AMBA.” https://developer.arm.com/architectures/
system-architectures/amba, 2021. [Online; accessed 09-Feb-2021].

[9] R. P. Patil and P. V. Sangamkar, “A review of system-on-chip bus protocols,” Inter-
national Journal of Advanced Research in Electrical, Electronics and Instrumentation
Engineering, vol. 4, no. 1, pp. 271–281, 2015.

[10] OpenCores, “Wishbone, Revision B.4 Specification.” https://opencores.org/howto/
wishbone, 2010. [Online; accessed 16-May-2021].

[11] D. Flynn, “AMBA: enabling reusable on-chip designs,” IEEE micro, vol. 17, no. 4,
pp. 20–27, 1997.

[12] A. Shrivastav, G. Tomar, and A. K. Singh, “Performance comparison of AMBA bus-
based system-on-chip communication protocol,” in 2011 International Conference on
Communication Systems and Network Technologies, pp. 449–454, IEEE, 2011.

[13] Arm Ltd., “AMBA Specification (Rev 2.0),” protocol specification, May 1999.

[14] Arm Ltd., “Multi-Layer AHB v.2.0,” technical overview, May 2004.

103

https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF5340
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF5340
https://developer.arm.com/architectures/system-architectures/amba
https://developer.arm.com/architectures/system-architectures/amba
https://opencores.org/howto/wishbone
https://opencores.org/howto/wishbone

[15] W. J. Dally and R. C. Harting, Digitak Design: A Systems Approach. Cambridge
University Press, 2012.

[16] C. Spear and G. Tumbush, SystemVerilog for Verification: A Guide to Learning the
Testbench Language Features. Springer, third ed., 2012.

[17] L. Wang, Y. Chang, and K. T. Cheng, Electronic design automation: synthesis,
verification, and test. Morgan Kaufmann, 2009.

[18] L. Scheffer, L. Lavagno, and G. Martin, EDA for IC system design, verification, and
testing. CRC press, 2018.

[19] E. Cerny, S. Dudain, J. Havlicek, and D. Korchemny, SVA: The Power of Assertions in
SystemVerilog. Springer, second ed., 2015.

[20] D. Grune and C. J. H. Jackobs, Parsing Techniques: A Practical Guide. Springer,
second ed., 2008.

[21] H. Saafan, M. W. El-Kharashi, and A. Salem, “SoC connectivity specification extraction
using incomplete RTL design: An approach for formal connectivity verification,” 11th
International Design & Test Symposium (IDT), pp. 110–114, 2016.

[22] S. Rachamalla, A. Joseph, R. Rao, and D. Pandey, “Virtual logic netlist: Enabling
efficient RTL analysis,” Sixteenth International Symposium on Quality Electronic Design,
pp. 571–576, 2015.

[23] D. Große, R. Drechsler, L. Linhard, and G. Angst, “Efficient automatic visualization of
SystemC designs.,” FDL, pp. 646–658, 2003.

[24] S. Hosny and A. Baher, “Design crawler: A web application for digital design metadata
analysis,” 20th International Workshop on Microprocessor/SoC Test, Security and
Verification (MTV), pp. 31–34, 2019.

[25] Python Software Foundation, “Python.” https://www.python.org/, 2021. [Online;
accessed 12-Mar-2021].

[26] J. Ellson, E. Gansner, Y. Hu, and S. North, “Graphviz.” https://graphviz.org/, 2021.
[Online; accessed 24-May-2021].

[27] S. Bank, “Graphviz Python Package.” https://github.com/xflr6/graphviz, 2021.
[Online; accessed 31-May-2021].

104

https://www.python.org/
https://graphviz.org/
https://github.com/xflr6/graphviz

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Kevin A. Vinding
Autom

atic Extraction of Com
plex Bus Structures from

 RTL

Kevin Aleksander Vinding

Automatic Extraction of Complex Bus
Structures from RTL

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Per Gunnar Kjeldsberg
Co-supervisor: Berend Dekens, Eivind Fylkesnes

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	List of Abbreviations
	Introduction
	Objectives
	Scope and Limitations
	Main Contributions
	Structure of the Thesis

	Background
	Busses
	AMBA
	SystemVerilog
	Simulations
	Parsing
	Related Work

	Discussion of Potential Solutions
	What Information Should Be Extracted
	Solutions
	Parsing of HDL Code
	Netlist Signal Tracing
	Modified Simulation Tools
	Extraction Through Simulation

	Extracting Bus Information
	Brief Overview of the Extraction Solution
	Implementing the Extraction Code in Original Modules
	Extraction Macros for Reading & Writing to Busses
	Sequence of Operations
	Write Operations
	Read Operations
	Relaying of Signals

	Extraction Macros for Interconnecting Modules
	Exporting the Extracted Information

	Processing Bus Information
	Brief Overview of the Processing Solution
	Using the Processing Tool
	Importing Extracted Information
	Processing
	Obtaining a List of Modules
	Obtaining a List of Connections Between Modules
	Obtaining a List of Masters and Slaves

	Visualisation

	Case Study - System from Nordic Semiconductor
	Future Works
	Conclusion
	Extraction Source Code
	Processing Tool Source Code
	Bibliography

