
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

Aksel Lindbæk Gundersen

Hardware-Software partitioned
implementation of an autoencoder-
based hyperspectral anomaly
detector

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Milica Orlandic
June 2021

M
as

te
r’s

 th
es

is





Aksel Lindbæk Gundersen

Hardware-Software partitioned
implementation of an autoencoder-
based hyperspectral anomaly detector

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Milica Orlandic
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems





Abstract

The Hyper-Spectral Small-Satellite for Oceanographic Observations (HYPSO) is an ongoing mis-
sion at the small-satellite laboratory at the Norwegian University of Science and Technology
(NTNU). The objective is to capture and process hyperspectral images of the ocean with a satellite.
The obtained information will be used to monitor algal blooms along the Norwegian coastline. Hy-
perspectral Anomaly Detection (HAD) is a feature that can increase the performance of the mission
by autonomously detecting regions of interest in the captured hyperspectral images. HAD is the
process of locating rare pixels in hyperspectral images that notably differ from their surrounding
pixels, without a priori knowledge concerning the pixels.

An autoencoder-based method for HAD is adapted from [1] and modified to increase the accuracy
in this thesis. The HAD algorithm uses an autoencoder to learn the high-level features of the
hyperspectral image before using that information to perform a novel method for computing the
anomaly scores for all pixels in the hyperspectral image. The anomaly score is the probability
that a pixel is an anomaly determined by the HAD algorithm. An extensive review of known
baseline and state-of-the-art HAD algorithms is presented in this thesis. The HAD algorithm here
is evaluated in Matlab and compared to known baseline and state-of-the-art HAD algorithms. The
results show that it achieves the third-highest average accuracy on a set of hyperspectral images
widely used to evaluate HAD algorithms.

A simplified version of the HAD algorithm proposed in this thesis is implemented using the C-
programming language. The C-programming language is chosen as the programming language
used in the processing pipeline onboard the satellite for the HYPSO mission. A computationally
expensive part of the C implementation is accelerated in customized hardware using high-level
synthesis. A range of optimization techniques, including increased concurrency and fixed-point
arithmetic in high-level synthesis, are explored and compared.

Finally, a hardware-software partitioned implementation of the HAD algorithm is tested using a
Zynq Ultrascale+ MPSoC ZCU104 Evaluation Kit. The C implementation runs on the application
processing unit on the ZCU104. The accelerated part of the algorithm is implemented as a hardware
kernel in the programmable logic on the ZCU104. The optimized hardware kernel achieves a
maximum of about ten times faster computation of the anomaly scores than the C version of the
hardware kernel on a 2.9GHz CPU and up to 100 times faster than the C version on the application
processing unit on the ZCU104.

i



Sammendrag

Hyper-Spectral Small-Satellite for Oceanographic Observations (HYPSO) er et p̊ag̊aende opp-
drag p̊a laboratoriet for sm̊a satellitter p̊a Norges Tekniske og Naturvitenskapelige Universitet
(NTNU). Målet med oppdraget er å ta og prosessere hyperspektrale bilder av havet med en satel-
litt. Informasjonen fra de hyperspektrale bildene skal bli brukt til å overv̊ake alge-oppblomstringer
langs Norskekysten. Deteksjon av avvik i hyperspektrale bilder (Hyperspectral Anomaly Detection
(HAD)) er et hjelpemiddel som kan bidra til oppdraget ved å detektere omr̊ader av interesse i de
hyperspektrale bildene som blir tatt autonomt. HAD bilder omhandler det å finne sjeldne piksler
i bildene, som skiller seg klart ut fra sine omgivelser, uten a priori kunnskap om pikslene.

I denne masteroppgaven er en autoenkoder basert metode for HAD adaptert fra [1] og modifisert
for å øke deteksjonspresisjonen. HAD algoritmen bruker en autoenkoder til å lære høy-niv̊a karak-
tertrekk i et hyperspektralt bilde, før denne informasjonen er brukt til å utføre en ny metode for å
regne ut sannsynligheten for at pikslene avviker fra sine omgivelser. En omfattende oversikt over
de siste fremskrittene og tradisjonelle metoder innen deteksjon av avvik i hyperspektrale bilder
er presentert i denne masteroppgaven. Den foresl̊atte HAD algoritmen er evaluert i Matlab og
sammenlignet med kjente HAD algoritmer. Resultatene viser at den foresl̊atte algoritmen oppn̊ar
de tredje høyeste gjennomsnittlige presisjons resultatene p̊a et sett med hyperspektrale bilder som
er mye brukt til evaluering av HAD algoritmer.

En forenklet versjon av den foresl̊atte algoritmen er implementert i programmeringsspr̊aket C. C
er valgt ettersom dette er programmeringsspr̊aket som er brukt i prosesseringen ombord HYPSO
satellitten. En del av den foresl̊atte algoritmen er akselerert i spesialtilpasset maskinvare ved hjelp
av høyniv̊a syntese. En rekke optimaliserings teknikker, inkludert å øke antall operasjoner som
skjer samtidig, er utforsket og sammenlignet.

Til slutt er en maskinvare-programvare partisjonert implementasjon av den foresl̊atte algoritmen
testet p̊a et Zynq Ultrascale+ MPSoC ZCU104 evaluerings brett. C implementasjonen kjører p̊a
applikasjons prossesserings enheten p̊a ZCU104, mens den akselererte delen av algoritmen er imple-
mentert som en maskinvare kjerne i den programmerbare logikken p̊a ZCU104. Den optimaliserte
maskinvare kjernen oppn̊ar maksimalt ca. 10 ganger raskere utregning av resultatene enn C ver-
sjonen kjørt p̊a en 2.9GHz CPU, og ca. 100 ganger raskere enn C versjonen kjørt p̊a prosesserings
systemet p̊a ZCU104.

ii



Preface

This master’s thesis is the last part of my five years at the master’s degree program in Electronics
Systems Design and Innovation at NTNU. Though it has been hard at times, I have enjoyed my
years at NTNU greatly.

Multiple persons have aided me in the process of finishing this master’s thesis. My supervisor
Milica Orlandić has been very supportive and has provided significant assistance on the theoretical
and practical aspects of the thesis. My family and girlfriend have given their full support. I want
to thank my mother, Elise, for all the good discussions regarding the thesis work. My co-students
at the HYPSO project Aksel Danielsen and Sondre Tagestad, have been very important, both
socially and by answering my many questions during the work with this thesis. Lastly, I would like
to thank the project leader of HYPSO, Evelyn Honoré-Livermore, for taking the time to provide
feedback on my work.

iii



Table of Contents

List of Figures v

List of Tables vii

Abbreviations viii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Hyperspectral imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 The HYPSO mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Hyperspectral anomaly detection algorithms . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Double sliding window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Baseline and state-of-the-art hyperspectral anomaly detection algorithms . 12

2.2.4 Deep belief network autoencoder algorithms . . . . . . . . . . . . . . . . . . 16

2.3 Hardware acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Fixed-point representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 High-level synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Hardware accelerated hyperspectral anomaly detection . . . . . . . . . . . . 23

2.4 Datasets for hyperspectral anomaly detection . . . . . . . . . . . . . . . . . . . . . 23

3 Methodology 25

3.1 New weights strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Matlab implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Import and pre-process hyperspectral images . . . . . . . . . . . . . . . . . 28

3.2.2 Deep belief network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



3.3.1 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Comparison with known HAD algorithms . . . . . . . . . . . . . . . . . . . 32

3.3.3 Detection maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Implementation 38

4.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 High-level synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.3 Fixed point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Hardware-software partitioned system . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit . . . . . . . . . . . . . . 49

4.3.2 Hardware-software partitioned system . . . . . . . . . . . . . . . . . . . . . 50

5 Results 53

5.1 Software results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Hardware-software partitioned system results . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Baseline implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Optimized implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.3 Fixed-point implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Discussion 57

6.1 Possible sources of error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Conclusion 60

Bibliography 61

Appendix 65

A Parameter values used to obtain results in section 3.3 65

B Guide to run the system on the ZYNQ Ultrascale+ MPSoC ZCU104 65

C Description of the code-base 66

List of Figures

1 Conceptual illustration of a HSI adapted from [2] . . . . . . . . . . . . . . . . . . . 1

v



2 Illustration of spectral differences between different materials in HSI. . . . . . . . . 2

3 Conceptual illustration of the HYPSO mission operation [3]. . . . . . . . . . . . . . 3

4 Diagram showing the relation between AI, ML and DL, adapted from [4]. . . . . . 5

5 Illustration of an artificial neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Illustration of an artificial neural network. . . . . . . . . . . . . . . . . . . . . . . . 7

7 Illustration of an autoencoder, adapted from [5] . . . . . . . . . . . . . . . . . . . . 9

8 Double sliding window, adapted from [6] . . . . . . . . . . . . . . . . . . . . . . . . 11

9 Illustration of hyperspectral anomaly detection with an autoencoder for a HSI with
5 spectral bands, adapted from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

10 Illustration of an RBM, adapted from [7]. . . . . . . . . . . . . . . . . . . . . . . . 16

11 Illustration of an DBN as a stack of RBMs, adapted from [7]. . . . . . . . . . . . . 17

12 One step of Gibbs sampling to obtain reconstructed representation of visual and
hidden vectors, adapted from [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

13 Illustration of the structure of a FPGA, adapted from [9]. . . . . . . . . . . . . . . 21

14 Design-flow of Vitis HLS, taken from [10]. . . . . . . . . . . . . . . . . . . . . . . . 23

15 Illustration of the possible scenarios when computing the weights, adopted from [1]. 26

16 Algorithm flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

17 Cumulative sum of variances for PCA in the ABU dataset. . . . . . . . . . . . . . 29

18 Detection maps for the four Airport scenes in the ABU dataset . . . . . . . . . . . 35

19 Detection maps for the four Beach scenes in the ABU dataset . . . . . . . . . . . . 36

20 Detection maps for the four Urban scenes in the ABU dataset . . . . . . . . . . . . 36

21 Illustration of the SW implementation. . . . . . . . . . . . . . . . . . . . . . . . . . 38

22 Illustration of BIP format for a 3× 3× 4 HSI cube. . . . . . . . . . . . . . . . . . . 39

23 Overview of HLS code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

24 Load-compute-store kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

25 Illustration of kernel with and without dataflow pragma, adapted from the Vitis
web-page [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

26 Illustration of the implemented HW kernel after applying dataflow and pipeline
PRAGMAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

27 Block diagram of the Ultrascale+ XCZU7EV MPSoC, taken from [12]. . . . . . . . 49

28 Illustration of HW-SW partitioned system on the ZCU104. . . . . . . . . . . . . . 52

29 Result of C implementation compared with result from Matlab. The HSI has di-
mensions 100× 100× 188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

30 Result of C implementation compared with result from Matlab. The HSI has been
pre-processed with PCA dimensionality reduction before testing. The HSI has di-
mensions 100× 100× 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



List of Tables

2 Details of ABU data set, from specialization project [13] . . . . . . . . . . . . . . . 24

3 Notation used in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Expected values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Values obtained with the weights proposed for AWDBN . . . . . . . . . . . . . . . 26

6 Values obtained with the new weights . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 The HAD algorithms that are used in the evaluation of the HAD algorithm proposed
in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 AUC scores for the ABU-dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9 Execution times results in seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

10 Execution times results in seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

11 Latency of the different sub-functions of the HW kernel with and without the
pipeline PRAGMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

12 HW resource utilization with and without pipeline PRAGMA. . . . . . . . . . . . 47

13 Latency of the different sub-functions of the HW kernel with and without the
dataflow PRAGMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

14 Loss of accuracy for different fixed-point precisions . . . . . . . . . . . . . . . . . . 48

15 Loss of accuracy for different fixed-point precisions . . . . . . . . . . . . . . . . . . 48

16 Loss of accuracy for the chosen fixed-point precision . . . . . . . . . . . . . . . . . 48

17 FPGA resources on the ZCU104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

18 Execution times in seconds for the DBN HADs . . . . . . . . . . . . . . . . . . . . 54

19 FPGA utilization of baseline HW kernel. . . . . . . . . . . . . . . . . . . . . . . . . 55

20 Latency of baseline HW-SW partitioned system. . . . . . . . . . . . . . . . . . . . 55

21 FPGA utilization for optimized HW kernel. . . . . . . . . . . . . . . . . . . . . . . 55

22 Latency for Optimized HW-SW partitioned system. . . . . . . . . . . . . . . . . . 56

23 FPGA utilization for optimized HW kernel using fixed point representation. . . . . 56

vii



Abbreviations

ABU Airport–Beach–Urban
AE Autoencoder
AED Attribute and Edge-preserving filters Detector
AI Artificial Intelligence
AMBA Arm Advanced Microprocessor Bus Architecture
AN Artificial Neuron
ANN Artificial Neural Network
APU Application Processing Unit
ASIC Application-Specific Integrated Circuit
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
AWDBN Adaptive Weights Deep Belief Network
AUC Area Under Curve
AXI Advanced eXtensible Interface
BIP Band Interleaved by Pixel
BP Backpropagation
BRAM Block Random Access Memory
CD Contrastive Divergence
CLB Configurable Logic Block
CRX Causal RX
CRD Collaborative Representation Detector
CPU Central Processing Unit
DAE Denoising Autoencoder
DBN Deep Belief Network
DL Deep Learning
DSP Digital Signal Processor
DSW Double Sliding Window
DWRX Dual Window RX
FeFR-RX Fractional Fourier Entropy RX
FF Flip-Flop
F-MGD Fast Morphological and guided filters Detector
FN False Negatives
FPGA Field-Programmable Gate Array
FPR False Positive Rate
GD Gradient Descent
GRX Global RX
HAD Hyperspectral Anomaly Detection
HDL Hardware Description Language
HLL High-Level Language
HLS High-Level Synthesis
HSI Hyperspectral Image
HW Hardware
HYPSO Hyper-Spectral Small-Satellite for Oceanographic Observations
I/O Input/Output
IP Intellectual Property
KRX Kernel RX
LRX Local RX
LUT Look-Up Table
ML Machine Learning
MPAF Morphological Profile and Attribute Filters
NTNU Norwegian University of Science and Technology
PCA Principal Component Analysis
PDF Probability Density Function
PUT Pixel Under Test
RBM Restricted Boltzmann Machine
RMSE Root Mean Square Error
RX Reed-Xiaoli Detector

viii



ROC Receiver Operator Characteristics
RTL Register-Transfer Level
SW Software
SAE Sparse Autoencoder
SDBP Spatial Density Background Detector
SVDD Support Vector Data Description
SW Software
TP True Positive
TPR True Positive Rate

ix



1 Introduction

1.1 Motivation

The surface of planet Earth consists of roughly 70 percent water, with the clear majority being held
by the ocean. Information about the ocean is essential to understand the impact of human activity
and the challenges of climate change we are facing in the near and distant future. Ocean monitoring
has traditionally been performed by ships, airplanes, and satellites carrying a wide range of sensors.
The utilization of ships and airplanes for ocean monitoring has severe limitations and obstacles
due to the size and harsh conditions of the oceans. Satellites can cover large geographical areas
in a short space of time compared to ships and airplanes. The advances in technology in recent
years have enabled the gathering of detailed information from space by using methods such as
hyperspectral imaging [3].

1.1.1 Hyperspectral imaging

Hyperspectral imaging is a method that combines the aspects of traditional imaging and spectrom-
etry to obtain both spectral and spatial information about an area or object. Common images are
acquired by measuring reflected visible light and obtaining the intensity of the colors red, green,
and blue. The intensity of these three colors determines how each pixel of the image should present
a graphical representation of the captured object or area. Spectrometry is the measurement of the
intensity of electromagnetic radiation at different wavelengths. A hyperspectral camera combines
these two methods by measuring the intensity of hundreds of narrow frequency bands in the elec-
tromagnetic spectrum for each pixel. A Hyperspectral Image (HSI) consists of 2 spatial and one
spectral dimension and is commonly represented as a cube [14]. Figure 1 illustrates the construc-
tion of a HSI with the two spatial dimensions w and h and the spectral dimension λ representing
different wavelengths. The Figure further shows how the HSI cube can be viewed both as a stack
of two-dimensional greyscale images captured at different wavelengths or as an image where each
pixel contains a spectrum.

Grayscale Image
 captured at

R
ef

le
ct

an
ce

Spectral signature in pixel

Figure 1: Conceptual illustration of a HSI adapted from [2]

1



The spectrum that each pixel contains in a HSI is called a spectral signature and can be used
to detect similarities and differences between pixels that are not visible to the human eye. The
high spectral resolution gives a highly detailed representation compared to common imaging and
is therefore rapidly emerging as the technique utilized in remote sensing [14].

1.1.2 Remote sensing

Remote sensing concerns techniques for obtaining information about the Earth from a distance.
The information is commonly acquired by measuring the reflected radiation of the electromagnetic
spectrum from Earth with sensors onboard satellites or airplanes. Technological advances have led
to an increased interest in utilizing hyperspectral cameras for remote sensing. The information is
more detailed than common digital images and can be used to perform more accurate detection,
and monitoring of objects and phenomena on earth [15]. The spectral signature that each pixel of
a HSI contains promotes the classifying of different materials as shown in Figure 2.

R
ef
le
ct
an
ce

Mountain
R
ef
le
ct
an
ce

Sky

R
ef
le
ct
an
ce

Cloud

Figure 2: Illustration of spectral differences between different materials in HSI.

Target detection is a widely used method in remote sensing that seeks to detect specific observations
such as hurricanes, oil spills, wildfires et cetera. There are two categories of target detection, namely
supervised and unsupervised. Supervised target detection requires a priori information about the
target, which most commonly is the target’s spectral signature. Unsupervised target detection is
named Anomaly Detection and does not require any a priori information regarding the target. The
definition of an anomaly is an unfamiliar and infrequent instance that notably stands out from
most other instances in the same data set. HAD aims at detecting rare spectral signatures that
clearly stand out from their neighboring pixels [16, 17].

1.1.3 The HYPSO mission

NTNU Small Satellite Lab is an initiative aimed at growing the space-technology environment at
the NTNU. More specifically, the initiative aims at increasing the focus on the design and develop-
ment of small satellites. A common type of small satellite is the cube satellite [18] constructed by
a number of 10 cm x 10 cm x 10 cm cubes. The Cube satellite is a popular choice in universities
seeing as they are significantly less expensive and faster to design than other alternatives.

2



The HYPSO mission is currently in operation at the NTNU small satellite Lab. The participants
are a combination of professors, PhD-students and master’s students all collaborating to achieve
the following objectives as stated in [3]:

• To provide and support ocean color mapping through a Hyperspectral Imager payload, au-
tonomously processed data, and on-demand autonomous communications in a concert of
robotic agents at the Norwegian coast.

• To collect ocean color data and to detect and characterize spatial extent of algal blooms,
measure primary productivity using emittance from fluorescence generating micro-organisms,
and other substances resulting from aquatic habitats and pollution to support environmental
monitoring, climate research and marine resource management.

• Build strong competence and strengthen the prospect of nano- and micro-satellite systems as
supporting intelligent agents in integrated autonomous robotic systems dedicated to marine
and maritime applications in Norway and internationally, these being applicable to commu-
nications and remote sensing (altimetry, SAR, radiometry etc).

Figure 3: Conceptual illustration of the HYPSO mission operation [3].

Anomaly detection results are an essential part of the autonomously processed data that the
mission aims to provide. The downlink step of the operation provides a limited data rate, and it
is an advantage to autonomously find regions of interest within the HSI onboard the satellite. The
regions of interest in the captured HSI can be sent to the ground station instead of the entire HSI,
saving both time and power. Another possible use is to perform supervised target detection on
the areas of interest, which is less time-consuming than performing it on the entire HSI.

1.2 Main contributions

The main objective of this thesis is to provide the HYPSO mission with an implementation of
a state-of-the-art HAD algorithm. The implementation should fulfill the requirements necessary
to be added to the HYPSO onboard processing pipeline. The algorithm must be evaluated and
compared with baseline and state-of-the-art HAD algorithms to verify that the chosen algorithm
achieves state-of-the-art results. Research questions related to this objective are as follows:

3



1. What are the most recent advances in hyperspectral anomaly detection?

2. How can a HAD algorithm be evaluated?

3. What are the strengths and weaknesses of the current state-of-the-art algorithms for HAD?

4. How much can the execution time of the proposed HAD algorithm be improved by hardware
acceleration?

The main contributions of the thesis are listed below:

• An extensive review of known baseline and state-of-the-art HAD algorithms.

• Evaluation of a HAD algorithm adapted and improved from an existing state-of-the-art
algorithm in Matlab. The algorithm is compared with 11 known baseline, and state-of-the-
art HAD algorithms using 13 real HSIs.

• Software implementation in C and C++ programming languages of a simplified version of
the proposed HAD algorithm.

• Acceleration in hardware of a part of the software implementation using High-Level Synthesis.

• Comparison between different optimization techniques in the High-Level Synthesis imple-
mentation.

• Verification of the implemented hardware-software partitioned HAD system on a Zynq Ul-
traScale+ MPSoC ZCU104 Evaluation Kit.

1.3 Outline of thesis

The thesis is organized as follows: Chapter 2 contains background theory on HAD algorithms
and technologies utilized in the implementation of the HAD algorithm proposed in this thesis.
Chapter 3 describes the methodology of the proposed HAD algorithm and how it is evaluated
and compared to other HAD algorithms in Matlab. Chapter 4 describes the implementation
of the proposed HAD algorithm in C-programming language and how a part of the algorithm is
accelerated in customized hardware. Chapter 5 shows the results. Chapter 6 gives a discussion
on all aspects covered in the thesis. Chapter 7 gives the conclusion.

4



2 Background

This chapter describes the theoretical aspects used in implementing and evaluating the HAD
algorithm proposed in this thesis. The chapter starts by describing deep learning and autoencoders
because autoencoders are the basis of the algorithm. The second part of this chapter describes
what HAD is and several known HAD algorithms that are used in the evaluation of the proposed
HAD. The third part of this chapter describes the concept of hardware acceleration and tools that
can be utilized for hardware acceleration. The last part describes the hyperspectral datasets that
are used for testing in this thesis. The background on deep learning, HAD and the datasets are
adapted from the specialization thesis of the author [13] and elaborated upon.

2.1 Deep learning

Artificial Intelligence (AI) is a widely researched field in computer science that originates from the
desire to mimic human intelligence using machines. The prime objective in the field of AI is to
understand intelligence and how it can be employed in machines to perform valuable tasks [19].

Machine Learning (ML) is a collective expression for a range of methods related to AI that aims to
enable computer applications to independently and automatically adapt to a specified task based on
experience. ML methods are commonly designed to learn how to identify patterns in data and use
the discovered patterns to predict subsequent data or make decisions. ML methods are categorized
as either supervised or unsupervised based on the use of labeled training data. Labeled training
data is input representing the input that the application will be provided with after training.
The labeled training data also contains the correct outputs that the program should provide from
the corresponding inputs. By using the labeled training set, the supervised methods train the
application to produce the desired outputs when exposed to the different inputs. Unsupervised
ML methods do not rely on a priori knowledge about the correct output of the program. The aim
is instead to identify patterns that stand out as interesting based on the input data. Unsupervised
ML is commonly considered a more ambiguous field than supervised ML since the correct behavior
is not accurately defined [20].

Deep Learning (DL) is a subset of ML where Artificial Neural Networks (ANNs) are utilized to
learn high-level features from large data sets. ANNs are logic structures that are designed roughly
inspired by neuroscience [4]. The relation between AI, ML, and DL is illustrated in Figure 4.

AI
Creating artificial systems that

are able to mimic human
intelligence 

ML
Algorithms used in AI that
learn how to improve on a

spesific task based on
experience 

DL
ML methods utilizing

artificial neural
networks to learn

from large data sets 

Figure 4: Diagram showing the relation between AI, ML and DL, adapted from [4].

ANNs are built up by Artificial Neurons (ANs) as shown in Figure 5.

5



Input Weights Sum Bias Activation
function Output

Figure 5: Illustration of an artificial neuron.

The mathematical expression for y from a single AN as illustrated in Figure 5 is given as

y = φ((

n−1∑
i=0

wixi) + b), (1)

Where parameters xi and wi are elements i of the input vector x and the weight vector w both of
length n respectively. Parameter b is the bias value belonging to the AN and the function φ() is
a non-linear activation function. The activation function plays a vital part in learning non-linear
patterns of high complexity [21]. Examples of activation functions are the Sigmoid function

φ(x) =
1

1− e−x
, (2)

the Tanh function

φ(x) = tanh(x), (3)

the ReLu
φ(x) = max(0, x), (4)

and the Leaky-ReLu

φ(x) = max(αx, x). (5)

Figure 6 shows how several ANs build up an ANN. In the Figure, each circle in the hidden layers
represents an AN. The lines between the layers represent the weights. The word deep in DL
originates from the multiple layers that the ANN is constructed by. This Figure shows a feed-
forward ANN where the information moves in a single direction.

6



Figure 6: Illustration of an artificial neural network.

The mathematical expression for the entire ANN is derived by using matrices to represent the
weights, biases, inputs, and outputs. The input and output can be of different lengths and are
represented as (1×n) and (1×m) arrays where n is the number of inputs, and m is the number of
outputs. The hidden layers are the layers between the input and output layers. nl is the number
of ANs that layer l consists of, and K is the number of hidden layers. W(l) is a (nl×nl+1) matrix
containing all weights between layer l and the following layer. The equation used to obtain the
first hidden layer h(1) is

h(1) = φ(xW(0) + b(0)). (6)

The remaining (K-1) hidden layers are obtained by

h(l+1) = φ(h(l)W(l) + b(l)). (7)

The output is lastly obtained by using

y = φ(h(K)W(K) + b(K)). (8)

2.1.1 Training

An ANN learns how to identify patterns in the input by training. The training is a process that
makes minor alterations in the weights and biases in numerous iterations. The direction of change
is calculated by taking the derivative of a loss function with respect to the adjustable parameters
of the ANN, namely the weights and biases. The loss function is a function that aims to map the
weights and biases of the ANN to a single number that represents the performance of the ANN.
This method is called Gradient Descent (GD) since it utilizes the gradient of the loss function to
repeatedly move in the opposite direction of the gradient to decent in the loss function [22].

GD training relies on the ability to find the gradient of the loss function. Backpropagation (BP) is

7



a technique that efficiently computes the gradient of a given loss function in a feed-forward ANN
by utilizing the chain rule of derivatives [23]

∂z(y(x))

∂x
=
∂z(y(x))

∂y
· ∂y(x)

∂x
. (9)

BP propagates backward one layer at a time while computing the derivatives of each layer. The
following mathematical derivation of the GD and BP techniques follows the description in [6]. A
commonly used loss function L that is a function of Wl and bl for all layers l is defined as

L =
1

2

m−1∑
i=0

(yi − ti)2, (10)

where parameter yi is element i in the output vector of length m. Parameter ti is the corresponding

desired result from the labelled training set. The notations z
(l+1)
j =

∑Nl
i=1W

(l)
i,j h

(l)
i + b

(l)
j and

∂
(l)
i = ∂L

∂z
(l)
i

are used in the following derivation to increase readability. Using this notation and

equations 6, 7 and 8 for the propagation in ANNs we can express element j in hidden layer l as

h
(l)
j = φ(z

(l)
j ). (11)

To calculate the gradient of L for layer l we need the two derivatives

∂z
(l+1)
j

∂W
(l)
i,j

= h
(l)
i (12)

and

∂z
(l+1)
j

∂b
(l)
j

= 1. (13)

If the activation function is chosen to be the Sigmoid (equation 2), the derivative of φ() is

∂φ(z
(l)
j )

∂z
(l)
j

= (1− φ(z
(l)
j ))φ(z

(l)
j ). (14)

The BP algorithm starts at the last layer K by computing

∂
(K)
i = (yi − ti)

∂φ(z
(K)
i )

∂z
(K)
i

, (15)

before propagating in a backward fashion while computing

∂
(l)
i =

∂φ(z
(l)
i )

∂z
(l)
i

· (
Nl+1∑
j=1

W
(l)
i,j ∂

(l+1)
j )) (16)

for each layer l. When the algorithm has propagated through all the layers of the ANN, the
gradients for each neuron in each layer can be calculated by

∂L

∂W
(l)
i,j

= h
(l)
j · ∂

(l+1)
i (17)

8



and

∂L

∂b
(l)
i

= ∂
(l+1)
i . (18)

BP obtains these gradients for each iteration of the GD algorithm. For each iteration up to the
total number of iterations T , the gradients are used to update the weights and biases with

W
(l)
i,j = W

(l)
i,j − ε

∂L

∂W
(l)
i,j

(19)

and

b
(l)
i = b

(l)
i − ε

∂L

∂b
(l)
i

. (20)

The parameter ε is called the step ratio and influences the amount of change per iteration.

2.1.2 Autoencoders

An autoencoder (AE) is a type of ANN where the objective is to compress and decompress the
input in an efficient manner with minimal loss of information. The overall behavior of an AE is to
encode the input to a code representation and then decode the code representation to an output
as close to the original input as possible. The most widely used application is dimensionality
reduction, where the code representation is in a lower dimension than the in- and output. An AE
can be used as an unsupervised ANN where it uses the inputs as desired outputs and thus does not
need labeled training data to learn and improve on the task it is performing [4]. Figure 7 shows
how an AE is composed of two parts, namely the encoder and the decoder. The layer located in
between the two parts is called the code layer and contains the code representation of the input.

Code-layer
Representation

Input
Reconstructed

input

Encoder Decoder

Figure 7: Illustration of an autoencoder, adapted from [5]

9



The loss function for a regular AE is

L =
1

2

n∑
i=1

(x̂i − xi)2, (21)

where parameters x̂i and xi are the i-th elements in the output and input, respectively. Multiple
modifications of the AE emphasize different aspects during training. Sparse AEs (SAEs) emphasize
sparsity in training, meaning that most neurons in a layer or network are inactive (output sat to
zero). Makhzani and Frey state that emphasizing sparsity can lead to better performance for
AEs on classification-related problems in [24]. SAEs include a training criterion Ω(c) for the code
layer c in the loss function. Multiple implementations of Ω(c) have been proposed in the past. A
commonly used implementation can be found in [25]. The loss function for a SAE is then

Lsparse =
1

2

n∑
i=1

(x̂i − xi)2 + Ω(c). (22)

Denoising AEs (DAEs) use the original loss function instead of adding a criterion. The difference
is that DAEs add random noise to the input and penalize the difference between the original input
and the output computed with the noisy input. The random noise forces the AE to become more
robust during training and find the most critical structures in the input [4, 26].

2.2 Hyperspectral anomaly detection algorithms

The desire to detect small, peculiar objects or phenomena in large geographical scenes has led
to many HAD algorithms being proposed over the recent decades. The HAD algorithms vary
significantly in methodology, but all share the following objectives [16]:

• Increasing the percentage of rightly detected anomalies while decreasing the percentage of
falsely detected anomalies.

• Low computational cost since real missions often demand proximity to real-time processing
of the pixels as they are captured.

• High robustness to changing conditions in the HSI and the varying nature of anomalies.

The percentage of falsely detected anomalies, commonly called false alarm rate, is sensitive to
noise in the HSI, complex geographical scenery, borders between materials, et cetera. The desire
for near real-time processing originates from time-sensitive applications such as wildfire detection,
war-zone detection, and other cases where detection requires an immediate response. An anomaly
is unknown, which also applies to the size and shape of the anomaly. The size of a true anomaly
can range from sub-pixel to multiple pixels resulting in the need for algorithms that are robust in
regards to detecting anomalies of varying sizes and shapes [16].

The most frequently utilized HAD algorithms are based on statistical or geometrical modeling [27].
Statistical modeling methods model the background of the HSI with known Probability Density
Functions (PDFs). The parameters of the chosen PDF are estimated using the data from the
HSI before the algorithm searches for spectral signatures in the HSI that significantly deviate
from the estimated model. Most statistical methods utilize a model PDF related to the Gaussian
distribution. Real HSIs tend to fit the model PDFs poorly, leading to high false alarm rates [17].
Contamination from anomalous pixels in the estimated model is a challenge for statistical methods.
When no a priori knowledge of the target spectral signature exists, the whole HSI, including the
anomalies, contributes to estimating the background statistics. The most widely used statistical
HAD algorithm is the Reed-Xiaoli Detector (RX) proposed in 1990 [28]. RX models the background
with a multivariate Gaussian distribution before searching for spectral signatures that deviate from
the model. RX is considered the benchmark HAD algorithm and is often used to compare and

10



evaluate novel approaches. After 1990, many variations of the RX optimized for one or more of
the objectives listed above has been proposed. Geometrical methods model the background by
extracting or computing rudimentary spectral signatures or bases from the HSI. The assumption
is that all background pixels can be represented by these spectral components, while anomalous
pixels cannot. The Signal Sub-Space Processing Detector [29] is a widely used geometrical HAD
method. It utilizes linear transformations called Singular Value Decomposition [30] to obtain a set
of bases that represent the background. The spectral signatures of the HSI are projected down on
the subspace created from the obtained bases, and the assumption is that this will separate the
background pixels from the anomalous pixels. HAD algorithms can be split into local and global
methods. Global HAD algorithms use all pixels in the HSI to compute the anomaly score for the
Pixel Under Test (PUT), while local HAD algorithms only utilize surrounding pixels. A widely
utilized tool that enables HAD algorithms to locate local fractions of HSIs is the Double Sliding
Window (DSW).

2.2.1 Double sliding window

Figure 8 illustrates the composition of a DSW, where winner and wouter are the widths of the two
squares.

X

X
X

X
X
X
X
X
X
X

X
X

X XXX X XX X XX X

X X XX X XX XX

X

X X
XX

X X

X X
XX

X X

X XX
X X

X XX
X X X

X
X X

X
X
X

X

X X

X

X
X

X

X

X X X
XX

X

X X
XX

X X
X X

XX

X X

X X
XX

X X

X X
XXX

X

X
X

X X XX X

X X XX X

X
X

X
X
X
X
X
X
X

X
X

X

X

X X

X = PUT

X = Ignored pixels

X = Selected pixels

X
X

X
X
X
X

X
X

X
X
X
X

X
X

X
X
X
X

X
X

X
X
X
X

XX X XX X XX X

XX X XX X XX X
X

X

Figure 8: Double sliding window, adapted from [6]

The PUT is the center of two squares of different sizes. The pixels inside the smallest square are
not used in computations because of an assumption that anomalies can be of approximately the
same size as the inner square. The PUT is rather compared with the pixels that are contained
between the two square windows. The window slides over all pixels in the HSI such that each
PUT is compared with its locally surrounding pixels and given an anomaly score representing the
calculated probability that the pixel is anomalous. By changing the size of both windows, it is
possible to control the number of pixels included in computing the anomaly score for the PUT.

2.2.2 Dimensionality reduction

Dimensionality reduction is a method that is widely used in the field of hyperspectral image
processing. The objective of dimensionality reduction in hyperspectral image processing is to
reduce spectral bands in the HSI cube while preserving as much of the information as possible.
Dimensionality reduction reduces the size of the HSI cube, which reduces memory utilization.
Dimensionality reduction also reduces the computational complexity of processing the HSI cube
by reducing the number of bands. HSIs can consist of hundreds of spectral bands per pixel,

11



where a significant part of them does not carry relevant information for anomaly detection. The
two dimensionality reduction methods, Principal Component Analysis (PCA) [31] and Maximum
Noise Factoring [32] are among the most utilized dimensionality reduction methods for HAD.

2.2.3 Baseline and state-of-the-art hyperspectral anomaly detection algorithms

HAD is an emerging field of study, and there are many publications in recent years proposing
new methods. Current state-of-the-art approaches to HAD include machine learning algorithms,
variants of the RX algorithm, morphological attribute filters, and collaborative representation.
The algorithms described in this section are widely cited as either baseline or state-of-the-art HAD
algorithms and used for comparison in very recent literature.

The original Global RX Detector (GRX) was proposed by Reed and Yu in 1990 [28]. GRX is a
binary hypothesis test where each pixel in the HSI is either a background pixel or an anomalous
pixel. The pixels are assumed to be distributed in a multivariate fashion with

PDF (x) =
e−

1
2 (x−µ)

TΣ−1(x−µ)√
(2π)n|Σ|

, (23)

where n is the number of bands in pixel x. µ is the mean of the pixel vectors estimated by all K
pixels in the HSI with

µ =

∑K−1
i=0 xi

K
. (24)

The parameter Σ is the covariance matrix estimated from all K pixels in the HSI. The GRX uses
Mahalanobis distance [33] together with the estimated parameters of the multivariate Gaussian
distribution [20] to obtain the detector

DGRX(x) = (x− µ)TΣ−1(x− µ). (25)

The Local RX (LRX) utilizes a DSW as described in section 2.2.1 to estimate the covariance and
mean locally around the PUT, instead of for the entire HSI. This increases the latency significantly
since the parameters must be estimated again for each pixel. The detector is given as

DLRX(x) = (x− µlocal)
TΣ−1

local(x− µlocal). (26)

The Dual Window RX (DWRX) [34] uses the DSW differently than the LRX. The pixels inside the
inner window are used to calculate a mean µinner that replaces the PUT in the detector instead
of disregarding it. This leads to the detector

DDWRX(x) = (µinner − µlocal)
TΣ−1

local(µinner − µlocal). (27)

The Causal RX (CRX) [35] is a HAD algorithm motivated by the desire to achieve real-time
processing of the pixels as they are captured. The other RXs all rely on computing the µ and Σ
making real-time implementation impossible. To compute the anomaly score for pixel k, the CRX
utilizes the sample correlation matrix defined as

R(xk) =

∑k
i=1 xix

T
i

k
, (28)

12



to create the detector

DCRX(xk) = xT
k R(xk)−1

localxk. (29)

The Kernel RX (KRX) [36] is a non-linear implementation of the RX. KRX maps the pixel vectors
to a feature-space of higher dimension by utilizing a non-linear function θ(). Kernel functions k()
allow for efficient calculation of the dot-product without the need to identify the mapping function
in the following manner:

k(xi,xj) = 〈θ(xi)θ(xj)〉 = θ(xi) · θ(xj) (30)

A widely used k() for HAD is the radial basis function kernel [34]

k(xi,xj) = e
−||xi−xj||

2

2σ2 . (31)

The Fractional Fourier Entropy RX (FrFE-RX) aims at reducing noise and increasing the difference
between anomalous, and background pixels [37]. The algorithm starts by extracting features with
fractional Fourier transform before applying the RX on the extracted features. This approach leads
to increased performance but also significantly higher latency due to the required pre-processing.

Collaborative Representation Detector

Li and Du proposed the Collaborative Representation Detector (CRD) in [38]. The method relies
on the assumption that it is possible for pixels belonging to the background class to be roughly
represented by pixels surrounding it spatially. At the same time, it is impossible for anomalous
pixels. A significant drawback for this method is its low flexibility seeing as the number of sur-
rounding pixels to include in the computation must be pre-defined. Another drawback is that,
like the RXs, the anomalous pixels contaminate the calculations when they are included in the
surrounding area leading to higher false alarm rates.

For a pixel, x the surrounding pixels are found with a DSW as described in section 2.2.1. Xs is a
matrix containing all the surrounding pixels, and α is an array of weights. The Lagrange multiplier
is denoted as λ. The CRD algorithms objective is to compute α in a way that minimizes

argmin
α
||x−Xsα||22 + λ||α||22. (32)

The solution to the equation above, as described in [38], is

α̂ = (XT
s Xs + λI)−1XT

s x, (33)

and the detector is then

DCRD = ||x−Xsα̂||2. (34)

Li and Du also elaborate on the above detector by further optimizing the expression for obtaining
α̂. Please refer to [38] for more details on the optimized CRD algorithm.

The Spatial Density Background Purification (SDBP) Detector described in [39] aims at reducing
anomaly contamination. The algorithm is pre-processing the HSI with a density peak clustering
algorithm before employing the CRD algorithm. This pre-processing step is reported to increase
both the accuracy and latency of the CRD.

13



Attribute filters

Attribute filters have in recent years emerged as a technique for HAD. Attribute filters refer to
adaptive morphological filters and were first introduced in [40]. They can be utilized in HAD to
exploit the spatial relationship between pixels belonging to the same class. Before the filtering,
connected components of the HSI built up by pixels connected by a given connectivity rule must
be found as described in [41]. The attribute filter then decides to either keep or remove each of the
connected components based on a size predicate TSizeThreshold. If the size of the connected component
is larger than the threshold, the predicate is true, and if the size is smaller than the threshold, the
predicate is false. Based on the assumption that anomalies are small, the anomalies are extracted
from the HSI by the size of the connected components. The size attribute is the one most used in
HAD algorithms, but other attributes are available.

The Attribute and Edge-preserving filters Detector (AED) proposed in [27] starts by pre-processing
the HSI cube to find the principal component in the spectral dimension and uses this to represent
the HSI as a grey-scale image. The anomalies are separated from the background using an attribute
filter with a pre-defined size threshold. After the separation of the two classes, an edge-preserving
filter described in [42] is used for post-processing to increase the detection accuracy by removing
incorrectly classified anomalous pixels. This HAD provides high accuracy and low execution time,
but there are several drawbacks. The AED is highly sensitive to wrong thresholds for the size
predicate since too high thresholds lead to background pixels being wrongly classified as parts of
the anomalies. Low thresholds lead to larger anomalies being wrongly classified as background.

The Morphological Profile and Attribute Filters Detector (MPAF) proposed by Andika et al. and
described in [43] reduce the dimension in the spectral domain by using a novel approach to improve
the execution time. After selecting one spectral band, morphological profiles as described in [41]
are used to separate the anomalies from the background before the anomalies are filtered with an
attribute filter to remove pixels wrongly classified as anomalies. Andika et al. also describes an
algorithm to calculate a suiting threshold for the attribute filters to improve the drawback of the
AED.

Autoencoder-based HAD algorithms

AE-based HAD algorithms exploit how an AE learns to compress and decompress input when
trained, combined with the assumption that anomalies are rare occurrences. When an AE is
configured to compress and decompress a HSI pixel-wise after being trained on that or a similar set
of HSIs, the concept is that it has been thoroughly exposed to background pixels but only negligibly
exposed to anomalous pixels during training. This leads to significantly higher reconstruction errors
for the Anomalous pixels than the background pixels. Figure 9 illustrates the use of an AE in the
context of hyperspectral anomaly detection.

14



PUT

PUT

PUT

Figure 9: Illustration of hyperspectral anomaly detection with an autoencoder for a HSI with 5
spectral bands, adapted from [1].

The difference r between the original pixel x and the reconstructed representation of the original
pixel x̂ is calculated as the root mean square error (RMSE) and used as the anomaly score. The
expression to compute r for the PUT is

r =

√√√√ 1

n

n−1∑
i=0

(x̂i − xi)2. (35)

An advantage of using an AE is that while statistical models strive to estimate the parameters of a
PDF that most likely is a sub-optimal fit, an autoencoder learns to represent the background pixels
through training. The autoencoder-based HAD algorithms provide highly competitive results in
both accuracy and execution time, thus leading to a range of different methods being proposed
since it was first introduced in the field of hyperspectral anomaly detection. The drawbacks of the
described method are that it does not utilize spatial information and that many parameters can
be hard to choose optimally. Bati et al. published a paper describing a HAD algorithm utilizing a
sparse AE in 2015 [44]. Chang et al. proposed a HAD algorithm utilizing a sparse AE combined
with a DSW to perform the anomaly detection in [45]. This approach used the DSW to train the
AE locally and thus incorporating spatial information in the HAD algorithm. Denoising AEs are
used combined with PCA in the HAD algorithm described in [26]. The HSI is initially altered by
reducing the dimension of the spectral domain with PCA before it is exposed to whitening as a
part of the pre-processing. The resulting pixels are fed to an AE to learn the complex features of
the HSI, which are then used as input to a GRX that computes the anomaly score.

15



2.2.4 Deep belief network autoencoder algorithms

Ma et al. describe a HAD algorithm that uses a Deep Belief Network (DBN) AE in [7]. A DBN
is an ANN with a distinctive structure consisting of layers of ANs that can be considered a stack
of Restricted Boltzmann Machines (RBMs). RBMs are ANNs consisting of two layers, namely
the visual and the hidden layer, formed as a complete bipartite undirected graph as illustrated in
Figure 10.

Figure 10: Illustration of an RBM, adapted from [7].

DBNs have been a popular choice when designing ANNs consisting of multiple layers since Hinton
proposed a method for efficiently training each layer as a RBM before training the entire DBN
together in [46]. This method is called Contrastive Divergence (CD) and lets the hidden neurons
of the RBM learn the essential patterns in the data that is fed to its respective visual layer during
this pre-training. The first RBM uses the input as its visible layer and has one hidden layer, as
shown in the Figure above. The following RBM uses the hidden layer from the previous layer as
its visible layer such that a N -layer DBN consists of (N − 1) RBMs where the hidden layer of the
(N − 1)-th RBM is the output of the DBN. Figure 11 illustrates how a DBN autoencoder with
three layers is constructed using two RBMs.

16



RBM1 RBM2 DBN

Figure 11: Illustration of an DBN as a stack of RBMs, adapted from [7].

The below theoretical description of RBMs and derivation of CD pre-training follows the descrip-
tions in [47] and [48]. They are included here because the HAD algorithm implementation described
in this thesis utilizes a DBN AE that is pre-trained using CD before it is fine-tuned with GD and
BP. The theoretical description considers the case where the hidden and visual neurons of the
RBM are binary values. However, the resulting training algorithm is shown to be efficient for
continuous-valued inputs between 0, and 1 [47]. The energy function of a joint configuration of
both layers (v,h) ∈ {0, 1}n+m, where v is a vector with the values of the n visible neurons and h
is a vector with the values of the m hidden neurons, is described in [49] as

E(v,h) = −
n−1∑
i=0

aivi −
m−1∑
j=0

bjhj −
n−1∑
i=0

m−1∑
j=0

vihjwi,j , (36)

where parameter wi,j is the weight between vi and hj . The parameter ai is the bias value for the
i-th visible neurons and bj for the j-th hidden neuron. All existing pairs of vectors for the two
layers are assigned the probability

p(v,h) =
e−E(v,h)∑
v,h e

−E(v,h)
, (37)

from the network given by the Gibbs distribution [47]. Further, the probability assigned to a
specific visual vector v is computed by taking the sum of the probabilities for all existing hidden
vectors. The probability is

p(v) =

∑
h e
−E(v,h)∑

v,h e
−E(v,h)

, (38)

where the vector v is the training input. The probability p(v) can be increased by altering the
weights and biases of the network. A technique to determine the direction of change for the
variables is to compute the gradient of the logarithm of the probability. The derivatives presented
in [47] by Fischer and Igel is

∂log(p(v))

∂wi,j
= P (hj = 1|v)vi −

∑
v

p(v)P (hj = 1|v)vi (39)

∂log(p(v))

∂bj
= P (hj = 1|v)−

∑
v

p(v)P (hj = 1|v), (40)

17



and

∂log(p(v))

∂ai
= vi −

∑
v

p(v)vi. (41)

The probabilities are defined as

P (hj = 1|v) = φ(bj +

Nvisible∑
i=1

wi,jvi) (42)

and

P (vi = 1|h) = φ(ai +

Nhidden∑
j=1

hiwi,j). (43)

Contrastive Divergence algorithm

The first terms of the three gradients in equations 39, 40 and 41 are possible to obtain efficiently.
The last terms of all three gradients of the logarithm of the probability given in equations 39,
40 and 41 are computationally expensive to calculate [47]. The CD algorithm efficiently updates
the parameters by using an approximation of these gradients obtained by only performing Gibbs
sampling (described in chapter 17.4 in [4]) k times instead of finding the actual gradients. For a
training vector, v0 all the binary values for the hidden neurons are obtained in parallel by setting
h0j to 0 if the probability in equation 42 is smaller than a uniformly distributed random number

and setting h0j to 1 if it is larger. A reconstructed version of the visual vector v1 is obtained in a
similar fashion using the probability in equation 43 and the calculated hidden vector. Lastly, the
reconstructed v1 is used to compute a reconstructed h1 in the same way as before. This procedure
can be repeated k times, so the CD algorithm is often denoted CDk. The most used version is the
CD1 which is illustrated in Figure 12.

DATA RECONSTRUCTION

Figure 12: One step of Gibbs sampling to obtain reconstructed representation of visual and hidden
vectors, adapted from [8].

With this approximation the learning rules used in CD1 training as described in [47] are

∆wi,j = ε(P (hj = 1|v0)v0i − P (hj = 1|v1)v1i ), (44)

∆ai = ε(v0i − v1i ) (45)

18



and

∆bj = ε(P (hj = 1|v0)− P (hj = 1|v1)). (46)

The parameter ε is the step-ratio used to decide how much the parameters are changed per iteration.

Adaptive weights DBN AE

In [1] Ma et al. elaborated on their proposed DBN HAD algorithm by incorporating spatial infor-
mation of the HSI with an adaptive weights strategy to improve the accuracy. The HAD algorithm
is named Adaptive Weights Deep Belief Network Detector (AWDBN) and is the origin of the HAD
algorithm proposed in this thesis. The following details from the AWDBN are based on the de-
scriptions in [7] and [1]. For a HSI X ∈ IRh×w×nb with spatial height h, spatial width w and nb
spectral bands a N-layered DBN AE is created. After initialization, the (N-1) RBMs in the DBN
are trained with the (w × h) pixels in X in a sequential manner using the highly efficient CD1

algorithm to find a good starting point for fine-tuning the DBN AE. After the pre-training, the
DBN is fine-tuned by regular training with GD and BP, also using the pixels of X as training
data. The HSI is then encoded and decoded pixel-wise with the DBN to create both a code-layer
representation of the HSI C of spectral dimension nc and a reconstructed representation X̂ of
spectral dimension nb. The reconstruction error R ∈ IRh×w is calculated as the pixel-wise RMSE
between X and X̂.

The adaptive weights strategy utilizes a DSW to locate k neighboring pixels in the code-layer
representation {cn

0 , c
n
1 , ..., c

n
k−1} for the PUT. The distance between each of these k neighboring

pixels and the PUT cp are computed in the code representation by

dj =

√√√√nc−1∑
i=0

|cn
j (i)− cp(i)|2. (47)

The k distances are then weighted by

wtj =

{
1
rnj
, if (rnj − µn

r ) < σn
r

pf
rnj
, otherwise,

(48)

where rnj is the reconstruction error for the j-th neighboring pixel. The parameter rnj is obtained
from R with the same DSW that was utilized to find the neighboring pixels in the code-layer
representation. The parameter pf is a penalty factor with a chosen value between 0 and 1, and
µnr is the mean, and σnr is the standard deviation of the neighboring reconstruction errors. The
weights and distances combine to provide the anomaly score β of the AWDBN as

β =
1

k

k−1∑
j=0

wtjdj . (49)

The algorithm is as follows:

1. Create the DBN and perform CD1 pre-training and then fine-tuning with GD and BP.

2. Encode X to C.

3. Decode C to X̂.

4. Compute R with X and X̂.

19



5. Use a DSW to select k neighboring pixels

6. Calculate dj with cp and cn
j for the k neighbors

7. Calculate wtj with rnj and pf for the k neighbors

8. Compute β for the PUT with {wt0, wt1, ..., wtk−1} and {d0, d1, ..., dk−1}

9. Perform steps 5 - 8 for every pixel in the HSI.

2.3 Hardware acceleration

Modern computational applications are mostly implemented and tested initially using Software
(SW) because it allows for rapid and flexible prototyping. SW implementations utilize program-
ming languages with a high level of abstraction that can run on a wide range of different general-
purpose processors. The most common general-purpose processor is the Central Processing Unit
(CPU) which can be implemented in many different manners. When the application behaves as
desired, the designer can improve aspects such as speed, efficiency, and power consumption by op-
timizing the SW, utilizing customized Hardware (HW), or combining the two (HW-SW codesign).
When utilizing customized HW, a high level of abstraction and flexibility is traded for lower latency
and power consumption. HW specialized for one specific task will outperform general-purpose HW
due to reduced overhead, and the use of specialized HW to reduce latency is referred to as HW
acceleration. Application-Specific Integrated Circuits (ASICs) are completely customized HW de-
signed for one specific behavior. ASICs can execute computational tasks very efficiently but are
complex to design and expensive to produce. Furthermore, if an error in the behavior is detected
after the ASICs are produced, it is very hard or impossible to correct it without re-fabricating the
chip. An option that offers similar performance opportunities and significantly higher flexibility is
Field-Programmable Gate Arrays (FPGAs) [9].

Field-programmable gate array

FPGAs are integrated circuits that can be re-programmed many times to change their electrical
behavior after being manufactured. This allows for more flexible and rapid implementation and
testing than ASICs while maintaining most benefits concerning performance. FPGAs are pro-
grammed using Hardware Descriptive Languages (HDLs), where VHDL and Verilog are the most
used. HDLs can describe the behavior of digital logic in three different manners, namely struc-
tural, behavioral, and Register-Transfer Level (RTL), which is the modeling of the flow of signals
between registers. A FPGA is constructed of the five basic elements in the list below [9]:

• Multiplexers

– Multiplexers are logical constructs that output one of 2N input bits based on N separate
selection input bits.

• Flip-Flops (FFs)

– FFs are elementary memory elements that can store one bit of information per FF
between clock cycles.

• Look-Up Tables (LUTs)

– LUTs are simple electrical constructs where the desired output of a Boolean logic func-
tion corresponding to different inputs is stored. The LUTs use Muxes to select which
stored values to access, meaning that for N input bits, 2N elements stored in the LUTs
can be accessed. This is an efficient implementation of a simple logical function where
the solution is referenced rather than computed.

• Interconnected wire matrix

20



– When the FPGA is re-configured to have different behavior, the flow of signals between
computational logic needs to change. Using a matrix of interconnected wires, the route
of the signals in the FPGA can be changed to fit the new design.

• Input/Output (I/O)

– Connections used to send data to and from the FPGA.

Multiplexers, LUTs and FFs are used to construct more complex blocks called Configurable Logic
Blocks (CLBs). The CLBs are connected with the wire matrix to form complex logic circuits that
can be configured to provide the programmed behavior. Block Random Access Memory (BRAM)
is a memory construction commonly used in modern FPGAs to store data on the FPGA and
transfer data to and from the FPGA. Figure 13 illustrates the internal architecture of a common
FPGA.

Figure 13: Illustration of the structure of a FPGA, adapted from [9].

2.3.1 Fixed-point representation

When using floating-point representation to represent variables, the decimal point can be placed
everywhere within the number of bits used. This means that for large numbers, more bits would be
used to represent the integer part, while for small numbers, more bits can be used to describe the
fractional part. Fixed-point differ from floating-point by having a specified location to place the
decimal point. This means that the number of bits representing the integer part and the fractional
part is decided, resulting in less complex math operations. Finnerty and Ratigner states that the
use of fixed-point representation in customized HW can reduce FPGA resource utilization, reduce
power consumption, and improve the latency [50]. Another positive aspect of fixed-point is that
the number of total bits used is flexible. Therefore, the number of bits can be reduced to reduce
the utilization of HW resources.

21



2.3.2 High-level synthesis

High-Level Languages (HLLs) such as Python, C, C++, et cetera offer a high level of abstraction
from binary machine language. HLLs are easier to understand because they use syntax close to
human language and let the designer write algorithmic descriptions without regard to how the
machine will execute it. These aspects allow for faster development of complex applications due to
their more intuitive and understandable nature than low-level languages that require more implicit
programming of the execution in the machine. Because of its low level of abstraction and high
complexity, the design of large systems using HDLs is very time-consuming and requires advanced
engineering skills. High-Level Synthesis (HLS) is a process that allows a designer to create an
application in a HLL and automatically translate it to a RTL description in HDL. This combines
the rapid and flexible development from HLL and the high efficiency, speed, and power consumption
that can be achieved by customizing HW with HDLs.

Vitis HLS

Vitis HLS is a tool provided by Xilinx that allows designers to translate C or C++ code to RTL
to be synthesized to Xilinx devices. The content of this section is derived from the Vitis HLS user
guide [10] unless otherwise specified. The output from Vitis HLS is an RTL Intellectual Property
(IP) that can be flashed to a specified Xilinx device. The main procedure the designer follows
when using Vitis HLS to convert a C/C++ algorithm to a RTL IP is given in the list below:

1. SW Simulation

• The Vitis HLS applications compile and run C/C++ code and output the results.

2. Synthesize

• The Vitis HLS applications synthesize the C/C++ code to create all the necessary RTL
files.

3. HW-SW co-simulation

• The Vitis HLS applications allow the designer to verify the behavior of the generated
RTL by running a co-simulation that simulates the RTL code together with the C/C++
code.

4. Export RTL IP

• When the performance and behavior of the synthesis and co-simulation are satisfactory,
the designer can export the generated RTL IP to be implemented on a Xilinx device
using either the Vivado Design suite or Vitis.

The Vitis HLS tool requires a specific structure in the C/C++ code in order to function. The
C/C++ code must include a testbench where the inputs to the algorithm that will be synthesized
are created. The testbench should also test the behavior of the synthesized algorithm against the
verified behavior in SW to validate that the RTL behaves as desired. In the testbench file, the
tool further requires that the testbench function is named main() and that the code that will be
synthesized is contained in a function called from main(). The function specified for synthesis is
called the top-level function and can consist of any number of sub-functions if they are all called
from the top-level function.

Vitis HLS also allows the designer to apply directives and constraints to the top-level function to
optimize chosen aspects. The directives let the designer configure the synthesis in two manners:
adding HLS PRAGMAS to the C/C++ code and adding optimization directives in a directive
script. The designer can utilize the available directives to optimize the RTL for throughput,
latency and area. Figure 14 illustrates the design-flow of Vitis HLS:

22



Figure 14: Design-flow of Vitis HLS, taken from [10].

2.3.3 Hardware accelerated hyperspectral anomaly detection

There exists only a limited amount of publications that describe HW acceleration of hyperspectral
anomaly detection. The previously described CRD algorithm is accelerated in HW by Wu et al.
in [51]. The most important aspect of their HW acceleration was implementing matrix inversion
and matrix multiplication on the FPGA. Wu et al. reports about three times lower latency with
the FPGA than on a 3.4GHz CPU.

Ma et al. describe an HW accelerated deep learning HAD algorithm in [5]. They use optimization
techniques such as pruning and quantization to reduce the computational complexity of the HAD
algorithm before accelerating it. A multi-objective optimization algorithm is utilized to optimize
the neural network with a low loss of accuracy. The algorithm uses an AE as described in section
2.2. After the optimization process, the trained AE is implemented on a FPGA using HLS, and
the anomaly detection is performed in HW.

Lei et al. describe a HAD algorithm that uses morphological and guided filters (F-MGD) accel-
erated in HW using HLS [52]. The results show that the HW accelerated implementation is 161
times faster or more than the Matlab implementation and 72 times faster or more than the C++
implementation on six real HSIs. The Matlab and C++ results are obtained using a 2.50 GHz
Intel Core (TM) Quad CPU with 8GB RAM and, the HW results are obtained using a Virtex7
FPGA running at 200 MHz [52].

2.4 Datasets for hyperspectral anomaly detection

The Airport–Beach–Urban (ABU) dataset consists of 13 real HSIs tailored to assess HAD algo-
rithms. The HSIs are published by Xudong Kang and can be downloaded without cost1. Each
HSI has a corresponding ground-truth image where all the anomalies have been manually marked.
The HSIs are fractions of larger HSIs captured by Airborne Visible/Infrared Imaging Spectrometer

1http://xudongkang.weebly.com/datasets.html

23



(AVIRIS) or Reflective Optics System Imaging Spectrometer (ROSIS-03). Below is a table from
the author’s specialization project [13] describing the HSIs in the ABU dataset:

Table 2: Details of ABU data set, from specialization project [13]

Scene Image
Spatial

resolution
Pixels Sensor

Capture
year

Capture
place

Bands

Airport (A) 7.1 m 100 x 100 AVIRIS 2011 Los Angeles 205
Airport (B) 7.1 m 100 x 100 AVIRIS 2011 Los Angeles 205
Airport (C) 7.1 m 100 x 100 AVIRIS 2011 Los Angeles 205
Airport (D) 3.4 m 100 x 100 AVIRIS 2010 Gulfport 191
Beach (A) 17.2 m 150 x 150 AVIRIS 2010 Cat island 188
Beach (B) 7.5 m 100 x 100 AVIRIS 2011 San Diego 193
Beach (C) 4.4 m 100 x 100 AVIRIS 2010 Bay Champagne 188
Beach (D) 1.3 m 150 x 150 Rosis-03 Unknown Pavia 102
Urban (A) 17.2 m 100 x 100 AVIRIS 2010 Texas coast 204
Urban (B) 17.2 m 100 x 100 AVIRIS 2010 Texas coast 207
Urban (C) 3.5 m 100 x 100 AVIRIS 2010 Gainsville 191
Urban (D) 7.1 m 100 x 100 AVIRIS 2011 Los Angeles 205
Urban (E) 7.1 m 100 x 100 AVIRIS 2011 Los Angeles 205

In this chapter I have presented the theoretical background deemed relevant for the thesis. Recent
advances in HAD including baseline and state-of-the-art algorithms was researched, and explained.
The research shows that the most recent advances in HAD includes the use of DL, morphological
attribute filters, variants of RX and variants of CRD among others. This is related to research
question number one, regarding the advances in the field of HAD. Theory on HW acceleration
was presented, and previous use in the field of HAD was researched. This is related to research
question number 4, regarding HW acceleration of HAD algorithms.

24



3 Methodology

This chapter describes a HAD algorithm proposed in this thesis that is an altered version of the
AWDBN proposed in [1]. The chapter describes work that was a part of the authors specialization
project in the fall of 2020 [13], which was continued as a part of this thesis. A Matlab implementa-
tion of the proposed HAD algorithm is evaluated and compared with Matlab implementations of
several baseline and state-of-the-art HAD algorithms. The motivation for this process is to ensure
that the proposed HAD algorithm provides competitive results in accuracy and execution time
before it is implemented using C and HLS. The notation used in this chapter is the same as in the
previous chapter and is summarized in the table below:

Table 3: Notation used in this chapter

Symbol Description
nb Number of spectral bands in the HSI
w Number of pixels in one of the spatial dimensions of the HSI
h Number of pixels in the second of the spatial dimensions of the HSI
nc Number of spectral bands in the code-layer representation of the HSI

X ∈ IRh×w×nb The HSI cube

X̂ ∈ IRh×w×nb The reconstructed HSI cube

C ∈ IRh×w×nc The code-layer representation of the HSI cube

R ∈ IRh×w The reconstruction error between X and X̂
k Number of neighboring pixels extracted by the DSW

cn
i ∈ IRnc×1 The i-th of the k neighboring pixels in the code-layer representation

cp ∈ IRnc×1 The PUT in the code-layer representation

di
The i-th of the k distances between the neighboring pixels and the PUT
in the code-layer representation

rni The i-th reconstruction error of the k neighboring pixels
rp The reconstruction error of the PUT
wti The i-th of the k weights
pf The penalty factor used to compute the weights
β The anomaly score for the PUT

3.1 New weights strategy

Six different scenarios can occur when the distance between the PUT and one of the neighboring
pixels is computed. If the PUT belongs to an anomaly class, the neighboring pixel can belong to
the same anomaly class, a different anomaly class, or a background class. If the PUT belongs to
a background class, the neighboring pixel can belong to an anomaly class, the same background
class, or a different background class. Different classes of anomalies can, for example, be boats
and algae blooms in the ocean, while different background classes can be grass and sea. The six
scenarios are illustrated in Figure 15 where (0) shows how dj (computed with equation 47) is the
distance between the PUT and the j-th neighboring pixel in the code-layer representation.

25



(0) (1) (2)

(4) (5) (6)

: Anomaly class 1
: Anomaly class 2

: Background class 1

: Background class 2

(3)

: Anomaly class   

: Background class  

Figure 15: Illustration of the possible scenarios when computing the weights, adopted from [1].

The assumption is that the reconstruction error r for a pixel is high if it belongs to an anomaly class
and low if it belongs to a background class. The distance d is assumed to be high between pixels
that do not belong to the same class and low between pixels that belong to the same class. The
matrix R contains the reconstruction errors for all pixels in the HSI. The reconstruction errors of
the neighboring pixels are extracted from R with a DSW and represented as an array rn containing
the k neighboring reconstruction errors. rnj is the j-th of the k reconstruction errors in rn. The
table below shows what parameters are expected to be high or low for the different scenarios.

Table 4: Expected values

Scenario rp rnj dj Desired β

(1) High Low High High
(2) High High Low High
(3) High High High High
(4) Low Low Low Low
(5) Low High High Low
(6) Low Low High Low

Since the objective is to detect anomalies, β should be high when the PUT is an anomaly and low
for the other scenarios. The weights used in the AWDBN have the following characteristics based
on the above assumptions:

Table 5: Values obtained with the weights proposed for AWDBN

Scenario wtj = 1
rnj

dj β Desired β

(1) High High Very high High
(2) Low Low Very low High
(3) Low High ∼ 1 High
(4) High Low ∼ 1 Low
(5) Low High ∼ 1 Low
(6) High High Very high Low

From the above table, we observe that the adaptive weights wtj used in AWDBN is high in scenario

26



(1) and low in scenario (5), which corresponds with the desired behaviour. Scenario (2) could be
a problem, but the DSW is applied to make it less likely that anomalies from the same class are
compared by having an inner window of a larger size than the anomalies. In scenario (4), the
weights contribute in the opposite direction of what is desired. However, the distance between two
pixels in the same BG class is expected to be very small, reducing the influence of the weights.
Scenario (3) is an infrequent scenario due to the low probability of occurrence defining anomalies,
but the weights also behave wrongly in this scenario. The most significant concern with this weight
strategy is scenario (6), which is considered normal. In this scenario, the weights will assign high
anomaly scores to the border between different background classes leading to higher false alarm
rates. The penalty factor pf is multiplied with the weight when the difference between rnj and
the mean of the other reconstruction errors in the neighboring pixels is larger than the standard
deviation of the reconstruction errors in the neighboring pixels. The penalty factor will commonly
penalize (decrease) weights where cn

i belongs to an anomaly class (scenario (2), (3), and (5)). This
will contribute positively to scenario (5) and poorly to the two others. Based on this, we can
see that scenarios (1) and (5) are significantly improved by the weight strategy, and based on the
results in [1] the overall contribution of the weights is increasing the accuracy for most HSIs.

In order to improve the accuracy, a different weight strategy is proposed. The weights wpj are
computed by

wpj =
rp

rnj
. (50)

This leads to the following characteristics:

Table 6: Values obtained with the new weights

Scenario wtj = rp

rnj
dj β Desired β

(1) Very high High Very high High
(2) ∼ 1 Low Low High
(3) ∼ 1 High High High
(4) ∼ 1 Low Low Low
(5) Very low High ∼ 1 Low
(6) ∼ 1 High High Low

The above table shows that the expected behavior of the new weights resonates well with the
desired behavior. In scenario (1), the weights are increased since they are multiplied with the
assumed high reconstruction error of the PUT. In scenarios (2) and (3), the multiplication with rp

is expected to increase the weight, moving the anomaly score in the correct direction. Scenarios
(4), (5), and (6) will cause the weight to be multiplied by a low rp leading to the desired lower
weights. Reducing the weight in scenario (6) is expected to have the most significant effect since
it will reduce the anomaly score assigned to borders between different background classes.

3.2 Matlab implementation

The proposed HAD algorithm consisting of a DBN AE inspired by [7, 1] and the novel weight-
strategy described in section 3.1 is implemented in Matlab. The implementation is a proof of
concept that is used to evaluate the HAD algorithm and to compare it with the results with other
known HAD algorithms. The flow of the implementation is illustrated in Figure 16.

27



Read the HSI from a
text file and pre-

process it
Initialize the DBN

DBN
Pre-train the DBN
layer-wise with CD
using the HSI as

training data
DBN

Fine-tune the DBN
with GD and BP using

the HSI as training
data

DBN

Encode and then
decode the HSI to

obtain the code-layer
representation and
reconstruction error

Compute the
distances and

weights and use them
to comput the
anomaly score

Figure 16: Algorithm flow.

3.2.1 Import and pre-process hyperspectral images

The datasets containing 13 different HSIs with belonging ground-truth maps are downloaded as
described in section 2.4. A function named loadHSI.m was implemented and lets the user choose
one of the HSIs before pre-processing it in the following manner:

1 if strcmp(HSI.dataset, 'air2')

2 load([path 'abu-airport-2.mat']);

3 HSI.an_map = map;

4 HSI.M_3D = hyperNormalize(data);

5 HSI.M_2D = hyperConvert2d(HSI.M_3D)';

6 [HSI.h, HSI.w, HSI.N_band] = size(HSI.M_3D);

7 return

The code above compares the value dataset in the struct HSI with the names of the different
HSIs. When it finds the correct one, which in this case is air2, the data is stored in the HSI
struct. The hyperNormalize function normalizes all values in the HSI cube to values between 0
and 1. hyperConvert2d takes in a 3-dimensional HSI cube and returns a 2-dimensional matrix
with all pixels on one dimension and all bands in the second dimension.

28



Dimension reduction

Spectral dimension reduction is included as an optional pre-processing step. The Matlab-function
hyperpca(hcube,N) from the Hyperspectral Imaging Library in the Image Processing Toolbox
uses PCA to find the N principal components in the spectral domain of the hypercube hcube. To
motivate the choice of the parameter N, the cumulative sum of variances is plotted for all HSIs in
the test data. Figure 17 shows that it is possible to contain over 98% of the variance between the
bands in all the HSIs by using the 12 principal components.

0 10 20 30
Nr of principal components

82

84

86

88

90

92

94

96

98

100

C
um

ul
at

iv
e 

ex
pl

ai
ne

d 
va

ria
nc

e 
(%

)

Airport

A
B
C
D

0 10 20 30
Nr of principal components

75

80

85

90

95

100

C
um

ul
at

iv
e 

ex
pl

ai
ne

d 
va

ria
nc

e 
(%

)

Beach

A
B
C
D

0 10 20 30
Nr of principal components

70

75

80

85

90

95

100

C
um

ul
at

iv
e 

ex
pl

ai
ne

d 
va

ria
nc

e 
(%

)

Urban

A
B
C
D
E

Figure 17: Cumulative sum of variances for PCA in the ABU dataset.

3.2.2 Deep belief network

The initialization, pre-training, and fine-tuning of the DBN AE are implemented by adapting the
Deep Neural Network Toolbox2 proposed in [53]. The main elements extracted from the toolbox
are CD pre-training and standard ANN training using GD and BP. These elements were further
simplified by removing unwanted features. The GD functionality supports the use of mini-batches,
meaning that the change in the adjustable parameters is computed for a mini-batch of the training-
set before the changes are applied to the network. A challenging task when using an ANN is to
set good parameter values. The following list shows the most critical parameters and their chosen
values.

• Layer organization

– Decide the number of layers, and the number of ANs in each layer.

– The number of layers is set to 3, with the first and last consisting of nb ANs. The middle
layer consists of 13 ANs as proposed for AWDBN in [1].

• The number of iterations to perform training

– Both the pre-training and regular training require this value.

– The value depend on the size and complexity of the HSI.

• The step-ratio

2https://www.mathworks.com/matlabcentral/fileexchange/42853-deep-neural-network

29



– This parameter affects how much each adjustable parameter in the ANN is changed for
each iteration of training. The parameter value is set based on the suggestions in [48].

– The step-ratio is set to 0.01.

• Momentum

– This value enforces acceleration in the speed of learning when the direction of change
in the adjustable parameters is similar for longer periods.

– Based on suggestions in [48] the momentum is initially 0.5 and changes to 0.9 after 5
iterations of training.

• Size of mini-batch

– This size affects both the number of iterations in the innermost loop of training and
the size of the matrix-multiplications that is the heaviest computational burden of the
training algorithm. Hinton suggests using a value between 10 and 100 [48].

– The value depend on the size and complexity of the HSI.

• Weight decay

– This is a value that decreases large weights to enforce generalization during training.

– Set to 0.0002 after empirical testing.

The parameters described above are collected in a struct opts that is passed to the pre-training
and training function together with the HSI, and the DBN initialized with all zero biases and
zero-mean normal distributed weights with a standard deviation of 0.01.

1 % Deep Belief Network

2 DBN = initDBN( opts.layers );

3 DBN = pretrainDBN(DBN, HSI, opts);

4 DBN = trainDBN(DBN, HSI.M_2D, HSI.M_2D, opts);

The HSI is passed to trainDBN twice because it is used both as training input and the desired
output during training.

Encode and Decode

With the fully trained DBN the next step is to extract R and C by encoding and decoding the
entire HSI. For a DBN consisting of 3 layers this is performed in the following manner:

1 for i = 1:HSI.N_pix

2 HSI.C(i, :) = sigmoid( HSI.M_2D(i, :) * DBN.dbn.rbm{1}.W + DBN.dbn.rbm{1}.b );

3 HSI.Y(i, :) = sigmoid( HSI.C(i, :) * DBN.dbn.rbm{2}.W + DBN.dbn.rbm{2}.b );

4 HSI.R(i) = sqrt(sum((HSI.M_2D(i, :) - HSI.Y(i, :)).^2)/HSI.N_band);

5 end

3.2.3 Weights

To apply the proposed adaptive weights strategy the code-layer representation and the reconstruc-
tion error of the neighboring pixels must be extracted. This is done by calling the function:

30



1 NN = findneighbors(idx, M, win_i, win_o)

The parameter idx is the index of the PUT, and the parameters win i and win o are the sizes
of the inner and outer windows of the DSW. The parameter NN is a vector consisting of all the
neighboring pixels located between the inner and outer windows. cn is obtained by setting M to
C and rn is obtained by setting M to R. The anomaly score for the PUT is then computed in the
following way:

1 wt = HSI.R(idx)./Rn'; % Compute weights

2 dist = sum((sqrt((Cn - HSI.C(idx, :)).^2)), 2); % Compute distances

3 an_score(idx) = (1/length(dist))*(wt*dist); % Compute anomaly score

The adaptive weights procedure must be performed for all pixels in X creating an anomaly score
gray-scale map which indicates the probability that each pixel is an anomaly.

3.3 Evaluation

3.3.1 Performance metrics

The most widely used performance metric for evaluating hyperspectral HAD algorithms is the Area
Under the Receiver Operator Characteristics (ROC) curve (AUC). In this case, the AUC metric
reflects the estimated probability that a random anomaly pixel is deemed more likely to be an
anomaly than a random background pixel. The AUC does not consider a specific threshold, but in
a sense, uses the average over every possible threshold [54]. The required elements for computing
the AUC are a ground-truth map and an anomaly-score map. For a given threshold, anomalous
pixels are called True Positives (TP) if classified as anomalies and False Negatives (FN) if classified
as background. Background pixels are called TP if classified as background and FN if classified as
anomalies. For a given threshold, the True Positive Rate (TPR) and False Positive Rate (FPR)
are computed by

TPR =
TP

TP + FN
(51)

and

FPR =
FP

FP + TN
. (52)

The TPR and FPR are computed for a sufficiently high number of thresholds before the ROC
curve is created. The ROC curve is created by plotting the TPR values on the Y-axis and the
FPR on the X-axis. The AUC is computed with

AUC =

∫ ∞
−∞

TPR(t) · FPR′(t)dt. (53)

The second metric used for evaluation is the execution time of the HAD algorithm. The execution
time is important because many HAD algorithms are more time-consuming than what is acceptable
for a real satellite mission.

31



3.3.2 Comparison with known HAD algorithms

The HAD algorithm proposed in this thesis is applied to the 13 real HSIs in the ABU-dataset
described in section 2.4 with and without dimensionality reduction. The AUC results are compared
with the 11 HAD algorithms listed in table 7. The rightmost column shows which paper has
presented the AUC results of the corresponding HAD algorithm on the ABU dataset. The AUC
results for AWDBN and DBN on the ABU-dataset were computed by the author of this thesis
during the specialization project and presented in the specialization thesis [13]. The origin of LRX
has not been found, but the algorithm is described in a large number of papers, including [34].

Table 7: The HAD algorithms that are used in the evaluation of the HAD algorithm proposed in
this thesis.

Name of HAD algorithm Abbreviation Published
Paper presenting
the AUC results

Global Reed-Xiaoli GRX [28] [27]
Local Reed-Xiaoli LRX Unknown [27]
Fractional Fourier Entropy Reed-Xiaoli FrFE-RX [37] [43]
Collaborative Representation Detector CRD [38] [27]
Attribute and Edge-preserving filters AED [27] [43, 27]
Morphological Profile and Attribute Filters MPAF [43] [43]
Deep Belief Network DBN [7] [13]
Adaptive-weight DBN AWDBN [1] [13]
Spatial Density Background Purification SDBP [39] [39]
Support Vector Data Description SVDD [55] [27]
Fast Morphological and guided filters F-MGD [52] [52]

The HAD algorithm proposed in this thesis, the AWDBN, and DBN, have been implemented in
Matlab 2019B, and the AUC values are computed on a 2015 Macbook Pro with a 2.9GHz dual-core
i5 processor. The AUC results taken from [43] are computed on a computer with an i5 CPU [43].
The AUC results taken from [27] are computed using Matlab on a 2.8GHz CPU [27]. The AUC
results of the AED are presented in both [27] and [43] with significant differences. The lower results
presented in [43] are used in the comparison in this thesis. The results taken from [39] are obtained
on a 2.50GHz Intel quad CPU with 8GB RAM.

The parameters such as thresholds, window sizes, et cetera have been optimally chosen for all
HAD corresponding to the different HSIs [27, 43]. For the HAD algorithm proposed in this thesis,
AWDBN and DBN, the AUC results are obtained with a script testing different combinations of the
parameter values. The script iterates over a range of values for the parameters training-iterations,
DSW size, and mini-batch size. The best AUC result for each of the three algorithms on each
of the 13 HSIs is used in the table below. Table 8 shows the AUC results for all 13 HSIs in the
ABU-dataset. The highest AUC in each row is highlighted with bold font, and the second-highest
AUC is underlined. The parameter values used by the HAD algorithm proposed in this thesis to
obtain the below results are presented in appendix A.

32



T
a
b

le
8
:

A
U

C
sc

o
re

s
fo

r
th

e
A

B
U

-d
a
ta

se
t

A
U

C
S

ce
n

e
Im

ag
e

P
ro

p
os

ed
W

it
h

P
C

A
A

W
D

B
N

D
B

N
M

P
A

F
A

E
D

F
rF

E
-R

X
L

R
X

G
R

X
S

V
D

D
C

R
D

S
D

B
P

F
-M

G
D

A
ir

p
or

t
(A

)
0.

96
89

0.
94

79
0.

92
6
9

0
.9

1
1
3

0
.9

7
1
8

0
.9

9
2
3

0
.9

08
1

0
.9

4
5
8

0
.8

2
2
1

0
.9

5
0
1

0
.9

5
7
7

0
.9

6
1
5

–
A

ir
p

or
t

(B
)

0.
98

25
0.

93
75

0.
95

5
7

0
.9

5
6
3

0
.9

7
6
5

0
.9

9
3
6

0
.9

69
0

0
.9

8
7
4

0
.8

4
0
4

0
.9

9
0
0

0
.9

7
4
4

0
.9

8
4
2

–
A

ir
p

or
t

(C
)

0.
97

13
0.

95
31

0.
90

9
8

0
.9

6
3
2

0
.9

7
8
5

0
.9

7
5
6

0
.9

42
4

0
.9

4
6
7

0
.9

2
8
8

0
.9

0
8
0

0
.9

5
6
4

0
.9

6
6
2

–
A

ir
p

or
t

(D
)

0.
98

26
0.

99
00

0.
96

6
7

0
.9

7
8
3

0
.9

9
9
7

0
.9

9
5
3

0
.9

85
4

0
.8

7
4
0

0
.9

5
2
6

0
.9

8
4
8

0
.9

7
5
7

0
.9

9
3
0

–
A

ir
p

or
t

A
ve

ra
ge

0.
97

63
0.

95
71

0.
93

9
7

0
.9

5
2
3

0
.9

8
1
6

0
.9

8
9
2

0
.9

51
2

0
.9

3
8
4

0
.8

8
5
9

0
.9

5
8
2

0
.9

6
6
0

0
.9

7
6
2

–
B

ea
ch

(A
)

0.
99

70
0.

99
05

0
.9

9
9
5

0
.9

9
1
1

0
.9

9
9
2

0
.9

9
7
4

0
.9

86
2

0
.9

9
5
6

0
.9

8
0
7

0
.9

5
3
8

0
.9

9
1
6

0
.9

9
5
9

0
.9

9
7
7

B
ea

ch
(B

)
0.

98
52

0.
97

22
0.

98
9
9

0
.9

3
0
2

0
.9

9
1
0

0
.9

5
5
0

0
.9

16
1

0
.9

7
7
7

0
.9

1
0
6

0
.9

6
2
0

0
.9

4
1
6

0
.9

8
7
6

–
B

ea
ch

(C
)

0
.9

9
9
9

0.
99

95
0
.9

9
9
9

0
.9

9
9
3

0
.9

9
9
8

0
.9

9
9
7

0
.9

99
7

0
.9

9
9
7

0
.9

9
9
9

0
.9

9
9
9

0
.9

9
9
6

0
.9

9
9
9

–
B

ea
ch

(D
)

0.
99

20
0.

98
63

0.
98

9
7

0
.9

8
0
8

0
.9

9
8
5

0
.9

9
1
6

0
.9

54
1

0
.9

3
9
1

0
.9

5
3
8

0
.9

5
6
1

0
.9

4
5
0

0
.9

7
6
3

–
B

ea
ch

A
ve

ra
ge

0.
99

35
0.

98
71

0.
99

4
7

0
.9

7
5
3

0
.9

9
7
1

0
.9

8
5
9

0
.9

64
0

0
.9

7
8
0

0
.9

6
1
3

0
.9

6
9
1

0
.9

6
9
5

0
.9

8
9
9

–
U

rb
an

(A
)

0.
99

50
0.

99
28

0
.9

9
8
9

0
.9

8
8
6

0
.9

9
8
6

0
.9

9
8
1

0
.9

91
8

0
.9

9
6
8

0
.9

9
0
7

0
.9

8
6
2

0
.9

9
4
8

0
.9

9
8
9

–
U

rb
an

(B
)

0.
99

74
0.

99
88

0.
97

2
4

0
.9

9
3
3

0
.9

9
9
0

0
.7

8
9
0

0
.9

96
2

0
.9

2
3
1

0
.9

9
4
6

0
.9

2
5
6

0
.9

4
1
0

0
.9

9
8
4

0
.9

8
4
3

U
rb

an
(C

)
0.

98
96

0.
98

94
0.

98
8
2

0
.9

5
9
1

0
.9

9
7
7

0
.9

9
7
6

0
.9

68
4

0
.9

8
0
0

0
.9

5
1
3

0
.9

6
5
8

0
.9

6
3
4

0
.9

9
4
6

0
.9

9
9
4

U
rb

an
(D

)
0.

99
49

0.
99

55
0.

99
5
5

0
.9

7
3
9

0
.9

9
5
9

0
.9

9
1
2

0
.9

80
9

0
.9

6
9
6

0
.9

8
8
7

0
.9

6
2
1

0
.9

8
1
6

0
.9

9
7
2

0
.9

9
7
5

U
rb

an
(E

)
0.

97
85

0.
96

58
0.

95
5
7

0
.9

0
3
9

0
.9

9
0
0

0
.9

8
4
5

0
.9

71
9

0
.9

5
3
8

0
.9

6
9
2

0
.9

4
4
9

0
.9

5
2
1

0
.9

8
7
7

–
U

rb
an

A
ve

ra
ge

0.
99

11
0.

98
85

0.
98

2
1

0
.9

6
3
7

0
.9

9
6
2

0
.9

5
2
1

0
.9

81
8

0
.9

6
4
7

0
.9

7
8
9

0
.9

5
8
9

0
.9

6
6
6

0
.9

9
5
4

–
A

ll
sc

en
es

A
ve

ra
ge

0.
98

70
0.

97
76

0.
97

2
1

0
.9

6
3
7

0
.9

9
1
6

0
.9

7
5
7

0
.9

65
7

0
.9

6
0
4

0
.9

4
2
0

0
.9

6
2
1

0
.9

6
7
3

0
.9

8
7
2

–

33



MPAF achieves the highest AUC scores on average and has the highest or second-highest AUC on
9 of 13 HSIs. The AED is the fifth most accurate HAD algorithm based on the above table, but
the authors that propose AED reports significantly higher results for two of the HSIs (0.9985 for
Urban (B) and 0.9825 for Beach (B)). Using the higher values, the average for all HSIs becomes
0.9924, which is the best of all the HAD algorithms used in this comparison. The HAD algorithm
proposed in this thesis achieves the third or fourth highest AUC scores based on which results for
AED are used. The difference between the HAD algorithm proposed in this thesis and MPAF is
only 0.0046 on average for all 13 HSIs, and the proposed algorithm outperforms MPAF on 2 of the
HSIs. The baseline HAD algorithms GRX and LRX achieve the lowest AUC values as expected.
The state-of-the-art approaches SVDD, CRD, and FrFE-RX all achieve lower overall average AUC
than the HAD algorithm proposed in this thesis while also achieving better AUC scores than the
baseline HADs.

The execution times of the HAD algorithms are presented in the table below. The execution times
are collected from the same papers as the AUC results. The execution times for MPAF, GRX,
AED, SDBP, and FrFE-RX are measured as the average execution times of the HSIs in the Urban
scene. The execution times for the HAD proposed in this thesis, AWDBN, DBN, CRD, and SVDD,
are measured using a 100 × 100 × 189 HSI, which is comparable to the average size of the Urban
HSIs. The results for HAD algorithm proposed in this thesis and AWDBN are obtained using a
5× 5 inner window and a 6× 6 outer window. The training of the proposed algorithm, AWDBN,
and DBN, consisted of 10 iterations of CD1 pre-training and 15 iterations of fine-tuning using a
mini-batch size of 15.

Table 9: Execution times results in seconds

MPAF AED FrFE-RX LRX GRX SVDD CRD SDBP F-MGD
0.17 0.41 22.89 57.59 0.14 377.55 39.25 7637.45 0.2

Table 10: Execution times results in seconds

Time Proposed With PCA AWDBN DBN
Total 3.89 1.66 3,86 3.64

Detection 0.53 0.40 0.50 0.28
Training 3.36 1.26 3.36 3.36

We observe that there are significant differences between the execution times of the different HAD
algorithms. The SDBP, CRD, FrRE-RX, SVDD, and LRX all take over 22 seconds to finish in
Matlab, making them less attractive for real remote sensing missions. The GRX is the fastest
detector but also the one with the lowest AUC scores. The SDBP, which scored the second-highest
AUC results, is significantly slower than the other algorithms, making it especially unsuitable for
real satellite missions.

The performance of the HAD algorithm proposed in this thesis with PCA dimensionality reduction
is, on average, below 1% lower than without PCA on the 13 HSIs in the ABU dataset. Furthermore,
the execution time is significantly decreased when the HSI cube is reduced before performing the
algorithm. This shows considerable flexibility where the algorithm can perform well both with and
without dimensionality reduction.

3.3.3 Detection maps

The detection maps are plots of the anomaly score for each pixel arranged in the same order as
the pixels are arranged in the original HSI. An issue with the visualization of the detection maps
is that pixels of different anomalies can have different anomaly scores based on how much their
spectral signature stands out from neighboring spectral signatures. A typical example could be if
the background pixels have a mean anomaly score of 0.1 and there are two different anomalies with
mean anomaly scores of 5 and 25, respectively. The anomaly with a lower anomaly score would

34



then hardly be visible in the normalized gray-scale detection maps. The AUC metric does not
have this issue since it measures how well the algorithm separates anomalies from the background
without regard to the separation size. In order to present detection maps that include all anomalies
detected instead of only the ones with the highest score, all values above ten times the mean scores
are being set to ten times the mean by the following line in Matlab.

1 det_map(det_map > 10*mean(det_map)) = 10*mean(det_map);

Airport scenes

Figure 18 shows the anomaly maps for all 4 HSIs in the Airport scene. We can observe that the
AWDBN tends to assign high anomaly scores to borders between different background classes,
which corresponds well with the assumptions in section 3.1. The difference in the AUC score
between the proposed HAD algorithm and AWDBN is visible in the Figure as the airplanes are
more distinctly separated from the background. The HAD algorithm proposed in this thesis also
provides anomaly maps where the anomalies are easier to visualize than the DBN for all 4 HSIs.

Fake color composite

(A)

Reference anomaly map Proposed method AW-DBN DBN

B)

C)

D)

Figure 18: Detection maps for the four Airport scenes in the ABU dataset

Figure 19 confirms the results from the AUC scores where the HAD algorithm proposed in this
thesis and the AWDBN have almost the same accuracy and outperform DBN significantly on Beach
(B). The AWDBN performs better in these HSI where there are fewer different background classes.
However, we can still observe that AWDBN assigns higher relative anomaly scores to the borders
in Beach (D), causing lower AUC results.

35



Beach scenes

Fake color composite

(A)

Reference anomaly map Proposed method AW-DBN DBN

B)

C)

D)

Figure 19: Detection maps for the four Beach scenes in the ABU dataset

Figure 20 supports the AUC results where the HAD algorithm proposed in this thesis has stable
and high AUC, which outperforms AWDBN on (B), (C), and (E) and DBN on all five.

Urban scenes

Fake color composite

(A)

Reference anomaly map Proposed method AW-DBN DBN

(B)

(C)

(D)

(E)

Figure 20: Detection maps for the four Urban scenes in the ABU dataset

36



One possible source of error when computing the AUC results with the AWDBN and the proposed
HAD algorithm is that anomalies near the edge of the HSIs are ignored. When utilizing the DSW,
the DSW must fit around the PUT, which means that the pixels too close to the edge of the HSI
to use the DSW are ignored. This is not a problem for most HSIs, but it can have a slight effect on
the AUC results as fewer pixels are part of the computation. The effects of this are visible in the
detection maps, especially for Beach (D). At the left side of the reference anomaly map there is
an anomaly very close to the edge of the HSI. On the detection maps of AWDBN and the proposed
HAD algorithm, this anomaly is ignored.

This chapter discussed how a HAD algorithm could be evaluated, related to research question num-
ber two. More specifically, the HAD algorithm proposed in this thesis is evaluated and compared
to known algorithms. Based on the results, it is evident that the HAD proposed in this thesis
can compete with state-of-the-art HADs. The execution time is within the boundaries for what is
achievable in real missions, and the accuracy is, on average, below 0.5% lower than the accuracy
achieved by MPAF. Since MPAF only uses one band, and AED only uses one principal component,
they rely on anomalies that significantly stand out even when the HSI is reduced to a greyscale
image, which the proposed does not. The dimensionality reduction feature is also unsuitable for
some real missions onboard satellites due to strict resource requirements. The flexibility of the
HAD proposed in this thesis to include a larger number of spectral components is positive. The
proposed new weight strategy achieves higher AUC scores than the old on average and provides
more consistent results.

37



4 Implementation

This chapter describes the implementation of a simplified version of the HAD algorithm proposed
in this thesis using C-programming language. Furthermore, the chapter describes the acceleration
of a part of the simplified HAD algorithm with HLS. The simplified HAD algorithm consists of
a DBN AE and uses the reconstruction errors as anomaly scores directly. The simplified HAD
algorithm is implemented as a proof of concept, and the pre-training and weight-strategy can be
added later without modifying the existing implementation. The main reasons for implementing
the HAD algorithm in C are the following:

• The software onboard the satellite used in the HYPSO mission is written in C-based lan-
guages. To add the HAD algorithm to the processing pipeline onboard it has to be imple-
mented in C or C++.

• Vitis HLS synthesizes C/C++ code to RTL description, enabling rapid testing and imple-
mentation of customized HW to speed up parts of the HAD algorithm.

• C has a lower level of abstraction than Matlab and can speed up the HAD algorithm in SW.

The detection process of the simplified HAD algorithm is chosen as a target for HW acceleration.
A HW kernel is created using Vitis HLS that takes in the trained parameters of the DBN and the
HSI and returns the anomaly scores. A HW kernel is a part of the algorithm moved from SW
to customized HW to be accelerated. Several optimization techniques is investigated using Vitis
HLS before three different implementations are tested on a Zynq Ultrascale+ ZCU104 MPSoC
Evaluation Kit.

4.1 Software

The flow and procedures of the C implementation is illustrated in the Figure below:

Read the HSI from fileInitialize the DBN .BIN

Train HSI HSI

DBN

DBN

Compute anomaly
score

Anomaly score

Figure 21: Illustration of the SW implementation.

Read HSI from file

The hyperspectral camera used in the HYPSO mission stores the captured HSIs using the Band
Interleaved by Pixel (BIP) format. The values of all bands in each pixel are stored sequentially as
illustrated in Figure 22 where xpn is the value of the n-th band in pixel p in HSI X.

38



BIP

Figure 22: Illustration of BIP format for a 3× 3× 4 HSI cube.

To ensure simple porting with the HYPSO onboard processing pipeline the implementation reads
the HSI from a .bip file. The datatype float, which is a 32-bit floating point-representation, is
used for the HSI. Two structs are declared to store and use the HSI in the implementation. The
struct matrix_float stores the data as a one-dimensional array of floats, which can be used as a
two-dimensional matrix by using the variables width and height of the matrix_float struct. The
struct HSI stores the data from the .bip file and the most important parameters of the HSI. The
actual HSI is then read and stored in the struct HSI with the built-in C-functions fopen() and
fread() using the option rb for read binary. The data in the array in matrix_float is arranged
as illustrated above with all bands of the first pixel, then all bands of the second pixel and so on.

Initializing the DBN

The DBN is initialized using a struct for the DBN containing two RBM structs. In the RBM struct
the parameters visual and hidden refer to the number of visual and hidden ANs the RBM consists
of respectively. In the DBN struct the parameter bands_n refer to the number of ANs in the input
and output layers and mid_layer_size refer to the number of ANs in the middle layer. The biases
of both RBMs are sat to zero and the weights are given normally distributed random numbers
with a standard deviation of 0.1. The random values are generated with the time.h C library in
the following manner:

1 time_t t;

2 srand((unsigned) time(&t));

3 for( int i = 0 ; i < bands_n ; i++ ){

4 for( int j = 0 ; j < mid_layer ; j++ ){

5 dbn->rbm1->weights->buf[i*mid_layer + j] = 0.1f*(rand()/RAND_MAX)-0.05f;

6 dbn->rbm2->weights->buf[i*mid_layer + j] = 0.1f*(rand()/RAND_MAX)-0.05f;

7 }

8 }

39



Training the DBN

The training algorithm consists of mini-batch GD and BP and is implemented with only basic C
libraries. The implementation of the algorithm is adapted and translated from the Matlab Deep
Neural Network Toolbox proposed in [53]. To implement the training algorithm, the following
matrix functions were implemented to provide required matrix operations.

• matrix_float* blank_matrix_float(size_t width, size_t height)

– Allocates memory dynamically and return a pointer to a blank matrix_float.

• float mat_get(matrix_float* A, size_t h_idx, size_t w_idx)

– Returns the element (w idx, h idx) of A.

• void free_matrix_float(matrix_float* A)

– Deallocate the dynamic memory allocated by blank_matrix_float() to avoid memory
leaks.

• void transpose(matrix_float* A)

– Transpose A.

• void mat_mult(matrix_float* A, matrix_float* B, matrix_float* C)

– Performs matrix multiplication (C = A × B).

• void mat_add(matrix_float* A, matrix_float* B, matrix_float* C)

– Performs matrix addition (C = A + B).

• void mat_div_scalar(matrix_float* A, float scalar, matrix_float* C)

– Divide each element in A by the scalar and stores the result in C.

• void mat_mul_scalar(matrix_float* A, float scalar, matrix_float* C)

– Multiply each element in A by the scalar and stores the result in C.

• void mat_sub(matrix_float* A, matrix_float* B, matrix_float* C)

– Performs matrix subtraction (C = A - B).

• void sigmoid(matrix_float* A, matrix_float* C)

– Element-wise logical Sigmoid function (C = φ(A)).

• void mat_cpy_batch(int start_i, int batchSize, HSI* hsi, matrix_float* A, int* ind)

– Copy a mini-batch from the HSI and stores it in the A.

The training is initiated by calling the function trainDBN() which takes in the HSI, the parameters
of training, and the initialized DBN AE. The parameters are the same as the parameters described
in section 3.2 and have the same values. trainDBN() returns a DBN struct with the adjustable
parameters trained on the HSI.

40



Computing the anomaly score

To compute the anomaly score, the HSI is encoded and decoded with the trained DBN AE before
the reconstruction error between the original and reconstructed HSI is computed. The function
encodeDecode()takes in the trained DBN and the HSI and feeds the HSI through the DBN to
obtain the reconstructed HSI. The reconstruction error is computed as the RMSE between the
original and the reconstructed HSI. encodeDecode() will be the target for HW acceleration with
HLS, the C code is shown below:

1 void encodeDecode(DBN* dbn, HSI* X, matrix_float* R){

2 matrix_float* H1 = blank_matrix_float(dbn->mid_layer_size, X->pixels);

3 matrix_float* X_hat = blank_matrix_float(dbn->bands_n, X->pixels);

4

5 mat_mult(X->data, dbn->rbm1->weights, H1); %|

6 mat_add_bias(H1, dbn->rbm1->bias_h, H1); %|-> H = sigmoid(X*W1 + B1)

7 sigmoid(H1, H1); %|

8

9 mat_mult(H1, dbn->rbm2->weights, X_hat); %|

10 mat_add_bias(X_hat, dbn->rbm2->bias_h, X_hat); %|-> X_hat = sigmoid(H*W2 + B2)

11 sigmoid(X_hat, X_hat); %|

12

13 %Store the reconstruction error in X_hat

14 mat_sub(hsi->data, X_hat, X_hat); %|-> X_hat = X_hat - X

15 for (size_t i = 0; i < hsi->pixels; i++)

16 {

17 float sum = 0.0f;

18 for (size_t j = 0; j < dbn->bands_n; j++)

19 {

20 sum += powf(X_hat->buf[i*dbn->bands_n + j], 2);

21 }

22 R->buf[i] = sqrtf(sum/dbn->bands_n);%|-> R is reconstruction error

23 }

24 }

4.2 High-level synthesis

The computation of the anomaly score is accelerated by implementing a HW kernel on a FPGA.
The latency of the HW kernel is the time passed from the HW kernel is initiated to the results are
provided. The HW kernel is written in C/C++ and synthesized to RTL by Vitis HLS. The basic
requirements that apply when writing C/C++ targeted for HW synthesizing with Vitis HLS are
the following:

• All arrays must be statically defined (Not allowed with malloc()/calloc()).

• No pointer to pointer.

• No CPU functions (time() etc).

The C/C++ code must follow a specific structure where the part of the code targeted for HW
acceleration is contained inside a single top-layer function. The main() function is treated as a

41



testbench and the kernel represented by the top-layer function must be called from main(). The
top-layer function and all sub-functions called from it are synthesized to RTL and made available
for implementation on a selection of FPGAs. A flow diagram showing how the kernel is used to
compute the anomaly score is shown in Figure 23.

SW (Main) Kernel

Read HSI

Train DBN

Compute
anomaly score

Verify and store
result

CPU free to
perform other

tasks

Figure 23: Overview of HLS code.

4.2.1 Baseline

Vitis HLS can translate both C and C++ to RTL, but the libraries ap_fixed.h and hls_stream

are only available for C++. The two libraries are deemed necessary to create the intended behavior,
so the code is translated from C to C++. The HW kernel is implemented with a ”load - compute
- store” structure as shown in Figure 24. The inputs to the HW kernel is the parameters of the
trained DBN AE and the HSI.

Figure 24: Load-compute-store kernel.

In Vitis HLS, the input data is passed as inputs to the top-layer function. The top-layer function
for computing the anomaly score is declared as follows:

42



1 typedef float dat_t;

2

3 void top_layer(hls::vector<dat_t, BANDS>* hsi_f, dat_t out_r[WIDTH*HEIGHT],

dat_t W1[MID_LAYER*BANDS], dat_t B1[MID_LAYER], dat_t W2[MID_LAYER*BANDS],

dat_t B2[BANDS]);

↪→

↪→

The datatype hls::vector is a Single Instruction Multiple Data vector, which allows a single
operation to be performed to all elements in parallel. The HSI is sent to the top-layer function
as an array of hls::vector where each vector contains a whole pixel. The arrays are all declared
with their sizes to satisfy the requirement of statically declared arrays.

Load input

The first stage loads the input to the HW kernel. The sub-function load_input() in the top-layer
function takes in the array of hls::vector and transfers the data to the computational part of the
kernel with the transfer type hls::stream. hls::stream transfers the data in a sequential order
and does not require any further management of memory. The stream hsi_stream is declared in
the top-layer function before the load function is called as follows:

1 static stream< vector<dat_t, BANDS> > hsi_stream("input_stream_1");

2 load_input(hsi_f, hsi_stream);

Inside the load_input() function the pixels are added to the stream in the following way:

1 for (int i = 0; i < WIDTH*HEIGHT; i++)

2 {

3 hsi_stream << hsi_f[i];

4 }

Compute

The computational functionality of the HW kernel is performed in the sub-function EncodeDecode()

which takes in the stream of hls::vector all containing a full pixel of the HSI, the weights and
the biases. The function loops over all pixels and computes the anomaly score pixel-wise contrary
to the C implementation which computes the anomaly score for all pixels using large matrices.
The computational part of the HW kernel performs the following logic for all pixels in the HSI:

43



1 pix = hsi_stream.read(); %Buffer pixel vector

2 float sum_t = 0.0f;

3 float H1[MID_LAYER] ={0.0f};

4 float X_hat[BANDS] ={0.0f};

5

6 for (size_t j = 0; j < MID_LAYER; j++)

7 {

8 for (size_t k = 0; k < BANDS; k++)

9 {

10 H1[j] += pix[k]*W1[k*MID_LAYER + j]; %Multiply weights and pixel

11 }

12 H1[j] = (H1[j] + B1[j]); %Add bias

13 H1[j] = 1.0f/(1.0f + expf(-1.0f * H1[j] )); %Sigmoid

14 }

15

16 for (size_t m = 0; m < BANDS; m++)

17 {

18 for (size_t n = 0; n < MID_LAYER; n++)

19 {

20 X_hat[m] += H1[n]*W2[n*BANDS + m];

21 }

22 X_hat = (X_hat[m] + B2[m]); %Add bias

23 X_hat[m] = 1.0f/(1.0f + expf(-1.0f * tmp ));%Sigmoid

24 X_hat[m] = X_hat[m] - pix[m]; %| Error |

25 sum_t += X_hat[m]*X_hat[m]; %| Square |

26 } %| | -> RMSE

27 %| |

28 out_stream << sqrt(sum_t/BANDS); %| Root mean |

Store result

The resulting RMSE for all pixels is written to an output stream. The sub-function store_result()

takes in the output stream and stores the result in an array. The array is returned from the HW
kernel to the testbench.

4.2.2 Optimization

As mentioned in the section 2.3.2, FPGAs can offer high levels of parallelism, low power consump-
tion, and free up time for the CPU. The baseline HW kernel described in the previous chapter is
functioning yet not efficient implementation. Vitis HLS uses optimization PRAGMAS to change
the behavior of the HW kernel and improve the performance. The optimization of the HW kernel
is an iterative process where different PRAGMAS are added, and the results are compared to find
a solution that provides the desired performance.

44



Dataflow PRAGMA

The baseline kernel executes the loading, computing, and storing sequentially. An option to reduce
the latency is to perform tasks simultaneously whenever possible. The dataflow pragma enables
task-level parallelism by allowing the subsequent task to start before the current task is finished,
thus increasing the HW kernel’s concurrency. The dataflow PRAGMA is added to the top-layer
function by inserting #pragma HLS DATAFLOW before calling the first sub-function. This allows
the computational part to start executing when the first pixel vector has been added to the input
stream instead of waiting for all pixels to be added to the stream. The results can be stored in the
output array when computed instead of waiting for all the results before beginning to store them.
The dataflow pragma only applies for the region it is specified in, meaning that it must be written
inside the function if dataflow is desired inside a sub-function. Figure 25 illustrates the effect of
the dataflow pragma on the implemented kernel.

Cycles

Load input Compute Store result

Load input

Compute

Store result With DATAFLOW pragma

Without DATAFLOW pragma

Figure 25: Illustration of kernel with and without dataflow pragma, adapted from the Vitis web-
page [11].

In addition, to decrease the latency, the dataflow pragma also tends to increase the utilization of
FPGA resources. New channels for transferring data between the tasks and complementary logic
to communicate between tasks are added automatically by the synthesis in Vitis HLS.

Pipeline pragma

To further increase the concurrency of the HW kernel, the pipeline PRAGMA can be added to
functions or loops by writing #pragma HLS PIPELINE inside the loop or function body. Vitis HLS
inline small functions to the function they are called from and pipeline small loops unless explicitly
specified not to do so. When not automatically performed, the addition of the pipeline PRAGMA
can decrease the latency. In the same way that dataflow allows concurrent execution of tasks,
the pipeline PRAGMA allows concurrent execution at the operation level. In the implemented
HW kernel, the dataflow PRAGMA allows the compute and store sub-functions to start before the
previous sub-functions are finished. The pipeline PRAGMA is applied inside the sub-functions. By
adding the pipeline PRAGMA to the loops in the three sub-functions, the loop-bodies are executed
concurrently instead of sequential. Usually, loops in FPGAs allow utilization of the same resources
for each iteration, while pipelined loops perform multiple operations simultaneously, leading to
higher resource utilization.

Array partition

Because the pipeline and dataflow pragmas increase the concurrency of the HW kernel, the kernel
tries to access the different elements in the arrays simultaneously. It is possible to partition arrays,
which provide more read/write ports for the memory, to enable multiple simultaneous accesses.
The PRAGMA is applied to an array with the following syntax and changes the array set by the
variable parameter from one memory into several smaller memories.

45



1 #Pragma HLS ARRAY_PARTITION variable=<array_name> <type> factor=<N>> dim=<M>

There are three types, namely block, cyclic and complete. In the HW kernel described in this
thesis, the complete type is used. This type splits the chosen dimension of the array declared
by variable in a manner that results in individual memory elements with designated read/write
ports. This increases the utilization of the FPGA resources and decreases the latency.

The weights arrays are of significantly larger size than the other arrays used in the kernel imple-
mentation, and are exclusively used as the leftmost matrix in matrix multiplication. To reduce
the pressure on resource utilization the two weights arrays are changed from one-dimensional to
two-dimensional, so they can be partitioned on the second dimension instead of the entire array.
This is done inside the kernel in the following manner:

1 dat_t W1_i[MID_LAYER][BANDS];

2 dat_t W2_i[BANDS][MID_LAYER];

3 #pragma HLS array_partition variable=W1_i complete dim=2

4 #pragma HLS array_partition variable=W2_i complete dim=2

5

6 for (size_t j = 0; j < BANDS; j++)

7 {

8 #pragma HLS PIPELINE

9 for (size_t k = 0; k < MID_LAYER; k++)

10 {

11 W1_i[k][j] = W1[j*MID_LAYER + k];

12 W2_i[j][k] = W2[k* BANDS + j];

13 }

14 }

Effects of adding optimization Pragmas

The synthesis report from Vitis HLS is used to review the effects of adding the optimization
PRAGMAS. Initially, the HW kernel is synthesized without any PRAGMAS. Then the pipeline
PRAGMA is added to the loops inside the sub-functions. The PCA reduced BEACH (C) HSI
from the ABU dataset is used to obtain the latency estimates. Table 11 shows how the latency of
the different sub-functions changes when the pipeline PRAGMA is applied.

Table 11: Latency of the different sub-functions of the HW kernel with and without the pipeline
PRAGMA.

Sub-function
Latency (Number of cycles)

Without pipeline PRAGMA With pipeline PRAGMA
load_input() 120000 20009
EncodeDecode() 37350001 10587
store_result 20000 10001
Total 37490001 40597

From the table above, it is evident that the pipeline PRAGMA significantly reduces the la-
tency. The effect is larger for EncodeDecode(), which is expected because it contains deeper
and more complex loops. The HW resource utilization for EncodeDecode() with and without the

46



pipeline PRAGMA as estimated by Vitis HLS is shown in table 12. The resource utilization of the
load_input() and store_result are negligible compared to EncodeDecode() and therefore not
presented.

Table 12: HW resource utilization with and without pipeline PRAGMA.

PIPELINE BRAM DSP FF LUT
Yes 58 871 141475 95423
No 58 12 11433 20351

After adding the pipeline PRAGMA, the dataflow PRAGMA is added to the top-layer function.
The latency results are shown in table 13.

Table 13: Latency of the different sub-functions of the HW kernel with and without the dataflow
PRAGMA.

Sub-function
Latency (Number of cycles)

Without dataflow PRAGMA With dataflow PRAGMA
Load input() 20009 20011
EncDec() 10587 10589
Store result() 10001 10007
Total 40597 20597

The results show that by adding the dataflow PRAGMA, the concurrency of the top-layer function
is increased. The different sub-functions are allowed to start executing before the previous sub-
function is finished, which leads to decreased total latency. Figure 26 illustrates how the latency of
the entire top-layer function is related to the concurrent execution of the three sub-functions. The
iteration latency of the main loop in Encodedecode() is reported by Vitis HLS to be 581 cycles,
so the store_results function can start executing 582 cycles after the Encodedecode() started
to execute.

Cycles

Load_input()

EncodeDecode()

Store_result()

20011 2059710008 2058710590

. . . . . . . . . . . . . . .

Figure 26: Illustration of the implemented HW kernel after applying dataflow and pipeline PRAG-
MAS.

4.2.3 Fixed point

The Xilinx library ap_fixed.h provides fixed-point datatypes in the format ap_[u]fixed<W,I,Q,O,N>.
W is the total number of bits (Wordlength), I is the number of bits used to represent the integer
part. Q allows the designer to decide the quantization mode. O controls the behavior on overflow,
and N is the number of saturation bits in case of overflow.

Two ap_fixed data types are declared in the following manner.

47



1 #include "ap_fixed.h"

2

3 typedef ap_fixed<precision_total1, precision_int1> d_t1

4 typedef ap_fixed<precision_total2, precision_int2> d_t2

Using two types with different precision originates from the fact that most parameter values in
the implementation tend to be between 0 and 1. At the same time, a few can become significantly
higher/lower. It is not desired to use a fixed-point type with many bits reserved for the integer part
if not needed, so the parameters that can require higher I are located. The parameters assumed to
require higher I are set to d_t2, while the rest are set to d_t1. The HSI is changed from floating
point to fixed point in the testbench before being sent to the HW kernel. The weights and biases
are trained in the testbench as floating-point and then changed to fixed-point before being sent to
the HW kernel.

An iterative test method is used to determine the precision parameters. The following procedure
is for the dimensionality reduced HSI cube. Initially, all precision parameters are set so high
that the difference between the floating-point and fixed-point implementations is negligible. The
precision_int1 value is then gradually decreased to find out where it overflows. The results are
compared to the floating-point SW implementation to monitor the changes in precision. The table
below shows the RMSE between the results and the most significant error for different precisions.
d_t2 is set to 32 bits, with 16 bits to represent the integer part. The results are obtained using C
simulation in Vitis HLS.

Table 14: Loss of accuracy for different fixed-point precisions

d t1 RMSE Max error Average SW result value Max SW result value
ap fixed<32, 16> 0.0003 0.0008 (1.8%) 0.08 0.60
ap fixed<32, 8> 0.0003 0.0006 (1.3%) 0.09 0.064
ap fixed<32, 4> 0.00025 0.0004 (0.7%) 0.09 0.061
ap fixed<32, 3> 0.16 0.49 (305%) 0.09 0.066

As expected, the accuracy increases when precision_int1 is decreased, since the number of bits
used to represent the fractional part of the number increases. From the table we observe that when
I is sat to 3, the results are unusable, due to overflow. The precision_int1 is thus sat to 4, and
the value precision_tot1 is gradually decreased:

Table 15: Loss of accuracy for different fixed-point precisions

d t1 RMSE Max error Average SW result value Max SW result value
ap fixed<32, 4> 0.00025 0.0004 (0.7%) 0.09 0.061
ap fixed<20, 4> 0.00029 0.0008 (1.8%) 0.09 0.060
ap fixed<14, 4> 0.00056 0.002 (3.25%) 0.085 0.064
ap fixed<12, 4> 0.002 0.0077 (6.63%) 0.082 0.061

When reducing the total amount of bits, the precision is decreased. The precision_tot1 is chosen
to be 14 based on the desired precision. The fixed point type d_t1 is now decided to be declared
as typedef ap_fixed<14, 4> d_t1. By performing the process for d_t2 with d_t1 constant it is
sat to typedef ap_fixed<25, 8> d_t2. The accuracy is then as follows:

Table 16: Loss of accuracy for the chosen fixed-point precision

RMSE Max error Average result value Max result value
0.0006 0.01 (1.8%) 0.08 0.66

48



4.3 Hardware-software partitioned system

4.3.1 Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit

The entire HW-SW partitioned system is run on the Zynq UltraScale+ MPSoC ZCU104 Evaluation
Kit to verify and evaluate the HW kernel together with the SW implementation. The information in
this sub-chapter is deducted from the official user guide for ZCU104 [56] and the Zynq UltraScale+
MPSoC Data Sheet [57].

The ZCU104 has the Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC, which consists of both a
processing system (PS) and programmable logic (PL). The PS contains an Applications Processing
Unit (APU) with a quad-core ARM Cortex-A53 processor. The PS and PL can be connected with
various interfaces to communicate between configured HW in the PL and the SW program running
on the APU. Both the PL and APU can access a DDR4 memory on the MPSoC. However, the PL
can only access a specific part of the memory, called the global memory, and the remaining memory
only accessible from the APU is called the local memory. Figure 27 shows how the MPSoC is built
up of a PS and a PL and their different components.

Figure 27: Block diagram of the Ultrascale+ XCZU7EV MPSoC, taken from [12].

The PS supports the operating system PetaLinux, enabling more complex applications to run on
the APU. The different components of the PS and the PL are connected using the multi-layered
Arm Advanced Microprocessor Bus Architecture (AMBA) (Advanced eXtensible Interface) AXI
interconnect. AXI is an protocol designed by Arm, which is used for on-chip communication on
the MPSoC.

The PL contains several 36 Kb BRAMs with two independent ports. In addition, the PL also
contains several Digital Signal Processing (DSP) slices, consisting of a multiplier followed by an
accumulator. The most relevant resources of the PL are given in table 17.

49



Table 17: FPGA resources on the ZCU104.

BRAM DSP FF LUT LUT-RAM
312 1728 460800 230400 101760

4.3.2 Hardware-software partitioned system

To import the HSI and train the DBN, installing the PetaLinux operating system on the board is
necessary. A host program runs on the APU of the ZCU104, and the HW kernel is implemented
in the PL. The HW-SW partitioned system that will run on the ZCU104 is built using the Vitis
Unified software platform 2020.2, hereby called Vitis. A short guide that describes how to download
and install the necessary items and run the HW-SW partitioned system on the ZCU104 is given
in appendix B.

The program running on the APU is the main() function located in the file host.cpp. The
functions from the SW implementation that read the HSI and train the DBN are used in the
beginning of main(). The SW implementation of the computation of anomaly scores is then
employed to obtain the results later used to verify the output of the HW kernel and to measure
the execution time.

The HW kernel is implemented in C++, and synthesized to RTL as described in the previous
sub-chapter. The only difference between Vitis and Vitis HLS is that the top-layer function must
be declared as extern "C" in Vitis. The code used to program the HW kernel and control the
memory transfers is adapted from a Vitis example project3.

When the HW-SW partitioned system is built using Vitis, pre-compiled binary files describing
the HW kernel and the SW program are generated. These binary files are stored on an SD card
inserted into the ZCU104 before turning on the power. The testbench, i.e. the main() function,
is executed by instructing the PetaLinux OS to run the pre-compiled testbench binary file. The
program will then be loaded into DDR4 memory and executed by the APU. The main() function
uses the HW kernel binary file to program the PL before using the industry standard openCL
application programming interface [58] to handle the memory and employ the HW kernel in the
following manner:

3https://github.com/Xilinx/Vitis Accel Examples/tree/master/hello world

50



1 // Allocate Buffer in Global Memory

2 cl::Buffer buf_in_hsi(context, CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY ,

size_hsi, in_hsi.data(), &err);↪→

3 cl::Buffer buf_in_w1(context , CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY , size_w1

, in_w1.data(), &err);↪→

4 cl::Buffer buf_in_w2(context , CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY , size_w2

, in_w2.data(), &err);↪→

5 cl::Buffer buf_in_b1(context , CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY , size_b1

, in_b1.data(), &err);↪→

6 cl::Buffer buf_in_b2(context , CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY , size_b2

, in_b2.data(), &err);↪→

7 cl::Buffer buf_out_res(context, CL_MEM_USE_HOST_PTR | CL_MEM_WRITE_ONLY,

size_out, res_anScore.data(), &err);↪→

8

9 // Map the buffers to the inputs and outputs in the kernel

10 err = EncDec_kernel.setArg(0, buf_in_hsi);

11 err = EncDec_kernel.setArg(1, buf_in_w1);

12 err = EncDec_kernel.setArg(2, buf_in_w2);

13 err = EncDec_kernel.setArg(3, buf_in_b1);

14 err = EncDec_kernel.setArg(4, buf_in_b2);

15 err = EncDec_kernel.setArg(5, buf_out_re);

16

17 // Copy input data to device global memory

18 err = q.enqueueMigrateMemObjects({buf_in_hsi, buf_in_w1, buf_in_w2, buf_in_b1,

buf_in_b2}, 0);↪→

19

20 //Start kernel

21 err = q.enqueueTask(EncDec_kernel, nullptr, &event);

22

23 // Copy Result from global memory to local memory

24 err = q.enqueueMigrateMemObjects({buf_out_res}, CL_MIGRATE_MEM_OBJECT_HOST);

25 q.finish();

The anomaly score results from the HW kernel are now stored in res_anScore and can be compared
with the results of the SW implementation. To measure the latency of the HW kernel, including
the transferring of data to and from the global memory, the following code is added to the main()

function after the kernel execution:

1 cl::Event event;

2 uint64_t nstimestart, nstimeend;

3

4 err = event.getProfilingInfo<uint64_t>(CL_PROFILING_COMMAND_START,

&nstimestart);↪→

5 err = event.getProfilingInfo<uint64_t>(CL_PROFILING_COMMAND_END, &nstimeend);

6

7 auto EncDec_time = nstimeend - nstimestart;

51



The HW-SW partitioned system is illustrated in Figure 28. The Figure shows how the system
behaves when it is run on the APU and how the main() function programs the HW kernel with
the binary file located in the SD-card. It is illustrated in which order the transfer of input and
output data is moved to and from the global fraction of the DDR4 during execution. The inputs
transferred to the global memory in step one are the HSI and the trained parameters of the network.
In step two, the initiated HW kernel loads the inputs from the global memory. In step three, the
anomaly scores computed by the HW kernel are stored in the global memory. In step four, the
computed anomaly scores are transferred from the global to the local memory before the APU
access it to evaluate the results.

Application Processing Unit Programmable logic

DDR4

Train DBN

Compute
anomaly score

Program kernel

Kernel

Bi
na

ry
 fi

le
Move data to

global DDR (1)

H
SI

Local Global

Initiate kernel

Load
input (2)

(1)

Encode
Decode

Store
Output (3)

Move result to
local DDR (4)

(3)

(4)

Fi
ni

sh
ed

Compare HW
and SW results

In
iti

at
e

(2)

Figure 28: Illustration of HW-SW partitioned system on the ZCU104.

In this chapter, I have described the process of implementing the HAD algorithm in C and imple-
menting a HW kernel using Vitis HLS. How to run the complete system together on a ZCU104
is also described. Implementation and optimizing a HW kernel is related to research question 4,
regarding the acceleration of the HAD algorithms in HW. The implementation in C is related to
the objective of the thesis, which is to provide the HYPSO mission with an implementation of a
HAD algorithm suited for the mission.

52



5 Results

This chapter presents and discusses the results obtained with the SW implementation and the HW-
SW partitioned implementation. Initially, the results of the SW implementation are compared to
the Matlab implementation with respect to execution time and accuracy for verification. The HW-
SW partitioned system is then tested, and the results of the HW kernel is verified with the results
from the SW implementation. The resource utilization and latency of the HW kernel obtained
from running on the PL on the ZCU104 is presented for three different implementations, namely,
the baseline HW kernel, the optimized HW kernel and the optimized HW kernel with fixed point
representation.

5.1 Software results

The results from the C implementation and the results from the Matlab implementation used for
comparison are obtained using a Macbook Pro with a 2.9GHz dual-core i5 CPU and 8GB RAM.
The C-code is compiled with the -O2 C-flag, which instructs the compiler to optimize for speed.
Matlab uses the standard data representation Double which is a 64-bit floating-point representa-
tion. The C-implementation uses the data representation Float which is a 32-bit floating-point
representation. Figure 29 shows the detection result from the HSI Beach (C) in the ABU-dataset.

Reference anomaly map C: AUC = 0.97135 Matlab: AUC = 0.98122

Figure 29: Result of C implementation compared with result from Matlab. The HSI has dimensions
100× 100× 188.

We observe that the AUC results of the Matlab implementation is slightly lower than the results
obtained with the DBN HAD algorithm in section 3.3. This is assumed to be because the simplified
HAD does not use pre-training. The slight difference in AUC results between the C and Matlab
implementations is assumed to be caused by the change of data representation and other minor
differences between the implementations. The small differences in AUC results implies that the
behaviour of the C implementation is as desired.

As in section 3.3, the AUC results after PCA dimensionality reduction differ insignificantly from
the results without. The PCA is not implemented in C, so the PCA representation of the HSI
cube is computed in Matlab and exported as a binary file read by the C implementation. When
the reduced cube is used, the number of ANs in the input and output layers is the same as the
number of principal spectral components, 12, and the number of ANs in the middle layer is 5.

53



Reference anomaly map C: AUC = 0.97981 Matlab: AUC = 0.97502

Figure 30: Result of C implementation compared with result from Matlab. The HSI has been
pre-processed with PCA dimensionality reduction before testing. The HSI has dimensions 100 ×
100× 12.

The differences in timing between the C-implementation and the Matlab-implementation when the
DBN is trained for 30 iterations with a batch-size of 15 is as follows (pre-training is not performed):

Table 18: Execution times in seconds for the DBN HADs

Time C C with PCA Matlab Matlab with PCA
Total 9.612 0.331 6.686 1.795

Detection 0.139 0.006 0.316 0.146
Training 9.473 0.325 6.370 1.649

The built-in matrix operations and especially matrix multiplication in Matlab are highly optimized.
Large matrices cause Matlab to outperform the simple matrix operations in the C implementation
of the HAD. C is, in general, a faster language, and for smaller matrices and less complex functions,
the C implementation is faster.

5.2 Hardware-software partitioned system results

The HW-SW partitioned system is tested on the HSI Beach (C) from the ABU-dataset with and
without PCA dimensionality reduction. Without PCA the HSI is a (100 × 100 × 188) cube, and
with PCA the HSI is a (100× 100× 12) cube. Three implementations of the HW kernel are tested
on the ZCU104. The first is a basic implementation where only the dataflow PRAGMA is added.
The Vitis framework performs some optimization automatically, so the basic implementation will
pipeline small loops. The second implementation is optimized for speed with the PRAGMAS
explored in section 4.2. The last implementation is the same as the optimized, but the floating-
point representation of the data has been changed to fixed-point representation. The HSI cube
without dimensionality reduction requires significantly more HW resources than the reduced HSI
cube, and the possible degree of optimization is therefore lower. The main loop in the HW kernel
iterates over the 10 000 pixels in the HSI to compute the anomaly score. This loop can be pipelined
when the HSI is reduced, but it cannot when the HSI is not reduced due to limited resources. In
order to verify the output of the HW kernel and compare the latency results, a SW version of the
HW kernel is run on the APU of the ZCU104. For the baseline and optimized implementation
using floating-point representation, the HW kernel and SW code output is a complete match.

The resource utilization results that are presented in this chapter are obtained from the post-
synthesis reports generated by Vitis when building the system. The latency of the HW kernel is
obtained as described in the previous chapter. The execution times for training and computing
the anomaly score in SW is obtained with timers in the C++ code running on the APU.

54



5.2.1 Baseline implementation

Table 19 shows the post-synthesis utilization of the baseline HW kernel. The percent of the
available resources utilized by the HW kernel is presented in parenthesis behind the number of
utilized units.

Table 19: FPGA utilization of baseline HW kernel.

PCA BRAM DSP FF LUT LUT-RAM
No 222 (71.00%) 21 (1.22%) 71911 (15.61%) 71250 (30.90%) 4698 (4.62%)
Yes 107 (34.21%) 12 (0.69%) 35207 (7.64%) 30251 (13.13%) 3237 (3.18%)

The latency of the HW kernel and the execution times of training the DBN and computing anomaly
scores on the APU is shown in table 20. In this table, the latency of the detection with the HW
kernel includes the transfer of input and output data to and from the global memory.

Table 20: Latency of baseline HW-SW partitioned system.

Process Latency/Execution time without PCA Latency/Execution time with PCA
Training 185.420 s 6.15 s
Detection SW 1.899 s 0.06 s
Detection HW 0.366 s 0.16 s

The baseline HW kernel is not an efficient implementation because it does not take advantage of
the parallelization possibilities that PL provides. The baseline HW kernel is 5.2 times faster than
the APU on the ZCU104 to compute the anomaly score for the full HSI. For the dimensionality
reduced HSI cube, the overhead in loading the data and moving data to and from the global memory
result in 2.6 times slower computation of the anomaly score with the HW kernel than on the APU.
The utilization of resources shows that there is available space for increased parallelization. The
baseline HW kernel for the full HSI utilizes 71 % of the available BRAM, which will restrict the
possibilities of optimization.

5.2.2 Optimized implementation

As described in section 4.2 optimization PRAGMAS are applied to the baseline HW kernel to
decrease the latency. Due to the number of available resources, the main loop, which iterates over
all the pixels, can only be pipelined for the reduced HSI cube. Vitis automatically unrolls and
pipelines all sub-loops when a loop is pipelined. Since the two double loops inside the main loop
both iterate over the number of bands and ANs in the middle layer, the innermost loop is run
13× 188 times for the full HSI. When pipelined and unrolled, this creates a HW kernel too large
for the ZCU104. This results in a significant difference in relative improvement for the two HSI
cubes. Tables 21 and 22 show the utilization and latency of the optimized HW kernel, and the
execution times for the SW code running on the APU.

Table 21: FPGA utilization for optimized HW kernel.

PCA BRAM DSP FF LUT LUT-RAM
No 221 (70.83%) 81 (4.69%) 91362 (19.83%) 106154 (46%) 28565 (28.07%)
Yes 107 (34.41%) 294 (17.1%) 87462 (18.98%) 69830 (18.98%) 7835 (7.70%)

55



Table 22: Latency for Optimized HW-SW partitioned system.

Process Latency without PCA Latency with PCA
Training 185.420 s 6.15 s
Detection SW 1.899 s 0.06 s
Detection HW 0.29 s 0.00057 s

We observe that the Optimized HW kernel is 25% faster than the baseline HW kernel for the full
HSI. This is a result of partitioning arrays, and pipelining smaller loops. For the reduced HSI,
the optimized HW kernel pipeline the main loop, which in this case is 10 000 iterations. The two
double loops inside the main loop are then automatically pipelined and unrolled. This enables the
optimized HW kernel to compute the anomaly score 280 times faster than the baseline HW kernel
for the reduced HSI cube.

The optimized HW kernel for the full HSI is 6.5 times faster than the SW version of the kernel
when run on the APU and two times slower than the SW version when ran on 2.9GHz dual-core
I5 CPU (table 18). The optimized HW kernel for the reduced HSI is 105 times faster than the
SW version ran on the APU and ten times faster than the SW version ran on 2.9GHz dual-core
I5 CPU (table 18). The effect of pipelining the main loop is, as expected large, and results in
more significant improvements for the reduced HSI relative to the full HSI. A critical remark is
that the SW code ran on the 2.9GHz dual-core I5 CPU as previously stated compiled with the -O2

compiler flag, while it is compiled without the -O2 flag on the PS on the ZCU104. The HW kernel
is connected to a 150MHz clock signal. This determines the speed of operation, even though the
Vitis HLS estimates that the maximum possible frequency for the HW kernel is above 400MHz.

5.2.3 Fixed-point implementation

The data representation is changed from floating-point to fixed-point for the optimized HW kernel
as described in section 4.3. The utilization is as follows:

Table 23: FPGA utilization for optimized HW kernel using fixed point representation.

PCA BRAM DSP FF LUT LUT-RAM
No 215 (69%) 40 (2.30%) 64826 (14.07%) 69986 (30.38%) 15150 (14,89%)
Yes 67 (21.47%) 288 (16.67%) 49510 (10.74%) 40036 (17.38%) 3929 (3.86%)

The utilization is significantly reduced when changing from floating point to fixed point, as sug-
gested in [50]. The HW kernel runs on 150 MHz, and since the number of cycles is the same for
the two data representations, the latency is the same. The maximum possible estimated frequency
is found in Vitis HLS. The estimated maximum frequency is 680 MHz when using fixed-point
representation and 447 MHz when using floating-point. This means that in a system that offers a
higher frequency the fixed-point implementation is estimated to be approximately 50% faster than
the floating point implementation.

56



6 Discussion

The field of HAD is rapidly emerging, and the methods are growing in complexity compared to
traditional statistical and geometrical methods. State-of-the-art methods utilize advanced pre-
processing methods, morphological attribute filters, and deep learning techniques. The ten known
state-of-the-art HAD algorithms used in evaluating the HAD algorithm proposed in this thesis
all achieve better AUC results than the baseline GRX algorithm. However, most state-of-the-art
algorithms have very high execution times compared to the baseline GRX and the faster state-of-
the-art algorithms. Due to limited power, time, and memory onboard a satellite, these algorithms
could be sub-optimal for remote sensing from space.

The two HAD algorithms utilizing morphological attribute filters (MPAF and AED) achieve very
promising AUC and execution time results. The drawbacks of AED are that it is reliant on PCA
and that it is susceptible to wrong size thresholds for anomalies. Dimensionality reduction with
PCA is a feature that is not necessarily accessible onboard a satellite. MPAF uses a novel algorithm
to select one single band from the HSI. Computing the anomaly score using only a single band
leads to low execution times, but the algorithm relies on one single band where all anomalies stand
out. The deep learning HAD algorithm AWDBN uses an AE combined with a weights strategy to
perform the detection. The method has higher execution times than MPAF and AED, but it is
also more flexible. There are no requirements for pre-processing or restrictions on the size of the
HSI or number of bands. The weights strategy tends to assign higher anomaly scores to borders
between different types of backgrounds in the HSIs than desired.

A novel weights strategy was proposed to improve the performance of AWDBN in this thesis. The
new algorithm, consisting of a DBN AE and the new weights strategy, showed clear improvements
compared to AWDBN on the 13 real HSIs in the ABU dataset. As expected, the anomaly scores
assigned to the borders were decreased. The improvement was visible in the detection maps and
understated by the increased average AUC results. The objective of this thesis was to provide the
HYPSO mission with an implementation of a state-of-the-art HAD algorithm, which meets the
requirements of the mission. The HAD algorithm proposed in this thesis, adapted and improved
from AWDBN [1], was chosen as the HAD algorithm to be implemented. The choice was motivated
by the high AUC results and the high flexibility of the algorithm.

The execution time of the proposed HAD algorithm is significantly higher than that of MPAF
and AED but also significantly lower than the other state-of-the-art algorithms. However, there
are challenges with the chosen algorithm. Several parameters need to be decided, where different
HSIs require different parameter values to achieve maximum performance. As with most other
algorithms, the size of the anomalies can be a challenge. The utilization of the DSW relies on the
anomalies to be smaller than the inner window to function as desired. The DBN AE parameters
that yield the most significant performance change are the number of iterations to perform training.
Complex sceneries tend to require more iterations of training to achieve higher AUC results. For
less complex sceneries, the AUC results converge for fewer iterations of training. Since the HYPSO
mission aims at ocean monitoring, the scenery is assumed to be less complex than the Urban and
Airport scenery, and comparable to the Beach scenery in the ABU dataset. The size of the inner
window can be decided by the mission, dependent on what kind of objects or phenomena the
mission aims to detect.

The proposed HAD algorithm was implemented in C-programming language. Implementing the
algorithm in C was done to simplify adding the algorithm to the processing pipeline onboard
the satellite used in the HYPSO mission and enabling HW acceleration using HLS. The HAD
algorithm was simplified by not including CD1 pre-training or the new weights strategy to allow
rapid implementation and testing. The algorithm elements not included can be added to the
implementation without changing the code that is written. The simplified algorithm is similar to
the DBN HAD algorithm described in [7], and uses the reconstruction errors from the DBN AE as
anomaly scores. The C implementation is implemented using 32-bits floating-point representations,
while the Matlab implementation uses 64-bits floating-point representations. The AUC results and
detection maps from the C implementation are compared with the results from Matlab, and the
differences are negligible. The comparison between Matlab and C is considered a verification that
the behavior of the C implementation is as desired. The execution time results show that the

57



anomaly detection is faster in C, while training is faster in Matlab. Matlab uses matrix operation
algorithms that are highly optimized. During the training of the DBN AE, large matrices are used
repeatedly, and Matlab’s optimized use of the memory hierarchy explains why the training has
lower execution time.

The part of the proposed HAD algorithm that uses the fully trained DBN AE to compute the
reconstruction errors, which are used as anomaly scores, is accelerated in customized HW. Due to
restrictions on available libraries when using the C-programming language, the code is translated
from C to C++. Vitis HLS is used to synthesize the targeted C++ code to RTL. The targeted
behavior can now be implemented as a HW kernel on programmable logic. The HW kernel is
optimized with optimization PRAGMAS to achieve lower latency and resource utilization. Three
versions of the HW kernel were implemented and tested as a part of a HW-SW partitioned sys-
tem using the Zynq Ultrascale+ MPSoC ZCU104 Evaluation Kit. The baseline HW kernel was
implemented in order to show the improvements made by adding the optimization PRAGMAS.

The results obtained from testing the design on the ZCU104 show the potential upside of accel-
erating part of the algorithm in HW. When applied on a PCA-reduced HSI cube, the optimized
HW kernel is about 105 times faster than the SW version on the APU of the ZCU104 and ten
times faster the SW version on a 2.9GHz dual-core I5 CPU. When applied to the full HSI cube,
the HW kernel is about 6.5 times faster than the SW version on the APU of the ZCU104 and
two times slower the SW version on a 2.9GHz dual-core I5 CPU. The HW kernel is run with a
150MHz clock, but it could run on a higher frequency to increase the speed further. The relative
differences in acceleration shows that the utilization of a HW kernel is more efficient when using
PCA dimensionality reduction than without. However, there is still a significant speedup for the
full HSI compared to the SW version ran on the APU. The results show that customized HW can
provide valuable speedup in a mission where timing is critical.

When the datatype was changed from floating-point to fixed-point, the resource utilization was
reduced significantly. The change of datatype also changed the estimated maximum frequency,
which shows the potential for further decrease of latency. The kernel could most likely be further
optimized, seeing as there are still available resources.

The next iteration of the HYPSO satellite intends to have the same PS and PL as on the ZCU104
onboard and the inclusion of PCA dimensionality reduction in the onboard processing pipeline is
planned. Based on this, the HAD algorithm is possible to implement onboard the HYPSO satellite.

6.1 Possible sources of error

There exist possible sources of error in the work related to this thesis. Three possible sources are
identified and listed below. Most likely, there are more possible sources of error, however these
three are the most important that are known to the author.

• The authors of the papers describing the DBN and AWDBN HAD algorithms have not used
the ABU dataset for evaluation. The two algorithms were implemented by the author of this
thesis during the specialization project, and the results of the two HAD algorithms presented
in 3.3 are from the authors specialization thesis. The implementation follows the descriptions
in [7] and [1] as closely as possible, however there may be differences.

• As described in section 3.3, the AWDBN and the HAD algorithm proposed in this thesis do
not use the pixels at the edges of the HSIs when computing anomaly scores. This is a result
of the DSW, where the PUT must be placed such that the DSW can fit within the HSI.
The effects of this is assumed to be small, however it may have a slight impact on the AUC
results.

• The loss of accuracy when converting from floating-point representation to fixed-point rep-
resentation is obtained with simulating in Vitis HLS. There is a possibility that the corre-
sponding loss of accuracy is different when the implementation is run in a real HW kernel.

58



6.2 Future work

The main objective of providing the HYPSO mission with an implementation of a state-of-the-art
HAD algorithm. To improve the implemented system, and thus deliver a better product to the
HYPSO mission, the following elements should be performed.

• Explore methods for optimizing and automating the choice of parameter values for the pro-
posed HAD algorithm

• Implement the proposed weights strategy in C-programming language

• Implement CD pre-training in C-programming language

• Accelerate the proposed weights strategy in customized HW

• Further optimization of the implemented HW kernel

• Adapt and add the implemented system to the next iteration of HYPSO satellite onboard
processing pipeline

59



7 Conclusion

A HAD algorithm has been developed, evaluated, implemented, tested, and accelerated with spe-
cialized HW in the work related to this thesis. The algorithm is adapted from the HAD algorithm
proposed in [1] and modified to improve the accuracy. The changes made resulted in increased av-
erage accuracy, as presented in chapter 3.3. The proposed HAD algorithm achieved the third-best
average accuracy on the ABU dataset compared to 11 other baseline and state-of-the-art HAD
algorithms.

Research questions 1-3 regarding recent advances, evaluation methods, and state-of-the-art for
HAD algorithms are explored in chapters 2 and 3. Recent advances in HAD include morphological
attribute filters and machine learning methods such as autoencoders. The most used performance
metrics in papers presenting HAD algorithms are AUC and execution time. The HAD with the
state-of-the-art performance on the ABU-dataset used in this thesis is to the best of the author’s
knowledge, the MPAF detector [43].

The main objective of this thesis was to provide the HYPSO mission with an implementation of a
state-of-the-art HAD algorithm suitable to the mission requirements. A simplified version of the
proposed HAD algorithm was implemented in the C-programming language and adapted to the
HSI storage format used in the HYPSO mission.

A part of the algorithm was accelerated in HW using Vitis HLS to create a HW kernel. This
process is related to research question 4 regarding HW acceleration of the proposed HAD. A HW-
SW partitioned system was implemented where the initial steps of the proposed HAD algorithm
are performed in SW before the computing of anomaly scores is performed with a HW kernel.
The HW-SW partitioned system is tested on the Zynq UltraScale+ MPSoC ZCU104 Evaluation
Kit. The HW kernel achieved a maximum of 100 times faster computation of anomaly scores than
C-code run at the ZCU104. The maximum speedup was achieved using a PCA-reduced HSI cube
on an optimized HW kernel. The implemented HW-SW partitioned system can be added to the
onboard processing pipeline without considerable effort based on the plans for the next iteration
of the HYPSO satellite.

This thesis and the corresponding implementation is considered to satisfy the objective, even
though there is still room for improvement as described in section 6.2.

60



Bibliography

[1] Ning Ma, Yu Peng, Shaojun Wang, and Philip H.W. Leong. An unsupervised deep hy-
perspectral anomaly detector. Sensors (Switzerland), 18(3), 2018. ISSN 14248220. doi:
10.3390/s18030693.

[2] A.A. Gowen, C.P. O’Donnell, P.J. Cullen, G. Downey, and J.M. Frias. Hyperspectral imag-
ing – an emerging process analytical tool for food quality and safety control. Trends in
Food Science and Technology, 18(12):590–598, 2007. ISSN 0924-2244. doi: https://doi.org/
10.1016/j.tifs.2007.06.001. URL https://www.sciencedirect.com/science/article/pii/

S0924224407002026.

[3] Mariusz E Grøtte, F Fortuna, Roger Birkeland, Julian Veisdal, Milica Orlandic, Harald
Martens, J Tommy Gravdahl, Fred Sigernes, Tor A Johansen, Jan Otto Reberg, et al. Hy-
perspectral imaging small satellite in multi-agent marine observation system. Unpublished-
Internal document, 2018.

[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[5] Ning Ma, Ximing Yu, Yu Peng, and Shaojun Wang. A lightweight hyperspectral image
anomaly detector for real-time mission. Remote Sensing, 11:1622, 07 2019. doi: 10.3390/
rs11131622.

[6] M. Ning, P. Yu, W. Shaojun, and G. Wei. A weight sae based hyperspectral image anomaly
targets detection. In 2017 13th IEEE International Conference on Electronic Measurement
Instruments (ICEMI), pages 511–515, 2017. doi: 10.1109/ICEMI.2017.8265874.

[7] Ning Ma, Shaojun Wang, Jinxiang Yu, and Yu Peng. A DBN based anomaly targets detector
for HSI. In Wolfgang Osten, Anand Krishna Asundi, and Huijie Zhao, editors, AOPC 2017:
3D Measurement Technology for Intelligent Manufacturing, volume 10458, pages 525 – 530.
International Society for Optics and Photonics, SPIE, 2017. doi: 10.1117/12.2285766. URL
https://doi.org/10.1117/12.2285766.

[8] Juan C Cuevas-Tello, Manuel Valenzuela-Rendón, and Juan A Nolazco-Flores. A tutorial on
deep neural networks for intelligent systems. arXiv preprint arXiv:1603.07249, 2016.

[9] Introduction to fpga design with vivado high-level synthesis (ug998). https://www.xilinx.

com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf,
January 2019. (Accessed on 05/14/2021).

[10] Vitis high-level synthesis user guide. https://www.xilinx.com/support/documentation/

sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf, March 2021. (Accessed on
05/16/2021).

[11] HLS Pragmas. https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/hls_

pragmas.html#sxx1504034358866. (Accessed on 06/26/2021).

[12] Unleash the Unparalleled Power and Flexibility of Zynq UltraScale+ MPSoCs
(WP470). https://www.xilinx.com/support/documentation/white_papers/

wp470-ultrascale-plus-power-flexibility.pdf. (Accessed on 06/25/2021).

[13] Aksel L. Gundersen. Hyperspectral anomaly detection based on autoencoders. Unpublished-
Internal document, 2020.

[14] Peg Shippert. Why use hyperspectral imagery?, 2004. ISSN 00991112.

[15] M T Eismann. Hyperspectral remote sensing. SPIE, 2012. doi: 10.1117/3.899758.

[16] M. Ben Salem, K. S. Ettabaa, and M. A. Hamdi. Anomaly detection in hyperspectral imagery:
an overview. In International Image Processing, Applications and Systems Conference, pages
1–6, 2014. doi: 10.1109/IPAS.2014.7043320.

61

https://www.sciencedirect.com/science/article/pii/S0924224407002026
https://www.sciencedirect.com/science/article/pii/S0924224407002026
http://www.deeplearningbook.org
https://doi.org/10.1117/12.2285766
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/hls_pragmas.html#sxx1504034358866
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/hls_pragmas.html#sxx1504034358866
https://www.xilinx.com/support/documentation/white_papers/wp470-ultrascale-plus-power-flexibility.pdf
https://www.xilinx.com/support/documentation/white_papers/wp470-ultrascale-plus-power-flexibility.pdf


[17] S. Matteoli, M. Diani, and G. Corsini. A tutorial overview of anomaly detection in hyper-
spectral images. IEEE Aerospace and Electronic Systems Magazine, 25(7):5–28, 2010. doi:
10.1109/MAES.2010.5546306.

[18] Ryan Nugent, Riki Munakata, Alexander Chin, Roland Coelho, and Jordi Puig-Suari. The
CubeSat: The picosatellite standard for research and education. In Space 2008 Conference,
2008. ISBN 9781563479465. doi: 10.2514/6.2008-7734.

[19] David Poole, Alan Mackworth, and Randy Goebel. Computational Intelligence: A Logical
Approach. Oxford University Press, 01 1998. ISBN 978-0-19-510270-3.

[20] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[21] Sagar Sharma and Simone Sharma. Activation functions in neural networks. Towards Data
Science, 6(12):310–316, 2017.

[22] Sebastian Ruder. An overview of gradient descent optimization algorithms. ArXiv,
abs/1609.04747, 2016.

[23] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations
by back-propagating errors. Nature, 1986. ISSN 00280836. doi: 10.1038/323533a0.

[24] Alireza Makhzani and Brendan Frey. k-Sparse Autoencoders. arXiv e-prints, art.
arXiv:1312.5663, December 2013.

[25] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

[26] Chunhui Zhao, Xueyuan Li, and Haifeng Zhu. Hyperspectral anomaly detection based on
stacked denoising autoencoders. Journal of Applied Remote Sensing, 11:1, 09 2017. doi:
10.1117/1.JRS.11.042605.

[27] Xudong Kang, Xiangping Zhang, Shutao Li, Kenli Li, Jun Li, and Jón Atli Benediktsson.
Hyperspectral Anomaly Detection with Attribute and Edge-Preserving Filters. IEEE Trans-
actions on Geoscience and Remote Sensing, 2017. ISSN 01962892. doi: 10.1109/TGRS.2017.
2710145.

[28] Irving S. Reed and Xiaoli Yu. Adaptive Multiple-Band CFAR Detection of an Optical Pattern
with Unknown Spectral Distribution. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 1990. ISSN 00963518. doi: 10.1109/29.60107.

[29] K. I. Ranney and M. Soumekh. Hyperspectral anomaly detection within the signal subspace.
IEEE Geoscience and Remote Sensing Letters, 3(3):312–316, 2006. doi: 10.1109/LGRS.2006.
870833.

[30] Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. Singular Value Decomposi-
tion and Principal Component Analysis, pages 91–109. Springer US, Boston, MA, 2003.
ISBN 978-0-306-47815-4. doi: 10.1007/0-306-47815-3 5. URL https://doi.org/10.1007/

0-306-47815-3{_}5.

[31] I T Jolliffe. Principal Component Analysis and Factor Analysis, pages 115–128. Springer New
York, New York, NY, 1986. ISBN 978-1-4757-1904-8. doi: 10.1007/978-1-4757-1904-8 7. URL
https://doi.org/10.1007/978-1-4757-1904-8{_}7.

[32] A.A. Green, M. Berman, P. Switzer, and M.D. Craig. A transformation for ordering multi-
spectral data in terms of image quality with implications for noise removal. IEEE Transactions
on Geoscience and Remote Sensing, 26(1):65–74, 1988. doi: 10.1109/36.3001.

[33] Prasanta Chandra Mahalanobis. On the generalized distance in statistics. National Institute
of Science of India, 1936.

[34] S. Küçük and S. E. Yüksel. Comparison of rx-based anomaly detectors on synthetic and real
hyperspectral data. In 2015 7th Workshop on Hyperspectral Image and Signal Processing:
Evolution in Remote Sensing (WHISPERS), pages 1–4, 2015. doi: 10.1109/WHISPERS.2015.
8075504.

62

https://doi.org/10.1007/0-306-47815-3{_}5
https://doi.org/10.1007/0-306-47815-3{_}5
https://doi.org/10.1007/978-1-4757-1904-8{_}7


[35] Chein-I Chang and Mingkai Hsueh. Characterization of anomaly detection in hyperspectral
imagery. Sensor Review - SENS REV, 26:137–146, 04 2006. doi: 10.1108/02602280610652730.

[36] Heesung Kwon and N. M. Nasrabadi. Kernel rx-algorithm: a nonlinear anomaly detector
for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 43(2):
388–397, 2005. doi: 10.1109/TGRS.2004.841487.

[37] Chein-I Chang and Mingkai Hsueh. Characterization of anomaly detection in hyperspectral
imagery. Sensor Review - SENS REV, 26:137–146, 04 2006. doi: 10.1108/02602280610652730.

[38] Wei Li and Qian Du. Collaborative Representation for Hyperspectral Anomaly Detection.
Geoscience and Remote Sensing, IEEE Transactions on, 53:1463–1474, 2015. doi: 10.1109/
TGRS.2014.2343955.

[39] Bing Tu, Nanying Li, Zhuolang Liao, Xianfeng Ou, and Guoyun Zhang. Hyperspectral
anomaly detection via spatial density background purification. Remote Sensing, 11:2618,
11 2019. doi: 10.3390/rs11222618.

[40] Edmond J Breen and Ronald Jones. Attribute openings, thinnings, and granulometries. Com-
puter vision and image understanding, 64(3):377–389, 1996.

[41] Mauro Dalla Mura, Jón Atli Benediktsson, Björn Waske, and Lorenzo Bruzzone. Morpholog-
ical attribute profiles for the analysis of very high resolution images. IEEE Transactions on
Geoscience and Remote Sensing, 48(10):3747–3762, 2010. doi: 10.1109/TGRS.2010.2048116.

[42] Eduardo Gastal and Manuel Oliveira. Domain transform for edge-aware image and video
processing. ACM Trans. Graph., 30:69, 07 2011. doi: 10.1145/2010324.1964964.

[43] Ferdi Andika, Mia Rizkinia, and Masahiro Okuda. A hyperspectral anomaly detection al-
gorithm based on morphological profile and attribute filter with band selection and auto-
matic determination of maximum area. Remote Sensing, 12(20), 2020. ISSN 2072-4292. doi:
10.3390/rs12203387. URL https://www.mdpi.com/2072-4292/12/20/3387.

[44] Emrecan Bati, Akın Çalışkan, Alper Koz, and A. Aydin Alatan. Hyperspectral anomaly
detection method based on auto-encoder. In Lorenzo Bruzzone, editor, Image and Signal
Processing for Remote Sensing XXI, volume 9643, pages 220 – 226. International Society for
Optics and Photonics, SPIE, 2015. doi: 10.1117/12.2195180. URL https://doi.org/10.

1117/12.2195180.

[45] Shizhen Chang, Bo Du, and Liangpei Zhang. A sparse autoencoder based hyperspectral
anomaly detection algorihtm using residual of reconstruction error. In IGARSS 2019 - 2019
IEEE International Geoscience and Remote Sensing Symposium, pages 5488–5491, 2019. doi:
10.1109/IGARSS.2019.8898697.

[46] Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 2002. ISSN 08997667. doi: 10.1162/089976602760128018.

[47] Asja Fischer and Christian Igel. Training restricted boltzmann machines: An introduction.
Pattern Recognition, 47:25–39, 01 2014. doi: 10.1016/j.patcog.2013.05.025.

[48] Geoffrey E. Hinton. A practical guide to training restricted boltzmann machines. Gatsby
Computational neuroscience unit, 2010.

[49] J J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982. ISSN
0027-8424. doi: 10.1073/pnas.79.8.2554. URL https://www.pnas.org/content/79/8/2554.

[50] Ambrose Finnerty and Hervé Ratigner. Reduce power and cost by converting from floating
point to fixed point. WP491 (v1. 0), 2017.

[51] Jingjing Wu, Yu Jin, Wei Li, and Lianru Gao. Fpga implementation of collaborative repre-
sentation algorithm for real-time hyperspectral target detection. Journal of Real-Time Image
Processing, 15, 10 2018. doi: 10.1007/s11554-018-0823-7.

63

https://www.mdpi.com/2072-4292/12/20/3387
https://doi.org/10.1117/12.2195180
https://doi.org/10.1117/12.2195180
https://www.pnas.org/content/79/8/2554


[52] Jie Lei, Geng Yang, Weiying Xie, Yunsong Li, and Xiuping Jia. A low-complexity hyper-
spectral anomaly detection algorithm and its fpga implementation. IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote Sensing, 14:907–921, 2021. doi:
10.1109/JSTARS.2020.3034060.

[53] M. Tanaka and M. Okutomi. A novel inference of a restricted boltzmann machine. 2014 22nd
International Conference on Pattern Recognition, pages 1526–1531, 2014.

[54] Peter Flach, José Hernández-Orallo, and Cèsar Ferri. A coherent interpretation of AUC as
a measure of aggregated classification performance. In Proceedings of the 28th International
Conference on Machine Learning, ICML 2011, 2011. ISBN 9781450306195.

[55] A. Banerjee, P. Burlina, and C. Diehl. A support vector method for anomaly detection in
hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 44(8):2282–
2291, 2006. doi: 10.1109/TGRS.2006.873019.

[56] ZCU104 Evaluation Board User Guide (UG1267). https://www.xilinx.com/support/

documentation/boards_and_kits/zcu104/ug1267-zcu104-eval-bd.pdf, October 2018.
(Accessed on 06/19/2021).

[57] Zynq UltraScale+ MPSoC Data Sheet: Overview (DS891). https://www.xilinx.com/

support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf,
may 2021. (Accessed on 06/19/2021).

[58] Aaftab Munshi. The opencl specification. In 2009 IEEE Hot Chips 21 Symposium (HCS),
pages 1–314, 2009. doi: 10.1109/HOTCHIPS.2009.7478342.

64

https://www.xilinx.com/support/documentation/boards_and_kits/zcu104/ug1267-zcu104-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu104/ug1267-zcu104-eval-bd.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf


Appendix

A Parameter values used to obtain results in section 3.3

Scene Image Mini-batch size Pre-training iterations Training iterations winner wouter
Airport (A) 7 20 30 1 13
Airport (B) 5 15 100 5 15
Airport (C) 7 15 40 5 17
Airport (D) 7 15 80 5 9
Beach (A) 40 10 20 3 5
Beach (B) 6 10 30 1 3
Beach (C) 10 10 20 5 7
Beach (D) 10 10 20 15 17
Urban (A) 4 10 25 1 9
Urban (B) 5 15 25 9 15
Urban (C) 5 15 30 3 7
Urban (D) 5 30 30 9 11
Urban (E) 7 15 40 5 7

B Guide to run the system on the ZYNQ Ultrascale+ MP-
SoC ZCU104

The complete system is exported as a ZIP-file. To run the implemented HW-SW partitioned
system on the Zynq Ultrascale+ MPSoC ZCU104 Evaluation Kit, please follow the below steps:

1. Download and install Vitis Unified Software Platform 2020.24

2. Download the common image for petalinux from the xilinx website5

3. Download the program etcher from etcher.io.

4. Use etcher to flash the common image onto the SD-card.

5. Open a terminal in the Xilinx directory created when installing Vitis Unified Software Plat-
form 2020.2

• type ”source ./settings64.sh”

• type ”sudo /bin/vitis”

• The Vitis IDE should now open.

6. The project zip-file can be imported as described at the xilinx webpage6

7. Build the project for HW.

8. Copy the files in ”workspace/sys1 system/hardware/package/sd card to the SD-card.

9. Insert the SD-card in the ZCU104, set the board in ”boot from SD-card mode” as described
in [56] and turn the board on.

10. Use a serial terminal to communicate with the board using USB and run the sys1.

4https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/2020-2.html
5https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-

tools/2020-2.html
6https://www.xilinx.com/html docs/xilinx2020 2/vitis doc/projectexportimport.html

65



C Description of the code-base

The entire code-base for related to the thesis is contained in a private Github repository7. To
access it please send an request on email to the author (gundersen1105@gmail.com).

The code-base is divided into the following folders:

1. Matlab

• This folder contains all matlab files.

• To run on a new computer the parameter PATH in startup.m must be changed to the
correct path. After changing the Path, run the startup script. the PATH variable in
load HSI.m must also be changed.

• The script ”main.m” is used to run the implementation. Change the parameter opts.datasets
to decide which HSI to use.

• The DBN parameters can be changed in the script ”HSI TRAIN DBN.m”.

2. C

• This folder contains all C files.

• Change the global variable DATA in params.h to change which HSI is used.

• Run the main-function in the main.c file to test the program.

3. HLS

• This folder contains all C++ files used in the development of the three different kernels.

• To run the program, please download Vitis HLS 2020.2, and compile the files from the
IDE.

4. ZCU104

• This folder contains all C++ files used in the HW-SW partitioned system that is ran
on the ZCU104

• To run the program, please download Vitis unified software platform as described in
attachment B.

7https://github.com/akselgundersen/HSI AD

66



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

Aksel Lindbæk Gundersen

Hardware-Software partitioned
implementation of an autoencoder-
based hyperspectral anomaly
detector

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Milica Orlandic
June 2021

M
as

te
r’s

 th
es

is


	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Hyperspectral imaging
	Remote sensing
	The HYPSO mission

	Main contributions
	Outline of thesis

	Background
	Deep learning
	Training
	Autoencoders

	Hyperspectral anomaly detection algorithms
	Double sliding window
	Dimensionality reduction
	Baseline and state-of-the-art hyperspectral anomaly detection algorithms
	Deep belief network autoencoder algorithms

	Hardware acceleration
	Fixed-point representation
	High-level synthesis
	Hardware accelerated hyperspectral anomaly detection

	Datasets for hyperspectral anomaly detection

	Methodology
	New weights strategy
	Matlab implementation
	Import and pre-process hyperspectral images
	Deep belief network
	Weights

	Evaluation
	Performance metrics
	Comparison with known HAD algorithms
	Detection maps


	Implementation
	Software
	High-level synthesis
	Baseline
	Optimization
	Fixed point

	Hardware-software partitioned system
	Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit
	Hardware-software partitioned system


	Results
	Software results
	Hardware-software partitioned system results
	Baseline implementation
	Optimized implementation
	Fixed-point implementation


	Discussion
	Possible sources of error
	Future work

	Conclusion
	Bibliography
	Appendix
	Parameter values used to obtain results in section 3.3
	Guide to run the system on the ZYNQ Ultrascale+ MPSoC ZCU104
	Description of the code-base

