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Abstract

The idea of a neural network automatically learning the information we as humans want it to
learn is the ultimate goal for deep learning due to labeling being both tedious and expensive.
This thesis will show that, in specific fields, we are closer than ever to making this a reality.

Throughout this thesis, it will explore the inner workings behind how a neural network can
automatically infer depth from only viewing a video from a single camera. After presenting
the needed background knowledge, this thesis introduces self-supervised learning, what it is
and how it can be trained to predict depth for a monocular video with no previous knowledge.
When the required basic knowledge is established, the thesis continues by giving an in-depth
explanation of some of the current state-of-the-art methods of doing self-supervised depth
estimation, focusing on exploring how their contributions improved the field. These meth-
ods are validated through experiments, where they are tested on autonomous driving-focused
datasets. The results from the experiments are discussed, where potential sources of error are
presented together with potential fixes.

A brief analysis of the required modifications needed to use self-supervised depth estimation
methods in an autonomous car is also presented, together with a reflection on the future of
self-supervised depth estimation.

The thesis will present a potential novel architecture based on the findings and reflections. This
architecture is based on combining features from all the current state-of-the-art self-supervised
methods and has the potential to improve the current state-of-the-art.
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Sammendrag

Ideen om å få nevrale nettverk til å automatisk lære seg det vi mennesker vil at de skal lære
er det ultimale målet for dyp læring. Denne oppgaven vil vise at vi, for enkelte felt, nærmere
enn noen gang for å gjøre dette til en virkelighet.

Denne oppgaven vil gjennomgående utforske de indre mekanismene som gjør det mulig for
nevrale nettverk å predikere dybde ved å kun benytte seg av video fra et enkelt kamera. Et-
ter å ha presentert den nødvendige basiskunnskapen vil denne oppgaven introdusere temaet
"self-supervised learning"; hva det er og hvordan det kan brukes til å predikere dybde. Når
basiskunnskapen er på plass vil oppgaven gi en mer grundig forklaring av noen av de topp-
moderne metodene som benytter seg av "self-supervised learning" for å gjøre dybdeestimering,
hvor oppgaven vil fokusere på hvordan disse metodenes bidrag forbedret feltet. Disse meto-
dene er testet og validert i gjennom forsøk, hvor de blir trent og testet med dataset hentet
fra autonome biler. Resultatene fra disse forsøkene blir diskutert, hvor potensielle feilkilder og
mulige løsninger blir presentert.

Videre vil det bli gjort en analyse av hvilke endringer disse metodene vil trenge for å kunne
brukes i en selvkjørende bil, sammen med en refleksjon av fremtiden til "self-supervised" dyb-
deestimering.

Oppgaven vil også presentere en potensiell ny arkitektur basert på resultatene observert i
oppgaven. Denne arkitekturen er basert på å sette sammen deler fra de toppmoderne metodene
til en ny arkitektur som har stort potensiale til å produsere resultater som kan overgå de
toppmoderne metodene.
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Chapter 1

Introduction

1.1 Background and Motivation

Knowing the distance to other objects is a fundamental requirement for autonomous vehicles.
Traditionally, this has been done by utilizing proximity sensors such as radars and ultrasonic
sensors, and in the more modern times, lidars. The lidar creates the most accurate representa-
tion of the world around it by creating a highly accurate three-dimensional point cloud. But,
a significant problem with lidars is their price and size. This has led companies like Tesla to
already move away from using lidars. However, due to knowing the proximity of other objects
being a fundamental requirement, these companies needed to look into other means of getting
distance information. There are several promising approaches, but one of the more successful
is using video from a single cameras to infer a depth value for all pixels in the image.

There are essentially three ways of generating depth from a video segment. The first method
utilizes structure from motion techniques, with the most common being multi-view stereo tech-
niques. These techniques utilize more traditional computer vision techniques and are based on
triangulating the position of objects in the world. However, these methods can, at best, create
sparse 3D reconstructions of a scene and often miss smaller significant objects like pedestrians.
The second method uses a standard deep learning approach by automatically annotating the
depth for images using onboard proximity sensors like radars. A significant problem with this
approach is that to get this data, one would already need these expensive sensors, making the
need for creating a system based on cameras irrelevant. Also, these sensors can only sparsely
annotate the image due to the proximity sensors not being able to find depth for every single
point in an image. This solution would also require an associated radar pointing in the same
direction as the camera for every camera on the vehicle.

The third and relatively recent method of detecting depth is through self-supervision. These
methods do not require any form of labels, as the neural networks automatically extract su-
pervision signals from the data itself.

The performance gap between the supervised and self-supervised methods is shrinking fast,
and with novel methods and ideas being presented at an alarming speed, it is not unsaid that
this performance gap will be closed relatively soon. However, with new papers being published
multiple times per month, this can make it hard to keep up with all their novel approaches and
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contributions. This rapid progression makes it hard to understand what is needed to improve
the field and how one can use the strengths of each novel contribution together.

Therefore, this thesis’s primary goal will be to explore and investigate the current state-of-the-
art self-supervised dense depth estimation, focusing on how these methods’ contributions func-
tion and improve the field. However, to understand how the current state-of-the-art improved
the field, one must first take a deep dive into the basics of self-supervised depth estimation.
With this gained knowledge, one has the best possible position to be able to improve the field.

In order to validate the results achieved by these state-of-the-art methods, the thesis will also
validate the results achieved by the methods by training them with different well-known au-
tonomous driving-focused datasets, which differ from the ones that the methods used in their
papers. This thesis will also analyze how the methods behave when using raw footage from a
camera on NAP-lab’s autonomous platform due to the other datasets being strictly curated for
autonomous vehicles. Some thoughts on what is needed to incorporate these methods into an
autonomous vehicle are also presented.

Finally, a novel architecture is proposed based on the findings after exploring how the current
state-of-the-art methods improved the field. This architecture is based on using the contribu-
tions that improved the current state-of-the-art methods, where each element in the proposed
architecture aims to improve shortcomings that the contributions by themselves introduces.

1.2 Research Questions and Goals

AsThe overall goal of this thesis is to gain the knowledge needed to suggest a novel architecture
for self-supervised depth estimation that has the potential to improve the current state-of-the-
art performance. This architecture should also be usable in an autonomous driving-setting,
by being able to run in real-time. If successful, this architecture will potentially close the gap
between self-supervised and supervised methods even further and is a step closer to removing
expensive proximity sensors like lidars. To be able to propose a suitable architecture, some
subgoals are proposed:

Subgoal 1: Gain the required knowledge about the fundamentals of self-supervised depth
estimation.

Subgoal 2: Investigate and explore the current state-of-the-art self-supervised depth estima-
tion methods, with a particular focus on how their contributions improved the field.

Subgoal 3: Select two of the state-of-the-art methods and train them on acknowledged
datasets for autonomous vehicles. Also, select a state-of-the-art supervised method and
compare the performance between the self-supervised and supervised.

A set of research questions related to the primary and subgoals are proposed to help guide the
research. These will be answered in Chapter 5 in Section 5.6

RQ 1: Can self-supervised-based dense depth estimation methods achieve the same perfor-
mance as supervised methods?
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RQ 2: Can dense depth estimation methods replace proximity sensors like lidars and radars?

RQ 3: Which measures can be taken to improve existing state-of-the-art self-supervised meth-
ods?

1.3 Contributions

This thesis’s main contribution is taking deep dive into the current state-of-the-art self-supervised
dense depth estimation methods proposed in the last couple of years and evaluating these on
unseen data. These findings can help to support decisions regarding replacing proximity sen-
sors with a dense depth estimation system. Another contribution is the proposal of a novel
architecture that has the potential to improve the current state-of-the-art performance. This
architecture will be constructed by carefully selecting the contributions from the current state-
of-the-art methods that have improved the field of self-supervised depth estimation.

Summarized, these are the thesis’s main contributions:

1. A in-depth analysis of the current state-of-the-art self-supervised depth estimation
methods.

2. A proposed novel architecture that has the potential to improve the current state-
of-the-art performance for self-supervised depth estimation.

1.4 Thesis Structure

This section describes the layout of the thesis’s chapters, where each chapter has a short de-
scription of its content.

Chapter 1: Introduction: Introduces the thesis and the topics it wants to study.

Chapter 2: Background and Related Work: Introduces relevant theory and knowledge, fo-
cusing on machine learning, self-supervised learning, and depth estimation.

Chapter 3: Methodology: Describes which depth estimation methods have been selected
and their inner workings, and how they were modified to work with custom datasets. A
description of how the selected datasets were organized, extracted, and preprocessed is
also available in this chapter.

Chapter 4: Experiments and Results: Defines the experiments based on the research ques-
tions and covers the results of each experiment.

Chapter 5: Discussion: Analyses the results of the experiments and compares the results
between each other. Some of the shortcomings and weaknesses are also discussed.

Chapter 6: Conclusion and Future Work: Summarizes the work done in this thesis and
introduces some ideas for future work based on the knowledge gained.





Chapter 2

Background and Related Work

This chapter covers the background material and theory relevant to the thesis. It starts by
introducing basic concepts in Machine Learning (ML). Following is an introduction to more
advanced concepts like Convolutional Neural Network (CNN) and Transformers. Due to one
of the main focuses of this thesis being Self-supervised learning, this topic is introduced thor-
oughly. Another significant part of this thesis is depth estimation, focusing mainly on self-
supervised techniques to generate dense depth images. Here, some important works done
in the field of dense depth estimation are presented, together with the current State-of-the-
Art (SotA). Finally, the chapter introduces some datasets containing data from different au-
tonomous vehicles.

2.1 Deep Learning

Deep learning is the foundation for most modern machine learning. It is based on artificial
neural networks consisting of two or more hidden layers that can learn non-linear functions
describing relationships found in data. The learning is done through backpropagation to mini-
mize a loss function by using a strategy selected by an optimizer. The most used network types
in computer vision are convolutional and recurrent neural networks, as these can utilize spa-
tial and temporal features, respectively. This section explains further details of the concepts
which make deep learning possible.

2.1.1 Building Blocks

2.1.1.1 Artificial Neuron

An artificial neuron is the building block of modern machine learning and is a simplified and
mathematical interpretation of biological neurons found in brains. The overall concept is to
take some input values, decide how important each input is, sum it, add a bias, and send it
through an activation function to get the output called the activation. An illustration of a single
neuron is shown in Figure 2.1. Mathematically a neuron calculates a value z that multiplies n
inputs x, with n weight values w, added with a constant bias value b:
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Figure 2.1: The inner workings of a neuron.

z =
n
∑

i=1

wi x i + b (2.1)

2.1.1.2 Activation Function

An activation function φ(z) is used to introduce non-linearity to the neuron to approximate
non-linear and linear functions. It can also be used as a measure to limit the output z from
Equation (2.1) between 0 and 1. The output a from an activation function φ(z) is considered
the final output or activation of a neuron.

There exist multiple different activation functions. These are some of the most well known:

Sigmoid Historically, the sigmoid function σ(z), shown in Equation (2.2), has been an im-
portant activation function. The sigmoid function limits an input to be between [0,1] in a
non-linear fashion. Today, its mostly used in the output layer to output a probability value.

σ(z) =
1

1+ e−z
(2.2)

ReLU The Rectified Linear Units (ReLU) activation function was introduced by Nair and Hin-
tonn in 2010 [1] and is the most used activation function in modern machine learning. The
function discards all values that are less than zero and outputs the value itself if it is greater
than zero. The ReLU function used in an ANN increases both how quick the ANN learns and
its ability to generalize. The ReLU function is shown in Equation (2.3)

R(z) =max(0, z) (2.3)

Softmax The softmax activation function transforms a layer of neurons output to a probabil-
ity distribution, where the sum of all activations will equal one. This activation function is the
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most used activation function for the output layer for classification problems, as the output
represents a probability for the different classes. It is shown in Equation (2.4)

S(z) =
ezi

∑n
j=1 ez j

(2.4)

2.1.1.3 Artificial Neural Networks

Multiple artificial neurons can be connected to form an Artificial Neural Network (ANN). The
goal of an ANN is to approximate an arbitrary function. ANNs consist of layers, which consist
of at least one neuron. The first layer is considered the input layer, where the input to the
neurons is the input data itself. The final layer is the output layer, which is the output of the
network itself. The layers between the input and the output layers are called hidden layers, as
the values of these layers are not visible in the output of the network.

Figure 2.2: A neural network. The network consist of an input layer with three inputs, a
hidden layer consisting of four neurons, and an output layer consisting of one output neuron.
Each neuron has its associated weights and biases, as shown in Figure 2.1

One of the most used ANN architectures is the feed-forward network. In this network, layers
are connected so that they form a directed acyclic graph, where the output from layer Ln is
connected to layer a layer Ln+ j , j ≥ 1. When a cycle exists in the graph, the ANN is considered
a recurrent neural network.

2.1.2 Learning

A neural network learns by adjusting the weights and biases found in the neurons, as these
elements affect the network’s final output. When a network is trained, a training sample is sent
through the network. The activation of the last layers and the ground truth is sent through a
loss function, where the loss represents how good a network predicted the expected output. To
make the network better at predicting the expected output, one needs to adjust the parameters
that affect the final layer’s activation to better match the ground truth.
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2.1.2.1 Loss Function

A loss function estimates the error of the output of the network against the ground truth. The
network’s output is produced from sending data through the network and reading the output
layer’s activation. This process is called a forward pass, as data is passed in a forward manner
through the layers. As the loss function describes the network’s error, it is beneficial for this
function’s output to be as low as possible. Therefore, we will need to change the network’s
output to be as close as possible to the ground truth data.

There exist multiple types of loss functions that apply to different situations. Here are some of
the most used:

MSE The Mean Squared Error (MSE), also called "L2" loss, is a loss function often used in
regression type problems. The function measures the error between a ground truth value yi
and a predicted value ŷi . The errors are added up, and the result of the function is the average
of these distances. In other words: It’s the mean ( 1

n

∑n
i=1) of the errors squared (yi − ŷi)2. It is

shown in Equation (2.5)

MSE =
1
n

n
∑

i=1

(yi − ŷi)
2 (2.5)

Where yi is the ground truth value, and ŷi is the predicted value. In an ANN, the ŷi represents
the activation ai in the output layer.

Categorical Cross Entropy Loss The Categorical Cross-Entropy loss function is used when
measuring the difference between the probabilities of more than two classes. It is most com-
monly used in classification problems and where the activation in the penultimate layer is
using a softmax activation function, which is shown in Equation (2.4). The loss function com-
pares a vector ŷ which contains predictions and the ground truth vector y. Vector y is a one-hot
encoded vector, meaning that only a single element in the vector equals one, representing the
correct class, and all others are zero. When dealing with probabilities and possibilities the
sum of all possibilities must be equal to one, thus:

∑n
i=1 yi =

∑n
i=1 ŷi = 1. The Categorical

Cross-Entropy Loss function is shown in Equation (2.6).

CCEL= −
n
∑

i=1

yi · log ŷi (2.6)

Where yi is the ground truth value, ŷi is the predicted value, and n is the number of unique
classes. In an ANN, ŷi is the activation ai of the neuron in the output layer and represents a
unique class’s probability.

2.1.2.2 Backpropagation

Backpropagation is an algorithm used to figure out how sensitive the loss function is to changes
in the different parameters found throughout a network. Imagine a neural network with k
layers, where the first layer is the input layer, the last is the output layer, and the k− 2 found
between these are the hidden layers. All the layer only has one associated neuron for simplicity.
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As discussed earlier, the last layer’s activation is considered to be the output of the network.
When a forward pass with a data point and ground truth is performed, one is left with the
network’s error. The goal of learning is to minimize this loss function. As both the input data
and ground truth are immutable, the only way of changing the result of the loss function is to
change the last neuron’s activation.

A single neuron’s activation in layer n, 2 < n ≤ k, found in our imagined k layered neural
network, is Equation (2.1) ran through an activation function φ(z). Equation (2.1) consists
of the weight value wn, the bias bn, and the neuron’s input xn. Here, the value xn will be
activation an−1 from neurons in previous layers in all layers except the input layer. As the
activation an−1 is determined by wn−1, the bias bn−1 and the input xn−1, only the weight wn,
and bias bn value is directly tunable at this point. The only way to change an−1,i is to change the
weight and bias values found in the neurons in layer n−1. This pattern of changing a neuron’s
weights and bias so that the neurons connected to its output will change their activation will
continue, recursively moving backward through the network until the input layer as the input
to the network is immutable.

As one wants to change the weights and biases found in the layers, it is interesting to determine
how much adjusting the weights and biases affect the loss function. The change of the loss
function with respect to the weights found in the output layer can be expressed as:

∂ L
∂ wk

(2.7)

Where, L is the loss function, w is the weight value of layer k.

It was previously determined in Section 2.1.2.1 that the cost is the difference between the
final activation and the ground truth y . Section 2.1.1.2 discussed that an activation a equals
the output of Equation (2.1) ran through an activation function φ(z). Therefore, one knows
that the change in loss L is dependent on change in the activation ak, which is depends on the
change of the output zk which all depends on the change of wk. This means that Equation (2.7)
equals:

∂ L
∂ wk

=
∂ zk

∂ wk

∂ ak

∂ zk

∂ L
∂ ak

(2.8)

This is the chain rule in practice, and the resulting equation gives us a specification of how
much change in z affects change in the loss function L.

These partial derivatives can be calculated from the previously listed equations. Here, MSE is
used as the loss function, and Sigmoid is used as the activation function:

zk = wk xk + bk ak = σ(zk) L =
1
2
(y − ak)

2

∂ zk

∂ wk
= ak−1

∂ ak

∂ zk
= σ′(zk)

∂ L
∂ ak

= (y − ak)
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This results in

∂ L
∂ wk

= ak−1 ·σ′(zk) · (y − ak) (2.9)

For the bias, the only change needed is to use the partial derivative of zk with respect to bk,
which equals 1. The change in the loss with respect to the bias is:

∂ L
∂ bk

= 1 ·σ′(zk) · (y − ak) (2.10)

In Equation (2.9) the term ak−1 refers to the activation found in the previous neuron. Here,
the idea of propagating backward comes in, as one can figure out how much the change in
terms found earlier in the network change the output of the loss function. The process of
figuring out these partial derivatives is called backpropagation and is the core idea of how
neural networks learn. Knowing how much the loss of how sensitive the loss function is to
changes in the weights and biases is essential when the weight and bias values are tweaked to
minimize the loss function. 1

2.1.2.3 Optimizer

An optimizer describes the strategy used to change the values found in the neurons. It utilizes
the gradients found in the backpropagation to find a new set of weights that minimizes the
loss function. There exist multiple approaches and strategies for updating the weights. These
are some of the most used optimizers:

Gradient Descent Gradient Descent calculates the new weight based on the gradients and
the current weights. The algorithm considers all data points when calculating the new weights,
resulting in relatively significant changes. An alternative to using all data points is using only
one at a time, which is done in Stochastic Gradient Descent. However, updating after seeing
a single example may lead to noisy changes, mainly if it contains some unusual data. One
method of combating this is the Mini-Batch Gradient Descent, which calculates the new weights
based on a batch of n data points. The size of a batch n is a static parameter specified before
a training process starts. A weight update for a single data point, for the neuron in layer n in
the imagined neural network, used in stochastic gradient descent is shown in Equation (2.11)

wt+1
n = wt

n −α ·
∂ L
∂ wt

n
(2.11)

Where wt+1
n is the new weight at time t + 1, wt

n is the current weights, and α is the learning
rate

Adaptive Learning Rate Optimizers Adaptive Learning Rate Optimizers was first intro-
duced by Duchi et al. [4] The idea with this class of optimizers is to adapt the learning rate
as the updates of weights is done. This adaptable learning rate affects multiple dimensions
and results in a training process where the learning rate does not need manual tuning. The

1It is recommended to watch 3Blue1Browns video on the topic [2, 3]
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adaptability is introduced in a term G shown in Equation (2.12). G is the sum of the gradients
squared up to time t. A small value ε is added to prevent division by zero. G is monotoni-
cally increasing, meaning that the learning rate tends towards zero and no further learning.
AdaDelta, which was introduced by Zeiler et al. [5], introduces a term that prevents G from
zero. Kingma et al. [6] wanted to improve this even more by introducing momentum in the
form of Adam, which is considered the best general optimizer at the moment.

wt+1
n = wt

n −
α

p

Gt + ε
·
∂ L
∂ wt

n
(2.12)

Gt =
t
∑

j=1

∂ L

∂ w j
n

2

2.1.3 Convolutional Neural Networks

A neural network containing convolutional layers is considered a Convolutional Neural Net-
work (CNN). It was first introduced by LeCun et al. [7], and is considered one of the most
important neural network types due to its ability to utilize sparse spatial features found in
data structured into a grid-like pattern, e.g., images. A convolutional layer consists of multiple
steps; a convolutional operation, an activation, and a pooling operation. The convolution op-
eration generates multiple feature maps that are sent are sent through an activation function,
typically a ReLU function. The last step is to perform pooling, which extracts features from the
data and effectively shrinks its dimension. Using convolutional layers drastically reduces the
number of parameters found throughout the network compared to fully connected layers.

2.1.4 Backbone Architectures

There are many ways of arranging different types of layers in a neural network, and some
are better and others. Here are some of the more historically important architectures that
significantly improved the previous SotA:

2.1.4.1 AlexNet

AlexNet is a CNN architecture that was created by Krizhevsky et al. [8] in 2012. It was an
entry to the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), which significantly
outperformed all previous entries. It quickly became a staple for using CNNs and Deep Learning
in image applications, as it was the use of convolutions that made it superior to, e.g., only using
fully connected layers.

2.1.4.2 VGG

VGG is a CNN model proposed by Simonyan et al. [9] and was an entry to ILSVRC in 2014. It is
an improvement of AlexNet mostly due to its utilization of a deep architecture and smaller fil-
ters in the convolutional layers. However, it is still relatively slow to train due to the numerous
parameters found in the layers.
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2.1.4.3 ResNet

ResNet was created by He et al. in 2015 [10] and was considered the most groundbreaking
work since AlexNet. It introduced identity shortcut connection through residual blocks, making
it possible for data to skip between layers without running through convolutions and activa-
tion. ResNet and residual blocks have been the base and inspiration for newer architectures
such as Inception-ResNet [11].

2.2 Transformers

A transformer is a deep learning architecture introduced in the 2017 paper "Attention is All
You Need" by Vaswani et al. [12]. It is an architecture consisting of an encoder and a decoder,
where the attention mechanism plays a crucial role. Transformers have quickly become the
base for multiple SotA methods of processing sequences [13–16].

Figure 2.3: The architecture of a transformer. Adapted from Vaswani et al. [12]

This subsection will introduce the different components of a transformer. Due to transformers
being initially created for NLP tasks, this subsection will use examples related to NLP when
explaining the different parts of the transformer.
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2.2.1 Encoder

2.2.1.1 Input Embedding

Data needs to be translated into a format that a computer can understand, preferably numbers,
before being used in any form of ML-based system. Unfortunately, transformers are primarily
used in NLP cases where the input consists of words and sentences, which on their own are
not easily representable by numbers. Transformers fix this by using embedding spaces, which
maps words to a vector, representing a point in space. This mapping maps words with similar
meanings close to each other in the embedding space. The embedding space can either be
learned while training or be pretrained.

2.2.1.2 Positional Embedding

A word can have different meanings depending on its position in a sentence. Therefore, trans-
formers need information about a word’s context in a sentence. This context is assigned with
a positional embedding that encodes the word’s position in a sentence to a vector.

2.2.1.3 Attention

Attention is one of the novel ideas that made transformers superior to existing architectures.
The idea of attention is to establish which parts of the input the model should focus on. The
attention is captured by creating a vector for each word that describes how much the "i-th"
word in the sentence relates to the other words with a numerical value. One problem here is
that the attention vector for a word also contains itself and tends to overestimate its relation
with itself. This overestimation is fixed using multi-headed attention, which generates multiple
versions of the attention vector for each word and uses a weighted average for its final attention
vector.

2.2.1.4 Feed-forward Net

At the end of the encoder, there is a standard fully-connected feed-forward network that uses
the attention map as input. In practice, this network is used to transform the output from the
attention block to a format that either another encoder block or the decoder block can use. It
is worth noting that multiple feed-forward nets are created, specifically one for each attention
vector, so that the transformer can input multiple words simultaneously.

2.2.1.5 Encoder Architecture

The prementioned components are put together to form the encoder. The encoder is split into
steps only happening once and steps that can be repeated. The non-repeatable portion consists
of the input embedding and positional encoding, as once a sentence is translated into vectors,
there is no need to repeat this step. The repeatable portion consists of multi-headed attention
blocks and feed-forward nets. This portion can be repeated multiple times, with the input and
output being a set of vectors. The final output of the encoder block is a set of vectors that is
used as input to a decoder block. The complete architecture of a basic transformer can be seen
in Figure 2.3
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2.2.2 Decoder

2.2.2.1 Embedding

During the learning phases, the target is fed to a decoder. As in the encoder, this target needs
to be embedded in an embedding space. However, the embedding space used for the input and
output is separate from each other due to the context of a word being encoded might not be
equal to ground truth. An example is when a transformer is used in a translation task. Here,
one word in one language might not have the same context as in another language.

2.2.2.2 Masked Attention

The masked attention block works similarly to the attention block in the encoder. The main
difference between these is that in the masked attention block, for a word at position i, the at-
tention is only calculated for the previous words in the sentence. For all the words at a position
greater than i, the attention value is set to 0. This masking is done to prevent the transformer
from having the target available during training. Without it, the transformer would learn to
output the following word in the target and not learn anything about the actual relationship
between the input and target data.

2.2.2.3 Encoder-decoder Attention

The second attention block in the decoding portion is called the encoder-decoder attention
block. This block uses the output from the encoder and the output, containing the vectorized
input data, and the output from the masked attention block, containing the vectorized target
data. With this data available, this block determines how related each attention vector is to
each other and is the primary source of learning the relationship between the input and the
target.

2.2.2.4 Decoder Architecture

The architecture of the decoder block also consists of non-repeatable and repeatable parts.
Following the decoder, the non-repeatable part consists of input embedding and positional
decoding. This input is fed to the repeatable parts of the decoder, which consists of the masked
attention block that outputs to the encoder-decoder attention block, together with the output
from the encoder.

For each training step, the transformer tries to predict the next word in the sentence provided
in the target. This process is repeated until the transformers predict that the sentence is finished
with an "end-of-sentence" token.

The final output from the decoder is fed into a final feed-forward network. This network is
primarily used to expand the number of outputs to the number of words in the language
of the target language. A final softmax activation function maps the output to a probability
distribution.
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2.2.3 Vision Transformers

Convolutional Neural Networks has for many years been dominating the image recognition
field ever since the launch of AlexNet [8] in 2012. The paper "An Image is Worth 16x16 Words"
by Dosovitskiy et al. [17] showed that the success transformers have had in NLP tasks also can
be utilized in a computer vision setting. They showed that a transformer-based architecture
could achieve close to SotA CNN-based methods by using novel ideas for preprocessing images
into a format that a transformer could use.

This section will introduce some of these novel ideas and how the images were preprocessed
to be used in a transformer.

2.2.3.1 Patching

While a sentence typically consists of a reasonable number of words, a single image can consist
of many millions of pixels. While CNN networks like ResNet have little to no problems using
images of size 250x250, this quickly becomes a problem for transformers when calculating
attention, as attention is a quadratic operation. Trying to calculate attention for a single pixel
will result in a vector of 25022

size, which is impossible to calculate with today’s hardware.

CNNs solve this problem with the convolution operation, which reduces the image dimension
into features, effectively creating a larger and larger receptive field until one has close to a
global receptive field in the last layers. Due to the original transformer attending to every part
of the input in a single pass, the visual transformers also wanted to have a way to attend to
the entire image globally.

The visual transformer solves this by using global attention by using image patches of size
16×16 instead of using standalone pixels. Using patches fulfills the transformer’s requirement
of using a set as its input. Following the original transformer, these patches are encoded with
a positional value representing the original patches’ position.

2.2.3.2 Class Token

In order to be able to perform classification tasks, the visual transformer has an extra learnable
embedding that represents the target class. This token is also fed into the transformer.

2.2.3.3 Prediction

After the data has been embedded, encoded, and has a classification token added, this data is
fed to a standard transformer encoder-decoder architecture. However, the final output head
from the transformer is replaced with a single feed-forward network that only has a connection
to the classification token. The rest of the output from the transformer decoder is discarded.
This output is run through a softmax activation function and functions as a standard classifi-
cation in a feed-forward network. The final output is a probability distribution for which class
the input image represents.
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2.3 Machine Learning Approaches and Branches

There exist multiple approaches to solve tasks with Machine Learning (ML). This section is
dedicated to introducing the relevant approaches to this thesis.

2.3.1 Supervised Learning

Supervised learning is an approach to machine learning that utilizes data with associated,
human-annotated labels. It is defined by having a dataset D consisting of data X and associated
labels Y. In a dataset D, a data point x i ∈ X has an associated label yi ∈ Y. Loss for a batch
d ∈ D [18] consisting of n examples of labeled training data d = {x i , yi}ni=0 is defined as:

loss(d) =min
θ

1
n

n
∑

i=1

loss(x i , yi) (2.13)

Where the loss function predicts the difference between the ground truth yi and, the predicted
label ŷi from x i . θ is the weights. Loss is further explained in Section 2.1.2.1

2.3.2 Semi-supervised Learning

Semi-supervised learning focuses on learning using a sparse amount of labeled data while
simultaneously utilizing a broad amount of unlabeled data. The methods combine supervised
learning with unsupervised learning and categorize it as something in between the two. The
two main methods in semi-supervised learning are transductive and inductive learning.

Having n data examples consisting of x1, ..., xn ∈ X, labels y1, ..., yn ∈ Y and xn+1, ..., xn+u ∈ X
unlabeled examples, the goal of transductive learning is to infer the correct labels for the
unlabeled data xn+1, ..., xn+u ∈ X. Inductive learning takes it a step further by also trying to
produce a classifier from the unlabeled data. It is transductive learning that is most used in
computer vision and machine learning use-cases.

2.3.3 Weakly-supervised Learning

Weakly-supervised Learning is Supervised Learning that utilizes labels categorized as weak
labels. Labels are defined as weak when they are:

• Sparse, as accurate labels are hard or not possible to obtain. e.g., in novel use-cases

• Inaccurate, as it is collected from sources that are not necessarily quality controlled, e.g.,
from a crowdsourced dataset.

• Lacking all relevant and usable information for the given task, e.g., having labels de-
scribing categories when developing an object detection task.

Loss for weak-supervised learning is defined equal to Equation (2.13), with the only difference
being Y, now consisting of only weak or a combination of weak and accurate labels.
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2.3.4 Unsupervised Learning

Unsupervised learning refers to an approach that does not utilize any preexisting, human-
annotated data as supervision during training. The learning methods in unsupervised learning
are based on identifying patterns and information directly from the data, with cluster analysis
being one of the more known techniques.

2.3.5 Self-supervised Learning

Self-supervised learning is a branch of unsupervised learning. The goal of self-supervised learn-
ing is to automatically generate a supervision signal from the data itself that can be used to
solve a task. The generated supervision can be used for specific tasks or used as pre-training
as an alternative to pre-trained weights generated from human-annotated labels.

The idea of not using humanly annotated labels is one of the key topics for this thesis. There-
fore, the thesis will give a more in-depth explanation of the topic.

2.4 Self-supervised Learning

Self-supervised learning uses the existing structured information to learn features and patterns
typically learned by supervised learning. These features and patterns are found by training the
model on pretext tasks, which can be done by transforming or augmenting the image and then
using an ML model to predict the transform or augmentation. The core idea of self-supervised
learning in computer vision is that a model will need to learn spatial information from the
data to correctly predict the transform or augmentation. After a model has been trained on a
pretext task, the learned knowledge can be transferred to a more useful task and validated with
a downstream task, which can be any easily measurable task that utilizes the same input as the
pretext task. These tasks are often tasks found in typical supervised learning approaches, as
there exist several pre-trained models for these kinds of tasks. Figure 2.4 shows the standard
pipeline of a self-supervised learning system.

Figure 2.4: Pipeline of a self-supervised learning approach. Adapted from Keshav et al. [19]
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2.4.1 Pretext Tasks

The idea of pretext tasks in self-supervised learning is to occlude some information found in
the data and generate a model that can learn the occluded data. Pretext tasks can also include
augmenting the data, with the model’s objective being to learn the augmentation. The data
itself will always generate the supervision signal, with no human intervention at any point.

The pretext task aims to make the model learn features and patterns found in the data, as one
usually would do with a supervised signal. The need for humanly annotated data is reduced
when pretext task training is utilized, as the model trained on the pretext task can be used as
a base for future fine-tuning on downstream tasks.

There exist many different pretext tasks that all have some strengths and weaknesses. The
pretext tasks listed below are some of the more common and proven pretext tasks.

2.4.1.1 Rotation

One of the most popular pretext tasks is rotation. Here, an image is rotated 0, 90, 180, or 270
degrees before it is sent to a model. The model’s goal is to predict the rotation applied to the
image with a 4-way classification task. The rotation pretext task is proven to work empirically
[20, 21], as the model needs to understand patterns and features represented in the image to
predict the rotation correctly. An example of possible rotations for the pretext task is shown in
Figure 2.5

Figure 2.5: Possible rotations that the pretext task utilizes. Adapted from Gidaris et al. [20]

2.4.1.2 Jigsaw Puzzles

Jigsaw puzzle pretext tasks consist of taking a cropped part of an image, splitting it into an
N xN grid, and finally shuffle the grid. The N xN image pieces are sent through a model that
needs to predict the order of the image pieces so that the result is the unedited version of the
cropped image. The steps in the pipeline are shown in Figure 2.6.

2.4.1.3 Colorization

The colorization pretext task consists of removing the color channels from an image and train-
ing a model to predict the missing channels’ values. Both Larsson et. al. [23] and Zhang et. al.
[24] prove that colorization is a powerful pretext task. Specifically, Larsson et. al. shows that
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(a) (b) (c)

Figure 2.6: The jigsaw pipeline. (a) shows the selected image tiles from the full image. (b)
shows the shuffled tiles, and (c) shows the image tiles in a correct predicted order. Adapted
from Noroozi et al. [22]

colorization can have the same results as using a pre-trained model with annotation from Ima-
geNet as a base model for downstream tasks. Downstream tasks are discussed in Section 2.4.2.

Figure 2.7: Images colored by a colorization model. Adapted from Zhang et al. [24]

2.4.1.4 Pretext task for video: Temporal Order Verification

There also exist pretext tasks for video. One of these is temporal order verification, which is
the idea of verifying that a sequence of image frames is in the correct order and not shuffled.
The core idea is that one selects N number of frames, where all frames are in order, shuffles the
frames in a random order, and predicts the frames’ temporal order. Misra et al. [25] explore
this in their paper covering unsupervised learning using the spatiotemporal signals found in
videos of human actions.
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Figure 2.8: Description of temporal correct order. Adapted from Mistra et al. [25]

2.4.2 Downstream Tasks

Downstream tasks are applications used to evaluate the quality of the model that was trained
with pretext tasks. These tasks primarily consist of tasks used in real-world applications, often
found in typical supervised learning-based applications. The goal is to use the trained backbone
network from the pretext task as a base for further fine-tuning. Some typically used backbones
are found in Section 2.1.4. The fine-tuning is done by attaching a head network and training
the network in a standard supervised setting. In a few cases, the downstream task may be
equal to its pretext task, and so the head used in the pretext task is kept.

In computer vision, the most common downstream tasks are classification, object detection,
and segmentation.

2.4.2.1 Classifying

Classification is the task of specifying a group or category that best describes a data point.
Classification can be supervised and unsupervised, e.g., K-means clustering, although it will
always be supervised when used as a downstream task. A typical downstream task in a com-
puter vision setting is classifying the image’s content into a single class.

2.4.2.2 Object Detection

Object detection is the task of finding objects of interest in an image and simultaneously clas-
sifying the found objects. The output for an object detection task is a bounding box describing
wherein the image an object of interest exists, a class or category describing the object in the
bounding box, and a confidence score describing how sure the network is that the prediction
is correct.
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Figure 2.9: Different kinds of segmentation. Adapted from Chen et al. [26]

2.4.2.3 Segmentation

Segmentation is the task of clustering and classifying an image into regions of known classes.
The output of semantic segmentation is the shapes that describe the different classes found in
the image. There exist multiple subclasses of segmentation. The most basic is semantic seg-
mentation, which classifies all pixels into a specific class. Instance segmentation classifies only
the regions of interest and differs from different instances of classes. Regions that are not of
interest are not classified. Panoptic segmentation combines instance and semantic segmenta-
tion.

2.5 Depth Estimation

Using depth data is a crucial component for autonomous vehicles, as they need to understand
the environment around them to function optimally. There exist multiple approaches to extract
depth information for autonomous vehicles. Traditionally, they have mainly used separate sen-
sors for detecting depth. However, there has been a greater focus on detecting depth accurately
using only images as input in later years. This focus originates from the wish to reuse exist-
ing sensors on the vehicle rather than having separate sensors. Range sensors can often also
be a pretty costly addition to a sensors suite. The reasons stated are used as motivation by
autonomous car manufacturers like Tesla to look into separate range sensors. This section ex-
plores the different possibilities for extracting depth information for an autonomous vehicle,
primarily focusing on extracting depth from images.



22 CHAPTER 2. BACKGROUND AND RELATED WORK

2.5.1 Separate Sensors

Using separate sensors is one of the earliest and most common forms of retrieving depth for
autonomous vehicles. This section briefly lists some standard sensors used on autonomous
vehicles used to retrieve depth.

2.5.1.1 Radar

RAdio Detection And Ranging sensors are sensors that use electromagnetic waves to retrieve
depth. The sensor sends out EM waves and measures the time it takes to receive a reflection
of the signal. This time can be used to calculate the approximate depth of an object. Radars
have an impressive range, but the resulting depth information has a relatively low resolution
than misses out on objects’ more refined details. The radar sensor also works in most weather
conditions, like snow, rain, and hail, making it a reliable addition in a sensor suite for finding
larger objects.

2.5.1.2 LiDAR

LIght Detection And Ranging are sensors that use light waves to retrieve depth. The sensor
sends out light pulses and measures the time it takes for the pulse to return. The time used
between the pulse and the returning signal can create a highly accurate 3D map of the world
around the sensor. These maps are more accurate than Radar detections due to the light waves
having a shorter wavelength. However, LiDARs may suffer in any weather conditions that have
any form of precipitation. This can quickly become a problem in more arctic environments,
where snow is common in the winter half of the year. Lidars are great sensors when looking
for finer details in objects, or in general, smaller objects around a vehicle. However, they are
currently quite costly and can be a challenge to interfere with due to the vast amount of data
it produces.

Figure 2.10: LiDAR compared to Radar depth image. Adapted from fierceelectronics.com

https://www.nwengineeringllc.com/article/lidar-vs-radar-in-autonomous-driving-which-sensor-is-best.php
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2.5.1.3 RGB-D Cameras

RGB-D cameras are specialized cameras that emit a speckle pattern of infrared light in the
direction that it is pointing. The infrared speckle pattern projected onto objects in front of
the camera is observed and is compared to a ground truth speckle pattern. Measuring the
differences in the observed pattern and the ground truth pattern generates a disparity map
used to determine depth. These cameras have a lower range but can produce very accurate
depth maps for the distances in their operation window. They are primarily used in indoor
settings.

2.5.2 Geometry-based Approaches

Geometry-based approaches use multiple images taken of the same setting where the images
have slight changes in where they were taken. Extracting features from these images and
comparing the features with each other. These are some of the most common ways of using
geometry to extract depth.

2.5.2.1 Stereo Matching

Stereo matching is a geometry-based technique of detecting depth from two separate cameras
pointing in the same direction. The core idea is to match pixels from one of the cameras
with the other, measuring how the difference between the two pixels in each of the images
generates a disparity value. Doing this for all matched pixels in the images generates a disparity
map. The map is used to triangulate the camera’s distance to the point in space represented
by the pixels. Using this method requires that the cameras’ baseline distance is known and
not changing, calibrated cameras with a reasonable rectification of the images and that the
cameras themselves are synced for optimal results.

2.5.2.2 Structure from Motion

Structure from Motion (SfM) is a geometry-based technique of detecting depth from a se-
quence of images. The technique utilizes the structural information gained by comparing fea-
tures and differences found in a sequence of 2D images. The accuracy of the technique is based
on accurate and consistent features found in the sequence. SfM also suffers from ambiguities
in shapes as the camera moves [27].

2.6 Dense Depth Estimation from Images (Related work)

The idea of dense depth estimation from images, is to infer a depth Dt for all pixels in an image
It from images I with a model θdepth:

Dt = θdepth(I) (2.14)

I can either be a singular frame It , which is used in monocular depth estimation methods,
or a set of frames {It , It−1, It−2, ..., It−n, } used in multi-frame monocular depth estimation
methods, or a set of frames {I1

t , I2
t , ..., In

t , }, where the superscript represents cameras from
different angles, where typical setups often includes a stereo pair of images [28, 29].
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The model θdepth has utilized forms of learning introduced in Section 2.3 to learn how an
image should be associated with depth. Supervised learning-based methods can utilize super-
vision signals about depth from other depth sensors, like lidar or radar scans. Another form of
supervision is annotated data created by humans. These methods often use a single deep net-
work for regressing depth from the supervision signals. SotA methods are often accompanied
by some form of supporting technology that improves the predictions.

Methods using other supervision signals like the vehicle’s ego-motion [30], stereo matching
labels [31] or other forms of supervision signals that are not the actual depth information.
These supervision signals can benefit the depth network or other supporting networks like the
pose network in self-supervised approaches.

One of the more interesting approaches to learning-based depth estimation is precisely the use
of self-supervised learning. These methods do not rely upon nor utilize any external supervision
signals but generate their supervision signals from data found in the images. Currently, self-
supervised methods are still being outperformed by supervised approaches. However, these
methods have a significant advantage over methods that need explicit supervision signals due
to their possibility to utilize data where these supervision signals are not available, e.g., on
UAVs with no range sensors [32].

Dense depth estimation from images have a great number of use cases in autonomous vehicles
[33, 34], AR/VR applications [35] and in medical applications [36]

This section will also function as a related work section due to this thesis covering different
kinds of dense depth estimation methods.

2.6.1 Supervised Learning Approaches

As explained in Section 2.3.1, a supervised learning approach requires ground truth labels.
In a dense depth estimation type of task, these labels are generally created by external range
sensors, as it is hard for a human to give an accurate description of depth, especially in a 2D
setting.

One of the first looks into supervised learning-based depth detection was done by Eigen et al.
[37]. Their solution is based on having a CNN consisting of two components; one for detecting
coarse depth on a global level and one for refining the coarse depth. The coarse depth image is
fed into the refining part, together with the original input image, which produces more refined
details and results in a new depth map. During training, an ground truth depth map is provided
together with an RGB image. Their network directly regresses on the depth map using a loss
function based on scale-invariant error. There exist other noticeable CNN-based solutions, e.g.,
with Laina et al. [38], which directly follows up Eigen et al., proposing a deeper residual net
for the task.

Another supervised approach is using a Recurrent Neural Network (RNN) to detect depth based
on sequences of images. One notable approach here is done by Wang et al. [39]. Their contribu-
tion mainly focuses on multi-view image reprojection and forward-backward flow consistency
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losses. Based on convolutional LSTM units, the model can be trained both in a supervised and
unsupervised manner, where the supervised approach utilizes ground truth depth maps as a
supervision signal, together with a sequence of ten images forward and ten images backward
from time t.

There also exist methods that utilize Generative Adversarial Network (GAN) to generate depth
maps. Lore et al. [40] proposes a conditional GAN for the task, which is a method of training
GANs that adds conditional information to the generator and discriminator. The conditional
GAN based system can be trained with three different approaches, utilizing a single monocular
image, a sequence of monocular images and monocular images, and the accompanying optical
flow patterns. With these inputs, they generate an estimated depth map representation. The
conditional information used is gamma-corrected lidar maps with the same height and width
as the input image.

2.6.1.1 Ada Bins

"AdaBins: Depth Estimation using Adaptive Bins" is a paper from 2020 by Bhat et al. [41] and is
the current SotA paper on monocular depth estimation. The motivation behind the paper is that
current architectures at the time of writing their paper did not perform enough global analysis
of the output values. This problem is a known problem with CNNs, as one can only process
global information about an image with a meager spatial resolution close to the end of a CNN.
To better utilize this global information, Bhat et al. propose utilizing this information at a higher
resolution. They do this with their novel AdaBins module, which uses a transformer-based
architecture that divides the depth range into bins that center values estimated adaptively per
image.

2.6.1.2 Dense Prediction Transformers

"Vision Transformers for Dense Predictions" by Ranftl et al. [42] takes the idea of using trans-
formers for dense depth one step further by utilizing a transformer-only-based architecture. As
AdaBins, Ranftl et al. also comment on the sole use of CNN-based encoder-decoder architec-
tures in dense prediction and the drawbacks downsampling introduces for tasks that benefit
from high-resolution images.

Ranftl et al.’s proposed improvement over the use of the convolutional block is to introduce a
novel architecture; the dense prediction transformer. This architecture uses the vision trans-
former architecture, discussed in Section 2.2.3, as its backbone. While the input to vision trans-
formers still undergo downsampling, the main difference between using vision transformers
and using CNN is that the vision transformer will perform the embedding before the image is
downsampled. Using a vision transformer also gives a global receptive field through attention,
rather than using local receptive fields that a CNN effectively uses.

Rather than only generating monocular depth estimation, this dense prediction architecture
can generalize to all dense prediction tasks, like semantic segmentation and more. Ranftl et
al. have tested their novel architecture on both these tasks, and they achieve SotA results in
both use cases.
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2.6.2 Self-supervised Learning Approaches

The field of self-supervised dense depth estimation is still relatively new. However, there still
exist some notable works did that changed the field when they were published. This section
presents some of these notable works, together with some of the current state-of-the-art meth-
ods.

2.6.2.1 Monodepth

Monodepth was introduced by Godard et al. [28] in 2017 with a novel training objective that
enabled a CNN to perform single image depth detection. The novel training objective consists
of generating a disparity map from a single image by utilizing an image reconstruction loss.
This approach requires a stereo pair of images to generate the ground truth disparity map
during training, which is used as a supervision signal. The paper also showed that the accuracy
could be boosted by performing the image reconstruction from both the left and the right
image pair during training. The method yielded state-of-the-art results when it was introduced,
outperforming current supervised methods.

Figure 2.11: Depth detection from Monodepth and Monodepth2. The output is from three
different models, trained with (M) monocular video, (S) stereo pairs, and (MS) a method com-
bining the stereo pairs and the monocular video approaches. The output from Monodepth2 is
noticeably improved compared to the original Monodepth prediction on the same image shown.
Adapted from Godard et al. [29]

2.6.2.2 Deep Hints

Photometric reprojection losses are used within self-supervised learning systems for depth es-
timation, resulting in multiple local minima. Multiple minima can heavily restrict regression
networks performing these tasks, with visual artifacts around thin structures being typical.
Watson et al. [43] introduced a technique to combat this called ’Deep Hints’. This technique
helps the network learn better weights and is calculated with the information already available.
The hints themselves are complementary depth suggestions obtained from standard stereo al-
gorithms and enhances the photometric reprojection loss. As the method uses stereo techniques
for acquiring the deep hints, it requires stereo pairs of images as input.
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2.6.2.3 Unsupervised learning of depth and ego-motion from video

Zhou et al. [44] presented a method of training both pose and depth networks simultaneously
with monocular video as input. They use view-synthesis as supervision, meaning they try to
create a new image of a scene taken from another position. Due to ego-motion from the vehi-
cle they use to collect the data, they automatically obtain close to ground truth data for this
task. Zhou et al. uses KITTI as their dataset and takes it a step further by excluding all static
sequences found in the dataset, creating a new subset of KITTI. This subset is now used by
other methods utilizing monocular video as input.

2.6.2.4 SfM-Net

SfM net is a geometry-aware neural network created by Vijayanarasimhan et al. [45] that pre-
dicts motion estimation in videos, depth, camera motion, and object rotations and translations
all using the same architecture. The network can be trained both self-supervised and fully su-
pervised by a known ego-motion or depth from RGB-D sensors. The depth is predicted in a
separate branch of the network called the structure network, using a U-net encoder-decoder
model, with a single frame as input and a point cloud as output. The point cloud is later fed
into other parts of the network to extract the object flow. Their self-supervised training loss is
based on minimizing the first and second frame photometric error, where the second is warped
towards the first according to the predicted motion field.

2.6.2.5 Monodepth2

Monodepth2 [29] is the next iteration of Monodepth, which introduces new features and im-
provements to the existing Monodepth system. One significant new feature was introducing a
training strategy that made it possible to train on monocular video as a standalone option to
stereo pairs. A training strategy utilizing both options is also available and is the method yield-
ing the best results. Other significant improvements were a new loss function to better handle
occlusion, a new sampling method that reduces visual artifacts in the final result, and an auto-
masking loss that ignores pixels that do not change when the camera moves in the monocular
video. These improvements lead to Monodepth2 continuing to show state-of-the-art results
compared to other solutions.

2.6.2.6 PackNet

"3D Packing for Self-Supervised Monocular Depth Estimation" was published in 2020 by Guizilini
et al. [30]. At the time of publishing, the standard way of improving self-supervised learning
methods was to engineer the loss function. Guizilini et al. argue that simply engineering the
loss function has its limits and that there is a significant potential for increasing performance
by changing the model itself. They introduced a novel convolutional network architecture
called PackNet that improves the down and upsampling in the encoder-decoder architecture.
This architecture utilizes their novel Packing and Unpacking blocks which use 3D convolutions.
These blocks can fold the spatial dimension of a convolutional block’s feature map into extra
feature channels, which in contrast to striding or using pooling layers, are invertible with no
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loss. This feature space is learned to be then compressed, and the unpacking block learns to
expand this compressed representation, both by using 3D convolutions.

2.6.2.7 Feature Depth

Virtually all SSL-based depth estimation tasks utilize photometric error in their loss function.
Shu et al. address the problems of only relying on this error estimation in a dense depth predic-
tion task in their paper "Feature-metric Loss for Self-supervised Learning of Depth and Egomotion"
[46]. They discuss that the photometric error function falls short in low-texture regions like
walls, billboards, poorly lit areas, where the photometric error estimates an artificially low
error, resulting in the methods predicting the wrong depth and pose when in reality the error
can be significant. By introducing a novel idea of feature-metric loss, they can achieve the cur-
rent SotA result for all SSL-based dense depth detection methods. The feature metric loss is
based on a separate encoder-decoder network that generates features used when calculating
the total loss for the architecture.

2.6.2.8 ManyDepth

Most SSL-based monocular dense depth estimation methods use multiple input frames during
training, but only a single input frame when the system is used in testing. This means that
important sequential information is available but not utilized at test time. The few implemen-
tations that use this information are either too computationally expensive or only use geomet-
rical data. Watson et al. address these issues in their 2021 paper "The Temporal Opportunist:
Self-Supervised Multi-Frame Monocular Depth" [47]. Their main contribution is ManyDepth, a
novel architecture that utilizes cost-volumes to use multiple frames at test time. This novel
architecture outperforms all earlier publications on SSL-based monocular dense depth esti-
mation when utilizing a ResNet50 [10] backbone architecture and test-time refinement. The
same team created Manydepth also created Monodepth and Monodepth2 and can be seen as
the next iteration in the "Monodepth" class of systems.

2.7 Datasets

This thesis wants to explore dense depth estimation in an autonomous driving setting. As this
thesis is written in collaboration with NAP-lab, it would be beneficial if NAP-lab data could
be utilized here. However, as data from the NAP-lab became available only a week before the
thesis’s due date, publicly available datasets will be used as the primary training datasets for
this thesis. The following section introduces some of these many publicly available datasets
that can be used for dense depth detection. The requirements for these datasets are that they
contain images from a forward-pointing camera and have camera calibration data available.
Additionally, it is beneficial if the dataset has lidar scans or equivalent available, as these are
often required by supervised methods and highly beneficial for SSL-based methods as it unlocks
the possibility of doing online evaluation during training.
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2.7.0.1 KITTI

The KITTI Vision Benchmark Suite [33] is a well-known benchmark for multiple tasks in au-
tonomous driving. This dataset is collected with a single platform equipped with a 360 Velo-
dyne lidar, a stereo camera rig, and a GPS. The data is collected in the Karlsruhe region in
Germany and is fully annotated with bounding boxes, semantic segmentation, and odome-
try ground truth. Calibration data for all the sensors are also available. After being available
since 2012, this dataset has risen to become the "de-facto" benchmark for a lot of autonomous
driving tasks, with dense depth estimation being one of them.

For a dense depth estimation task like this thesis explores approximately 47 000 frames with
camera and lidar data available. Although the lidar data is not necessary for an SSL-based
method, the lidar data can be utilized to do an online evaluation of the predicted depth values.
However, most SSL-based methods use a subset consisting of approximately 40 000 frames
selected by Zhou et al. [44], which again is a subset from the subset created by Eigen et al.
[37] of KITTI. These subsets are commonly used in monocular dense depth estimation tasks
due to the frames consisting of little to no motion have been removed.

2.7.0.2 Cityscapes

The Cityscapes benchmark suite [48] is a dataset that focuses on the semantic understanding
of autonomous driving-related scenes. This dataset was put together in 2016 in a collaboration
between Daimler, TU Darmstadt, MPI Informatics, and TU Dresden. The data is collected from
50 urban cities, primarily in Germany, consisting of 5000 annotated high-quality, dense pixel
annotations and 20 000 more coarse, polygonally-based annotations. Even though there only
exist 25 000 labeled frames, around 40 000 extra unlabeled frames can be utilized for this use
case, as the annotations are not needed for this use case. The total number of available frames
is around 77 000.

2.7.0.3 Lyft

Level5 is a Lyft-based company that develops autonomous driving solutions for the Lyft net-
work. In 2020, they presented their "Level 5 open data" dataset [49] for their Motion Prediction
competition. The dataset consists of a prediction dataset that contains motion data on multi-
ple types of traffic agents and a perception dataset containing raw sensor data from a sensor
suite consisting of cameras and lidars. Only counting the forward-pointing camera, the dataset
offers a total of 17 000 usable frames, all accompanied by a high-resolution lidar scan.

2.7.0.4 DDAD

The "Dense Depth for Autonomous Driving" dataset was released by the Toyota Research In-
stitute (TRI) together with their PackNet paper in 2020 [30]. The dataset is collected by Toy-
ota’s autonomous fleet located in San Francisco, Tokyo, Cambridge, and Detroit. It focuses on
long-range dense depth detection and contains accurate 360 lidar scans for up to 250 meters,
accompanied by high-resolution cameras covering a 360 view around the capturing vehicle.
Currently, the dataset serves as a benchmark for long-range dense depth estimation tasks and
the primary dataset for TRI’s DDAD depth challenge.
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2.7.0.5 Waymo

The Waymo Open Dataset [50] was first released to the public in August 2019 as a part of
their set of challenges for different tasks in autonomous driving, consisting mainly of 2D and
3D object detection. This dataset has later been updated with more data and annotations, at
the latest in March 2021, where they included a new motion dataset. Currently, the dataset
consists of over 50 000 usable frames captured in and around San Francisco, California. Lidar
scans accompany all the available frames. These can be used to generate spare depth maps.



Chapter 3

Methodology

This chapter discusses which dense depth estimation methods have been selected and why
and which datasets will be used to train these methods. Following is an in-depth explanation
of selected methods, focusing on design choices and inner workings. The subsequent section
covers how the selected dataset was extracted and how a shared data organization setup was
developed. Some changes and tweaks needed to be done to the selected methods due to the
selected methods not natively supporting the selected datasets. These modifications are ex-
plained in the penultimate section, followed by some details regarding evaluation metrics and
computing hardware used during training.

3.1 Choice of Methods

Section 2.6 discussed some of the historically significant improvements and some of the current
SotA models. This section will discuss which SSL-based methods are candidates to be trained
and which supervised method will be used. Following is also a discussion of which datasets
will be used to train the selected methods. The section concludes with which methods and
datasets will be selected to be used in this thesis.

3.1.1 Candidates - Self-supervised-based Methods

3.1.1.1 Monodepth2

Monodepth2 [29] was the primary method used in the specialization project Self supervised
Learning - Project Thesis by Galteland [51] previous to this thesis. This method showed great
potentials on some of the datasets used there. However, in specialization project did not include
any evaluation of the actual depth data generated by the method. Using Monodepth2 in this
thesis makes for a great opportunity to expand upon the results found in the project thesis
by doing an actual evaluation of the results by utilizing lidar scans. On the KITTI benchmark
dataset, Monodepth2 achieves an absolute relative error of 0.109 when using monocular data.
The absolute relative error metric is described in Section 3.8.2.

31
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3.1.1.2 PackNet

PackNet [30] shows some exciting potential with its ability to compress and decompress the
image with close to lossless compression while still utilizing the power of the convolutional
operation. The fact that it also needs no pre-trained weights is a bonus as well. Some of the
candidate datasets also have velocity data available, unlocking PackNet’s ability to become
semi-supervised. PackNet is, all in all, a tempting candidate to be used in this thesis. PackNet
achieves an absolute relative error of 0.107 on KITTI when using monocular data.

3.1.1.3 Feature Depth

Feature-metric loss for Self-supervised Learning of Depth and Egomotion by Shu et al. [46] shows
that simply improving the architecture with a separate loss function focusing on improving the
problems with the photometric error-based loss functions can give a considerable improvement
and advantage over other SSL-based dense depth detection networks. Exploring how this be-
havior extends itself to other datasets and the fact that it is the current overall SotA on KITTI is
both valid reasons to continue with Feature Depth. On the KITTI, Feature Depth is the current
SotA unsupervised method when using both monocular and stereo input, and the runner up
when only using monocular data, having an absolute relative error of 0.104 for the monocular
only category.

3.1.1.4 Manydepth

While being released a couple of months after starting writing this thesis, Manydepth [47]
could not go unrecognized. While not being the first SSL-based dense depth system to utilize
multiple frames at test time, Manydepth is the first one to do it using cost-volumes, and in
many ways, revolutionized the field of SSL-based dense depth estimation with this novel im-
plementation. Manydepth is in many ways what Monodepth [28], and Monodepth2 [29] were
in their time; an inspiration and sandbox for novel ideas and techniques. Therefore, Many-
depth is a strong candidate to be used further on in this thesis. Manydepth is the current SotA
for monocular only sequences, with its absolute relative error of 0.087. This score is achieved
when using ResNet50 instead of ResNet18 for the depth model.

3.1.2 Candidates - Supervised Methods

This section contains the different candidates for the supervised methods.

3.1.2.1 Ada Bins

AdaBins [41] serves as one of the SotA methods for all dense depth estimation tasks. With its
semi transformer-based architecture, it is an attractive choice to use in this thesis, especially
since it achieves the best results out of all other methods on the KITTI dataset, which is highly
relevant for this use case. AdaBins is the current SotA on KITTI, achieving an impressive 0.058
absolute relative error.
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3.1.2.2 DPT

The only other candidate that can compete with AdaBins when looking at innovation and
performance is the recently released Vision Transformers for Dense Prediction paper by Ranftl
et al. [42] This method is the first to utilize the vision transformer by Dosovitskiy et al. [17]
in a dense prediction task. It also achieves SotA results on some datasets. Another exciting
advantage is that the DPT architecture can function as the backend for any dense prediction
task, meaning that it can also easily be applied to do, e.g., semantic segmentation. DPT achieves
an absolute relative error of 0.062.

3.1.3 Candidates - Datasets

As mentioned, this thesis intended to use data from the NAP-lab vehicle and focus on how
these methods would function in a more arctic environment. However, due to complications
with both getting access to the data and NAP-lab recently acquired a new vehicle, this data
only became available a week before the thesis’s original due date. Therefore, other more
acknowledged datasets had to be considered, as relying on using data from NAP-lab was out
of the question. Thus, more acknowledged datasets had to be considered a replacement.

It was decided that the methods selected should be trained with a benchmarking dataset so that
the reported results of the selected methods could be verified. In addition, two other datasets
should be used. It is preferable is these datasets do not have any significant publications docu-
menting using the dataset for dense depth estimation tasks. Therefore, a benchmarking dataset
and two other datasets needed to be chosen from the documented datasets in Section 2.7. As
NAP-lab became available only a week before the due date of this thesis, training with NAP-lab
data would only be performed as an addition to the benchmarking and two other datasets.

3.1.3.1 Benchmarking Dataset

As both KITTI [33] and Cityscapes [48] are well-known datasets used for benchmarking, this
thesis wanted to use one of these to confirm that the results reported in the papers about the
selected methods were reliable. KITTI was chosen as all the candidate methods have reported
results for KITTI.

3.1.3.2 Training Datasets

The Waymo dataset is a reasonably new dataset containing many high-quality frames with
accompanying lidar scans. However, due to the problems that were experienced in the spe-
cialization project [51] when using the dataset to train Monodepth2 [29], it was decided that
this dataset would not be used again due to the problem still being unexplainable, even by
Goudard et al. 1

Another candidate is the Lyft Level 5 dataset [49]. While being on the smaller side regarding
available frames, [51] still showed positive results when using this dataset on Monodepth2
[29]. Though in retrospect, it was discovered that the dataset contained images in two different

1Link to conversation with Goudard in a GitHub issue can be found here

https://github.com/nianticlabs/monodepth2/issues/278
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dimensions, where approximately 5 000 frames are of size 1920×1080, and the other 17 000
frames are of size 1224×1024. While this is not a problem for the possibility to train methods
themselves, due to the images being resized in the preprocessing steps, it can affect the final
accuracy of the resulting models. [51] did not consider this, and the results reported here
might not be as reliable nor accurate as it has the potential to be. Therefore, the Lyft level
5 dataset is a great candidate to be used in this thesis so that the results from [51] can be
verified.

The final candidate is the "Dense Depth for Autonomous Driving" (DDAD) [30] by the Toyota
Research Institute. There are currently no other reported cases of using the selected methods
with this dataset, as per the writing of this thesis. Hence, DDAD is an excellent candidate to
use in this thesis.

3.1.3.3 Using Syntesized Data

At one point, it was discussed whether or not to use synthesized data from a simulator like
CARLA [52], AirSim [53], or utilizing GAN-based methods to make synthesized data look more
realistic [54]. It is tempting to be able to generate potentially an unlimited amount of frames
with perfect depth information. However, it was concluded that this thesis should focus on
SSL in itself and that branching out by looking into synthesized data could lose the running
theme of the thesis. Looking into a combination of using SSL-based methods for dense depth
detection with synthesized data by itself or in combination with real data could be a potential
future thesis.

3.1.4 Conclusion

After having looked at the different candidates, the candidates were assessed by their differ-
ent contributions. This section contains a summary of which candidates were chosen with an
explanation of why.

3.1.4.1 Self-supervised Methods

Monodepth2 was the primary method used in the specialization project. Therefore, it has al-
ready been relatively explored and explained. As mentioned in the candidate description, it
would have been interesting to evaluate Monodepth2’s performance on the Lyft level 5 dataset
with the evaluation metrics introduced in Section 3.8.2. However, dedicating this thesis to look
into an already explored method would lead to a lot of repeated work and conclusions. There-
fore, Monodepth2 is dropped.

The significant improvement in performance that the feature-metric loss showed in the Feature
Depth method can not go unnoticed. Therefore, this method is one of the selected methods.

PackNet was one of the chosen methods at an earlier point in the thesis. However, as Many-
depth was released in late March, it had to be dropped to explore Manydepth in greater detail,
as Manydepth introduces such a novel idea and will likely work as a breeding ground for many
other novel ideas in the field of SSL-based dense depth estimation.
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3.1.4.2 Supervised Method

Only one of the two presented candidates could be selected as the supervised method for this
thesis. AdaBins is a tempting choice as it is the best performing method on the KITTI dataset.
Due to the available frames in KITTI being reasonably low in the view of a transformer, which
usually requires vast amounts of data to perform well, the DPT method probably does not have
sufficient data to perform at its best, even if it is pretrained with other datasets. This means
that the DPT method possibly still has more potential to improve. The deciding factor between
AdaBins and DPT is that DPT can generalize to any dense estimation task, which would also
be interesting to investigate as an addition to the other experiments. Therefore, this thesis will
use the DPT as its supervised method.

3.1.4.3 Dataset

KITTI was early on selected to function as the benchmarking and validation-of-results dataset
for this thesis. As mentioned, the specialization project related to this thesis by Galteland [51]
experienced some mysterious problems with the Waymo dataset. Some possible answers to
why were discussed in the specialization project, but none of the suggested fixes were ever
tested. It is tempting to use this thesis as a validation of the suggested fixes, but due to not
even Goudard having any thoughts on why this happened, choosing Waymo felt too risky if
none of the solutions would have worked, even if it would have worked as an excellent way
to confirm the suspicions in the specialization project. Therefore, Waymo is not explored any
further in this thesis.

The specialization project showed that the Lyft dataset had great potential in a dense depth
estimation use case. As discussed earlier, it was discovered that the training split used in the
specialization project contained different-sized images, which most likely affected the results.
Consequently, the Lyft level 5 dataset will continue to be used to confirm the results from 51
and verify that using only the same-sized images indeed affects the results.

To not ignore the contributions of PackNet [30], the thesis will also continue with the DDAD
dataset as it is reasonably new and has little to no other published results other than PackNet
itself regarding performance on a dense depth data estimation task. Therefore, it is interest-
ing to validate that the results PackNet showed using the dataset can be transferred to other
dense depth estimation methods and to see if any other methods can beat PackNet itself on the
dataset, as PackNet reported better results for the PackNet architecture. However, other bench-
marks like KITTI show that Monodepth2 performs better than the SSL-PackNet architecture
2

3.1.4.4 NAP-lab Data

A set of videos from the NAP-lab vehicles became available at a late stage in the thesis. It
was decided that the selected Manydepth method should be trained with NAP-lab data, as
sufficient infrastructure was already created when modifying the method to work with the
Lyft and DDAD datasets. No lidar scans would be used due to time constraints, meaning that it

2Based on the leaderboard on paperswithcode.com

https://paperswithcode.com/sota/monocular-depth-estimation-on-kitti-eigen-1
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would not be possible to evaluate the actual depth data. Nevertheless, looking at the generated
depth images would indicate the expected performance.

3.2 Self-supervised Learning-based Dense Depth Estimation

As mentioned in Section 2.6, Solutions using SSL are primarily based on using separate models
θdepth and θpose for predicting the depth Dt and relative pose Tt→s between two frames It and
Is. The selected methods of Manydepth [47] and Feature Depth [46] both utilize these ideas.
Thus, this section will cover the basics of the geometry models and introduce other needed
knowledge.

3.2.1 Camera Intrinsic

A camera intrinsic matrix K [55] is used to transform a 3D point into a 2D pixel. The matrix
describes a perspective projection performed with an ideal pinhole camera. It is defined as:

K =





fx 0 cx
0 f y cy
0 0 1



 (3.1)

The values fx and f y represents values for the focal length of the camera used specified in

pixels. fx is defined as fx =
f

mx
and f y as f y =

f
my

, where mx and my represents the real-life
size of a pixel, and f is the actual focal length specified as distance. cx and cy represent the
principal points, which is the ideal center of the image. The intrinsic matrix K matrix is usually
found by calibrating the camera, often performed with a checkerboard [56].

3.2.2 How Self-supervised Methods Learn to predict Depth

As mentioned in Section 2.4, a Self-supervised learning problem uses no external ground truth
values. However, SSL tasks have shown that one does not need information about the ground
truth to be able to learn something about the core problem itself. For some tasks, one can
even solve a different problem and use the intermediate info from solving that problem to
solve the actual problem at hand. SSL-based methods for dense depth detection does precisely
this. Instead of solving the ill-posed problem of regressing a depth value for all pixels in an
image, with no supervision signal available, these methods solve this by re-imagining the core
problem itself.

By first describing the problem in a more general manner, this section will explain how SSL-
based dense depth estimation methods utilize geometric view synthesis as the core learning
problem to learn networks to predict depth.

3.2.2.1 Problem Description

It is best to take a step back to get a better understanding of these problems. Imagine having a
point cloud consisting of points in 3D space. When viewing this point cloud on a screen, one is
watching a 2D projection of this 3D data structure from an imagined camera at a position in a
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3D space. If one wants to view another 2D projection of the point cloud, one can transform the
camera to a new position in 3D space, with a transform that can be in all 6 degrees of freedom.
After having translated the camera, one is left with a new 2D projection which changed how
the image viewed on a screen looks, but the 3D point cloud is still unchanged and is constant
for a scene no matter where one chooses to place the camera.

Another key realization here is that the 2D projection precisely represents the data in 3D space
to 2D space. However, if one knows how the points were projected, one can not necessarily
project these back into 3D, as one projects to 2D, the depth coordinate is lost, often the Z
coordinate. Thus, the depth value Z is needed to project back into 3D space.

3.2.2.2 Geometric View Synthesis

Suppose one has a source image Is and target image It , which captures a scene from two
different viewpoints relatively close to each other in the world. The relative difference between
these two viewpoints is a pose Ts→t , which indicates a six degrees of freedom transformation
matrix between the source and target viewpoint, which essentially is a transformation in any
direction and with any rotation in 3D space. This relative position is unknown, and so are
the depth values for the pixels in the two viewpoints 2D. If one were to have both the depth
values and the relative position between the images, one could use geometric view synthesis
to reconstruct the target image only from the source image.

Geometric view synthesis starts by first converting the pixels in the source image It to the
camera frame using the inverse pro j. This can be done as follows:

pro j (Dt , p)−1 = Dt

�

x − cx

fx
,

y − cy

f y
, 1

�>

(3.2)

The inverse of the pro j function transforms a 2D pixel p to a 3D point P by using the pixel
p together with predicted depth Dt . The fx , f y , cx and cy parameters are from the associated
intrinsic matrix K .

The pose Ts→t describes the relative pose between the source and target in the camera frame.
However, the pose between the target in the camera frame and the pixel frame source is needed
to project into the pixel frame. This transform is achieved by multiplying the relative pose Ts→t
the intrinsic matrix K:

T C
s = Ts→t · K (3.3)

With this one can project the points into the target image’s pixel frame:

ω
�

Dt , T C
s , p

�

= T C
s · pro j−1(Dt , p) (3.4)

ω produces a 2D coordinate frame, where the value at index (i, j) is a 2D coordinate repre-
senting the same value in the source frame. These 2D coordinates are float values and might
represent a coordinate that lays between multiple pixels. To create the final synthesized image,
one uses a bilinear sampler to sample pixels from the source image:
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Is→t = Is

¬

ω
�

Dt , T C
s , p

�

¶

(3.5)

Here, Is→t is the synthesized version of It .
¬¶

denotes the bilinear sampler.

To summarize; this function inversely projects a 2D pixels p in the source image Is into the
camera frame in 3D space, into 2D coordinates in the pixel frame of It , where a pixel at index
(x , y) represents a pixel (i, j) in the source image Is. These coordinates are sampled from the
source image Is, and one is left with a synthesized version of It , only created with pixels from
Is.

3.2.2.3 Learning Depth

The approach mentioned above has a fundamental problem. This approach assumes that the
depth Dt and relative pose Ts→t are known and ideally perfectly correct. With perfect knowl-
edge of both the depth and the pose, one can almost perfectly synthesize It . However, if either
the depth or pose is wrong, the resulting synthesized image will also be incorrect, leading to
a synthesized image that is not similar to the target image.

This realization is the core of self-supervised dense depth estimation. By having a model θdepth
that predicts a dense depth map Dt and a different model θpose that predicts a six degrees
of freedom pose between two images, one can use the geometric view synthesis as the core
learning problem. By introducing functions that measure the difference between two images,
one can use the fact that to construct an image Is→t from Is, the depth Dt and pose Ts→t
needs to be correct. The better depth and pose predicted, the closer the image Is→t will look
to the original It . By jointly training both models and using loss functions that are based on
measuring the similarity between a target image and its synthesized counterpart, the models
θdepth and θpose are thus forced to become good at predicting depth Dt and relative poses
Ts→t for the loss to decrease and eventually converge. In other words, the only way to do it
consistently is to be correct.

3.2.2.4 Requirements

This approach does have a few requirements. The first requirement is that some motion be-
tween the source and target frames is needed. Without it, one would not have any significant
changes in the image, and no disparities could be created. On the other hand, this motion can-
not be too big either, leaving it hard or even impossible to reconstruct the target image from
the source image. The final requirement is that the captured scene is static. This requirement is
a bit hard to fulfill for datasets from autonomous vehicles, as they operate in a domain where
other vehicles are moving around, resulting in moving objects in the scene. If this requirement
is unfulfilled, one will end up with a "punching hole" effect, where the model will predict an
infinite depth for the moving object. This requirement applies mainly for objects moving in the
same direction as the ego-vehicle, with a velocity close to the ego-vehicle itself. Objects moving
perpendicularly or oppositely to the ego-vehicle often do not have a severe reaction compared
to other moving objects. This is because they can be interpreted as static by the models and
that their change in position in the scene is caused by ego-motion.
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3.2.3 Photometric Error

Some steps are needed to measure the difference between two images correctly. The first and
most obvious way of measuring the difference between two images is to take the L1 distance
or the absolute difference between two images:

L1(Ia, Ib) = ‖Ia − Ib‖1 (3.6)

Although, the L1 difference only measures the differences in pixels located at the same position
in the Ia and Ib. However, these differences do not always represent differences in other aspects
of an image. Therefore, most photometric errors use structural similarities (SSIM) [57], which
measures the difference between luminosity and structure on a pixel level. A perfect copy of
Ia would give an SSIM of 1, while a perfect imperfection would result in an SSIM of −1. With
these two error measures, one can create a combined, weighed photometric error that utilizes
both SSIM and L1 distance:

pe(Ia, Ib) = α
1− SSIM(Ia, Ib)

2
+ (1−α)‖Ia − Ib‖1 (3.7)

Virtually all SotA self-supervised papers use this photometric error as a baseline for their pho-
tometric error, and they all use α set to 0.85.

3.2.4 Basic Architecture

Figure 3.1: Illustration of a basic self-supervised depth estimation architecture.

A basic architecture for a self-supervised depth estimator is shown in Figure 3.1. A target and
source frame are fed into a pose model θpose that outputs the pose Ts→t . This pose is used
together with the hallucinated depth Dt generated by a depth model θdepth for the frame It
to reconstruct the target frame from the source frame’s pixels. These are used to calculate the
photometric error between the images, which is used as the loss for both the pose and depth
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models. The only way for the photometric loss to improve is by predicting the correct depth
and pose for the source and target images. Thus, the depth model will generate correct depth
values.

3.3 Manydepth

This section will go into the details of how Manydepth by Watson et al. [47]works. The section
starts by giving a general overview of the architecture of Manydepth, followed by an explana-
tion of the different losses used. The rest of the section will focus on the novel way of using
sequences of images rather than using a single image at inference using a cost-volume, and
the novel consistency loss to encourage the model to ignore the cost volume when it fails.

3.3.1 Architecture

The Manydepth system consists of three separate parts. The first part is a depth architecture
that uses multiple frames I , by using a cost-volume as an additional input to an encoder-
decoder network that outputs a depth frame D. The second part is a pose network that can
predict the relative movement between two frames It and It+n. Finally, the last part is an
encoder-decoder consistency network, similar to the network used in the depth architecture
but without the modifications needed to use cost-volumes, making it identical to the depth
network from Monodepth2.

(a) Depth architecture

(b) Pose Network (c) Consistency Network

Figure 3.2: Illustration of Manydepth’s architecture. The depth architecture illustration is
adapted from Watson et al. [47], while the pose and consistency network illustrations is adapted
from Goudard et al. [29]
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3.3.1.1 Depth Architecture

The overall depth architecture θdepth is substantially changed from Monodepth2, which con-
sists primarily of a single encoder-decoder network. However, for Manydepth, the depth ar-
chitecture consists of three components, with the first being the feature extractor. This feature
extractor uses the first five ResNet18 layers [10] to turn images into features. These features
are fed into a cost volume, which is the second component in the model and discussed fur-
ther in Section 3.3.3. The image features and the cost volume are then fed into the remaining
convolutional layers of ResNet18, which completes the encoder part of the depth architecture.

The decoder is the final of the three main parts of the θdepth model. This decoder follows
Monodepth2’s decoder. It primarily consists of ’upconv’ layers, which use upsampling in the
form of nearest-neighbor upsampling and a convolutional layer to bring the features from the
decoder back into an image representation. The final output is a depth image D.

3.3.1.2 Pose Network

The pose network θpose consists of a ResNet18 network modified to accept two frames, or
six channels, instead of one. The output from the network is a single six degrees of freedom
relative pose between the two input frames.

3.3.1.3 Consistency Network

The consistency network θconsistenc y is identical to the depth network from Monodepth [29].
It consists of a ResNet18 encoder and a decoder similar to θdepth’s decoder.

3.3.2 Reprojection-based Training

Manydepth is based on self-supervised reprojection based training, described in Section 3.2.2.
This training uses an frame It , a frame at time t together with frames that are temporally
close {It−n, It+n}. Together with the estimated depth Dt from θdepth and the pose Tt→t+n from
θpose, one can synthesize the frame It from different viewpoints using temporally close frames.
In Watson et al. experiments, the temporal frames are {It+n, n ∈ {−1,+1}. With this, one
can learn synthesize It from only using pixels from {It−1, It−1}. This synthesizing is done by
using Equation (3.5), where the result is a synthesized frame It+n→t Here, It+n→t denotes
synthesizing It from It+n, where n ∈ {−1,+1}.

Equation (3.5) uses the intrinsic matrix Kt . The intrinsic matrix Kt is assumed to be identical
for all temporally close frames, but it is worth mentioning that this is not a requirement. Due
to most datasets being collected using a fleet of autonomous vehicles, all with slight changes
in their camera setups, it is not uncommon for the intrinsic matrix Kt to differ between the
collected scenes. Therefore, the intrinsic matrix Kt is set, during training, to be the intrinsic
matrix Kt for the vehicle that collected the data.
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Figure 3.3: Example of using minimum appearance loss. Using the minimum photometric
error can prevent false positive cases of high photometric error. Adapted from Goudard et al.
[29]

Similarly to Monodepth2 [29], Manydepth optimizes the loss for the best matching source
image. This loss is based on a photometric error from Equation (3.7).
Monodepth2 commented that the use of average pe, which many other SSL solutions use, can
cause problems for pixels that are either out-of-frame or hidden in the target image It but exist
in the temporally close frames. These cases result in an artificially high pe for that region. An
example is shown in If using the average pe, the resulting pe would be a lot higher than if
using the minimum. Thus, Manydepth follows the conclusion made by Monodepth2 and uses
the minimum, rather than the average pe as their reconstruction loss:

Lp =min
n

pe(It , It+n→t) (3.8)

This loss is calculated over for the frames at four different scales of the image. Manydepth uses
frames of size {1, 1

2 , 1
4 , 1

8} times the original frames’ size.

In addition to using the reprojection loss, Manydepth also adapts the edge-aware smoothness
loss from the works of Goudard et al. [28, 29, 58], which encourages the depths to be locally
smooth. This encouragement is done by enforcing a L1 penalty on the disparity gradients ∂ d:

Lsmooth = |∂x d∗t |e
−|∂x It | + ‖∂y d∗t |e

−|∂y It | (3.9)

Where d∗t = dt/dt is the mean normalized inverse depth used to discourage shrinkage of the
estimated depths.

The main reason to encourage locally smooth depths is that an object in a scene has depth
values close to each other. Taking, for instance, a car in an image, its minimum, and maximum
associated depth value will be at most equal to the length of the car. If a model tried to associate
randomly spots of depth values that result in a max difference that surpasses the length of the
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car, one would assume that these associated depth values are wrong. Therefore, the depth
values are encouraged to be locally smooth.

3.3.3 Cost Volume

This cost volume represents the geometric compatibility at different depths in the target frame
It and the temporally close frames. A set of planes P is generated and added perpendicularly
to the optical axis of It . These planes are linearly spaced between the minimum depth dmin
and the maximum depth dmax. Each of these frames is encoded as a feature map Ft using a
feature extractor. These feature maps are then warped to the viewpoint of It using all of the
available depths d ∈ P using the same idea as Equation (3.5), creating a warped feature map
Ft+n→t,d .

With this, one can create a cost volume consisting of the difference between the warped feature
map and the feature map from the target frame It for all depth d ∈ P, taking the average for all
the temporally close source frames. One ends up with is a H×W×|P| structure that effectively
holds the information about the likelihood for an arbitrary pixel {x , y} to be correctly classified
as depth d for all d ∈ P. After being created, this cost volume is concatenated with the feature
maps Ft and sent to the convolutional decoder that predicts the depth Dt .

3.3.3.1 Handling Special Cases

Due to the usage of past frames not being a requirement, the model should handle cases where
only a single frame It is used at test time. Thus, the cost volume is replaced with an empty
zero tensor with a probability p during training. This replacement is done to encourage the
model to not rely solely on the information in the past frames.

Another problematic case when using multiple frames is when there is no movement between
It and In,−N ≤ n ≤ N . To combat this, In is replaced with an augmented version of It , but
with using In in Lp from Equation (3.8). This encourages the network to predict valid depths
when the cost volume is based on images with no change in pose.

3.3.3.2 Adaptive Cost Volumes

Manydepth proposes the novel idea of using adaptive cost volumes to better predict depths
for an arbitrary values of dmin and dmax. In a standard cost volume, the values dmin and dmax
needs to be specified before training. However, in an SSL setting like this, these values are not
available. Only data from the images themselves are used, and one can not depend on having
these values available.

Manydepth solves this by learning dmin and dmax from the data itself. These parameters are
learned using the predicted Dt , where dmin and dmax are computed as the average min and
max of each Dt in a training batch. These values are then updated and stored after each batch.
After a set number of epochs, these values are frozen and not updated anymore. This freezing
also applies for the weights of the θconsistenc y .
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3.3.4 Consistency Loss

The use of these adaptive cost volumes alone does not yield any significant improvements. In
fact, using this idea with reprojection-based training yields far worse results than not using
the cost volume at all, with punching-hole-like artifacts for moving objects as one of the most
significant artifacts. These holes occur because self-supervised monocular training operates
under the assumption of a static scene and a moving camera. When these assumptions are
made, e.g., for moving objects like cars or pedestrians, these holes can occur. [29] attempted
to fix this with an automatic masking method that removed the pixels that were suspected of
containing these kinds of objects. This failure is because the cost volume can produce unreliable
results for moving objects, like moving objects and low-textured areas, e.g., poorly lit surfaces.

When training with both the reprojection-based systems and the cost volume, the total system
can become overly dependent on the cost volume, which will generate wrong predictions for
the vulnerable areas. Therefore, the network needs to learn when not to trust the data from
the cost volume to improve this behavior. This problem could be partially solved by, e.g., using
a separate semantic segmentation network to identify moving objects [59] or automatically
mask the stationary pixels between the temporally close frames [29].

Manydepth solves this by training a single-image-based depth network θconsistenc y simultane-
ously as training the multi-image-based network with cost volumes, as the single-image-based
does have the problems that a cost-volume supported approach introduces. It is worth men-
tioning that using data from the single-image-based network does not solve the problem itself,
as the hole artifacts also are apparent here. However, the artifacts are not as apparent for
moving objects as when using cost-volumes.

As the cost-volume-based approach generally performs better than a single-image-based ap-
proach, it is essential to identify which pixels are affected by the cost-volume weaknesses so
that only the affected areas are replaced. The single-image-based network θconsistenc y outputs
a depth map D̂t of the same dimensions as Dt for all training images. To identify which pixels
are reliable, Manydepth concludes that the cost volume can be counted as reliable when the
depth D̂t is close to the argmin of the cost volume, also denoted as Dcv as the depth from the
cost volume. The argmin of the cost volume translates to the lowest L1 distance between the
warped feature map generated by warping the source frame It−1 and the feature map from It .
With this, a binary mask is defined as:

M =max

�

Dcv − D̂t

D̂t
,

D̂t − Dcv

Dcv

�

> 1 (3.10)

Which translates to the binary mask being 1 in regions where D̂t and Dcv have a significant
difference and denotes the areas of unreliable pixels from the multi-image model θconsistenc y .
With these unreliable pixels known, one can define a new loss value Lconsistenc y as:

Lconsistenc y =
∑

M |Dt − D̂t | (3.11)

This loss value will encourage predictions Dt from θdepth to be similar to predictions D̂t from
θconsistenc y for unreliable pixels defined by M .
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The final loss value is a combination of all the previously discussed loss values:

L = (1−M)Lp + Lconsistenc y + Lsmooth (3.12)

The (1−M) term before Lp results in only calculating Lp for reliable pixels.

3.4 Feature Depth

The main contribution from Feature-metric Loss for Self-supervised Learning of Depth and Ego-
motion by Shu et al. [46] is their feature-metric loss. This section will explain how Shu et al.
argues for why the feature-metric loss improves dense depth prediction and how their "Feature
Depth" architecture is constructed.

3.4.1 Architecture

In this paper, Shu et al. [46] takes inspiration from Monodepth2 [29] for its novel Feature
Depth architecture. Here, both the depth network θdepth and the pose network θpose utilizes
the ResNet [10] architecture, much like Monodepth2 and Manydepth [47]. However, this ar-
chitecture chooses to use ResNet50 for its depth network rather than using ResNet18 as Mon-
odepth2. The pose network is modified to use two input frames, just as Monodepth2. These two
networks are essentially identical to the θpose and θconsistenc y , as the Feature Depth architec-
ture only uses a single input image, and thus no cost volumes. These networks are introduced
and explained in Section 3.3.1.

Figure 3.4: Illustration of Feature Depth’s final architecture. It is worth noting that the
encoders used after Is and It is the encoder from the FeatureNet. It is also worth noting that
even though the losses Ls and Ls→t is separated, they both count toward the final loss. Adapted
from Shu et al. [46]

3.4.1.1 FeatureNet

FeatureNet is one of the novel contributions from Shu et al.. This network is responsible for
creating features φ that can help the photometric error in areas where it suffers, e.g., dark
and low-textured areas. This network consists of an encoder-decoder structure, where only
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the encoder part of the network is used together with the other parts of the architecture.
The FeatureNet utilizes a ResNet50 [10] architecture, with the final fully-connected layers are
removed as its encoder. The decoder consists of five "upconv" layers, each consisting of a 3×3
convolutional layer followed by a bilinear upsampling layer.

The network can be trained either jointly together with the θdepth and θpose, or separately with
pretrained θdepth and θpose models.

3.4.2 Reconstruction Loss

The reconstruction loss is the loss used when finding the difference between the target and
source images. Feature Depth uses both a single and multi-view reconstruction loss.

3.4.2.1 Multi-view Reconstruction Loss

Feature Depth follows Monodepth2, thus also Manydepth in its multi-view reconstruction loss,
defining its loss as:

Ls→t =
∑

p

pe (Is(p̂), It(p)) (3.13)

Here, pe is the photometric error defined in Equation (3.7). p̂ is the pixels p from the synthe-
sized image Is→t , and p is pixels from the target image It .

However, Feature Depth comments on the use of photometric loss by itself as being fundamen-
tally problematic. The problem with photometric loss is that a low photometric loss does not
necessarily indicate a correctly predicted depth or pose. This behavior is especially apparent
in close to textureless areas, e.g., poorly lit areas or buildings. Feature Depth shows that the
problem can be formally described from the optimization perspective by deriving the gradients
for the depth and egomotion:

∂ Ls→t

∂ Dt
=
∂ pe (Is(p̂), It(p))

∂ Is(p̂)
·
∂ Is(p̂)
∂ p̂

·
∂ p̂
∂ Dt

(3.14)

∂ Ls→t

∂ Ts→t
=
∑

p

∂ pe (Is(p̂), It(p))
∂ Is(p̂)

·
∂ Is(p̂)
∂ p̂

·
∂ p̂
∂ Ts→t

(3.15)

The gradients ∂ Is
∂ p̂ are the gradients for the image. In the textureless regions, these gradients

are close to zero in both cases. Due to these problems, Feature Depth proposes to use fea-
tures φs(p) found in the source image instead of using the actual image. This is because a
feature representation φs(p) can generate better gradients ∂ φs

∂ p̂ . The reconstruction loss Ls→t
is adjusted accordingly to support the use of features φ:

Ls→t =
∑

p

pe (φs(p̂),φt(p)) (3.16)
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3.4.2.2 Image Reconstruction Loss

The single-image reconstruction loss is a standard loss function used in auto-encoder networks.
It is specified as the L1 distance between the input and the reconstructed image after being
sent through the auto-encoder:

Lrec =
∑

p

|I(p)− Irec(p)|1 (3.17)

3.4.2.3 Discriminative Loss

The discriminative loss encourages the learned features φ to have large gradients. Gradients
from the image itself are used to emphasize the low-texture regions that receive large weights:

Ldis = −
∑

p

e−|∇
1 I(p)|1 |∇1φ(p)| (3.18)

Where ∇1 is the first-order derivative ∇1 = ∂x + ∂y with respect to the image.

3.4.2.4 Convergent Loss

The convergent loss Lcvt is used to encourage smoothness in the feature gradients. The smooth-
ness ensures that the gradients are consistent during the optimization steps by penalizing the
second-order gradients with the L1 distance between the gradients and the features. This loss
can be viewed in the same way as Manydepth and Monodepth2’s smooth loss, which is further
explained in Section 3.3.2 and Equation (3.9):

Lcvt =
∑

p

|∇2φ(p)|1 (3.19)

Where ∇2 is the second-order derivative ∇2 = ∂x x + 2∂x y + ∂y y with respect to the image.

3.4.2.5 Final Loss for the Auto-encoder Network

The final loss value for the auto-encoder is a weighted combination of the pre-mentioned
regularizers:

Ls = Lrec +αLdis + β Lcvt (3.20)

Where the weights α and β are both set to 1.0 · 10−3, found through cross-validation.

3.4.3 Feature-metric Loss

The feature metric loss is one of the novel ideas presented by Feature Depth. The idea is to use
the L1 distance between the features generated after running Is and It through the FeatureNet
encoder:

L f m = |φs(p̂)−φt(p)|1 (3.21)
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3.4.4 Final Loss

As established earlier, the final value for the multi-view reconstruction problem is the photo-
metric loss pe defined in equation Equation (3.7) and the novel feature metric loss:

Ls→t = Lph + L f m (3.22)

The use of minimum photometric error rather than using the average, as per [29, 47] is also
adapted here, leaving the final multi-view reconstruction loss as:

Ls→t =
∑

p

min
n

Lt+n→t (φt+n→t(p̂),φt(p)) (3.23)

The final loss for the entire architecture is a combination of the multi-view and single-view
reconstruction loss:

L = Ls + Ls→t (3.24)

3.5 Vision Transformers for Dense Predictions

This section will take a deep dive into the Dense Prediction Transformer (DPT) by Ranftl et
al. [42] and look at how the Vision Transformer from [17] was modified to perform dense
prediction tasks such as monocular dense depth estimation and semantic segmentation. This
section will focus on the monocular dense depth estimation use case, as this thesis primarily
focuses on this task. However, the semantic segmentation task is discussed in Chapter 5 and
Chapter 6.

3.5.1 Architecture

Figure 3.5: Illustration of DPT’s final architecture. Adapted from Ranftl et al. [42]

DPT’s architecture can be seen in Figure 3.5. The process starts with an input image divided
into patches of size p = 16, much like with the Vision Transformer (ViT). These patches are
embedded into features and flattened and encoded with a positional value representing the
patch’s original position. A standalone readout token is also added, and these tokens are sent
to a set of transformers. At four different points between two transformer outputs, the output
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features are sampled and reassembled at four different resolutions into feature maps depend-
ing on the architecture used. These feature maps are progressively fused before, finally, being
fed into a task-specific head network. This head network can be trained to perform any dense
prediction task, e.g., monocular depth estimation and semantic segmentation.

3.5.2 Transformer Encoder

The main component of DPT’s encoder is a vision transformer, discussed in Section 2.2.3. The
input images fed to the DPT are preprocessed similarly to a vision transformer and consist
of using image patches embedded into a feature space, or as an alternative, features gener-
ated from feeding the images through the layers of a ResNet50 network. These patches are
flattened, embedded with a positional encoding, and fed into the transformer. As per ViT, a
unique standalone token, called the class token in ViT, is added at this point. For this use case,
this token is called the readout token.

Ranftl et al. [42] propose three different transformer-based encoder architectures for DPT: A
base model, called ViT-base, which uses the patch-based embedding procedure and 12 trans-
former layers, An extended version of the base model, called ViT-large, using the same em-
bedding, but 24 transformer layers, and a hybrid model, called ViT-hybrid, which uses the
resulting features after sending the image through a ResNet50 model [10]. The output from
the ResNet model is used as the embeddings for a set of 12 transformer layers. The patching
dimension uses p = 16 for all models, following [17].

After applying the embedding procedure to an image of dimension H ×W pixels, one is left
with t0 = {t0

0, ..., t0
Np
}, t0

n ∈ R
D tokens, where Np =

HW
p2 . t0 refers to the readout token, and

D is the dimension of each feature token, where D = 768 for ViT-base and ViT-hybrid, and
D = 1024 for ViT-large. For ViT-base and ViT-large, as there is no compression of the pixels,
and D > p2, p = 16, this results in no compression. Thus, pixel-level accuracy input is kept.
For the ViT-hybrid, the features are at a 1

16 resolution, which still is greater than other more
standard convolutional-based encoders.

The tokens are sent through the transformers, where one transformer consists of feed-forward
nets and multi-headed attention blocks. The output from a transformer at layer l is referred to
as t l , where the input to layer l is the output t l−1, l − 1≥ 0. In a standard vision transformer,
all output except for the CLS token is dropped in the final decoding layer. However, this is
not the case for the DPT, as there is a one-to-one correspondence between the output and the
inputted image patches. Hence, all tokens are kept in the output.

3.5.3 Convolutional Decoder

After being sent through the transformer layers, one is left with a set of tokens from the trans-
former layers t. These tokens need to be decoded into image-like feature representations and
finally fused into a dense prediction. Ranftl et al. [42] propose a three-stage Reassemble op-
eration for this task, which generates a feature map from the tokens. This map is fed into
a fusion block that progressively upsamples the representation to half the size of the input
image. Finally, the fused feature map is sent to a task-specific head network.
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3.5.3.1 Reassaemble Operation

The reassemble operation can be defined as follows:

ReassembleD̂
s (t) =

�

Resamples ◦Concatenate ◦Read
�

(t), (3.25)

Here, s denotes the output size ratio of the recovered representation with respect to the input
image. D̂ represents the output feature dimension. t is the output from a transformer layer.

Read Operation The Read operation is responsible for handling the information in the read-
out token and effectively reduces the number of dimensions by 1. Due to the readout token not
being actively used in this dense prediction task, this token can either be ignored by dropping
it, added to all other tokens, so that the new tokens are {t1 + t0, ..., tNp

+ t0} or concatenated
with the other tokens before projecting the representation to the original dimension size D
with a multi-layered perceptron. Doing this leaves the read operation as:

Readpro j(t) = {mlp(cat(t1, t0)), ...,mlp(cat(tNp
, t0))} (3.26)

Concatenate Operation The concatenate operation reshapes the resulting tokens into an
image-like representation. This reshaping is done using the tokens’ positional encoding and
placing them according to their original position. It is defined as:

Concatenate : RNp×D→ R
H
P ×

W
P ×D (3.27)

Where P refers to the number of tokens, and thus also the number of patches, as there is a
one-to-one relationship between input patches and output tokens.

Resample Operation The last operation in the reassemble operation is a resampling opera-
tion that scales the representation:

Resamples : R
H
P ×

W
P ×D→ R

H
s ×

W
s ×D̂ (3.28)

This operation is implemented by using a convolutional block. The block consists of a 1 × 1
convolution to project the input to D̂, followed by a strided 3 × 3 convolution or transpose
convolution, depending on if s ≥ p or s ≤ p to implement spatial down and upsampling which
is used respectively.

3.5.3.2 Fusion Operation

A RefineNet-based feature fusion block by Lin et al. [60] inspires the fusion operation. This
block progressively upsamples the output from the reassemble operation by a factor of two in
each fusion block, leaving the final fusion block output with half the height and width of the
original input image.

The reassemble and fusion operations are used at the output from four different transformer
layers and with four different resolutions scaled by s. ViT-large uses layers l = {5,12, 18,24},
ViT-base uses l = {3,6, 9,12}. ViT-hybrid uses the first and second ResNet block together with
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layers l = {9, 12}. The default architecture uses the Readpro j read operation in the reassem-
bling and produces feature maps with a dimension D̂ = 256. These final architectures are
named DPT-Base, DPT-Large, and DPT-Hybrid, respectively.

3.5.4 Monocular Dense Depth Estimation Head

The head attached to the output from the last fusion block is a simple sequential network
consisting of a single bilinear upsampling layer and a couple of convolutional layers. There no
need for anything more here due to the final fusion layer already being half the dimension of
the original image. There is little to no information regarding the loss used when training this
network, as the complete code set for the DPT is not publicly available yet, but one can assume
that it follows [61]’s scale and shift-invariant losses due to [61] being created by virtually the
same people from Intel Labs that created DPT.

3.5.5 Training

Transformers need tremendous amounts of data to be able to show their proper potential per-
formance. Ranftl et al. addresses this by using their MIX5 dataset and five other large datasets
containing disparity and segmentation data to create a new dataset called MIX6. This dataset
contains a total of 1.4 million samples with associated depth and disparity maps. As a pretrain-
ing measure, they train with a specially selected subset of the dataset for 60 epochs before
starting training with the complete dataset. With this, they train the decoder and encoder with
an Adam optimizer. The encoder is trained with a learning rate of 1e-4 and has pretrained
weights from ImageNet. The decoder is trained with a learning rate of 1e-5 and has randomly
initiated weights.

3.6 Data Extraction and Preparation

The depth detection systems are all set up to use the KITTI dataset, as this is the most used
benchmark dataset for depth detection. However, to verify that the depth detection systems
can generalize to other data, it is interesting to see how they perform on other datasets. This
thesis will focus on the Lyft and DDAD datasets, which are introduced in Section 2.7. This
section will discuss how the dataset was collected and prepared to be used in the dense depth
detection systems.

3.6.1 Data Organization

Due to more than one dataset being used in this thesis when training Manydepth and Fea-
ture Depth, it would be beneficial to establish a shared way of organizing the data for all the
datasets. All the datasets are already defined as scenes consisting of data points covering a
recording period, either in a separate lookup table of IDs or physically in separate folders. As
both Manydepth and Feature Depth need to relate to the current frame’s past and future frame
during a training step, keeping this structure for the other datasets is beneficial.
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3.6.1.1 Observations

Lyft, DDAD, and the NAP-lab dataset all have a unique intrinsic matrix associated with a scene,
unlike the KITTI and Cityscapes dataset, which only uses a single static intrinsic matrix. There-
fore, this intrinsic matrix needs to be available during training. All the datasets also have data
available from multiple images and lidars. Thus, data points should be hierarchically separated
to support using data from multiple sensors simultaneously.

3.6.1.2 Suggested Requirements

The following decisions were made regarding the data organization setup, considering the
observations in the previous section:

The files will be separated into folders; hereafter called a scene, rather than a lookup
table In the PackNet codebase, TRI uses its own Data Governance Policy (DGP) tools in the
dataloader itself. While this is convenient for an already established way of organizing data, it
is not very useful for datasets with other governance policies. A valid option is to develop such
a tool for this task, but as the tool would need to take a stance on its internal data organization,
this would result in a repeated workload, which could be a bit excessive only for this thesis.

Each scene’s folder will contain subfolders, where each subfolder contains data for one
and only one sensor The possibility of using a lookup table for organizing the files was
considered. However, this was considered to defeat the purpose of using separate scene folders
in the beginning. Additionally, it would result in a more unorganized setup in the scene folders
as well. It is important to note that one scene can contain data points for more than one sensor,
e.g., a front-facing and backward-facing camera.

A separate, precomputed file containing the intrinsic matrix for each camera with ex-
tracted data in the scene exists in the scene’s folder The file containing the intrinsic
matrix needs to have a name identifiable with the subfolder’s name containing the images
of the associated camera. It was considered to include the calibration files instead. However,
all the datasets have a different form of calibration files, and handling these differences in a
dataloader unnecessarily complicates the dataloader. Another weakness of attaching the cali-
bration files is that this would result in the dataloaders being dependent on calibration files.
This behavior is unwanted and unnecessary as it is already known what kind of data is needed
to train the methods, and there is no point in adding data that is not important in a scene
folder.

3.6.1.3 Final Data Organization Setup

The final data organization can be viewed in Figure 3.6. Formally speaking, A dataset is divided
into scenes S. Each scene s ∈ S consist of data points P, where a data point p ∈ P is defined
as p = {d0, ...dx}. Here di represents the data readings for a sensor i, 0 ≤ i ≤ x , where x
is the total number of sensors. Data from a sensor di exist in its own subfolder, and contains
di = {r0, ..., ry}, y = (n·sampling rate) sensor readings. The relative index y points to the same
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Figure 3.6: The final dataset organization setup. This illustrates a single scene s in the
dataset. A complete dataset consists of multiple scenes like this

point in global time for all the sensors D. For a scene s, there exist j precomputed intrinsic files,
where j = number of cameras in the scene.

3.6.2 Lyft

The Lyft dataset is available under a public license and is shipped as tarfiles, one for training
data and another for test and validation data. Both files are approximately 58GB and con-
tain camera data from 5 different cameras and two lidars, with 22 000 sensor readings per
sensor. These sensor readings are from Lyft’s fleet of autonomous vehicles, captured in se-
quences of 25-45 seconds. The images have a dimension of 1920x1080 for some sequences
and 1224x1024 for others, with the majority of the images being in the latter format, and they
are compressed with JPEG compression. All images are placed in a shared folder. The images
are named with unique IDs generated by a generator. All the images are synced up with lidars
found on the vehicle’s top and in the vehicle’s front. Data from these lidars are saved as binary
files as points in the format of {x , y, z, intensi t y, ring index}. The sensor layout can be viewed
in Figure 3.7

3.6.2.1 Data Preparation

Due to the images being placed in a single folder, they had no reference to which sequence
they belonged. The depth detection methods all rely on knowing the images’ temporal context,
and without knowing this, they could not be used by depth detection methods. Therefore,
they needed to be moved into separate folders, one for each sequence. Another necessary
preparation was to extract the correct intrinsic parameters for a sequence, as the images are
collected from multiple vehicles.
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Figure 3.7: Sensor layout on Lyft’s vehicles. The image shows the sensor layout on one of
the vehicles in Lyft’s fleet. The sensors utilized here are the front and backward-facing cameras
and the top-mounted lidar. Adapted from Kesten et al. [49]

3.6.2.2 Generating Extra Data

One of the best ways of improving deep learning-based systems is to provide them with more
data. As the pose network used in these depth detection methods expects the views shown
during training to have consistent motion, one can not utilize data from cameras pointing in
other directions. However, one can artificially create more data by using the backward-facing
camera in reverse temporal order. By doing so, the pose will change according to the front-view
camera, and one has, in theory, duplicated the amount of available data. However, it is worth
noting that this is not tested and verified. Utilizing this data will be conducted as a separate
experiment, and the results are discussed in the results and discussion sections.

3.6.2.3 Depth Maps

The proposed depth detection methods are based on self-supervised learning and will only use
the camera data as input. However, to surveil how the methods are performing during train-
ing, one can utilize the data from the lidars when performing validation. The depth detection
methods are already set up to use a depth image, where the lidar points are projected onto the
camera plane. First off, the ring index and intensity can be dropped, as this is not interesting
for this use. This results in a list P consisting of N points pn = [xn, yn, zn]. These points exist
in the lidar’s frame of view and were sampled at time j. To use these points in a depth map,
they need to be transformed to the camera’s frame and to the time of sampling the image, at
time i.
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The transform from the lidar frame at time j to the camera frame at time i is described as
follows:

T Ci
L j
= T Ci

Vi
T Vi

W TW
Vj

T
Vj

L j
(3.29)

Where T B
A is the transformation matrix describing the transform from frame A to frame B,

the subscript i and j represent the time of capturing the camera data and the lidar data,
respectively.

The transformation matrices are:

• T
Vj

L j
is the transform from lidar frame at time j to the vehicle frame at time j

• TW
Vj

is the transform from the vehicle frame at time j to the world frame.

• T Vi
W is the transform from the world frame to the vehicle frame at time i

• T Ci
Vi

is the transform from vehicle frame at time i to the camera frame at time i

This transformation can be used on the points in the lidar frame and transform them to the
camera frame:

PCi = T Ci
L j

P L j (3.30)

The points can be projected to the camera plane by taking the dot product of the points and
the camera intrinsic matrix:

P = KPCi (3.31)

Here, K is the 3x3 camera intrinsic matrix with an added dimension to support a homogeneous
transform, making K a 4x4 matrix.

The points P are now mapped to the camera plane. The x and y coordinates represent the x
and y coordinate on the camera plane. The original Z values from PCi is assigned to be the
original depths:

Pz := PCi
z (3.32)

A depth image can be generated with the mapped points and depths by creating an empty
image of the same dimension as the original image and use the z value on all available points
x and y from P. It is worth mentioning that P does not cover points for all x and y values in
the original image. Points that have no accompanying z are left as 0. These depth maps can
be loaded at the validation step and used to calculate RMSE, Log RMSE, Absolute and Square
Relative Error. These metrics are described in Section 3.8.2
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3.6.2.4 Cropping

The dimension of the images used is 1224x1024. This close-to-squared dimension results in
the network trying to predict depth for many unnecessary areas. Examples are depth detec-
tion to static objects in the scene like the car itself and the sky. Therefore, the images’ height
was cropped with 300 pixels on the top and bottom, leaving the final image dimension to be
1224x424. When the images are cropped like this, one must also modify the principle point in
the intrinsic matrix, defined in Equation (3.1), accordingly. The new principle points are

ĉx = cx − pixels cropped from the left (3.33)

ĉy = cy − pixels cropped from the top (3.34)

Resulting in a new intrinsic matrix K:

K =





f y 0 ĉx
0 f y ĉy
0 0 1



 (3.35)

3.6.2.5 Extraction

Lyft has created a python package containing all metadata to the dataset. This metadata in-
cluded which images belonged to which sequences, their respective intrinsic parameters, and
the correct order of the images in a sequence. With this information, the images were ex-
tracted to separate folders, one per sequence. The folder contained all relevant images, where
the images were renamed to contain their correct index in that specific sequence and the cor-
rect intrinsic parameters for that sequence. A separate list containing lists of information on
the relative path to the sequences and the image indices was generated during this process,
as the Monodepth2 system requires this format. This list was split into two separate lists for
training and validation data, with a 5% split ratio. The list was flattened to contain only paths
and indexes, leaving the final data to be 17 000 training and 700 validation images for each
camera. This results in the potential of having 34 000 training images and 1600 validation
images, all with accompanying depth images if the backward-facing camera data is utilized.
After cropping and resizing, the final image size was 608× 224.

3.6.3 DDAD

3.6.3.1 Data Collection

The DDAD dataset is available under a Creative Commons License and is shipped as one 257
GB tar file that contains both training and validation data. The dataset contains readings from
seven cameras and four lidars. Their placements are seen in Figure 3.8. The data is collected
as scenes consisting of 5 to 10 seconds of data, resulting in 50 to 100 frames. The dataset
contains 150 training scenes and 50 validation scenes, translating to 12 650 training frames
and 3 950 validation frames. However, due to being limited on the amount of available data
here, the total number of validation frames was reduced to 900.

All sensor readings for a given scene exist in their folder, but the file names have no infor-
mation regarding the temporal order of the data. All the sensor readings are synced and run
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Figure 3.8: Sensor layout on DDAD’s vehicles. The image shows the sensor layout on one of
the vehicles in fleet used when collecting the DDAD dataset. The sensors utilized here are the
front-facing cameras and the top-mounted lidar. Adapted from Guizilini et al. [30]

on a 10Hz interval. The cameras produce images with a dimension of 1936x1216 and are al-
ready rectified. The lidar data are saved as serialized NumPy arrays. All sensors are calibrated
and have associated extrinsic parameters found in the scene folder. The cameras also have an
associated intrinsic matrix.

3.6.3.2 Data Preparation

The Toyota Research Institute has created its own Dataset Governance Policy (DGP), which
contains systems that ensure traceability, reproducibility, and standardization for all their datasets.
This policy was used when extracting the DDAD data. The training and validation datasets have
an associated JSON file containing information about the file names’ temporal order. When this
JSON file is fed to the DGP systems, it is possible to get the temporal order of the files. The DGP
system can also generate depth images for all cameras with data from the lidars, already on
the format discussed in Section 3.6.2.3. The DDAD dataset also has a backward-facing camera,
but using the backward-facing camera as extra data will be limited to the Lyft dataset.

Due to the images having a lot of uninteresting space, the images were cropped accordingly
to Section 3.6.2.4, and the final dimension is 1936x616. Following Lyft, the images was also
resized, so that the final image size is 608× 224.

3.6.4 KITTI

3.6.4.1 Data Collection

The KITTI data were collected by following the instructions found in the Manydepth repo’s
reference to Monodepth2’s instructions. These instructions specify which KITTI archives to
download and how they should be unpacked and compressed.

3.6.4.2 Data Preparation

In general, there was little to no preparation needed with the KITTI data, as its default layout
is the layout used as a base when creating the depth detection methods. The only preparation
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done is to compress the data with JPEG compression. The depth detection repositories also
contained the training and validation split used, a subset of the KITTI dataset explicitly selected
to be used as monocular depth prediction training by Zhou et al. [44]. The final images used
had a dimension of 640× 194.

3.6.5 NAP-lab

3.6.5.1 Data Collection

The videos of the NAP-lab vehicle in action were collected with NAP-lab’s vehicle. It is equipped
with eight cameras giving a 360-degree field of view around the car, one lidar mounted on the
top of the vehicle and one at the vehicle’s front, and a lidar mounted on the rear right side
of the vehicle. The 60-degree field-of-view camera is utilized in this thesis as the only input
sensor.

Figure 3.9: The NAP-lab Vehicle. NAP-lab’s vehicle is a Kia e-Niro equipped with sensors, a
drive-by-wire-kit, and computational hardware. This equipment makes it possible to use this
vehicle as a platform to develop software for autonomous vehicles

3.6.5.2 Missing Calibration

The SSL-based methods utilize projection both during training and testing. Therefore, a com-
plete set of intrinsic parameters, as discussed in section 2, is needed to perform both training
and predictions. Unfortunately, when looking in the provided calibration files, the parame-
ters fx and f y containing information about the camera’s focal length measured in pixels were
missing. These parameters were missing due to NAP-lab utilizing the NVIDIA Driveworks stack,
which uses a distortion model, f-theta [62], rather than using the, more commonly used, pin-
hole projection model. However, using the knowledge from Section 3.2, as the camera type
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and lens type were known, the fx and f y parameters could be calculated using the focal length
and pixel size, measured in real distance.

3.6.5.3 Data Preparation

Due to the NAP-lab data becoming available at a late stage of the thesis, it was decided that the
NAP-lab data should be structured in the same way as the Lyft and DDAD dataset to save time.
The collected data existed as mp4 and h264 video files with a framerate of 30 FPS. In addition,
all the videos had accompanying JSON files containing the calibration data. All the videos were
given a folder, where a folder contained a subfolder with the video’s associated frames, where
a frame had the dimension of 1920×1208. In addition, a separate file was added to the folder
containing the associated camera’s intrinsic matrix. The cx and cy parameters were collected
directly from the JSON file to construct the intrinsic matrix. The fx and f y parameters needed
to be calculated. As mentioned, information about the camera and lens type was available.
This data indicated that the focal length was 5.49mm and the pixel size were 3µm× 3µm. fx
and f y was calculated to be:

fx = f y =
5.49 · 10−3

3.0 · 10−6
= 1830.0 (3.36)

Like for the Lyft dataset, these images were also cropped to remove some of the unnecessary
information. The images were cropped with 250 pixels from the top and bottom, leaving the
final image dimension to be 1920 × 708. After resizing, the final image size is 608 × 224,
following Lyft and DDAD. The intrinsic matrix is cropped in the same way as in Section 3.6.2.4,
leaving the final intrinsic matrix to be:

K =





1830.0 0 cx
0 1830.0 cy − 250
0 0 1



 (3.37)

Here, cx and cy is extracted from the associated video’s calibration file.

3.7 Modifictions of the Methods

After choosing to use and train the ManyDepth [47] and Feature Depth [46] systems in Sec-
tion 3.1, these methods needed some modifications and additions to be able to utilize the
datasets also chosen in the same section. This section documents these modifications and ad-
ditions are made to be able to use them with the Lyft, DDAD, and NAP-lab datasets.

3.7.1 Dataloaders

Both Feature Depth and Manydepth were already set up to use data from KITTI and Cityscapes.
As these dataloaders do not out-of-the-box support the format for the Lyft, DDAD, and NAP-
lab datasets, custom dataloaders were needed. These three datasets were all extracted to the
layout described in Section 3.6.1, and could therefore utilize close-to-the same dataloader
setup.
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After having created the dataloaders for Manydepth, it was discovered that Feature Depth
used virtually the same dataloader superclass, as both dataloaders are based on the format of
Monodepth2 [28]. Therefore, a dataloader for a dataset could be used for both methods with
minor changes.

One important feature that is not available in the KITTI and Cityscapes dataloaders is to crop
the input data correctly. As mentioned in Section 3.6.2.4, the intrinsic matrix would also need
to be modified when cropping the images. Another feature that was is not implemented but
is supported is the loading of different intrinsic matrixes depending on which video sequence
the frames belong to, as all the datasets being used here have a unique intrinsic matrix per
scene. In the custom dataloaders, one can specify the number of pixels to crop from all sides,
and the intrinsic matrix will be calculated according to Equation (3.1).

Another problem with the existing dataloaders was that they used the point cloud data and ex-
trinsic calibration data in the dataloaders and transformed it into a depth map during training.
These depth maps had already been precomputed, discussed in Section 3.6.2.3. Therefore, the
transformation step and the need for the extrinsic data could be dropped, as the depth images
could be loaded directly.

3.7.2 Supporting Custom Depth Maps

While testing the newly created dataloaders, it was discovered that both Manydepth and Fea-
ture Depth crops the depth maps in a separate part of the codebase. This cropping is done to
match the cropping setting done by Eigen et al. [37] and Garg et al. [63] and applies only to the
KITTI and Cityscapes data but not to custom datasets. Consequently, this led to the cropping
being moved into the KITTI and Cityscapes dataloaders so that the codebase could support
custom datasets that have accompanied datasets.

3.7.3 DPT

The DPT has code available for performing predictions. However, the code for training is not
yet published. Some pretrained models exist, and for this use case, the pretrained model that
is fine-tuned on the KITTI dataset will be used.

3.8 Training Details

This section contains some additional information regarding what type of computing hardware
was used to train the methods and which evaluation metric was used for the online evaluation.

3.8.1 Computing Hardware

The training was mainly done on the Oppdal cluster with NVIDIA Tesla T4 GPUs, which have
16 GB of available video memory. Manydepth only utilizes a single GPU at the time, but Feature
Depth can utilize multiple. Training with Feature Depth was done with up to 10 T4 GPUs. The
IDUN computing cluster [64] was also used, with V100 and P100 GPUs.
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3.8.2 Evaluation and Metrics

3.8.2.1 RMSE

Root Mean Square Error is a commonly used metric for measuring the difference between
two values. RMSE compares predicted depth values to ground truth values generated from
separate depth sensors, often lidar maps. It is defined as:

RMSE=

√

√

√

1
|T |

∑

y∈T

‖ log y − log y∗‖2 (3.38)

3.8.2.2 Absolute and Square Relative Error

Absolute and Square Relative Error is error measurements used to a ratio that describes the
normalized values of the actual error. It is used to describe a relative number rather than the
actual difference, as this can vary from predictor to predictor. A perfect model would result in
the ratio equalling 0. The errors are defined as follows:

Abs rel err=
1
|T |

∑

y∈T

|y − y∗|
y∗

(3.39)

Squared rel err=
1
|T |

∑

y∈T

‖y − y∗‖2

y∗
(3.40)

3.8.2.3 Scale-Invariant Error

The scale-invariant error is an error metrics proposed by Eigen et al. [37]. As standard metrics
tend to be biased towards how close the mean depth predicted is to the ground truth, they
are not necessarily the best way of comparing depth models. Eigen et al. proposed an error
metric that measures relationships between points in a depth map that is irrespective of the
absolute global scale of the map. The metrics have become a standard error function for depth
estimation systems. It is defined as:

D(y, y∗) =
1
n

n
∑

i=n

(log yi − log y∗i +α(y, y∗))2 (3.41)

where α is:

α=
1
n

n
∑

i=n

(log y∗i − log yi) (3.42)





Chapter 4

Experiments and Results

Four main experiments were conducted as a part of the work to answer the research questions.
The experiments mainly consist of training the selected methods on the chosen datasets and
observe the results. For all the experiments, it is essential to take note of any mysterious and
unexpected behavior and try to understand why this behavior occurs.

The following experiments are proposed:

0. Benchmark Manydepth and Feature Depth on the KITTI dataset as a benchmark to com-
pare the other datasets with.

1. Train Manydepth and Feature Depth on the Lyft dataset. Compare the validation seg-
ments with DPT.

2. Train Manydepth and Feature Depth on the DDAD dataset. Compare the validation seg-
ments with DPT.

3. Test if extending a dataset with a camera from the backward-facing camera improves
the performance of the best performing method from experiments 1 and 2.

4. Train the best-performing method from experiments 1 and 2 on data from the NAP-lab
vehicle. Compare the validation segments with DPT.

The first proposed experiment is not as much an experiment in itself. The reason for having
this experiment is to verify the results of the proposed methods and confirm that training them
with the KITTI dataset matches their reported results. Therefore, this experiment is considered
to be a kind of "pre-experiment."

4.1 Experiment Setup and Description

By default, the experiments will use data from a single, forward-facing camera to ensure equal
terms between the dataset unless anything other is explicitly stated. Unlike Zhou et al. [44]
and Eigen et al. [37], which remove frames with no motion, all the available frames from the
front-facing cameras will be used.

63
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Each experiment will present the results from the best epoch of training, with the primary eval-
uation metric being the absolute relative difference, following Monodepth2 [29], Manydepth
[47], PackNet [30], Feature Depth [46], and DPT [42], and other SotA SSL-based methods.
Additional results like plots of the evaluation metrics and different loss values will also be pre-
sented in a separate result section. The experiments will have a section dedicated to discussing
the results, with a more in-depth and further analysis in Chapter 5.

In the Lyft and DDAD datasets, there exists a depth map associated with each training image.
These depth maps are only used to perform an online evaluation, as they are needed to calcu-
late the evaluation metrics described in Section 3.8.2 of the methods and never as input due
to the methods being self-supervised.

4.2 Codebases

The codebases created by the authors of the selected methods were used to ensure compara-
ble results to the results presented in the papers. This section describes the details about the
datasets of the selected methods.

4.2.1 Manydepth

All the experiments training Manydepth utilizes the codebase created by Watson et al. and can
be found here The modifications done and the description of the data used can be found in
Section 3.7. An in-depth description of Manydepth can be found in Section 3.3.

4.2.1.1 Training Parameters

Manydepth was trained on a single NVIDIA T4 GPU with a batch size of 12. An Adam optimizer
was utilized, with a learning rate of 1.0 ·10−4 for the first 15 epochs and dropping to 1.0 ·10−5

for the last five epochs. The frames indexed at +1, and −1 relative to the current frame were
used for future and past frames. After epoch 15, the weights for the pose and consistency
network were frozen together with the adaptively learned dmin and dmin, so that the depth
model could be fine-tuned with a scene with no motion. With this, the model only focuses on
reprojection training in the last five epochs. Weights pretrained on ImageNet are used in all
the ResNet-based networks.

4.2.2 Feature Depth

The codebase created by Shu et al. was used when training Feature Depth with the modifica-
tions described in Section 3.7 added. The inner details about Feature Depth can be found in
Section 3.4. The codebase can be found here.

4.2.2.1 Training Parameters

Due to the feature depth model using ResNet50 rather than ResNet18 as Manydepth, the model
requires more memory per training iteration than Manydepth. All three networks were trained

https://github.com/nianticlabs/manydepth
https://github.com/sconlyshootery/FeatDepth
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simultaneously on 10 NVIDIA T4 GPUs, where each GPU used a batch size of 4. An Adam opti-
mizer was utilized with the initial learning rate set to 1.0·10−4 before being halved in epoch 20
and 30. The discriminative weight α, convergent weight β weights described in Section 3.4.1.1
were all set to 1.0 · 10−3, following the recommendations from the Feature Depth paper [46].
As for the KITTI dataset, the dmin and dmax were set to 0.1 and 80.0, respectively. Weights
pretrained on ImageNet are used in all the ResNet-based networks.

4.2.3 DPT

Initially, training DPT would be conducted as a separate experiment, as Ranftl et al. reported
that they would release the training code in March. Currently, their models and prediction code
have been released, but the training code has yet to be released. Hence, DPT will not be trained.
However, it was decided that an experiment using DPT should be conducted nevertheless.
This experiment will use the DPT-Hybrid model with weights pretrained on the KITTI dataset.
This model will be used to run predictions on segments from Lyft, DDAD, and NAP-lab. DPT’s
codebase containing code for performing predictions can be found here.

4.3 Experiment 0: Benchmarking with KITTI

4.3.1 Setup

The KITTI dataset was extracted in the format reported for Manydepth [47], and Feature Depth
[46], and will not be following the setup in Section 3.6.1, due to the codebases already con-
taining dataloaders for the KITTI dataset. Both Manydepth and Feature Depth utilize a subset
of the KITTI dataset specifically sampled to remove scenes with no motion and other vehicles
moving with the same relative velocity as the ego-vehicle. This subset was first introduced by
Eigen [37], and further improved by Zhou [44]. It contains roughly 40 000 frames, where each
frame has an associated depth image generated by a lidar.

4.3.2 Results

4.3.2.1 Manydepth

Manydepth was trained for 40 000 training iterations divided into 20 epochs. The model
achieved an absolute relative difference score of 0.104. The loss progression can be seen in
Figure 4.1, the qualitative results in Figure 4.3, and the evaluation metrics in Table 4.1

4.3.2.2 Feature Depth

Feature Depth were improving up until the last epoch. achieving an absolute relative difference
of 0.099. The loss plots can be found in Figure 4.2, qualitative results in Figure 4.3 and the
best performing model’s evaluation metrics in Table 4.1

4.3.3 Discussion

Both methods perform as expected compared to the reported values in their respective papers.
This result indicates that the KITTI dataset is fit to use as an ideal representation of how loss

https://github.com/intel-isl/DPT
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(a) Evaluation Metrics

(b) Consistency Loss (c) Reprojection Loss (d) Total Loss

Figure 4.1: Experiment 0: Manydepth KITTI results. Results after training Manydepth for 20
epochs with the KITTI dataset

(a) Evaluation metrics

(b) Feature-metric Loss (c) Reconstruction Loss (d) Total Loss

Figure 4.2: Experiment 0: Feature Depth KITTI plots. Results after training Feature Depth
for 40 epochs on the KITTI dataset

Dataset Name FPS Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Manydepth 27 0.104 1.045 4.225 0.180 0.905 0.962 0.979
Feature Depth 20 0.099 0.694 4.427 0.184 0.890 0.963 0.982

Table 4.1 Experiment 0: Results after training with the KITTI dataset. The different evalu-
ation metrics are marked so that red marks metrics where lower is better and blue marks
results where higher is better. The best result for each metric is marked in bold
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Figure 4.3: Experiment 0: Qualitative results on KITTI. First row: Original image, second
row: Manydepth, third row: Feature Dept. Notice how Feature Depth does a better job for
the sky in the left image, which is a low-textured area. Manydepth performs better on thin
structures, and does a better job on the car windows in the center and right image

and evaluation metrics should develop during training.

4.4 Experiment 1: Training with Lyft

4.4.1 Setup

The Lyft dataset was extracted according to Section 3.6.2 with the shared data format in Sec-
tion 3.6.1. This experiment utilized the 17 000 training frames and 600 validation frames from
the front-facing camera, accompanied by a depth image containing a sparse set of depth values
between 0.1 and 80 meters.

4.4.2 Results

4.4.2.1 Manydepth

Training with Manydepth with Lyft showed great potential when looking at the qualitative re-
sults in Figure 4.6. The depth images have clear contrasts between segments, and the observed
depth based on the color palette indicates a well-defined depth image. The best performing
model was achieved after 20 000 iterations, translating to somewhere in epoch 14. This model
achieved an absolute relative difference of 0.1797. The overall progression of the evaluation
metrics and their final best score can be seen in Figure 4.4 and Table 4.2, respectively. The
Manydepth model was able to run at 27 FPS on an NVIDIA T4 GPU running on the Oppdal
cluster.

4.4.2.2 Feature Depth

Feature Depth also produced acceptable-looking depth maps for the Lyft data. However, the
"punching hole" behavior is also visible here, possibly even more than in Manydepth.

The best performing model for Feature Depth was the model trained in epoch 28, achieving an
absolute relative difference of 0.2300. The loss progressions and development of the evaluation
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(a) Evaluation Metrics

(b) Consistency Loss (c) Reprojection Loss (d) Total Loss

Figure 4.4: Experiment 1: Manydepth Lyft plots. Results after training Manydepth for 20
epochs with the Lyft dataset

metrics can be seen in Figure 4.5. Scores for all the evaluation metrics can be seen in Table 4.2.

(a) Evaluation Metrics

(b) Feature-metric Loss (c) Reconstruction Loss (d) Total Loss

Figure 4.5: Experiment 1: Feature Depth Lyft plots. Results after training Feature Depth for
40 epochs with the Lyft dataset. The spikes seen in the final part of the evaluation metrics plot
is a failed attempt at doing test-time refinement, and should be ignored.

4.4.3 Discussion

Manydepth and Feature Depth show great potential according to what can be expected from an
SSL-based system. By comparing the results from Manydepth and Feature Depth in Figure 4.6,
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Dataset Name FPS Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Manydepth 27 0.1797 3.204 10.35 0.2848 0.7924 0.9201 0.9579
Feature Depth 20 0.2300 5.714 11.67 0.3134 0.7735 0.8985 0.9402

Table 4.2 Experiment 1: Results after training with the Lyft dataset. Manydepth outperforms
Feature Depth on all the evaluation metrics.

Figure 4.6: Experiment 1: Qualitative results on Lyft. First row: Original image, second
row: Manydepth, third row: Feature Depth, fourth row: DPT. Notice that DPT do not have any
problems with the "punching hole" effect, which is seen in both Manydepth and Feature Depth
in the third image.

looking at the second and third column, one can see where Manydepth is superior to Feature
Depth when looking at the car to the left in both images, where Feature Depth overestimates
the proximity in the second image and underestimates it in the third. Looking at the results
from DPT, it seems that it can identify relative depths correct with surprising accuracy when
considering that no fine-tuning has been done with Lyft data. It is also worth mentioning that
the color palette for DPT is slightly off compared to the others due to scaling differences.

A significant weakness of not using any supervision signal is visible in the third image, where
both Manydepth and Feature Depth fails to predict a realistic depth value for the two cars in
motion in the rightmost image. This shortcoming will be discussed further in Section 5.2

4.5 Experiment 2: Training with DDAD

4.5.1 Setup

The DDAD dataset was extracted accordion to Section 3.6.3 with the shared data format in
Section 3.6.1. This experiment utilized the 12 650 training frames and 900 validation frames
from the front-facing camera, accompanied by a depth image generated from a long-range
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lidar. The depth images contained depth values for up to 250 meters, but to keep the consis-
tency with the Lyft dataset, all depth values over 80 meters were removed, leaving the final
depth map having values between 0.1 and 80.0 meters.

4.5.2 Results

4.5.2.1 Manydepth

Manydepth was trained for 24 000 training iterations divided into 20 epochs, with the best-
performing model appearing in epoch 20. This indicates that training the model might not
have converged yet, and could be further improved with more training. Nevertheless, this
model generated an absolute relative difference of 0.1768 and could process 27 FPS on an
NVIDIA T4 GPU. The FPS is comparable to the Lyft dataset due to the input size being equal
for both datasets. The progression of the loss and evaluation metrics can be seen in Figure 4.7.
The evaluation metrics from the best performing epoch and some qualitative results can be
seen in Table 4.3 and Figure 4.9, respectively.

(a) Evaluation Metrics

(b) Consistency Loss (c) Reprojection Loss (d) Total Loss

Figure 4.7: Experiment 2: Manydepth DDAD results. Results after training Manydepth for
20 epochs with the DDAD dataset

4.5.2.2 Feature Depth

Feature Depth trained for 40 epochs, with the best performing epoch being number 28, which
achieved an absolute relative difference score of 0.2139 and ran with 20 FPS on an NVIDIA
T4 GPU, with an input size of 608× 224.

4.5.3 Discussion

The qualitative results for Manydepth in Figure 4.9 show another weakness with SSL-based
methods, as the depth images are a bit blurry. While performing training with the KITTI dataset,



4.5. EXPERIMENT 2: TRAINING WITH DDAD 71

(a) Evaluation metrics

(b) Feature-metric Loss (c) Reconstruction Loss (d) Total Loss

Figure 4.8: Experiment 2: Feature Depth DDAD plots. Results after training Feature Depth
for 40 epochs on the DDAD dataset

Dataset Name FPS Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Manydepth 27 0.1768 2.623 9.024 0.2897 0.7976 0.8880 0.9533
Feature Depth 20 0.2139 4.705 9.4300 0.2847 0.7583 0.9106 0.9561
PackNet∗ [30] - 0.162 3.917 13.452 0.269 0.823 - -

Table 4.3 Experiment 2: Results after training with the DDAD dataset. Results from the
PackNet [30] paper is included, due to PackNet packnet being the main contribution in the
paper where DDAD was introduced. Manydepth performs a lot better on the squared relative
difference and RMSE metrics.

it was noticed that this behavior was present in the earlier epochs of training. During training,
the predictions from the consistency model are also available. The blurriness was also notice-
able in the depth model compared to the consistency model, which only uses a single input
frame. Therefore, it is highly probable that the blurry depth images are due to a low number
of available training frames. Experiment 3 will look more into a possible way to increase a
dataset. Even though the depth images are blurrier, Manydepth produces more accurate seg-
mentations. This is especially noticeable for the car in the middle column image and a more
realistic looking depth estimation for the car on the left side in the third column image.

Purely looking at the qualitative results in Figure 4.9, Feature Depth performed better than
Manydepth but achieved lower overall evaluation metrics. This behavior is mainly due to Fea-
ture Depth only using a single frame as input during testing, while Manydepth uses multiple.
In addition, it has been observed that the monocular depth networks converge earlier than the
depth network in Manydepth when comparing depth images during training of both Lyft and
KITTI. This finding supports this hypothesis.

DPT seems to consistently misjudge the depth for the sky, which should be close to the max
depth. This behavior is not a significant problem in itself but is worth noting.
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Figure 4.9: Experiment 2: Qualitative results on DDAD. First row: Original image, second
row: Manydepth, third row: Feature Depth, fourth row: DPT. Notice that DPT do not have any
problems with the "punching hole" effect, which is seen in both Manydepth and Feature Depth
in the third image.

4.6 Experiment 3: Using Data from the Backward-facing Camera

4.6.1 Setup

The best way to improve any ML method is to introduce them to more data, with SSL-based
methods being especially susceptible to this because they have no labels to supervise their
development. Lyft and DDAD have a problem because they are relatively small datasets, espe-
cially compared to KITTI with 39 810 and Cityscapes with 69 731 training frames. Performing
augmentations on the training frames in Lyft and DDAD will increase the performance, but
only to a certain level.

Both Lyft and DDAD have camera data available from other cameras pointing in other di-
rections. Unfortunately, using data from other camera angles simultaneously will confuse the
SSL method’s pose model, as this model learning is based on having the relative movement
between the future and past frame being similar for the entire dataset. However, in theory,
one could use data from the camera pointing directly backward, as the relative movement be-
tween frames is equal but in reverse temporal order compared to the front-facing camera. If
this camera can be used, the dataset is effectively doubled in size.

Testing this hypothesis consisted of first extracting data from the backward-facing camera in
the Lyft dataset according to Section 3.6.1, only using the backward-facing camera. The rela-
tive index j was reversed, leaving a scene where the camera moved similarly to the forward-
facing camera. This resulted in doubling the effective dataset to about 34 000 training frames.
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4.6.2 Results

The results from this experiment resulted in a model performing worse than the model with
only the forward-facing camera. The progression between the two models is shown in Fig-
ure 4.10. The final results of the model’s best-performing epoch can be seen in Table 4.4.

4.6.3 Discussion

This result is unexpected as the relative movement between the frames should in-theory be
similar. Another problem with this result is that the "punching hole" behavior mentioned in
Experiment 1 and 2 is even more prominent for this model, which can be seen in Figure 4.11.
This behavior might be increased due to the backward-facing camera seeing more moving
objects and is discussed in more detail in Section 5.2

5

(a) Evaluation metrics

(b) Consistency Loss (c) Reprojection Loss (d) Total Loss

Figure 4.10: Experiment 3: Plots of using both datasets. Data is from the Front and

Front+Back datasets, respectivly

Dataset Name Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Front only 0.1797 3.204 10.35 0.2848 0.7924 0.9201 0.9579
Front+Back 0.2418 7.189 12.78 0.3559 0.8014 0.9014 0.9345

Table 4.4 Experiment 3: Results using forward only and both backward and forward
data. Using only the front-facing camera gives significantly better results than using both the
front and backward-facing camera simultaneously. Both results is from training the Manydepth
model, and the "Front-only" result is from Experiment 1.
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Figure 4.11: Experiment 3: Qualitative results on the combined Front+Back dataset. No-
tice how the "punching holes" covers the object worse than when the method is not trained with
the backward-facing camera. Another noteworthy observation is that the depth image itself has
a lighter color palette. This indicates that the scaling learned by Manydepth is less correct as
well.

4.7 Experiment 4: Using NAP-lab Data

4.7.1 Setup

Data from the NAP-lab vehicle became available at a late stage in this thesis. This data con-
tained video segments of the NAP-lab vehicle driving in Trondheim. Lidar data were also
recorded during the runs, but due to this data not being available at an earlier point, time
constraints resulted in this data not being extracted and used to calculate the evaluation met-
rics for this data. If this data becomes available later, a simple modification of the dataloaders
should enable running an evaluation for this model. The data were extracted according to
Section 3.6.1 and consisted of a total of 35 000 training frames and 1800 validation frames,
all being extracted from the available videos.

The overall best performing method in experiments one and two was Manydepth. Therefore,
this method will be used when training with the NAP-lab data. The results will also show data
from the DPT-hybrid model, which is fine-tuned on the KITTI dataset by Ranftl et al.

4.7.2 Results

Manydepth was trained for a total of 58 000 iterations over 20 epochs. Due to no depth maps
being available, it is hard to say which model performed the best. Therefore, the model with
the estimated lowest total loss is used for generating the qualitative results, which is the model
trained in epoch 20. The qualitative results can be seen in Figure 4.13. The loss plots are shown
in Figure 4.12.

4.7.3 Discussion

The qualitative results after training on only NAP-lab data show the strength of SSL-based
solutions, as this dataset could not have been used in any supervised methods due to lacking
the ground truth depth data. This dataset contained fewer frames of moving vehicles, which
might be the reason for the lack of the "punching hole" anomalies seen for Lyft and DDAD.
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(a) Consistency Loss (b) Reprojection Loss (c) Total Loss

Figure 4.12: Experiment 4: Manydepth NAP-lab plots. Results after training Manydepth for
20 epochs on the NAP-lab dataset. Notice how the loss values are more stable than Lyft and
DDAD’s loss progsession. No plots for the evaluation metrics are available, due to the NAP-lab
dataset not containing data from any proximity sensors.

Figure 4.13: Experiment 4: Qualitative results on the NAP-lab dataset. First row: Original
image, second row: Manydepth, third row: DPT. Both Manydepth and DPT have some problems
with predicting depth values for the low textured areas, like the sky. The feature-metric loss
from Feature Depth [46] could potentially improve the performance for these kinds of areas.





Chapter 5

Discussion

This chapter further explores the results obtained in the experiments. The chapter starts by
comparing the trained models on the datasets that they were not trained on and comparing
them. Some shortcomings and potential sources of error were introduced in the discussion
sections in the experiments. These are further explained and reflected on in the next section of
this chapter. Following is an analysis of the measures needed to start utilizing this system in an
autonomous driving setting, together with a reflection of the supervised method’s performance
compared to the self-supervised ones. As mentioned in the methodology chapter, DPT can
also produce semantic segmentations. This functionality is demonstrated before the chapter is
concluded by answering the proposed research questions.

5.1 Difference in Results between Datasets

After having trained on three different datasets, it is interesting to see how well they perform
on an unseen dataset. Manydepth was the model that performed the best for both datasets
with a possibility to perform an evaluation. The Feature Depth model trained on Lyft was also
included to see how well another method adapts to new data. The results from this comparison
can be seen in Table 5.1.

It is a bit surprising to see how both the model trained on DDAD and NAP-lab do not adapt
very well to the Lyft dataset, scoring very close to each other. What is surprising is that the
model trained on the other dataset adapts a lot better to DDAD data, with the Manydepth
model trained on Lyft outperforming the Feature Depth model trained on DDAD. One possi-
ble explanation could have been that DDAD contains fewer frames than Lyft and that more
frames by themselves result in a better representation. However, this theory quickly falls when
considering the 35 000 frames in the NAP-lab dataset, which performs worse than the DDAD
model.

These results may indicate that the Lyft dataset contains an overall more representable set of
scenes than DDAD and that this representation is more important than more frames by itself.
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Method Trained on Evaluation Dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Manydepth Lyft Lyft 0.1797 3.204 10.35 0.2848 0.7924 0.9201 0.9579
Manydepth DDAD Lyft 0.335 6.993 13.909 0.391 0.543 0.804 0.910
Manydepth NAP-lab Lyft 0.336 5.930 13.886 0.461 0.478 0.756 0.881

Feature Depth Lyft Lyft 0.2300 5.714 11.67 0.3134 0.7735 0.8985 0.9402
Manydepth Lyft DDAD 0.193 2.477 9.042 0.278 0.720 0.900 0.961
Manydepth DDAD DDAD 0.1768 2.623 9.024 0.2897 0.7976 0.8880 0.9533
Manydepth NAP-lab DDAD 0.280 3.635 11.170 0.407 0.524 0.796 0.904

Feature Depth DDAD DDAD 0.2139 4.705 9.4300 0.2847 0.7583 0.9106 0.9561

Table 5.1 Comparing different models performance. The best metric for each dataset is
shown in bold while the second best metric is shown in italics.

5.2 Noticable Shortcommings and Reflection

5.2.1 Punching Hole Behavior

The punching hole behavior was seen throughout the experiments. This effect shows itself
when the depth model predicts depth values for a moving object, e.g., for cars, and is a known
problem with SSL-based solutions. One observation done during training these methods is that
the problem mainly manifests itself for objects moving in the same direction as the ego-vehicle.

An illustration is shown in Figure 5.1 from the DDAD dataset, where the depth images are gen-
erated by DPT and Manydepth trained on DDAD. Manydepth correctly predicts depth values
for a person on a bike moving perpendicular to the vehicle. Another image shows correctly
predicted depth for the cars in the opposite lane, moving in the opposite direction of the ve-
hicle, while simultaneously failing to predict a correct depth value for the car moving on the
right side.

The main reason why these holes appear is that the SSL-based dense depth methods, in most
cases, assume a moving camera in a static scene, as stated in Section 2.6. Objects moving in
the opposite direction to the ego-vehicle can be recognized as parked vehicles and stationary
objects, which is common to see in all the datasets. Objects moving perpendicular to the scene
do not have a changing depth value. However, the assumption is broken for objects moving in
the same direction as the ego-vehicles and can vastly reduce the accuracy of the depth values.

5.2.1.1 Possible Solutions

Methods have been proposed to try to fix this problem. One known approach is to use auto-
masking as Monodepth2 by Goudard et al., which does not calculate the loss for the moving
objects in the scene. Manydepth tries to combat this with the motion mask mentioned in Sec-
tion 3.3. This mask looks at output from the consistency network, a standard monocular depth
network, and the cost volume and identifies the moving objects as pixels where the cost vol-
ume and the consistency network disagree. Manydepth showed that this implementation helps
a bit, but the problem is not solved, as shown in the experiment conducted in this thesis. More
recent work by Li et al. [65] tries to solve this problem by predicting the constant relative back-
ground translation from ego-motion and the movement of the objects, all in a 3D translation
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field. This field is used to achieve better motion predictions T , which again results in better-
transformed views for the reconstruction part used in most SSL-based dense depth estimation
tasks, described in Section 3.2.

All of the suggested improvements are based on finding the moving objects and dealing with
them. A potential new way of doing this for future works is by utilizing the power of transform-
ers, specifically vision transformers, in a self-supervised manner to detect the moving objects.
The work done by Caron et al. [66] uses the data from the self-attention blocks in the visual
transformer. As mentioned in Section 2.2, a transformer’s attention can be compared to which
part of the data a human agent would focus on. In this autonomous driving setting, we know
humans focus on other moving objects, as other vehicles and pedestrians, when they are prox-
imate to their vehicle. Using the work by Caron et al. could potentially improve this masking
behavior and better address the problem of punching holes.

Figure 5.1: Punching hole behavior. Second row: DPT, third row: Manydepth. Here, a correct
depth value is predicted for the objects moving in the opposite and perpendicular direction to
the ego-vehicle, but fails for the object moving in the same direction.

5.2.2 Insignificant Amount of Data

The total number of training and validation frames for both the DDAD and Lyft datasets could
preferably have been a lot higher. DDAD and Lyft had around 12 000 and 17 000 available
training frames, far less than the benchmarking datasets KITTI and Cityscapes. Experiment 4
observed that simply using more frames is not necessarily an adequate solution to the problem
in itself.

It is worth noting that a critical difference between the Lyft and DDAD dataset compared to
the NAP-lab dataset is that Lyft, and especially the DDAD dataset, is handpicked from an enor-
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mous amount of available data to represent many possible different situations an autonomous
vehicle can experience. On the other hand, the NAP-lab dataset mostly contained videos of
slow driving on the Gløshaugen campus, with a few videos from actual traffic.

5.2.2.1 Possible Solution

One possible way to improve the amount of available data, which was decided not to do in
this thesis, is to use synthetical data, either from a simulator or simulated data with an extra
layer of photorealism. Section 3.1.3.3 mentioned the work of Richter et al. [54], which uses
game footage, sends it through a GAN, and outputs a photorealistic version of this footage
with surprisingly convincing results. This method has been trained to simulate the frames in
the Cityscapes dataset, which, as mentioned previously, is one of the most used benchmarking
datasets used for autonomous vehicle-related tasks. Looking into the use of these kinds of
photorealistic data could potentially vastly improve or complement existing datasets.

5.3 Usability in a an Autonomous Driving Setting

The methods tested in the experiments showed great potential for use in an autonomous driv-
ing setting. Although, the SSL-based methods have some critical problems that will need to
be addressed before replacing sensors directly with ML. However, due to the produced point
cloud from a range sensor like lidars or radars being moderately sparse, dense depth detec-
tions can aid and fill in the missing spots for a range sensor. In addition, the pose data from
the SSL-based method’s pose model can be utilized as an additional input to a state estimation
system, e.g., as an addition to a Kalman filter.

5.3.1 Modifications needed to Operate in a Real-time Environment

An essential requirement for any system operating in a real-time environment like an au-
tonomous driving setting, the system is required to operate in real-time. The currently best
performing SSL-based method, Manydepth, operates at approximately 27 FPS on an NVIDIA
T4 GPU. However, due to the T4 GPU being significantly more potent than the hardware found
in an autonomous platform, the inference times reported in the experiments are not repre-
sentable for running on hardware in an autonomous platform. In addition, the input size used
when generating the depth images in the experiments could also have been increased to intro-
duce more detail to the depth images, decreasing the expected FPS even more, probably into
the 10s, maybe even lower.

One possible improvement is to optimize the model with an optimizing tool like TensorRT in-
stead of using native PyTorch when performing inference. Using TensorRT in a lower precision
mode like FP16 or even INT8 could potentially double the inference time, leaving more room
to increase the image size and still get the necessary inference speeds needed to operate in a
real-time environment.
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5.3.2 Shared Base Model

There exist multiple approaches to achieve self-driving, where there are two main categories.
The more traditional approach uses a pipeline structure containing separate, modular systems
for perception, state estimation, mapping, path planning, and control. The second and more
modern approach uses an end-to-end structure, where a decision-taking entity, like a neural
network, uses the raw data from the sensor suite on the vehicle and outputs actions like steer-
ing and throttle outputs. Other more specialized solutions exist as well [67]. Both of these
solutions offer strengths and weaknesses, with, e.g., a pipeline-based structure being more
straightforward to debug than an end-to-end solution, but can simultaneously consist of too
many tunable parameters, increasing the possibility for human error, which is not a case for
end-to-end based solutions.

A possibility here for a common middle ground, achieving the best-of-both-worlds is using ar-
chitectures like the DPT, where in theory it would be possible to modify the DPT architecture
to be a multi-headed architecture, where each network could be fine-tuned to its specific task.
Having a shared base architecture like this can streamline training while still being relatively
easy to debug, as one can view the output from each task-specific network. This structure
resembles how Tesla creates their AutoPilot system with its "HydraNet" [68]. Their specific
network architecture is unknown, but it would be interesting to test a transformer-based ar-
chitecture using this approach.

5.4 Comparing Supervised and Self-supervised

The SSL-based systems still showed their strengths by generating a depths map with no other
supervision signal than the data itself. For some selected cases, like poles and signs in the first
image in Figure 4.9, the SSL-based methods perform better than DPT. Even though this specific
case is not that useful in itself, it still shows that SSL-based methods should not be ignored.

Throughout the experiments, DPT was, by far, the method that generated the best looking
qualitative results for all the datasets, even though no fine-tuning was done with the datasets
used. The ability to perform at this level without any fine-tuning indicates that the DPT system
genuinely can generalize to an ill-posed problem of this magnitude better than many other
existing solutions.

DPT is by far one of the currently more innovative approaches to dense depth estimation. As
one is now starting to see some of the potentials of using transformers for visual tasks, much
like using transformers for NLP tasks skyrocketed the performance and NLP models, it is truly
inspiring to see how far these solutions can go.

However, DPT is still a supervised method, requiring dense predictions during training and can
use sparse data, like depth maps generated from lidar scans, when fine-tuning on a separate
dataset. While this is not a problem in itself, it would be beneficial if this model could be trained
unsupervised. Unfortunately, no existing solutions have yet investigated this problem. How-
ever, by building upon the works of Caron et al. [66], it is most likely only a question of time,
as vision transformers and especially DPT still are relatively recent works, being published in
October 2020 and March 2021, respectively.
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5.4.1 DPT’s Semantic Segmentation

Figure 5.2: Semantic Segmentation on NAP-lab Data. DPT is able to produce believable
segmentation maps for an use-case where it has seen very little examples.

Section 3.1.2.2 mentioned that DPT can perform multiple dense prediction tasks. One of the
other tasks it is trained on is semantic segmentation. While semantic segmentation is not a part
of this thesis, it is still interesting to see how well it can perform on unseen data. As mentioned
earlier, the DPT-Hybrid-KITTI model used to generate the depth images in this thesis is fine-
tuned on the KITTI dataset. The central part of the fine-tuning is the actual training of the
task-specific head network. However, due to a lack of semantic segmentation data for KITTI,
this pretraining is not done for the semantic segmentation head network. The ADE20K [69]
dataset is used here instead, which contains some semantic maps of relevant objects, such
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as cars, roads, and trucks. It still contains significantly fewer examples than, e.g., Cityscapes,
but surprisingly enough, it can still perform decently well on the segmentation task, which
builds upon the statement of DPT’s ability to generalize. The segmented images can be seen
in Figure 5.2

5.5 Proposing a Novel Architecture

Figure 5.3: Novel Architecture.

Based on the findings in this thesis, a novel architecture that combines the best contributions
from the current SotA methods. This thesis has already explored the feature-metric loss in Fea-
ture Depth and the cost-volume-based method of using multiple images in the depth network,
which both are methods performing at SotA levels. Another SotA method this thesis considered
exploring is PackNet [30], with its novel architecture based on 3D convolutions that essentially
learn to compress and decompress an image without losing details.

One notable observation for the three SotA methods is that they all contribute to different
parts of the fundamental architecture of self-supervised depth estimation. Therefore, after
looking in-depth at Feature Depth and Manydepth, this thesis proposes combining the different
contributions into a single architecture that can benefit from all the previous contributions.

The proposed architecture can be seen in Figure 5.3. The architecture starts with a target
image and multiple source images, equally as Manydepth. These are fed into a feature encoder,
trained by FeatureNet from the Feature Depth architecture, and the images are transformed
into feature maps. The images are also fed into a pose model θpose that estimates the pose
between the source and target images. With this pose, the feature maps from the source image
are warped into the target image’s pose. Here, the L1 distance between the target and warped
features are fed into a cost volume for each hypothesized depth d and is repeated for each
depth plane d ∈ P. Together with the features from the target frames, this cost volume is all
fed into the PackNet depth network from the PackNet paper, which utilizes 3D convolutions to
save finer details in the image better and produce a depth map target frame.
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The idea and motivation behind this architecture are that the contribution of cost volumes
will allow the architecture to use the temporal data often found in a sequence of images.
The feature-metric loss will help the network in low-textured areas like the sky, flat surfaces,
and low-lit areas. Using the PackNet architecture will enable the network to preserve better
the more delicate details found in the features and ensure a sharper and more precise depth
image.

5.6 Fulfillment of the Research Questions

RQ 1: The first research question asked if self-supervised-based dense depth estimation meth-
ods can achieve the same performance as supervised methods. The experiments have shown
that DPT, in most cases, is superior to the SSL-based methods. However, the main downside
with supervised methods and DPT is that they require high-quality depth data generated by
expensive range sensors like lidars and radars. This might not be the case when high-quality
depth data is available, like for some UAVs, indoor environments, or even in medical applica-
tions. Being a transformer-based system, DPT only starts performing at the exceptional level
seen in the experiments after a thorough pretraining. If the domain at hand should be too
different from a known environment, the self-supervised methods have a great chance of per-
forming better than supervised methods.

Thus, the answer to the research question is: For most cases, no, but self-supervised methods
have an advantage in domains where there is little to no available depth data from high-quality
depth sensors.

RQ 2: The second research question sought to analyze whether or not dense depth estimation
methods could replace high-detailed depth sensors like lidars. Self-supervised methods have
a great potential for understanding depth without any supervision signals when looking at
the results achieved in the experiments. However, the self-supervised-based methods have
a critical flaw with their "punching-hole" behavior when the assumption of a static scene is
broken with moving objects like other cars. This flaw alone excludes self-supervised methods
as a potential candidate to replace a range sensor, as reliably detecting other moving vehicles
is a fundamental requirement for any range detector.

Supervised methods like DPT are not exposed to this problem as they can utilize depth infor-
mation as supervision signals during training. However, a model cannot have 100% accuracy,
and one can even extend this to say that not any range sensor can have 100% accuracy. Nev-
ertheless, as detecting proximity to other objects is a critical part of most tasks where they are
present in the first place, an image-based method is too exposed to inaccuracy. These inac-
curacies may come from camera anomalies like blurriness and low contrast or environmental
ambiguities like direct sunlight, darkness, and fog, replacing high-detailed depth sensors like
lidars or radars with an image-based dense depth estimation system not be reliable, as one
introduces an additional point of failure after sensor failure itself.

However, a point worth noting is that dense depth estimation tasks are highly effective in filling
out the missing information from the sparse point clouds generated by depth sensors. Thus
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using a combination of high-detailed proximity sensors and dense depth estimation methods
can improve the overall depth information. Self-supervised methods can also compliment state
estimation systems with their pose estimations.

RQ 3: After looking at the performance of the self-supervised method compared to the su-
pervised methods, the final research question investigated which measures can be done to
improve the self-supervised methods. The experiments observed that the recently published
state-of-the-art methods already had taken some measures. One measure is to utilize the tem-
poral information found in sequences available at test time. Manydepth is not the first to do
this, but it is the first model to do it smartly. Other improvements consist of using losses tailored
to improve areas where current state-of-the-art methods fail. The Feature Depth method does
this with its feature-metric loss, which improves the loss calculations in low-textured areas.

Currently, the most critical flaw with self-supervised dense depth estimation methods is the
"punching hole" behavior. Some possible solutions to this problem have already been intro-
duced, but the problem itself is hard to fix because the assumption of a static scene is close to
impossible, e.g., an autonomous driving setting.

This thesis has also presented a novel measure that can be taken to improve the field, specif-
ically a novel architecture using the combined contributions from the current state-of-the-art
in a way that aids the different methods in places where they have shortcomings. Therefore,
this thesis suggests that the most significant measure that can be taken to improve the existing
state-of-the-art self-supervised methods is by implementing the novel architecture.





Chapter 6

Conclusion and Future Work

6.1 Conclusion

The primary goal of this thesis was to gain the knowledge needed to suggest a novel architec-
ture for a SSL depth estimation system that would have the potential to improve the current
SotA performance. This system should also be usable in an autonomous driving-setting, by
being able to run in real-time. As novel contributions are being published continuously, this is
no easy task. Both Manydepth and DPT were published two months into writing this thesis,
and both of them can be considered the current SotA for SSL and supervised depth estimation.
However, it should be easier to adapt a potential novel architecture with new contributions by
gaining fundamentally solid knowledge in the field of SSL depth estimation.

Gaining this knowledge was done through first building some basic knowledge into deep learn-
ing and depth estimation. Following was a study of essential works in supervised and SSL depth
estimation before looking into the current SotA. After choosing two SSL methods, these were
studied in-depth and trained on new data. A combination of theory and practice showed how
these method’s contributions aided the field of SSL depth estimation and thus substantiated
the choices made for the novel architecture.

There has been considerable research into different ways of improving the field of SSL depth
estimation. Nevertheless, during this thesis, it was observed that these contributions often are
contributions that focus on a single element in the architecture. Still, there exist very few cases
of these approaches being combined on a larger scale. Some contributions take inspiration
from each other and implement smaller contributions from other papers, e.g., using minimal
photometric loss rather than average. Still, there is untouched potential in combining the more
significant findings into a completely novel architecture.

If this thesis could be redone, it would probably have also included a deep dive into the Pack-
Net architecture, with an associated experiment consisting of training the PackNet architecture
with the Lyft and DDAD datasets. With this, one would have all the information needed to val-
idate if PackNet should be included in the novel architecture. Due to both time constraints and
limitations in how much work can be done in a single thesis, there was no time to implement
the actual architecture itself. However, the actual implementation of this architecture could be
a potential starting point for a new thesis.
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6.2 Future Work

This section will suggest some potentials for theses and works that can continue the work done
and use the results found in this thesis.

6.2.1 Implementing the Novel Architecture

A natural point of continuation would be to implement the proposed novel architecture. This
job would mainly consist of merging these contributions into a single architecture by utilizing
the existing codebases. When one has a functional architecture, this needs to be trained and
validated, preferably on the KITTI and Cityscapes dataset, following the norm in the field.

6.2.2 Semi-supervised Dense Depth Estimation

When having an autonomous driving testing platform available, one automatically gets some
extra data points available for free. As mentioned in Section 5.3.2, an autonomous driving
pipeline often consists of multiple modules, where these modules either use or produce data
regarding the vehicle’s state. With this, one often has information about the vehicle’s position,
ego-motion, and intended path. Due to the reprojection training depending on the relative
pose between a source and a target image, as discussed in Section 3.2.2, this pose needs to
be learned. However, if one were to use more sophisticated systems to predict the pose, one
could potentially increase the performance of the depth estimator. PackNet has already looked
into using the vehicle’s velocity as an input during training. This extra data point increased
the performance quite substantially, and it supports the claim that using external data points
increases the performance.

6.2.3 Applying Dense Depth Estimation to a Real-world Use Case

"Statens vegvesen" is a governmental agency responsible for Norway’s public roads, which
includes planning, construction, and maintenance. They have an ongoing project where they
try to detect and store info regarding road damage. They collect information about the roads
from a camera mounted on a car, where the camera snaps an image every 10 meters and
stores it together with a geographic position obtained from a GNSS receiver. Using SOTA object
detection and semantic segmentation techniques, one can detect the road damage from the
images. An optimal solution for this problem would be to have the exact latitude and longitude
of the road damage. However, object detection methods only predict where the damage is in
a 2D image and not in the 3D world.

A possible solution to this problem is to use dense depth estimation. For each image produced,
one can generate a dense depth map. Together with a geographic position for the origin point
of the camera capturing the image together with either a bounding box or segmentation con-
taining the road damage, one could project the pixels containing the damage into a 3D pro-
jection, as described in Section 3.2.2.2, where each point represents a latitude, longitude, and
elevation, essentially giving the exact geographic coordinate for the road damage.
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