
Explaining a Deep Reinforcement
Learning Agent Using Regression
Trees

July 2021

M
as

te
r's

 th
es

is

M
aster's thesis

Jakob Løver

2021
Jakob Løver

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

Explaining a Deep Reinforcement
Learning Agent Using Regression Trees

Jakob Løver

Cybernetics and Robotics
Submission date: July 2021
Supervisor: Anastasios Lekkas
Co-supervisor: Vilde Gjærum

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Abstract

The adoption of black-box machine learning systems in control systems poses a
problem for applications where safety is of critical importance. Deep reinforce-
ment learning systems are often built using black-box models such as neural net-
works. The accuracy of these systems usually come at the cost of interpretability,
meaning how understandable their decisions are. Explaining decisions made by a
black-box model without knowing more about the internal workings of the model
poses several issues. Instead, an training interpretable model to approximate the
black-box model can alleviate these issues by giving domain experts a more holis-
tic understanding of why certain decisions were made.

Docking ships to harbor is a difficult control problem. In the past, different strate-
gies have been employed for automatic docking, such as more traditional con-
trollers and supervised machine learning, with various success. Several issues arise
when one uses for example supervised learning to solve the docking problem. For
example, to be able to generalize well from harbor to harbor, great care must
be taken to collect good data, which on its own is a difficult problem. This can
be remedied by using Deep Reinforcement Learning (DRL). Instead of explicitly
teaching the agent how to dock the vessel, the agent may learn itself through
simulations how to dock. The deep reinforcement learning agent however is pow-
ered by a black-box neural network trained through Proximal Policy Optimization
(PPO). It is therefore of interest to investigate methods that may aid in explaining
what the neural network has taught itself. In this master thesis, we will investigate
alternative models that approximate the neural network powering the DRL agent
through imitation learning. This approximation can lead to new insights into what
the neural network learned through self-learning, and provide engineers with an-
other tool in their toolkit to ensure the agent will behave as expected.

This master thesis demonstrates that recent developments in decision tree meth-
ods are able to sufficiently approximate the behavior of a deep reinforcement
learning agent trained to dock a vessel to harbor. The state-of-the-art methods
Optimal Regression Trees with linear predictions, and Near-optimal Nonlinear
Regression Trees are trained through imitation learning by growing trees using
data from the docking agent to create more interpretable models. The optimal
regression tree method was chosen because of the similar structure to decision

iii

tree methods such as Classification and Regression Trees, and Linear Model Trees,
without the disadvantage of being built through greedy algorithms leading to
sub-optimal solutions. Near-optimal Nonlinear Regression Trees was chosen be-
cause of the supposed further improvement over the optimal regression trees and
its non-linear prediction functions, possibly enabling shallower trees than all the
aforementioned methods.

The resulting trees are evaluated on new unseen data to compare their perfor-
mance to that of the original black-box agent trained through PPO, and the previ-
ously implemented method Linear Model Trees. It is shown that Optimal Regres-
sion Trees were able to function as a replacement for the PPO agent with a lower
failure rate than the linear model trees. Through common metrics for regression
evaluation, it is shown that Optimal Regression Trees approximated the PPO agent
better than the Linear Model Tree, and are able to approximate all states of the
docking agent by trading some accuracy for vastly improved interpretability. We
provide evidence that Optimal Regression Trees are shallower and more accurate
than the Linear Model Trees at the cost of needing one tree per action.

iv

Sammendrag

Bruken av "svart-boks"-modeller innen maskinlæring skaper problemer for sys-
temer med fokus på sikkerhet. Systemer som nyttegjør seg av dyp forsterkende
læring (engelsk: deep reinforcement learning / DRL) designes ofte med svart-
boks-modeller som for eksempel nevrale nettverk. Nøyaktigheten til disse sys-
temene kommer ofte på bekostning av hvor forståelig valgene til det nevrale
nettverket er. Flere problemer oppstår hvis man prøver å forklare en svart-boks-
modell uten å vite mer om den innvendige strukturen til modellen. Istedet kan
en mer forståelig modell brukes til å approksimere svart-boks-modellen for å gi
domene-eksperter et mer helhetlig innsyn i hvorfor svart-boks-modellene oppfører
seg som de gjør.

Å legge båter til kai er et vanskelig reguleringsproblem. Tidligere har flere forskjel-
lige metoder blitt forsøkt brukt for å automatisere denne prosessen med vari-
erende suksess, slik som mer tradisjonelle regulatorer og overvåket maskinlæring.
Problemer oppstår ved bruk av for eksempel overvåket masinlæring til å løse reg-
uleringsproblemet. For at modellen man trener opp skal kunne generalisere bra
fra kai til kai må man være nøye med hva slags data man oppsamler, som er et
vanskelig problem i seg selv. Dette kan løses ved å trene opp en agent ved hjelp av
DRL. Istedet for å eksplisitt trene opp en agent til å legge båten til kai kan agen-
ten lære seg selv hvordan dette kan gjøres. Agenten nyttegjør seg av et svart-boks
nevralt nettverk trent opp ved hjelp av PPO (engelsk: Proximal Policy Optimiza-
tion). Derfor er det interessant å undersøke metoder som kan hjelpe å forklare
hva det nevrale nettverket har lært seg. I denne masteroppgaven undersøker vi
alternativer modeller som kan approksimere det nevrale nettverket til agenten
gjennom å herme dens oppførsel (engelsk: imitation learning). Denne approksi-
masjonen kan føre til ny lærdom om hva det nevrale nettverket lærte seg selv
gjennom DRL, og kan gi ingeniører enda et verktøy i verktøykassa for å sikre at
agenten oppfører seg som forventet.

I denne masteroppgaven beviser vi at nye utviklinger innen beslutningstrær kan
approksimere en DRL-agent trent til å legge båt til kai med tilfredstillende høyere
nøyaktighet enn tidligere metoder. De nye metodene "Optimale Regresjonstrær"
(engelsk: Optimal Regression Trees / ORT) med lineære regresjoner i løvnodene,
og "Nær Optimale Regresjonstrær" (engelsk: Near-optimal Nonlinear Regression

v

Trees / NNRT) er trent opp gjennom å herme DRL agenten med et mål om å øke
innsikten i agenten. Metoden ORT ble valgt fordi strukturen er svært lik andre
regresjonstrær som "Klassifisering- og regresjonstrær" (engelsk: Classification and
Regression Trees / CART) og "Lineær-modell-trær" (engelsk: Linear Model Trees /
LMT), men til forskjell fra disse metodene bygges ikke ORT med grådige algorit-
mer som ofte fører til sub-optimale trær. NNRT ble valgt på grunn av den påstått
økte ytelsen over ORT, i tillegg til de ulineære funksjonene i løvnodene som kan
føre til trær med lavere dybde enn de tidligere nevnte metodene.

Trærne ble testet på ny usett data for å sammenlikne ytelsen med DRL-agenten,
og den tidligere implementerte metoden LMT. Det bevises i oppgaven at ORT har
jevnt over høyere ytelse enn LMT. Det bevises også at ORT kan fungere som en
erstatning for DRL-agenten som er trent opp ved hjelp av PPO med lavere feilrate
enn LMT. Gjennom kjente ytelsesmål for regresjoner viser resultatene at ORT ap-
proksimerte PPO-agenten bedre enn LMT, og at ORT kan approksimere alle fem
pådragene til agenten ved å ofre noe nøyaktighet for en enorm økning i innsikt
i agenten. Det bevises at ORT har lavere dybde og er mer nøyaktige enn LMT på
bekostning av at man behøver ett tre for hvert pådrag i agenten.

vi

Preface

This thesis concludes my Master’s degree in Cybernetics and Robotics at the Nor-
wegian University of Science and Technology, and is part of the Explainable Ar-
tificial Intelligence Systems for Gradual Industry Adoption (EXAIGON) project at
NTNU. This thesis is a continuation of the project thesis written during the fall
semester. As such, some of the material in Chapter 2 and 3 has been repurposed.

All code was written in Python on a workstation with an AMD Ryzen 9 3950X
CPU with 64 GB RAM using the libaries PyTorch [1], Scikit-Learn [2], Numpy
[3], Pandas [4, 5], and Matplotlib [6]. The work presented in this thesis builds
on a framework developed by Ella-Lovise Hammervold Rørvik [7] as part of her
master thesis. The deep reinforcement learning agent she developed was imple-
mented using TensorFlow [8] in an OpenAI Gym [9] environment, based on an
open source implementation by SpinningUp [10]. The Optimal Regression Trees
implementation used in this thesis is part of a software package provided by Inter-
pretable AI [11]. I would like to thank Jack Dunn at Interpretable AI who provided
license keys to use the software.

I would like to extend my gratitude to my supervisor Anastasios Lekkas. He was in-
tegral to the success of this thesis, and has provided outstanding guidance through
both my project and master thesis. I would also like to thank my co-supervisor
Vilde Gjærum, who I have been fortunate enough to have technical discussions
with in order to improve the results and work out technical problems, and who
provided the Linear Model Tree implementation used in this thesis [12].

Thanks to my supervisors, I was able to submit my first journal article which got
accepted to the International Federation of Automatic Control Conference on Con-
trol Applications in Marine Systems, Robotics, and Vehicles. The thesis and the
journal paper which they have co-authored would not have been possible without
their support and guidance.

Lastly, I want to thank my family and the friends I have made throughout my years
at NTNU for their continuous support.

Jakob Løver
Trondheim, July 18, 2021

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xi
Tables . xiii
Acronyms . xv
1 Introduction . 1

1.1 Background and Motivation . 1
1.2 Objective . 4
1.3 Main contributions . 4
1.4 Thesis Outline . 5

2 Theory . 7
2.1 Deep Learning . 7

2.1.1 Neurons . 8
2.1.2 Layers . 8
2.1.3 Training . 10
2.1.4 Generalization . 11
2.1.5 Backpropagation . 12
2.1.6 Momentum . 13

2.2 Regression . 14
2.2.1 Ridge regression . 14

2.3 Reinforcement learning . 15
2.3.1 Markov Decision Process . 16
2.3.2 Proximal Policy Optimization 17

2.4 Explainable Artificial Intelligence . 18
2.4.1 Interpretability . 18
2.4.2 Post-hoc Methods . 19
2.4.3 Imitation Learning . 20
2.4.4 Symbolic Regression . 21

2.5 Decision Trees . 21
2.5.1 Classification and Regression Trees 22
2.5.2 Linear Model Trees . 24
2.5.3 Optimal Regression Trees . 25

ix

Contents

2.5.4 Near-Optimal Nonlinear Regression Trees 27
3 Design and Implementation . 33

3.1 Docking . 33
3.2 Deep Reinforcement Learning Agent 34
3.3 Dataset . 36
3.4 Approximating the agent using decision trees 38

3.4.1 Linear Model Trees . 38
3.4.2 Optimal Regression Trees . 39
3.4.3 Near-optimal Nonlinear Regression Trees 39

3.5 Hyperparameters . 41
3.6 Computational Hardware . 42
3.7 Evaluation Metrics . 42

4 Results . 43
4.1 PPO . 44
4.2 LMT . 46
4.3 ORT . 50

4.3.1 Computational time . 50
4.3.2 Approximating the tunnel thruster 50
4.3.3 Approximating the other actions 58

4.4 NNRT . 64
4.5 Summary of methods . 65

5 Conclusion . 67
5.1 Future Work . 68

Bibliography . 69
A AI Feynman 2.0 . 77
B Integrated Gradients . 81
C NNRT Implementation . 83

x

Figures

2.1 Four common activation functions [39]. 8
2.2 Example illustration of a fully connected deep neural network with

two hidden layers [40]. 9
2.3 Visualization of perceptron [41]. 9
2.4 Example of overfitting and underfitting versus for a regression prob-

lem [43]. 12
2.5 Illustration of the agent-environment interaction in reinforcement

learning [47]. 16
2.6 Impact of interpretability methods on descriptive and predictive

accuracies [50]. 19
2.7 Illustration of how a rotation in training data affects the decision

boundary of a decision tree [62]. More axis-aligned splits are needed
to separate the training data in the figure to the right. 22

2.8 Illustration of a regression tree [63]. 23
2.9 The prediction function gp(x) for each leaf node p is described

along with the evaluations performed at each internal node in an
NNRT of depth 2 [67]. 31

3.1 Illustration of learning phases [7]. 35
3.2 Thruster numbering on vessel [76]. 36
3.3 Starting points in the dataset. 37

4.1 Vessel trajectory of the PPO-agent. 44
4.2 Vessel actions of the PPO-agent. 45
4.3 Vessel states of the PPO-agent. 45
4.4 Trajectory map when LMT replaced the PPO agent. 47
4.5 Actions when LMT replaced the PPO agent. 47
4.6 States when LMT replaced the PPO agent. 48
4.7 Feature importances when LMT replaced the PPO agent. 49
4.8 Computational time for various depths of ORTs 50
4.9 Vessel trajectory of a failed docking scenario when replacing the

tunnel thruster of the PPO-agent with an Optimal Regression Tree
of depth 1. 51

xi

Figures

4.10 Vessel actions of a failed docking scenario when replacing the tun-
nel thruster of the PPO-agent with an Optimal Regression Tree of
depth 1. 52

4.11 Vessel states of a failed docking scenario when replacing the tunnel
thruster of the PPO-agent with an Optimal Regression Tree of depth
1. 52

4.12 Optimal Regression Tree of depth 1. 53
4.13 Feature importances of a failed docking scenario when replacing

the tunnel thruster of the PPO-agent with an Optimal Regression
Tree of depth 1. 54

4.14 Vessel trajectory of a successful docking scenario when replacing
the tunnel thruster of the PPO-agent with an Optimal Regression
Tree of depth 8. 55

4.15 Vessel actions of a successful docking scenario when replacing the
tunnel thruster of the PPO-agent with an Optimal Regression Tree
of depth 8. 55

4.16 Vessel states of a successful docking scenario when replacing the
tunnel thruster of the PPO-agent with an Optimal Regression Tree
of depth 8. 56

4.17 Feature importance values for an ORT of depth 8 trained to approx-
imate the tunnel thruster . 57

4.18 Vessel trajectory of a successful docking scenario when replacing
the PPO-agent with five ORTs . 61

4.19 Vessel actions of a successful docking scenario when replacing the
PPO-agent with five ORTs . 61

4.20 Vessel states of a successful docking scenario when replacing the
PPO-agent with five ORTs . 62

4.21 Feature importance values for all ORTs trained to approximate the
PPO agent . 63

4.22 Training and validation loss when training NNRT with depth 4 for
action f3. 64

A.1 Pareto-frontier discovered by AI Feynman 2.0 [82]. 78
A.2 Graph decomposition of a mystery function f [82]. 78
A.3 Possible graph decompositions that AI Feynman can auto-discover

[82]. 79

xii

Tables

3.1 Valid output ranges for action vector. 35
3.2 Description of states [7]. 36
3.3 Splitting of the dataset . 37
3.4 Hyperparameters for ORT . 41
3.5 Hyperparameters for NNRT . 41

4.1 Initial pose when docking to harbor. 44
4.2 Evaluation metrics for the trained LMT on each output on the test

set. 46
4.3 Coefficients of the linear regressions in node 1 and 2 in Figure 4.12. 53
4.4 Evaluation metrics for the best ORT-L for a given depth when ap-

proximating the force f3. 58
4.5 Evaluation metrics for the best ORT for a given depth when approx-

imating the force f1. 59
4.6 Evaluation metrics for the best ORT for a given depth when approx-

imating the force f2. 59
4.7 Evaluation metrics for the best ORT for a given depth when approx-

imating the azimuth angle a1. 59
4.8 Evaluation metrics for the best ORT for a given depth when approx-

imating the azimuth angle a2. 60
4.9 ORTs chosen to replace the PPO agent 60
4.10 Quantitative test results . 65

xiii

Acronyms

Adam Adaptive Moment Estimation. 28, 29, 64

AI Artificial Intelligence. 1, 2, 7, 17, 21

ANN Artificial Neural Network. 2, 7, 8, 33, 34

CART Classification and Regression Trees. 3, 22–24, 26

DL Deep Learning. 7

DRL Deep Reinforcement Learning. iii, 2–5, 21, 34

DT Decision Trees. 3, 7, 21, 22, 24

GDPR General Data Protection Regulation. 1, 2

IG Integrated Gradients. 2, 20

LIME Locally Interpretable Model-Agnostic Explanations. 2, 20

LMT Linear Model Trees. 3, 4, 24, 25, 37–40, 43, 46, 53, 58, 60, 62, 65, 68

MAE Mean Absolute Error. 42, 46, 58, 64, 65

MARS Multivariate Adaptive Regression Splines. 27

MDP Markov Decision Process. 16, 17

MIO Mixed Integer Optimization. 25

ML Machine Learning. 1, 7, 14

MSE Mean Squared Error. 10, 13, 42, 46, 57, 58, 65

NNRT Near-optimal Nonlinear Regression Trees. 4, 5, 27–30, 37, 39–41, 43, 64,
67, 68

xv

Acronyms

ORT Optimal Regression Trees. 4, 25, 27, 37, 41, 43, 50, 51, 56–58, 62, 64, 65,
67, 68

PPO Proximal Policy Optimization. iii, iv, 17, 21, 34, 42–44, 46, 50, 53, 54, 57,
60, 65, 68

ReLU Rectified Linear Unit. 10, 34

RL Reinforcement Learning. 2, 15, 17

RSS Residual Sum of Squares. 15, 42

SGD Stochastic Gradient Descent. 11

SHAP Shapley Additive Explanations. 2, 3, 20

XAI Explainable Artificial Intelligence. 2, 7, 18, 19

xvi

Chapter 1

Introduction

Parts of the upcoming Section 1.1 has been adapted from the author’s project
thesis [13].

1.1 Background and Motivation

Autonomous systems are becoming increasingly ubiquitous in many industries,
including the maritime industry [14]. Moreover, Machine Learning (ML) is grad-
ually becoming a larger part of autonomous systems [15, 16], as tasks that may
be simple for humans may be too complex or abstract for traditional non-ML al-
gorithms. The accuracy of recent machine learning methods introduces systems
that even perform better than humans in some tasks [17]. Machine learning is
often applied to tasks that cannot easily be programmed by a set of rules, and
may discover powerful underlying patterns in data.

Machine learning is also becoming a larger part of our everyday lives. Big data
is being described as "the new oil", referencing the upcoming revolution having
access to vast amounts of data brings. Big corporations like Facebook and Google
are harvesting data from billions of users to use in their ML algorithms. The Eu-
ropean Union therefore recently passed the General Data Protection Regulation
(GDPR) to give its citizens control over how their data is used. If some algorithm
determines an outcome, such as the right to a loan, this new regulation requires
businesses to be able to trace down why the user was given a certain outcome
[18]. This kind of policy dubbed Right-to-Explanation notes that an algorithmic
decision has a large impact on an individual, and that individuals need to know
how their data is being used. Additionally, the lack of ability to explain decisions
also impedes the general acceptance of Artificial Intelligence (AI) and robot sys-

1

Chapter 1. Introduction

tems [19]. Advocates against this type of policy argue it will impose unnecessary
restraints on AI and stifle many social and economic benefits [20], and that the
need to create explanations hinders the performance of machine learning systems.

Reinforcement Learning (RL) refers to the process of training some algorithm
called an agent to perform a task by maximizing some pre-defined reward func-
tion. Deep Reinforcement Learning (DRL) simply refers to the fact that the un-
derlying model being trained is a neural network. The agent faces a sequential
decision-making problem where, at every time step, it observes its state, performs
an action, receives a reward and moves to a new state [21]. Instead of explicitly
training the agent, the agent trains itself by trial-and-error. Reinforcement learn-
ing garnered public attention when AlphaGo from Deepmind, an RL agent trained
to play the Chinese board game Go, managed to beat a human world champion.
A recent study by Deepmind [22] argues that reward is enough, and RL agents
guided by reward maximization is enough to achieve the holy grail of artificial
generalized intelligence.

Despite the rapid adoption of machine learning systems, understanding the un-
derlying decision making is becoming increasingly difficult. Black-box predictors
such as Artificial Neural Network (ANN), which are often used due to their great
generalization potential, are become increasingly complex in dimensionality and
design. This poses a serious problem when humans need to be involved in the
decision-making loop. Being unable to explain the reasoning behind black-box
decisions is unacceptable for safety-critical systems. Explainable Artificial Intelli-
gence (XAI) is a relatively new field within the AI community, popularized by the
DARPA agency of the U.S. Department of Defense which aims to develop new or
modified machine-learning techniques that will produce more explainable models
[23].

It is clear that XAI tools are needed to assess the safety and reliability of machine
learning systems. XAI can become a part of an engineer’s toolkit when designing
a new system, and provide the system designer with knowledge about what the
system has learned. This could help shift the focus during the training process,
and detect possible errors before the systems are put into use in the real world.
XAI should also provide human-interpretable explanations, in light of the recently
enacted GDPR.

The explainability of deep reinforcement learning agents built on neural networks
has not been studied extensively [24], serving as motivation for writing this the-
sis. However, several efforts have been made to make machine learning more
interpretable, such as the popular post-hoc explainers Shapley Additive Expla-
nations (SHAP), Locally Interpretable Model-Agnostic Explanations (LIME), and
Integrated Gradients (IG). The two former methods have been applied to a DRL
agent trained to dock a vessel to harbor in order to provide explanations post-hoc

2

1.1. Background and Motivation

[25]. However, model-agnostic methods rely on post-hoc modeling of an arbitrary
function, and can be slow and suffer from sampling variability [26].

There are several issues with using black-box models and applying post-hoc meth-
ods to obtain explanations instead of using more interpretable methods, as out-
lined by Rudin [27]. The author argues that explanations must be wrong, be-
cause a completely faithful explanation would mean the explanation is equal to
the model being explained, and thus the original model is not needed. In fact,
post-hoc methods may even mislead [28]. Previous studies show that SHAP may
even be ill-suited to approximate neural networks [29]. Researchers have also
been able to hide the biases of a classifier using SHAP and LIME, proving they can
provide deliberately wrong explanations [30].

Additionally, Rudin argues that there is not necessarily a trade-off between accu-
racy and interpretability [27]. This can be seen in other literature as well, where
interpretable models such as decision trees are in some cases proven to perform
better than many black-box models on for example tabular data [31].

Instead, if the entire model behavior is visible, domain experts can validate whether
the predictor is behaving as it should. There has been a trend of moving away from
black-box models towards white-box models, particularly for critical industries
such as healthcare, finances, and military, because of the need for understand-
able models [32]. According to [28], one should however exhibit caution if one
decides to give up predictive power, and ensure that the desire for transparency
is justified. For example the short-term goal of building trust with doctors by de-
veloping transparent models might clash with the longer-term goal of improving
health care [28].

Apart from linear and logistic regression, Decision Trees (DT) are currently the
most popular form of machine learning methods [33]. Most DTs are inherently
interpretable, and as such are called "white-box" models. However, there are sev-
eral issues with the decision tree methods that are currently in use. Even though
Linear Model Trees (LMT) have proven to approximate a DRL agent trained for
autonomous docking of an autonomous surface vehicle [12], the LMT used is quite
deep. LMT and most other decision tree methods that build on Classification and
Regression Trees (CART) [34] lack optimality, meaning they are built using greedy
algorithms, which may cause the trees to be deeper than needed. Deeper trees in-
troduce more parameters, making them harder to grow and harder to interpret.
DTs with hard decision boundaries also suffer from weak expressivity [35]. Other
variants of decision trees have already been attempted applied to reinforcement
learning agents [36], but it is noted that the inherent instability of those decision
trees limit the explainability [35].

3

Chapter 1. Introduction

1.2 Objective

The goal of this thesis is to investigate whether novel decision tree methods are
able to satisfactorily approximate the decisions made by a deep reinforcement
learning agent trained to dock a vessel to harbor. As outlined above, current meth-
ods such as LMT and LMTs are greedily optimized, and thus create deep trees that
may not generalize well. It is desirable to investigate whether new state-of-the-
art methods are able to better approximate the actions of the DRL agent using
shallower trees. This may enable humans to partially or even fully understand the
model behavior. The methods Near-optimal Nonlinear Regression Trees (NNRT)
and Optimal Regression Trees (ORT) will therefore be investigated. The method
which ORT is based on has already proven successful to provide human-readable
explanations [37]. These methods will then be applied to tabular data generated
by the agent to train trees that approximate its behavior. The performance of these
methods over an entire docking episode will then be investigated.

1.3 Main contributions

• We have implemented the novel decision tree method Near-optimal Non-
linear Regression Trees (NNRT) from scratch. The NNRT was trained with
data obtained from a deep reinforcement learning agent to approximate the
agent’s neural network. To the author’s knowledge, no such implementation
is public and has never been tested on a cyber-physical system nor a deep
reinforcement learning agent.

• We have applied the method Optimal Regression Trees to the deep reinforce-
ment learning agent. This implementation was provided by Interpretable AI
[11]. We prove that this method is able to partially replace the neural net-
work with high accuracy. The method was able to fully replace the neural
network with higher accuracy than the linear model trees, though not with
the same accuracy as the neural network.

• We provide quantitative analysis of the performance of each of these meth-
ods in terms of computational resources and accuracy. The methods will be
juxtaposed with the ground truth DRL agent and a Linear Model Tree to
observe the difference in performance. The implementation of the LMT was
provided by Gjærum [12].

• We explore the interpretability of these methods by comparing feature im-
portances, and discuss the discrepancies between these methods.

4

1.4. Thesis Outline

1.4 Thesis Outline

Chapter 2 will present the theory that serves as the backdrop for the methods
used in this thesis. The chapter will cover fundamental theory behind neural net-
works, and how they are trained, as well as an introduction to deep reinforcement
learning. Chapter 3 presents how the methods previously discussed were imple-
mented to approximate the DRL agent, as well as an introduction to the docking
problem. Chapter 4 presents the experimental results from applying the methods
to the DRL agent. It contains extensive quantitative analysis of the performance
of the methods used, and a discussion around the results obtained. Finally, Chap-
ter 5 summarizes the findings and presents further work that may be done. The
appendix covers some of the methods that were researched and attempted to be
implemented, but not used either due to time constraints, difficulty of implemen-
tation, or lack of meaningful results or relevancy. The appendix also contains the
code for the NNRT.

5

Chapter 2

Theory

The goal of this chapter is to provide the reader with a fundamental understanding
of Artificial Neural Network (ANN), Decision Trees (DT), and Explainable Artificial
Intelligence (XAI). This chapter is a continuation of the author’s project thesis
[13], and covers many of the same topics. Most of Section 2.1 and Section 2.3,
and some of Section 2.4 was written during the project thesis, but has been revised
for the master thesis. Section 2.5.2 was also written as part of the author’s paper
submission [25].

2.1 Deep Learning

Machine Learning (ML) is a branch of Artificial Intelligence (AI) focused on build-
ing applications that learn from data and improve their accuracy over time with-
out being explicitly programmed to do so [38], meaning they adapt themselves
when they see new data. Examples of popular ML algorithms are support vector
machines, linear regression, and K-nearest neighbors. These methods are some-
times insufficient as they may not generalize well enough. Deep Learning (DL), a
subset of ML, takes on a more holistic approach through building Artificial Neural
Network (ANN). The main difference between ML and DL is that the latter does
not require any feature extraction. In image processing, feature extraction can be
done by performing some edge detection for example, which is usually required
before applying machine learning algorithms. Feature extraction is a powerful in-
herent property of a neural network, but neural networks usually require larger
amounts of data than other machine learning algorithms to perform adequately.

7

Chapter 2. Theory

2.1.1 Neurons

The most basic unit of a neural network is called a neuron or perceptron. Every
input to the neuron is multiplied by a weight that represent the how much of a role
each input to the neuron should take in the output. Bias is added to this weighted
sum, and an activation function is applied to the sum to obtain the output called
activation.

The activation function describes how the weighted sum should affect the pre-
diction. Non-linear activation functions are required to produce non-linear out-
put [39]. Leaving out the activation function or using a linear activation function
would in large part eliminate the need for using ANNs. Linear functions are ad-
ditive, so any composition of linear functions can be reduced to a single linear
function.

Figure 2.1: Four common activation functions [39].

2.1.2 Layers

Neural networks are organized in layers of neurons. In general, there is one input
layer, one output layer, and an arbitrary number of hidden layers. The input layer
receives the raw data input, whether it be the red-green-blue values of pixels in an
image, or raw tabular data. The output layer squeezes the last hidden layer down
to desired number of outputs from the neural network. The layers between the
input and output layers are called hidden layers. The way the layers are connected
together depends on the structure of the network. In a fully connected neural
network—such as Figure 2.2—every neuron in every layer is connected to every
neuron in the previous layer. A neural network that consists of no more than one
hidden layer is usually called a "shallow neural network", while those with two or

8

2.1. Deep Learning

more hidden layers are often referred to as "deep neural networks."

Figure 2.2: Example illustration of a fully connected deep neural network with
two hidden layers [40].

Figure 2.3: Visualization of perceptron [41].

z =wT x+ b =
n
∑

j=1

x iwi + b

a = σ(z).

(2.1)

A neuron is commonly described using (2.1) where the vector of weights for in-
puts from the previous layer are denoted with w, and the vector of inputs (or

9

Chapter 2. Theory

activations from the previous layer) with x. This is illustrated visually in Figure
2.3. There is a tendency to add a node with a constant value b to the layers, which
will be called a bias node. The bias node allows for shifting the activation function
up or down. Applying the activation function σ to the weighted sum z gives the
output a, also called activation. The most common activation function used at the
time of writing this thesis is the Rectified Linear Unit (ReLU) activation function
shown in Figure 2.1.

2.1.3 Training

Training is the process of updating all the weights to minimize the overall loss
function. Loss is a measure that quantifies how good the predictions of the net-
work was. First, a forward pass is performed through the network, which simply
involves applying an input to the network and observing the output. The output
is then used to compute the loss. The loss function depends on what problem is
being solved. Classification problems— meaning those where the output from the
network is discrete—may for example use the cross-entropy loss function. For ex-
ample, image recognition usually deals with classifying what types of objects are
present in pictures. Regression problems— where the output of the network is a
continuous variable—may use the better known Mean Squared Error (MSE) loss
function

MSE =
1
N

N
∑

i=1

(yi − ŷi)
2. (2.2)

MSE is computed by summing the squared difference between the predicted value
ŷi and the true value yi for every ith sample, and then dividing by the number
of samples N . To minimize the MSE, the weights w must to be adjusted. This is
done by using optimizers, which are in essence different strategies for adjusting
the weights to minimize the loss. Most optimizers for neural networks are based
on gradient descent, and the weights are adjusted according to the update step
equation

wt+1
n := wt

n −α
∂ L
wt

n
. (2.3)

For every time step t the weights are updated such that the loss function L de-
creases in the direction of its gradient. By applying a hyperparameter α called
learning rate, the rate at which the weights are updated in the direction of the

10

2.1. Deep Learning

gradient is constrained to prevent overshooting the minimum of the loss func-
tion. This hyperparameter is usually chosen through trial and error.

Computing the gradient for all weights over the entire dataset can be extremely
slow because of large amounts of weights. Stochastic Gradient Descent (SGD) is
a drastically less computationally expensive solution, where the gradient is com-
puted with respect to only a single data point at a time. Even though the gradient
will be more aggressive because of potential outliers in the data, this strategy
assumes that the combined effect of noise in the data on the gradient will be can-
celled out over time. This behavior may even help getting out of local minima or
saddle points, which is a real concern since the loss function neural networks are
minimizing is usually not convex.

Another strategy, one which keeps the efficient computation time from SGD—but
provides a more stable gradient—is called mini-batch gradient descent. Instead
of computing the gradient of the loss function for every sample, it is computed
in batches of samples. These matrix operations can often be computed in parallel
using parallel processing units such as graphical processing units [42].

2.1.4 Generalization

The end goal of training is to train a model that generalizes well when it is exposed
to new data. During training, it is therefore important to not overfit the model
to the training data. Overfitting occurs when the model performs very well on
the training data, but not as well when it sees new data. To combat overfitting,
the dataset is often split into a training set, a test set, and a validation set. The
training set may consist of for example 80 % of the total data available, 5 % for
the validation set, and the remaining 15 % is reserved for the test set. Another
phenomenon called underfitting is also a real concern, where the model has not
yet fitted properly to the data. This is usually remedied by adding more parameters
to the model.

When training begins, the weights are updated according to the chosen optimizer,
but the total loss of both the validation set and training set is recorded after each
new update. After a number of iterations, the total loss of the training set and
validation set will eventually start to diverge. The loss of the training set may
keep decreasing while the loss for the validation set will start to increase. This is
a sign that further training will lead to overfitting. If the training stops before this
point, the model will usually underfit. When training stops, the trained model is
tested on the test data to observe how well it generalizes. Figure 2.4 shows how
a model might behave when it overfits or underfits the training data.

11

Chapter 2. Theory

Figure 2.4: Example of overfitting and underfitting versus for a regression prob-
lem [43].

Bias refers to how the accurately the model is able to capture the underlying re-
lationship between the variables. This is often connected with the number of pa-
rameters in the model. A model that is not able to capture the dynamics of the
underlying data well will have high bias, and can often be remedied by adding
more parameters in the model. This poses another problem however, as complex
models often need more training data to generalize better. The fluctuations in the
learned models will therefore be much larger for the more complex model than
the simpler model [44]. These fluctuations are referred to as variance. In the ma-
chine learning community this balance between bias and variance is also known
as the bias-variance trade-off.

2.1.5 Backpropagation

Seppo Linnainmaa laid down the groundwork in the 70s [45] for the method
which today is called backpropagation. It is an essential building block in modern
deep-learning frameworks, and is a procedure to compute the gradient of the cost
function. By clever use of the chain rule, the gradient of the cost function can
be efficiently computed and used to update the weights of each layer using the
update step in (2.3).

The name "backpropagation" comes from the fact that the algorithm works its
way from the last layer to the first layer after performing a forward pass through
the network to calculate the gradient. The gradient of each layer of weights in
the network is computed by making use of the activation in the previous layer
ak−1. As the neural network grows deeper and is able to capture more complex
behavior, the time needed to perform this backpropagation increases.

The partial derivative of the loss function in (2.3) can be decomposed with the

12

2.1. Deep Learning

chain rule and rewritten as

∂ L
∂ wk

=
∂ L
∂ ak

∂ ak

∂ zk

∂ zk

∂ wk
. (2.4)

For example, one may choose MSE as the loss function L

L =
1
2
(y − ak)

2, (2.5)

(2.6)

which yields the following

∂ L
∂ ak

= y − ak. (2.7)

Choosing ReLU activation as the activation a gives the expression

ak = ReLU(zk) (2.8)

∂ ak

∂ zk
= ReLU ′(zk). (2.9)

This derivative will be 0 for all z ≤ 0 and 1 for all z > 0. Computing the derivative
of the term in (2.1)

zk = wT
k xk − bk (2.10)

∂ zk

∂ wk
= ak−1. (2.11)

Then, ∂ L
∂ wk

can be computed as follows

∂ L
∂ wk

= ak−1 · ReLU ′(zk) · (y − ak). (2.12)

2.1.6 Momentum

The topology of the loss function often looks like rugged terrain. There are lots
of local minima and saddle points. If the optimizer gets stuck in one of these
points, methods are needed to steer the optimizer towards the global minimum.
Momentum is a strategy that introduces a form of memory in the training loop to
prevent getting stuck, by re-using a calculated term from the previous time step.

13

Chapter 2. Theory

From [46], the update step in (2.3) can be rewritten as

z t+1
n = βz t +

∂ L
wt

n
(2.13)

wt+1
n = wt

n −αz t+1
n . (2.14)

β is a constant between [0,1] that determines how much memory should be in-
troduced. β = 0 results in the original update step in (2.3). This term is often set
to a value close to 1. Momentum introduces smoother updates to the weights, im-
proves convergence towards a better minimum, and prevents the optimizer from
getting stuck.

2.2 Regression

In general, ML deals with two types of problems: classification problems and re-
gression problems. Classification deal with grouping data into classes. For exam-
ple, a model trained for image classification can be used to determine what type
of object is present in an image. It can be trained to see the difference between
species of animals or types of vehicles. Regression on the other hand is about re-
lationships between data, and how a dependent variable can be estimated from
one or more independent variables. Models trained for regression can output con-
tinuous functions as opposed to discrete classes.

2.2.1 Ridge regression

Linear regression describes the relationship between one dependent variable and
several independent variables. The equations in this section are from [2].

Through linear regression, a linear function is fit to data, and results in a regres-
sion line of the form

ŷ(w, x) = w0 +w1 x1 + . . .+wp xp (2.15)

where w is a vector of coefficients of the linear model, ŷ is the predicted output,
and x is the input data.

14

2.3. Reinforcement learning

The process of fitting a regression line to data is commonly done through the least
squares method. Least squares find the parameters w by finding a regression line
that minimizes the Residual Sum of Squares (RSS). The residual is the distance
between the observed variable y and the predicted variable ŷ . RSS is defined as

RSS =
N
∑

i=1

(yi − ŷ)2. (2.16)

The function that least squares is trying to minimize can then be written as

min
w
||X w− y||22 (2.17)

where X is the a vector of data the regression line is fitted to.

Problems arise when using linear regression to fit a line to data where the assump-
tion that all the variables are independent no longer holds. When the dataset is
small, overfitting to the training data may also be of concern. Therefore, it is com-
mon to introduce L2 regularization to the loss function in (2.17). This is also called
ridge regression, and the function to minimize can be written as

min
w
||X w− y||22 +α||w||

2
2 (2.18)

where α ≥ 0 is a parameter called shrinkage. Shrinkage determines how much
the coefficients should be penalized. The idea behind penalizing large coefficients
is that by sacrificing some of the accuracy in the training data, a new line that
generalizes better on new data is created.

2.3 Reinforcement learning

Reinforcement Learning (RL) is the process of training an agent to take actions
in an environment in which it may have little or no prior information. The goal is
to guide the agent through the environment using rewards in order for it to take
actions that maximize the cumulative expected reward. This is usually a trade-off
between the reward the agent can expect to receive immediately, and the rewards
it may receive in the future. As the agent performs actions according to some
policy, it obtains more information about the environment. A policy can be seen
as a function π that maps a state to an action.

15

Chapter 2. Theory

Figure 2.5: Illustration of the agent-environment interaction in reinforcement
learning [47].

Contrary to supervised learning, the agent is not explicitly instructed regarding
what to do. With deep reinforcement learning, this concept of "self-learning" is
applied to neural networks by designing a neural network where the weights are
updated through interactions with the environment.

2.3.1 Markov Decision Process

Reinforcement learning theory relies heavily on being able to express the problem
at hand as a Markov Decision Process (MDP).

An MDP can be described as a tuple 〈S, A, R, P,γ〉 [48]

States S: A set of states.

Actions A: A set of actions an agent is allowed to take given a state.

Reward R: The reward function tells the agent whether or not a certain action
was a wise decision, given a certain state.

Transition Probability P: A matrix of likelihoods of moving from one state to
another when applying an action.

Discount factor γ ∈ [0, 1]: A multiplication factor that decides how heavy imme-
diate rewards should be weighed against future rewards.

Central to the Markov decision process is the Markov property. The Markov prop-
erty says that the current state encapsulates all the information that is needed
to know what the next state will be. Therefore, the next state depends only on

16

2.3. Reinforcement learning

the current state and action, and it is not required to consider the past. If the un-
derlying Markov decision process is known, the optimal policy can be computed
directly. That is usually not the case, since the world is not entirely deterministic.

2.3.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) quickly became one of the most used rein-
forcement learning methods after its introduction by AI research company Ope-
nAI. Contrary to model-based RL methods, where one needs to learn or know
the underlying MDP, model-free methods such as PPO do not need that. Most
RL methods being used today are model-free because of how much easier they
are to implement. PPO is based on the idea that when updating the policy, the
new policy should not be too far from the old policy—a concept called a trust
region. The PPO-clip implementation will be discussed. The origin of the name
becomes apparent when investigating the objective function. The goal of PPO-
clip is to maximize the objective function in (2.21), and to use an optimizer (such
as mini-batch gradient descent as discussed in Section 2.1.3) to update the policy
π by updating the parameters θ of the policy through (2.19). The following equa-
tions and notations are from the PPO documentation page from OpenAI [49]. The
parameters θ are updated through the optimization problem

θk+1 = argmax
θ

E
s,a∼πθk

[L(s, a,θk,θ)] (2.19)

The advantage function can be defined as

Aπ(s, a) =Qπ(s, a)− Vπ(s) (2.20)

Qπ(s, a) is called the action-value function, and describes how good an action a is
to perform, given a state s. Vπ(s) is called the state-value function, and describes
how good being in a state s is. The difference between these can then essentially
be seen as a measure of how much "better" it is to take an action a, given a state
s when following the policy π.

The objective function to maximize can be written as

L(s, a,θk,θ) = min

�

πθ (a|s)
πθk
(a|s)

Aπθk (s, a), g(ε, Aπθk (s, a))

�

(2.21)

where

17

Chapter 2. Theory

g(ε, A) =

¨

(1+ ε)A, A≥ 0

(1− ε)A, A< 0
. (2.22)

The term ε limits how much the policy is allowed to change. If the advantage is
positive for a single state-action pair, meaning the action increases the objective,
the objective function then reduces to

L(s, a,θk,θ) = min

�

πθ (a|s)
πθk
(a|s)

, (1+ ε)

�

Aπθk (s, a). (2.23)

If the objective increases beyond a certain point, it will "clip" to prevent making
updates far too large, hence the name PPO-clip. If, however, the advantage is
negative, (2.21) reduces to

L(s, a,θk,θ) = max

�

πθ (a|s)
πθk
(a|s)

, (1− ε)
�

Aπθk (s, a). (2.24)

Because of the max term, the new policy will not improve beyond a certain point
this time either if it takes steps too far away from the old policy.

2.4 Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) methods are usually characterized as be-
ing either model-based or post-hoc [50]. Model-based methods such as linear re-
gression and decision trees are machine learning methods that are interpretable
by design [51]. Post-hoc methods are methods that are applied after the system
has made a prediction, and is not concerned about how the model operates.

2.4.1 Interpretability

Interpretability is defined as the degree to which an observer can understand the
cause of a decision [52], and can roughly be divided into the following levels [53]:

Local Interpretability Being able to explain reasoning behind single decisions or
groups of decisions.

18

2.4. Explainable Artificial Intelligence

Global Interpretability Understanding the reasoning behind the entire model
behavior on a holistic or modular level.

Moreover, the measures of accuracy predictive accuracy and descriptive accuracy
may be defined [50]. Predictive accuracy refers to how well the model will adapt
to the underlying relationships in the data. Descriptive accuracy is then defined
as the degree to which an interpretation method objectively captures the relation-
ships learned by machine learning models.

Figure 2.6 illustrates how using model-based or post-hoc methods affects predic-
tive and descriptive accuracy.

Figure 2.6: Impact of interpretability methods on descriptive and predictive ac-
curacies [50].

2.4.2 Post-hoc Methods

XAI systems that only work for specific predictors are characterized as model-
specific. If they are not concerned about the internal predictor structure, they are

19

Chapter 2. Theory

model-agnostic.

Locally Interpretable Model-Agnostic Explanations (LIME) is a method that cre-
ates explanations for a single data point. LIME creates a linear surrogate model
that approximates the local behavior of the predictor for a single prediction. By
creating a perturbed dataset made up of local perturbations around the decision
in question, the importance of each feature in the black-box predictor can be in-
ferred. The output from LIME is a vector of coefficients that suggests how in-
creasing or decreasing variables affect the prediction [54]. It is a model-agnostic
method that works for any black-box predictor.

Anchors is another method by the same authors as LIME. The method replaces
the local surrogate model in LIME with IF-THEN statements called anchors. The
linear surrogate model in LIME has unclear coverage, meaning it is unclear in what
cases certain feature values contribute negatively or positively to the prediction.
Anchor explanations "anchor" predictions to regions if certain feature values fulfill
criterion. This method does suffer from many of the same issues as LIME. Overly
specific anchors may be required to adequately explain a decision, which causes
the explanation to lose some of its significance. Some anchors may also overlap,
and overly complex output spaces may also be a factor. As with its predecessor
LIME, finding a distribution of data that is representative can still be a challenge
for some domains [55].

Shapley Additive Explanations (SHAP) is an XAI method based on the Shapley
value, a coalitional game theory concept based on a set of fundamental axioms of
fairness. It is proven that the Shapley value is the only solution that satisfies these
axioms. The Shapley value therefore provides a unique solution to distribution of
reward based on work contributed [56]. SHAP attributes feature importance to
the inputs of a black box predictor for a single data sample by "removing" input
features, and examining the resulting change in output by making use of the Shap-
ley value [57]. SHAP has both model-specific (DeepSHAP) and model-agnostic
(KernelSHAP) implementations.

Integrated Gradients (IG) is a form of model-specific, post-hoc XAI method. Its
implementation is described more in detail in Appendix B, as it was not imple-
mented due to incompatibilities between the method and docking agent which
will be described in Section 3.2.

2.4.3 Imitation Learning

With the various problems state-of-the-art post-hoc methods possess, it is clear
that better solutions are needed. The black-box nature of neural networks do not

20

2.5. Decision Trees

allow much insight into the internal workings of the network. However, if an-
other more interpretable model was trained to approximate the behavior of the
network, more insight could be gained into how the network actually behaves. Im-
itation learning may therefore be employed, where a typical approach is to train
a regressor to predict an expert’s behavior given training data of the encountered
observations (input) and actions (output) performed by the expert [58]. Imita-
tion learning is often associated with a machine learning by imitating a human
expert. In this thesis however, the expert is a DRL agent trained through PPO as
described in Section 2.3.2. The models that are trying to imitate the expert are
various forms of decision trees, a topic which will be explained in the upcoming
Section 2.5. The resulting trees might not perfectly imitate the DRL agent, but
close approximations will give insight into what the DRL agent thinks, e.g. what
states are important given certain states.

2.4.4 Symbolic Regression

Linear regression assumes that the underlying model can be expressed as a linear
function. Linear regression then simply fits the parameters of a linear function to
the data. Symbolic regression does not make any assumptions about the underly-
ing model nor its parameters. Symbolic regression searches over possible models
and parameters at the same time to fit the model to the data, instead of fitting
the data to the model. Symbolic regression gathered public attention when the
software Eureqa was made available by the AI lab at Cornell University. Eureqa
used an evolutionary search, where some random equations would be applied
and fitted to the data, and randomly recombined billions of times to find a better
solution. A more recent prominent method which uses neural networks to auto-
discover modularity is AI Feynman. However, due to time constraints, this method
was not implemented. More information about the method can be found in Ap-
pendix A.

2.5 Decision Trees

Decision Trees (DT) are machine learning models that divide the input domain
into subregions. The subregions are assigned a prediction by performing splits in
the data. This can be visualized as a tree-like structure, where each of the splits
are called internal nodes. When there are no more splits to be evaluated, a leaf
node has been reached. The prediction depends on which leaf node, or subregion,
the input data falls into. Regression trees are most often associated with decision
trees where the predicted output is a constant real number. For DTs, the splits in
the input data can be either multivariate or univariate.

21

Chapter 2. Theory

Univariate splits Splits are created by evaluating one input variable

Multivariate splits Splits are created by evaluating multiple input variables at
once

DTs with multivariate splits that tests linear combinations of variables are also
called oblique DTs [59]. Most DTs also suffer from sensitivity to the training data.
Removing a feature will result in drastically different trees. The axis-parallel deci-
sion trees may also yield complex tree structure and increase computational cost,
when decision boundaries are not parallel to axes [60, 61]. This is illustrated in
Figure 2.7. In these cases it is either desirable to rotate the training data or use
multivariate splits.

Figure 2.7: Illustration of how a rotation in training data affects the decision
boundary of a decision tree [62]. More axis-aligned splits are needed to separate
the training data in the figure to the right.

In terms of interpretability as discussed in Section 2.4.1, it is highly likely that de-
cision trees are able to provide global interpretability if they are shallow enough.

2.5.1 Classification and Regression Trees

The decision tree method called Classification and Regression Trees (CART) by
Breiman [34] is considered the seminal work on regression trees [63].

The algorithm works for both classification and regression problems. Depending
on whether the problem is a classification or regression problem, a different split-
ting criterion is utilized. For classification problems, an impurity measure is used.
The Gini impurity measure gives a probability of how likely it is that a sample falls
into the wrong leaf. Each time a new split is considered, the split with the lowest
Gini impurity score will be chosen. A regression tree built using the CART algo-
rithm may for example attempt to minimize the mean squared error from (2.2)
instead of the Gini impurity measure.

22

2.5. Decision Trees

CART uses univariate splits, also called axis-parallel splits, to partition the input
space and assign an output prediction to each subregion, also called a leaf node.
The output prediction is the mean value of every data sample that falls into their
respective subregion in the input space. This can be visualized as a tree structure.
An example illustration of a regression tree and a visualization of how the input
space is divided into subregions can be seen in Figure 2.8.

Figure 2.8: Illustration of a regression tree [63].

A CART is grown using a procedure called recursive binary splitting, meaning after
every new split is created, a new split will be evaluated on the nodes resulting from
the split. An overview of this process will be summarized from [64], where the
equations and corresponding descriptions are from.

Given M regions R1, R2, . . . , RM and the output of the tree is a constant cm, the
prediction function of the tree can be written as

f (x) =
M
∑

m=1

cm I(x ∈ Rm). (2.25)

The algorithm starts off by finding the best splits on the training data using a
greedy algorithm, where the two resulting regions can be written as

R1(j, s) = {X |X j ≤ s} and R2(j, s) = {X |X j > s} (2.26)

23

Chapter 2. Theory

where j is the variable and s is the point in j which the algorithm will split on. If
training a regression tree, the desired j and s are those that solve the minimization
problem

min
j,s

min
c1

∑

x i∈R1(j,s)

(yi − c1)
2 +min

c2

∑

x i∈R2(j,s)

(yi − c2)
2

 (2.27)

where c1 and c2 are constants equal to the averages of yi in the respective regions.
Once j and s have been found, the splitting may continue on the two new regions
recursively until some stop condition. The stop condition may be some minimum
number of leaf nodes, or a maximum depth in the tree.

The resulting tree T0 is then pruned to create a subtree T such that T ⊂ T0. Pruning
means that internal nodes that do not contribute significantly to the minimization
of the sum of squares are combined to lower the complexity of the tree. Pruning
often allows the model to generalize better, as it prevents overfitting to the training
data.

2.5.2 Linear Model Trees

It has been previously discussed that CART are DTs where the predicted output
is a constant real number. Model trees on the other hand can output predictions
based on any type of model. Linear Model Trees (LMT) is a regression tree where
the only structural difference is that instead of constant predictions in the leaf
nodes, an LMT uses a linear function to form its prediction. For the LMT imple-
mentation used, the splits on the input data are univariate. This is done to retain
interpretability and reduce computation time. Growing an LMT is done by greedily
splitting the data using a similar procedure as CART, which gives no guarantees
for global optimality. A seemingly bad split may cause a good split to never be
found [12].

By using an LMT to form a piece-wise linear approximation of a black box predic-
tor, the simpler structure of the LMT can be used to understand the predictions
made by the black box predictor. The resulting tree sacrifices some accuracy to
give more interpretability. By weighting the linear regression coefficients in the
leaf nodes, the predictions by the LMT can be interpreted. From Gjærum [12], the
linear functions in the leaf nodes can be written on the form

24

2.5. Decision Trees

y =
∑

f ∈F
a f x f + C (2.28)

where y is the model prediction. a f is the linear regression coefficient for the
feature x f , and C is a constant. F is the set of all features. Total feature importance
I f for each feature f can then be calculated as

I f =
a f x f

∑

j∈F |a j x j|
. (2.29)

I f then describes within the interval [-1,1] how much each feature f contributes
to the overall prediction y . I f = −1 would mean f is the only feature that matters
to output a negative prediction, and vice versa.

2.5.3 Optimal Regression Trees

Optimal Regression Trees (ORT) is a novel method proposed by Bertsimas and
Dunn. Instead of growing and pruning a tree greedily, the entire process is mod-
eled as a Mixed Integer Optimization (MIO) problem. The method is described in
detail in [65], but the algorithms from the book will be presented in this section.
Though the original problem was formulated as an MIO problem, the authors
found that to speed up computational time, a local search heuristic could be em-
ployed instead of standard MIO solvers. This section will therefore cover the local
search method, which is the one used by the implementation in this thesis.

ORT-L is a variation of ORTs with the same structure as the LMTs in Section 2.5.2,
where the splits are univariate and the leaves contain linear regressions. ORT-LH
is another variation that introduces multivariate splits, but this thesis will focus
on ORT-L. From now on, ORT-L will simply be referred to as ORT unless specified
otherwise.

The overall objective function of the optimization problem can be formulated as

min
1

L̂

n
∑

i=1

(yi − fi)
2 +λ

∑

t∈TL

||βt ||1 (2.30)

which is essentially the minimization of least squares between the prediction of
the tree and the training data, plus a regularization term. TL is the set of all leaf

25

Chapter 2. Theory

nodes, L̂ is the baseline error in the training data, βt is the vector of regression
coefficients in the leaf node t, and λ is a regularization factor. This problem can be
separated such that the objective function can be solved individually for each leaf
using the using the GLMNet algorithm [66], which employs a coordinate-descent
approach to minimize the objective function. The objective function can then be
rewritten as

min
1

2|It |

∑

i∈It

(yi − fi)
2 +

λ L̂
2|It |

||βt ||1 (2.31)

where λGLM = λ L̂/2|It |, It is the set of data points that fall into leaf node t, and
|It | is the number of data points in leaf node t.

To start off the local search, many different trees (for example 100) are created
with different starting points with the hope that one of them will result in a tree
close to the global minimum. Each of the trees are then used as inputs to Algo-
rithm 1 together with the training data. LOCALSEARCH loops through the nodes
of the tree in random order. Using that node as a root node, a subtree is created.
Each of these subtrees are then locally optimized using Algorithm 2. This proce-
dure continues until the error does not improve. When the procedure stops, the
resulting tree is locally optimal, and the procedure continues with a new tree.

Algorithm 1 LOCALSEARCH [65]
Input: Starting decision tree T; training data X, y
Output: Locally optimal decision tree

1: repeat
2: errorprev← loss(T, X , y)
3: for all t ∈ shuffle(nodes(T)) do
4: I ← {i : x i is assigned by T to a leaf contained in Tt}
5: Tt ← OPTIMIZENODEPARALLEL(Tt ,XI ,yI)
6: Replace tth node in T with Tt
7: errorcurr← loss(T,X,y)
8: end for
9: until errorprev = errorcurr

10: return T

Algorithm 2 takes the subtrees discussed above as an input. Step 5 then calculates
the loss of the subtree given the current data. Step 7 calculates a new univariate
split on the current root node similar to CART by looping over all variables and
possible splitting points. The algorithm may now perform one of three actions. If
the loss of the subtree improved when the new split was created, the algorithm

26

2.5. Decision Trees

returns a new subtree with a branch node as its root node and two children. The
two other options are to replace the current branch node with either the left or
right child, also called the lower or upper child, making either one of them the
new root node.

Algorithm 2 OPTIMIZENODEPARALLEL [65]
Input: Subtree T to optimize; training data X,y.
Output: Subtree T with optimized parallel split at root.

1: if T is a branch then
2: Tlower,Tupper← children(T).
3: else
4: Tlower,Tupper ← new leaf nodes.

5: errorbest← loss(T,X,y)
6:

7: Tpara,errorpara ← BESTPARALLELSPLIT(Tlower,Tupper,X,y)
8: if errorpara < errorbest then
9: T, errorbest← Tpara, errorpara

10: errorlower← loss(Tlower,X,y)
11: if errorlower < errorbest then
12: T, errorbest← Tlower, errorlower

13: errorupper← loss(Tupper,X,y)
14: if errorupper < errorbest then
15: T, errorbest← Tupper, errorupper

16: return T

Finally, the term α ·C is also added to the loss function. The complexity C is equal
to the number of splits in the tree, and α is called the complexity parameter. α is
a factor that balances adding new splits to a node and keeping the complexity of
the tree down. This parameter can be automatically found through a grid search
using a procedure the authors nicknamed batch-complexity pruning.

2.5.4 Near-Optimal Nonlinear Regression Trees

Near-optimal Nonlinear Regression Trees (NNRT) is another method devised by
the some of the same authors as ORT. The method combines ideas from ORTs
and Multivariate Adaptive Regression Splines (MARS) by including the splitting
criterion in the prediction functions. Additionally, the method uses multivariate
splits instead of univariate splits. The equations and descriptions in the following
section are from [67].

27

Chapter 2. Theory

An NNRT has polynomial prediction functions in the leaf nodes. The prediction
function is constructed using a combination of the splitting criteria and a set
of coefficients. The parameters that determine the splits in the tree are trained
through gradient descent, more specifically through the Adaptive Moment Esti-
mation (Adam) optimizer, which will be discussed later this section.

The model assumes the data is given on the form (xi , yi), where the following
transformation is applied to the data

x̂ i j :=
x i j − x j,min

x j,max − x j,min
, i ∈ [n], j ∈ [m]. (2.32)

n represents the total number of samples in the dataset, and m represents the
total number of features per sample. Given data on the form , this transformation
ensures that xi ∈ [0, 1]m, meaning all features are normalized between 0 and 1
for all data points.

An NNRT has a fixed number of leaf nodes, meaning every branch node has two
children each. The tree also has a fixed depth D. An NNRT consists of a set of
nodes N , and a set of arcs A between the nodes. For every node ` in the tree, there
exists an associated vector a` and scalar b`. The arc the data sample x traverses
down the tree is determined by evaluating whether a>

`
x < b`. If this condition

holds true, the data will traverse down the left arc. Otherwise, it will traverse
down the right arc. This evaluation will continue until a leaf node is reached. For
any leaf node p, its prediction function gp(x) can then be expressed as

gp(x) = fp,D+1 +
D
∑

i=1

fp,i

`i
∏

`=`1

|a>` x− b`|. (2.33)

The overall prediction function g(x) can then be written as a function of gp(x)
such that

g(x) =
∑

p∈L

gp(x)
∏

`∈L<p

1{a>` x< b`}
∏

`∈L≥p

1{a>` x≥ b`} (2.34)

=
∑

p∈L

D
∑

i=i

fp,i

∏

`∈L<
`i

max(b` − aT
` x, 0)

∏

`∈L≥
`i

max(aT
` x− b`, 0) + fp,D+1

(2.35)

where L is the set of all leaf nodes and Lp is the set of all nodes the sample has
traversed through on its way to the leaf node. L≥p and L<p are the nodes the data
traveled through when it traversed a right and left arc respectively.

28

2.5. Decision Trees

Since f can be defined as the concatenation of all the coefficients f , a is the con-
catenation of all vectors a` and likewise b is the concatenation of all vectors b`,
the construction of the NNRT can then be written as the optimization problem

min
a,b,f

L(a,b, f) =
1
n

n
∑

i=1

(yi − g(xi))
2 +λ(||a||22 + ||b||

2
2 + ||f||

2
2). (2.36)

This looks very similar to the loss functions seen earlier, using least squares and
regularization parameters. The optimization of a and b can be separated from
the optimization of f. Since a and b are found through gradient descent, f can
be calculated through ridge regression as discussed in Section 2.2.1. The ridge
regression problem can then be written as

min
f

L(f) =
1
n

n
∑

i=1

(yi − fpi ,D+1 −
D
∑

j=1

fpi , j

∏

`∈L` j

|a>` x− b`|)2 +λ||f||22. (2.37)

Algorithm 3 describes how the NNRT is built. It requires some initialization of the
parameters a, b, and f. a and b are randomly initialized, and the subsequent f is
calculated through ridge regression. This initialization is done M times, and the set
of parameters with the lowest loss value L(a,b, f) are selected as the starting point
for the training loop. This technique is common when training neural networks,
where clever initialization of the weights reduce the time it takes to reach the end
of the training loop. Steps 5 through 10 are the steps taken by the Adam optimizer
to update the parameters a and b. This algorithm continues until the difference
between the current loss and the previous loss is below a threshold ε.

Adam is an optimizer that is commonly used because of its stability when exposed
to problems with noisy and sparse gradients [68]. Adam makes use of momentum
as discussed in Section 2.1.6 by storing an exponentially decaying average of past
squared gradients vt in addition to an exponentially decaying average of past
gradients mt . The rates at which these averages decay are determined by the
chosen coefficients β1 and β2.

The chosen learning rate α determines how fast Adam should update the parame-
ters. A largerαwill cause Adam to take larger steps in the direction of the gradient.
ε is used for two purposes in this implementation. It is used as a numerical con-
stant in the Adam optimizer to provide numerical stability by preventing division
by 0 in step 9 and step 10 in Algorithm 3. It is also used in the training loop to
stop the parameter updates when the difference between the current loss and the
previous loss is lower than ε.

29

Chapter 2. Theory

Algorithm 3 NNRT

1: Initialize a[1],b[1] and f[1].
2: while |L(a[t−1],b[t−1], f[t−1])− L(a[t],b[t], f[t])| ≥ ε do
3: t ← t + 1
4: gt,1 =∇a[t] L(a

[t],b[t], f[t]), gt,2 =∇b[t] L(a
[t],b[t], f[t]) . Get gradients

5: mt,1 = β1mt−1,1 + (1− β1)gt,1, mt,2 = β1mt−1,2 + (1− β1)gt,2 . Update
biased first moment

6: m̂t,1 = mt,1/(1− β t
1), m̂t,2 = mt,2/(1− β t

1) . Get bias-corrected first
moment

7: vt,1 = β2vt−1,1 + (1− β2)g2
t,1, vt,2 = β2vt−1,2 + (1− β2)g2

t,2 . Update
bias-corrected second moment

8: v̂t,1 = vt,1/(1− β t
2), v̂t,2 = vt,2/(1− β t

2) . Get bias-corrected second
moment

9: a[t] = a[t−1] −αm̂t,1/(
Æ

v̂t,1 + ε) . Update the parameter a
10: b[t] = b[t−1] −αm̂t,2/(

Æ

v̂t,2 + ε) . Update the parameter b
11: Use ridge regression to calculate the value of f[t] based on the value of a[t]

and b[t].

To find the best tree, Algorithm 4 is used. The algorithm is initialized by determin-
ing the maximum depth of the tree Dmax and a list of possible complexity parame-
ters. The parameter λ is used in the loss function as a regularization parameter as
described in Section 2.2.1. The algorithm iterates through every possible depth,
and generates an NNRT with the given depth and complexity parameter. The best
NNRT is the tree with the largest R2 on the validation dataset.

Algorithm 4 Tuning the parameters for NNRTs

1: Set the maximum depth of NNRT Dmax and possible complexity parameters
{λ1, . . . ,λ j}.

2: for D = 1, . . . , Dmax do
3: for λ= λ1, . . . ,λ j do
4: Find NNRT with depth D using complexity parameter λ.
5: Add this NNRT to the solution pool.
6: end for
7: end for
8: Identify the solution with largest R2 on the validation set.

Figure 2.9 puts the above equations into context by illustrating the NNRT as a tree
structure.

30

2.5. Decision Trees

Figure 2.9: The prediction function gp(x) for each leaf node p is described along
with the evaluations performed at each internal node in an NNRT of depth 2 [67].

31

Chapter 3

Design and Implementation

This section will cover the deep reinforcement learning agent the decision tree
methods attempted to approximate, and how the methods were applied. Sec-
tion 3.1 and 3.2 were written as part of the project thesis, and as such, has been
adapted from the project thesis [13] and conference paper [25].

3.1 Docking

Docking involves various complex maneuvers to steer a vessel from the open sea
towards a designated area in the harbor area called a berth. It has been character-
ized as one of the hardest problems to solve within ship control [69, 70]. Not only
does the vessel need to take into account the speed limits of the harbor, distance
to other ships and obstacles, but it has to simultaneously deal with extremely
nonlinear motions, reduced maneuverability at low speeds, and environmental
forces.

Historically, auxiliary devices such as tug boats have been used to dock large ves-
sels, but with the increased freedom of maneuverability in the form of azimuth
thrusters and tunnel thrusters, more sophisticated strategies can be employed.
Performing automatic docking using auxiliary devices together with neural net-
works have already proven successful [69, 71, 72]. For example, [72] used a neu-
ral network architecture with one hidden layer to perform supervised learning.
The ANN was trained from data collected by observing a skilled captain berth the
vessel, but there are a multitude of reasons why this is a sub-optimal approach.
The captain would have to berth the ship perfectly every time, which is not possi-
ble in practice. Errors are bound to happen, and the ANN will be entirely limited
to the data provided. Even though the captain may have experience docking the

33

Chapter 3. Design and Implementation

vessel, the procedure the captain follows may not necessarily the most efficient for
any given scenario. A major drawback with some of these aforementioned imple-
mentations is that they do not generalize well from one arbitrary port to another.
These methods also had strict limits from what angle the vessel may approach the
berth. Recent advances such as [73] allowed an ANN to berth both starboard and
port side on multiple ports successfully without re-training, but did not take into
account environmental forces such as wind and waves. Some publications were
found using deep reinforcement learning to solve similar problems, but most of
them were applied to underwater vehicles [74]. Other methods that have been
proposed are backstepping controllers [75] and model predictive control [76].

3.2 Deep Reinforcement Learning Agent

Deep Reinforcement Learning (DRL) agents have already been shown to perform
well in collision avoidance and trajectory following [77]. Using a deep reinforce-
ment learning agent has been proposed as a solution to the docking problem [7].
While many of the aforementioned methods relied on real-world data collection
and using supervised learning to train a docking agent, using DRL instead to solve
the docking problem removes that dependency. The docking agent was proven to
successfully solve the docking scenario from a variety of poses relative to the berth.
It was trained using Proximal Policy Optimization (PPO) with two hidden layers of
400 hidden units each, ReLU activations for both hidden layers, and a hyperbolic
tangent activation for the output layer.

The agent was trained on a three degrees-of-freedom vessel. It is 76.2 meters
long, weighing 6000 tonnes in dead weight [76]. The vessel actuators are three
thrusters: one tunnel thruster, and two azimuth thrusters. Their numbering and
location on the vessel is shown in Figure 3.2. The tunnel thruster is used to create
a side force on the vessel, while the two azimuth thrusters are mounted in the aft
of the ship, and are rotatable thrusters. The action vector is described in (3.1). fi
is the applied thrust measured in newton, and ai is the azimuth angle in radians
for thruster i. Azimuth angles are measured from their neutral positions pointing
forward. The azimuths are allowed to rotate 90 degrees clockwise, and 90 degrees
counter-clockwise.

Since the docking problem as a whole is fairly complex, the training of the agent
was divided into five separate learning phases. Every phase built upon previous
phases, and solved sub-problems of the docking problem. An illustration of the
relation between the learning phases can be seen in 3.1.

LP1 An agent commanded the vessel to hold a specified pose in the middle of the

34

3.2. Deep Reinforcement Learning Agent

Figure 3.1: Illustration of learning phases [7].

harbor, performing dynamic positioning.

LP2 An agent commanded the vessel from the proximity of the berthing point to
a desired berthing pose. Together with LP1, this learning phase solved the
berthing phase.

LP3 An agent commanded the vessel from outside the harbor to the proximity of
the berthing point, performing dynamic positioning.

LP4 Similar to LP2, an agent commanded the vessel to the berthing point from
larger distances. This learning phase solved both the approach and berthing
phases.

LP5 An agent commanded the vessel from outside the harbor area while keeping
the harbor speed limits. This phase solved the entire docking problem.

This thesis uses an agent that is trained up to LP4 distance berthing. The valid
ranges for the outputs of the agent in this learning phase are shown in Table 3.1.

y =
�

f1 f2 f3 a1 a2
�

(3.1)

Variable Valid range

f1 [kN] (−70,100)
f2 [kN] (−70,100)
f3 [kN] (−50,50)
a1 [rad] (−π2 , π2)
a1 [rad] (−π2 , π2)

Table 3.1: Valid output ranges for action vector.

35

Chapter 3. Design and Implementation

Figure 3.2: Thruster numbering on vessel [76].

The state vector for this learning phase is described in (3.2), and the respective
state descriptions in Table 3.2.

x =
�

x̃ ỹ l u v r dobs ψ̃obs ψ̃
�

(3.2)

State Description
x̃ , ỹ The Cartesian distances from origin of the vessel

to the target position, in body frame. x-direction
is north-south, y-direction is east-west. Measured
in meters.

ψ̃ The relative difference between heading of vessel
and heading of the desired target. Measured in
radians.

u,v,r Linear and rotational velocities of the vessel, in
body frame. Measured in meters per second and
radians per second.

l A binary variable describing whether the vessel
is in contact with land. Only used when training
the agent.

dobs,ψ̃obs The distance from the vessel’s edge to the clos-
est obstacle and the relative heading between the
vessel and the closest obstacle. Measured in me-
ters and radians respectively.

Table 3.2: Description of states [7].

3.3 Dataset

The data was collected by letting the reinforcement agent dock to harbor 500
times. The agent was placed at random initial starting points. Each docking episode

36

3.3. Dataset

had an episode length of 500 seconds with a sampling rate of 1 Hz. Altogether, the
final dataset consisted of 242,384 data samples. The dataset was split according
to Table 3.3.

Set Number of samples Fraction of total samples
Training 193662 79.90 %
Validation 11947 4.93 %
Test 36775 15.17 %

Table 3.3: Splitting of the dataset

The training set was used to train the ORT and the NNRT. The LMT was trained
using a similar dataset, but with fewer samples and longer episode lengths. Fur-
thermore, the test dataset was used to quantify the performance of each method
on unseen data. Sampling from all of these locations allows the dataset to hope-
fully capture most of the edge cases. This is useful when the dataset is normalized
during training. The more extreme values the dataset is able to capture, the better
it hopefully will generalize on new data.

0 200 400 600 800 1000 1200
East [m]

400

600

800

1000

1200

No
rth

 [m
]

Harbour constraints
Training data
Validation data
Test data
Berth point

Figure 3.3: Starting points in the dataset.

For the trained ORTs and NNRTs, the dataset was constructed with the raw states,
and normalized actions. This is different from the LMTs and the neural network,
which were trained using normalized states. The largest reason for leaving the
states un-normalized was to improve interpretability in the tree splits. Without

37

Chapter 3. Design and Implementation

having prior knowledge about the environment, it might be difficult to put the
normalized states into context. It is magnitudes more intuitive to analyze the splits
in a tree when the values of the split are represented using well-known units
like meters and meters per second. When data is fed to neural networks, data
is almost always without exception normalized to improve converge and reduce
computational time.

The action vector on the other hand was normalized between [-1,1]. As seen from
Table 3.1, the magnitude of the backwards force on the azimuths are not the same
as the force going forward. This introduces another element (of confusion, if you
will) one must know about the environment when examining the resulting trees.
Information is already known about what the maximum and minimum thruster
forces and azimuth angles are, and it is therefore unnecessary to assume this is
already known by the one examining the tree.

One downfall of not using normalized states is that the coefficients of the resulting
linear models in the leaves in and of themselves may be less interpretable. In the-
ory, if the states were normalized well, the scale of the coefficients would indicate
the importance of the respective states in the leaves. There might be cases when
this is preferable, however, feature importance can still be calculated in each leaf
according to (2.29).

3.4 Approximating the agent using decision trees

As mentioned, decision trees can be used to train approximate models of other less
interpretable models. Deep trees are often needed in order to capture more com-
plex dynamics in the data. However, trees that are too deep may lead to overfitting
and may prohibit the tree from generalizing well. Deep trees may also severely re-
strict their interpretability, which is the main goal when approximating the agent.
The goal must therefore to create as shallow trees as possible for maximum inter-
pretability, without sacrificing too much accuracy.

3.4.1 Linear Model Trees

The LMT implementation used is based on an adaptation of classification and
regression trees [78]. The modifications done allowed the tree to grow to a max-
imum number of leaf nodes instead of a maximum depth, and added randomiza-
tion in the process of searching for thresholds and choosing the next node splits
[12]. The LMT used contains 681 leaf nodes, with the shallowest leaf node situ-
ated at depth 5, and the deepest at depth 15.

38

3.4. Approximating the agent using decision trees

The LMT used was already trained with data. It was trained using normalized
states, where the states were normalized by subtracting the mean and dividing
by the standard deviation for every state, and normalized actions between [-1,1].
The output from the LMT was then multiplied by a scalar to recover the original
scale of the actions.

3.4.2 Optimal Regression Trees

The implementation used is from the Interpretable AI Python package, and was
created by a company with the same name [11] who provided the author with
academic licenses. The implementation is originally written in Julia, but Python
bindings are provided. For this thesis, optimal regression trees with linear predic-
tions in the leaves were used. The object OptimalTreeRegressor was therefore used
to grow the tree, which was embedded inside of a GridSearch object. The grid
search was employed to perform automatic discovery of the optimal complexity
parameter α. A training loop was set up to iterate over all possible depths up to a
maximum of 10, record the evaluation metrics in Section 3.7 on the test data for
each depth, and save the tree to a JSON file. The JSON files of the chosen trees
was used to recover the trained trees when replacing the actions of the docking
agent.

3.4.3 Near-optimal Nonlinear Regression Trees

The implementation of the NNRTs was made from scratch in Python. It was im-
plemented as a module in PyTorch [1], a deep learning framework developed
by Facebook. This made the NNRT implementation compatible with the optimiz-
ers and other features the framework provides. PyTorch operates using tensors,
equivalent to a multi-dimensional matrix. As PyTorch is mainly focused on neural
networks, few examples of decision trees are available. The tree structure used in
the NNRT implementation was therefore inspired by an implementation of Soft
Decision Trees [79].

The maximum depth of the tree Dmax was first decided. This was set to 4, since
no signifcant improvements were seen in NNRTs with depths deeper than 4 in the
original paper [67].

As described in Section 2.5.4, the matrices a, b, and f were initialized randomly
to give the method a warm start. a and f were implemented as two-dimensional
tensors. b was implemented as a one-dimensional tensor. The dimensions of each
tensor can be illustrated with the following equations

39

Chapter 3. Design and Implementation

a=

a1
a2
...

a`i

=

a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m

...
...

. . .
...

a`i ,1 a`i ,2 . . . a`i ,m

(3.3)

b=

b1
b2
...

b`i

(3.4)

f=

f1
f2
...
fp

=

f1,1 f1,2 . . . f1,D
f2,1 f2,2 . . . f2,D
...

...
. . .

...
fp,1 fp,2 . . . fp,D

(3.5)

where D is the depth of the tree, p is the number of leaf nodes, and m is the number
of features. `i is the ith branch node, also called internal nodes. The number of
nodes in an NNRT can be calculated as

Branch Nodes= 2D − 1 (3.6)

Leaf Nodes= 2D (3.7)

which were used to define the shape of the tensors. In contrast to the LMTs de-
scribed in Section 2.5.2, NNRTs are built with a fixed depth, and a fixed number of
leaf nodes. This causes the number of parameters to increase exponentially. The
splits are also multivariate, as opposed to LMT’s univariate splits. Even though
the tree may be less interpretable than LMTs, the multivariate splits allow shal-
lower trees, and the nonlinear prediction functions is able to better capture the
dynamics of the system.

NNRT requires the input features to be normalized between 0 and 1 as described
in (2.32). It is beneficial to keep the same scale on the features, as this brings more
stable convergence to the training. The prediction functions in the leaf nodes con-
tain successive multiplications, so scaling the features to the range [0,1] avoids
large predictions during training. This normalization is therefore also done to help
avoid the exploding gradient problem. The data was scaled using the MinMaxS-
caler from the scikit-learn Python package [2].

40

3.5. Hyperparameters

Normalizing is trivial when evaluating how well a model performs on a dataset,
as long as the normalization is done consistently on both the training and test
data. This proves to be more of a challenge when the NNRT is to be used as a
replacement for the neural network. The normalization needs to be done using
normalization constants calculated from the environment. Setting minimum and
maximum limits on the features may unnecessarily restrict the agent’s ability to
generalize from harbor to harbor. This transformation was still done to investigate
the feasability of the method without spending too much time.

The concatenated vector of coefficients f was calculated using the ridge regressor
from scikit-learn [2]. The original algorithm was also improved upon by imple-
menting mini-batches. When the dataset gets sufficiently large, the gradient and
its backward pass through the computational graph takes too long to compute.
Therefore, it is desirable to optimize on fewer samples at a time. This greatly im-
proved both the convergence of the algorithm, and cut down on several orders of
magnitude of computational time.

The implementation of the NNRTs can be found in Appendix C.

3.5 Hyperparameters

The hyperparameters used for each method are summarized in Table 3.4 and Table
3.5. In Table 3.4, the list of regularization parameters allowed the ORT implemen-
tation to choose the regularization parameter that resulted in the best performing
tree.

Hyperparameter Value

Regularization parameters λ 0.00001,0.0001, 0.005,0.001
Max depth Dmax 10

Table 3.4: Hyperparameters for ORT

Hyperparameter Value

Regularization parameter λ 0.001
Learning rate α 0.001
Constant ε 0.0000001
Batch size N 128
Random initializations M 50
Max depth Dmax 4

Table 3.5: Hyperparameters for NNRT

41

Chapter 3. Design and Implementation

3.6 Computational Hardware

The simulations and computations were performed on a workstation with Ubuntu
20.04. The workstation is powered by an AMD Ryzen 9 3950X CPU, and is equipped
with 64 GB of RAM.

3.7 Evaluation Metrics

Three evaluation metrics were used when examining the performance of the meth-
ods: Mean Absolute Error (MAE), Mean Squared Error (MSE) seen in (2.2), and
the coefficient of determination R2.

MAE is a measure of how large the output error of an approximated is on average.
This is simply calculated as the absolute value of the error between the ground
truth (the PPO agent) and predictions [2] and can be described by the equation

MAE =
1
N

N
∑

i=i

|yi − ŷi| (3.8)

The coefficient of determination R2 gives a measure of the proportion of variance
of the dependent variable y that has been explained by the independent variables
[2]. Therefore, it gives an indication of how well the models approximate the PPO
agent, and how well they will generalize to new unseen data. From [2], R2 is a
function of RSS from (2.16), and can be expressed as

R2 = 1−

∑n
i=1(yi − ŷi)2

∑n
i=1(yi − ȳ)2

(3.9)

where ȳ = 1
n

∑n
i=1 yi . The best possible R2 is therefore equal to 1 when the ap-

proximated model perfectly approximates the ground truth.

42

Chapter 4

Results

Section 4.1 shows the PPO agent maneuvering the environment throughout one
docking episode. This will be used as a benchmark for how the other methods
performed, using the same starting point.

The performance of the linear model tree will be presented in Section 4.2. Each
of the actions of the PPO agent will be replaced in parts or fully by the LMT to
investigate how well it performs in practice.

The experiment in Section 4.3.2 investigates whether an ORT can function as a
partial replacement for the force f3 of the neural network trained through PPO. It
is desirable to investigate how well this will work in practice, because it can allow
insight into a black-box predictor with a large action vector without necessarily
approximating every action of the predictor. If the ORT is able to approximate the
this force close enough, we should observe a similar failure rate to that of the PPO
agent. Contrary to the azimuth thrusters, the tunnel thruster is in a fixed position
on the vessel and can only generate a sideways force on the vessel. This makes
it ideal for isolated analysis. This section goes in-depth to investigate the ORT
approximation of the tunnel thruster at depths 1 and 8. Finally, the results for the
tunnel thruster f3 will be summarized.

In Section 4.3.3, the results will be summarized for the four remaining actions,
and an attempt to fully replace the neural network with five ORTs will be made.

Section 4.4 summarizes the results when attempting to train an NNRT to approx-
imate the tunnel thruster f3.

Finally, a comparison between all the methods will be done in Section 4.5.

43

Chapter 4. Results

4.1 PPO

The PPO agent was allotted 1000 seconds to dock, and successfully docked the
vessel to harbor in about 400 seconds. The states of the vessel are shown in Figure
4.3 and the actions are shown in Figure 4.2. This docking scenario had the initial
poses shown in Table 4.1, and will be used as a baseline for the upcoming methods.
When letting the PPO agent dock the vessel 100 times with random initial poses,
only two crashes into the quay were observed.

State Initial value

x 700 m
y 650 m
ψ -0.384 rad
u 0.3 m/s
v 0 m/s
r 0 rad/s

Table 4.1: Initial pose when docking to harbor.

200 300 400 500 600 700 800
East [m]

700

800

900

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

Figure 4.1: Vessel trajectory of the PPO-agent.

44

4.1. PPO

0 200 400 600 800
Time [s]

−1

0

1

An
gl
e [

ra
d]

α1

α2

0 200 400 600 800
Time [s]

−100
−75
−50
−25

0
25
50
75

Fo
rc
e [

kN
]

f1
f2
f3

Figure 4.2: Vessel actions of the PPO-agent.

0 500

0.0

0.5

1.0

Su
rg
e [
m
/s]

u
ur

0 500

 0.10

 0.05

0.00

Sw
ay
 [m
/s]

v
vr

0 500

 0.005

0.000

0.005

Ya
w
ra
te
[ra
d/
s]

r
rr

0 500

0

50

100

Di
sta
nc
e
̃ x [
m
]

0 500
 80

 60

 40

 ̃0

0

Di
sta
nc
e
̃ y [
m
]

0 500
 0.8

 0.6

 0.4

 0.̃

0.0

Ya
w
er
ro
r
̃ ψ
[ra
d]

0 500
Time [s]

0

50

100

Di
sta
nc
e d

oψ
s[m

]

Figure 4.3: Vessel states of the PPO-agent.

45

Chapter 4. Results

4.2 LMT

Table 4.2 shows the MAE, MSE, and out-of-sample R2 calculated on the test dataset
described in Section 3.3. The failure rate is computed by letting the LMT control
the action indicated, and letting the PPO control the rest of the actions for 100
episodes. The percentage indicated shows how many times the vessel collided with
the quay. This quantifies how well the LMT approximates each action by letting it
run in a real-world scenario.

Replaced action MAE MSE Out-of-sample R2 Failure rate

f1 0.1130 0.0369 0.9255 13 %
f2 0.1209 0.0457 0.8967 8 %
f3 0.0956 0.0468 0.8304 8 %
a1 0.1322 0.0605 0.7025 9 %
a2 0.1242 0.0573 0.7228 7 %
All actions 0.1172 0.0494 0.8156 12 %

Table 4.2: Evaluation metrics for the trained LMT on each output on the test set.

Overall, a 12 % failure rate was seen when the LMTs were in control of the entire
vessel. This is a little higher than the failure rate of the other actions except for f1.
It is also noted that the two actions with the highest isolated failure rates were f1
and a1, both actions that belong to the left azimuth. This might be a bit expected,
because the quay is located on the port side of the ship when it is docking. It is
suspected that this thruster has more complex dynamics than the other thrusters.
It is therefore harder to approximate, and is quite important to hinder the vessel
from colliding.

The vessel was initiated with the same starting pose as in Section 4.1, and the
LMT was in control of all actions. Figure 4.4 shows the trajectory of the vessel,
Figure 4.5 shows the actions, and Figure 4.6 shows the states of the vesssel for
the entire docking episode. The vessel overshoots the berthing area, as can be
seen from the dip in x̃ in Figure 4.6 right after 200 seconds into the episode.
Intuitively, the vessel should therefore work to align itself with the berthing area
in this direction. When observing the feature importance for the LMTs in Figure
4.7, the LMT seems to place importance on the surge speed u for the action f2
during this period. Meanwhile, the tunnel thruster is working to prevent the vessel
from crashing into the quay, as observed with its increased importance on dobs.
For the rest of the episode, quite high importance is placed on all states for dobs,
ψ̃obs and ψ̃. This is during the critical phase of the docking scenario where the
vessel is in the vicinity of the berth, but needs to align itself correctly.

46

4.2. LMT

200 300 400 500 600 700 800
East [m]

700

800

900

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

Figure 4.4: Trajectory map when LMT replaced the PPO agent.

0 200 400 600 800
Time [s]

−1

0

1

An
gl
e [

ra
d]

α1

α2

0 200 400 600 800
Time [s]

−100
−75
−50
−25

0
25
50
75

Fo
rc
e [

kN
]

f1
f2
f3

Figure 4.5: Actions when LMT replaced the PPO agent.

47

Chapter 4. Results

0 500

0.0

0.5

1.0

Su
rg
e [

m
/s]

u
ur

0 500
−0.100

−0.075

−0.050

−0.025

0.000

Sw
ay
 [m

/s]

v
vr

0 500

−0.005

0.000

0.005

Ya
w

ra
te

[ra
d/
s]

r
rr

0 500

0

50

100

Di
sta

nc
e

 x [
m
]

0 500
−80

−60

−̃0

−20

0

Di
sta

nc
e

 y [
m
]

0 500
−0.8

−0.6

−0.̃

−0.2

0.0

Ya
w

er
ro
r

 ψ
[ra

d]
0 500

Time [s]

0

50

100

Di
sta

nc
e d

oψ
s[m

]

Figure 4.6: States when LMT replaced the PPO agent.

48

4.2. LMT

−1

0

1

f1
x~
y~

l
u

v
r

d_o
ψ~_o

ψ~

−1

0

1

f2

−1

0

1

f3

−1

0

1

a1

0 200 400 600 800 1000

Timeψ[s]
−1

0

1

a2

Figure 4.7: Feature importances when LMT replaced the PPO agent.

49

Chapter 4. Results

4.3 ORT

4.3.1 Computational time

Figure 4.8 shows how long it takes to train trees of various depths with training
data provided by the PPO agent. Though this varies depending on the number of
samples in the training data, it gives an idea of the rapid increase in computational
time depending on the depth of the tree.

0 2 4 6 8 10
Depth

0

50

100

150

200

250

300

350

Co
m

pu
ta

tio
na

l t
im

e
[m

in
]

Computational Time for Tree Methods
ORT-L

Figure 4.8: Computational time for various depths of ORTs

4.3.2 Approximating the tunnel thruster

ORT with depth 1

The ORT with depth D = 1 was trained to control the tunnel thruster, and was
initiated with the same pose as in Section 4.1. The vessel trajectory is seen in Fig-
ure 4.9, its actions in Figure 4.10, and its states in Figure 4.11. It did not perform
adequately enough to solve the docking problem. The PPO agent in Figure 4.1
used the tunnel thruster quite extensively initially during the docking episode at

50

4.3. ORT

around 100 seconds and then correctly applied a positive tunnel thruster force to
rotate the vessel into the right position. The ORT on the other hand, as can be seen
from Figure 4.10, does not apply a large enough positive force on f3 to prevent it
from colliding with the quay.

200 300 400 500 600 700 800
East [m]

700

800

900

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

Figure 4.9: Vessel trajectory of a failed docking scenario when replacing the tun-
nel thruster of the PPO-agent with an Optimal Regression Tree of depth 1.

Figure 4.12 illustrates the ORT. The vessel will utilize one of two different linear
regression depending on the state ψ̃. It is seen that the ORT learned to split on
the state ψ̃ essentially at 0. If ψ̃ is below 0.0003 radians, the linear regression in
node 2 will be used. Otherwise, the linear regression of node 3 will be used. The
coefficients of the linear regression in the two leaf nodes can be seen in Table 4.3.
By investigating the vessel states for this scenario in Figure 4.11, it is seen that
ψ̃ is always negative. This means f3 for this scenario is controlled solely by the
linear regression in node 2.

51

Chapter 4. Results

0 50 100 150 200 250 300
Time [s]

−1

0

1

An
gl
e [

ra
d]

α1

α2

0 50 100 150 200 250 300
Time [s]

−100
−75
−50
−25

0
25
50
75

Fo
rc
e [

kN
]

f1
f2
f3

Figure 4.10: Vessel actions of a failed docking scenario when replacing the tunnel
thruster of the PPO-agent with an Optimal Regression Tree of depth 1.

0 200

0.0

0.5

1.0

Su
rg
e [
m
/s]

u
ur

0 200

 0.10

 0.05

0.00

Sw
ay
 [m
/s]

v
vr

0 200
 0.005

0.000

0.005

Ya
w
ra
te
[ra
d/
s]

r
rr

0 200

0

50

100

Di
sta
nc
e
̃ x [
m
]

0 200
 80

 60

 ̃0

 20

0

Di
sta
nc
e
̃ y [
m
]

0 200
 0.8

 0.6

 0.̃

 0.2

0.0

Ya
w
er
ro
r
̃ ψ
[ra
d]

0 200
Time [s]

0

50

100

Di
sta
nc
e d

oψ
s[m

]

Figure 4.11: Vessel states of a failed docking scenario when replacing the tunnel
thruster of the PPO-agent with an Optimal Regression Tree of depth 1.

52

4.3. ORT

Figure 4.12: Optimal Regression Tree of depth 1.

State Node 2 Node 3

x̃ 0.0006596 -0.00009879
ỹ 0.001748 -0.00006366
l 0 0
u 0.009009 -0.02378
v 1.673 -0.1146
r 61.72 12.71
dobs -0.005271 -0.0001507
ψ̃obs -0.03306 -0.009885
ψ̃ -0.3044 -0.1387
Constant 0.1124 -0.9055

Table 4.3: Coefficients of the linear regressions in node 1 and 2 in Figure 4.12.

To give context to the coefficients of the linear regressions, the feature importances
for each feature is calculated at every time step depending on which leaf the data
sample falls into through (2.29). Figure 4.13 illustrates the feature importances
over the episode until it collided with the quay. As it should, the tunnel thruster
should be quite concerned about the rotational force r, as it is the state it has the
most influence over. When comparing the states of the PPO agent and this tree
however, it is clear that the state with the largest deviations was the sway velocity
v. Comparing the feature importances of this tree in Figure 4.13 to the feature
importances of the LMT in Figure 4.7, this tree is placing way more importance
on the state v than the LMT during the same time period. The LMT placed more
importance on the the distance dobs for f3. This ultimately caused the vessel to
collide with the harbor.

53

Chapter 4. Results

0 100 200 300
Time [s]

 1.00

 0.75

 0.50

 0.25

0.00

0.25

0.50

0.75

1.00

Fe
atu
re
 im
po
rta
nc
e

x~
y~

l
u

v
r

d_o
ψ~_o

ψ~

Figure 4.13: Feature importances of a failed docking scenario when replacing the
tunnel thruster of the PPO-agent with an Optimal Regression Tree of depth 1.

ORT with depth 8

This tree managed to successfully solve the docking scenario in around 400 sec-
onds, similarly to when using only the PPO-agent. The initial pose is the same as
in Section 4.1. The trajectory of the vessel in this episode can be seen in Figure
4.14, the states in Figure 4.16, and the actions in Figure 4.15. The tunnel thruster
is observed to almost perfectly replicate the tunnel thruster of the PPO agent. In
addition, as will be seen in Table 4.4, the failure rate of this tree is almost exactly
the same as the PPO agent.

54

4.3. ORT

200 300 400 500 600 700 800
East [m]

700

800

900

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

Figure 4.14: Vessel trajectory of a successful docking scenario when replacing
the tunnel thruster of the PPO-agent with an Optimal Regression Tree of depth 8.

0 200 400 600 800
Time [s]

−1

0

1

An
gl
e [

ra
d]

α1

α2

0 200 400 600 800
Time [s]

−100
−75
−50
−25

0
25
50
75

Fo
rc
e [

kN
]

f1
f2
f3

Figure 4.15: Vessel actions of a successful docking scenario when replacing the
tunnel thruster of the PPO-agent with an Optimal Regression Tree of depth 8.

55

Chapter 4. Results

0 500

0.0

0.5

1.0

Su
rg
e [
m
/s]

u
ur

0 500

 0.10

 0.05

0.00

Sw
ay
 [m
/s]

v
vr

0 500

 0.005

0.000

0.005

Ya
w
ra
te
[ra
d/
s]

r
rr

0 500

0

50

100

Di
sta
nc
e
̃ x [
m
]

0 500
 80

 60

 40

 ̃0

0

Di
sta
nc
e
̃ y [
m
]

0 500
 0.8

 0.6

 0.4

 0.̃

0.0

Ya
w
er
ro
r
̃ ψ
[ra
d]

0 500
Time [s]

0

50

100

Di
sta
nc
e d

oψ
s[m

]

Figure 4.16: Vessel states of a successful docking scenario when replacing the
tunnel thruster of the PPO-agent with an Optimal Regression Tree of depth 8.

Figure 4.17 shows the calculated feature importances from an ORT of depth 8
controlling the tunnel thruster. At the beginning of the approach phase, the vessel
immediately turns counter-clockwise before it turns clockwise again to align itself
with the harbor, as can be seen from the state ψ̃ in Figure 4.16. As expected,
during this first counter-clockwise turn, most importance is attributed to the states
r, dobs and ψ̃. These are the states the tunnel thruster has the most control over.
The tunnel thruster is not as effective at high speeds on open sea as it is to make
minor adjustments to the vessel pose. When the vessel reaches its berthing pose, it
is oscillating in yaw rate ψ̃ as if behaving like an underdampened PID-controller.
During these oscillations, the related states r, ψ̃obs and dobs contribute most to
the tunnel thruster output.

It is noted that right around the time when the ORT with D=1 crashed, the feature
importances for v and r suddenly switch and become positive. This is a sign that
the tree learned another split to prevent the vessel from crashing in scenarios as
was seen in the previous section.

56

4.3. ORT

0 200 400 600 800 1000
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Fe
atu

re
 im

po
rta
nc
e

x
y

l
u

v
r

d_o
ψ _o

ψ

Figure 4.17: Feature importance values for an ORT of depth 8 trained to approx-
imate the tunnel thruster

Summary

Table 4.4 illustrates the evaluation metrics on the test set, and the failure rate of
the tree over 100 episodes. Given the same initial poses as the scenario in Section
4.1, it was observed that an ORT trained to control the tunnel thruster together
with the PPO agent was never able to solve the docking scenario for depths of 1.
For every depth added, the failure rate decreased until depth 8. When the depth
of the tree increased to 9, a significant increase in failure rate of the agent is
observed. Even though MAE decreased, the MSE increased, while R2 decreased.
MSE is often an indicator of outliers in the data, and this increase may demonstrate
that the tree overfitted to outliers.

When comparing the ORT with depth 8 trained to control f3 to the LMT of the
same action, the ORT outperformed the LMT in terms of MAE at depth 3. The MSE
was consistently lower for the ORTs than the LMT for all depths, and the R2 was
consistently higher. This illustrates that isolated analysis of these metrics alone do
not necessarily give a definite answer to which tree is the best, and should be used

57

Chapter 4. Results

in conjunction with for example the failure rate of the tree. In the end, the ORT
with depth 8 had the highest R2, the lowest MSE, and the lowest failure rate. It
did however have a slightly higher MAE than the trees of depth 9 and 10.

Depth MAE MSE Out-of-sample R2 Failure rate

1 0.1216 0.0347 0.8742 100 %
2 0.1044 0.0235 0.9151 48 %
3 0.0816 0.0151 0.9454 37 %
4 0.0641 0.0092 0.9667 16 %
5 0.0555 0.0089 0.9677 10 %
6 0.0428 0.0056 0.9798 10 %
7 0.0378 0.0057 0.9794 9 %
8 0.0325 0.0042 0.9849 3 %
9 0.0312 0.0061 0.9778 9 %
10 0.0314 0.0088 0.9680 3 %

Table 4.4: Evaluation metrics for the best ORT-L for a given depth when approx-
imating the force f3.

4.3.3 Approximating the other actions

This section will explore approximating the rest of the actions, and will attempt
to dock the vessel by replacing all the actions with ORTs.

Evaluation metrics

It is noted that f3 had much higher rates of failure at lower depths than f1 and f2.
This illustrates how important f3 is, especially during the final phase of docking.

Interestingly, even though the R2 for f2 and especially a2 were quite low at depth
1, it is observed that the failure rate is very low when compared to the other
actions at similar depth. This may indicate that the second azimuth thruster is
not as extensively used as the two other thrusters. This same phenomenon can be
seen in Section 4.2 where the failure rate was lower when replacing the neural
network with an LMT for f2 and a2 compared to the other actions.

58

4.3. ORT

Depth MAE MSE Out-of-sample R2 Failure rate

1 0.1861 0.0739 0.8509 30 %
2 0.1361 0.0392 0.9209 9 %
3 0.0889 0.0183 0.9631 6 %
4 0.0667 0.0143 0.9711 4 %
5 0.0494 0.0078 0.9843 9 %
6 0.0395 0.0069 0.9861 3 %
7 0.0320 0.0074 0.9850 4 %
8 0.0292 0.0056 0.9887 2 %
9 0.0265 0.0065 0.9869 9 %
10 0.0244 0.0068 0.9863 9 %

Table 4.5: Evaluation metrics for the best ORT for a given depth when approxi-
mating the force f1.

Depth MAE MSE Out-of-sample R2 Failure rate

1 0.2308 0.0919 0.7923 7 %
2 0.1440 0.0460 0.8960 10 %
3 0.1135 0.0300 0.9322 10 %
4 0.0900 0.0210 0.9526 8 %
5 0.0680 0.0138 0.9690 7 %
6 0.0574 0.0115 0.9740 10 %
7 0.0426 0.0082 0.9816 6 %
8 0.0414 0.0634 0.8567 2 %
9 0.0355 0.0113 0.9744 6 %
10 0.0338 0.0081 0.9817 8 %

Table 4.6: Evaluation metrics for the best ORT for a given depth when approxi-
mating the force f2.

Depth MAE MSE Out-of-sample R2 Failure rate

1 0.1863 0.0676 0.6673 56 %
2 0.1636 0.0528 0.7404 57 %
3 0.1278 0.0377 0.8144 24 %
4 0.1082 0.0280 0.8626 11 %
5 0.0849 0.0204 0.9000 7 %
6 0.0711 0.0160 0.9222 10 %
7 0.0578 0.0113 0.9442 8 %
8 0.0546 0.0139 0.9318 8 %
9 0.0423 0.0074 0.9637 6 %
10 0.0450 0.0114 0.9438 12 %

Table 4.7: Evaluation metrics for the best ORT for a given depth when approxi-
mating the azimuth angle a1.

59

Chapter 4. Results

Depth MAE MSE Out-of-sample R2 Failure rate

1 0.2513 0.1080 0.4771 20 %
2 0.2007 0.0782 0.6214 15 %
3 0.1606 0.0547 0.7350 18 %
4 0.1163 0.0355 0.8282 9 %
5 0.0897 0.0194 0.9060 6 %
6 0.0767 0.0154 0.9255 10 %
7 0.0694 0.0195 0.9054 7 %
8 0.0605 0.0113 0.9449 10 %
9 0.0501 0.0097 0.9532 9 %
10 0.0479 0.0115 0.9444 4 %

Table 4.8: Evaluation metrics for the best ORT for a given depth when approxi-
mating the azimuth angle a2.

Replacing the PPO agent with five ORTs

Finally, the entire PPO agent will be replaced by five trees. The trees with the
chosen depths were based on how well each tree performed individually in the
previous sections. The depth of the trees which were chosen to replace the PPO
agent are shown in Table 4.9.

Action Depth of tree

f1 8
f2 10
f3 8
a1 9
a2 10

Table 4.9: ORTs chosen to replace the PPO agent

The five trees that replaced the PPO agent was tested on an entire episode with
the same initial pose as in Section 4.1. The resulting trajectory of this episode is
plotted in Figure 4.18. The actions can be seen in Figure 4.19, and the states in
Figure 4.20. There are quite a lot of oscillations for when observing the actions a2
and f1. This same behavior was observed for the LMT in Figure 4.5. This indicates
that the tree is perhaps switching between two different leaf nodes. This behavior
may be the result of the trees controlling these two actions overfitting slightly to
the training data, or the splitting point for a certain state may be slightly off.

60

4.3. ORT

200 300 400 500 600 700 800
East [m]

700

800

900

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

Figure 4.18: Vessel trajectory of a successful docking scenario when replacing
the PPO-agent with five ORTs

0 200 400 600 800
Time [s]

−1

0

1

An
gl
e [

ra
d]

α1

α2

0 200 400 600 800
Time [s]

−100
−75
−50
−25

0
25
50
75

Fo
rc
e [

kN
]

f1
f2
f3

Figure 4.19: Vessel actions of a successful docking scenario when replacing the
PPO-agent with five ORTs

61

Chapter 4. Results

0 500

0.0

0.5

1.0

Su
rg
e [
m
/s]

u
ur

0 500

 0.10

 0.05

0.00

Sw
ay
 [m
/s]

v
vr

0 500

 0.005

0.000

0.005

Ya
w
ra
te
[ra
d/
s]

r
rr

0 500

0

50

100

Di
sta
nc
e
̃ x [
m
]

0 500
 80

 60

 40

 ̃0

0

Di
sta
nc
e
̃ y [
m
]

0 500
 0.8

 0.6

 0.4

 0.̃

0.0

Ya
w
er
ro
r
̃ ψ
[ra
d]

0 500
Time [s]

0

50

100

Di
sta
nc
e d

oψ
s[m

]

Figure 4.20: Vessel states of a successful docking scenario when replacing the
PPO-agent with five ORTs

The feature importances for all actions are plotted in Figure 4.21. Notice the gaps
in importance, which are especially prominent in f2. This occurs because the tree
has learned to output constant predictions at these points. Therefore, (2.29) does
not apply anymore, and no definite answer to feature importance is found in these
points.

Comparing the feature importances to those of the LMT in Figure 4.7, many of the
same tendencies can be observed. For example, between 200 and 400 seconds into
the episode, both the LMT and the ORTs attribute a lot of importance to the state
dobs for the action f3. However, there are several states that are more prominent
in the ORTs. For example, when observing feature importances for f2, the LMT
is only concerned about the state u until it reaches the berth. The ORT uses this
state much more extensively during the oscillatory period after 400 seconds. The
ORTs also seem to make more use of the state r than the LMT.

62

4.3. ORT

−1

0

1

f1
x~
y~

l
u

v
r

d_o
ψ~_o

ψ~

−1

0

1

fψ

−1

0

1

f3

−1

0

1

a1

0 ψ00 400 600 800 1000
−1

0

1

aψ

Figure 4.21: Feature importance values for all ORTs trained to approximate the
PPO agent

63

Chapter 4. Results

4.4 NNRT

The NNRT method did not perform adequately in our tests. The implementation
proved to be quite slow. Efforts were made to speed up the implementation by
incorporating early stopping and mini-batches. In addition, the model was also at-
tempted to run on the CUDA cores of the workstation GPU. This ultimately ended
up slowing down the implementation, which is not surprising in hindsight. The
sequential nature of the NNRT implementation is not suitable for parallel pro-
cessing. The method may also be quite sensitive to hyperparameter tuning. Along
with the parameters that needed to be set for Algorithm 4, the Adam optimizer
needs to be initialized with a learning rate α. In the beginning of the training
loop, the implementation was consistently improving the loss. As the loop con-
tinued however, the validation loss started oscillating and did not converge. This
can be seen in Figure 4.22. However, the best R2 observed was 0.7547, and the
best MAE observed was 0.1476. This is not statistically insignificant. In addition,
the ORT observed in Section 4.3.2 had a similar MAE. It is therefore concluded
that the method did work to some extent, and that further work should be done
to improve the implementation of this method.

Figure 4.22: Training and validation loss when training NNRT with depth 4 for
action f3.

The dataset is very large, and the authors of the NNRT paper also noted that

64

4.5. Summary of methods

the NNRT was slower than for example XGBoost when the datasets were large
[67]. From Figure 4.22, it is observed that the loss for both the training set and
validation set initially decreases rapidly along with the MAE and MSE, and the
R2 increases rapidly. However, after a few epochs, the loss oscillates and does
not converge. The issues with this method may lie in the implementation. The
implementation was created from scratch with limited experience with decision
trees. It may also be the result of some unknown parameters not presented in the
original paper. There is little reason to believe there is something fundamentally
wrong in the data presented to the method, as the method previously presented
had great results. The fact that the loss and errors decrease and accuracy increases
for the first few epochs indicates. It may however be plausible the method is not
suitable for this kind of data. The method was tested on the yacht hydrodynamics
dataset [80] and achieved similar performance to that presented in the original
paper on the same dataset.

4.5 Summary of methods

The best performing ORTs along with the LMT were tested on 100 episodes. Table
4.10 summarizes the evaluation metrics for these 100 episodes when compared
to the PPO agent.

Method MAE MSE R2 Failure rate
PPO N/A N/A N/A 2%
LMT 0.1187 0.0473 0.7703 12%
ORT 0.0427 0.0139 0.9243 10%

Table 4.10: Quantitative test results obtained from 100 episode simulations in
each scenario.

It is clear from this experiment that the five ORTs performed better than the single
LMT across all metrics. It is notable that the results for the LMTs were substantially
worse than outlined in [12]. This might be because the dataset created in this
thesis may capture some dynamics that were not emphasized in the dataset the
LMTs were trained on. The reduced MAE and MSE, and the increased R2 for the
ORTs signifies that this method may have the potential to generalize better. More
care should be taken when generating the dataset for these methods. Creating a
new dataset with less starting points and longer episodes may remedy this gap
in performance between the methods. This might capture more dynamics at the
berth, which may be more complex than those at open sea.

65

Chapter 5

Conclusion

The goal of this thesis was to explore whether inherently interpretable tree struc-
tures such as regression trees are able to approximate a deep reinforcement learn-
ing agent’s neural network, and whether this could help to increase interpretabil-
ity of black-box models.

We conclude that it is possible to build regression trees that sufficiently approxi-
mate a deep reinforcement learning agent. Through extensive quantitative analy-
sis, we have shown that optimal regression trees with linear predictions in the leaf
nodes are able to approximate the neural network of the DRL agent with higher
accuracy than the linear model trees, and were able to successfully dock. Though
one tree is generated per action, this may not be entirely undesirable. Shallower
trees are easier to inspect, and it allows for isolated analysis of the approxima-
tion of each action. If one action has significantly more complex dynamics, it is
undesirable and wasteful to generate one large tree to accommodate for that one
action. Instead, several smaller trees can be created for the actions that are shal-
lower. The accuracy of this method could very likely be increased further by tuning
the regularization parameters better.

Though a lot of the effort went into making the NNRTs work for the docking
problem, the method did not work as expected. There may be numerous reasons
why this method did not succeed. The implementation may simply not be true to
the implementation presented in the original paper. The optimizer requires more
parameters to be set than was presented in the NNRT paper, which may be set
to wrong values in our implementation. Alternatively, the method may just not
work well for this kind of data. Despite the NNRTs either not being properly im-
plemented or just not appropriate for this kind of problem, the optimal regression
trees worked. ORT has both simpler splitting criterion because of univariate splits,
and has simpler prediction functions in the leaf nodes. We also note that feature

67

Chapter 5. Conclusion

attributions may be harder to compute for a method with nonlinear prediction
functions like NNRTs.

5.1 Future Work

Recent developments in symbolic regression such as AI Feynman 2.0 has the po-
tential to give a definite answer to five functions that fit the output of the rein-
forcement learning agent. Methods such as AI Feynman should be explored in
further detail. The method is described in more detail in Appendix A.

Ideally, better heuristics for producing the dataset should also be investigated.
Constructing the dataset proved to be a challenge which may have affected the
results when comparing LMT with ORT. Currently, the dataset is constructed by
letting the PPO agent dock, and recording its actions over a set period of time.
Instead, the actions during each episode should be recorded until the vessel is
sufficiently close to the berthing pose. The episode should end the episode when
some criterion for a successful docking is met. This is highly likely to result in a
dataset that captures more dynamics than when setting a time limit.

One may also want to investigate other formulas for feature importance. The cur-
rent formula does not generalize to nonlinear predictions, nor constant predic-
tions.

68

Bibliography

[1] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S.
Chintala, “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 32, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett,
Eds., Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available:
http://papers.neurips.cc/paper/9015- pytorch- an- imperative-
style-high-performance-deep-learning-library.pdf.

[2] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[3] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe,
P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H.
Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,”
Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. DOI: 10.1038/s41586-
020-2649-2.

[4] T. pandas development team, Pandas-dev/pandas: Pandas, version latest,
Feb. 2020. [Online]. Available: https://doi.org/10.5281/zenodo.
3509134.

[5] W. McKinney, “Data Structures for Statistical Computing in Python,” in Pro-
ceedings of the 9th Python in Science Conference, S. van der Walt and J. Mill-
man, Eds., 2010, pp. 56–61. DOI: 10.25080/Majora-92bf1922-00a.

[6] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Sci-
ence & Engineering, vol. 9, no. 3, pp. 90–95, 2007. DOI: 10.1109/MCSE.
2007.55.

69

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55

Chapter 5. Conclusion

[7] E.-L. H. Rørvik, “Automatic Docking of an Autonomous Surface Vessel,”
eng, Master thesis. Norwegian University of Science and Technology (NTNU),
2020.

[8] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng, TensorFlow: Large-scale machine learning on hetero-
geneous systems, Software available from tensorflow.org, 2015. [Online].
Available: https://www.tensorflow.org/.

[9] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “Openai gym,” 2016.

[10] J. Achiam, “Spinning Up in Deep Reinforcement Learning,” 2018.

[11] L. Interpretable AI, Interpretable ai documentation, 2020. [Online]. Avail-
able: https://www.interpretable.ai.

[12] V. Gjærum, E.-L. H. Rørvik, and A. M. Lekkas, “Approximating a deep rein-
forcement learning docking agent using linear model trees,” Submitted to
IEEE European Control Conference (ECC), 2021,

[13] J. Løver, “Explaining a deep reinforcement learning agent with post-hoc ex-
plainers,” Project Thesis. Department of Engineering Cybernetics. Norwegian
University of Science and Technology (NTNU), 2021.

[14] C. L. Benson, P. D. Sumanth, and A. P. Colling, “A quantitative analysis of
possible futures of autonomous transport,” 2018. arXiv: 1806.01696.

[15] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep
learning techniques for autonomous driving,” Journal of Field Robotics, vol. 37,
no. 3, pp. 362–386, Apr. 2020, ISSN: 1556-4967. DOI: 10.1002/rob.21918.

[16] E. Santana and G. Hotz, Learning a driving simulator, 2016. arXiv: 1608.
01230 [cs.LG].

[17] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D.
Hassabis, “Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm,” 2017. arXiv: 1712.01815.

[18] Art. 22 GDPR – Automated individual decision-making, including profiling |
General Data Protection Regulation (GDPR), Jul. 2018. [Online]. Available:
https://gdpr-info.eu/art-22-gdpr.

70

https://www.tensorflow.org/
https://www.interpretable.ai
https://arxiv.org/abs/1806.01696
https://doi.org/10.1002/rob.21918
https://arxiv.org/abs/1608.01230
https://arxiv.org/abs/1608.01230
https://arxiv.org/abs/1712.01815
https://gdpr-info.eu/art-22-gdpr

5.1. Future Work

[19] M. Edmonds, F. Gao, H. Liu, X. Xie, S. Qi, B. Rothrock, Y. Zhu, Y. N. Wu,
H. Lu, and S.-C. Zhu, “A tale of two explanations: Enhancing human trust
by explaining robot behavior,” Science Robotics, vol. 4, no. 37, 2019.

[20] EU’s Right to Explanation: A Harmful Restriction on Artificial Intelligence,
Jul. 2021. [Online]. Available: https://www.techzone360.com/topics/
techzone/articles/2017/01/25/429101- eus- right- explanation-
harmful-restriction-artificial-intelligence.htm.

[21] O. Buffet, O. Pietquin, and P. Weng, Reinforcement learning, 2020. arXiv:
2005.14419.

[22] D. Silver, S. Singh, D. Precup, and R. S. Sutton, “Reward is enough,” Ar-
tificial Intelligence, vol. 299, p. 103 535, 2021, ISSN: 0004-3702. DOI: 10.
1016/j.artint.2021.103535.

[23] M. Turek, Explainable Artificial Intelligence. [Online]. Available: https://
www.darpa.mil/program/explainable-artificial-intelligence.

[24] A. Heuillet, F. Couthouis, and N. Díaz-Rodríguez, Explainability in deep re-
inforcement learning, 2020. arXiv: 2008.06693.

[25] J. Løver, V. B. Gjærum, and A. M. Lekkas, “Explainable AI methods on a deep
reinforcement learning agent for automatic docking,” IFAC-PapersOnLine,
2021, In press.

[26] S. Lundberg, G. Erion, H. Chen, A. DeGrave, J. Prutkin, B. Nair, R. Katz, J.
Himmelfarb, N. Bansal, and S.-I. Lee, “Explainable ai for trees: From local
explanations to global understanding,” May 2019.

[27] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” 2019. arXiv: 1811.
10154.

[28] Z. C. Lipton, “The mythos of model interpretability: In machine learning,
the concept of interpretability is both important and slippery.,” Queue, vol. 16,
no. 3, pp. 31–57, Jun. 2018, ISSN: 1542-7730. DOI: 10.1145/3236386.
3241340.

[29] I. E. Kumar, S. Venkatasubramanian, C. Scheidegger, and S. Friedler, “Prob-
lems with shapley-value-based explanations as feature importance mea-
sures,” 2020.

[30] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, Fooling lime and
shap: Adversarial attacks on post hoc explanation methods, 2020.

[31] H. Luo, F. Cheng, H. Yu, and Y. Yi, “Sdtr: Soft decision tree regressor for tab-
ular data,” IEEE Access, vol. PP, pp. 1–1, Apr. 2021. DOI: 10.1109/ACCESS.
2021.3070575.

[32] O. Loyola-González, “Black-box vs. white-box: Understanding their advan-
tages and weaknesses from a practical point of view,” IEEE Access, vol. 7,
pp. 154 096–154 113, 2019. DOI: 10.1109/ACCESS.2019.2949286.

71

https://www.techzone360.com/topics/techzone/articles/2017/01/25/429101-eus-right-explanation-harmful-restriction-artificial-intelligence.htm
https://www.techzone360.com/topics/techzone/articles/2017/01/25/429101-eus-right-explanation-harmful-restriction-artificial-intelligence.htm
https://www.techzone360.com/topics/techzone/articles/2017/01/25/429101-eus-right-explanation-harmful-restriction-artificial-intelligence.htm
https://arxiv.org/abs/2005.14419
https://doi.org/10.1016/j.artint.2021.103535
https://doi.org/10.1016/j.artint.2021.103535
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://arxiv.org/abs/2008.06693
https://arxiv.org/abs/1811.10154
https://arxiv.org/abs/1811.10154
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1109/ACCESS.2021.3070575
https://doi.org/10.1109/ACCESS.2021.3070575
https://doi.org/10.1109/ACCESS.2019.2949286

Chapter 5. Conclusion

[33] “State of data science and machine learning 2020,” Kaggle, [Online]. Avail-
able: https://www.kaggle.com/kaggle-survey-2020.

[34] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and
Regression Trees. Wadsworth and Brooks, 1984.

[35] Z. Ding, P. Hernandez-Leal, G. W. Ding, C. Li, and R. Huang, “Cdt: Cascading
decision trees for explainable reinforcement learning,” 2021. arXiv: 2011.
07553.

[36] N. Dahlin, K. C. Kalagarla, N. Naik, R. Jain, and P. Nuzzo, “Designing in-
terpretable approximations to deep reinforcement learning,” 2021. arXiv:
2010.14785.

[37] D. Bertsimas, J. Dunn, G. C. Velmahos, and H. M. A. Kaafarani, “Surgical
Risk Is Not Linear: Derivation and Validation of a Novel, User-friendly, and
Machine-learning-based Predictive OpTimal Trees in Emergency Surgery
Risk (POTTER) Calculator,” Ann. Surg., vol. 268, no. 4, pp. 574–583, Oct.
2018, ISSN: 1528-1140.

[38] IBM Cloud Education, What is Machine Learning? en-us. [Online]. Avail-
able: https://www.ibm.com/cloud/learn/machine-learning (visited on
01/23/2021).

[39] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation func-
tions: Comparison of trends in practice and research for deep learning,”
CoRR, vol. abs/1811.03378, 2018.

[40] G. Ognjanovski, Everything you need to know about Neural Networks and
Backpropagation — Machine Learning Made Easy. . . en, Jun. 2020. [On-
line]. Available: https://towardsdatascience.com/everything-you-
need-to-know-about-neural-networks-and-backpropagation-machine-
learning-made-easy-e5285bc2be3a.

[41] Perceptrons: The First Neural Networks, Jun. 2021. [Online]. Available: https:
//pythonmachinelearning.pro/perceptrons-the-first-neural-networks.

[42] Machine Learning for Artists, How neural networks are trained. [Online].
Available: https://ml4a.github.io/ml4a/how_neural_networks_are_
trained/.

[43] S. Badillo, B. Banfai, F. Birzele, I. Davydov, L. Hutchinson, T. Kam-Thong, J.
Siebourg-Polster, B. Steiert, and J. D. Zhang, “An introduction to machine
learning,” Clinical Pharmacology & Therapeutics, vol. 107, Mar. 2020. DOI:
10.1002/cpt.1796.

[44] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson, C. K. Fisher, and
D. J. Schwab, “A high-bias, low-variance introduction to machine learning
for physicists,” Physics Reports, vol. 810, pp. 1–124, May 2019, ISSN: 0370-
1573. DOI: 10.1016/j.physrep.2019.03.001.

72

https://www.kaggle.com/kaggle-survey-2020
https://arxiv.org/abs/2011.07553
https://arxiv.org/abs/2011.07553
https://arxiv.org/abs/2010.14785
https://www.ibm.com/cloud/learn/machine-learning
https://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a
https://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a
https://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a
https://pythonmachinelearning.pro/perceptrons-the-first-neural-networks
https://pythonmachinelearning.pro/perceptrons-the-first-neural-networks
https://ml4a.github.io/ml4a/how_neural_networks_are_trained/
https://ml4a.github.io/ml4a/how_neural_networks_are_trained/
https://doi.org/10.1002/cpt.1796
https://doi.org/10.1016/j.physrep.2019.03.001

5.1. Future Work

[45] S. Linnainmaa, “Taylor expansion of the accumulated rounding error,” BIT
Numerical Mathematics, vol. 16, no. 2, pp. 146–160, Jun. 1976, ISSN: 1572-
9125.

[46] G. Goh, “Why Momentum Really Works,” Distill, vol. 2, no. 4, e6, Apr. 2017,
ISSN: 2476-0757. DOI: 10.23915/distill.00006.

[47] R. Amiri, H. Mehrpouyan, L. Fridman, R. K. Mallik, A. Nallanathan, and
D. Matolak, “A machine learning approach for power allocation in hetnets
considering qos,” in 2018 IEEE International Conference on Communications
(ICC), 2018, pp. 1–7.

[48] T. Lozano-Pérez and L. Kaelbling, Markov Decision Processes | MIT OCW,
en. [Online]. Available: https://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-825-techniques-in-artificial-
intelligence-sma-5504-fall-2002/lecture-notes/.

[49] OpenAI, Proximal Policy Optimization — Spinning Up documentation. [On-
line]. Available: https://spinningup.openai.com/en/latest/algorithms/
ppo.html.

[50] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, “Definitions,
methods, and applications in interpretable machine learning,” Proceedings
of the National Academy of Sciences, vol. 116, no. 44, pp. 22 071–22 080,
Oct. 2019, ISSN: 1091-6490. DOI: 10.1073/pnas.1900654116.

[51] A. Holzinger, C. Biemann, C. S. Pattichis, and D. B. Kell, “What do we
need to build explainable ai systems for the medical domain?,” 2017. arXiv:
1712.09923.

[52] T. Miller, Explanation in artificial intelligence: Insights from the social sci-
ences, 2018.

[53] C. Molnar, Interpretable Machine Learning. [Online]. Available: https://
christophm.github.io/interpretable-ml-book/.

[54] M. T. Ribeiro, S. Singh, and C. Guestrin, “"why should I trust you?": Ex-
plaining the predictions of any classifier,” CoRR, 2016.

[55] M. T. Ribeiro, S. Singh, and C. Guestrin, Anchors: High-precision model-
agnostic explanations, 2018.

[56] H. P. Young, “Monotonic solutions of cooperative games,” en, International
Journal of Game Theory, vol. 14, no. 2, pp. 65–72, Jun. 1985, ISSN: 1432-
1270.

[57] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems 30, I.
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., Curran Associates, Inc., 2017, pp. 4765–4774.

[58] S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” 2011. arXiv: 1011.
0686.

73

https://doi.org/10.23915/distill.00006
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-825-techniques-in-artificial-intelligence-sma-5504-fall-2002/lecture-notes/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-825-techniques-in-artificial-intelligence-sma-5504-fall-2002/lecture-notes/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-825-techniques-in-artificial-intelligence-sma-5504-fall-2002/lecture-notes/
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://doi.org/10.1073/pnas.1900654116
https://arxiv.org/abs/1712.09923
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1011.0686

Chapter 5. Conclusion

[59] D. S. Chaturvedi and S. Patil, “Oblique decision tree learning approaches -
a critical review,” International Journal of Computer Applications, vol. 82,
pp. 6–10, Nov. 2013. DOI: 10.5120/14174-2023.

[60] B.-B. Yang, S.-Q. Shen, and W. Gao, “Weighted oblique decision trees,” Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01,
pp. 5621–5627, Jul. 2019. DOI: 10.1609/aaai.v33i01.33015621.

[61] A. Géron, Hands-on machine learning with Scikit-Learn and TensorFlow :
concepts, tools, and techniques to build intelligent systems. O’Reilly Media,
2017, ISBN: 978-1491962299.

[62] N. Kishore, “Decision Trees, Random forests and PCA - Nitin Kishore -
Medium,” Medium, Sep. 2018, ISSN: 6764-1426. [Online]. Available: https:
//medium.com/@snk.nitin/decision-trees-random-forests-and-pca-
e676e4c142c6.

[63] L. Torgo, “Regression trees,” in Encyclopedia of Machine Learning and Data
Mining, C. Sammut and G. I. Webb, Eds. Boston, MA: Springer US, 2017,
pp. 1080–1083, ISBN: 978-1-4899-7687-1. DOI: 10.1007/978-1-4899-
7687-1_717.

[64] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction, ser. Springer series in statistics.
Springer, 2009, pp. 307–308.

[65] D. Bertsimas and J. Dunn, Machine learning under a modern optimization
lens. Dynamic Ideas LLC, 2019.

[66] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for general-
ized linear models via coordinate descent,” Journal of Statistical Software,
vol. 33, no. 1, pp. 1–22, 2010.

[67] D. Bertsimas, J. Dunn, and Y. Wang, “Near-optimal nonlinear regression
trees,” Operations Research Letters, vol. 49, no. 2, pp. 201–206, 2021, ISSN:
0167-6377.

[68] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017. arXiv: 1412.6980.

[69] V. L. Tran and N.-K. Im, “A study on ship automatic berthing with assistance
of auxiliary devices,” en, International Journal of Naval Architecture and
Ocean Engineering, vol. 4, no. 3, pp. 199–210, Sep. 2012, ISSN: 2092-6782.

[70] C. Li, X. Yan, S. Li, J. Liu, F. Ma, et al., “Survey on ship autonomous dock-
ing methods: Current status and future aspects,” in The 30th International
Ocean and Polar Engineering Conference, International Society of Offshore
and Polar Engineers, 2020.

[71] Y. A. Ahmed and K. Hasegawa, “Automatic ship berthing using artificial
neural network trained by consistent teaching data using nonlinear pro-
gramming method,” Engineering Applications of Artificial Intelligence, vol. 26,
no. 10, pp. 2287–2304, 2013, ISSN: 0952-1976.

74

https://doi.org/10.5120/14174-2023
https://doi.org/10.1609/aaai.v33i01.33015621
https://medium.com/@snk.nitin/decision-trees-random-forests-and-pca-e676e4c142c6
https://medium.com/@snk.nitin/decision-trees-random-forests-and-pca-e676e4c142c6
https://medium.com/@snk.nitin/decision-trees-random-forests-and-pca-e676e4c142c6
https://doi.org/10.1007/978-1-4899-7687-1_717
https://doi.org/10.1007/978-1-4899-7687-1_717
https://arxiv.org/abs/1412.6980

5.1. Future Work

[72] N.-K. Im and V.-S. Nguyen, “Artificial neural network controller for auto-
matic ship berthing using head-up coordinate system,” International Jour-
nal of Naval Architecture and Ocean Engineering, vol. 10, no. 3, pp. 235–
249, 2018, ISSN: 2092-6782.

[73] V. Nguyen, “Investigation of a multitasking system for automatic ship berthing
in marine practice based on an integrated neural controller,” vol. 8, pp. 1–
23, Jul. 2020.

[74] E. Anderlini, G. Parker, and G. Thomas, “Docking control of an autonomous
underwater vehicle using reinforcement learning,” Applied Sciences, vol. 9,
p. 3456, Aug. 2019.

[75] Y. Zhang, M. Zhang, and Q. Zhang, “Auto-berthing control of marine sur-
face vehicle based on concise backstepping,” IEEE Access, vol. 8, pp. 197 059–
197 067, 2020.

[76] A. B. Martinsen, A. M. Lekkas, and S. Gros, “Autonomous docking using
direct optimal control,” 2019.

[77] E. Meyer, H. Robinson, A. Rasheed, and O. San, “Taming an autonomous
surface vehicle for path following and collision avoidance using deep rein-
forcement learning,” IEEE Access, vol. 8, pp. 41 466–41 481, 2020.

[78] A. Wong, Ankonzoid/LearningX, en. [Online]. Available: https://github.
com/ankonzoid/LearningX.

[79] xuyxu, Soft-Decision-Tree, Jul. 2021. [Online]. Available: https://github.
com/xuyxu/Soft-Decision-Tree.

[80] UCI Machine Learning Repository: Yacht Hydrodynamics Data Set, Jul. 2021.
[Online]. Available: https : / / archive . ics . uci . edu / ml / datasets /
yacht+hydrodynamics.

[81] S.-M. Udrescu and M. Tegmark, “Ai feynman: A physics-inspired method for
symbolic regression,” Science Advances, vol. 6, no. 16, 2020. DOI: 10.1126/
sciadv.aay2631. eprint: https://advances.sciencemag.org/content/
6/16/eaay2631.full.pdf.

[82] S.-M. Udrescu, A. Tan, J. Feng, O. Neto, T. Wu, and M. Tegmark, Ai feyn-
man 2.0: Pareto-optimal symbolic regression exploiting graph modularity,
Jun. 2020.

[83] Planetary Motion: The History of an Idea That Launched the Scientific Revo-
lution, Jul. 2009. [Online]. Available: https://earthobservatory.nasa.
gov/features/OrbitsHistory/page2.php.

[84] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep net-
works,” CoRR, vol. abs/1703.01365, 2017. arXiv: 1703.01365.

[85] Integrated gradients | TensorFlow Core, Mar. 2021. [Online]. Available: https:
//www.tensorflow.org/tutorials/interpretability/integrated_
gradients.

75

https://github.com/ankonzoid/LearningX
https://github.com/ankonzoid/LearningX
https://github.com/xuyxu/Soft-Decision-Tree
https://github.com/xuyxu/Soft-Decision-Tree
https://archive.ics.uci.edu/ml/datasets/yacht+hydrodynamics
https://archive.ics.uci.edu/ml/datasets/yacht+hydrodynamics
https://doi.org/10.1126/sciadv.aay2631
https://doi.org/10.1126/sciadv.aay2631
https://advances.sciencemag.org/content/6/16/eaay2631.full.pdf
https://advances.sciencemag.org/content/6/16/eaay2631.full.pdf
https://earthobservatory.nasa.gov/features/OrbitsHistory/page2.php
https://earthobservatory.nasa.gov/features/OrbitsHistory/page2.php
https://arxiv.org/abs/1703.01365
https://www.tensorflow.org/tutorials/interpretability/integrated_gradients
https://www.tensorflow.org/tutorials/interpretability/integrated_gradients
https://www.tensorflow.org/tutorials/interpretability/integrated_gradients

Chapter 5. Conclusion

[86] D. Frankowski, “Should you explain your predictions with SHAP or IG?”
Medium, Aug. 2019. [Online]. Available: https://towardsdatascience.
com / should - you - explain - your - predictions - with - shap - or - ig -
9cabe218b5cc.

76

https://towardsdatascience.com/should-you-explain-your-predictions-with-shap-or-ig-9cabe218b5cc
https://towardsdatascience.com/should-you-explain-your-predictions-with-shap-or-ig-9cabe218b5cc
https://towardsdatascience.com/should-you-explain-your-predictions-with-shap-or-ig-9cabe218b5cc

Appendix A

AI Feynman 2.0

This section covers AI Feynman 2.0, an improvement to the original AI Feynman al-
gorithm [81]. The equations and descriptions present in this section are from [82],
and described in more detailed there. This section will summarize the method.

Johannes Kepler, assistant to astronomer Tycho Brahe, got access to Brahe’s dataset
of astronomical observations in order to calculate the orbit of Mars in the 1600s.
Kepler noticed that the planets must move more quickly when it is near the Sun,
but more slowly when it is farthest from the Sun [83]. This led to Kepler’s first
law: "The planets move in elliptical orbits with the Sun at one focus", an early
example of symbolic regression, where a mathematical equation is found through
data.

AI Feynman is a Pareto-optimal symbolic regression method. A Pareto-optimal
solution is a solution that is the most accurate with a given complexity. In AI
Feynman, this is described through what the authors called a Pareto-frontier. The
Pareto-frontier describes the solutions in terms of inaccuracy versus description-
length complexity, as shown in Figure A.1. Pruning candidates not on the frontier
increases AI Feynman’s robustness to noise and bad data [82]. Description-length
complexity is described in Table 2 of [82], and is a measure of how complex the
candidate is depending on whether the equation contains natural numbers, inte-
gers, etc.

The central idea behind AI Feynman revolves around the fact that any mystery
function f can be expressed as a tree graph made up of elementary functions.
In Figure A.2, the left tree represents a function f with three inputs x , y, z. The
middle tree represents the possible decomposition of the mystery function. The
right tree represents the decomposition AI Feynman seeks to find, where f is de-
composed into two separate functions h and g with fewer input variables such

77

Appendix A. AI Feynman 2.0

Figure A.1: Pareto-frontier discovered by AI Feynman 2.0 [82].

Figure A.2: Graph decomposition of a mystery function f [82].

that

f (x , y, z) = g[h(x , y), z]. (A.1)

The method works by training a neural network fNN to approximate the unknown
function f that generated the data. AI Feynman then leverages this neural network
approximation to probe the unknown function for modularity. This is the magic
sauce of AI Feynman, as searching through possible decompositions by brute force
is in practice infeasible. More specifically, it probes the function to discover six
different graph decompositions, as shown in Figure A.3.

78

The most significant contribution of AI Feynman is how it discovers generalized
symmetry. Generalized symmetry means that k number of variables only pass
through some other scalar function h, as shown in the bottom left panel of Figure
A.3. AI Feynman finds these properties in f by analyzing its gradients. Again, the
equations and descriptions which will be presented are from [82].

Figure A.3: Possible graph decompositions that AI Feynman can auto-discover
[82].

Let the input vector x ∈ Rn. The input vector can then be split into two groups
x′ ∈ Rk and x′′ ∈ Rn−k. If generalized symmetry holds, similarly to equation A.1,
f (x) can then be written as

f (x) = f (x′,x′′) = g[h(x′),x′′]. (A.2)

Its derivative found through the chain rule can then be written as

∇x′ f (x
′,x′′) = g1[h(x

′),x′′]∇h(x′), so ˆ∇x′ f = ±∇̂h (A.3)

where g1 is the derivative of g with respect to its first argument. These conditions
are only valid when ˆ∇x′ f (x′,x′′) which is the direction of the gradient of f with
respect to x′, is independent of x′′. This independence is an indication that gener-
alized symmetry is present, and the algorithm can be applied recursively to further
decompose the graph. A brute force search after this decomposition is much more
feasible.

Symbolic regression is an excellent XAI tool, outputting human-interpretable equa-
tions. The authors of AI Feynman identified some pitfalls when using symbolic re-
gression, such as overly trusting the formulas extracted from the data and apply-

79

Appendix A. AI Feynman 2.0

ing the knowledge gained by AI Feynman to untested domains [82]. The method
is not quite model-agnostic either, as it requires the basis functions to be mostly
differentiable [82].

80

Appendix B

Integrated Gradients

We have previously discussed interpretable models and model-agnostic post-hoc
methods for attributing feature importance. Integrated gradients [84] is another
method that deserves a mention, and is a post-hoc method that attributes feature
importance by examining the gradients. However, it is not quite model-agnostic,
as it requires the model being explained to be differentiable. This assumption
holds true however for any model trained using gradient-descent. It is defined as
the path integral of the gradients along a straightline path the from a baseline x ′

to some input x [85].

When applying integrated gradients, a baseline x ′ needs to be established first.
This represents a neutral state and should be tailored to each application, as estab-
lishing a good baseline is crucial. For tabular data, the baseline may be an instance
where all features are set to zero. For image data, it may be a completely black
image. Then, a linear interpolation between x and x ′ is created. From [85], the
integrated gradients can then be defined as

IntegratedGradsi(x): := (x i − x ′i)×
∫ 1

α=0

∂ F(x ′ +α× (x − x ′))
∂ x i

(B.1)

where α is an interpolation constant, i represents a feature, and F is the black-
box model. Finding the exact integral may be approximated using a Riemann sum
approximation.

The authors of the integrated gradients method identified two axioms that should
be satisfied by every attribution method [84]:

81

Appendix B. Integrated Gradients

Sensitivity(a) For every input and baseline that differ in one feature but have
different predictions, then the differing feature should be given a non-zero
attribution.

Implementation Invariance For two networks that output the same predictions,
regardless of how they are implemented, attributions should be equal.

Integrated gradients was designed with the "completeness" axiom in mind, which
implies Sensitivity(a). The completeness axiom says that the attributions add up
to difference between the output of F at input x and baseline x ′ [84]. This ax-
iom is the equivalent of the efficiency axiom for SHAP [57] which was discussed
briefly in Section 2.4.2. Several attribution methods such as DeepLIFT, a central
part of the Deep SHAP algorithm which is SHAP for neural networks, violates the
implementation invariance axiom.

Integrated gradients exploits the fact that we have information about the neural
network structure to more efficiently attribute feature importance. In contrast,
a Shapley-value based method requires computing the model output on a large
number of inputs sampled from the exponentially huge subspace of all possible
combinations of feature values [86]. This method may prove to provide good ex-
planations, but was not implemented due to time limitations.

82

Appendix C

NNRT Implementation

import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import math

from sklearn.linear_model import Ridge
from sklearn.metrics import r2_score, mean_absolute_error
from sklearn import preprocessing

class NNRT(nn.Module):
def __init__(self, input_dim=9, output_dim=1, depth=5, lamda=1e-3):

super(NNRT, self).__init__()

self.input_dim = input_dim
self.output_dim = output_dim

self.depth = depth
self.lamda = lamda
self.device = torch.device("cpu")

self._validate_parameters()

self.internal_node_num = 2 ** self.depth - 1
self.leaf_node_num = 2 ** self.depth

self.a = torch.empty(self.internal_node_num, self.input_dim,\
requires_grad=True)

83

Appendix C. NNRT Implementation

self.b = torch.empty(self.internal_node_num, requires_grad=True)
self.f = torch.ones(self.leaf_node_num, self.depth + 1)

def random_initialize(self, X, Y, iterations):
"""
Initialize a and b matrices with random numbers, then
calculate the corresponding f matrix
Choose the a, b, and f matrices with the lowest loss
"""
with torch.no_grad():

loss = math.inf
best_loss = math.inf
best_a = None
best_b = None
best_f = None
for i in range(0, iterations):

self.a = torch.rand(
self.internal_node_num,
self.input_dim,
requires_grad=True)

self.b = torch.rand(self.internal_node_num,
requires_grad=True)

loss = self._calculate_f(X, Y)

if loss < best_loss:
best_a = self.a.clone().detach()
best_b = self.b.clone().detach()
best_f = self.f.clone().detach()
best_loss = loss

self.a = nn.Parameter(best_a.clone().detach())
self.b = nn.Parameter(best_b.clone().detach())
self.f = best_f.clone().detach()

def _calculate_f(self, X, Y):
"""
Update the module with updated vectors f
"""
model = Ridge(alpha=self.lamda,fit_intercept=False)
f = torch.empty(self.leaf_node_num, self.depth + 1)
with torch.no_grad():

g, rhs = self.forward(X)

84

f = model.fit(rhs,Y)
self.f = torch.tensor(f.coef_).reshape(self.leaf_node_num,

self.depth + 1)
loss = self.loss(g, Y)

return loss

def forward(self, X):
"""
Implementation on the data forwarding process for vector of samples.
"""
batch_size = X.size()[0]
output = torch.empty(batch_size)
rhs = torch.empty(batch_size,self.leaf_node_num * (self.depth+1))
for sample in range(0, batch_size):

output[sample], rhs[sample] = self._forward(X[sample, :])
return output,rhs

def _forward(self, x):
"""
Implementation on the data forwarding process for one sample.
"""

leaf_node = 0
_ancestors = []
_ancestors_left = []
_ancestors_right = []

Traverse the tree to find the leaf node
begin_idx = 0
end_idx = 0
with torch.no_grad():

for layer_idx in range(0, self.depth):
if self.a[begin_idx, :] @ x < self.b[begin_idx]:

_ancestors.append(end_idx)
_ancestors_left.append(end_idx)
end_idx = begin_idx + 2 ** (layer_idx)

else:
_ancestors.append(end_idx)
_ancestors_right.append(end_idx)
end_idx = begin_idx + 2 ** (layer_idx + 1)

begin_idx = end_idx

85

Appendix C. NNRT Implementation

leaf_node = end_idx - self.internal_node_num # Remap nodes

Solve equation 4 to obtain prediction
g = 0
rhs = torch.zeros(self.leaf_node_num, self.depth + 1)
rhs[leaf_node] = torch.ones(self.depth+1)
for layer_idx in range(0, self.depth):

_split = 1
for ancestor_idx in _ancestors:

_tmp = 0
if ancestor_idx in _ancestors_left:

_tmp = (
self.b[ancestor_idx]
- self.a[ancestor_idx,:] @ x

)
if ancestor_idx in _ancestors_right:

_tmp = (
self.a[ancestor_idx,:] @ x
- self.b[ancestor_idx]

)
_split *= torch.abs(_tmp)

_ancestors.pop()
g += self.f[leaf_node, layer_idx] * _split
rhs[leaf_node,layer_idx] = _split

g += self.f[leaf_node, self.depth]
rhs[leaf_node,self.depth] = 1
return g, rhs.flatten()

def _validate_parameters(self):
"""
Make sure the parameters are valid
"""
if not self.depth > 0:

msg = "The tree depth should be strictly positive."
raise ValueError(msg.format(self.depth))

if not self.lamda >= 0:
msg = (

"The coefficient of the regularization term should not be"
" negative."

)
raise ValueError(msg.format(self.lamda))

86

def loss(self, input, target):
"""
Calculate loss
"""
return self._loss(input, target) + self.lamda * (

torch.linalg.norm(self.a)
+ torch.linalg.norm(self.b)
+ torch.linalg.norm(self.f)

)

def _loss(self, input, target):
return ((target - input) ** 2).sum() / input.data.nelement()

if __name__ == "__main__":
input_dim = 9 # the number of inputs
output_dim = 1 # the number of outputs
depth = 4 # tree depth
lamda = 0.001 # coefficient of the regularization term
init_iter = 50 # random initializations
epsilon = 1e-7 # epsilon
lr = 0.001 # learning rate
batch_size = 128 # batch size
state=2 # state to approximate

min_max_scaler = preprocessing.MinMaxScaler()

df_train_x = pd.read_csv('master_training_states_unnormalized.csv',
header=0)

df_train_y = pd.read_csv('master_training_actions_normalized.csv',
header=0)

train_x_scaled = min_max_scaler.fit_transform(df_train_x)
df_train_x=pd.DataFrame(train_x_scaled,

columns=df_train_x.columns)

df_val_x = pd.read_csv('master_val_states_unnormalized.csv',
header=0)

df_val_y = pd.read_csv('master_val_actions_normalized.csv',
header=0)

val_x_scaled = min_max_scaler.transform(df_val_x)
df_val_x=pd.DataFrame(val_x_scaled,

columns=df_val_x.columns)

87

Appendix C. NNRT Implementation

df_test_x = pd.read_csv('master_test_states_unnormalized.csv',
header=0)

df_test_y = pd.read_csv('master_test_actions_normalized.csv',
header=0)

test_x_scaled = min_max_scaler.transform(df_test_x)
df_test_x=pd.DataFrame(test_x_scaled,

columns=df_test_x.columns)

X_train = torch.tensor(df_train_x.iloc[:, :].to_numpy(),
dtype=torch.float32)

Y_train = torch.tensor(df_train_y.iloc[:, state].to_numpy(),
dtype=torch.float32)

X_val = torch.tensor(df_val_x.to_numpy(),
dtype=torch.float32)

Y_val = torch.tensor(df_val_y.iloc[:, state].to_numpy(),
dtype=torch.float32)

X_test = torch.tensor(df_test_x.iloc[:, :].to_numpy(),
dtype=torch.float32)

Y_test = torch.tensor(df_test_y.iloc[:, state].to_numpy(),
dtype=torch.float32)

model = NNRT(input_dim, output_dim, depth, lamda)
model.random_initialize(X_val, Y_val, init_iter)
optimizer = optim.Adam(model.parameters(),lr=lr,eps=epsilon)
criterion = nn.MSELoss()

train_loss = []
test_loss = []
prev_loss = 0
curr_loss = 1
first = True
while abs(prev_loss - curr_loss) >= epsilon:

permutation = torch.randperm(X_train.size()[0])
prev_loss = curr_loss

model.train()
for i in range(0,X_train.size()[0], batch_size):

indices = permutation[i:i+batch_size]
batch_x, batch_y = X_train[indices,:], Y_train[indices]

optimizer.zero_grad()
predictions,rhs = model(batch_x)

88

curr_loss = model.loss(predictions, batch_y)
curr_loss.backward()
optimizer.step()
_ = model._calculate_f(batch_x,batch_y)

model.eval()
predictions,_ = model(X_val)
r2 = r2_score(predictions.detach().numpy(),

Y_val.detach().numpy())
mae = mean_absolute_error(predictions.detach().numpy(),

Y_val.detach().numpy())
loss_diff = abs(prev_loss - curr_loss)
print(f"Val r squared: {r2} MAE: {mae} Loss-diff: {loss_diff}")
print("-" * 10)

model.eval()
predictions,rhs = model(X_test)
loss = r2_score(predictions.detach().numpy(),Y_test.detach().numpy())
mae = mean_absolute_error(predictions.detach().numpy(),Y_test.detach().numpy())
loss_diff = abs(prev_loss - curr_loss)
print(f"Test r squared: {loss} MAE: {mae} Loss-diff: {loss_diff}")

89

