
Predicting Domestic Hot Water
Consumption in Buildings in
Norway Using Machine Learning

June 2021

M
as

te
r's

 th
es

is

M
aster's thesis

Henrik Waterloo

2021
H

enrik W
aterloo

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

le
ct

ric
 P

ow
er

 E
ng

in
ee

rin
g

Predicting Domestic Hot Water
Consumption in Buildings in Norway
Using Machine Learning

Henrik Waterloo

Energy and Environmental Engineering
Submission date: June 2021
Supervisor: Karen Byskov Lindberg

Norwegian University of Science and Technology
Department of Electric Power Engineering

Preface

This thesis is the result of a master’s project given in the 5th year of a master’s degree in
Energy and Environment, civil engineering. The specific task was designed by the Department
of Electric Power Engineering at NTNU in Trondheim. The thesis is written in collaboration
with FME ZEN, [1], and SINTEF Community, [2], in the spring of 2021 with Karen Byskov
Lindberg as main supervisor. The thesis is a natural continuum of the work done in my spe-
cialization project in the fall of 2020 which can be found in the reference list [3], however, it
is not published so it is not publicly accessible.

Thank you

- Harald Taxt Walnum at SINTEF for providing data and excellent help in Python data han-
dling.

- Jayaprakash Rajasekharan, Associate Professor at the Department of Electric Power Engi-
neering (IEL) at NTNU, for guidance in machine learning theory and especially Microsoft Azure
Machine Learning Studios

Page 1

Summary

This thesis explores how machine learning techniques can be used for medium-term domestic
hot water load prediction. A total of six models have been trained, fitted and validated with
DHW consumption data from the Varmtvann2030 data set. The data set contains consumption
data for 4 apartment buildings, 4 hotels and 4 nursing homes. The six models are the sum of
Prophet and XGBoost models for each building type. The XGBoost model is a mathematical
optimization process that uses regression tree gradient boosting to minimize the prediction
error. The Prophet model is an additive model consisting of a trend component, a Fourier
series to fit seasonality in the data, and a holiday component to adjust for holidays. The
theory behind the two models is thoroughly explained in this thesis. Predictions on unseen test
data are performed for all six models, and the results are displayed and compared for the three
building categories.

The correlation between the DHW load, the area of the building and the number of units
in the building are discussed and investigated through decomposition of the XGBoost- and
Prophet models. A set of hyperparameters were tuned for the Prophet models both manually
and through cross validation. These hyperparameters regulates the fitting of the trend- and
seasonal components in the Prophet model.

The apartment building DHW load was predicted by a Prophet model and a XGBoost model
with a Mean Absolute Percentage Error(MAPE) of ≈ 32% and ≈ 30%, respectively. None of
the models made to predict the hotel DHW load performed MAPE values under 100%, but the
Normalized Root Mean Squared Error(NRMSE) values of 0.49 from the Prophet prediction
and 0.47 for the XGBOOST prediction shows that the prediction is not as far off as the
MAPE values imply. The MAPE is heavily affected by low true consumption values, as this
error metric is calculated by dividing the prediction error in each timestep by the true value.
However, no good predictions were made for hotel DHW load. The nursing home DHW load
was most accurately predicted by the XGBoost model, with a MAPE of 37% and NRMSE
value of 0.27.

Page 2

Abbriviations

Table 1: Abbreviations and clarifications

Abbreviations and clarifications Description
AB Apartment Building

CV Cross validation

Default Prophet model The simplest prophet model, where
no input parameters are tuned

DHW Domestic hot water

Domestic Used in this thesis as within house-
holds, not as within a certain country

HO Hotel

MAE Mean Absolute Error

Manual model set-up Used as a reference to the data split
in the Prophet prediction models.

MAPE Mean Absolute Percentage Error

MDAPE Median Absolute Percentage Error

ML Machine Learning

MSE Mean Squared Error

NH Nursing Home

NRMSE Normalized Root Mean Squared Error

PPS Pre-Processing Strategy

”Pvv [W]” Dataframe column name for DHW load
in Watts (used only in Python code),

(the data are later changed into [kW]).

XGBoost eXtreme Gradient Boosting

Page 3

Contents Page

1 Introduction Page 8
1.1 Background .Page 8
1.2 Scope .Page 10
1.3 Structure of the thesis .Page 10

2 Data Page 11
2.1 Overview .Page 11
2.2 Data Analysis .Page 13

3 Theory Page 14
3.1 DHW system .Page 14
3.2 Prophet .Page 15

3.2.1Tuning the Prophet Model .Page 18
3.2.2Prophet Uncertainty Interval .Page 19

3.3 XGBoost .Page 19
3.3.1Overview .Page 19
3.3.2Detailed/mathematical explanation of the processPage 20

3.4 Error Metrics / Key Performance IndicatorsPage 23
3.5 Literature Review .Page 24

4 Method Page 26
4.1 Data processing .Page 26
4.2 Splitting Data .Page 28
4.3 Microsoft Azure Machine Learning Studio .Page 28
4.4 Prophet Prediction .Page 29

4.4.1Cross Validation Tuning of the Prophet ModelsPage 33
4.5 XGBoost .Page 34
4.6 Error Metrics .Page 36

5 Results Page 37
5.1 Apartment Buildings .Page 37

5.1.1Apartment Building Prophet PredictionPage 37
5.1.2Cross Validation Tuning of the Apartment Building Prophet ModelPage 41
5.1.3Error Metrics AB Prophet Models .Page 41
5.1.4Apartment Building XGBoost PredictionPage 42

5.2 Hotels .Page 43
5.2.1Hotel Prophet Prediction .Page 43
5.2.2Cross Validation Tuning of the Hotel Prophet ModelPage 44
5.2.3Error Metrics HO Prophet Models .Page 46
5.2.4Hotel XGBoost Prediction .Page 46

5.3 Nursing Homes .Page 47
5.3.1Nursing Home Prophet Prediction .Page 48
5.3.2Cross Validation Tuning of the Nursing Homes Prophet modelPage 48
5.3.3Error Metrics NH Prophet Models .Page 51
5.3.4Nursing Home XGBoost Prediction .Page 52

5.4 Model Performances .Page 53
5.4.1Feature Importance XGBoost .Page 53
5.4.2Error Metrics Summary .Page 55

Page 4

6 Discussion Page 57
6.1 Model Performance .Page 57
6.2 Comparison to previous research .Page 57
6.3 Data pre-processing .Page 58
6.4 Data features .Page 58
6.5 Model Identification Process .Page 59

7 Conclusion Page 60
7.1 Learning Outcome .Page 60

A Initial Data Without Time-axis Page 63

B Cross Validation Prophet Code Page 64

C Per Feature Prophet Error Metrics Comparison Page 65

D Worst Prediction Errors for Best Prophet Models Page 66

E Norwegian Holidays 2019 Page 67

F HO per Guest Prophet Predictions Page 68

G Error Metrics Code Page 69

Page 5

List of Figures

1 Total Energy Consumption by the OECD countries by SectorPage 9
2 Initial data w/time index .Page 12
3 AB mean daily DHW load profile .Page 13
4 Seasonal variations in AB mean daily DHW loadPage 13
6 Piece-Wise Linear Regression Example .Page 17
7 Regression tree Example .Page 20
8 Bibliometric analysis, Energy consumption prediction using MLPage 25
9 Importing data into Dataframes and pre-processingPage 27
10 First five rows of the Apartment Building DataframePage 28
11 Splitting data into training- and test data .Page 28
12 Microsoft Azure ML Studios .Page 29
13 Python code for creating the default AB Prophet modelPage 30
14 Manually tuned AB Prophet model .Page 32
15 Code for creating hyperparameter grid (see Figure 37 for full CV code)Page 33
16 Creating features for XGBoost model .Page 35
17 XGBoost model .Page 35
18 Features for XGBoost model .Page 36
19 AB manually tuned Prophet prediction .Page 38
20 Manually tuned AB Prophet components plotPage 39
21 Default AB Prophet components plot .Page 40
22 Python command window results for CV Tuning of AB Prophet Model.Page 41
23 Apartment building XGBoost prediction .Page 42
24 HO default Prophet prediction .Page 43
25 Default HO Prophet components plot .Page 44
26 Python command window results for CV Tuning of HO Prophet Model.Page 45
27 CV-tuned HO Prophet components plot .Page 45
28 Hotel XGBoost prediction .Page 47
29 NH CV tuned Prophet prediction .Page 48
30 Python command window results for CV Tuning of NH Prophet Model.Page 49
31 CV-tuned NH Prophet components plot .Page 50
32 Default NH Prophet components plot .Page 51
33 Nursing home XGBoost prediction .Page 52
34 Feature importance XGBoost model .Page 54
35 NRMSE bar plot .Page 56
36 Initial data without time index .Page 63
37 Code for CV-tuning of Prophet model .Page 64
38 HO per guest default Prophet prediction .Page 68
39 Error metrics calculation, Python code .Page 69

List of Tables

1 Abbreviations and clarifications .Page 3
2 Data information table .Page 11
3 Error metrics for different AB Prophet modelsPage 41
4 Error metrics for different HO Prophet modelsPage 46
5 Error metrics for different NH Prophet modelsPage 52
6 Error metrics table .Page 55
7 Per feature error metrics comparsion, AB ProphetPage 65

Page 6

8 Per feature error metrics comparsion, HO ProphetPage 65
9 Per feature error metrics comparsion, NH ProphetPage 65
10 AB manually tuned Prophet model, 10 worst prediction hoursPage 66
11 HO default Prophet model, 10 worst prediction hoursPage 66
12 NH CV tuned Prophet model, 10 worst prediction hoursPage 66
13 Norwegian Holidays 2019 .Page 67
14 HO per guest default Prophet error metricsPage 68

Page 7

1 Introduction

Some of the content in this chapter is retrieved from my specialization project, written in the
fall of 2020 [3].

1.1 Background

In Norway, Europe and countries all over the world, renewable energy generation is seen as one
of the solutions to combat the problem of global warming. This is solidified by the fact that
as of mid-2015, 164 countries have renewable energy targets [4].

The renewable energy sources are more uncontrollable than the energy sources they are replac-
ing. Weather conditions, seasons, and climate affect how and when renewable energy sources
such as solar power and wind power can produce electricity. When energy generation is more
unpredictable, it means that energy will become more unavailable at times, resulting in higher
energy prices in certain periods where the overall energy consumption is higher. Another im-
portant aspect of the change in energy sources is that all renewable energy sources, apart
from bio-energy and solar thermal energy, generates electricity [5]. An increase in electricity
consumption is expected, also in Norway. According to [6], the electricity consumption will
increase from 136 TWh in 2018 to 159 TWh in 2040. A power system needs flexibility in
order to function. Flexibility has previously been provided by the generation side in the form
of European fossil fuel and Norwegian hydropower. Because European countries are shifting
from fossil fuels to more uncontrollable solar and wind power, the generation can no longer
provide the needed flexibility [7]

Without energy storage options, a lot of electricity would have to be transported from pro-
duction sites to end-users during high consumption periods. This could be a challenge for the
Norwegian distribution grid. More energy efficient systems, energy storage solutions, and local
flexibility markets could reduce this problem.

Buildings are one of the largest categories of energy consumers in the world. This can be
visualized in Figure 1 from [8] where the total energy consumed by the OECD(Organisation
for Economic Co-operation and Development) countries is plotted in Mtoe(Million ton oil
equivalent) over time.

Page 8

Figure 1: Total Energy Consumption by the OECD countries by Sector [y-axis:
Mtoe, x-axis: year](IEA (2020), World Energy Balances: Overview, IEA, Paris
https://www.iea.org/reports/world-energy-balances-overview. [8])

According to [8], the total energy consumed by the OECD countries in 2018 was 3784 Mtoe.
As can be seen in Figure 1, the Buildings category stands for about 1200 Mtoe, which makes
for 1200

3784 · 100% ≈ 32% of the total energy consumed by the OECD countries. OECD has 37
member countries including the USA, Canada, Mexico, and most of the European countries,
and is therefore seen as a valid example to compare to Norwegian conditions. According to [9],
15% of the total heat use in the EU is associated with DHW use, and 25-35% of the energy
consumed in regular buildings is consumed by DHW systems.

With this reasoning, operating DHW systems more energy efficient seems like a useful measure
as part of coping with the more renewable energy generation. Also, hot water tanks may be
used for storing energy, and providing local flexibility. To be able to run DHW systems more
efficiently and offer flexibility, we need to be able to predict the consumption. If we can know
when a building needs hot water and when it does not, we can turn up the heating systems
when the prices/demand is low, and store energy in the form of heat. When the local demand
is high, but the building demand is low, flexibility can be offered in form of turning off heaters
and use stored excess heat for supplying the building’s own, low demand.

All these measures to run the DHW system more efficiently demands knowledge of future
DHW consumption in the buildings. That is why DHW load predictions can be part of finding
the solution to the future power systems flexibility demand, and contribute to more sustainable
energy consumption in the future.

Page 9

1.2 Scope

The purpose of this thesis is to investigate how machine learning techniques can be used to
forecast DHW consumption in different building types in Norway. If reliable DHW predictions
could be made by machine learning algorithms, efficient controlling of DHW systems can be
used to provide the flexibility needed in future power systems. In this thesis, DHW consumption
for 3 building categories are predicted by two different prediction models each. The models
are made on the basis of historical data from the Varmtvann2030 data set [10]. Two different
machine learning techniques are to be tested in this thesis. Prophet is an additive model
that fits the training data with a trend component, Fourier series to fit the seasonal changes
in consumption, and a holiday component to adjust for higher consumption during specified
holidays. XGBoost is a mathematical optimization that groups the training data by explanatory
variable values using regression tree boosting in order to minimize the prediction error.

The prediction models built in this thesis are built to be applicable for any apartment build-
ing(AB), hotel(HO), and nursing home(HO) in Norway. The only input data that is required
to use the prediction models are hourly(at least) DHW measurements and the number of units
in the building. This thesis will not produce a future prediction, but only validate the models
against test data unseen by the models. By the terminology for forecast length presented in
[11] and [12], the forecasts performed on test data in this thesis are medium-term forecasts.
This term is defined for forecasts ranging from 1 day to 1 year. The prediction periods in this
thesis are different for the three building categories, but all predictions fall under the category
medium-term forecating.

1.3 Structure of the thesis

Chapter 2 gives an overview of the data sets and an initial analysis of the AB data from my
specialization project [3]. In chapter 3, the theory behind the prediction models are explained.
This chapter also describes how the DHW systems in the buildings analyzed in this thesis
are set up. The method used to format the data, build and tune the prediction models are
explained in chapter 4. The results of the two prediction models are presented for all three
building categories in chapter 5. In chapter 6, the challenges with this task are discussed, and
the result of tuning the Prophet models are displayed. The conclusion in chapter 7 sums up
the findings of the thesis.

Page 10

2 Data

The data used in this thesis is from the Vartmvann2030 project by SINTEF Community [10].
The Apartment Building(AB) data from the Varmtvann2030 data set was analyzed in my
specialization project, and some of these analyses are relevant also for this thesis. Therefore,
this chapter is partially retrieved from my specialization project [3].

2.1 Overview

The data sets consist of hot water measurements in 4 apartment buildings, 4 hotels, and 4
nursing homes all located in Oslo, Norway. The data was originally structured as time series
stored in csv files. The information about the different buildings in the Varmtvann2030 data
set is summarized in Table 2

Table 2: Data information table

Building
Name

Building
Category

Number
of Units

Floor
Area [m2]

Measuring
Period

Mean DHW
consumption
value [kWh

h]
AB1 Apartment

block
96 4400 19.10.2018-

09.12.2018
22.32

AB2 Apartment
block

56 2700 22.10.2018-
09.12.2018

17.79

AB3 Apartment
block

56 3752 16.01.2019-
06.02.2019

18.02

AB4 Apartment
block

86 5100 29.03.2019-
19.08.2019

26.14

HO1 Hotel 434 21278 12.03.2018-
24.04.2018

72.66

HO2 Hotel 355 24500 24.08.2018-
07.10.2018

49.11

HO3 Hotel 165 4934 24.08.2018-
07.10.2018

21.73

HO4 Hotel 151 7440 31.03.2019-
15.08.2019

31.41

NH1 Nursing home 148 11618 25.01.2018-
23.02.2018

23.40

NH2 Nursing home 52 3327 31.05.2018-
11.07.2018

13.29

NH3 Nursing home 50 6774 26.05.2018-
11.07.2018

7.19

NH4 Nursing home 96 10081 16.01.2019-
06.03.2019

16.85

The data had a time resolution of measurements every two seconds. However, this data
contains a lot of unrealistic values due to error in measurements. Therefore, the data is
averaged into hourly values, this is explained in detail in chapter 4

The metadata for the apartment buildings and the nursing homes is limited to number of units
and total area in each building. The hotel data also contains information about the number
of booked rooms and the number of guests checked in at every timestamp. The initial data
contained both NAN(Not A Number) values and negative values. These values are removed,
and the data used in the models are plotted with the timestamps in Figure 2.

Page 11

(a) Apartment buildings

(b) Hotels

(c) Nursing homes

Figure 2: Initial data plotted against timestamps for (a) Apartment Buildings (b) Hotels (c)
Nursing Homes (data from Varmtvann2030).

Page 12

In Figure 2, there are some overlapping values, meaning there are measurements from two or
more buildings at the same time. Therefore, to show the complete data sets in full, the data
sets are plotted without a meaningful x-axis in Figure 36 in Appendix A.

2.2 Data Analysis

In my specialization project, average daily- and seasonal DHW load profiles for the apartment
building data in the Varmtvann2030 data set were created. When tuning the prediction models
in this thesis, it can be useful to know the characteristics of these average load profiles.

The mean daily DHW load profile for business days, Saturdays, and Sundays in the AB data
are plotted hourly in Figure 3.

Figure 3: AB mean daily load profile, displayed in per unit consumption (per unit should on
the y-axis)

The seasonal variations in daily mean DHW load in the AB data are plotted in Figure 4.

Figure 4: Seasonal variations in AB daily mean DHW load, displayed in per unit consumption
(per unit should on the y-axis)

Page 13

3 Theory

This chapter will introduce the theoretical parts of the thesis

In chapter 3.1, the DHW systems used in the buildings that are analyzed in this thesis are
explained. This part is retrieved from my specialization project, written in the fall of 2020
[3].

The theory behind the two prediction models is explained in the chapters 3.2 and 3.3.

3.1 DHW system

This chapter is retrieved from my specialization project [3]. Hot water can be supplied to res-
idential buildings in two different ways, with a central heating system in the building, or with
individual hot water supply systems. The system used in the buildings in this thesis is a central
heating system. Cold water enters the heating central and is warmed up and distributed to
the apartments through a circulation system. The circulation system consists of pipes which
transport the water from the heating central to the water taps and back again. The hot water
in the pipes will have a heat loss to the environment, causing a temperature drop. The water
is circulated back to the heating central to maintain a high temperature so that the residents
can get hot water from the water taps almost instantly. Figure 5 shows a sketch of a hot water
distribution system with circulation and a measuring setup.

Figure 5: Hot water distribution system in apartment blocks (Figure 1. in [13]).

Here TC is the temperature of the cold water entering the building, qDHW is the water flow
rate, Tdepart is the temperature of the heated water going to the individual units, and Treturn

is the temperature of the returning circulated hot water. The data logger is logging the mea-
surements. The lines out of the data logger show where the measurements are taken.

Page 14

If we neglect the heat loss in the circulation system, the energy needed for supplying hot water
is found by Equation 3.1.

Q =
qDHW · ρ · CP · (Tdepart − TC)

3600
(3.1)

, where

qDHW = volume flow rate

ρ = the density of water

Tdepart = hot water temperature

CP = specific heat capacity of water

TC = cold water temperature

[14]

The data sets I received from Varmtvann2030 were already converted into energy data, so the
hourly values used in this thesis are hourly values of Q from Equation 3.1. It should be noted
that the specific measurement locations vary in some of the buildings. The locations are not
provided in the data set. However, correspondence with Varmtvann2030 contact personnel at
SINTEF AS confirms that the setup described above reflects the reality for the buildings taken
into account in this thesis.

3.2 Prophet

Prophet is an open-source software developed by Facebook [15]. Prophet is implemented in
Python and is a procedure for forecasting time series data. The Prophet forecasting model is
explained in full by Taylor, S.J. and Letham B. in [16]. This chapter will summarize the theory
behind the Prophet forecasting model. The theory and equations are inspired by and retrieved
from [16].

The procedure is based on an additive model which fits seasonal effects with a trend component
and holiday effects.

The Prophet prediction model can be explained mathematically as shown in Equation 3.2.

y(t) = g(t) + s(t) + h(t) (3.2)

, where

t = Time variable

y(t) = Forecast

g(t) = Trend component

s(t) = Seasonal component

h(t) = Holiday component

Page 15

In Prophet there are three alternatives for the trend component, g(t), a piece-wise linear
model, a saturating logistic growth model and a flat growth. A piece-wise linear regression can
be done by finding pieces in the total graph that looks like can have an approximately linear
form, and fitting a linear function on this piece of the graph. An example of a mathematical
formulation of a piece-wise linear function is shown in Equation 3.3, and a graphical example
is shown in Figure 6

y(t) =

β10 + β11t 0 ≤ t ≤ t1

β20 + β21t τ1 ≤ t ≤ τ2
β30 + β31t τ2 ≤ t

(3.3)

, where

y(t) = Piece-wise linear function

β∗0,β∗1 = Coefficients

t = Time variable

ε = Error term

τ1, τ2 = Time values

There are several ways to compute the coefficients for the piece-wise linear function, one
method is the least square solution shown in Equation 3.4.

β0 =

∑
i (ti − t)(yi − y)∑

i (ti − t)2
(3.4)

, where

yi = Dependent variable value at observation i

ti = Time of observation i

y = Mean of y

t = Mean of t

Page 16

Figure 6: Piece-Wise Linear Regression Example

Saturating logistic growth allows the growth to be non-linear, for example exponential. This
option is useful when the time series has a carrying capacity or a maximum level, and/or a floor
value [17]. The logistic growth term can be mathematically described as in Equation 3.5.

g(t) =
C (t)

1 + t−k(t−m)
(3.5)

, where

g(t) = Trend component

t = Time variable

k = Growth rate

m = Offset

The third and last option for the trend component is flat. If the trend component is set to flat
growth, the trend component will be a constant term [17].

The seasonal component relies on Fourier series to fit the periodic effects. A Fourier series
is composed of a sum of sine and cosine functions with a coefficient for each trigonomet-
ric function. The mathematical formulation of a seasonal component can be seen in Equa-
tion 3.6

s(t) =
N∑

n=1

(an cos (
2πnt

P
) + bn sin (

2πnt

P
)) (3.6)

Page 17

, where

s(t) = Seasonal component

n = Index value

N = Upper limit to number of Fourier coefficient pairs

t = Time variable

an, bn = Fourier coefficients

P = Time period

In this thesis, there will be more than one seasonal term. The data has both weekly and daily
periodic variations, which need to be fit with a Fourier series each. The time variable, t, in
Equation 3.6, is different for each different seasonality component. For example, the time
variable will have hourly values for the daily seasonality component and daily values for the
weekly seasonality component. The same goes for the time period, P, which for the weekly
seasonality component will be 7 days, and for the daily seasonality component will be 24
hours.

2N coefficients must be estimated to fit the seasonality component to the training data. N
truncates the Fourier series like a low-pass filter for the seasonality. Increasing N will allow
the model to fit more frequently changing patterns such as the daily variations in this thesis.
This however increases the risk of overfitting. The coefficients an, bn, by default, stays within
a normal distribution around 0 with a variance of 10.

The holiday component, h(t), adjusts to higher or lower values based on historic data from
specified or default holidays.

A Prophet model fits the function E (t) shown in Equation 3.2 to the training data and
continues the curve with the given input, which is just the timestamps in the test data. This
creates prediction values for the test part of the data set. To make changes to the Prophet
function to improve the predictions are called tuning and is explained in chapter 3.2.1

3.2.1 Tuning the Prophet Model

Prophet has built-in hyperparameters which can be tuned to better fit the trend component,
the seasonal periodic variations and the holiday effects in the data.

The most relevant hyperparameters in this thesis are the ones connected to the seasonal
component. These hyperparameters decide how to prioritize the yearly, weekly and daily
variations in the consumption. According to [18], the hyperparameters that most likely could
be tuned to improve the predictions are ”changepoint prior scale”, ”seasonality prior scale”,
”holidays prior scale” and ”seasonality mode”.

The ”seasonality prior scale” represents the variance in the normal distribution of the Fourier
coefficients. By default this parameter is set to 10, and increasing its value will increase the
variance in the normal distribution of the Fourier coefficients. The default value of 10 is set
high, as according to [18] the model rarely overfits the seasonality because the Fourier series
are truncated.

Page 18

As mentioned above, the Fourier series are truncated at N pairs of coefficients and trigonometric
functions. This number may be increased for the individual seasonality components. For
example, the N for the daily seasonality component is increased by increasing the value of the
”daily seasonality” input parameter. The same goes for the weekly and yearly seasonalities with
the input parameters ”weekly seasonality” and ”yearly seasonality” respectively. As mentioned,
increasing these parameters increases the number of Fourier coefficient pairs and trigonometric
functions, which allows more frequent changing seasonal components.

3.2.2 Prophet Uncertainty Interval

Prophet automatically forecasts an 80% uncertainty interval along with the actual prediction.
The uncertainty comes by default only from the trend component. The uncertainty is estimated
using Monte Carlo simulation. The Monte Carlo simulation is explained in full in [19], and is
summarized from the same source as

” PROCEDURE FOR APPLYING MONTE CARLO

1. Determine the pseudo-population or model that represents the true population
of interest.

2. Use a sampling procedure to sample from the pseudo-population.

3. Calculate a value for the statistic of interest and store it.

4. Repeat steps 2 and 3 for N trials.

5. Use the N values found in step 4 to study the distribution of the statistic. ”
[19, p. 2].

3.3 XGBoost

XGBoost stands for eXtreme Gradient Boosting. The theory behind XGBoost is explained in
full in the original manifest by Chent, T. and Guestrin, C. in [20]. Parts of the theory behind
the method are based on advanced mathematics. This chapter will elaborate on the method
used by the XGBoost library, however, all this theory is not a necessity to be able to use the
model for forecasting.

3.3.1 Overview

The XGBoost library implements the gradient boosting decision tree algorithm. The concept
behind boosting is that each new decision tree added to the model should learn from the errors
the last tree made. This process repeats itself until either the preset maximum amount of trees
are created, or the new tree is not able to improve the last prediction.

More specifically, the gradient boosting regression tree algorithm creates decision trees/regres-
sion trees to predict the errors made by the existing trees using the gradient descent method
to minimize the loss when adding new trees. The regression trees are added together sequen-
tially to make the final prediction. For clarification, the difference between decision trees and
regression trees are that decision trees are used for classification while regression trees are used
for regression. In this thesis XGBoost is used for regression, so only regression trees are made
in this thesis.

Page 19

3.3.2 Detailed/mathematical explanation of the process

This mathematical explanation, including the equations, is inspired by and retrieved from the
original manifest [20], and a summary of the process by Leventis, D. in [21].

The first prediction the model does on the training is done in a way that minimizes the sum of
residuals/errors over all rows in the training data. For the initial prediction this is simply the
mean of all observations. The residuals from this initial guess is then stored to be used in future
iterations. These residuals are calculated by the chosen loss function, which for XGBoost is
shown in Equation 3.7.

`i (yi , ŷi) =
1

2
(yi − ŷ)2 (3.7)

, where

i = Row index value (timestamp for time series data)

yi = Observed value at i

ŷi = Predicted value at i

This loss function is the difference between the observed value and the prediction scaled by a
half. This scaling is done to make the math easier later in the process when the loss function
is differentiated to find the gradient.

The next iteration creates a regression tree to predict the residuals from the initial guess.
The theory behind decision trees/regression trees can be studied in detail in [22]. The basic
concept here is to split the data into smaller and smaller groups by separating the data on
feature/variable values. An example related to the data used in this thesis of such a regression
tree is shown in Figure 7.

Figure 7: Regression tree Example

Page 20

In Figure 7, the green nodes are called leaf nodes and contain the residuals for the data rows
with the information that is specified in the previous nodes. So the leftmost leaf node contains
all residuals between the previous prediction and the real observed hourly DHW consumption
values for weekend days in buildings with 86 units or less.

For the next iterations, a new regression tree is made by the argument of minimizing the
objective function shown in Equation 3.8. The new regression trees are called learners and
have the job to incrementally improve the prediction, or to make the error incrementally
smaller.

L(t) =
n∑

i=1

`(yi , ŷ
(t−1)
i + ft(xi)) + Ω(ft) (3.8)

, where

L(t) = Objective function for iteration t

i = Row index value (timestamp for time series data)

n = Number of data points in the training data

yi = Observed value at i

ŷi = Predicted value at i

ft(xi) = New learners function

Ω(ft) = γT +
1

2
λ||w ||2

In Equation 3.8, ` is a loss function, for example like the function described in Equation 3.7.

”The second term Ω penalizes the complexity of the model (i.e., the regression tree
functions). The additional regularization term helps to smooth the final learned
weights to avoid over-fitting. Intuitively, the regularized objective will tend to
select a model employing simple and predictive functions.)” [20, p. 786]

The objective function in Equation 3.7 “cannot be optimized using traditional optimization
methods in Euclidean space” [20]. Therefore, to optimize the function, a Taylor’s approxi-
mation is used. This is done by using a linear approximation to approximate the objective
function.

f (x) ≈ f (a) + f ′(a)(x − a) (3.9)

In Equation 3.9, f is the loss function shown in Equation 3.7, a is the previous step’s predicted
value, and (x − a) is the learner we are adding in step t [21]. The f in Equation 3.9 is just an
example of a function name, so it not the same f as the ft in Equation 3.8. Using the Taylor
approximation we can write the objective function as a simple function of the new learner.
If we now chose a second-order Taylor approximation like in Equation 3.10, we can find the
learner which minimizes the loss function at iteration t with Equation 3.11.

f (x) ≈ f (a) + f ′(a)(x − a) + f ′′(a)(x − a)2 (3.10)

Page 21

L(t) ≈
n∑

i=1

[`(yi , ŷ
(t−1)
i) + gi ft(xi)) +

1

2
hi f

2
t (xi))] + Ω(ft) (3.11)

, where

gi =
∂

∂ŷ (t−1) l(yi , ŷ
(t−1)
i) = (yi − ŷ

(t−1)
i)

hi =
∂

∂ŷ (t−1)

2

l(yi , ŷ
(t−1)
i) = 1

In Equation 3.11 the gi and hi are partial derivatives of the loss function, `, in Equation 3.7. It
can be observed that gi becomes just the residual between the observation and the prediction,
and that hi is just 1. This is handy when we go further and actually optimize the Taylor
approximated objective function.

When optimizing a function, we can remove the constant terms, as they have no influence
on the decision. We now get the simplified expression for the Taylor approximated objective
function shown in Equation 3.12

L̃(t) ≈
n∑

i=1

[gi ft(xi)) +
1

2
hi f

2
t (xi))] + Ω(ft) (3.12)

Now, to build a new learner we start in a root node containing all training data. Then we
iterate over all features and evaluate each possible split loss reduction, and choose the split
with the highest gain. The gain is calculated in Equation 3.13 and must be greater than zero
to be an improvement on the last prediction.

”gain = loss(father instances)− (loss(left branch) + loss(right branch))” [21] (3.13)

If we now define Ij = i |q(xi) = j as the instance with the set of leaves j , we can rewrite
Equation 3.12 by expanding Ω. This is shown in Equation 3.14

L̃(t) ≈
n∑

i=1

[gi ft(xi)) +
1

2
hi f

2
t (xi))] + γT +

1

2
λ

T∑
j=1

||wj ||2 (3.14)

L̃(t) ≈
T∑
j=1

[(
∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)w2
j] + γT (3.15)

For a fixed tree structure q(x) we can compute the optimal weight w∗j of leaf j by Equa-
tion 3.16

w∗j = −
(
∑

i∈Ij gi)∑
i∈Ij hi + λ

(3.16)

Page 22

From here we can compute the corresponding optimal value of the structure q(x) in Equa-
tion 3.17.

L̃(q)(t) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT (3.17)

Equation 3.17 is used as a scoring function for the different tree structures. This is the function
we use to measure how well a tree performs. Looking closer at the function we can see what
we discovered in Equation 3.11, that the weight of each leaf is just the mean of the residuals
in that leaf when λ = 0. The scoring function is also only depending on the residuals in that
leaf.

This is the mathematical explanation of how the XGBoost algorithm works. How the XGBoost
model has been implemented and used in this thesis is explained in chapter 4.5.

3.4 Error Metrics / Key Performance Indicators

To evaluate the performance of a prediction model, there are many different options of error
metrics. The different kinds of error metrics are affected by different kind of data, and it is
therefore an important process of prediction modeling to find out which error metric that gives
the most realistic insight into the model performance.

A common error metric to use is the Root Mean Squared Error (RMSE). RMSE is calculated
as shown in Equation 3.18. This is a reliable metric to use when evaluating different tuning
of the models, because in practice this error term is only dependent on the real difference
between the prediction and the true value.

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2 (3.18)

, where

yt = True value at time t

ŷt = Predicted value at time t

T = number of data samples/time stamps

The same goes for the Mean Absolute Error(MAE), which basically is the mean of the gap
between the true value and the prediction. MAE is calculated as shown in Equation 3.19.

MAE =
1

T

T∑
t=1

|yt − ŷt | (3.19)

, where

yt = True value at time t

ŷt = Predicted value at time t

T = number of data samples/time stamps

Page 23

The drawback of using RMSE or MAE as performance indicators is that one can not compare
prediction models which take in data of different magnitude with these metrics.

The two prediction models used in this thesis uses data of different magnitude, this is explained
in subsection 4.1. It is therefore useful to use a normalized error metric that is independent of
magnitude. An example of such an error metric is Mean Absolute Percentage Error (MAPE).
This metric is calculated as shown in chapter 3.20

MAPE =
1

T

T∑
t=1

yt − ŷt
yt

(3.20)

, where

yt = True value at time t

ŷt = Predicted value at time t

T = number of data samples/time stamps

This error metric also has a drawback. The MAPE value is often heavily affected by small true
values, because when the true value gets close to zero, the value of the fraction in the MAPE
formula gets really large. This will result in a MAPE that does not give a realistic picture of
the model performance.

Another normalized error metric is Normalized Root Mean Squared Error (NRMSE). The RMSE
can be normalized in several ways, for example by dividing the value with the mean true value
as shown in Equation 3.21. This metric is less vulnerable for low true values because the
normalizing factor is an averaged value.

NRMSE =
RMSE

y
=

1

y

√√√√ 1

T

T∑
t=1

(yt − ŷt)2 (3.21)

, where

yt = True value at time t

ŷt = Predicted value at time t

T = number of data samples/time stamps

y = Mean of yt over period T

3.5 Literature Review

This section will introduce previous works written on the subject of using machine learning
techniques to forecast DHW- or energy consumption. The majority of the literature written on
the subject is focusing on forecasting electricity loads. However, there are a lot of similarities
between forecasting electricity- and DHW consumption. Therefore, the methods used for
predicting electricity loads can be highly applicable for predicting DHW consumption.

Page 24

In [9], Dmytro Ivanko evaluates two different situations when predicting DHW heat use in
Norwegian hotels. In the first situation, only historical DHW consumption data is available.
In this situation, the author suggests some model alternatives. Of the suggested models, the
Prophet- and XGBoost models were the best performing models with MAE’s of 4.46 and 4.11
respectively. In the second situation, additional variables were taken into account. This is a
more favorable situation as additional variables yield a better or equal model performance. In
this situation, the XGBoost model was the best performing model with a MAE of 3.12 and a
MSE of 45.04.

A literature review showing the growth in energy forecasting papers has been done in [11].
A more specific literature review on predicting energy consumption with machine learning
methods has been conducted in [23]. In this review, a database containing relevant research
on the subject is created by exploring the ISI and Scorpus databases with a specified search
algorithm. The database contains 4300 papers and also shows the increase in papers written
on the subject over the past years. This increase can be observed in Figure 8.

Figure 8: Increase in papers written on Energy consumption prediction using Machine Learning
[23]

In [12], European electricity loads are predicted using artificial neural networks(ANN). One
of the things that are applicable towards this thesis is the use of error metrics. The authors
use MAPE to compare the results in the paper to previous work. The model in the article
is compared to a benchmark, which is set by the Mid-term Adequecy Forecast (MAF) model
by entso-e. The ANN model developed in [12] performs a MAPE of 2.8% compared to the
MAPE of 3.8% performed by the MAF model.

ANN was also used for short-term energy forecasting in [24]. In this paper, the authors used
input parameters like the number of residents, apartment area, and electrical appliance con-
sumption to forecast the total energy demand in domestic households in Lisbon, Portugal. The
average MAPE result obtained from predicting the total energy consumption in 46 households
was 4.2%.

In [25] a clustering-based hybrid model is proposed as a method for short-term electricity
demand forecasting in hotels. The authors uses fuzzy c-means clustering to group similar
days and hours. Further, these grouped days and hours were used as input in support vector
regression and wavelet decomposition. A MAPE result of 3.8% for the best predicted 24 hours,
was performed by this model.

Page 25

4 Method

This chapter describes the processes of importing and analyzing data, building different pre-
diction models, and plotting the results.

To predict ’future’ DHW consumption, historical data must be imported and formatted as
input in a prediction model. The natural way to go about this is by using a programming
language. In this thesis, Python in the Spyder environment, is used both to import, analyze
and format data, and to build two different prediction models. Additionally, an attempt was
made to build a prediction model with pre-defined blocks of code in Microsoft Azure Machine
Learning Studios [26]. This attempt did not produce any results but was something I spent
some time on and is therefore included here in chapter 4.3.

4.1 Data processing

In order to process the data, the data from each building is imported into Pandas Dataframes.
Next, the NAN and negative values are removed from the data. Then the data are resam-
pled into hourly values by taking the mean of every 2-second DHW load value in each hour.
Removing faulty measuring data before resampling is essential to keep as much as possible
of the good measurements. The metadata was sent to me in a separate excel-file, so this
data was attached in the consumption Dataframe by the code in Figure 9. The name of each
building is added to the Dataframe as a ”Tag” to be shown when plotting the initial data.
This tag is removed after storing the initial data in a csv file. The data later fed into the
models are without a tag, as the data are to be seen as uniform. The code used for importing
and processing the data is shown in Figure 9.

Page 26

#Reading the data pickle files and creating a Dictionary of Dataframes

containing the AB data

dfDict = ReadFolderofPicklestoDf(’*directory*/AB/’)

#Reading in metadata to a dataframe

ByggInfo= pd.read_excel(’*directory*/ByggInfoVV2030.xlsx’, header=0)

#setting the building names as index in the metadata dataframe

ByggInfo=ByggInfo.set_index(’Code’)

#Iterating over the dictionary to access the individual dataframes

for key in dfDict:

#Changing the content of the Dictionary to Dataframes containing only the

DHW heat use

#.. and removing NANs

dfDict[key]=dfDict[key][[’Pvv [W]’]].dropna(axis=0, how=’any’)

#Removing unrealistic negative values in the data set, setting them to zero

dfDict[key]=dfDict[key][dfDict[key][’Pvv [W]’]>=0]

#Resampling into hourly consumption

dfDict[key]=dfDict[key].resample(’1H’).mean()

#Converting the timestamps to DateTime format

dfDict[key][’DateTime’]=pd.to_datetime(dfDict[key].index, utc=True)

#Setting the DateTime column as index

dfDict[key]=dfDict[key].set_index([’DateTime’])

#Importing building area from metadata

dfDict[key][’Area’]=ByggInfo.loc[key, ’Area’]

#Importing number of units in the building from metadata

dfDict[key][’Units’]=ByggInfo.loc[key, ’Units’]

#setting a tag column to keep track of the different buildings

dfDict[key][’Tag’]=key

#merging the Dataframes into one Dataframe containing all AB data

AB_df=pd.concat([AB_df,dfDict[key]])

#saving the Dataframe as a csv file for later plotting of initial data

AB_df.to_csv(’AB_initial_data.csv’)

#removing the tag to keep data unbiased when saving the data for prediction

AB_df=AB_df.drop(columns=[’Tag’])

AB_df.to_csv(’AB_df.csv’)

Figure 9: Importing data into Dataframes and pre-processing

Pandas is an easy-to-use, open-source, data analysis and manipulation tool, built on top of the
Python programming language[27]. Dataframes are tabular data structures which is efficient
to use when analyzing time series data. To illustrate how the data is structured in Dataframes,
an example is shown in Figure 10.

Page 27

In[20]: AB_df.head()

Out[20]:

Pvv [W] Area Units Tag

DateTime

2019-01-16 00:00:00+00:00 7473.849077 3752 56 AB3

2019-01-16 01:00:00+00:00 2870.517134 3752 56 AB3

2019-01-16 02:00:00+00:00 3195.886066 3752 56 AB3

2019-01-16 03:00:00+00:00 2131.860057 3752 56 AB3

2019-01-16 04:00:00+00:00 1629.295317 3752 56 AB3

Figure 10: First five rows of the Apartment Building Dataframe

4.2 Splitting Data

The prediction models are trained with the data described in chapter 2. In order to have a
reference to how well the models perform the data must be split into training data and test
data. The model is fitted to the training data and evaluated on the test data. There is much
theory on how to split data into training data and test data for time series, but this is not the
focus of this thesis. Therefore a convenient split date is set for the three different building
categories so that the training portion of the data makes up between 70 and 80% of the data.
Performance of default Prophet and XGBoost models were used to find a good split date using
between 70 and 80% of the data for training. The split for the AB-data is made by the code
shown in Figure 11.

#Split into training- and test data

split_date = ’2019-05-18 23:00:00’

AB_prUnit_train = AB_prUnit_df.loc[AB_prUnit_df.index <= split_date].copy()

AB_prUnit_test = AB_prUnit_df.loc[AB_prUnit_df.index > split_date].copy()

Figure 11: Splitting data into training- and test data

The reason for choosing this data split for all the data fed into the models is so the models
would have about the same proportion of training data for all building types. This would
make for a more unbiased comparison between the models and the building types. Another
consideration taken into account is that all models should be trained with some data from
the specific building for which the predictions are made. This data split between training data
and test data will hereby be called the manual model set-up, and are different for each of the
building categories, but equal for the different models predicting on each building category.
The data split resulted in a prediction period of 93 days for the AB data, 58 days for the HO
data, and 34 days for the NH data.

4.3 Microsoft Azure Machine Learning Studio

Microsoft Azure Machine Learning Studio is a cloud-based workflow environment that lets you
drag and drop different modules of code, both pre-defined and self-written, in order to create
a machine learning model. Microsoft Azure Machine Learning Studio is not free, but one can
get a free trial month, which is what I did. I no longer have access to my projects, so I do not
have lots to show the work I did in this program. However, an overview of the project can be
seen in Figure 12, which is a screenshot of one of the models I made in this program.

Page 28

Figure 12: Microsoft Azure ML Studios model

The pre-processed Python Pandas Dataframe is fed into a split data module, which is set to
divide the data into 70% training data and 30% test data. The training data is used to train
a default built boosted decision tree regression. After that, the model is scored with RMSE
and is to be evaluated and visualized in the blocks at the bottom of Figure 12. However, I
could not get a visual prediction plot or any error metrics from this program. After a lot of
attempts to find an answer to this both searching the internet and reaching out to contacts
in SINTEF and NTNU, the project of making a machine learning model in Microsoft Azure
Machine Learning Studio was abandoned. Microsoft Azure Machine Learning Studios can be
found by following the link in the reference list [26].

4.4 Prophet Prediction

Prophet is an open-source software and was installed from the Prophet library in Python.

Individual Prophet models are trained for each of the three different building types(apartment
buildings(AB), hotels(HO), and nursing homes(NH)). The model is then used to predict the
consumption in the test part of the data. This section will go into detail on the method used
to build the Prophet model.

The Prophet model does not take in any other variables than time. The data must therefore
be uniform when it comes to explanatory variables. Within the building categories, the data
from the different buildings have different consumption magnitude levels due to differences in
area and number of units. In order to feed the Prophet model with data from all 4 buildings,
the consumption can be divided into per unit- or per m2 consumption. This gives the data
the same reference level.

Page 29

To decide whether to use per unit- or per m2 consumption in the Prophet models, both
options were tested in the default Prophet model, and evaluated by the error metrics MAPE
and NRMSE for comparison. For the AB and NH data, the per unit consumption performed
best, which can be seen by the metric comparison in Appendix C. For the HO data, there are
more options. For this data set, we have additional information about the number of guests
and the number of booked rooms in the hotel at any time. According to [28], the number of
residents have a stronger correlation to DHW consumption than the number of units and the
total area. The error metrics comparison in Table 8 in Appendix C shows that the results from
the default Prophet model fed per guest DHW consumption data perform the best MAPE and
NRMSE. However, in order to use the Prophet prediction models, the predicted consumption
has to be multiplied with the feature it is divided by in this process. If one was to use the HO
per guest Prophet model for hotel DHW load prediction, the prediction must be multiplied
with the number of guests checked into the hotel at each timestamp to get the total DHW
load of the predicted hotel. A problem that occurs here, is that the number of guests checked
into the hotel at a timestamp one week into the future, may not be available information.
Hotels can have drop-in guests which makes it difficult to use per guest data for DHW load
prediction, as the number of guests staying in the hotel in the future may not be known.

For the HO Prophet model, the per m2 data also performs marginally better than the per unit
data. However, since the performances are so close, and the other building categories perform
better with per unit data, a choice was made to use per unit data for all Prophet models for
easier performance comparison. This means the prediction must be multiplied by the number
of units to get the total DHW load of the predicted building.

The simplest Prophet model, hereafter called the default Prophet model, is built with the code
shown in Figure 13. (All building category default models have the same code set-up, but the
example is from the AB default Prophet model.)

#Setup, train and fit model

model = Prophet()

#Fitting model to training data

#..and performing necessary formatting so the model understands the column

values in training set

model.fit(AB_prUnit_train.reset_index() \

.rename(columns={’DateTime’:’ds’,

’Pvv pr unit [W]’:’y’}))

#Performing necessary formatting so the model understands the column values in

test set

df=AB_prUnit_test.reset_index() \

.rename(columns={’DateTime’:’ds’})

#Forecasting the test data

AB_prUnit_test_fcst = model.predict(df)

Figure 13: Python code for creating the default AB Prophet model

By manually tuning some of the parameters listed in [18], the results of the AB Prophet
model improved in form of visual inspection and error metrics. Among the input parameters
to be changed is the ”growth” parameter, which represents the trend component mentioned
in chapter 3.2. This parameter is by default set to ”linear”. By the reasoning in 3.2, setting
this parameter to ”logistic” would fit data with a logistic floor better. DHW heat use can not

Page 30

be negative, so the ”floor” value is set to 0. Theoretically, there is also a logistic maximum
value for these data points, if every water tap uses maximum volume and temperature, the
consumption can not increase from that point. However, this point is unknown, and not
possible to compute without more information about the water taps in the buildings. Therefore,
the highest value of the training data is set as the ”cap” value.

The manual tuning of the Prophet models was done by changing the hyperparameters one by
one and comparing the model error metrics to the default Prophet model, which for the AB data
is shown in Figure 19. This process is time-consuming, and not very efficient. However, this
was the method that yielded the best results achieved by the different AB Prophet models, but
the method did not improve on the default model prediction for the HO- and NH data.

Tuning up the daily seasonality value helps the model capture the low night load values and
high morning peaks. Tuning up the weekly seasonality value helps the model distinguish
between the different consumption patterns in the different weekdays. There seems to be a
trade-off between these two seasonalities when tuning the model. If the weekly seasonality is
high, then the model distinguishes more differences between the different days of the week. If
the daily seasonality is high, then the model captures more of the frequent daily variations in
DHW consumption. However, the trade-off lies in the fact that if both these parameters are
set high, the model can easily overfit the training data, which increases the RMSE in the test
data prediction.

As can be observed by comparing the daily and weekly variations to the seasonal variations
in Figure 3 and Figure 4 respectively, the daily variations are more dominant than the weekly
and yearly variations in DHW load. Specifically, this can be seen by comparing the magnitude
of the variations, the variations within a day are about 0.35 kWh/h per unit. The difference
between a business day and a weekend day can be seen as weekly variations and seems to
be about 0.15 kWh/h per unit at most. Therefore, setting the ”daily seasonality” parameter
higher than the ”weekly seasonality” parameter will logically yield a better prediction.

The variations across a year can be observed in Figure 4, where the mean daily AB DHW load
has been plotted for the entire measuring period. Here the variations are about 0.20 kWh/h
per unit. Another factor in the hyperparameter tuning is the short time span of the data used
in this thesis. For each of the possible seasonality components, the training data must contain
enough data to capture the seasonality, at least a year for yearly seasonality, at least a day for
daily seasonality, and so on [29]. None of the building categories have data spanning an entire
year, therefore the ”yearly seasonality” parameter is not changed, and is defaulted to False.
The seasonal changes can still be caught by the trend component in the Prophet model.

The Python code for the manually tuned AB Prophet model is displayed in Figure 14. Manual
tunings with similar codes were also attempted for the HO- and NH Prophet models, but the
results from these models did not improve on the prediction results from the default models,
which is stated in chapter 5.2.1 and 5.3.1.

Page 31

#Setup, train and fit model

model = Prophet(growth=’logistic’, seasonality_mode=’multiplicative’,

weekly_seasonality=20, daily_seasonality=60)

#Setting cap and floor for logistic growth in training data

AB_prUnit_train[’cap’]=AB_prUnit_train[’Pvv pr unit [W]’].max()

AB_prUnit_train[’floor’]=0

#Fitting model to training data

#..and performing necessary formatting so the model understands the column

values in training set

model.fit(AB_prUnit_train.reset_index() \

.rename(columns={’DateTime’:’ds’,

’Pvv pr unit [W]’:’y’}))

#Performing necessary formatting so the model understands the column values in

test set

df=AB_prUnit_test.reset_index() \

.rename(columns={’DateTime’:’ds’})

#Setting cap and floor for logistic growth in test data

df[’cap’]=AB_prUnit_train[’Pvv pr unit [W]’].max()

df[’floor’]=0

#Forecasting the test data

AB_prUnit_test_fcst = model.predict(df)

#Setting default coincident interval to not go below zero

#... as that is unrealistic

AB_prUnit_test_fcst[’yhat_lower’]=AB_prUnit_test_fcst[’yhat_lower’].clip(lower=0)

Figure 14: Manually tuned AB Prophet model

It should be noted that the average profiles mentioned above, do not necessarily reflect the
true seasonality of the data. There are also uncertainties in the data, this will be discussed in
more detail in chapter 6

The manually tuned AB Prophet model is shown in Figure 14. This is the model that produced
the AB Prophet results displayed in the Result chapter. Manual tuning did not improve the
HO- or NH Prophet models, as the best results for these building categories came from the
default model or the CV tuning process.

To gain more insight into how the Prophet model predicts the consumption, the hyperparameter
values, both default, manually tuned, and tuned by the CV process, can be visualized by a
component plot. This plot is created by this line of code

model.plot_components(AB_prUnit_test_fcst).

The resulting component plots from this code can be seen in chapter 5.

A default, country specific, holiday effect may be added to the Prophet models by adding this
single line of code;

model.add_country_holidays(country_name=’NO’).

Page 32

This line of code adjusts for somewhat increased consumption during the national holidays.
The default holiday effect improved the Prophet predictions slightly for AB and NH in form of
a reduced RMSE, but had no effect on the HO Prophet predictions. The effect of the holiday
component in the AB- and NH Prophet models can be seen in Figure 20 and Figure 31, re-
spectively. The Prophet package includes functionality for creating self-defined holiday effects,
but this was not attempted in this thesis. The reason for this is that the holidays did not seem
to be an important error factor as the default holiday component had little effect. Also, from
sorting the hourly absolute prediction errors in descending order, the holidays do not seem to
dominate the top of the list. This can be seen in Appendix D, where the 10 largest absolute
error values for the hourly prediction made by the best performing AB-, HO- and NH Prophet
models without holiday effects are shown inTable 10, Table 11 and Table 12 respectively. The
holidays in Norway in 2019 (the year the predictions were conducted for) are shown in Table 13
in Appendix E for comparison with the worst predicted hours.

4.4.1 Cross Validation Tuning of the Prophet Models

The Prophet package includes functionality for cross-validation to measure forecast error. This
functionality is explained in [29]. The cross validation is performed automatically using the
”cross validation”-function. The function takes in a parameter, ”horizon”, which specifies the
length of the forecast horizon. The function then defaults selects the training period, ”initial”,
to be 3 times longer than the forecast horizon. The dates where the training period ends and
the forecast period starts are called ”cutoff” dates. The spacing between the cutoff dates is
connected to the parameter ”period”, which by default is set to half of the forecast horizon. The
result of the ”cross validation”-function is a Pandas Dataframe with the observations (y) and
the out-of-sample predictions (yhat) for every timestamp from cutoff to cutoff+horizon.

In this thesis, all cross-validation is used for hyperparameter tuning. The horizon is set to be the
same amount of days as in the test data in the manual set-up. The choice of hyperparameters
to tune, and the combination of values are the same for all three building types’ Prophet
models. The grid which the hyperparameter combinations are to be made of is shown in
Figure 15. The entire Python code for the CV tuning is shown for the AB data in Figure 37 in
Appendix B. The CV tuning code has the same set-up for all building categories, and therefore,
only the AB CV Python code is included in the appendix.

param_grid = {

’changepoint_range’ : [0.8, 0.95],

’changepoint_prior_scale’: [0.001, 0.01, 0.1],

’seasonality_prior_scale’: [0.1, 1.0, 10],

’weekly_seasonality’: [0, 10.0, 50, 100],

’daily_seasonality’: [0, 10.0, 50, 100],

}

Figure 15: Code for creating hyperparameter grid (see Figure 37 for full CV code)

According to [29], the parameters that most likely could make a better model by tuning
them is ”changepoint prior scale”, ”seasonality prior scale”, ”holiday prior scale” and ”sea-
sonality mode”. However, in contrast to this advice, the best results accomplished by the
Prophet method were achieved by tuning the ”Parameters that would likely not be tuned”
[29], such as ”weekly seasonality” and ”daily seasonality”. The reason for this is that the
default Prophet model does not overfit the training data, the default model is conservative

Page 33

in the sense that it fails to capture the highs and lows in the daily variations. Empirical
evidence in the work of this thesis suggests that the hyperparameters, ”weekly seasonality”
and ”daily seasonality”, affecting the length of the Fourier series in the seasonal components,
could be tuned to improve predictions. This is why these hyperparameters are included in the
parameter grid used in the CV tuning process, which as mentioned is shown in Figure 15.

All different combinations of hyperparameters shown in Figure 15, were tested in all three
Prophet models. The results from the cross validation hyperparameter tuning are shown in the
individual parts of chapter 5. It should be pointed out that there are 288 different combinations
of hyperparameters in the code I have used. Therefore, the CV codes take several hours to
run on my computer. This long running time limits the number of hyperparameters I am able
to tune, and the range of values to tune for each hyperparameter.

4.5 XGBoost

XGBoost is an open-source software. XGBoost was installed from the XGBoost library in
Python.

Individual XGBoost models are trained for each of the three different building types. The
model is then used to predict consumption for each building type on the test sets. This section
will go into detail on how the XGBoost models were built.

The data handling for the XGBoost model is pretty much the same as for the Prophet model.
However, the data is not divided by the number of units, as the number of units, along with all
other variables is taken into the model as explanatory variables. A function retrieved from [30]
creates features from the timestamp index and the other variables in the data. The Python
code used for this purpose is shown in Figure 16.

Page 34

#Creating features from DateTime

def create_features(df, label=None):

df = df.copy()

df[’date’] = df.index

df[’Hour’] = df[’date’].dt.hour

df[’dayofweek’] = df[’date’].dt.dayofweek

df[’quarter’] = df[’date’].dt.quarter

df[’month’] = df[’date’].dt.month

df[’year’] = df[’date’].dt.year

df[’dayofyear’] = df[’date’].dt.dayofyear

df[’dayofmonth’] = df[’date’].dt.day

df[’weekofyear’] = df[’date’].dt.weekofyear

#Adding all the features to the X-variable

X = df[[’Hour’,’dayofweek’,’quarter’,’month’,’year’,

’dayofyear’,’dayofmonth’,’weekofyear’, ’Guests’, ’BookedRooms’,

’Area’, ’Units’]]

if label:

#adding target to the y-variable

y = df[label]

return X, y

return X

#This function extracts the features and returns them to the X-variable,

simultaneously setting the target as y

X, y = create_features(HOall_df, label=’Pvv [W]’)

features_and_target = pd.concat([X, y], axis=1)

Figure 16: Python code used to create features from timestamp index and other variables for
the HO XGBoost model (code inspired by [30])

It should be noted that in the feature extraction for the HO XGBoost model(Figure 16), the
variables ”Guests” and ”BookedRooms” are added as features. This is different than for the
other building categories, which have no such variables in their belonging data sets.

The models are fitted on the training data. Setting up the XGBoost model itself is a simple
line of code, which in this thesis is retrieved from [30]. The code is shown in Figure 17.

Setup, train and fit model

model = xgb.XGBRegressor(n_estimators=1000)

model.fit(X_train, y_train,

eval_set=[(X_train, y_train), (X_test, y_test)],

early_stopping_rounds=50,

verbose=False)

Figure 17: XGBoost model (model set-up from [30])

Page 35

The only input parameter changed in the XGBoost models is the ”n estimators” parameter.
This parameter limits the number of trees to be made by the model. After tuning this param-
eter, the result did not change considerably and the parameter had little to no effect on the
prediction. The ”early stopping rounds” parameter is made to prevent overfitting the training
data, something that will increase the prediction error on the test set.

In order to visualize what features affect the DHW consumption the most, a feature importance
plot is created by the code in Figure 18. This code is equal for all three building types, but the
example shown in Figure 18 is for the HO XGBoost model. Here the function ”plot importance”
simply sums up how many times each feature is used as a data split in the regression trees
[30].

ax= plot_importance(model, height=0.9)

plt.savefig(’HOall_XG_FeatImp.png’, dpi=300, bbox_inches=’tight’)

plt.close()

Figure 18: Python code used to plot feature importance (code inspired by [30])

The XGBoost models in this thesis are simple, meaning not many parameters have been tuned
to improve the prediction results. The results from the AB, HO, and NH XGBoost predictions
are shown in chapter 5.1.4, 5.2.4 and 5.3.4, respectively.

4.6 Error Metrics

Model performance can be measured with different performance indicators. In this thesis, the
models have been tuned to minimize the RMSE. In order to compare the performance of the
two model types for the different building categories, the normalized metric NRMSE is also
calculated for all the models. MSE, MAE and MAPE are calculated for comparison to previous
work.

In all forecasting, the ”Null prediction” works as a reference point in terms of minimum
performance. In the case of the DHW load forecasting in this thesis, the null prediction is just
using the mean of the true DHW load in the training set as the prediction for the DHW load
in the test set.

The codes for calculating and storing the error metrics are built up the same way for all the
models produced in this thesis. The code for calculating and storing the error metrics for the
AB Prophet model is shown as an example in Figure 39 in Appendix G.

Page 36

5 Results

In this chapter, the result of the prediction modeling will be presented for each building type.
The DHW consumption in all three building types is predicted using the two different methods
introduced in section 3.

NB! In all prediction plots in this chapter, the true values are shown as a scatter-plot (red dots
in Prophet, orange dots in XGBOOST), and the prediction is shown as a blue line.

5.1 Apartment Buildings

The apartment building metadata contains the number of units and total floor area for each
of the four buildings. The results for the Prophet prediction and the XGBoost prediction are
presented in Figure 19 and Figure 23 respectively.

5.1.1 Apartment Building Prophet Prediction

This chapter will display prediction plots from the best performing AB Prophet model in terms
of error metrics, which is the manually tuned AB Prophet model.

The consumption data fed into the Prophet prediction model is as mentioned divided by
the number of units, so the consumption is in [(kWh

h)/unit]. The manually tuned Prophet
prediction for the apartment building consumption is plotted over the entire prediction period
and for a single week in July 2019 in Figure 19 (a) and (b) respectively.

Page 37

(a)

(b)

Figure 19: Apartment building per unit manually tuned Prophet DHW load prediction
[(kWh/h)/unit], for (a) The entire prediction period (b) 1 week in July.

In Figure 19, the dotted horizontal lines are the logistic ”floor” and ”cap” values, which are
set to zero and the highest consumption value in the training set, respectively. These lines are
plotted when the ”growth” parameter is set to ”logistic”. From visual inspection, the Prophet
model predicts the AB consumption reasonably well. From the detail-studied week in July,
shown in Figure 19(b), it can be observed that not many data points are outside the prediction
confidence interval. Over the 3 month long prediction period, there are 105 true observations
which are higher than the prediction upper confidence interval, and 24 true observations lower
than the prediction lower confidence interval. There is a total of 2217 hourly true DHW
load values in the test set, which means the 80% uncertainty interval of the prediction cover
2217−(24+105)

2217 = 94% of the true values.

The component plot from the manually tuned AB Prophet model is shown in Figure 20. The
plot shows how the different components contribute to the final prediction.

Page 38

Figure 20: Components in the manually tuned AB Prophet model.

For example, from this component plot, we can read that the DHW load prediction for Monday
07/01-2019 at 07:00 would be

≈ 0.063(trend component)+0.6(weekly component)·0.063(trend component)+4(daily component)·
0.063(trend component)+0(holiday component)·0.063(trend component) = 0.3528kWh

h .

Page 39

In this calculation, the seasonal components are multiplied with the trend component, be-
cause in the tuned model, shown in Figure 14, the ”seasonality mode” parameter is set to
’multiplicative’. By default, the seasonality mode is ’additive’, which means the components
are just added to the trend to produce the final prediction. With a multiplicative seasonality
mode, each component value is multiplied by the trend component as shown in the calculations
above. This calculation is made from visual inspection of the component plot and is therefore
not very accurate. However, by inspecting the prediction for that particular time in Figure 19
(b), the calculation result seems to be close to the prediction.

The component plot for the default Prophet model is shown in Figure 21.

Figure 21: Components in the default AB Prophet model.

Comparing the two different component plots, the variations in the daily and weekly compo-
nents are much more frequent and larger in magnitude for the manually tuned model than for
the default model. The daily component in the default model is more similar to the average
load curves shown in Figure 3. Since the manual tuned model predicts the DHW consumption
more accurately according to all error metrics(shown in Table 3), it suggests that the true

Page 40

DHW load varies frequently during a day and that the mean load profiles does not capture the
true DHW load curve in an apartment building. It can be seen that the daily component has a
top for every data point, and a low for the spacing between them, this seems unnecessary, but
the result however shows that this seasonality captures the true load better than the default
model which has more of an average profile consumption line.

5.1.2 Cross Validation Tuning of the Apartment Building Prophet Model

The output from the cross validation tuning for the AB Prophet model is shown in Figure 22.
The output shows the optimal hyperparameters of the combinations made by the CV code in
Figure 37 in Appendix B.

Best combination of hyperparameters: {’changepoint_range’: 0.8,

’changepoint_prior_scale’: 0.1, ’seasonality_prior_scale’: 0.1,

’weekly_seasonality’: 10.0, ’daily_seasonality’: 10.0}

Models tested: 288

Script runtime: 2:36:45.176724

Figure 22: Python command window results for CV Tuning of AB Prophet Model.

The CV tuning process yields a set of hyperparameters to be tested in the manual Prophet
model setup, using the same dates as the manually tuned and default Prophet models. The
RMSE of this model, fitted with the hyperparameter values from the CV optimization, is shown
in the ”Hyperparameters from CV-tuning”-column in Table 3.

5.1.3 Error Metrics Comparison for Different Apartment Building Prophet Mod-
els

For comparison, the error metrics for the different AB Prophet models and the percentage
change compared to the default AB Prophet model are displayed in Table 3.

Table 3: Error metrics for different AB Prophet models and the percentage change compared
to the default model.

AB Prophet models

Model Default Hyperparameters from CV-tuning Manually tuned

Metric Value Value Change compared to default [%] Value Change compared to default [%]

RMSE 0,088 0,093 6,5 % 0,081 -7,6 %

MAE 0,071 0,077 7,7 % 0,064 -10,8 %

MAPE 38,2 41,3 8,2 % 30,2 -20,9 %

NRMSE 0,301 0,320 6,5 % 0,278 -7,6 %

As mentioned, the manually tuned AB Prophet model is the best performing model for the
apartment building category. Therefore, the predictions from the manually tuned AB Prophet
model are plotted in Figure 19, and the error metrics from this prediction are included in
Table 6.

Page 41

5.1.4 Apartment Building XGBoost Prediction

The data fed into the XGBoost model is not the same as in the Prophet model. Here the
consumption data is fed directly into the model along with the metadata, which includes the
number of units and floor area in the buildings. The XGBoost prediction for the apartment
building consumption is plotted over the entire prediction period and for a single week in July
2019 in Figure 23 (a) and (b) respectively.

(a)

(b)

Figure 23: Apartment building XGBoost DHW load prediction [kWh/h](a) Predicted period
(b) 1 week in July.

It can be seen by observing Figure 19 that the prediction curve follows the true DHW load
values for most of the day. However, the model does not catch some of the afternoon load
peaks, for example, the afternoon DHW load for July first and second, shown in Figure 19
(b). Also, the prediction of the weekend shown in Figure 19 (b) (07/06 and 07/07), is off.
Compared to the HO and NH data, the AB data seems to have a flatter mid-day load curve,
which the model seems to pick up on.

Page 42

5.2 Hotels

The hotel metadata contains the number of units, total floor area for each of the four hotels.
In addition to this, there is also information on the number of booked rooms and the number
of guests checked in at all timestamps. The results for the HO Prophet prediction and the
XGBoost prediction are presented in Figure 24 and Figure 28 respectively.

5.2.1 Hotel Prophet Prediction

The consumption data fed into the Prophet prediction model is divided by the number of
units, so the consumption is in [(kWh

h)/unit]. The default HO Prophet prediction was the best
performing HO Prophet model, so the prediction from this model is plotted over the entire
prediction period and for a single week in July 2019 in Figure 24 (a) and (b) respectively.
It must be pointed out that Prophet model cannot take into account the other explanatory
variables in this data set. Another aspect regarding the HO Prophet model is that the Prophet
model using per guest data actually performs better, the prediction plots and error metrics for
this model are shown in Figure 38 and Table 14 in Appendix F. However, with the reasoning
in chapter 4.1, this prediction model may not be as easy to use, since the number of guests
information may not be available for future time values.

(a)

(b)

Figure 24: Hotel per unit default Prophet DHW load prediction [(kWh/h)/unit] for (a) The
entire prediction period (b) 1 week in July.

Page 43

It can be observed from Figure 24 that the consumption pattern seems to be captured by the
model, meaning the peak load timing and the timing of the night-time low consumption seems
to be correct. However, the model struggles to capture the highest and lowest consumption
values. This is reflected when counting true observations outside of the prediction confidence
interval. There are 160 true values over- and 52 values under the confidence interval, which
makes for an uncertainty interval coverage of 1390−(160+52)

1390 = 85%.

The components creating the default HO Prophet model are plotted in Figure 25.

Figure 25: Components in the default HO Prophet model.

5.2.2 Cross Validation Tuning of the Hotel Prophet Model

The CV process for the HO Prophet model is done similarly as for the AB model where the code
is displayed in Figure 37. The output from the HO CV-tuning can be seen in Figure 26.

Page 44

Best combination of hyperparameters: {’changepoint_range’: 0.8,

’changepoint_prior_scale’: 0.001, ’seasonality_prior_scale’: 0.1,

’weekly_seasonality’: 50, ’daily_seasonality’: 0}

Models tested: 288

Running time: 4:22:31.834759

Figure 26: Python command window results for CV Tuning of HO Prophet Model.

The running time of the script, shown in Figure 26, was over 4 hours, which is a problem
in this thesis, as the models cannot be fully optimized due to lack of time and/or lack of
computational power. This is further discussed in chapter 6.

The values of the hyperparameters from the CV optimization of the HO Prophet model is
put into the manual Prophet model setup, and the components creating the CV-tuned HO
Prophet model are plotted in Figure 27.

Figure 27: Components in the CV-tuned HO Prophet model.

As can be seen in Figure 26, the ”weekly seasonality” is optimized to 50, and the ”daily seasonality”
is optimized to 0 in the CV-tuned model. The reason this produces the lowest RMSE of the
combinations in the CV parameter grid is that the weekly seasonality is tuned up to 50 to
capture both weekly and daily load variations in one Fourier series. This weekly seasonality
component can be seen in Figure 27. However, the default model performs better according
to RMSE, MAE and NRMSE, which can be seen in Table 4, where the CV-tuned model error
metrics are compared to the error metrics from the default HO Prophet prediction. This para-
graph might be confusing in terms of why the CV-optimization does not choose the default

Page 45

model by setting all hyperparameters to default values, when this is the model that produces
the lowest RMSE. The reason for this is that the parameter grid used in the CV-tuning process
(shown in Figure 15), does not include all the default values for the different hyperparameters.
Because of the long running time, all of the default values, along with many other values that
could have been tested, are not included in this parameter grid.

5.2.3 Error Metrics Comparison for Different Hotel Prophet Models

To find out what version of the HO Prophet model performs the best predictions, the error
metrics for the default HO Prophet model are compared to the error metrics from the CV-tuned
HO Prophet model in Table 4.

Table 4: Error metrics for different HO Prophet models and the percentage change compared
to the default model.

HO Prophet models

Model Default Hyperparameters from CV-tuning

Metric Value Value Change compared to default [%]

RMSE 0,112 0,130 15,7 %

MAE 0,085 0,091 6,8 %

MAPE 168,6 63,3 -62,4 %

NRMSE 0,491 0,568 15,7 %

Manual tuning of the HO Prophet model did not improve the predictions either, and thus,
the default Prophet model is the best performing HO Prophet model. Therefore the default
HO Prophet prediction is plotted in Figure 24, and the error metrics from this prediction are
displayed in Table 6.

5.2.4 Hotel XGBoost Prediction

The data fed into the XGBoost model is not the same as in the Prophet model. Here the
consumption data is fed directly into the model along with the metadata, which includes the
number of units and total area in the hotels. The XGBoost model also takes in the information
about booked rooms and guests checked in at all times. The XGBoost prediction for the hotel
DHW consumption is plotted over the entire prediction period and for a single week in July
2019 in Figure 28 (a) and (b) respectively.

Page 46

(a)

(b)

Figure 28: Hotel XGBoost DHW load prediction [kWh/h](a) Predicted period (b) 1 week in
July.

One might expect that the HO XGBoost model should be one of the top-performing models
in this thesis as this is the model which takes in the most information in form of explanatory
variables. However, as can be observed in Figure 28, the model fails to capture the height of
the morning peak load and the mid-day low consumption values. The timing of the prediction
however seems to be on point. The prediction values are conservative, but the curve of the
prediction follows the curve of the true consumption.

5.3 Nursing Homes

The nursing home metadata contains the number of units and total floor area for each of the
four nursing homes. The results for the Prophet prediction and the XGBoost prediction are
presented in Figure 29 and Figure 33 respectively.

Page 47

5.3.1 Nursing Home Prophet Prediction

The consumption data fed into the Prophet prediction model is as mentioned divided by the
number of units, so the consumption is in [(kWh

h)/unit]. The Prophet prediction for the nursing
home consumption is plotted over the entire prediction period and for a single week in February
2019 in Figure 29 (a) and (b) respectively.

(a)

(b)

Figure 29: Nursing home per unit CV tuned Prophet DHW load prediction [(kWh/h)/unit] for
(a) The entire prediction period (b) 1 week in February.

From Figure 29 (b), it can be seen that the CV-tuned NH Prophet prediction performs good
predictions as the prediction line is close to most of the true DHW load values. Only three peak
load values in the first week of February can be visually separated from the uncertainty interval.
From the entire prediction period, 33 true values are higher than the upper uncertainty interval,
and 14 true values under the lower uncertainty interval. This means that the uncertainty
interval covers 816−(33+14)

816 = 94% of the true values in the prediction period.

5.3.2 Cross Validation Tuning of the Nursing Homes Prophet model

The Cross validation process for the NH Prophet model is done similarly as for the AB model
where the code is displayed in Figure 37. The output from the NH CV-tuning can be seen in
Figure 30.

Page 48

Best combination of hyperparameters: {’changepoint_range’: 0.95,

’changepoint_prior_scale’: 0.1, ’seasonality_prior_scale’: 0.1,

’weekly_seasonality’: 10.0, ’daily_seasonality’: 50}

Models tested: 288

Running time: 5:50:16.031621

Figure 30: Python command window results for CV Tuning of NH Prophet Model.

The running time of this script was almost 6 hours. The optimal hyperparameters from the
CV-tuning shown in Figure 30 are entered in a NH Prophet model using the manual Prophet
model set-up. Meaning the same training- and test sets that are used to fit the default NH
Prophet model.

The components creating the CV-tuned NH Prophet model are plotted in Figure 31.

Page 49

Figure 31: Components in the CV-tuned NH Prophet model.

For comparison, the components in the default NH Prophet model are plotted in Figure 32.

Page 50

Figure 32: Components in the default NH Prophet model.

Both the weekly and daily seasonality have a higher value in the CV tuned model than in the
default model. This can be seen by comparing the frequency and magnitude of the changes in
the components in Figure 31 and Figure 32. As for the manually tuned AB Prophet model, the
CV-tuned NH Prophet model has a daily seasonality component with high frequency changes,
and it can be seen in Figure 31, that the daily component has a peak for every hour and a low
for the gaps between the hourly values. One might think that this is a sign of overfitting since
the data set only contains hourly values. However, the error metrics in Table 5 shows that
this works better than the smooth daily component in the NH default Prophet model, shown
in Figure 32.

5.3.3 Error Metrics Comparison for Different Nursing Home Prophet Models

The error metrics from the CV-tuned NH Prophet model are compared to the error metrics from
the default NH Prophet model in Table 5. Using the hyperparameters from the CV optimization
process produces the best results. Therefore, the results in chapter 5.3.1 and in Table 6 comes
from the model tuned with the optimal hyperparameters from the CV process.

Page 51

Table 5: Error metrics for different NH Prophet models and the percentage change compared
to the default model.

NH Prophet models

Model Default Hyperparameters from CV-tuning

Metric Value Value Change compared to default [%]

RMSE 0,065 0,053 -19,2 %

MAE 0,047 0,040 -15,0 %

MAPE 44,1 38,6 -12,5 %

NRMSE 0,375 0,303 -19,2 %

5.3.4 Nursing Home XGBoost Prediction

The data fed into the XGBoost model is not the same as in the Prophet model. Here the
consumption data is fed directly into the model along with the metadata, which includes the
number of units and floor area in the nursing homes. The XGBoost prediction for the nursing
home DHW consumption is plotted over the entire prediction period and for a single week in
February 2019 in Figure 33 (a) and (b) respectively.

(a)

(b)

Figure 33: Nursing home XGBoost DHW load prediction [kWh/h](a) Predicted period (b) 1
week in February.

Page 52

From visual inspection of Figure 33 (b), the NH XGBoost prediction looks good for most of
the days, as the prediction line seems close to all observations. The greatest errors in the
prediction of the second week in February are during the night hours of Friday the 13th.

5.4 Model Performances

This section will evaluate the model performances on the different building types.

5.4.1 Feature Importance XGBoost

As mentioned, XGBoost takes in all variables as features. The importance that each feature
has on the DHW consumption is measured and plotted in Figure 34.

Page 53

(a) Apartment Buildings

(b) Hotels

(c) Nursing Homes

Figure 34: Feature importance XGBoost model for (a) Apartment buildings (b) Hotels (c)
Nursing Homes.

Page 54

As can be observed in Figure 34, the ”hour-of-day” feature is the stand out important feature.
This is also easily identified through looking at the plotted predictions as the daily variations
are the dominating pattern in the consumption. The hourly count of the number of guests
checked in is an important feature for the hotel DHW predictions. The data has been split
402 times on this feature in order to produce the final prediction. Interestingly the number of
units is less important than the total area of the building for all building categories. This is
contradictory to the findings in the Prophet part of the thesis. As the error made by the AB-
and NH Prophet models using per m2 consumption is larger than the error made by the same
Prophet models using per unit data. This is further discussed in chapter 6.

5.4.2 Error Metrics Summary

This chapter summarizes the error metrics for the best performing versions of both model types
(Prophet and XGBoost) for all three building types.

In Table 6, the error metrics of the best performing versions of the two models are displayed
for all three building categories. The error metrics for the NULL prediction for the different
buildings are also displayed in the table for comparison. The NULL prediction is made by
taking the mean of the training data. It should be pointed out that the NULL prediction uses
the original data magnitude, meaning the consumption is not per unit.

Table 6: Error metrics table, best performing versions of the models compared to the NULL
prediction.

Building Model\Metric MSE MAE MAPE RMSE NRMSE
Prophet 0,007 0,064 30,20 0,081 0,278
XGBoost 38,0 4,78 32,44 6,17 0,245AB
NULL 102,3 8,03 54,85 10,11 0,402

Prophet 0,013 0,085 168,62 0,112 0,491
XGBoost 257,2 12,08 122,45 16,04 0,468HO
NULL 756,3 22,40 513,78 27,50 0,802

Prophet 0,003 0,040 38,62 0,053 0,303
XGBoost 20,5 3,41 37,27 4,53 0,269NH
NULL 141,0 9,37 108,58 11,87 0,706

The NRMSE error metrics for the different best performing models are visually displayed in a
bar plot in Figure 35, which is made using the numbers in Table 6.

Page 55

Figure 35: NRMSE bar plot for the best performing versions of the models compared to the
NULL prediction for all three building categories, made by Table 6.

An important thing to keep in mind when looking at the error metrics in Table 6 is the
magnitude difference between the predictions in the different models. As stated in section 4,
the data fed into the Prophet model is in per feature format. The AB and NH data are in
per unit format, while the HO data are in per guest format. Therefore, the MAE, MSE and
RMSE from the Prophet model are not comparable to the same metrics from the XGBoost-
or the NULL model.

Inspection of the normalized error metrics shows that the XGBoost model performs better both
according to the MAPE- and NRMSE metric for hotels and nursing homes. For the apartment
building DHW prediction, the Prophet and XGBoost perform approximately equal error metrics.
The normalized error metrics for the AB Prophet model prediction are MAPE ≈ 30% and
NRMSE ≈ 0.28. The normalized error metrics for the AB XGBoost model prediction are
MAPE ≈ 32% and NRMSE ≈ 0.25.

Page 56

6 Discussion

6.1 Model Performance

The XGBoost model seems to perform best on all building types according to the NRMSE in
Table 6. This coincides with what Dmytro Ivanko found in his paper [9]. This result is also
reflected in the MAPE, but for the apartment building models, the MAPE value is marginally
lower for the Prophet prediction. Generally, the models made for the apartment buildings
and nursing homes perform better than the models made to predict hotel DHW consumption.
This can be seen both in the prediction plots and in the error metrics table in Table 6. The
building category with the worst prediction result is the hotel category, where the XGBoost
model performed a RMSE = 16.04 and a NRMSE = 0.47. The NRMSE indicates that the
error is large, more precisely that the RMSE is almost 50% of the mean observed value.

Looking at the forecast results in terms of error metrics, the MAPE error metric can be strongly
affected by observed DHW consumption values near zero, as previously mentioned in 5.4.2. It
can be observed in Table 6 in the results for the HO models, that the MAPE value is much
higher than the NRMSE. (The MAPE is given as a percentage, but the NRMSE is given as
a fraction but can be seen as a percentage when multiplied with 100%.) When comparing
the prediction plots for the HO data and the AB data in Figure 2, the hotels have more
consumption values close to zero. The high MAPE values are likely to be caused by these low
consumption values.

The apartment building models seem to benefit from the amount of training data compared
to the other building categories, especially compared to the hotel data. One advantage of
predicting DHW consumption in nursing homes compared to apartment buildings and hotels is
that the residents in different nursing homes may be more alike than the residents in different
hotels and apartment buildings. Another factor here is that the showering of the residents
more or less follows a schedule. This makes the DHW consumption more repetitive and easier
for a model to adapt. This could explain why the XGBoost nursing home model performs so
well compared to other models in this thesis.

As shown in Figure 35 and Table 6, the simple XGBoost models outperform the tuned and
adjusted Prophet models. The reason why the XGBoost models were not tuned is the time
pressure of this thesis. As the initial results from the XGBoost models were so good compared
to the Prophet models, tuning the Prophet models as an attempt to achieve decent prediction
results were prioritized. Time pressure and focus on the Prophet models are the reason why
the XGBoost models are not tuned to optimize the results.

6.2 Comparison to previous research

There are not a lot of previous works on predicting DHW consumption using machine learning
techniques. The model performances on the hotel data in this thesis can however be compared
to the work of Ivanko et al. in [9] which predicted the DHW consumption in HO4 which also
is studied in this thesis. As stated in chapter 3.5, the best XGBoost model in this article
performed a MAE of 3.12. However, this model was only fed data from the specific hotel for
which the predictions were made. In this thesis, the goal was to create a general model able to
predict consumption based on historical data from multiple other hotels. The MAE value for
the best HO model in this thesis is 12.08, which is about 4 times larger. This can be explained
by the disturbance from training data not from the specific hotel in which the consumption has

Page 57

been predicted on. The conclusion for hotel DHW consumption is however that none of the
models in this thesis were able to give good enough predictions to be used for smart control
of DHW systems. Therefore, the method used in [9] seems more reliable and a better option
for predicting hotel DHW consumption.

6.3 Data pre-processing

One thing I discovered while working with the prediction models is that how the data is pre-
processed can have a large impact on the prediction results. Early in the process, the NAN
values were set to zero (hereby referred to as PPS 1), and I thought that this would be the
intuitive way to deal with missing data. However, using PPS 1 would yield a faulty image of
the true consumption data. The NAN values should be removed, as there is no way of telling
which value should have been where there is a NAN value. If the data rows with NAN values
are removed totally from the data set(hereby referred to as PPS 2), the result improves.

It is also clear that some error metrics are more affected by these NAN values which were set
to zero in PPS 1. As mentioned in chapter 3.4, the MAPE is heavily affected by consumption
values close to zero, and when the consumption value actually is zero, the term becomes
infinitely large. Another error metric that is affected by this is the NRMSE. This makes sense,
as the NAN values in PPS 1 is set to zero, which is the lowest possible value allowed, which
will reduce the mean consumption value in the test data. This again will result in a higher
NRMSE, than if the values are removed. This can be seen easily by studying the formula for
NRMSE in Equation 3.21. (To clarify, PPS 2 is the strategy used in this thesis, meaning NAN
values were removed from the data.)

6.4 Data features

Among the variables available in the data, there is information about the number of units and
the total area in all buildings analyzed in this thesis. The hotels also has information about
the number of guests checked into the hotel, and the number of booked rooms at any time.
The question is which of these variables tells us the most about the magnitude of the DHW
consumption. According to [28], the DHW consumption has the strongest correlation to the
number of residents in the building, then the heated area of the building, and lastly the number
of units in the building.

Looking at Figure 34, this seems to be the correct assessment. As stated in chapter 5.4.1,
the ”Guests” feature in the HO data is more important to the model than the ”Units”,
”BookedRooms” and ”Area”. Also, ”Units” is less important than the ”Area”. This discussion
is relevant also for the Prophet models, because if the feature importance plot in the XGBoost
model is a factor to count on as a correlation measure, then the Prophet model may perform
better when fed per m2 data than per unit data. This however is not the case. For all building
categories, the Prophet model performs better with per unit data, than with per m2 data, this
can be observed by looking in the error metric comparison tables in Appendix C

There could however be other explanations to these Prophet results. One thing to keep in
mind about how the models are being fed the data is that the data is concatenated into a
single dataframe, creating a false effect that all data comes from the same building. This could
lead to a phenomenon where a difference in magnitude occurs at a time because subsequent
data points are measurements from two different buildings with a different number of units or
different building areas. The fact that per unit data performs better in the Prophet models
could be because the magnitude difference because of number of unit differences are picked

Page 58

up by the model as something else, for example that the difference are picked up as a change
in weekday. The per m2 data does not necessarily have the same magnitude difference, and
that may lead to the Prophet model not being able to pick up the change, and the model
accuracy decreases because of this. Using the data in the way that is done in this thesis has
such disadvantages as there can be hidden correlations and coincidences can play a part in how
well the model fits the data in the end. However, if the models were to use data from only
one apartment building, or one hotel, the results would not be very uniform, and the models
would have less a portion of training data, or else the prediction periods would have to be
shorter.

6.5 Model Identification Process

To further develop the Prophet models, taking in more data and performing cross validation
tuning with more hyperparameters and more values for each hyperparameter is essential. It
can be observed in Figure 22, Figure 26 and Figure 30 that the CV scripts take several hours to
run, and therefore, choosing which parameters to tune were necessary in this thesis because of
the time it takes to run the scripts. With more computational power and more time at hand,
more of the hyperparameters, and a wider range of values for each of the hyperparameters
in the models can be tuned to optimize the results. For example, an input parameter grid
with all input parameters and a large range of values could have been created and run in a
supercomputer. This would have made sure that the best input parameters are being used by
the models, and this would probably increase the prediction accuracy of all the models in this
thesis.

Weather data may also be added in the XGBoost model in order to increase the number of
explanatory variables and possibly improve the prediction. This was not done in this thesis, as
the geographical locations of many of the buildings were lacking.

Page 59

7 Conclusion

In this thesis, Prophet and XGBoost machine learning models have been tested for medium-
term DHW load prediction. The models have been set up, trained, and validated for apartment
buildings, hotels, and nursing homes. The models are trained and validated on measurements
from the Varmtvann2030 data set [10]. The Prophet models are trained only on DHW con-
sumption data in per unit format and the time variables (year, quarter, month, week, day of
the year, day of the week, hour), meaning no other explanatory variables were added to these
models. The XGBoost models for the apartment buildings, hotels, and nursing homes utilize
the number of units in the buildings and the total area of the buildings in addition to the
time variables. The hotel XGBoost model also takes in the number of booked rooms- and the
number of guests checked in at any time.

The XGBoost model produced strong prediction results for the apartment buildings and nursing
homes with NRMSE around 0.25. The hotel consumption is not captured properly by either
of the models in this thesis, which is clear from the fact that non of the models performed a
NRMSE under 0.45. The differences in consumption magnitude between the different hotels
may have played a part in this. The Prophet model predicts the apartment building data with
a NRMSE of about 0.28. The XGBoost models in the thesis have not been tuned much, so
they are easy to apply to new data, and perform the best predictions of the models studied
in this thesis. XGBoost is a good option in terms of medium-term DHW load prediction for
apartment buildings and nursing homes.

As mentioned above, and in chapter 6.1, the XGBoost models outperform the Prophet models.
Even with the Prophet models being tuned and adjusted they did not perform as well as the
close to default XGBoost models.

7.1 Learning Outcome

Going into this work I did not have a lot of experience with either data processing, machine
learning techniques, or Python in general. So I have learned a lot about how to efficiently
handle data, and to say the least, there is a lot I would handle differently from the start
knowing what I know now. For example, spending more time analyzing the data before feeding
it to the different prediction models would have been beneficial. Knowing the data in and out
helps you realize where the model goes wrong, or what may cause problems in the prediction
modeling.

Feeding per unit- or per guest consumption data uniformly into a model, is not the only way
to go about this problem, and the shift in which building the data comes from could confuse
the model, creating false seasonalities. My original thought was that the best way to take full
advantage of the data sets was to train the models on as much data as possible, using per
unit or per guest consumption data was a solution that allowed me to utilize data from all 4
buildings in each building category. However, the different buildings may have different types
of residents with different habits of DHW consumption.

In hindsight, I believe that the task of predicting DHW consumption for all three building types
with two different models turned out to be a little too ambitious. The tuning of the Prophet
models took a lot of work, and gaining insight into both the Prophet model and XGBoost
model was a lot of work for me, as I do not have a lot of experience in machine learning. The
model results would probably be better if I could focus on making one model for one of the
building types.

Page 60

References

[1] FME ZEN. url: https://fmezen.no/?lang=no (visited on 06/14/2021).

[2] SINTEF Community - SINTEF. url: https://www.sintef.no/community/#/ (visited
on 06/14/2021).

[3] Henrik Waterloo. “Domestic Hot Water Consumption Characteristics”. Trondheim, 2020.

[4] IRENA. “Renewable Energy Target Setting”. In: Irena June (2015), p. 80. url: https:
//www.irena.org/publications/2015/Jun/Renewable-Energy-Target-Setting.

[5] K. B. Lindberg et al. “Long-term electricity load forecasting: Current and future trends”.
In: Utilities Policy 58 (June 2019), pp. 102–119. issn: 09571787. doi: 10.1016/j.jup.
2019.04.001. url: https://doi.org/10.1016/j.jup.2019.04.001.

[6] Dag Spilde et al. Strømforbruk mot 2040. Tech. rep. Oslo, 2019, p. 24. url: http :
//publikasjoner.nve.no/rapport/2019/rapport2019 22.pdf.

[7] NVE et al. Langsiktig kraftmarkedsanalyse 2020-2040. Oslo, 2020. url: http://publikasjoner.
nve.no/rapport/2020/rapport2020 37.pdf.

[8] Total final consumption by source, OECD, 1971-2018 – Charts – Data & Statistics -
IEA. url: https://www.iea.org/data-and-statistics/charts/total-final-consumption-by-
source-oecd-1971-2018 (visited on 05/19/2021).

[9] Dmytro Ivanko, Åse Lekang Sørensen, and Natasa Nord. “Selecting the model and
influencing variables for DHW heat use prediction in hotels in Norway”. In: (2020). doi:
10.1016/j.enbuild.2020.110441. url: https://doi.org/10.1016/j.enbuild.2020.110441.

[10] “VarmtVann2030: Energi til tappevann i det norske lavutslippssamfunnet”. In: Data ob-
tained from personal communication with Harald Taxt Walnum, SINTEF, in September
2020. (). url: https://www.sintef.no/projectweb/varmtvann/.

[11] Tao Hong et al. “Energy Forecasting: A Review and Outlook”. In: IEEE Open Access
Journal of Power and Energy 7.October (2020), pp. 376–388. doi: 10.1109/oajpe.2020.
3029979.

[12] Christian Behm, Lars Nolting, and Aaron Praktiknjo. “How to model European electricity
load profiles using artificial neural networks”. In: Applied Energy 277.July (2020). issn:
03062619. doi: 10.1016/j.apenergy.2020.115564. url: https://www.sciencedirect.
com/science/article/pii/S030626192031076X.

[13] O Gerin, B Bleys, and K De Cuyper. “Domestic hot water consumption in apartment
buildings”. In: International Symposium of CIB W062 Water Supply and Drainage for
Buildings 41 (2015), pp. 400–407. url: https://www.irbnet.de/daten/iconda/CIB
DC30620.pdf.

[14] Linn Steng̊ard and Thomas Levander. “Mätning av kall- och varmvattenanvändning i
44 hush̊all”. In: (2009). url: https : / / energimyndigheten . a - w2m . se / Home . mvc ?
ResourceId=2418.

[15] Prophet — Forecasting at scale. url: https://facebook.github.io/prophet/ (visited on
05/12/2021).

[16] Sean J Taylor and Benjamin Letham. “Forecasting at Scale”. In: (Sept. 2017). doi:
10.7287/peerj.preprints.3190v2. url: https://doi.org/10.7287/peerj.preprints.3190v2.

[17] Time Series Analysis with Facebook Prophet: How it works and How to use it — by
Mitchell Krieger — Towards Data Science. url: https://towardsdatascience.com/time-
series-analysis-with-facebook-prophet-how-it-works-and-how-to-use- it- f15ecf2c0e3a
(visited on 06/14/2021).

Page 61

https://fmezen.no/?lang=no
https://www.sintef.no/community/#/
https://www.irena.org/publications/2015/Jun/Renewable-Energy-Target-Setting
https://www.irena.org/publications/2015/Jun/Renewable-Energy-Target-Setting
https://doi.org/10.1016/j.jup.2019.04.001
https://doi.org/10.1016/j.jup.2019.04.001
https://doi.org/10.1016/j.jup.2019.04.001
http://publikasjoner.nve.no/rapport/2019/rapport2019_22.pdf
http://publikasjoner.nve.no/rapport/2019/rapport2019_22.pdf
http://publikasjoner.nve.no/rapport/2020/rapport2020_37.pdf
http://publikasjoner.nve.no/rapport/2020/rapport2020_37.pdf
https://www.iea.org/data-and-statistics/charts/total-final-consumption-by-source-oecd-1971-2018
https://www.iea.org/data-and-statistics/charts/total-final-consumption-by-source-oecd-1971-2018
https://doi.org/10.1016/j.enbuild.2020.110441
https://doi.org/10.1016/j.enbuild.2020.110441
https://www.sintef.no/projectweb/varmtvann/
https://doi.org/10.1109/oajpe.2020.3029979
https://doi.org/10.1109/oajpe.2020.3029979
https://doi.org/10.1016/j.apenergy.2020.115564
https://www.sciencedirect.com/science/article/pii/S030626192031076X
https://www.sciencedirect.com/science/article/pii/S030626192031076X
https://www.irbnet.de/daten/iconda/CIB_DC30620.pdf
https://www.irbnet.de/daten/iconda/CIB_DC30620.pdf
https://energimyndigheten.a-w2m.se/Home.mvc?ResourceId=2418
https://energimyndigheten.a-w2m.se/Home.mvc?ResourceId=2418
https://facebook.github.io/prophet/
https://doi.org/10.7287/peerj.preprints.3190v2
https://doi.org/10.7287/peerj.preprints.3190v2
https://towardsdatascience.com/time-series-analysis-with-facebook-prophet-how-it-works-and-how-to-use-it-f15ecf2c0e3a
https://towardsdatascience.com/time-series-analysis-with-facebook-prophet-how-it-works-and-how-to-use-it-f15ecf2c0e3a

[18] Facebook Prophet. (Almost) everything you should know to. . . — by Moto DEI — The
Startup — Medium. url: https://medium.com/swlh/facebook-prophet-426421f7e331
(visited on 05/20/2021).

[19] Jean Pierre Signoret and Alain Leroy. “Monte Carlo Simulation”. In: Springer Series in
Reliability Engineering August (2021), pp. 547–586. issn: 2196999X. doi: 10.1007/978-
3-030-64708-7{\ }32. url: https://www.researchgate.net/publication/326803384
MONTE CARLO SIMULATION.

[20] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. doi:
10.1145/2939672.2939785. url: http://dx.doi.org/10.1145/2939672.2939785.

[21] XGBoost Mathematics Explained. A walk-through of the Gradient Boosted. . . — by
Dimitris Leventis — Towards Data Science. url: https ://towardsdatascience .com/
xgboost-mathematics-explained-58262530904a (visited on 05/18/2021).

[22] Wei Yin Loh. “Classification and regression trees”. In: Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 1.1 (Jan. 2011), pp. 14–23. issn: 19424795.
doi: 10 . 1002 / widm . 8. url: https : / / onlinelibrary. wiley. com / doi / full / 10 . 1002 /
widm . 8 % 20https : / / onlinelibrary. wiley. com / doi / abs / 10 . 1002 / widm . 8 % 20https :
//onlinelibrary.wiley.com/doi/10.1002/widm.8.

[23] Amir Mosavi and Abdullah Bahmani. “Energy consumption prediction using m[1] A.
Mosavi and A. Bahmani, “Energy consumption prediction using machine learning; a
review,” Energies, no. March, pp. 1–63, 2019.” In: Energies March (2019), pp. 1–63.
doi: 10.20944/preprints201903.0131.v1. url: https://www.preprints.org/manuscript/
201903.0131/download/final file.

[24] Filipe Rodrigues, Carlos Cardeira, and J. M.F. Calado. “The daily and hourly energy
consumption and load forecasting using artificial neural network method: A case study
using a set of 93 households in Portugal”. In: Energy Procedia. Vol. 62. Elsevier Ltd,
Jan. 2014, pp. 220–229. doi: 10.1016/j.egypro.2014.12.383.

[25] Yibo Chen, Hongwei Tan, and Umberto Berardi. “Day-ahead prediction of hourly elec-
tric demand in non-stationary operated commercial buildings: A clustering-based hybrid
approach”. In: Energy and Buildings 148 (Aug. 2017), pp. 228–237. issn: 03787788.
doi: 10.1016/j.enbuild.2017.05.003.

[26] Microsoft Azure Machine Learning Studio (classic). url: https://studio.azureml.net/
(visited on 03/13/2021).

[27] pandas - Python Data Analysis Library. url: https://pandas.pydata.org/ (visited on
05/06/2021).

[28] Dzintars Grasmanis, Aldis Grekis, and Normunds Talcis. “Heat Consumption Assessment
of the Domestic Hot Water Systems in the Apartment Buildings”. In: Construction
Science 14.October 2013 (2013). issn: 2255-8551. doi: 10.2478/cons-2013-0006.

[29] Diagnostics — Prophet. url: https://facebook.github.io/prophet/docs/diagnostics.
html (visited on 05/25/2021).

[30] [Tutorial] Time Series forecasting with XGBoost — Kaggle. url: https://www.kaggle.
com/robikscube/tutorial- time- series- forecasting- with- xgboost/notebook (visited on
04/21/2021).

Page 62

https://medium.com/swlh/facebook-prophet-426421f7e331
https://doi.org/10.1007/978-3-030-64708-7{_}32
https://doi.org/10.1007/978-3-030-64708-7{_}32
https://www.researchgate.net/publication/326803384_MONTE_CARLO_SIMULATION
https://www.researchgate.net/publication/326803384_MONTE_CARLO_SIMULATION
https://doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://towardsdatascience.com/xgboost-mathematics-explained-58262530904a
https://towardsdatascience.com/xgboost-mathematics-explained-58262530904a
https://doi.org/10.1002/widm.8
https://onlinelibrary.wiley.com/doi/full/10.1002/widm.8%20https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.8%20https://onlinelibrary.wiley.com/doi/10.1002/widm.8
https://onlinelibrary.wiley.com/doi/full/10.1002/widm.8%20https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.8%20https://onlinelibrary.wiley.com/doi/10.1002/widm.8
https://onlinelibrary.wiley.com/doi/full/10.1002/widm.8%20https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.8%20https://onlinelibrary.wiley.com/doi/10.1002/widm.8
https://doi.org/10.20944/preprints201903.0131.v1
https://www.preprints.org/manuscript/201903.0131/download/final_file
https://www.preprints.org/manuscript/201903.0131/download/final_file
https://doi.org/10.1016/j.egypro.2014.12.383
https://doi.org/10.1016/j.enbuild.2017.05.003
https://studio.azureml.net/
https://pandas.pydata.org/
https://doi.org/10.2478/cons-2013-0006
https://facebook.github.io/prophet/docs/diagnostics.html
https://facebook.github.io/prophet/docs/diagnostics.html
https://www.kaggle.com/robikscube/tutorial-time-series-forecasting-with-xgboost/notebook
https://www.kaggle.com/robikscube/tutorial-time-series-forecasting-with-xgboost/notebook

A Initial Data Without Time-axis

(a) Apartment Buildings

(b) Hotels

(c) Nursing Homes

Figure 36: Initial data plotted without timestamps for (a) Apartment Buildings (b) Hotels (c)
Nursing Homes (data from Varmtvann2030).

Page 63

B Cross Validation Prophet Code

#Cross validation

#Starting clock to track script running time

from datetime import datetime

startTime = datetime.now()

#Creating grid of hyperparameters

param_grid = {

’changepoint_range’ : [0.8, 0.95],

’changepoint_prior_scale’: [0.001, 0.01, 0.1, 0.5],

’seasonality_prior_scale’: [0.1, 1.0, 10],

’weekly_seasonality’: [0, 10.0, 50, 100],

’daily_seasonality’: [0, 10.0, 50, 100],

}

#Generating all combinations of hyperparameters

all_params = [dict(zip(param_grid.keys(), v)) for v in

itertools.product(*param_grid.values())]

For storing the RMSE’s

rmses = []

#Using CV to evaluate all parameter combinations

for params in all_params:

m = Prophet(growth=’logistic’, **params).fit(AB_prUnit_train.reset_index() \

.rename(columns={’DateTime’:’ds’,

’Pvv pr unit [W]’:’y’})) # Fit model with given

params

AB_prUnit_cv_tuned = cross_validation(m, horizon=’92 days’)

AB_prUnit_cv_tuned_metrics = performance_metrics(AB_prUnit_cv_tuned,

rolling_window=1)

rmses.append(AB_prUnit_cv_tuned_metrics[’rmse’].values[0])

#Finding and printing the best hyperparameter combination

ABtuning_results = pd.DataFrame(all_params)

ABtuning_results[’rmse’] = rmses

print(ABtuning_results)

ABtuning_results.to_csv(’AB_Prophet_CVtuning.csv’)

#Printing running time

print(datetime.now() - startTime)

Figure 37: Code for cross validation tuning of AB Prophet model, same procedure is used for
HO- and NH Prophet models (code inspired by [29])

Page 64

C Per Feature Prophet Error Metrics Comparison

Table 7: Error metric comparison for different data fed into default AB Prophet model

Default AB Prophet models

Data format pr unit pr m2

Metric Value Value Change compared to pr unit [%]

RMSE 0,088 0,002 NOT COMPAREABLE

MAE 0,071 0,001 NOT COMPAREABLE

MAPE 38,2 42,6 11,6 %

NRMSE 0,301 0,330 9,9 %

Table 8: Error metric comparison for different data fed into default HO Prophet model

Default HO Prophet models

Model pr unit pr m2 pr guest pr booked room

Metric Value Value Change compared to default [%] Value Change compared to default [%] Value Change compared to default [%]

RMSE 0,112 0,002 NOT COMPAREABLE 0,080 NOT COMPAREABLE 0,145 NOT COMPAREABLE

MAE 0,085 0,002 NOT COMPAREABLE 0,062 NOT COMPAREABLE 0,107 NOT COMPAREABLE

MAPE 168,6 158,6 -6 % 116,9 -30,7 % 104,8 -38 %

NRMSE 0,491 0,488 -1 % 0,473 -3,7 % 0,522 6 %

Table 9: Error metric comparison for different data fed into default NH Prophet model

Default NH Prophet models

Data format pr unit pr m2

Metric Value Value Change compared to default [%]

RMSE 0,065 0,001 NOT COMPAREABLE

MAE 0,047 0,000 NOT COMPAREABLE

MAPE 44,1 44,8 1 %

NRMSE 0,375 0,399 7 %

Page 65

D Worst Prediction Errors for Best Prophet Models

Table 10: AB manually tuned Prophet model, 10 worst prediction hours

Timestamp True value Prediction Error Absolute error
2019-05-29 05:00:00 0,60180125 0,2865686 0,31523265 0,31523265

2019-05-29 04:00:00 0,50385159 0,19938544 0,30446615 0,30446615

2019-06-22 07:00:00 0,62278691 0,31991641 0,30287051 0,30287051

2019-06-19 08:00:00 0,6369537 0,35038108 0,28657262 0,28657262

2019-05-31 04:00:00 0,47812062 0,19486283 0,28325779 0,2832577

2019-06-21 05:00:00 0,5572436 0,27630997 0,28093365 0,28093365

2019-06-01 08:00:00 0,64339547 0,37361293 0,26978254 0,26978254

2019-06-10 09:00:00 0,57833579 0,31352675 0,26480904 0,26480904

2019-06-20 04:00:00 0,46005812 0,19965488 0,26040323 0,26040323

2019-06-23 07:00:00 0,53346513 0,2816131 0,25185203 0,25185203

Table 11: HO default Prophet model, 10 worst prediction hours

Timestamp True value Prediction Error Absolute error
2019-07-23 06:00:00 0,93393061 0,43317444 0,50075617 0,50075617

2019-07-01 06:00:00 0,8643162 0,37407979 0,49023641 0,49023641

2019-07-23 05:00:00 0,82591449 0,35716463 0,46874986 0,46874986

2019-07-25 06:00:00 0,89968126 0,44703231 0,45264895 0,45264895

2019-06-19 05:00:00 0,78866055 0,35072287 0,43793768 0,43793768

2019-08-08 06:00:00 0,879284 0,45266882 0,42661518 0,42661518

2019-08-09 06:00:00 0,85462951 0,43734479 0,41728472 0,41728472

2019-07-30 06:00:00 0,84783986 0,43599269 0,41184716 0,41184716

2019-08-06 06:00:00 0,83169023 0,43881095 0,39287928 0,39287928

2019-07-22 05:00:00 0,69657371 0,30761848 0,38895523 0,38895523

Table 12: NH CV tuned Prophet model, 10 worst prediction hours

Timestamp True value Prediction Error Absolute error
2019-02-17 08:00:00 0,60114009 0,35857396 0,24256613 0,24256613

2019-02-01 08:00:00 0,66563479 0,43747703 0,22815777 0,22815777

2019-03-06 08:00:00 0,64325663 0,44194905 0,20130758 0,20130758

2019-02-16 09:00:00 0,44152519 0,24595579 0,1955694 0,1955694

2019-02-23 15:00:00 0,2986779 0,10530077 0,19337713 0,19337713

2019-02-01 09:00:00 0,52266063 0,33272911 0,18993152 0,18993152

2019-02-03 08:00:00 0,53567874 0,36101216 0,17466658 0,17466658

2019-02-27 08:00:00 0,60124643 0,44316815 0,15807829 0,15807829

2019-02-20 14:00:00 0,35260636 0,19513395 0,15747241 0,15747241

2019-02-21 14:00:00 0,34663092 0,18968 0,15695092 0,15695092

Page 66

E Norwegian Holidays 2019

Table 13: Norwegian Holidays 2019

Date Holiday Name

2019-01-01 New Year’s Day

2019-04-18 Maundy Thursday

2019-04-19 Good Friday

2019-04-21 Easter

2019-04-22 Easter Monday

2019-05-01 Labour Day

2019-05-17 Constitution Day

2019-05-30 Ascension Day

2019-06-09 Pentecost Sunday

2019-06-10 Whit Monday

2019-12-25 Christmas Day

2019-12-26 Second Day of Christmas

Page 67

F HO per Guest Prophet Predictions

(a)

(b)

Figure 38: Hotel per guest default Prophet prediction [(kWh/h)/guest] for (a) The entire
prediction period (b) 1 week in July.

Table 14: HO per guest default Prophet prediction error metrics

HO per Guest Prophet Prediction Error Metrics Value
Mean Squared Error 0,00626405

Mean Absolute Error 0,0597389

Mean Absolute Percentage Error 85,8155651

Root Mean Squared Error 0,07914575

Normalized Root Mean Squared Error 0,46669041

Page 68

G Python Code for Calculating and Storing Error Metrics

#Error metrics

#Mean squared error

AB_prUnit_test_fcst=AB_prUnit_test_fcst.set_index(pd.to_datetime(AB_prUnit_test_fcst[’ds’]))

#Error metrics

#MSE

MSE_AB_prUnit=mean_squared_error(y_true=AB_prUnit_test[’Pvv pr unit [W]’],

y_pred=AB_prUnit_test_fcst[’yhat’])

#RMSE

RMSE_AB_prUnit=math.sqrt(MSE_AB_prUnit)

#Normalized RMSE

NRMSE_AB_prUnit=RMSE_AB_prUnit/AB_prUnit_test[’Pvv pr unit [W]’].mean()

#Mean absolute error

MAE_AB_prUnit=mean_absolute_error(y_true=AB_prUnit_test[’Pvv pr unit [W]’],

y_pred=AB_prUnit_test_fcst[’yhat’])

#Mean absolute percentage error

def mean_absolute_percentage_error(y_true, y_pred):

y_true, y_pred = np.array(y_true), np.array(y_pred)

return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

MAPE_AB_prUnit=mean_absolute_percentage_error(y_true=AB_prUnit_test[’Pvv pr unit

[W]’],

y_pred=AB_prUnit_test_fcst[’yhat’])

#Tabulating error metrics

AB_prUnit_Prophet_error_metrics={’Mean Squared Error’:MSE_AB_prUnit,\

’Mean Absolute Error’:MAE_AB_prUnit,\

’Mean Absolute Percentage Error’:MAPE_AB_prUnit,\

’Root Mean Squared Error’:RMSE_AB_prUnit,\

’Normalized Root Mean Squared Error’:

NRMSE_AB_prUnit}

#Making a dataframe of the error metric table

AB_prUnit_Prophet_error_metrics=pd.DataFrame(data=AB_prUnit_Prophet_error_metrics,

index=[0])

AB_prUnit_Prophet_error_metrics=(AB_prUnit_Prophet_error_metrics.T)

AB_prUnit_Prophet_error_metrics.columns=[’Value’]

#Storing the error metrics in an Excel-file

AB_prUnit_Prophet_error_metrics.to_excel(’AB_prUnit_Prophet_error_metrics.xls’)

Figure 39: Python code for calculating and storing the error metrics in Excel-file, this particular
code is for the AB Prophet Model error metrics, but the procedure is the same for the other
models.

Page 69

