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Abstract

This study aimed at extract building boundaries from pointclouds by introducing deep-

learning processing by a Generative Adversarial Network (GAN). The research objective

was to investigate the extent deep-learning processing solves or improves limitations of

established methods that extract boundaries from pointclouds. A total of 903 buildings

in Trondheim were manually segmented and served as the dataset for training the net-

work. A statistical analysis found that the network significantly increased Intersection

Over Union (IOU) compared to baseline models. Comparing samples before and after

processing indicates that GAN increases IOU by more correctly representing concave

buildings. From inspecting predicted building boundaries, it is clear that additional geo-

metrical refinements are required to solve the resulting misalignment. More importantly,

deep-learning in boundary extraction shows great potential by allowing low-quality input

and cheap computational cost.
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Sammendrag

I denne masteren har det blitt produsert bygningsomriss fra punktskyer ved å introdusere

dyp læring med/av et Generative Adversarial Network (GAN). Forskningsmålet var å un-

dersøke i hvilken grad behandling med dyp læring løser eller forbedrer begrensninger av

allerede etablerte metoder rundt ekstrasksjon av bygningsomriss fra punktskyer. Totalt

903 bygninger i Trondheim ble manuelt segmentert og fungerte som datasett for trening

av nettverket. En statistisk analyse fant at nettverket produserte en signifikant økning i

Snitt over Union (IOU) sammenlignet med baseline-modeller. Sammenligning av bygn-

ingsomriss før og etter prosessering indikerer at GAN øker IOU ved å bedre representere

konkave bygninger. Ved undersøkelse av de produserte bygningsomrissene er det klart at

det kreves ytterligere geometriske forbedringer for å løse den resulterende feiljusteringen.

Enda viktigere er at inkluderingen av dyp læring i bygningsomrissekstraksjon viser stort

potensial ved å tillate input av lav kvalitet og billige beregningskostnader.
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1 Introduction

The main goal of this thesis is to predict building boundary polygons from pointcloud

input.

The task is carried out by improving upon existing methods of building boundary extrac-

tion from pointclouds, by introducing deep learning-based processing with a Generative

Adversarial Network (GAN).

Put bluntly, knowing how a building is structured and where it is, has great importance in

multiple fields. For example, building boundaries is fundamental for many GIS applica-

tions and urban planning. Furthermore, as airborne light detection and ranging (LIDAR)

data also has a height attribute, it provides the means for 3D building modelling. Ex-

amples of other applications are calculations of sunlight duration, disaster management

and property-taxes (K. Zhang, Yan, and Chen 2006). Thus, to automatically predict

consistent and accurate polygons that represent buildings boundary geometries is of high

value.

Traditional approaches using total stations or satellite imagery are either very time-

consuming or too inaccurate. Airborne LIDAR data provides high precision at a low cost,

but the boundary extraction problem proves difficult due to large amounts of unstructured

data.

Existing methods of building boundary extraction from pointclouds have limitations, such

as the sizing problem. This revolves around the allowed degree of detail and concavity,

and this thesis implements GAN processing to investigate the extent it can improve upon

these limitations. An entire pipeline of methods from segmented pointcloud to building

boundary polygon is presented. The predicted polygons are compared to the actual

buildings by projecting on a map for visual presentation complimented by a statistical

analysis of the role the processing with GAN serves. As deep-learning processing can be

a black box, two different input images of varying quality were generated.

The main research question naturally becomes if, how, and to what extent the inclusion

of a GAN can improve the predicted building polygons from a pointcloud.
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Figure 1.1: Example of extracting building boundary polygon from a pointcloud.

In Figure 1.1, the essence of the problem can be seen. The theoretical side of how difficult

it is to solve such a "simple" problem is fascinating. For example, how a young child is

able to, without as much as breaking a sweat, draw the lines representing the exterior

boundary of a pointcloud. Whereas for a computer to do this requires a whole lot, as

shall be seen in the upcoming pages.
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2 Theory and Similar work

Many different approaches to identifying building outlines exist, depending on the origin

of data, level of user interaction, and preferred method. This section provides an overview

of the current methodologies based on the origin of data and the methods’ steps. (Awrang-

jeb 2016) uses LiDAR-data as input and formalizes the steps and difficulties in building

boundary extraction with traditional approaches and further proposes possible solutions

to these challenges. Supplementary, (Chawda, Aghav, and Udar 2018) present a method

for building boundary extraction from satellite images based on a convolutional neural

network (CNN). (Su Zhang, Han, and Bogus 2020) combines LiDAR-data and satellite

images for extracting building footprints. We start by discussing the case where the data

is acquired by airborne LiDAR equipment. The LiDAR-data is structured as a set of

points where each point has a list of attributes. The attributes are the points coordinates

x-, y- and z- values and other attributes such as intensity and number of returns etc.,

Depending on the equipment used for data acquisition.

(Awrangjeb 2016) formalizes building boundary extraction from a set of points by three

main steps.

1. Segmentation - categorizing points into building-points and non-building points.

2. Trace identified points to generate building boundary.

3. Adjust edges to form regular building footprint.

The first step is, in short, to classify if a point belongs to a building or not. It is pos-

sible to do the segmentation step manually or automatically. Manually translates to

human labelling the points in applicable software. By automatic means, there are sev-

eral ways the segmentation can be done. The end goal of this step is to say if a point

belongs to a building or not, and multiple ways of achieving this have been introduced.

For example, (Sampath and Shan 2007) used a 1D-bi directional filter for separation

between ground- and non-ground points before using a clustering-based region-growing

method for segmenting points into separate buildings. Similarly, (Ramiya, Nidamanuri,

and Krishnan 2017) first separated points into ground- and non-ground points before

using a Euclidean distance-based algorithm for segmentation. Another variant is sepa-
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rating ground- and non-ground points by using morphological operations and segmenting

into individual buildings/roof-planes by using surface-fitting (Mongus, Lukač, and Žalik

2014). Also worth mentioning is (Alharthy and Bethel 2002), where they take advantage

of multiple returns in the LiDAR data before applying local statistical analysis based on

gradient. In general, these approaches can be grouped by taking advantage of inherent

geometric- and topological information such as height, normal vectors of neighbourhoods,

etc. Recently, in the era of deep-learning-based approaches, networks that segment and

classify 3-dimensional data have also been made (Qi et al. 2017). As was utilized in

(Pohle-Fröhlich et al. 2019).

After the segmentation, each point has been labelled as building or non-building, and

what proceeds is to generate a building boundary from the categorized points. There

are, as in the first step, several ways to do this. (Awrangjeb 2016) divides this step as

direct- and indirect contour extraction, and this thesis will adopt this division as well.

The division is based on how the data is processed. In the direct approach, the boundary

is found by using mathematical operations directly on the points them-self. Intuitively

this step can be thought of as a gift-wrapping problem. The basis of most approaches

to this problem is variations of the convex hull algorithm (Jarvis 1977). The convex

hull algorithm is, as the name implies, made for convex point sets. It deals poorly with

concave outlines, such as Cross-shaped buildings (Edelsbrunner and Mücke 1994).

Most predominantly used is the variation called α-shape. (Dorninger and Pfeifer 2008)

defines the α-shape of a set of points as its polygonal boundary, where α = 0 yields

the convex hull. Thus the main challenge in using the α-shape is to determine the size

of α such that the resulting polygon reflects the finer details of the point-set boundary.

Especially challenging is the case of uneven point-cloud density distributions (Sampath

and Shan 2007). This is made apparent by observing Figure,2.1 and the size of α should

be based on the point distribution.(Dorninger and Pfeifer 2008) set the value of α to be

twice the mean distance between two points. It should be noted that it is possible to use

"brute force" to decide α. This is done by starting with a big circle and iterative reduce

the radius until points are left out from the extracted boundary.
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Figure 2.1: Visualisation of the α-shape method. The red circle "rolls" around the point set

and thus allows for a degree of concavity. Given that α determines the radius, it also

determines the allowed concavity. Other geometrical structures, such as squares, can

also be used. Figure from (Eich, Dabrowska, and Kirchner 2021).

As the red circle is "rolling" around the points, the order it hits each point is traced,

yielding a polygon representation of the exterior boundary of the point-set. Another

direct approach is proposed by (Awrangjeb 2016) which also deals with multiple objects

inside a point cloud. It is an algorithm that incrementally removes edges longer than a

set threshold in the boundary of the Delaunay triangulation.

The indirect approach simplifies the problem by transforming the 3D-vector data to a

2D-raster representation before extracting the boundary (Awrangjeb 2016).

Both the direct- and indirect approaches suffer from a very similar sizing problem. In

the direct approach, the main challenge is determining the size of (and the shape of) α.

And for the indirect approach, the sizing problem becomes determining suitable pixel

size. Choosing a fitting grid size for constructing the image depends on desired image

characteristics. The most straightforward approach is simply projecting all points down

into the x-y- plane based on the dimensions and possibly the density. Following is deciding
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the pixels value, where two main approaches exist. First, one can use a binary mask,

meaning if a point falls inside a pixel, set the pixel’s value to 1. The other approach

is constructing an intensity-based image based on how many points fall in each pixel.

This transforms data from vector representation to raster, and thus some accuracy is lost

in the process (Congalton 1997). Note that each pixel is georeferenced given the point

coordinate attribute. After constructing an image representation of the point set, the

next step is extracting the boundary pixels. One way to do this is to implement a region

growing algorithm or use an edge detector such as the Canny edge detector (Canny 1986).

At this point, both the indirect methods have yielded a point representation of the bound-

ary, and what follows is to connect the points. There are several ways to do this. For

example, one could start by choosing a random boundary pixel and connecting it to its

closest neighbour and then connecting that to its neighbour and so on until all points have

been visited. Interestingly, there are many similarities with this problem and the problem

of extracting a pointcloud boundary, but now as a 2-dimensional problem with bound-

ary pixels already extracted. (Suzuki and Abe 1985) introduced two border-following

algorithms for topological analysis.

After a polygon represents the pointcloud boundary, the next step is adjusting edges

of the polygon. Before discussing this step in detail, getting to this stage from another

type of data input should be briefly touched upon.

An alternative and more easily acquired form for data input is aerial images or satellite

images. (Shiqing Wei, Ji, and M. Lu 2020) developed a CNN that segments each pixel

to either building- or non-building. After this step, the next required steps of attaining a

2D-polygon representation of the building boundary are similar to the in-direct approach.

Using an edge detector separates the boundary pixels. Next is connecting the boundary

pixels in "correct" order, which yields a polygon representation. (Shiqing Wei, Ji, and

M. Lu 2020) used a version of the Marching Cubes algorithm (Lorensen and Cline 1987)

for boundary extraction. For a deeper description, the reader is encouraged to read

(Shiqing Wei, Ji, and M. Lu 2020). Note that a big disadvantage with data originated

from satellite images is the lack of coordinate precision.
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Independent of the type of input data and chosen steps, all methods mentioned above

yield a 2D-polygonal representation of each building boundary. And all of them now face

the third step, namely edge-adjusting or, in other words, polygon regularization.

The initial building boundary polygon will, in most cases, not match the building foot-

print (Awrangjeb 2016). This is due to uncertainty, irregularities, and noise in the point

cloud or image. (Chawda, Aghav, and Udar 2018) mentions that polygons often are

jagged, and a post-process polygon refinement is necessary to achieve building footprint.

Current methods vary in complexity and level of accuracy. (Chawda, Aghav, and Udar

2018) simply implements Douglas-Peucker (Douglas and Peucker 1973) for refining the

jagged lines and obtains decent results. (Teh and Chin 1989) introduced an analysis

for finding dominant points on lines. Another and more detailed approach is taken by

(Shiqing Wei, Ji, and M. Lu 2020) where the first of three steps is the Deuglas-Peucker

algorithm. The next steps are categorized as coarse- and fine- adjustment of edges and

corners based on calculating one or two principal directions of a building. The idea is that

building footprints follow certain rules such as main direction, perpendicular or parallel

lines, and threshold values for the area. (Eich, Dabrowska, and Kirchner 2021) uses a

Hugh transformation to achieve rectangular shapes from the calculated α shape. (Shen

Wei 2008) used an improved Pipe-algorithm for simplifying the jagged edges before im-

plementing a Circumcircle Regularization Algorithm to force irregular shapes to become

rectangles. All in all, many methods of simplifying lines that make up the polygon exist,

and for an overview and comparison of the methods, the reader is referenced to (Shi and

Cheung 2006).

The polygon simplification steps are based on geometrical assumptions such as, i.e. a

building can only have two main directions, and all edges must be parallel or perpendicular

to these, or all angels must be larger than a given threshold. Whichever geometrical rules

imposed, all are included to remove misrepresentations or noise. These are produced

either by method of acquisition or imposed by boundary extraction method, i.e. how the

α−shape does not perfectly describe the pointclouds boundary.

This thesis aims at improving the building boundary extraction by introducing deep-

learning with a Generative adversarial network. To understand how and why a GAN

7



could be used for a task like this, some theoretical foundation of the underlying principles

is necessary. (Goodfellow 2017) provides a systematic overview of the principles behind as

well as use-case examples. The main idea of GAN is illustrated in Figure 2.2. The network

architecture is designed such that the Generator and Discriminator are adversaries. Based

on whether or not the discriminator is correct, the models’ weights are updated through

back-propagation. If it correctly distinguishes fake from real, the Generator network is

heavily penalized and vice versa in the other case. Put it differently, the generator network

attempts to learn the transformation from input-image to "real-image". This thesis

aims to use this use by setting a coarse image representation of the pointcloud as input,

representing a building pointcloud. The "real" image is made by transforming the ground

truth polygon into an image. Thus, the network attempts to learn the transformation

from an image made initially from pointcloud to an image that correctly represents the

building boundary. The following step is to transform the generated image back to

polygon form.

This thesis uses the network architecture named Pix2Pix, which was introduced in (Isola

et al. 2016). It is important to note that Pix2Pix is architecturally based on that input

and output differ in appearance but has a similar underlying structure (Isola et al. 2016).

Both the generator- and discriminator networks are CNN’s - convolutional neural net-

works, and this fact is what the network feasible for the presented task. One could think

that the generator network matters in this thesis, given it needs to learn the desired

transformation. But this is not the full picture, as the structure of the discriminator

network serves a crucial role. In Pix2Pix, the discriminator network is called PatchGAN.

Instead of analyzing pixel for pixel (how the generator network operates), it looks at each

image’s sections (or patches) when classifying real and fake. As the author puts it, ...

PatchGAN can therefore be understood as a form of texture/style loss (Isola et al. 2016).

This fact indicates a promising potential for extracting building boundary. Also worth

mentioning regarding the network architecture is its skip connections. These connections

are present so that low-level information can flow from input directly to output (Isola

et al. 2016).
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Lastly, methods measuring the similarities between polygons should be mentioned. (Zeng,

J. Wang, and Lehrbass 2013) introduced a complete system for evaluating extracted

building boundaries. The system is divided into three categories. The first evaluates the

accuracy of correctly predicted building footprint, which is irrelevant for this thesis as

manual segmentation is performed. Secondly, a system for evaluating the shape similarity

between the predicted building footprint and ground truth. This step is topological

grounded. Thirdly, a metric for positional accuracy is proposed by evaluating distances

between certain points to the polygon’s centre. Another more simple polygon similarity

measure is taking the intersection of the polygons in question divided by their union

(IOU - intersection over union) and is an area-based similarity measure, not explicitly

enforcing any form of topological relationship.

Figure 2.2: The principle of a Generative adversarial network (GAN) is illustrated. Note that

GAN is not limited to images as inputs.
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3 Establishing data

3.1 Segmentation

The segmentation task for this thesis was done manually. The starting point was roughly

1000 separate las files, representing an area of about 1km2 acquired by airborne laser

scanning done in 2018. The end goal was approximately 1000 different buildings. A

complete overview of the files bounding boxes is presented in Figure 3.1.

Figure 3.1: Overview of laser-scan coverage over Trondheim. This pointcloud was acquired by

airborne LiDAR using a drone in 2018.

The dataset was also to be used in another master thesis, and the segmentation process

was, therefore, a collaboration between the author of this thesis alongside two others.

As previously mentioned in the theory section, the goal of this step was to separate

points belonging to a roof and points that do not lie on roofs. This thesis, and the

collaborator’s thesis, intended to use the segmented data-set for machine learning tasks

regarding buildings and roof-planes. Therefore a well-distributed data-set was set as a

goal. Balancing between time consumption, quality of each segmentation and appropriate

sizing (number of buildings), a target goal was around 1000 separate buildings. The

number was set based on the assumption it would deem a sufficiently large sample size,

allowing the deep-learning network to learn aspects of each category. The pointclouds

were categorised by the building categories presented in Figure 3.2, as introduced in

10



(Kada and Mckinley 2009) with the inclusion of a ninth category for combinations of the

former. Each separate building segmentation was proven rather time-consuming as some

building categories proved quite challenging to find. The ground truth polygon (FKB-

Bygning - Kartkatalogen 2021) had to be checked before starting segmenting. This was

because some building boundaries sometimes included terraces or porches, etc.

Figure 3.2: The different building categories presented in the pointclouds, introduced by (Kada

and Mckinley 2009).

Due to the overrepresentation of Flat-,Hipped- and Gabled buildings, the target number

of these buildings was easily acquired. After reaching around 200 of these roofs, the

segmentation task solely focused on buildings outside these categories. This task ended

up being more time-consuming than initially thought, and as a result, some uneven

distribution between types was accepted. A note further justifying this is the distribution

in the dataset relates better to the real world (at least in Trondheim) as the distribution

between building categories is not uniform. The software used for this task is called

CloudCompare and is an open-source program CloudCompare - Open Source project

2021. Each pointcloud was segmented by looking at the pointcloud from various angles

and manually selecting points laying on the roof.
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Each roof was further segmented into its respective planes due to the machine learning

task of the other thesis. For instance, the classical gable roof (category 5) is broken

down into two different planes. The planes are categorized numerically by geometrical

properties like shape and size. A more complex roof structure as T-element and Corner

Element roof will consist of 4 different roof planes.

Regarding the distribution between categories, it is important to have sufficient samples

of each different building type so that the network can learn the characteristics of each

building category. Finally, as the segmentation was done manually, a subjective decision

of how much occlusion to allow and the degree of accepted noise and disturbances in the

pointcloud was reached.

The dataset was organized by their respective building ID’s used by Kartverket FKB-

Bygning - Kartkatalogen 2021. This allowed for a one-to-one correspondence to other

available data relating to the building, and most importantly, the building’s footprint.

Further, each building was associated with the attribute Shared-property. This was done

as some building-footprint polygons are divided, which can be observed in Figure 3.3.

(For an in-depth description of the FKB-building dataset, the reader is referred to FKB-

Bygning - Kartkatalogen 2021.) Finally, an overview of the complete data organization

in the segmentation step is given in Figure 3.4.

Figure 3.3: Example where footprint of same building is divided in two parts.
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Figure 3.4: Overview of the data-organization. One point must belong to a roof-plane, which

belongs to a building. A combination of Building-id and Plane-number is used to

uniquely define a roof-plane. The geometry attribute in FKB-building represents

the polygon of a building footprint.
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3.2 The dataset

This section provides a foundation for the dataset by presenting simple statistics. Firstly

the distribution of roof types is shown in Figure 3.5. The total number of segmented

roofs is 903, after a data-cleaning step. This process was done in plenary with the other

collaborators. Each segmented roof and the ground truth polygon from (FKB-Bygning -

Kartkatalogen 2021) was visually inspected and discussed. This led to many roofs being

re-categorized and some removed due to errors. This step was crucial in agreeing on

standards for categorizing roofs which arguably could fit several categories and resulted

in a higher degree of objectivity. By observing Figure 3.5, it is clear that the distribution

between categories is uneven. For example, only 14 shed- and cross-roofs were segmented,

and only 38 corner-roofs. This uneven distribution results from the few roof types of these

categories present in the initial pointcloud and therefore resemble the distribution of roof

types in Trondheim. As a result of the uneven distribution, it should be noted that

machine-learning algorithms may have difficulties with these categories, given the low

population of training samples.

Figure 3.5: Distribution of roof-type categories in the dataset. A total of 903 buildings point-

clouds were segmented.
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As this thesis focuses on buildings as a whole and not on each separate roof-plane, only

the statistics of the combined roof-planes are relevant. To better understand the dataset,

researching how many points per roof make up each roof presents an overview and valuable

statistic. This is visualized in Figure 3.6.

Figure 3.6: The number of points per building for each category present in the dataset. Note

that two extreme outliers were removed due to compressing the plot (both in Flat-

category).

Important takeaways from Figure 3.6 are how most building-categories, besides shed-

category, have a median of around 2000 points. Their 25%− and 75% quartiles (repre-

sented by box outlines) are also relatively similar. These takeaways imply that relatively

the same amount of information is stored on each roof and checks that everything is

normal. If, i.e. some roof categories were very unevenly distributed to others, this would

be important to know, and appropriate action would have to be taken. Note that the

shed category only consisted of 14 samples and the box-plot column.
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Simply looking at the number of points of each segmented roof can be misleading as it

says nothing about how the points that make up a building are distributed. For this

reason, Figure 3.7 describes the data-set density distribution by the different building

categories.

Figure 3.7: Box plot of the point-density for each building category in the dataset.

Note that Figure 3.7 only provides an estimation of the density since the calculated area

for each roof is done with a convex-hull algorithm (The Shapely User Manual — Shapely

1.7.1 documentation 2021). This results in an estimated value of the actual area and

serves as a good foundation for the density distribution. The density of the segmented

roofs is important in both direct- and indirect contour-extraction step, as introduced in

Section 2. The critical takeaway from Figure 3.7 is again that values for each category

are relatively similar. For example, the median values vary between approximately 7 for

cross-roofs and 14 for gabled roofs. An overview of segmented buildings distributed across

Trondheim is shown in Figure 3.8.
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Figure 3.8: Overview of segmented buildings distributed across Trondheim. Each orange circle

represent a segmented building pointcloud

It is important to "hold" out some samples to be used for testing in deep-learning exper-

iments. The reasoning behind this is that the network has to predict based on samples

that it has not seen before. The validation set is in this thesis used to form the basis

for selecting the different epoch models. A visual snippet of the split is presented on

a map in Figure 3.9. Dataset is split with ratio [0.7, 0.2, 0.1] into to categories [Train,

Validation, Test ]. This yields: Train − 630 samples, V alidation − 180 samples, and

Test− 93 samples.
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Figure 3.9: A map showing the segmented buildings in their respective splits of train-, test- and

validation set.
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4 Method

Figure 4.1: The pipeline showing the data flow of the whole method. Starting from Pointcloud

and the entire path taken to the end, resulting in the refined polygon.
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As Figure 4.1 breaks down the whole data flow into separate steps, the method will

be presented chronologically with the flow direction. Since the manual segmentation

step already was explained in Section 3.1, the starting point of this section will be the

segmented building pointcloud. For simplicity, the images generated from the indirect

approach will be named the binary images, and from the direct approach will be named

alpha-shape images.

4.1 Indirect approach

The indirect approach is fairly straightforward and has the intent of transforming the

pointcloud into an image representation. Algorithm 1 explains the steps in detail and is

exemplified in Figure 4.2.

Algorithm 1 determines grid size based on the max distance of either x- or y-direction.

In practice, this means an image representing a small roof will have pixels that translate

to a smaller area than the case where a larger roof is represented. This method is utilized

due to the relative homogeneous point distribution of the different roofs, as discussed in

Section 3.2. Further, as the max distance between two points determines the grid size in

both directions, it forces each image to be square.

Note that Algorithm 1 faces the same sizing problem as discussed in Section 2. This

problem surfaces as determining a fitting grid size, which is the resolution of the image.

If set too high, the resulting image would have holes inside the roofs due to not high

enough point density. Contrary, if set too low, the resulting image would be too coarse.

After experimenting with different values of initial resolution, a mid-point between the

above-mentioned challenges was found to be 16× 16.

20



Algorithm 1: Indirect binary image generation
input : Segmented roof pointset S & initial resolution res

output: 256× 256 binary image representation of the segmented roof

1 Init - Create matrix, img, of zeroes with dimension (res,res)

2 Project points to x− y plane by removing z− dimension.

3 Find bounding box of S: xmax, xmin, ymin, ymax

4 Let xdiff = xmax − xmin and ydiff = ymax − ymin

5 if xdiff > ydiff then

6 xgrid = linearly spaced array from xmin to xmax with res number of steps

7 ygrid = linearly spaced array from ymin to ymin+xdiff with res number of steps

8 else

9 ygrid = linearly spaced array from ymin to ymax with res number of steps

10 xgrid = linearly spaced array from xmin to xmin+ydiff with res number of steps

11 end

12 for point p ∈ S do

13 Match coordinates of p with xgrid and ygrid. matching indexes = (i,j)

14 img[i, j] = 1

15 end

16 Upsample image to 256× 256

17 Return img

Figure 4.2: Result of indirect approach. Two examples visualizing how Algorithm 1 transforms

pointcloud to image.
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4.2 Direct approach

The direct approach works on the points directly but requires some processing before

generating the representing image. α−Shape was introduced as the main method for

direct contour extraction, and this thesis will adopt the implementation. Algorithm 2

goes through the steps taken, complemented by a visual example in Figure 4.3.

Algorithm 2: Direct binary image generation
input : Segmented roof pointset S

output: 256× 256 binary image representation of the segmented roof

1 Init - Create matrix, img, of zeroes with dimension (256,256)

2 Project points to x− y plane by removing z− dimension.

3 Calculate α value based on density

4 Create α−shape polygon, P

5 Find bounding box of S: xmax, xmin, ymin, ymax

6 Let xdiff = xmax − xmin and ydiff = ymax − ymin

7 if xdiff > ydiff then

8 xgrid = linearly spaced array from xmin to xmax with 256 number of steps

9 ygrid = linearly spaced array from ymin to ymin+xdiff with 256 steps

10 else

11 ygrid = linearly spaced array from ymin to ymax with 256 steps

12 xgrid = linearly spaced array from xmin to xmin+ydiff with 256 of steps

13 end

14 for pixel(i, j) ∈ img do

15 if (xgrid[i], ygrid[j]) inside P then

16 img[i, j] = 1

17 end

18 Return img

At this point, both the indirect- and direct approach have yielded binary image (256×256)

ready for feeding into the GAN.
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Figure 4.3: Result of direct approach. Two examples visualizing how Algorithm 2 transforms

pointcloud to image.

4.3 Generative adversarial network

The task of GAN is to transform the images produced by either the indirect or direct

approach into new images that more correctly represent the building boundary. Figure

4.4 shows how images are concatenated for input for the generator network.

Figure 4.4: Example of input to the generator network. Image is concatenated with the ground

truth image.
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As previously stated, the name of the framework is Pix2Pix. The full architecture of

the generator- and discriminator network can be seen in Appendix, Figure A.1 and A.2.

The input for the generator network can be seen in Figure 4.4. The dataset is split into

training-, validation- and test set with ratio 0.75, 0.15, 0.10. For increasing the number of

samples, image augmentation is done by rotating images in fixed directions (both ground

truth image and input image) determined by a random probability.

The generator loss is defined by Equations 1, 2 and 3:

L1 = MeanAbsoluteError(G.T −GenOutput) (1)

GenLoss = BinaryCrossEntropy([[1, 1..]], DiscOutput) (2)

TotalGenLoss = GenLoss+ (λ ∗ L1) (3)

In Equation 3 λ is set to 100, as the authors of (Isola et al. 2016) suggests. Further, in

Equation 1 G.T is the Ground Truth image.

As for the discriminator the loss is defined as by:

real_loss = BinaryCrossEntropy([[1, 1..]], RealImg) (4)

generated_loss = BinaryCrossEntropy([[0, 0, ..]], GeneratedImg) (5)

DiscLoss = real_loss+ generated_loss (6)

The Discriminator and Generator are adversaries by means that Equation 4 is fighting

Equation 2. The network was trained for a total of 150 epochs, testing on the validation

set every 25 epoch and saving the current weights. The learning rate is initially set to

0.0002, and Adam is used for optimization. In Figure 4.5 a selected sample output from

the generator is shown. The models were trained on a Tesla P100-PCIE-16GB GPU, by

using Google Colab PRO (Bisong 2019). The training phase (150 epochs) for each input

type took ∼ 75 minutes.
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Figure 4.5: Selected sample of output from the generator each 25 epoch. (The generator network

start producing strange patters after approximately 100 epochs.)
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4.4 Image to polygon

After the network has been trained and generated images, the next step transforms the

generated images back to polygon form. This step consists of several operations due to

the strange patterns occurring in some of the generated images. The full procedure is

described in Algorithm 3. This process is transforming raster- to vector data.

Algorithm 3: Image to polygon

1 Assumption: the building has only one contour without holes.

input : Generated image, respective building-ID bid

output: Raw polygon with georeferenced coordinates

2 Init: k_size = 5, Define Kernel(k_size,k_size), get xgrid & ygrid with bid

3 Add constant padding borders

4 Morphological closing with square Kernel

5 Find all connected closed areas, save pixels in the largest region with largest area

6 Fill all areas expect larges area

7 Extract boundary pixels with Canny edge detection (Canny 1986)

8 Find contours with an implemented version of Algorithm proposed in (Suzuki and

Abe 1985)

9 while number of extracted contours > 1 do

10 k_size += 1

11 Preform morphologic closing on canny img with Kernel(k_size,k_size)

12 Extract contour(s)

13 if k_size/2 >= padding then

14 Return None

15 end

16 end

17 for Pixel(i, j) ∈ contour do

18 Append geo−coordinates from xgrid and ygrid to a list

19 end

20 Create polygon from list

21 Return polygon
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Figure 4.6: Selected sample of output from the generator each 25 epoch.

27



4.5 Polygon refinement

A raw polygon has been created from the generated images, and the next step is to refine

it. An illustration of this is shown in Figure 4.7. But before that is possible, each polygon

has to be checked for validity. Due to the complex structure of the generated images,

some polygons have self-intersecting edges. Algorithm 4 shows how this is dealt with.

Algorithm 4: Validate and simply raw polygon

1 Assumption: A building polygon can not intersect itself.

input : Raw polygon

output: Refined and simplified polygon

2 buffer_size = 0

3 while polygon not valid do

4 buffer_poly = polgyon.buffer(buffer_size)

5 polygon = exterior boundary coordinates of buffer_poly

6 buffer_size =+ 0.05

7 if buffer_size >= threshold then

8 Return None

9 end

10 end

11 Simplify polygon with Douglas-Peucker algorithm

12 Return simplified polygon

Figure 4.7: Example of polygon refinement with Douglas-Peucker.
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5 Experimental results

5.1 Visual results

This section provides a visual presentation of the finished predicted polygons after being

subjected to all the steps in the pipeline, which was presented in Figure 4.1. Predicted

polygons and ground truth polygons are presented on a map, and this is shown in Fig-

ure 5.1 - Figure 5.7. Ground truth polygons are filled with green color. Predicted polygons

from alpha-shape are visualised with red boundaries, and predicted polygons from binary

images have blue boundaries. Note that all predicted polygons come from validation and

test-set.

Figure 5.1: A map providing overview of predicted polygons and ground truth polygons. Red

boundary is predicted building boundaries based on alpha-shape input, and ground

truth polygons are filled with colour [RGB]0,128,0 green.
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Figure 5.2: A map representing a variety of complex and more simple polygons.

Figure 5.3: Close up of samples of polygons with different geometrical properties. Note the

misalignment of edges.
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Figure 5.5: Predicted polygons from alpha-shape input presented with the ground truth poly-

gons.

Figure 5.6: A map providing overview of predicted polygons and ground truth polygons. Blue

boundary is predicted building boundaries based on binary mask image input, and

ground truth polygons are filled with colour [RGB]0,128,0 green.
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Figure 5.7: A close up of samples providing overview of polygons from binary mask image input.

Noticeable inferior to alpha-shape input in Figure 5.2
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5.2 Model selection in GAN

After training the GAN, the best1 epoch model must be selected. To do this, a scoring

between [0 → 1] is given to each epoch. This scoring is Intersection over Union (IOU),

a measure of area similarity between two polygons. Thus, each generated image can be

transformed into a polygon and then compared to the ground-truth polygon to score each

image. The mean IOU for each validation set thus provides the basis for model selection.

Each epoch mean IOU score is shown in Figure 5.11 and Table 5.2.1. For example, the

best epoch for alpha-shape input is epoch 90, and for binary input, the best epoch is 50.

All following analysis and calculations will be done on predicted polygons from the test

set, with the model weights from the best epoch. The test set consists of 93 samples.

Figure 5.8: Intersection over union on the validation set for each 25th epoch. Note that the

vertical lines on each points shows the standard deviation of the mean. Also, note

that IOU scores are calculated on the raw, unrefined polygons.

1Which model that is "best" is solely based upon which criteria is set for evaluation
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Table 5.2.1: Table overview of model scores on different epochs. Scores are calculated on vali-

dation set.

Input type Epoch number IOU Number of buildings

Alpha 25 0.885 180 of 180

Alpha 50 0.880 180 of 180

Alpha 75 0.897 180 of 180

Alpha 90 0.901 180 of 180

Alpha 100 0.884 180 of 180

Alpha 125 0.891 179 of 180

Alpha 150 0.898 177 of 180

Binary 25 0.878 177 of 180

Binary 50 0.882 176 of 180

Binary 75 0.876 177 of 180

Binary 90 0.876 107 of 180

Binary 100 0.853 154 of 180

Binary 125 0.881 177 of 180

Binary 150 0.876 159 of 180
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5.3 Statistical results

5.3.1 Alpha-shape based image input

To quantify the effect the GAN network has on building footprint generation, respective

baseline models are introduced. The baseline models follow the same pipeline as presented

in Figure 4.1, but skips the processing of the GAN. Figure 5.9 shows how the IOU scores

for a baseline- and real model.

Figure 5.9: Showing distribution of calculated IOU from alpha-shape images. Simple visual

inspection hints at skewed normal distribution of the calculated IOU scores. Note

that IOU scores are calculated from test-set.

Many statistical tests assume that the data is normally distributed; therefore, checking

for normality is the first step of the analysis. Next, the threshold value is set to α = 0.05

for comparing against p-values.

When testing for normality with Shapiro test (Shapiro andWilk 1965), the null hypothesis

is H0: data were drawn from a normal distribution.
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Shapiro Wilk normality test (Alpha)

Real IOU Baseline IOU

Statistics 0.781 0.831

P-value 3.06× 10−10 1.24× 10−8

As p-value, > 0.05, the initial null hypothesis is rejected, meaning there is evidence that

the data is not normally distributed. Thus to analyze if the produced IOU scores differ

from the baseline approach Wilcoxon-Signed-Rank Test is used. Wilcoxon-Signed-Rank

Test differs from paired t-test in that it does not assume normally distributed data (Rey

and Neuhäuser 2011). Further, the null hypothesis is stated as

... H0 : Ω = 0, i.e., the distribution of the differences is symmetric about zero corre-

sponding to no difference in location between the two samples (Rey and Neuhäuser 2011).

In other words: H0: the median difference between the datasets are 0.

Wilcoxon-Signed-Rank Test

IOU real vs IOU alpha baseline

Statistics P-value

877.0 2.48× 10−6

With a p-value < 0.05, this yield the rejection of the null hypothesis and thus means the

median of the data sets differ. Although note that the p-value is only slightly less than

0.05.
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5.3.2 Binary image based input

The following section is the same statistical analysis between IOU scores from binary

images with GAN processing on the test set and the baseline binary method.

Figure 5.10: Showing distribution of calculated IOU from binary images. Simple visual inspec-

tion hints at skewed normal distribution of the calculated IOU scores.

Shapiro Wilk normality test (Binary)

Real IOU Baseline IOU

Statistics 0.783 0.919

P-value 2.25×10−10 2.58×10−5

As p-value, > 0.05, the initial null hypothesis is rejected, meaning there is evidence that

the data is not normally distributed. Again Wilcoxon-Signed-Rank Test is utilized for

comparing the results from the baseline approach with real results.
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Wilcoxon-Signed-Rank Test

IOU Binary vs IOU BinaryBaseline

Statistics P-value

377 4.23× 10−12

With a p-value < 0.05, it can be stated that the initial hypothesis, H0, is rejected and

thus that binary baseline results differ significantly from real results.

Baseline IOU Mean Std

Alpha-baseline 0.874 0.0530

Binary-baseline 0.796 0.0651

Figure 5.11: Comparing IOU on test-set from model with best performance to baseline IOU.

Baseline IOU is without image processing by GAN.
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5.4 IOU relation to building category

As the dataset is categorized into building categories, it is interesting to see how each of

the different building categories is affected by GAN processing. Figure 5.12 shows the

IOU scores for different building categories. Note that the "real" model is superior for

categories with concave building outlines (T-element, Combination and Corner).

Figure 5.12: Comparing IOU on validation set from the model with best performance to the

baseline IOU with respect to building categories.
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6 Discussion

All in all, the predicted building polygons are quite similar to the ground truth but

not perfect. Why this is the case will be discussed in this section. Further, the initial

hypothesis and research questions will also be addressed. These are:

• Can image-editing with a GAN-network better the extracted polygon in relation to

the real world building?

• To what extent, and how may it improve upon existing boundary extraction meth-

ods?

• How does the network perform on various input-types?

6.1 On the sizing problem

One of the initial hypothesis regarding the GAN was if it can help solve the sizing prob-

lem occurring when extracting boundary from pointclouds. The sizing problem was

introduced in Section 2 as determining the α-shape circle in the direct approach and

setting grid-size for the in-direct approach. As this thesis extracted contour with both

approaches, the sizing problem was also faced. Thus the reader might be confused about

how it can help in this step. One can observe the conceptual idea in Figure 4.5, where

comparing the input images to Ground Truth images shows the sizing problem’s imposed

error. With alpha-shape input in Figure 4.5, the sizing problem produces a misrepresen-

tation of the concave interior angle of the L-shape. In more general terms, it represents

the lack of concavity. The alpha-shape image lacking concavity is fed as input to the

generator network. The network modifies the image to an image more related to the

ground truth. Conceptually it is clear that it improves the degree of concavity. For the

in-direct approach (binary mask input), the effects of the sizing problem are represented

by the difference between the ground truth and input image. In this case, the concavity

is more correctly represented, but it lacks sufficient resolution to allow for high precision.

Therefore, in this case, the network has to increase the image’s resolution to match the

ground truth image.
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Examples in the Figure 4.5 indicates that GAN-editing reverts much of the imposed lack

of concavity for alpha-shapes and improves the low resolution in binary mask images. To

research whether this is the general case or just a fluke, a statistical analysis based on

the baseline- and real approach were performed5.3.

In short, the statistical analysis states that a significant increase in IOU scores is achieved

by including the GAN-processing for both alpha-shape- and binary mask input.

To understand if this is the same thing as improving the sizing problem, a fundamental

breakdown of what IOU actually is and what it implies needs addressing.

6.2 On IOU and results

From testing different models on the validation set, the best epoch had as a mean IOU

of 0.901, as seen in Table 5.2.1. The visual presentation in Section 5.1, shows what this

value can correspond to and how well the predicted polygons actually represent the real-

world building. In most cases, the predicted polygons have similar topological features as

ground truth, but lines are often slightly misaligned, which can be seen clearly in Figure

5.3. As the selection of the model and the statistical analysis was based on IOU scores,

it is important to discuss the implications of this. Simply choosing the model with the

best IOU score rests on the following assumption:

. Given two polygons ρ1, ρ2, and a ground truth polygon GT :

IOU(GT, ρ1) > IOU(GT, ρ2)⇔ ρ1 > ρ2 (7)

Where ρ1 > ρ2 means that ρ1 is better than ρ2. This assumption can easily be shown false

and is done so in Figure 6.1. Here the polygon on the left more "correctly" represents the

green polygon but has a lower IOU score than the example on the right. Although Figure

6.1 shows how IOU can be a "misleading" score, it can still serve as a good evaluation

metric, justified by three reasons.

1. Data originated from LiDAR data and represent the actual building. Albeit possible

to construct mathematical violations of the assumption, buildings in the real world

usually does not inhabit such abnormal geometrical shapes.
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Figure 6.1: An example of how IOU can be a misleading metric when comparing generated

polygons and ground truth polygons.

2. The higher the IOU score, the more constricted is the topology of the polygon.

(From the fact that IOU=1 translates to identical polygons.)

3. Polygons are subjected to simplification process which, i.e. would remove the jagged

lines in right side example in Figure 6.1

Further, when dealing with IOU in this experiment, it is rarely observed scores < 0.75,

as seen in Figure 5.9, which implies the assumption is valid in most cases of this thesis.

Although this is by no means proven true in all cases, it is experimentally shown to yield

good results, as seen in Section 5.1.

Weakness and limitations from solely using IOU as a scoring metric for the predicted

polygons have now been established. As the statistical analysis performed in Section

5.3 also is founded on the IOU metric, the outcome is also grounded by limitations

of IOU scoring on the assumption that a higher IOU yields a better polygon. Thus

comparing two polygons by their IOU proves a difficult task and will not suffice. From

Figure 5.12 the IOU scores for the different building categories are presented. For all

categories with the most concave building boundary, the IOU scores are higher with

GAN processing compared to the baseline. Although not statistically proven significant,

it strongly indicates that the GAN reverts a portion of the imposed error by the α−shape

method. Lastly, in combination with observing the processing in Figure 4.5, there is a
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strong indication that the GAN increases IOU by more correctly representing concave

buildings boundaries.

In many ways, the discussion boils down to one question: does the GAN network yield

more informational gain than what is lost when transforming data back and forth between

vector and raster. This brings up the level of accuracy. All steps in the proposed pipeline,

presented in Figure 4.1, introduces uncertainties in the data. Even the data acquisition

is not perfect and introduces uncertainties in the measurements. Thus, as long as the

methods operate with (information-loss ≈ uncertainty), little information is actually lost

in the process.

6.3 On other aspects of GAN processing

A way to minimize the imposed error from the sizing problem in alpha-shapes is to decide

α for each pointcloud iteratively. This can be done by decreasing the radius of the rolling

ball until it starts missing points. However, this is a computationally heavy process and

was deemed not advantageous enough for this experiment. Additional benefits from GAN

is the one-time cost of training the network. After the network is trained, processing with

it comes computationally cheap.

The biggest potential for improving the proposed method is to include explicitly defined

topological based geometrical rule by exploiting the fact that buildings are categorized.

As images are binary, they require only one channel to be described (as most images have

[R,G,B] colour channels). Thus, one could utilize the available channels for simultane-

ously classifying building category.

It would also be possible to define a loss function for the GAN to minimize. In this thesis,

binary cross-entropy was used as suggested in (Isola et al. 2016), but, i.e. changing it

to IOU could yield potential improvement, especially if one could, i.e. take a weighted

mean between a topological similarity metric and IOU.
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6.4 On alpha-shape images versus binary mask images

A big backside in the field of deep learning is the black-box problem. It is very complex

and difficult to justify why the network does what it does, i.e. it started to generate

spots and weird patterns around epoch 100. For this reason, this experiment looked at

two different types of images through the pipeline. Binary images were "worse" and, in

many ways, served as a control group. By comparing the IOU scores (Best-alpha: 0.901

vs Best-binary-mask: 0.882) and visual results in section 5.1, the binary is inferior, but

stills perform reasonably well. Combined with the fact that the baseline approach was

improved (0.796 → 0.882), it suggests the GAN can enhance on low-quality images. A

result of this is how optimizing grid size no longer becomes as important. But, seen in

Table 5.2.1 some epochs edited the images to the extent where producing polygons from

them were not possible. For example, epoch 90(binary mask image) resulted in only 107

valid polygons. This fact point to weaknesses in dealing with low-quality data input.

6.5 On re-occurring sizing problem

A re-occurring theme in this thesis is the sizing problem. This problem will always be

present when transforming data between vector- and raster representation. In the step of

going from image to polygon, another variant of this problem re-surfaces. This stems from

how the GAN creates sharp edges and strange patterns, which require further processing

before extracting contour. The processing is morphological closing, which is dilution

followed by erosion. Dilution is a way of smoothing the edge pixels by striding a kernel

on the image. This is, ironically, the same thing as alpha-shape contour extracting, and

now the problem is determining the kernel size. As the operation is performed on image

data,which is 2-dimensional, it simplifies the problem, and with high-resolution images,

it is easier to implement a low sized kernel. I.e. if a buildings max distance= 20m, one-

pixel(width×height) will correspond to ∼(8cm×8cm), thus allowing for higher precision

when smoothing the edge on a few pixels.

But a question then becomes: is it possible for deep learning processing to achieve such

high precision to avoid the sizing problem? Well, of course, if we could yield images with

perfect boundary pixels and straight edges (IOU = 1), this would make the process of
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going back to vector representation much easier. But as data originates from real-world

LiDAR, it deems impossible to include all intricate details and complexities required to

represent the real-world counterpart accurately. But as deep learning is rapidly developing

and networks that operate on vector data has been developed, chances are deep-learning

methods in the future can fully automate the building boundary extraction process.
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7 Conclusion

This research set out to investigate potential improvements in building boundary ex-

traction by including processing by the GAN network. Quantitative analysis showed a

significant increase in the IOU score of the predicted building polygons. Furthermore,

qualitative observation of how the increase in IOU manifests in the processing implies the

GAN is reverting some of the imposed error from the α−shape method. In many ways,

the ultimate questions boil down to if the advantage of including GAN-processing yield

more informational gain and computational efficiency versus the negatives of the extra

required transformations from vector→raster and raster→vector.

It was shown that after processing by the GAN network and transforming back to vector

representation, the IOU score was higher than the initial alpha-shape. But as further

discussed, IOU scores does not mean everything. If it’s not possible to optimize IOU

scores to the extent of a nearly perfect representation of the predicted polygon with

GAN processing and geometrical rule-based constrictions are necessary to achieve this,

it is debatable whether the inclusion is needed. But, assuming it is easier to correctly

simplify a polygon with higher IOU, it is of high value and relevance to include deep-

learning processing.
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8 Further work

A big advantage to working with such a conceptually and visually straightforward problem

is observing what could further improve the result by looking at the result. So the natural

step forward is to introduce explicit geometrical rules in the polygon simplification step

based on topological features from the misalignment of the predicted polygon and the

disadvantages of scoring polygons based on their IOU score. A way to do this could be

to simultaneously train the GAN to output what category the building belongs to.2 And

from knowing what type of building enforce, i.e. the number of edges or how many main

directions, etc...

Of course, the process of editing edges is not constricted to the image domain, and the

extra steps back and forth between vector and raster data is not advantageous. Therefore,

a natural improvement is finding a vector-based network, meaning it can operate directly

on the point set itself. Promising proposed ways of doing this is presented by (Sheng

Zhang, Song, and W. Lu 2021) and (H. Wang et al. 2017).

Other aspects that would be interesting to include are deep learning-based edge detection

("Xie and Tu 2015),

2This is possible as binary images only utilize one colour channel, and two is available for passing

other information.
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A Appendix

i



Figure A.1: Showing layers and architecture of Generator network.

ii



Figure A.2: Showing layers and architecture of Discriminator network.

iii
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