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A B S T R A C T

During early phases of oil field development, field planners must decide upon the optimal number of wells and
optimal field plateau rate, usually by performing sensitivity studies. These design choices are then ‘‘frozen’’
in subsequent development stages. However, they often end up being suboptimal when the field is built and
produced and the uncertainty is reduced.

In this work, we employ non-linear numerical optimisation, latin hypercube sampling and the Schwartz
& Smith oil price model to compute probability distributions of the optimal number of wells, plateau rate
and project value. We also employ an analytical model to compute production profiles and project value
and consider uncertainties in in-place oil volume, well productivity and oil price. Then, we study how do
these distributions change from early field planning until when the field is abandoned, when uncertainties are
reduced to a minimum. The variation in time of the in-place oil volume uncertainty is modelled with a random
walk. The well productivity is a step function altered randomly after production startup. The actual oil price
trajectory is picked randomly from possible trajectories computed with the Schwartz and Smith model.

The results show that the distributions of the optimal number of wells, plateau rate and project value
depend greatly on the uncertainties in the input data. Field designs based on the average of the distributions
during the early phase are profitable, but suboptimal. A potential upside of such designs is that they entail
less capital investment and therefore less financial risk when compared against the optimal field design.
. Introduction

Field development is a complex task which demands large sums
f capital (CAPEX) and operational (OPEX) expenditures to produce
ydrocarbons. The required number of wells and the field production
chedule are parameters that field planners must decide upon at an
arly stage with limited information, having a large impact on the eco-
omic feasibility of the project (Nystad, 1985; Haldorsen, 1996). A high
umber of wells and a highly developed production system allows to
ecover and sell hydrocarbons earlier, thus minimising the effect of cash
low discounts, and so contributing to a higher project net present value
NPV). However, the high number of wells, production equipment and
igher volumes of produced fluids imply higher drilling expenditures
nd more expensive topside facilities. Therefore, the project NPV is
mpacted negatively. This trade-off is illustrated in Fig. 1.

The optimal number of wells and production schedule depends
ainly on the expected well performance, reservoir size and oil price.

or example, if we believe the reservoir is large, more wells will
e required to produce the reserves in a feasible time. If the well

∗ Correspondence to: Institutt for geovitenskap og petroleum, 7031, S. P. Andersens veg 15, Trondheim, Norway.
E-mail address: leonardo.sales@ntnu.no (L. Sales).

performance is assumed to be high, fewer wells will be needed to
recover reserves earlier, thus ensuring high profitability of the project,
and vice-versa. It also depends on oil price over time. In general terms,
the oil production will be stimulated if the oil price is high, and if the
oil prices are low, the investments will be slowed down, thus cutting
down excess equipment from the design.

At the start of field development planning, information related to
reservoir characteristics and well performance is scarce. Reservoir in-
formation at the early stages of development is vague and uncertain. As
the field is developed and the reservoir is produced, more information
is obtained, discovering the true reservoir characteristics.

However, decisions about the required number of wells, production
schedule and topside facility size and capacity need to be taken at
an early stage. While in some cases, it is possible to conduct explo-
ration and appraisal campaigns to gather more information about the
subsurface and hopefully reduce the uncertainty, it is often expensive,
and the remaining uncertainty is still considerable. The uncertainty can
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Fig. 1. Trade-off between NPV and extraction rate.

Fig. 2. General field development timeline.

Fig. 3. Oil production profile model.

sually only be reduced to a minimum with production data, that is,
fter starting production itself.

There are several studies on the literature that help to under-
tand the decision environment of field development, such as Lin
2008), Haugland et al. (1988) Jonsbråten (1998) and more recent
nes (Isebor and Durlofsky, 2014; Rodrigues et al., 2016; Chen et al.,
017; Basilio et al., 2018; Melo and Valença, 2019; Rocha et al., 2019).
o aid in this decision-making process, typically a model of the value
hain is employed to determine best design parameters that yield high-
st economic profit (Hanea et al., 2019; McLachlan et al., 2019; Sauve
2

o

Fig. 4. Example of an oil price trajectory.

t al., 2019). Recently, Nunes et al. (2018) proposed a deterministic
odel to determine the optimal number of wells, applying it to a
re-salt field in Brazil. However, uncertainties were not considered.

During early phases of oil field development, field planners decide
pon the optimal number of wells and optimal field plateau rate,
sually by performing sensitivity studies. These design choices are then

‘frozen’’ in subsequent development stages. However, they often end
p being suboptimal when the field is built and produced and the
ncertainty is reduced. Therefore, the main question we try to answer
n the present study is: if we were designing the field at an early stage
ith uncertain information and using rigorous methods to quantify
ncertainty, how much would it differ from the actual best design if
e had perfect information (i.e. uncertainties reduced to none)? For

his comparison, we simulate the design of the field at an early stage,
onsidering uncertainties. Then, we simulate the design as we could
redict future events and have more precise information about the field
arameters.

In the present work, the objective is to find out the probability
istribution of the optimal number of wells, plateau rate and project
PV. To this, we employ a non-linear numerical optimisation, latin hy-
ercube sampling and the Schartz & Smith oil price model to compute
robability distributions. The methodology is applied and discussed
sing a synthetic study case of a pre-salt field offshore Brazil, based
n the one discussed by Nunes et al. (2018).

In the next section, the information about the synthetic case study is
resented, and the optimisation model employed is described. Later, the
ncertain parameters considered are described, and the methodology to
uantify uncertainty is thoroughly explained. We present and discuss
he results, and finally conclude about the model’s performance and
ts applicability, relevance and potential advantages for early field
evelopment planning.

. Model description

An optimisation problem has been formulated to maximise NPV
y varying number of wells and plateau rate. First, we will study a
eterministic approach to this problem. Then, we present the modelling
f uncertainties, dividing it into three types (in-place volume, well
erformance, and oil price).

Fig. 2 shows a general timeline for field development. Decision gates
DG) are milestones in the project that involve major decisions. Along
he field life, uncertainties regarding reservoir volume decrease. Well
erformance uncertainties are eliminated after production starts. As the
il price is controlled by many external factors, oil price oscillations
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Fig. 6. Trajectories of in-place volumes.

appen spontaneously, so in general oil price uncertainties do not
ncrease or decrease with time. We aim to simulate these uncertainties
appening in the same manner.

As shown in Fig. 2, we analyse two time-spans. The decision gate
imeline takes place on a day-to-day scenario, following the calendar.
he studied DG can be before, during, and after the project’s lifetime.
hus, we will reference it as field development project time. Nonethe-

ess, the cash-flow analysis follows a simulated timeline to estimate
he project NPV. Therefore, this timeline is contained in the project’s
ifetime. Thus, we will reference it as NPV time.

To quantify the value of precise information, we solve the same field
evelopment optimisation problem on different years of development.
irst, we solve the optimisation problem based on poor data, thus
imulating the standard design approach, which always happens in
ecision gate year 0. After, we solve the same problem, now with data
rom the late field development (that is, having privileged information
bout the field outcomes), which happens on year 1 onwards. Then, we
ompare the resulting design of these scenarios. Fig. 2 also shows the
ears considered for the case study.

The optimisation problem is to maximise the NPV of the overall field
evelopment, optimising the number of wells and oil plateau rate. The
bjective function is shown in Eq. (1), where 𝑅 means royalties, 𝑇 are

taxes, and 𝑁𝑃𝑉𝑅 is the net present value of revenues (estimated using
Eq. (2)).

𝐶𝐴𝑃𝐸𝑋𝐹𝑃𝑆𝑂, 𝐶𝐴𝑃𝐸𝑋𝑊𝐸𝐿𝐿𝑆 and 𝐶𝐴𝑃𝐸𝑋𝑆𝑈𝐵𝑆𝐸𝐴 are the capital
expenditures (CAPEX) of wells, FPSO and subsea (shown in Eqs. (9)–
3

(11)), where wells and subsea CAPEX are a function of 𝑁𝑤, and FPSO
CAPEX is a function of 𝑞𝑝. To derive these CAPEX equations, we
ssumed the following from Nunes et al. (2018):

– There are only 9 water injectors in the field, independent of the
number of producers employed;

– The CO2, H2S, and sulphate removal unit factors are set to 1;
– The water depth is 2 000 m;
– Each well has a pipeline associated with it, with an average length

of 6 000 m;
– Each subsea manifold can accommodate up to 4 producing wells;
– The cost of installation of flowlines is 2 000 USD/m.

The oil production profile is computed using the analytical expres-
sion in Eq. (3) and illustrated in Fig. 3, which is constant while the
field production potential is above the field plateau rate and declines
exponentially in time after the plateau period. The plateau duration and
decline constant 𝑚 are affected by the original oil-in-place (OOIP) and
well performance. The discounted revenues (𝑁𝑃𝑉𝑅) are then computed
sing the production profile. Details of how to estimate 𝑁𝑃𝑉𝑅 are
resented in Appendix.

nteger variable

𝑁𝑤 Number of wells

ontinuous variables
𝑞𝑝 Field plateau rate (stb/d)
𝛥𝑁𝑝,𝑡 Oil volume produced at period 𝑡 (stb)

andom variables
𝐽 Well productivity index (stb/year bara)
𝑞0 Maximum oil well production rate (stb/d)
𝑃𝑜 Oil price (USD/stb)
𝑁 In-place volumes (stb)

arameters
𝑅 Royalties (%)
𝑇 Tax (%)
𝑈 Uptime (day)
𝑖 Interest rate (%)
𝑡𝑓 Production end (year)

athematical model

ax𝑁𝑃𝑉 = (1 − 𝑅)(1 − 𝑇 ) ⋅𝑁𝑃𝑉𝑅 − 𝐶𝐴𝑃𝐸𝑋𝐹𝑃𝑆𝑂

− 𝐶𝐴𝑃𝐸𝑋𝑊𝐸𝐿𝐿𝑆 − 𝐶𝐴𝑃𝐸𝑋𝑆𝑈𝐵𝑆𝐸𝐴 (1)

here

𝑃𝑉𝑅 =
𝑡𝑓
∑ 𝑃𝑜,𝑡𝛥𝑁𝑝,𝑡

𝑡 (2)

0 (1 + 𝑖)
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𝑞(𝑡) =
{

𝑞𝑝 𝑡 ≤ 𝑡𝑝
𝑞𝑝𝑒

−𝑚(𝑡−𝑡𝑝) 𝑡 > 𝑡𝑝
(3)

𝑞0 = 𝑁𝑤 ⋅ 𝑞0,𝑤 (4)

𝑡𝑝 =
1
𝑚

(

𝑞0
𝑞𝑝

− 1
)

(5)

= 𝐴 ⋅𝑁𝑤 ⋅ 𝐽 (6)
=

𝑎1
𝑁

(7)

𝑞𝑝 = 𝑞0 ⋅𝑁𝑤 − 𝑚 ⋅
𝑡=𝑡𝑝
∑

𝑡=0
𝛥𝑁𝑝,𝑡 (8)

𝐶𝐴𝑃𝐸𝑋𝑊𝐸𝐿𝐿𝑆 = 𝑎2 + 𝑎3 ⋅𝑁𝑤 (9)

𝐶𝐴𝑃𝐸𝑋𝐹𝑃𝑆𝑂 = 𝑎4 + 𝑎5 ⋅ 𝑞𝑝 (10)

𝐶𝐴𝑃𝐸𝑋𝑆𝑈𝐵𝑆𝐸𝐴 = 𝑎6 + 𝑎7 ⋅ 𝑟𝑜𝑢𝑛𝑑
(

𝑁𝑤
4

)

+ 𝑎8 ⋅𝑁𝑤 (11)

Subject to

𝑞𝑝 ≤ 𝑞0 (12)

𝑡=𝑡𝑓
∑

𝑡=0
𝛥𝑁𝑝,𝑡 ≤ 𝑁 (13)

𝑤, 𝑞𝑝, 𝐽 , 𝑞0, 𝑁, 𝛥𝑁𝑝,𝑡, 𝑃𝑜 ≥ 0 (14)

here 𝑎1 = 9.76×102 bara/stb well; 𝑎2 = 1.35×109 USD; 𝑎3 = 1.50×108

SD/well; 𝑎4 = 1.07×109 USD; 𝑎5 = 2.51×103 USD/bpd; 𝑎6 = 4.93×108

USD; 𝑎7 = 3.20 × 107 USD/well; 𝑎8 = 9.20 × 107 USD/well.
There are three main constraints in the model. First, the total well

production rate at the plateau must be lower than the maximum field
production rate Eq. (12). Second, the oil volume produced must be
less than the in-place volumes Eq. (13). Third, all variables must be
4

nonnegative Eq. (14). r
3. Uncertainty description and handling

One of the uncertainties considered here is related to in-place vol-
umes (𝑁). To describe this uncertainty, we parametrised a log-normal
distribution with 𝜇 = 2.17 × 109 𝑏𝑏𝑙 and 𝜎 = 2.67 × 1017 𝑏𝑏𝑙. This PDF
epresents the in-place volume uncertainties existing at the beginning
f the field planning phase, and we use it as a priori distribution for

the following years. It is assumed to be log-normal because this is the
typical probability distribution of 𝑁 when estimating reserves (Ian and
Noeth, 2004).

The well performance (𝐽 ) and maximum well production (𝑞0) un-
certainties are represented by a factor 𝐹 , where we attribute a uniform
distribution between 0.4–1.6 to it, if information about well perfor-
mance is not known yet (because the field has not started production).
At the moment the first well is drilled, well performance information
is known, and it will either assume a low productivity or a high
productivity well.

Lastly, we consider that the oil price varies in project time in a
random manner according to the Schwartz and Smith (2000) price
model, using the discretised version presented on Jafarizadeh and
Bratvold (2012) and taking the oil price parameters from the work
of Thomas and Bratvold (2015). These parameters were computed
tuning the distribution to historic price data. The price model is a
two-factor model that allows mean-reversion in short-term prices and
uncertainty in the equilibrium level to which prices revert. Fig. 4 shows
an example of an oil price trajectory generated by this model. A set of
oil price trajectories defines an oil price ensemble.

3.1. Sampling of uncertain variables

The production profile is affected by the uncertainties in in-place
volume, well productivity, and plateau rate (the last two through 𝐹 ). To
uantify the effect these random parameters have on the optimisation
esults, 𝑛 samples of 𝑁 and 𝐹 (each) are drawn using latin hypercube
ampling (LHS) and inserted in the optimisation problem. A Monte
arlo Simulation was initially used instead of LHS, but LHS was found
o be more computationally efficient (10 times fewer samples were

equired to achieve the same results).
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Fig. 8. Uncertainties over time.

For the oil price uncertainties, the Schwartz & Smith model gen-
rates trajectories similar to the one shown in Fig. 4. Based on these
rajectories, we obtain the discounted revenue NPV by multiplying the
il produced in that year times the average oil price in that year Eq. (2),
s illustrated in Fig. 5 for two examples of possible production curves.
e do this for several trajectories, in order to consider several scenarios

f 𝑁𝑃𝑉𝑅.

.2. Uncertainties over field development project time

Besides characterising and sampling uncertainties, we want to
odel their evolution in time at later field development stages. To

his, we simulate how uncertainties in in-place volumes (𝑁), well
erformance (𝐽 , 𝑞0) and oil price (𝑃𝑜) change during the oil field life.
n this section, we present each specific approach given to them.
Oil in-place uncertainty
Uncertainties in in-place volumes over field development project

ime are simulated using a Bayesian approach as presented by Lin
2008). An initial probability distribution function (PDF) for the reserve
stimates must be given. This is not an issue, because initial oil-in-place
stimates are generally available in early phases of field development
reated with exploration data, seismic and exploration wells. As we
entioned, we use a log-normal distribution with 𝜇0 = 2.17 × 109 𝑏𝑏𝑙

nd 𝜎0 = 5.17 × 1008 𝑏𝑏𝑙.
Then, the average 𝜇𝑡 and 𝜎𝑡 are updated over field development

roject time, generating a random walk. This formulation allows for
ore significant oscillations in 𝜇 in the beginning, and lower ones in

he end. This is compatible with the real practice of reserves estimation,
s wide estimation swings are more common in the beginning, because
here are greater uncertainties at that moment.

Since there are many possibilities of in-place volume curves, we
nly use the resulting trajectories shown in Fig. 6. The upper P90
urve (solid purple) is a scenario where reservoir volume was under-
stimated at the beginning (it has increasing in-place volume). In
ontrast, the lower P90 curve (solid orange) represents a scenario
here it was over-estimated (it has decreasing in-place volume). For
xample, on year 10 in the under-estimated scenario, we have a log-
ormal distribution for 𝑁 with 𝜇10 = 2.27 × 1009 𝑏𝑏𝑙 and 𝜎10 = 1.34 ×
008 𝑏𝑏𝑙.
Well performance uncertainty
Regarding well performance, we assume that before production

tart, the data about well performance is highly uncertain. So, we multi-
5

ly the well productivity index (𝐽 ) and the maximum well production b
Fig. 9. Simplified view of the method.

𝑞0) by a common factor 𝐹 , uniformly distributed between 0.4 − 1.6
before production starts, and then apply LHS for 𝐹 .

After production starts, well performance is known, then 𝐹 is con-
tant. If we consider a scenario of high well performance, 𝐹 = 1.3,
therwise we have a low well performance scenario, 𝐹 = 0.7. For exam-
le, considering a high well performance scenario, and that production
tarts at project year 3, 𝐹 will assume representative values between
.4 − 1.6 on project year 0 (due to LHS), and it will assume other
epresentative values between 0.4 − 1.6 on year 2, but it will assume
he value 𝐹 = 1.2 on year 3 onwards.
Oil price uncertainty
Fig. 7 illustrates how uncertainties in oil prices are simulated over

ield development project time. For year 𝑦0 = 0, we generate 𝑝
il price trajectories until 𝑦𝑚, where 𝑦𝑚 is the year that the field is
bandoned. For the next year 𝑦1, we randomly select one of the 𝑝 oil
rice trajectories of 𝑦0 as the oil price trajectory that actually happened
etween 𝑦 and 𝑦 , and we generate more 𝑝 oil price trajectories from
0 1
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Fig. 10. Histograms of number of wells.
𝑦1 to 𝑦𝑛. After, we select one of the 𝑝 oil price trajectories from 𝑦1 to
represent the oil price trajectory that happened between 𝑦1 and 𝑦2, and
so on, until we reach 𝑦𝑚, where a single trajectory is selected, and none
generated.

Fig. 8 shows how uncertainties evolve over field development
project time, having year 𝑡 as reference. In that year, the in-place oil
volume has a log-normal distribution with parameters 𝜇𝑡 and 𝜎𝑡, a well
performance factor 𝐹𝑡. Also, it has a fixed oil price trajectory before
year 𝑡 and 𝑝 samples of Schartz & Smith oil trajectories after year 𝑡.
The brackets show the behaviour of the random variable along field
development project time.

4. Overall view

The proposed method is summarised in Fig. 9. Samples for three
input variables (𝑁, 𝐽 , 𝐹 ) are generated based on LHS and Schwartz &
Smith price model. These samples are employed in the optimisation
model proposed here. The output variables (𝑁𝑤, 𝑞𝑝, and 𝑁𝑃𝑉 ) are the
main result of the optimisation, being summarised by histograms.

For each scenario, we study a set of years counting from the
beginning of project execution (0, 6, 13, 17, and 28). For each year
studied, the random variables will be sampled and combined in order
to optimise the problem. The oil price ensemble, oil reserves and well
performance distribution curves evolve through the years, as we can
observe in Fig. 8.

The oil price ensemble will have a single trajectory before the year
considered. After the selected year, there exists 𝑝 different oil price
6

paths, therefore we have a sample of 𝑝 oil price trajectories for each
decision gate iteration. From these 𝑝 oil price trajectories, we randomly
select one trajectory to be the assigned path.

The in-place volume distribution parameters 𝜇𝑡, 𝜎𝑡, for each year 𝑡,
are employed in LHS. For each one of the 𝑝 oil price trajectories, 𝑛
samples of oil reserves are drawn.

The well performance distribution will vary before and after pro-
duction start. Before production start, the 𝐹 factor will be drawn from
a uniform distribution, totalling 𝑛 samples for each one of the 𝑛 in-place
volume LHS samples. After production start, 𝐹 will assume a constant
value, either 0.7 if we are in a low well performance scenario, or 1.3
otherwise.

Having set values for these random variables, we can run and
optimise the deterministic model. As we optimise the problems, we
log 𝑁𝑤, 𝑞𝑝, and 𝑁𝑃𝑉 outputs corresponding to each sample, and plot
histograms of it, as shown in Figs. 10, 11, and 12. This is the end of
the algorithm.

5. Case study

5.1. Study set-up

The case study presented here is based on the data provided by
Nunes et al. (2018) paper, which presents a Brazilian pre-salt offshore
oil field in 2 000 m water depth. The reservoir will be produced at a
constant rate and then decline for a production horizon of 25 years.
The NPV of the project is computed considering discounted revenue
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Table 1
Scenarios studied here.

In-place volume
(Fig. 6)

Well performance Oil price
ensembles

Scenario 1 Under-estimated
(purple curve)

High well performance
(+40%)

Random

Scenario 2 Under-estimated
(purple curve)

Low well performance
(−40%)

Random

Scenario 3 Over-estimated
(orange curve)

High well performance
(+40%)

Random

Scenario 4 Over-estimated
(orange curve)

Low well performance
(−40%)

Random

Table 2
Increasing in-place volumes, high well performance.

Base Perfect information Gap

𝑁𝑃𝑉 11.7 × 109 13.1 × 109 11.4%
𝑁𝑤 20 29 45.0%
𝑞𝑝 380 518 754 000 98.2%
𝐶𝐴𝑃𝐸𝑋𝑊𝐸𝐿𝐿𝑆 4.35 × 109 5.70 × 109 31.0%
𝐶𝐴𝑃𝐸𝑋𝐹𝑃𝑆𝑂 2.02 × 109 2.96 × 109 46.4%
𝐶𝐴𝑃𝐸𝑋𝑆𝑈𝐵 2.49 × 109 3.38 × 109 35.8%

Table 3
Increasing in-place volumes, low well performance.

Base Perfect information Gap

𝑁𝑃𝑉 7.41 × 109 8.54 × 109 15.2%
𝑁𝑤 19 33 73.7%
𝑞𝑝 266 000 462 000 73.7%
𝐶𝐴𝑃𝐸𝑋𝑊𝐸𝐿𝐿𝑆 4.20 × 109 6.30 × 109 50.0%
𝐶𝐴𝑃𝐸𝑋𝐹𝑃𝑆𝑂 1.73 × 109 2.23 × 109 28.4%
𝐶𝐴𝑃𝐸𝑋𝑆𝑈𝐵 2.40 × 109 3.78 × 109 57.6%

from oil sales, and capital expenditures (all executed at production
start) due to wells, topside facilities, and subsea components. All wells
are assumed identical and enter into production at the same time. The
model’s source code is available in Sales et al. (2020).

The main differences from Nunes et al. (2018) are:

– Nunes et al. (2018) uses a constant decline factor 𝑚 for the decline
period which does not depend on 𝑁𝑤. This is unrealistic as, if
there are more wells draining from the reservoir, the constant
𝑚 should be larger (it should decline quicker, although with a
longer plateau). We have addressed this deficiency by making 𝑚
dependent on 𝑁𝑤.

– The decline factor 𝑚 presented by Nunes et al. (2018) should
also depend on 𝑁 . However, no information about 𝑁 is provided
in the work by Nunes. To express this dependency, and back-
calculate the 𝑁 of the case of Nunes, we assume that the reservoir
studied is an undersaturated oil reservoir and that its bubble
point pressure is very low and never reached during its producing
horizon. Using this assumption, 𝑚 = 𝑁𝑤𝐽𝑎1∕𝑁 , where 𝑎1 is a
constant that depends on oil compressibility (𝑐𝑜), oil formation
volume factor (𝐵𝑜, 𝐵𝑜,𝑖), connate and formation compressibility
(𝑐𝑤, 𝑐𝑓 ), and oil and water saturation (𝑆𝑜 and 𝑆𝑤):

𝑎1 =
𝐵𝑜

[𝐵𝑜,𝑖 ⋅ (𝑐𝑜 +
𝑐𝑤𝑆𝑤+𝑐𝑓

𝑆𝑜
)]

(15)

here 𝐵𝑜 = 𝐵𝑜,𝑖 = 1.127, 𝑐𝑜 = 9.5 × 10−4 bar−1, 𝑐𝑤 = 4.0 × 10−5 bar−1,
𝑓 = 4.0 × 10−5 bar−1 𝑆𝑜 = 0.7 and 𝑆𝑤 = 0.3). Therefore, 𝑎1 = 976.

– The decline factor 𝑚 also depends on well productivity, 𝐽 (a more
productive well will experience a sharper decline and viceversa,
although with a longer plateau). To back-calculate well produc-
tivity, initial reservoir pressure (𝑝 ) is assumed to be 350 bara and
7

𝑖

Table 4
Scenario 3: Decreasing in-place volumes, high well performance.

Base Perfect information Gap

𝑁𝑃𝑉 9.86 × 109 10.72 × 109 8.7%
𝑁𝑤 19 26 36.8%
𝑞𝑝 372 451 675 948 81.5%
𝐶𝐴𝑃𝐸𝑋𝑊𝐸𝐿𝐿𝑆 4.20 × 109 5.25 × 109 25.0%
𝐶𝐴𝑃𝐸𝑋𝐹𝑃𝑆𝑂 2.00 × 109 2.76 × 109 38.1%
𝐶𝐴𝑃𝐸𝑋𝑆𝑈𝐵 2.40 × 109 3.11 × 109 29.5%

Table 5
Decreasing in-place volumes, low well performance.

Base Perfect information Gap

𝑁𝑃𝑉 6.47 × 109 6.89 × 109 6.3%
𝑁𝑤 20 29 45.0%
𝑞𝑝 280 000 406 000 45.0%
𝐶𝐴𝑃𝐸𝑋𝑊𝐸𝐿𝐿𝑆 4.35 × 109 5.70 × 109 31.0%
𝐶𝐴𝑃𝐸𝑋𝐹𝑃𝑆𝑂 1.77 × 109 2.09 × 109 17.9%
𝐶𝐴𝑃𝐸𝑋𝑆𝑈𝐵 2.49 × 109 3.38 × 109 35.8%

𝑞𝑝,𝑤 = 20 000 𝑠𝑡𝑏∕𝑑. It is also assumed that the minimum flowing
bottom-hole pressure (𝑝𝑤,𝑓 ) achievable is 100 bara. This gives:

𝑞𝑝,𝑤 = 𝐽 (𝑝𝑖 − 𝑝𝑤,𝑓 ) = 20 000 𝑠𝑡𝑏∕𝑑 (16)

therefore, 𝐽 = 80 𝑠𝑡𝑏∕(𝑦𝑒𝑎𝑟 𝑏𝑎𝑟𝑎) considering 𝑚 = 0.13 and 𝑁𝑤 =
10, 𝑁 = 𝑁𝑤 ⋅ 𝐽 ⋅ 𝑎1∕𝑚 = 2.19 × 109 𝑠𝑡𝑏.

We tuned the sampling size required to make the average results
onverge for each random variable. We tested from 5 samples of 𝑁 and
, and 10 samples of oil trajectories, which took on average 13 min to
olve, to 20 samples of 𝑁 and 𝐽 , and 110 samples of oil trajectories,
hich took around 21 h on the same computer. The smallest sampling

ize where the results successfully converged are 𝑛 = 15 samples of 𝑁
nd 𝐽 , and 90 samples of oil trajectories, taking around 18 h. Therefore,
his is the sampling size we employ here.

For year 0, 6, 13, and 17, we consider 𝑝 = 90 oil trajectories × 𝑛 = 15
il reserves samples × 𝑛 = 15 well performance samples. For year 28,
e have a single sample, as 𝑁 and 𝐹 are deterministic, and there is only
ne oil trajectory for 𝑃𝑜. This means we have in total 20 251 problems
o be optimised.

The problem was implemented in Microsoft Excel Visual Basic for
pplications (VBA) and solved using the Solver built-in module. The
olver employed was the Generalised Reduced Gradient (GRG). The
omputer has an Intel i9-9900 processor and 32 GB RAM. We observed
he solver output codes and noticed that less than 10% of the integer
olutions converged within the tolerance of 1%, while the others fully
onverged. This means that the solver successfully obtained locally
ptimum solutions for most problems.

As mentioned previously in Sections 3 and 3.2, we studied four
cenarios, shown in Table 1. The four scenarios are a combination of
nder- and over-estimated in-place volumes of 𝑁 (compared to the
verage of the early distribution) and high and low well performance
𝐽 , 𝑞0). We generate the oil price ensemble randomly, as presented in
ection 3.2, but we use the same generated ensembles for all scenarios
o establish a clear comparison between them.

.2. Simulation results

Figs. 10–12 show histograms of the samples obtained for each
utput variable (number of wells, plateau rate, and NPV), with nor-
alised frequency. The second variable on the plots is the year of

he information employed to optimise the field development design.
armer colours represent higher relative frequency.
We notice that the histograms at year 0 are very similar, since the

nitial values and initial uncertainty are the same. As the information
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Fig. 11. Histograms of plateau rate.
about the field increases along the years, uncertainty decreases. This is
why the histograms obtained decrease in variability over the years. For
all variables of a given scenario, we observe that the variables converge.
However, if we compare the results between scenarios, we notice
that very different designs are obtained, as the variables converge to
different values.

We can also observe that for all output variables, including NPV,
the expected values at year zero are lower compared to the expected
values of the following years. This means that due to the high un-
certainties involved, the expected optimised development at year 0 is
under-designed.

Tables 2–5 show the expected number of wells and plateau rate for
the base scenario (that is, locking the number of wells and plateau rate
at year 0), the resulting NPV and CAPEX, and the scenario with perfect
information (designing the field with perfect information). The gap
column shows the difference of the base scenario and the scenario with
perfect information. We observe that the NPV of the design with perfect
information is between 5%–15% higher. However, this is a modest NPV
increase for the oil field planning phase.

Besides, the 5%–15% NPV increase requires 25%–50% more capital
expenditures, which may be a high-risk option to the decision-maker.
So, although the base scenario is not ideal, it is proved to be a good
option, even if there is only uncertain information available.

6. Conclusions

An MINLP combined with LHS and Schwartz & Smith sampling
procedures was proposed to determine the probability distribution of
8

the optimal number of wells, plateau rate and project NPV of an oil
field. The in-place oil volume, well productivity, maximum well plateau
rate, and oil price were considered as uncertain variables. We simulated
the oil field presented by Nunes et al. (2018), and then we computed
the probability distribution of the optimal number of wells, plateau rate
and NPV at early field design and at subsequent stages in the life of the
field where uncertainty is reduced. A total of 20 251 problems were
optimised.

The proposed method seems to be a robust approach to quan-
tify uncertainties while computing optimal design and is therefore
suitable to provide decision support in early field development. The
authors are not aware of other studies that combine these uncertainties
simultaneously as in this work.

The method successfully converged for all 20 251 problems that were
optimised, and less than 10% of the integer solutions converged within
the tolerance of 1%. The total running time was 18 h.

It was found that using LHS allowed to use less samples when
compared to Monte Carlo, thus saving considerable simulation time.
The computational time for executing the whole method is feasible
and suitable for the time frame of early phase field development
studies. However, the use of more efficient solvers than Excel’s GRG
solver could reduce the computational time required and guarantee
global optimum solutions. Regardless, the proposed method requires
low resources to obtain optimal solutions for the field design problem.

As knowledge about the field is improved and the actual oil price
is known, the optimal design changes. Generally, the optimal field
design at the beginning of development lacks investment compared to



Journal of Petroleum Science and Engineering 207 (2021) 109058L. Sales et al.
Fig. 12. Histograms of NPV.
the optimal field design with perfect information. The decision-makers
should invest 30%–60% more in capital expenditures to obtain the
optimal field design.

Although the designs are different, the value of perfect information
is modest for the cases studied in this paper, around 3%–15% of the
NPV. In a real scenario, we understand that this increase may not
worth the risks of investing 30%–60% more in field development, so
we conclude that the initial design is a conservative option.

Here, we presented only four scenarios for in-place oil volume and
well performance. Further studies must be conducted to determine
a more precise range for the value of perfect information and new
insights about the problem. To this, other scenarios must be evaluated,
varying the in-place volume ensembles and 𝐹 after production start.
Another suggestion is to study flexibility, that is, start the design with
the best-known solution and improve it along time with options theory,
and to study uncertainties in CAPEX costs. Finally, we applied the
proposed method for a specific field only. More studies are required
to guarantee the conclusions shown here to other fields.
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Appendix

𝑁𝑃𝑉𝑅 Estimation
To estimate 𝑁𝑃𝑉𝑅, we need to integrate numerically

𝑁𝑃𝑉𝑅 = ∫

𝑡𝑓

0
𝑃𝑜(𝑡)𝑞(𝑡)𝑒−𝑖𝑡𝑑𝑡

where 𝑃𝑜(𝑡) is the oil price, 𝑖 is the interest rate, and 𝑞(𝑡) is the flow rate
at given time 𝑡. At first, let us consider 𝑃𝑜(𝑡) = 𝑃𝑜 and the field plateau
rate as 𝑞𝑝, thus estimating the decline rate as Eq. (3),

𝑞(𝑡) = 𝑞𝑝𝑒
−𝑚(𝑡−𝑡𝑝)

where 𝑡𝑝 is the plateau end period, calculated using the maximum well
flow rate 𝑞0, which is the sum of each maximum well flow rate 𝑞0,𝑤 as
seen in Eqs. (5) and (6),

𝑞0 = 𝑁𝑤 ⋅ 𝑞0,𝑤

𝑡𝑝 =
1
(

𝑞0 − 1
)

.

𝑚 𝑞𝑝
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𝑚

w
𝐴

p
p

𝑞

w
d

The exponential decline parameter 𝑚 is shown in Eq. (6),

= 𝐴 ⋅𝑁𝑤 ⋅ 𝐽

here 𝐽 is the well productivity index, 𝑁𝑤 the number of wells and
= 𝑎1∕𝑁 Eq. (7).
The production potential (𝑞𝑝𝑝) curve can be employed to perform

roduction planning while avoiding the use of coupled reservoir and
roduction models (González et al., 2020). It is defined as

𝑝𝑝(𝑡) = 𝑞0 − 𝑚 ⋅
∑

𝑡
𝛥𝑁𝑝,𝑡

here 𝛥𝑁𝑝,𝑡 is the oil volume produced at period 𝑡. The plateau pro-
uction will end at 𝑡𝑝 when 𝑞𝑝𝑝(𝑡𝑝) = 𝑞𝑝. So, we insert it as a constraint

in the optimisation model Eq. (8),

𝑞𝑝 = 𝑞0 − 𝑚 ⋅
𝑡=𝑡𝑝
∑

𝑡=0
𝛥𝑁𝑝,𝑡

where ∑𝑡=𝑡𝑝
𝑡=0 𝛥𝑁𝑝,𝑡 is the oil volume produced until 𝑡𝑝, given by Eq. (5).

Considering 𝑃𝑜 = 𝑃𝑜(𝑡), we can integrate numerically 𝑁𝑃𝑉𝑅 using
Eq. (2).
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