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Abstract 

From an engineering point of view, it is beneficial to reduce the number of mechanical tests 

required to calibrate the plasticity and fracture models of a structural material. In this study, the 

ductile fracture model for three high-strength steels is identified based on unit cell simulations, 

metal and porous plasticity modelling, and strain localization analysis combined with a single 

uniaxial tensile test per material. Finite element simulations of a unit cell model with a spherical 

void are performed with the matrix material described by metal plasticity and used to calibrate the 

parameters of the porous plasticity model. Strain localization analyses are conducted using the 

imperfection band approach with metal plasticity outside and porous plasticity inside the 

imperfection band. These simulations are first used to determine the nucleation rate in the porous 

plasticity model giving the experimentally obtained fracture strain in uniaxial tension, and then to 

compute the fracture locus under proportional loading in generalized axisymmetric tension. By 

combining the fracture locus with a simple damage accumulation rule and metal plasticity, finite 

element simulations of ductile fracture in tensile tests on smooth and notched specimens of the 

three steels are performed. Comparison of the predicted results with existing experimental data 

shows that the fracture model gives satisfactory estimates of ductility for a wide range of stress 

triaxiality ratios in steels of different strengths. This study shows the potential of micromechanical 

analyses in the calibration of fracture models for engineering applications. 
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Nomenclature 

Abbreviations  
FE Finite Element 
HC Hosford-Coulomb 
JC Johnson-Cook 

MMC Modified Mohr-Coulomb 
Symbols - Latin  

𝐴𝐴n Nucleation rate 
𝑨𝑨t Acoustic tensor 
𝑪𝑪t Material tangent stiffness tensor 
𝑫𝑫 Rate-of-deformation tensor 
𝑫𝑫p Plastic rate-of-deformation tensor 
𝐷𝐷 Damage variable 
𝐸𝐸 Young’s modulus 
𝑬𝑬 Macroscopic strain tensor 
𝐸𝐸eq Macroscopic equivalent strain 
𝐸𝐸f Macroscopic failure strain 
𝑭𝑭 Deformation gradient tensor 
𝑓𝑓 Void volume fraction 
𝑓𝑓n Void volume fraction due to void nucleation 
𝑓𝑓0 Initial void volume fraction 
𝐿𝐿 Lode parameter 
𝑳𝑳 Velocity gradient tensor 
𝒏𝒏 Unit normal vector to imperfection band 
𝑝𝑝 Equivalent plastic strain 
𝑷𝑷 Nominal stress tensor 
𝑝𝑝f Equivalent plastic strain at failure 
𝑇𝑇 Stress triaxiality 

𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 Tvergaard parameters 
�̇�𝒒 Non-uniformity rate vector 

𝑄𝑄𝑖𝑖 ,𝐶𝐶𝑖𝑖  Isotropic hardening parameters 
𝑤𝑤 Unit cell void aspect ratio 

Symbols - Greek  
Φ Yield function 
𝜆𝜆 Unit cell aspect ratio 
𝜈𝜈 Poisson’s ratio 
𝛔𝛔 Cauchy stress tensor 
𝛔𝛔′ Deviatoric part of Cauchy stress tensor 
𝜮𝜮 Macroscopic stress tensor 
𝜎𝜎0 Initial yield stress 
𝜎𝜎ℎ Hydrostatic stress 
𝜎𝜎eq von Mises equivalent stress 
𝜎𝜎M Matrix flow stress 
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1. Introduction 
In large-scale finite element simulation of steel structures subjected to accidental loads, such as 

impact and explosion, uncoupled plasticity and damage models are commonly used, e.g. [1]–[4]. 

In such models, the damage has no influence on the elastoplastic behaviour before a critical 

damage level is reached and the structure fails. Failure is typically modelled by element erosion. 

Damage reduces the load-carrying capacity of the material and leads to reduced strength and 

eventually strain softening, but this effect is often negligible in metals until the material is close to 

fracture. Dunand and Mohr [5] compared the results obtained by the uncoupled modified Mohr–

Coulomb (MMC) fracture model [6] and the coupled shear-modified Gurson model [7][8] with 

fracture experiments over a wide range of stress triaxiality ratios and Lode angles on a TRIP-

assisted steel sheet. Both models were found to be capable of predicting the fracture displacement 

for different stress states, but the MMC fracture model gave somewhat more accurate results. 

Grimsmo et al. [9] carried out finite element simulations of ductile failure of fillet-welded 

structural steel components using the uncoupled Cockcroft-Latham fracture model [10] and the 

coupled shear-modified Gurson model [7][8]. The shear-modified Gurson model was found to give 

results in better accordance with the experiments, which could be expected due to the simplicity 

of the one-parameter Cockcroft-Latham fracture model. In practical use, the main advantage of the 

uncoupled damage models is that they can be calibrated independently from the plasticity model, 

which simplifies the parameter identification from test data [11]. 

The main damage mechanism in ductile fracture of steel is nucleation, growth and coalescence 

of microscopic voids, where voids are nucleated at inclusions and second-phase particles [12]. 

These processes are highly dependent upon the stress state [13][14], which is often expressed in 

terms of the stress triaxiality and the Lode parameter. While the stress triaxiality signifies the 

degree of hydrostatic tension, the Lode parameter represents the deviatoric stress state. Early 

research on the effect of the stress triaxiality on the ductility of steel includes the studies of 

Hancock and co-workers [15]–[17] and Johnson and Cook [18], and later numerous studies have 

documented the importance of this stress state parameter, e.g. [19]–[24]. The general trend is that 

the ductility decreases with increasing stress triaxiality when the Lode parameter and other loading 

parameters are kept constant. More recently, the effect of the Lode parameter on ductile fracture 

in steels has been examined experimentally in several studies, e.g. [11][13][22]. Micromechanical 

simulations (e.g. [25]–[27]) indicate that the lowest ductility tends to occur for generalized shear 
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states and that the ductility is somewhat higher in generalized axisymmetric compression than in 

generalized axisymmetric tension.  

Fracture models for steels and other metallic materials are often defined by a fracture locus 

valid for proportional loading conditions and a damage evolution rule that accounts for the effects 

of non-proportionality in the loading process. The Johnson-Cook (JC) fracture model [18], the 

more recent MMC [6] and Hosford–Coulomb (HC) [28] fracture models are constructed this way, 

where the latter fracture model was motivated from micromechanical simulations [26]. Whereas 

the MMC and HC fracture models depend on the stress triaxiality and the Lode parameter, the JC 

fracture model only accounts for stress triaxiality in addition to strain rate and temperature. In 

other fracture models, like the Cockcroft-Latham fracture model [10] and the extended Cockcroft-

Latham fracture model [29], damage is driven by the plastic dissipation amplified by a factor that 

depends on the stress state via the stress triaxiality and the Lode parameter. In the original and 

extended Cockcroft-Latham fracture models, the fracture locus valid for proportional loading is 

not used in the definition of damage but can be constructed as soon as the fracture model has been 

calibrated. 

The identification of the fracture parameters from experimental results is a complex and time-

consuming process that involves finite element simulation of the tests to establish the stress and 

strain history at the critical point where fracture is assumed to initiate [30]. If the fracture model 

depends on both the stress triaxiality and the Lode parameter, many tests are required to fill the 

stress space in a reasonable manner even for quasi-static and isothermal conditions. If the 

dependence of the Lode parameter is neglected, the number of tests can be reduced, but still tests 

at several levels of stress triaxiality should be carried out. To readily obtain the fracture locus, it is 

important to design specimens that give reasonably proportional loading conditions. This is not an 

easy task [31] and typically significant non-proportionality occurs due to diffuse and local necking 

modes. As a result, inverse modelling is often used to identify the fracture parameters, applying 

finite element simulations of the tests with a calibrated plasticity model [32].    

An alternative approach, which is explored in the study presented here, is to combine 

experiments with micromechanics-based modelling and thus reduce the need for experiments. 

Morin et al. [33] combined unit cell simulations, metal and porous plasticity modelling, and strain 

localization analyses to predict failure of a structural steel under moderately and strongly 



5 
 

proportional loadings. Results in good agreement with the experiments of Basu and Benzerga [24] 

were obtained. In this study, we have extended the approach used in Morin et al. [33] to allow for 

simulation of ductile fracture and crack propagation in finite element analyses using 𝐽𝐽2 metal 

plasticity combined with a ductile fracture model calibrated based on a micromechanical approach. 

Despite the CPU efficiency of the strain localization analyses reported by Morin et al. [27], this 

technique cannot be used during run-time of a finite element analysis. Therefore, to benefit from 

the accuracy of this approach the calibration of a ductile fracture model is the best alternative with 

today’s computers. The micromechanics-based modelling framework is applied to predict the 

fracture locus of three structural steels with different yield strength. The micro-mechanical 

parameters are calibrated based on unit cell simulations and a single uniaxial tension test, and 

localization analyses combining metal and porous plasticity models are used to calculate the 

fracture locus. By combining the fracture locus with a damage evolution rule, an uncoupled 

plasticity and damage model is obtained and then applied in simulations of tension tests on notched 

specimens where the dominant loading mode is axisymmetric tension. Element erosion is used to 

describe crack propagation. The results are compared with the experiments presented in Dey et al. 

[21]. It should be noted here that the proposed calibration procedure is quite general and can be 

used for other types of fracture models, e.g. the MMC and HC fracture models. It is, however, 

important to stress that the accuracy of the approach depends critically on the quality of the porous 

plasticity model employed in the localization analyses.  

2. Materials 

Three steel materials are considered in this study, namely Weldox 460E, Weldox 700E and 

Weldox 900E with minimum yield strength of 460 MPa, 700 MPa and 900 MPa, respectively. 

Weldox is a class of structural steels that combines high strength and ductility. Dey et al. [21] 

performed three series of tensile tests on these materials, namely quasi-static tests with smooth and 

notched specimens, quasi-static tests at elevated temperatures, and dynamic tests over a wide range 

of strain rates. 

We only address the quasi-static tests on the smooth and notched specimens at room 

temperature in the present numerical study. The geometry of the specimens is shown in Figure 1. 

Notched specimens with notch radius 𝑅𝑅 equal to 4 mm, 2 mm, 0.8 mm and 0.4 mm were tested, 

and these tests will be referred to as R4, R2, R08 and R04, respectively. All specimens were taken 
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parallel to the rolling direction of the steel plate. The possible anisotropy of the Weldox steel plates 

was not investigated experimentally by Dey et al. [21]. However, tensile tests in three material 

directions of the Weldox 460E steel plates performed by Børvik et al. [34] gave no indications of 

planar anisotropy while a slight normal anisotropy was found. Any anisotropy in the behaviour of 

the Weldox steels will be neglected in the numerical simulations conducted herein, in the same 

manner as in Børvik et al. [34] and Dey et al. [21]. The different notches induce different levels of 

hydrostatic tension in the minimum cross-section of the specimens during straining, which 

distinctly influence the force level and the strain to failure.  

Tests in the rolling direction of the steel plates were performed in a universal testing machine, 

and the deformation rate was adjusted to give an initial strain rate of about 10−3 s−1 independent 

of the specimen geometry. Three parallel tests were carried out for each combination of material 

and specimen geometry. During testing, the force was measured by the load cell of the testing 

machine, and the minimum cross-sectional diameters of the specimen were continuously measured 

in the transverse and normal directions of the plate using four displacement gauges mounted in a 

special device [21]. The latter gives a local measure of the specimen’s deformation all the way to 

fracture, i.e., the average diameter reduction in the two directions, and is important for validation 

of fracture models.   

3. Micromechanical modelling 

The following modelling strategy is adopted to establish and validate a ductile fracture model for 

the three Weldox steels based on micromechanics and the use of a single uniaxial tension test per 

material.  

1. A 𝐽𝐽2 metal plasticity model is employed to describe the plastic behaviour of the three steel 

materials, where the experimental data from the uniaxial tension tests available in Dey et 

al. [21] are used for calibration of the model parameters. 

2. Finite element simulations of an axisymmetric unit cell with a spherical void are used to 

calibrate a porous plasticity model for the three steels in the range of high stress triaxiality, 

where the already calibrated metal plasticity model is used to describe the matrix behaviour 

of the materials.  
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3. Strain localization analyses based on the imperfection band approach are conducted with 

metal plasticity outside and porous plasticity inside the band. Using metal plasticity outside 

the band is reasonable as we aim at calibrating an uncoupled plasticity and damage model. 

The void nucleation rate in the porous plasticity model is then determined to predict 

localization at the experimentally obtained fracture strain in uniaxial tension.  

4. Using the calibrated metal and porous plasticity models, strain localization analyses are 

carried out to determine the fracture locus of the three steels under proportional loading in 

generalized axisymmetric tension for a wide range of stress triaxiality ratios. 

5. Combining the fracture locus with a simple damage accumulation rule and the calibrated 

metal plasticity model, finite element simulations of ductile fracture in tension tests on 

smooth and notched specimens of the three steels are performed and compared with the 

experimental data from Dey et al. [21] to assess the accuracy of the proposed approach. 

The modelling strategy is illustrated in Figure 2 using the same numbering as above. In the 

following, the different models combined in the micromechanics-based modelling approach of the 

three Weldox steels are described briefly.    

3.1.  Metal plasticity 

Metal plasticity is described by the 𝐽𝐽2 flow theory, see e.g. [35], where the von Mises yield 

criterion, the associated flow rule, and isotropic hardening are applied. The von Mises yield 

criterion is defined by Φ ≡ 𝜎𝜎eq − 𝜎𝜎M = 0, where 𝜎𝜎eq = �3𝛔𝛔′:𝛔𝛔′/2 is the von Mises equivalent 

stress and 𝛔𝛔′ is the deviatoric part of the Cauchy stress tensor 𝛔𝛔. The flow stress 𝜎𝜎M of the material 

is described by an extended Voce rule, 𝜎𝜎M = 𝜎𝜎0 + ∑ 𝑄𝑄𝑖𝑖(1 − exp(−𝐶𝐶𝑖𝑖𝑝𝑝))2
𝑖𝑖=1 , where 𝜎𝜎0 is the initial 

yield stress, and 𝑄𝑄𝑖𝑖 and 𝐶𝐶𝑖𝑖 = 𝜃𝜃𝑖𝑖/𝑄𝑄𝑖𝑖 are hardening parameters. The von Mises equivalent plastic 

strain is defined by 𝑝𝑝 = ∫�2𝐃𝐃p:𝐃𝐃p/3 𝑑𝑑𝑑𝑑, where 𝐃𝐃p is the plastic rate-of-deformation tensor 
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given by the associated flow rule.  The metal plasticity model is combined with isotropic elasticity 

defined by Young’s modulus 𝐸𝐸 and Poisson’s ratio 𝜈𝜈. 

3.2.  Porous plasticity 

The Gurson model is adopted to describe porous plasticity including nucleation and growth of 

microscopic voids, while coalescence is not accounted for in the modelling [33]. The yield 

criterion is defined by [36][37] 

 Φ = �
𝜎𝜎eq
𝜎𝜎M

�
2

+ 2𝑓𝑓𝑞𝑞1 cosh �
𝑞𝑞2
2

tr𝛔𝛔
𝜎𝜎M

� − (1 + 𝑞𝑞3𝑓𝑓2) = 0 (1) 

 where 𝑓𝑓 is the porosity (or void volume fraction), 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 are the Tvergaard parameters [37], 

and 𝜎𝜎M is the flow stress of the matrix material, defined by the extended Voce rule. As for metal 

plasticity, the associated flow rule is adopted to define the plastic rate-of-deformation tensor 𝐃𝐃p, 

and the porosity evolution is governed by 

 �̇�𝑓 = (1 − 𝑓𝑓)tr𝐃𝐃p + 𝐴𝐴n�̇�𝑝 (2) 

where 𝐴𝐴n governs the uniform nucleation of voids and the equivalent plastic strain 𝑝𝑝 is defined by 

equating the plastic work in the matrix to the macroscopic plastic work [37]. The initial porosity 

is denoted 𝑓𝑓0. The porous plasticity model is combined with isotropic elasticity defined by Young’s 

modulus 𝐸𝐸 and Poisson’s ratio 𝜈𝜈. 

3.3.  Unit cell simulations 

An axisymmetric unit cell with an embedded spheroidal void is applied for the calibration of the 

porous plasticity model, see Figure 3, where 𝑥𝑥1 and 𝑥𝑥2 are in the lateral and axial direction of the 

unit cell, respectively. The geometry of the unit cell can be described by the cell aspect ratio, 𝜆𝜆 =

𝐿𝐿2/𝐿𝐿1, the void aspect ratio, 𝑤𝑤 = 𝑟𝑟2/𝑟𝑟1, and the void volume fraction 

 𝑓𝑓 =
2𝑟𝑟12𝑟𝑟2
3𝐿𝐿12𝐿𝐿2

 (3) 

where (𝐿𝐿1, 𝐿𝐿2) are the outer dimensions of the unit cell and (𝑟𝑟1, 𝑟𝑟2) are the semi-axes of the void 

along the two coordinate axes (𝑥𝑥1, 𝑥𝑥2). The initial values of 𝜆𝜆 and 𝑤𝑤 are set to unity, i.e., the cell 
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is equi-axed and the void is spherical. The macroscopic strains in the lateral and axial directions 

of the unit cell are given by [38][39] 

 𝐸𝐸11 = ln �
𝐿𝐿1
𝐿𝐿0
� ,  𝐸𝐸22 = ln �

𝐿𝐿2
𝐿𝐿0
� ,  𝐸𝐸33 = 𝐸𝐸11 (4) 

where 𝐿𝐿0 is the initial value of 𝐿𝐿1 and 𝐿𝐿2, and the macroscopic equivalent strain measure of the 

unit cell is defined as   

 𝐸𝐸eq =
2
3

|𝐸𝐸22 − 𝐸𝐸11| (5) 

The macroscopic von Mises equivalent stress, Σeq, the hydrostatic stress, Σh, and the stress 

triaxiality ratio, 𝑇𝑇, are then defined by [38][39] 

 𝛴𝛴eq = |𝛴𝛴22 − 𝛴𝛴11|,  𝛴𝛴h =
1
3

(𝛴𝛴22 + 2𝛴𝛴11),  𝑇𝑇 =
𝛴𝛴h
𝛴𝛴eq

=
𝛴𝛴22 + 2𝛴𝛴11

3|𝛴𝛴22 − 𝛴𝛴11| 
(6) 

where 𝛴𝛴33 = 𝛴𝛴11 has been assumed. Only states of generalized axisymmetric tension will be 

considered here in which 𝛴𝛴22 ≥ 𝛴𝛴11 = 𝛴𝛴33. The stress triaxiality 𝑇𝑇 is varied between simulations 

but kept constant during the loading of the unit cell to obtain proportional loading paths. The matrix 

of the unit cell is governed by 𝐽𝐽2 flow theory as described above in Section 3.1. For further details 

regarding the unit cell simulations the reader is referred to Dæhli et al. [39]. 

3.4.  Localization analyses 

Following Rice [40], we consider a solid with an initial imperfection in the form of a thin planar 

band. The material outside the band is subjected to uniform deformation under quasi-static loading 

conditions. Both the materials inside and outside of the band are assumed to be homogeneous, but 

the properties of the material inside the band are assumed to differ slightly from those of the 

material outside. The unit normal of the imperfection band is denoted 𝒏𝒏, and is obtained from its 

initial value 𝒏𝒏0 as [40] 

 𝒏𝒏 =
𝒏𝒏0 ⋅ 𝑭𝑭−1

‖𝒏𝒏0 ⋅ 𝑭𝑭−1‖
 (7) 
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where 𝑭𝑭 is the deformation gradient tensor. Compatibility across the imperfection band implies 

that  

 𝑳𝑳b = 𝑳𝑳 + �̇�𝒒⨂𝒏𝒏 (8) 

where 𝑳𝑳 and 𝑳𝑳b are the velocity gradient tensors respectively outside and inside the band, and �̇�𝒒 is 

a vector that represents the non-uniformity across the band. Continuing equilibrium across the 

band can be expressed as 

 𝒏𝒏 ⋅ �̇�𝑷b = 𝒏𝒏 ⋅ �̇�𝑷 (9) 

where 𝑷𝑷 and 𝑷𝑷b are the nominal stress tensors outside and inside the band, respectively, and the 

reference configuration is taken to coincide with the current configuration at any stage of the 

deformation process. Expressing the constitutive relations outside and inside the band as �̇�𝑷 = 𝑪𝑪t:𝑳𝑳 

and  �̇�𝑷b = 𝑪𝑪bt :𝑳𝑳𝑏𝑏, we obtain an equation for �̇�𝒒 as 

 (𝒏𝒏 ∙ 𝑪𝑪bt ∙ 𝒏𝒏) ⋅ �̇�𝒒 = 𝒏𝒏 ⋅ (𝑪𝑪t − 𝑪𝑪bt ):𝑳𝑳 (10) 

where 𝑨𝑨bt (𝒏𝒏) = 𝒏𝒏 ⋅ 𝑪𝑪bt ⋅ 𝒏𝒏 is the acoustic tensor of the band material, and 𝑪𝑪t and 𝑪𝑪bt  are tangent 

modulus tensors for the material outside and inside the band, respectively (see [27] for details). 

The condition for localization is that the strain rate inside the band becomes infinite, which 

corresponds to det𝑨𝑨bt (𝒏𝒏) = 0 for the first time. It should be noted that the critical orientation of 

the band normal is not known in advance, and localization analyses must be run for a wide range 

of orientations 𝒏𝒏0 to ensure that the ductility is minimized for the actual state of stress.  

Strain softening is essential for the localization condition to be met for materials undergoing 

associated plastic flow, either only inside the band or outside the band as well. The Gurson model 

is employed in this study to describe strain softening inside the band, while metal plasticity is used 

for the material outside the band. The reader is referred to Morin et al. [27] for further details on 

the localization analysis by the imperfection band approach and the algorithms employed in the 

numerical implementation.  

Localization analyses are performed here for two purposes: firstly, for the calibration of the 

void nucleation rate inside the imperfection band and, secondly, for the computation of the fracture 

locus. In the calibration of the nucleation rate of the porous plasticity model, the deformation 

history of the material outside the band is obtained by finite element simulations of the uniaxial 
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tension test with the 𝐽𝐽2 plasticity model. Subsequently, a wide range of constant values of the stress 

triaxiality (i.e., proportional loading conditions) are prescribed for the material outside the band to 

determine parameters of the fracture model, considering again only states of generalized 

axisymmetric tension characterized by 𝜎𝜎I ≥ 𝜎𝜎II = 𝜎𝜎III, where (𝜎𝜎I,𝜎𝜎II,𝜎𝜎III) are the ordered principal 

Cauchy stresses.   

3.5.  Fracture model 

The fracture locus obtained by the localization analyses is fitted by the expression [15][18]  

 𝑝𝑝f = 𝐷𝐷1 + 𝐷𝐷2 exp(𝐷𝐷3𝑇𝑇) (11) 

where 𝑝𝑝f is the equivalent plastic strain at failure, 𝑇𝑇 is the stress triaxiality ratio, defined by 𝑇𝑇 =

𝜎𝜎h/𝜎𝜎eq, 𝜎𝜎h = 1
3

tr(𝛔𝛔) being the hydrostatic stress, and (𝐷𝐷1,𝐷𝐷2,𝐷𝐷3) are model parameters. The 

damage evolution rule is then taken as [18] 

 𝐷𝐷 = �
1
𝑝𝑝f
𝑑𝑑𝑝𝑝 ≤ 1 (12) 

where 𝐷𝐷 is the damage variable and fracture is assumed to occur as 𝐷𝐷 becomes equal to unity. As 

the fracture locus is valid only for proportional loading conditions [41], it follows that the effect 

of non-proportional loading is assumed described by the damage evolution rule. Finally, it should 

be noted that the proposed calibration method is not limited to the fracture model used in this study. 

This fracture model was selected because it was applied in finite element simulations by Dey et al. 

[21], using parameters identified directly from the experimental data, and it was deemed interesting 

to compare the fracture loci obtained with the two calibration methods.  

4. Finite element procedures 

4.1.  Smooth and notched specimens 

The smooth and notched tensile specimens were discretized with four-node bilinear axisymmetric 

elements with reduced integration and enhanced stiffness-based hourglass control (type CAX4R 

in Abaqus [42]). Exploiting the symmetry of the specimen geometry and loading conditions, only 

half of the specimen was modelled. The mesh was refined in the neck area of the smooth specimens 

and in the notch area of the notched specimens where the largest deformations were expected to 
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appear. The number of elements over the minimum cross-section radius was equal to 50 for all 

specimen types.  

As an example, the mesh in the notch region of the specimen with notch radius 4 mm (R4) is 

shown in Figure 4. As illustrated in the figure, the mesh is graded in both the axial and radial 

directions to avoid excessive element distortion in the neck or notch region. The smallest elements 

in the neck or notch region have initial dimensions of 0.06 mm in the radial direction and 0.01 mm 

in the axial direction. Upon large plastic deformations, these elements will elongate significantly 

in the axial direction and contract in the radial direction, resulting in a good aspect ratio inside the 

neck or notch region at fracture, i.e., the elements are close to being quadratic in shape. Based on 

previous experiences of the authors with similar specimens it is assumed that the chosen mesh 

density should provide a converged solution for the plastic strain field in the neck region.  

The explicit solver of Abaqus [42] was applied in the simulations of the tensile tests to allow 

for ductile fracture by element erosion. The loading was applied as a prescribed velocity at the 

extremity of the specimens. The prescribed velocity was ramped up with a smooth transition 

function over the first 5% of the step duration. Uniform mass scaling was applied to increase the 

stable time step in the simulations. It was checked that the kinetic energy was negligible compared 

with the internal energy in all simulations to ensure a quasi-static loading process. 

The 𝐽𝐽2 flow theory, as described in Section 3.1, was used in the simulations in combination 

with the fracture model presented in Section 3.5. The yield stress and hardening parameters for the 

three Weldox steels, based on the uniaxial tension tests presented in Dey et al. [21], are reported 

in Table 1 to Table 3. The Lüders plateau in the experimental stress-strain curves was neglected in 

the calibration of the extended Voce hardening rule, and as a result the fitted initial yield stress 𝜎𝜎0 

is lower than the experimentally obtained yield stress, see [21] for details. However, as the main 

emphasis here is to describe ductile fracture, this simplification was deemed admissible. The 

parameters of the fracture model will be calibrated in Section 5.2. Ductile fracture is described by 

element erosion when the damage variable 𝐷𝐷 equals unity.   

4.2. Unit cell 

The axisymmetric unit cell was discretized using the same elements as above, and the mesh is 

illustrated in Figure 3. Owing to the axial and radial symmetries, only half of the unit cell was 
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modelled. The number of elements over the edge of the void was equal to 30, which is deemed 

sufficient based on mesh convergence studies done in previous works [43].  

The implicit solver of Abaqus [42] was used to perform the quasi-static simulations of the unit 

cell. A multi-point constraint routine, implemented by Dæhli et al. [39], was applied to keep the 

stress triaxiality constant and thus to obtain proportional loading by controlling the displacement 

of the outer walls of the unit cell. As already mentioned, simulations were performed in generalized 

tension only.   

The 𝐽𝐽2 flow theory was used to describe the behaviour of the matrix material in the unit cell 

with parameters given in Table 1 to Table 3 for the three Weldox steels.   

5. Numerical simulations 

5.1. Calibration of porous plasticity model from unit cell simulations 

Unit cell simulations were performed to calibrate the Tvergaard parameters 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 of the Gurson 

model in the range of high stress triaxiality. The initial porosity 𝑓𝑓0 was set to 0.005, which is 

assumed to be an appropriate value for Weldox steels [13]. It has been shown previously that the 

Tvergaard parameters depend only weakly on the initial porosity used in the calibration process 

[33].  

The unit cell was subjected to proportional loading in generalized tension with stress triaxiality 

ratio in the range 𝑇𝑇 ∈ [0.4, 0.5, … ,1.6]. The macroscopic equivalent stress-strain curves and the 

evolution of porosity with the macroscopic equivalent strain were extracted from the simulations. 

These results are illustrated in Figure 5 for Weldox 700E. The strong influence of the stress 

triaxiality on the damage softening and strain to coalescence, as seen in Figure 5, was apparent for 

all three materials. The fracture loci obtained from the unit cell simulations are plotted in Figure 

6, where the failure strain 𝐸𝐸f is the macroscopic equivalent strain at void coalescence, assumed to 

take place when the global unit cell deformation shifts into a uniaxial straining mode. It is seen 

that the large difference in strength between the three steel materials only results in a small 

difference in the predicted fracture loci, at least for the assumed value of the initial porosity 𝑓𝑓0. It 

should be noted here that the fracture strains observed experimentally for the three Weldox steels 
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were in about the same range as found in these simulations, which indicates that the initial porosity 

has a reasonable value.  

The results from the unit cell simulations up to the onset of strain softening were used to find 

appropriate values of the Tvergaard parameters 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 in the applied range of stress triaxiality 

ratios, assuming that 𝑞𝑞3 = 𝑞𝑞12, as proposed by Tvergaard [37]. The cost function used in the 

parameters optimization comprised two residuals, namely the strain-weighted average difference 

between the equivalent stress and the porosity from the unit cell simulations and the porous 

plasticity model, respectively, see Dæhli et al. [44] for details. In the current optimization, the 

residual in porosity was weighted 10 times higher than the residual in equivalent stress. The results 

from the unit cell simulations at the lowest stress triaxiality ratios were excluded from the 

optimization until an optimal solution was obtained giving values of 𝑞𝑞1 greater than or equal to 

unity. The stress triaxiality ratios less than 0.8, 1.1. and 0.9 had to be left out of the calibration for 

Weldox 460E, Weldox 700E and Weldox 900E, respectively, to fulfil this constraint on the 

Tvergaard parameters. Using this approach, the Gurson model was calibrated for a range of stress 

triaxiality ratios relevant for the notched tensile specimens.  

The resulting parameter values are given in Table 1 to Table 3. The response of the porous 

plasticity model and the unit cell simulations is compared in Figure 7 in terms of equivalent stress 

against equivalent strain for selected stress triaxiality ratios. In Figure 8, the porosity is plotted 

against equivalent strain for Weldox 700E for the same values of the stress triaxiality. Similar 

results are obtained for the two other materials. It should be noted that in these comparisons the 

equivalent plastic strain 𝑝𝑝 is used for the Gurson model, while the macroscopic equivalent strain 

𝐸𝐸eq is applied for the unit cells. The difference between these two strain measures is expected to 

be small for the actual case. From the tables, it is seen that the Tvergaard parameters are close to 

unity and for the actual materials the original Gurson model would probably have given reasonably 

accurate results based on the unit cell simulations, the selected cost function and the applied 

constraints. It is seen from Figure 7 that the Gurson model overestimates the strain softening in 

the lower range of stress triaxiality ratios. As seen from Figure 8, the reason for this is that the 

Gurson model tends to overrate the void growth for the lowest stress triaxiality ratios compared 

with the unit cell simulations.   
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5.2. Fracture loci from localization analyses 

Simulations of the tensile tests on smooth specimens were conducted for the three steels using the 

metal plasticity model. In these simulations, the specimens were deformed beyond fracture in the 

experiment. The deformation gradient history was then extracted from all elements across the 

minimum cross-section of the specimen inside the neck and used to drive the localization analyses 

by applying the metal plasticity model outside the band (globally) and the porous plasticity model 

inside the band (locally). The nucleation rate 𝐴𝐴n of the porous plasticity model was then adjusted 

so that localization occurred inside the band at the diameter reduction giving ductile fracture of the 

smooth specimen. The initial porosity 𝑓𝑓0 was set equal to zero in these simulations. It was found 

that the localization condition was always first attained in the central element inside the neck. This 

is as expected in a uniaxial tension test, owing to the higher stress triaxiality in the centre of the 

neck. The nucleation parameters thus obtained are given in Table 1 to Table 3. 

With all the parameters of the porous plasticity model determined, localization analyses were 

carried out for the three steels under proportional loading conditions, i.e., with constant stress 

triaxiality in generalized axisymmetric tension. The stress triaxiality 𝑇𝑇 was varied between 0.4 and 

3.0 to determine a total of 23 points on the discrete fracture locus. Since the fracture locus was 

expected to be much steeper in the lower triaxiality range, a smaller interval between the points 

was applied for 𝑇𝑇 < 1 to get a more accurate description of the fracture locus. Localization 

analyses giving a critical void volume fraction above 0.2 were discarded, because coalescence was 

not considered in the porous plasticity model. This approach resulted in the removal of some of 

the points on the discrete fracture locus obtained in the lower range of the triaxiality (𝑇𝑇 < 0.7). 

The resulting discrete failure loci are plotted in Figure 9. It is interesting to note that the loci for 

the Weldox 460E and Weldox 700E steels are almost coalescing, while the locus for Weldox 900E 

lies slightly below. Thus, the results from the localization analyses indicate that these steels have 

reasonably similar ductility even if the strength varies greatly between them. A similar conclusion 

was drawn from the unit cell simulations, see Figure 6, even if the initial porosity in these 

simulations was not calibrated to experiments. It is further notable that the discrete failure loci 

obtained here are rather different from the failure loci presented in Dey et al. [21], which were 

based on a direct calibration against the experimental data without numerical simulations. 
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The fracture model presented in Section 3.5 was then fitted to the discrete failure loci from 

the localization analyses. The results are shown in Figure 9 and it is evident that the agreement is 

good. The values of the damage parameters 𝐷𝐷1,𝐷𝐷2,𝐷𝐷3 are compiled in Table 1 to Table 3.    

5.3. Simulation of tension tests on smooth and notched specimens 

Finally, simulations of the tensile tests with smooth and notched specimens were carried out using 

the uncoupled plasticity and fracture model with the calibrated parameters. The force versus 

diameter reduction curves from experiments and simulations are plotted in Figure 10 for the 

smooth specimens used in the calibration process of the various models and in Figure 11 for the 

notched specimens used for validation purposes. The curves from all repeat tests presented by Dey 

et al. [21] are plotted to display the scatter in the experimental results, whereas a representative 

test was used in the calibration. It should be noted that the experimental stress-strain curves 

exhibited a Lüders plateau which was neglected in the simulations, as the main emphasis is on 

describing ductile fracture. In these figures, also the point of fracture obtained by conducting 

localization analyses based on the deformation history of the critical element in the various 

specimens is shown for comparison. The filled circle designates failure in the FE simulation based 

on the uncoupled fracture model, whereas the open square indicates failure as predicted by 

localization analyses. The difference between these two fracture predictions is either due to the 

fracture locus not exactly reproducing the results from the localization analyses or that the damage 

accumulation rule is not fully capable of accounting for a non-proportional stress path. As will be 

shown below, the stress path is indeed non-proportional to various degree for all specimen 

geometries.      

In most cases, the force levels predicted in the simulations are in good agreement with the 

experimental ones. The exceptions are the R0.8 and R0.4 tests on Weldox 900E for which the 

predictions markedly overestimate the force level. The reason for these deviations has not been 

established. With respect to ductility, it is found that the fracture model gives estimates in 

satisfactory agreement with the experiments, considering that the calibration procedure is based 

on one uniaxial tension test only. The ductility estimates are mostly conservative for Weldox 460E 

and consistently non-conservative for Weldox 900E, whereas the estimates for Weldox 700E are 

in excellent agreement with the test results. In most cases, the localization analyses predict fracture 

initiation in good agreement with the uncoupled fracture model. For the smooth tensile tests, the 
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localization analyses give results in better agreement with the experiments, which is expected as 

these tests were used for calibration of the imperfection inside the band.  

To further illustrate the degree of agreement between experiments and finite element 

simulations, the diameter reduction at failure of the various specimens is plotted in Figure 12. For 

the experiments, all repeat tests are plotted to display the scatter.  Using these diagrams, the mean 

absolute percentage error in the diameter reduction at failure was found to be 11.4%, 6.8% and 

16.7% for Weldox 460E, Weldox 700E and Weldox 900E, respectively. The mean absolute 

percentage error 𝜖𝜖 ̅was calculated as 
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 (13) 

where 𝑁𝑁𝑠𝑠 is the number of specimen types, 𝑁𝑁𝑟𝑟 is the number of repeat tests, and 𝑥𝑥 represents an 

experimental or simulated datapoint, in this case the diameter reduction at failure. The number of 

specimen types 𝑁𝑁𝑠𝑠 equals 5, whereas the number of repeat tests 𝑁𝑁𝑟𝑟 equals 3, except for the R08 

specimen of Weldox 460 E where only 2 successful tests were reported in [21]. Note that as the 

ductility decreases with the introduction of a notch, the absolute percentage error will increase 

even in cases where the absolute error remains unchanged.  Dey et al. [45] calibrated the Cockcroft-

Latham fracture model for the three Weldox steels and used the calibrated fracture model in finite 

element simulations of the tensile tests on the smooth and notched specimens. The results obtained 

by Dey et al. [45] without use of finite element analysis in the calibration of the fracture model 

were significantly less accurate than those obtained here.    

The evolution of the stress triaxiality in the critical element (i.e., the element that fails first) 

as function of the equivalent plastic strain is displayed in Figure 13 for the different Weldox 460E 

specimens. In the simulations, fracture was found to initialize in or near the centre of the neck or 

notch region independent of specimen geometry and material, and then the crack propagated 

towards the outer surface of the specimen. In contrast, the simulations performed by Børvik et al. 

[46] for Weldox 460E showed that fracture initiated at the notch root and propagated towards the 

centre for the specimen with the sharpest notch, whereas for the other specimen geometries fracture 

initiated in the centre. The crack propagation speed was slower for the smooth specimen than for 

the sharpest notches for which the failure was immediate. It is seen that all the strain paths are non-
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proportional, but the strongest deviations from linearity are found for the smooth specimen, due to 

necking, and for the specimens with the sharpest notches.      

6. Discussion 

The calibration of the Tvergaard parameters 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 from unit cell simulations resulted in values 

rather close to unity. This is a result of the constraint used in the optimization procedure, namely 

that we restricted 𝑞𝑞1 and 𝑞𝑞2 to be greater than or equal to unity. If this restriction is not used, the 

Gurson model allows porosity greater than unity before the material has lost all its load-carrying 

capacity, which is deemed unphysical. This constraint was fulfilled simply by discarding the unit 

cell simulations at the lower stress triaxiality levels, where the Gurson model is known to 

overestimate the void growth and the void shape has large effect on the behaviour. As a result, the 

calibrated Gurson model will give conservative results, i.e., the damage evolution will be 

overestimated, and the ductility underestimated, in this range of stress triaxiality. The void 

nucleation rate 𝐴𝐴𝑛𝑛 is calibrated from the results of the uniaxial tension test, with stress triaxiality 

in the range where the Gurson model is conservative. As a result, the value of 𝐴𝐴n will be somewhat 

underestimated to compensate for the overestimation of the damage evolution. A possible outcome 

of this would be that the ductility of the notched specimens should be generally overestimated, as 

the Gurson model is more accurate for higher stress triaxiality, but this is not seen from the results.  

The formula adopted to describe the fracture locus, proposed Hancock and Mackenzie [15] 

and later adopted by Johnson and Cook [18], is found to give accurate results compared with the 

localization analyses, as seen from Figure 9. This figure also shows that the fracture loci for the 

three Weldox steels are rather similar, even if their strength is markedly different. The predicted 

ductility decreases with increasing strength, but the effect is small. In Dey et al. [21], the fracture 

locus was established based on the experimental fracture strains and estimates of the initial stress 

triaxiality using Bridgman analysis. Employing this approach, the fracture locus varied between 

the three materials and the shape of the fracture loci was significantly different from the shape 

obtained from the localization analyses. It is believed that the method used in the present study is 

more accurate as the spatial and temporal variations of the stress and strain fields are accounted 

for in the analysis. The similarity of the predicted failure loci for the three materials is somewhat 

surprising as the experiments show that the strain to fracture, obtained from measuring the area of 

the minimum cross-section, decreases with increasing yield strength [21]. However, it should be 
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noted that the measured strain to fracture depends on both the material ductility, as described in 

the simulations by the fracture locus for proportional loading, as well as the temporal and spatial 

distribution of the stress and strain fields. As the work hardening of the three materials is similar 

[21], a higher yield strength tends to give a stronger propensity for plastic instability and therefore 

a higher stress triaxiality in the critical element. The stress triaxiality history in the critical element 

of the smooth specimen is shown in Figure 14 for the three materials. It is evident that the stress 

triaxiality at a given equivalent plastic strain is higher for higher yield strength. Thus, the apparent 

difference in ductility between the three materials seen in the experiments is assumed to be partly 

caused by the difference in the plastic behaviour and partly by the difference in the strain to fracture 

under proportional loading, as illustrated by the computed fracture loci in Figure 9.   

Even if the smooth tensile test specimens were used for calibration of the nucleation rate 𝐴𝐴n 

in the porous plasticity model later used to predict fracture in the localization analyses, the ductility 

is generally overestimated in the simulation of these tests. The reason for this is twofold. Firstly, 

the fracture locus is uncertain for low stress triaxiality ratios because it was effectively calibrated 

using stress triaxiality ratios in the range 𝑇𝑇 ∈ [0.7, 3.0]. In large parts of the tension test on the 

smooth specimen, 𝑇𝑇 is below this range, making the damage accumulation uncertain. Secondly, 

the stress path is markedly non-linear for these tests, increasing from 1/3 initially to almost unity 

at fracture in the critical element. Thus, the results indicate that a more advanced damage 

accumulation rule could have improved the results obtained with the uncoupled plasticity and 

fracture model. It is important to note here that the localization analyses based on the deformation 

history in the critical elements give accurate estimates of the fracture points, verifying that the 

calibration process was conducted properly.    

7. Concluding remarks 

Uncoupled plasticity and fracture models for three structural steels, namely Weldox 460E, Weldox 

700E and Weldox 900E, were calibrated based on a single uniaxial tension test and 

micromechanical simulations using unit cells, metal and porous plasticity, and localization theory. 

The fracture model consisted of a fracture locus and a damage evolution rule, and somewhat 

surprisingly, almost the same fracture locus was found for all three steels in the calibration process.  

The calibrated plasticity and fracture models were subsequently used in finite element simulations 

of tension tests on axisymmetric smooth and notched specimens, and the numerically and 



20 
 

experimentally obtained ductility, in terms of diameter reduction at fracture, was compared as a 

function of the stress triaxiality induced by the notches of different radius. The predicted ductility 

was in general somewhat conservative for Weldox 460E, accurate for Weldox 700E and non-

conservative for Weldox 900E. The applied method is quite general and can be used for more 

advanced uncoupled fracture models, like the modified Mohr–Coulomb and the Hosford-Coulomb 

fracture models. It is believed that the method is well suited to reduce the experimental programme 

required to calibrate fracture models for design of structures against failure. However, the method 

relies heavily upon the prediction accuracy of the porous plasticity model used in the localization 

analyses. The calibration of more advanced fracture models, which incorporate Lode parameter 

dependence, requires a proper assessment of the porous plasticity model also for states of 

generalized compression and shear. Another important topic is to develop porous plasticity models 

that describe the ductility of materials at low stress triaxiality ratios more accurately. 
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Tables 

Table 1. Material parameters for Weldox 460E.  

Elasticity and metal plasticity 
𝐸𝐸 (GPa) 𝜈𝜈 𝜎𝜎0 (MPa) 𝑄𝑄1 (MPa) 𝜃𝜃1 (MPa) 𝑄𝑄2 (MPa) 𝜃𝜃2 (MPa) 

210 0.3 415 220 4678 492 395 
Fracture locus 

𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 
0.065 8.48 -2.27 

Porous plasticity 
𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝐴𝐴𝑛𝑛 

1.004 1.043 1.008 0.0048 
 

Table 2. Material parameters for Weldox 700E. 

Elasticity and metal plasticity 
𝐸𝐸 (GPa) 𝜈𝜈 𝜎𝜎0 (MPa) 𝑄𝑄1 (MPa) 𝜃𝜃1 (MPa) 𝑄𝑄2 (MPa) 𝜃𝜃2 (MPa) 

210 0.3 795 135 4681 2620 254 
Fracture locus 

𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 
0.050 9.25 -2.38 

Porous plasticity 
𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝐴𝐴𝑛𝑛 

1.079 1.091 1.164 0.0033 
 

Table 3. Material parameters for Weldox 900E.  

Elasticity and metal plasticity 
𝐸𝐸 (GPa) 𝜈𝜈 𝜎𝜎0 (MPa) 𝑄𝑄1 (MPa) 𝜃𝜃1 (MPa) 𝑄𝑄2 (MPa) 𝜃𝜃2 (MPa) 

210 0.3 961 155 3000 10000 170 
Fracture locus 

𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 
0.055 10.14 -2.52 

Porous plasticity 
𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝐴𝐴𝑛𝑛 

1.079 1.100 1.165 0.0085 
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Figures 

 

 

 

Figure 1. Geometry of the smooth and notched specimens with all measures in mm, where 𝑅𝑅 equals 

4 mm, 2 mm, 0.8 mm and 0.4 mm for the notched specimen. For manufacturing reasons, the side 

faces of the notch were inclined at an angle of 17.5° to the normal of the specimen axis for the 

specimens with notch radius 0.4 mm and 0.8 mm. 
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Figure 2. A conceptual description of the adopted micromechanics-based modelling framework 

used to establish the fracture locus of the three Weldox steels.  
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Figure 3. Geometry of axisymmetric unit cell and finite element mesh.  

 

 

 

Figure 4. Details of the mesh in the notch region of the specimen with 4 mm notch radius.  
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Figure 5. Macroscopic equivalent stress 𝛴𝛴𝑒𝑒𝑒𝑒 and void volume fraction 𝑓𝑓 versus macroscopic 

equivalent strain 𝐸𝐸𝑒𝑒𝑒𝑒 for a range of stress triaxiality ratios 𝑇𝑇 in unit cell simulations of Weldox 

700E assuming an initial porosity of 0.5%. 

 

Figure 6. Computed fracture loci for the three Weldox materials based on unit cell simulations 

with an initial porosity of 0.5%, where the failure strain 𝐸𝐸𝑓𝑓 is the value of the macroscopic 

equivalent strain 𝐸𝐸𝑒𝑒𝑒𝑒 at void coalescence.  
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Figure 7. The global response of the calibrated Gurson model compared to the results obtained 

from the unit cell simulations for stress triaxiality 𝑇𝑇 =  0.4, 0.6, … ,1.6. The curves are plotted until 

incipient strain softening in the unit cell simulations. 

 

Figure 8. The evolution of the void volume fraction predicted by the calibrated Gurson model for 

Weldox 700E compared to the results obtained from the unit cell simulations for stress triaxiality 

𝑇𝑇 = 0.4, 0.6, … ,1.6. The curves are plotted until incipient strain softening in the unit cell 

simulations.  
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Figure 9. Computed fracture loci for the three Weldox materials, where the discrete points are 

based on the localization analyses and the dashed curves are based on Equation (11).  

 

Figure 10. Comparison between experimental and numerical force versus diameter reduction 

curves to failure for the smooth tensile specimens of Weldox 460 E (lowermost, red curves), 

Weldox 700E (intermediate, blue curves) and Weldox 900E (uppermost, green curves) used in the 

calibration of the various models.   
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Figure 11. Comparison between experimental and numerical force versus diameter reduction 

curves to failure for the tensile tests on notched specimens of Weldox 460 E (lowermost, red 

curves), Weldox 700E (intermediate, blue curves) and Weldox 900E (uppermost, green curves), 

where R4, R2, R08 and R04 signify in turn specimens with notch radius 4 mm, 2 mm, 0.8 mm and 

0.4 mm.   
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Figure 12. Diameter reduction at failure from experiments (all repeat tests) and finite element 

simulations. The initial nominal specimen diameter was 6 mm. 
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Figure 13. Evolution of stress triaxiality with equivalent plastic strain in the critical element for 

the different specimens of Weldox 460E. 

 

 

Figure 14. Comparison of the evolution of the stress triaxiality with equivalent plastic strain in 

the critical element for the smooth specimens of the three steels. 
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