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Electron-magnon coupling and quasiparticle lifetimes on the surface of a topological insulator
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The fermionic self-energy on the surface of a topological insulator proximity coupled to ferro- and antifer-
romagnetic insulators is studied. An enhanced electron-magnon coupling is achieved by allowing the electrons
on the surface of the topological insulator to have a different exchange coupling to the two sublattices of the
antiferromagnet. Such a system is therefore seen as superior to a ferromagnetic interface for the realization
of magnon-mediated superconductivity. The increased electron-magnon-coupling simultaneously increases the
self-energy effects. In this paper we show how the inverse quasiparticle lifetime and energy renormalization on
the surface of the topological insulator can be kept low close to the Fermi level by using a magnetic insulator
with a sufficient easy-axis anisotropy. We find that the antiferromagnetic case is most interesting from both a
theoretical and an experimental standpoint due to the increased electron-magnon coupling, combined with a
reduced need for easy-axis anisotropy compared to the ferromagnetic case. We also consider a set of material
and instrumental parameters where these self-energies should be measurable in angle-resolved photoemission
spectroscopy experiments, paving the way for a measurement of the interfacial exchange coupling strength.
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I. INTRODUCTION

In conventional Bardeen-Cooper-Schrieffer (BCS) [1]
superconductors (SC), electron-phonon coupling (EPC) gen-
erates an effective, attractive interaction between electrons.
Other bosonic excitations also have the capacity to generate
attractive electron interactions. For instance, spin fluctu-
ations in magnetic insulators, i.e., magnons, can induce
superconductivity in, e.g., normal metals and topological insu-
lators (TI) [2–5] by combining materials into heterostructures
[6–15]. Recently, both BCS- and Amperean-type pairings
have been considered as mechanisms for superconductivity
on the surface of a TI, exchange coupled to a ferromagnetic
insulator (FM) or an antiferromagnetic insulator (AFM) [6,7].
Such systems have also been studied for other applications,
including magnetization dynamics [16], confinement of Ma-
jorana fermions [17,18], magnetoelectric effects [19], and
proximity-induced ferromagnetism [18].

In this paper, we consider the lifetime and energy renor-
malization of the fermionic quasiparticles on the TI surface
in these systems, focusing on the fermion self-energy due
to electron-magnon coupling (EMC). Its imaginary part is
essentially a measure of the inverse quasiparticle lifetime
[20] and is used to probe the stability of the fermionic states
which underlie the superconducting theories that have been
proposed. The real part of the self-energy is used to probe the
renormalization of the fermionic states [20]. A similar study
was done in Ref. [21] for EPC on the surface of an isolated
TI.

In Ref. [10], the possibility of Amperean pairing was
studied for a TI/FM heterostructure, using a self-consistent
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strong-coupling approach. In the process, the fermion self-
energy was studied, and a strong renormalization of the
fermionic state was reported. Meanwhile, in Ref. [6], super-
conductivity in both TI/FM and TI/AFM heterostructures
were studied within a weak-coupling approach, ignoring any
energy renormalizations caused by the magnetic interface [6].
In this paper, we reveal for which material parameters the
assumption of small renormalization of the fermionic states is
permissible. To achieve this, we consider magnetic insulators
with an easy-axis anisotropy.

In the AFM case, we also consider both compensated and
uncompensated interfaces. Hence, the interfacial exchange
coupling to the electrons on the TI surface may be different
for the two sublattices of the AFM, where the two sublattices
have magnetization ordered in opposite directions [6,22]. An
uncompensated interface, where the electrons on the TI sur-
face couple asymmetrically to the sublattices of the AFM, has
been shown to increase EMC and hence increase the critical
temperature for superconductivity [6,14,15].

On the other hand, a stronger EMC has the potential for
more detrimental effects on the fermionic states. We find that
the easy-axis anisotropy in the magnetic insulators and the
degree of surface compensation in the AFM case can both be
used to increase the lifetime of the fermionic states on the
TI surface close to the Fermi level. For sufficient easy-axis
anisotropy, we find that it is possible for the fermionic states
on the TI surface to remain long-lived and weakly renormal-
ized even when coupled to an uncompensated AFM surface. It
is also found that the easy-axis anisotropy needed to stabilize
the fermionic states in the AFM case is weaker than that
needed in the FM case.

We first consider the case of a TI coupled to a FM in
Sec. II, before moving on to the TI/AFM heterostructure in
Sec. III. The results for the self-energy and the renormalized
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FIG. 1. Illustrations of the two heterostructures considered in this
paper along with the coordinate system. We consider a topological
insulator (TI) coupled to a ferromagnetic insulator (FM) or an anti-
ferromagnetic insulator (AFM).

Green’s function are considered for both systems in Sec. IV.
In Sec. V, we examine a new set of material parameters giving
self-energies that should be measurable using angle-resolved
photoemission spectroscopy (ARPES). The conclusions are
given in Sec. VI and the Appendices give further details of
the calculations.

II. FERROMAGNET

Our system is a three-dimensional (3D) TI with one surface
in contact with a FM, as depicted in the left part of Fig. 1. This
surface is the xy plane, and we assume an ordered state with
magnetization in the z direction in the FM. We consider a TI
with one Dirac cone such as Bi2Se3 or Bi2Te3 [23]. Examples
of candidate FM materials include yttrium iron garnet (YIG)
[24], EuO [11,25], and EuS [18]. We set h̄ = kB = a = 1 in
the equations throughout the paper. Here, h̄ is the reduced
Planck’s constant, kB is Boltzmann’s constant, and a is the
lattice constant.

A. Model

The Hamiltonian describing the interface between the TI
and the FM contains a lattice formulation of the TI surface,
HTI, a Heisenberg model for the FM with an additional easy-
axis anisotropy term, HFM, and a model for the exchange
coupling of lattice site spins in the FM to the electrons on the
TI surface, Hint. We use the same model presented in Ref. [6],
namely, H = HTI + HFM + Hint, with

HTI = vF

2

∑
i

[(c†
i iτyci+x̂ − c†

i iτxci+ŷ) + H.c.]

+
∑

i

c†
i (2W τz − μ)ci

− W

2

∑
i

[(c†
i τzci+x̂ + c†

i τzci+ŷ) + H.c.], (1)

HFM = −J
∑
〈i, j〉

Si · S j − K
∑

i

S2
iz, (2)

Hint = −2J̄
∑

i

c†
i τci · Si. (3)

Here, vF is the Fermi velocity, c†
i = (c†

i↑, c†
i↓), the fermionic

operators c†
iσ and ciσ create and destroy electrons with spin

σ at lattice site i, respectively, τ = (τx, τy, τz ) are the Pauli
matrices, and H.c. denotes the Hermitian conjugate of the
preceding term. Furthermore, x̂ and ŷ are unit vectors in the
x direction and the y direction, respectively, μ is the chem-

ical potential, and 〈i, j〉 indicates that the lattice sites i and
j located at ri and r j should be nearest neighbors. To ease
computational requirements, we have assumed a 2D square
lattice in the interfacial plane. The first line of HTI represents
the spin-momentum locking of electrons on the TI surface.
The Wilson terms containing W are added to avoid additional
Dirac cones at the Brillouin zone boundaries appearing from
a direct discretization of the continuum model [26]. They are
added so that the lattice model reproduces the correct physics
[6,26]. The FM Hamiltonian contains an exchange interaction
between nearest-neighbor lattice site spins, Si, with strength
J > 0, and an easy-axis anisotropy term determined by K > 0
ensuring that ordering in the z direction is energetically favor-
able. The interfacial exchange coupling is parametrized by J̄ .

The next step is to obtain the fermions which diagonal-
ize the TI Hamiltonian and the magnons which diagonalize
the FM Hamiltonian. This was performed in Ref. [6] and
we repeat the main points here. A Holstein-Primakoff (HP)
transformation [27] is introduced for the spin operators Si+ =√

2Sai, Si− = √
2Sa†

i , and Siz = S − a†
i ai, where the bosonic

operators a†
i and ai create and destroy magnons at lattice site

i, respectively. Furthermore, Si± = Six ± iSiy, while S is the
spin quantum number of the lattice site spins. Here, we have
neglected any terms beyond quadratic in the magnon operators
ai, and we continue to do so throughout the analysis. This is
permissible when assuming that the spins are nearly ordered,
with only small quantum fluctuations, even when S is not
large. Additionally, any constant terms in the Hamiltonian are
neglected as these merely shift the zero point of the energy.
Performing a Fourier transform (FT) on the magnon operators,
ai = 1√

N

∑
q aqe−iq·ri , where N is the number of lattice sites on

the interface, gives

HFM =
∑

q

ωqa†
qaq, (4)

with ωq = 2KS + 4JS(2 − cos qx − cos qy). Notice the gap in
the magnon spectrum due to the easy-axis anisotropy, 2KS.
The easy-axis anisotropy stabilizes the ground state with mag-
netization in the z direction, and a higher energy is needed to
excite spin fluctuations. We refer to q as the momentum of
the magnon, even though, since we have set h̄ = a = 1, it is
technically a dimensionless version of the quasimomentum,
restricted to the first Brillouin zone (1BZ) of the 2D square
lattice.

Inserting the HP transformation, as well as a FT of both the
magnon and the electron operators, ciσ = 1√

N

∑
k ckσ e−ik·ri ,

into Hint yields

Hint = V√
N

∑
kq

(aqc†
k+q,↓ck↑ + a†

−qc†
k+q,↑ck↓)

− 2J̄S
∑
kσ

σc†
kσ

ckσ . (5)

Here, V = −2J̄
√

2S, σ = 1 for spin up, and σ = −1 for spin
down. The first line describes EMC involving one magnon,
while terms showing EMC with more than one magnon
have been neglected. We have also neglected any Umklapp
processes, since a small Fermi surface close to the 1BZ cen-
ter means the Fermi momentum is much smaller than the
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FIG. 2. The TI excitation spectrum Ekη for the TI/FM het-
erostructure plotted along kx with ky = 0, kF = π/12, vF =
429 meV, W = 0.3vF, J̄ = 18 meV, and S = 1. The chemical poten-
tial is μ ≈ 115 meV.

reciprocal lattice vectors [6]. The terms in the second line do
not contain magnon operators and are therefore moved to HTI.
These terms act like an external magnetic field on the TI and
will open a gap in the fermionic spectrum. This is due to the
magnetization along the z direction in the FM.

Next, the electron operators in HTI are FT and a unitary
transformation is used to diagonalize the Hamiltonian in terms
of quasiparticles ψkη with the helicity band index η = ±,

HTI =
∑
kη

Ekηψ
†
kη

ψkη. (6)

The excitation energies are Ekη = −μ + ηFk, where we define
Bk = W (2 − cos kx − cos ky) − 2J̄S, Ck = −vF sin ky, Dk =
−vF sin kx, and Fk =

√
B2

k + C2
k + D2

k. Also defining Nk =
2Fk(Fk + Bk), the electron operators are related to the quasi-
particle operators as

ck↑ = Q↑+(k)ψk+ + Q↑−(k)ψk−, (7)

ck↓ = Q↓+(k)ψk+ + Q↓−(k)ψk−, (8)

with transformation coefficients

Q↑+(k) = −Q↓−(k) = (Fk + Bk)/
√

Nk, (9)

Q↑−(k) = Q∗
↓+(k) = (Ck + iDk)/

√
Nk. (10)

The TI excitation spectrum is plotted in Fig. 2. The exchange
coupling has introduced a gap of 4J̄S in the original Dirac
cone, similar to a mass gap for massive Dirac fermions [28].
The Wilson terms open gaps at the boundaries of the 1BZ,
ensuring that there is only one Dirac cone present in the
system [26].

Finally transforming Hint to the basis which diagonalizes
HTI gives

Hint = V√
N

∑
kq

∑
ηη′

[Q∗
↓η(k + q)Q↑η′ (k)aqψ

†
k+q,η

ψkη′

+ Q∗
↑η(k + q)Q↓η′ (k)a†

−qψ
†
k+q,η

ψkη′]. (11)

B. Self-energy

At this point our calculations diverge from those of
Ref. [6], as we now calculate the self-energy of the fermionic

k, ωn, η′

q, ων , λ, χ = +

k + q, ωn + ων , η k, ωn, η′′

gηη′
k+q,k,λ,+√

N

gη′′η
k,k+q,λ,+√

N

k, ωn, η′

−q, ων , λ, χ = −

k + q, ωn + ων , η k, ωn, η′′

gηη′
k+q,k,λ,−√

N

gη′′η
k,k+q,λ,−√

N

FIG. 3. The sunset Feynman diagrams considered in this pa-
per. The straight lines represent fermions, while the wavy lines are
magnons. We refer to the text for explanations of the symbols. The
external lines are included since the incoming and outgoing fermions
influence the coupling constants, but their propagators are not in-
cluded in the self-energy.

quasiparticles due to EMC. We include nonzero tempera-
ture by going to a sum over Matsubara frequencies and
find [20,21,29–33]

�η′′η′
(k, iωn) = −

∑
q

∑
η,λ,χ=±

gηη′
k+q,k,λ,χ

gη′′η
k,k+q,λ,χ

N

× T
∑
ων

Dχ

0 (q, iων )Gη

0 (k + q, iωn + iων ),

(12)

based on the sunset Feynman diagrams presented in Fig. 3.
Hence, we have truncated our calculation of the self-energy
at second order in the EMC, employing the Migdal approx-
imation [32,34]. We have also used the fact that the tadpole
diagram gives zero contribution in the systems considered in
this paper, as shown in Appendix A. χ labels the direction
of the magnon, i.e., the sign in front of q, while λ labels the
magnon mode, which for the FM case is superfluous. Based
on Eq. (11) we have, e.g., the coupling constant gηη′

k+q,k,χ=+ =
V Q∗

↓η(k + q)Q↑η′ (k).
The bare fermion Green’s function is [20,29] Gη

0 (k, iωn) =
1/(iωn − Ekη ), with ωn = (2n + 1)πT . Upon introducing
ων = 2πνT , we use the bare magnon Green’s function [20]
Dχ

0 (q, iων ) = χ/(iων − χωq) for the magnon operator aq

when χ = + and a†
−q when χ = −, both with dispersion

ωq. Hence, we use separate propagators for aq and a†
−q as

opposed to, e.g., EPC where one usually finds the propagator
of the sum of these [33]. In other words, the magnons moving
forward and backward in time are treated separately, before
adding their respective contributions.

We first perform the sum over the Matsubara
frequencies [20,30],

− T
∑
ων

χ

iων − χωq

1

iων + iωn − Ek+q,η

= χ

iωn − Ek+q,η + χωq
[BE(χωq) + FD(Ek+q,η )]. (13)

Here, BE(ε) = 1/(eε/T − 1) = [coth(ε/2T ) − 1]/2 is the
Bose-Einstein distribution and FD(ε) = 1/(eε/T + 1) =
[1 − tanh(ε/2T )]/2 is the Fermi-Dirac distribution.
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Using BE(−ε) = −1 − BE(ε) and an analytic continuation
iωn → ω + iδ, where δ = 0+ [30,32,33], yields

− T
∑
ων

Dχ

0 (q, iων )Gη

0 (k + q, iωn + iων )

= 1

2

coth ωq

2T − χ tanh Ek+q,η

2T

ω − Ek+q,η + χωq + iδ
. (14)

The following transformation is used in the sum over
momentum:

∑
q

→ N

(2π )2

∫ π

−π

dqx

∫ π

−π

dqy. (15)

Inserting Eqs. (14) and (15) into Eq. (12) gives

�η′′η′
(k, ω) =

∑
η,χ=±

1

8π2

∫ π

−π

dqx

∫ π

−π

dqy

× gηη′
k+q,k,χ

gη′′η
k,k+q,χ

coth ωq

2T − χ tanh Ek+q,η

2T

ω − Ek+q,η + χωq + iδ
.

(16)

1. Imaginary part of the self-energy

In the following, we focus on the case where η′′ = η′.
Then, gη′′η

k,k+q,χ
= (gηη′

k+q,k,χ
)∗ and the coupling constant factor

is real. Hence,

Im�η′η′
(k, ω) =

∑
η,χ=±

−1

8π

∫ π

−π

dqx

∫ π

−π

dqy

∣∣gηη′
k+q,k,χ

∣∣2

× δ(ω − Ek+q,η + χωq)

×
(

coth
ωq

2T
− χ tanh

Ek+q,η

2T

)
. (17)

Transforming to polar coordinates yields

Im�η′η′
(k, ω) =

∑
η,χ=±

−1

8π

∫ π

−π

dθ

∫ c(θ )

0
dqq

∣∣gηη′
k,q,θ,χ

∣∣2

× δ(ω − Ek,q,θ,η + χωq,θ )

×
(

coth
ωq,θ

2T
− χ tanh

Ek,q,θ,η

2T

)
. (18)

Here, qx = q cos θ and qy = q sin θ . The upper cutoff c(θ ) =
π/ max(| sin θ |, | cos θ |) ensures that the integral is limited to
the 1BZ. We calculate this integral using [35]

δ( f (r)) =
∑

i

δ(r − ri )

| f ′(ri )| , (19)

for a continuously differentiable function f (r) with roots
ri and where f ′(ri ) �= 0. Here, the expression inside the δ

function is fηχ (q) = ω − Ek,q,θ,η + χωq,θ . Its roots are found
numerically, labeled qi if they satisfy 0 � qi � c(θ ), and ig-
nored otherwise. Integrating over q gives

Im�η′η′
(k, ω) =

∑
η,χ=±

−1

8π

∫ π

−π

dθ
∑

i

∣∣gηη′
k,qi,θ,χ

∣∣2

∣∣ f ′
ηχ (qi )

∣∣
× qi

(
coth

ωqi,θ

2T
− χ tanh

Ek,qi,θ,η

2T

)
. (20)

Some details of this treatment of the δ function are commented
on in Appendix B.

2. Real part of the self-energy

The real part of the self-energy can be found using the
Kramers-Kronig relation [36],

Re�η′η′
(k, ω) = 1

π
P

∫ ∞

−∞

Im�η′η′
(k, ω′)

ω′ − ω
dω′, (21)

with P indicating the Cauchy principal value. Here, this in-
tegral is calculated using the trapezoidal rule. An important
consideration is that the points that are chosen for ω′ are
evenly distributed around the singularity at ω.

III. ANTIFERROMAGNET

We now replace the FM with an AFM and assume a stag-
gered state with magnetization along the z direction on the
bipartite lattice of the AFM. The system is illustrated in the
right part of Fig. 1. Examples of candidate AFM materials
include Cr2O3 [37], Fe2O3 [38], and MnF2 [12,39].

A. Model

We use the same model presented in Ref. [6], namely, H =
HTI + HAFM + Hint, with

HAFM =J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j − K
∑

i

S2
iz, (22)

Hint = − 2J̄A

∑
i∈A

c†
i τci · Si − 2J̄B

∑
i∈B

c†
i τci · Si, (23)

and HTI as in Eq. (1). Here, 〈〈i, j〉〉 indicates that the lattice
sites i and j should be next-nearest neighbors. Once again, we
have assumed a 2D square lattice in the interfacial plane for
computational convenience. The AFM Hamiltonian contains
an exchange interaction between nearest-neighbor lattice site
spins with strength J1 > 0 and between next-nearest neigh-
bors with strength J2. If J2 < 0 this term stabilizes the AFM
state, while if J2 > 0 it acts as a frustration. We assume |J2| �
J1 such that the system remains in the staggered state also for
J2 > 0. The easy-axis anisotropy term is the same as in the
FM case. The sublattices of the bipartite lattice in the AFM
are labeled A and B. The exchange coupling to the electrons
on the TI surface is parametrized by J̄A and J̄B for lattice site
spins on the A and B sublattices, respectively. We allow J̄A and
J̄B to be different, which can describe an uncompensated anti-
ferromagnetic interface where one sublattice is more exposed
than the other [6]. This is illustrated in Fig. 4. We introduce
J̄ ≡ J̄B and � ≡ J̄A/J̄B, and we let 0 � � � 1 parametrize the
sublattice asymmetry of the exchange coupling.

Obtaining the eigenexcitations of the TI and the AFM
follows a similar methodology as the FM case [6], and we
focus on the main differences. We assume the lattice site
spins on the A sublattice point in the positive z direction and
opposite alignment on the B sublattice. A HP transformation is
introduced for the spin operators SA

i+ = √
2Sai, SA

i− = √
2Sa†

i ,
SA

iz = S − a†
i ai, SB

i+ = √
2Sb†

i , SB
i− = √

2Sbi, and SB
iz = −S +

b†
i bi. Next, we introduce FT of the magnon operators, ai =
1√
NA

∑
q∈♦ aqe−iq·ri and bi = 1√

NB

∑
q∈♦ bqe−iq·ri . Here, NA
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FIG. 4. An illustration of the interfacial exchange coupling be-
tween electrons in the TI and lattice site spins in the AFM. For
a compensated interface, with � ≡ J̄A/J̄B = 1, we have an equal
coupling to both sublattices. For a completely uncompensated inter-
face, with � = 0, the electrons in the TI couple to only one of the
sublattices in the AFM. The figure is inspired by Ref. [6].

and NB are the number of lattice sites in the sublattices, and
we assume NA = NB = N/2, where N is the total number of
lattice sites on the interface. The sums over q are restricted
to the reduced Brillouin zone (RBZ) of the sublattices, which
is indicated by q ∈ ♦. HAFM is not diagonal in the original
sublattice magnons aq and bq. Hence, a Bogoliubov trans-
formation is introduced, expressing new magnon operators
as αq+ = uqaq − vqb†

−q and αq− = uqbq − vqa†
−q. Requiring

that the new operators are bosonic fixes |uq|2 − |vq|2 = 1. We
assume uq and vq are real, as well as inversion symmetric in
q. Requiring that the AFM Hamiltonian is diagonal in terms
of these new magnon operators yields

HAFM =
∑
q∈♦

∑
λ=±

ωqα
†
qλαqλ, (24)

with ωq =
√

λ2
q − γ 2

q , λq = 2KS + 8J1S +
8J2S(cos qx cos qy − 1), and γq = 4J1S(cos qx + cos qy).
The gap in the AFM magnon spectrum, ωq=0 =√

32J1KS2 + 4K2S2, is significantly greater than the gap in
the FM case, 2KS, provided K � J ≈ J1. On the other hand,
even with comparable gaps, there are far more low-energy
magnons in the FM than in the AFM. The reason is that the
ungapped FM spectrum is quadratic for small |q|, while the
ungapped AFM spectrum is linear for small |q|.

The FT of the electron operators is now written ciσ =
1√
N

∑
k∈� ckσ e−ik·ri , where k ∈ � indicates that the sum runs

over the entire 1BZ. Inserting the HP transformation, as well
as a FT of both the magnon and the electron operators, into
Hint yields some terms describing EMC and some terms that
do not contain magnon operators. The latter terms are in-
cluded in HTI, similar to the FM case.

Next, the electron operators in HTI are FT and a unitary
transformation is used to diagonalize the Hamiltonian in terms
of quasiparticles ψkη with helicity index η = ±,

HTI =
∑

k∈�,η

Ekηψ
†
kη

ψkη. (25)

The definition of Bk is changed to Bk = W (2 − cos kx −
cos ky) − J̄S(� − 1), while the other definitions remain the
same as in the FM case. As opposed to the FM case, this
means that the fermion spectrum can be ungapped if � =
1, since, with equal coupling to the two sublattices, no net

magnetization affects the TI. Additionally, the fermion gap
is smaller for the same J̄ with � = 0, since a smaller net
magnetization affects the TI surface.

Finally transforming Hint to the bases which diagonalize
HTI and HAFM gives

Hint = U√
N

∑
k ∈ �
q ∈ ♦
ηη′

{[(�uq + vq)αq+ + (�vq + uq)α†
−q,−]

× Q∗
↓η(k + q)Q↑η′ (k)ψ†

k+q,η
ψkη′

+ [(�uq + vq)α†
−q,+ + (�vq + uq)αq−]

× Q∗
↑η(k + q)Q↓η′ (k)ψ†

k+q,η
ψkη′ }, (26)

where U = −2J̄
√

S.
The factors in the Bogoliubov transformation are

uq = √
λq/2ωq + 1/2, (27)

vq = sgn(−γq/λq)
√

u2
q − 1. (28)

As it turns out, vq ≈ −uq when q → 0, an approximation
which becomes better as K → 0. Hence, the combinations
like �uq + vq appearing in the EMC Hamiltonian in Eq. (26)
are small for � = 1, i.e., a compensated AFM interface with
equal coupling to both sublattices, while they can be very large
for � = 0, i.e., a totally uncompensated AFM interface where
the electrons on the TI surface couple to only one sublattice.
This was also explained in Ref. [6], where Fig. 7, in addition
to plotting uq and vq, shows how a positive J2, i.e., a frustration
of the AFM, can also increase the coupling. We therefore
consider J2 = 0.05J1 in this paper.

Another point is that if the easy-axis anisotropy parameter
K is removed, limq→0 uq = ∞ and limq→0 vq = −∞. Hence,
the coupling constants of the EMC would be infinite at q = 0
if � �= 1. This in turn would lead to a divergent self-energy
within the presented framework. This divergent behavior
might be removed by using a self-consistent approach where
renormalized propagators are used in calculating the self-
energy. It may also be necessary to include higher-order
diagrams in the calculations. We will continue to use the bare
propagators and truncate at second order in EMC. There-
fore, we will keep K > 0, introducing a gap in the magnon
spectrum as well as making uq=0 and vq=0 finite. A similar
divergence would also occur for the TI/FM heterostructure at
K = 0 within the presented framework. There, the reason is
that limq→0 q coth(ωq,θ /2T ) = ∞ since ωq,θ is quadratic for
small q and ungapped when K = 0.

B. Self-energy

With two magnon modes due to the presence of two
sublattices, we now keep the sum over λ = ± in Eq. (12).
Based on Eq. (26) we have, e.g., gηη′

k+q,k,λ=+,χ=+ = U (�uq +
vq)Q∗

↓η(k + q)Q↑η′ (k). The expressions for the magnon prop-
agators are unchanged, apart from a redefinition of the
magnon spectrum, and are now applied to the magnon op-
erators αqλ when χ = + and α

†
−q,λ when χ = −, all with
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FIG. 5. (a) Im�++(kF, ω) and (b) Re�++(kF, ω) for the TI/FM heterostructure, with kF = π/12, vF = 429 meV, W = 0.3vF, J = 7 meV,
J̄ = 18 meV, K = J/10, S = 1, and T = 10−7 eV. (c) Im�++(kF, ω) and (d) Re�++(kF, ω) for the TI/AFM heterostructure, with J1 = 7 meV,
J2 = 0.05J1, K = J1/103, � = 0, and otherwise the same parameters. The insets show behaviors that are not easily visible in the main plots.
(e) The inverse lifetime, 1/τk, (f) the shift of the excitation spectrum, Ẽk+ − Ek+, and (g) the quasiparticle residue, zk, for the TI/AFM
heterostructure with the same parameters. The insets show the behaviors close to the Fermi level. The circles show the calculated points, while
the dotted lines are included for visualization. As is mentioned in the text, the results are plotted in the positive kx direction, with ky = 0. The
same applies to the remaining figures plotting results as functions of momentum.

dispersion ωq. The sum over momentum is transformed as

∑
q∈♦

→ N

(2π )2

∫ π

−π

dqx

∫ π−|qx |

−π+|qx |
dqy

→ N

(2π )2

∫ π

−π

dθ

∫ c(θ )

0
dqq. (29)

Here, qx = q cos θ and qy = q sin θ . The upper cutoff c(θ ) =
π/(| sin θ | + | cos θ |) ensures that the integral is limited to the
RBZ.

Otherwise proceeding just as in the FM case gives

Im�η′η′
(k, ω) =

∑
η,λ,χ=±

−1

8π

∫ π

−π

dθ
∑

i

∣∣gηη′
k,qi,θ,λ,χ

∣∣2

| f ′
ηχ (qi )|

× qi

(
coth

ωqi,θ

2T
− χ tanh

Ek,qi,θ,η

2T

)
, (30)

while the real part of the self-energy is obtained using
Eq. (21).

IV. SELF-ENERGY AND RENORMALIZED
GREEN’S FUNCTION

In both the FM case and the AFM case, we assume an
electron-doped system with μ > 0. It is then the positive
helicity band which crosses the Fermi level, and so we focus
on �++ from now on. Due to the lattice nature of our treat-
ment, the system is not isotropic, though both Ekη and ωq are
nearly isotropic close to the center of the 1BZ. Therefore, our
results will be similar in all directions for k. The representative

direction kx � 0, ky = 0, is chosen in all figures, using k =
|k| = kx and kF = (kF, 0) = (π/12, 0). With the Fermi mo-
mentum fixed, the chemical potential is determined by setting
the Fermi energy to zero, EF ≡ EkF,+ = 0, yielding μ = FkF .
The chemical potential should not be too high since the bulk
bands will then influence the physics on the TI surface [40].
With the parameters used in this paper, μ is kept in the region
of 100 to 160 meV, ensuring that it is reasonable to ignore the
bulk bands in the treatment of the TI surface [40].

The imaginary part of the self-energy is shown as a func-
tion of ω at k = kF in Figs. 5(a) and 5(c) for the FM
case and the AFM case, respectively. The insets show that
|Im�++(kF, ω)| is small for small |ω|, i.e., close to the Fermi
level. This indicates that the fermionic quasiparticles close to
the Fermi level are long-lived. The use of |Im�++(kF, ω)| as
an indication of the inverse lifetime is made more clear in
Sec. IV A.

We note that for both the FM case and the AFM case there
is a drop of |Im�++(kF, ω)| to zero for negative values of
ω comparable to the chemical potential. We find that this
extended zero is located around ω = −μ − ωq=kF and that
the extent of the zero corresponds to the gap in the excita-
tion spectrum of the TI. For the AFM case, setting � = 1
would close the gap, and there would be a single zero at
ω = −μ − ωq=kF . A similar behavior was found for a Dirac-
type fermionic spectrum in Ref. [32] where the self-energy
due to EPC is explored in graphene. The suppression of the
imaginary part of the self-energy is attributed to the vanishing
fermionic density of states (DOS) at the Dirac points. The
same explanation holds here, with the adjustment that for
a gapped fermionic excitation spectrum there is a range of
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FIG. 6. Im�++(kF, ω) for the (a) TI/FM and (b) TI/AFM heterostructure, with the same parameters as those in Fig. 5 except that we
vary K . One can clearly see that the quick increase in |Im�++(kF, ω)| sets in at |ω| = ωq=0 = ω0, i.e., at the gap in the magnon spectrum.
This is shown by the upper ticks, where the color indicates the corresponding curve. (c) Im�++(kF, ω) for the TI/AFM heterostructure with
K = J1/103, varying �, and otherwise the same parameters as those in Fig. 5. We see that any � < 1 shows the same behavior as � = 0,
except that the effect is weaker, in the sense that |Im�++(kF, ω)| is smaller at the same value of ω.

energies where the fermionic DOS is zero. Another adjust-
ment is that while Ref. [32] studies optical phonons with a
fixed frequency, we here study magnons with momentum-
dependent frequencies. Naively, this should remove the
suppression of |Im�++|, but, as it turns out, the δ function
involved in calculating the self-energy, δ( fηχ (q)), fixes q to
certain values in such a way that the suppression remains. To
be specific, when ω ≈ −μ − ωq=kF , satisfying the δ function
requires q ≈ −kF, fixing the magnon frequencies to ωq ≈
ωq=kF . Hence, scatterings with fermions close to the Dirac
point are the relevant processes, just as in Ref. [32].

Another similarity of the FM and AFM cases is the large
peaks in |Im�++(kF, ω)| located at intermediate |ω|. This
is attributed to energy ranges around the extrema of the
fermionic excitation energies, where Ekη values are relatively
flat, giving a large DOS. Combined with the fact that all
magnons are energetically available, this gives a significant
increase in the available electron-magnon scattering channels.
Also note that these peaks in |Im�++(kF, ω)| are stronger for
the FM case than for the AFM case at the same parameters.
In the FM case, ωq values, and to some extent Ekη values, are
more slowly varying, further increasing the available scatter-
ing channels.

The real part of the self-energy at k = kF is shown in
Figs. 5(b) and 5(d) for the FM case and the AFM case, respec-
tively. All the exotic behavior found in Re�++(kF, ω) can be
traced back to rapid changes of Im�++(kF, ω) at the same
values of ω. The real part of the self-energy can be used as an
indication of the shift in the fermion spectrum. This is made
more clear in Sec. IV A.

Figure 6 explores the behavior close to the Fermi level, i.e.,
for small |ω|, in greater detail. In Fig. 6(a), we focus on the
TI/FM heterostructure and show how the easy-axis anisotropy
of the FM, K , and in turn the gap in the magnon spec-
trum, ωq=0 = 2KS, determines the extent of ω values where
|Im�++(kF, ω)| is exponentially suppressed. The extent of
this thermal suppression turns out to be exactly |ω| < ωq=0,
due to the fact that the temperature is kept significantly lower
than the gap in the magnon spectrum. The low temperature,
T � ωq=0, means that very few fermion states with energy
between EF and EF + ωq=0 are occupied, while almost all

states below EF are occupied. Hence, for fermionic quasi-
particles with energy |ω| < ωq=0 the Pauli principle ensures
that there are very few available electron-magnon scattering
channels [32,33]. Once |Im�++(kF, ω)| becomes nonzero for
ω > ωq=0, it increases as (ω − ωq=0)ν , where ν < 1. This is
non-Fermi liquid behavior, although the extended suppression
of Im�++(kF, ω) closer to ω = 0 ensures that the system
behaves as a Fermi liquid close to the Fermi level. A similar
non-Fermi liquid behavior was found in Ref. [10], considering
an ungapped magnon spectrum. We have shown that intro-
ducing an easy-axis anisotropy, and so a gap in the magnon
spectrum, can move the non-Fermi liquid behavior away from
the Fermi level.

In Fig. 6(b) the same effect is shown for the TI/AFM
heterostructure. Since, with J1 = J and the same K , the gap
in the AFM magnon spectrum is significantly larger than that
in the FM case, a lower degree of easy-axis anisotropy is
needed in the AFM case to stabilize the fermionic state close
to the Fermi level. Also notice that, with comparable gaps,
the self-energy increases more rapidly in the AFM case with
� = 0 than in the FM case. This is due to the increase in EMC
for small q with � � 1 not found in the FM case. Otherwise,
the behavior is similar to that of the FM case.

We have thus far considered the strongest possible coupling
with � = 0 for the AFM case. In Fig. 6(c) the behavior is
now shown for � > 0. The general behavior is similar for
all � < 1, even though |Im�++(kF, ω)| decreases as � is
increased. This makes sense, since the EMC decreases when
� is increased. Even for � = 1 we find an initial fast in-
crease of |Im�++(kF, ω > ωq=0)| in the sense that is goes like
(ω − ωq=0)ν with ν < 1, but the behavior quickly transitions
to a ν > 1 type of increase.

A. Renormalized excitation spectrum, lifetime of quasiparticles,
and quasiparticle residue

For the upper helicity band, the renormalized Green’s func-
tion is given as [20,34]

G+(k, ω) = 1

ω − Ek+ − �++(k, ω)
. (31)
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Using Fermi liquid theory [20], this can be rewritten as

G+(k, ω) = zk

ω − Ẽk+ + i/τk
, (32)

where the renormalized excitation spectrum Ẽk+ is the
solution of

Ẽk+ = Ek+ + Re�++(k, Ẽk+), (33)

the quasiparticle lifetime τk is given by

1

τk
= − Im�++(k, Ẽk+)

1 − ∂Re�++
∂ω

∣∣
Ẽk+

, (34)

and the quasiparticle residue zk is

zk = 1

1 − ∂Re�++
∂ω

∣∣
Ẽk+

. (35)

We choose to calculate these quantities for the TI/AFM
heterostructure with an uncompensated interface. The in-
creased EMC, combined with the fact that the easy-axis
anisotropy is more effective in producing a gap in the magnon
spectrum, is the reason we find the AFM case to be more
interesting than the FM case and hence worth exploring in
greater detail.

The inverse quasiparticle lifetime is shown in Fig. 5(e). As
indicated by the imaginary part of the self-energy in Fig. 5(c),
the inverse quasiparticle lifetime is exponentially suppressed
around the Fermi level, ensuring that the fermionic states are
long-lived excitations of the system. Meanwhile, once we
move far enough away from the Fermi level, i.e., an energy
amount determined by the gap in the magnon spectrum, the
inverse lifetime increases rapidly. In other words, the quasi-
particle lifetime decreases substantially, and the stability of
the fermionic states becomes questionable.

Note that the extent of the exponential suppression of the
inverse lifetime is not symmetric about k = kF. This can be
understood from the rapid change in the shift of the excitation
spectrum, Ẽk+ − Ek+, for k close to kF shown in Fig. 5(f). Our
calculations predict some sharp “kinks” in the renormalized
excitation spectrum, which should in principle be observable
when measuring the occupied electronic states using ARPES.
However, the effects are too small at the chosen parameters to
be measurable in current experimental setups [41–47]. Addi-
tionally, we note that the bare band Ek+ varies over an energy
range of the order of 100 meV for the same momenta, and so
the obtained renormalization of the energy can be classified as
very weak.

Figure 5(g) shows the quasiparticle residue. Around the
Fermi level we have zk > 0, ensuring that the system behaves
like a Fermi liquid. The physical interpretation is that a large
part of the original fermionic quasiparticle behavior exhibited
by the ψk operators remains after taking the EMC interaction
terms in Eq. (26) into account. Meanwhile, further away from
the Fermi level zk > 1, which is somewhat unusual. It does not
seem to make sense that the quasiparticle residue is greater
than 1. The mathematical explanation is that Re�++(k, ω)
is an increasing function of ω around ω = Ẽk+ at the same
values of k where zk > 1. Physically, this connects to the
non-Fermi liquid behavior exhibited by |Im�++(k, ω)| once

it starts increasing rapidly. The interpretation of zk as a quasi-
particle residue is a result of Fermi liquid theory, which may
not be valid at the parameters where zk > 1.

In Figs. 5(e)–5(g), 0.5 � k/kF � 1.5, meaning that
−μ/2 � Ek+ � μ/2 ≈ 57 meV. We now compare 1/τk in
Fig. 5(e) to −Im�++(kF, ω) in Fig. 5(c) and Ẽk+ − Ek+ in
Fig. 5(f) to Re�++(kF, ω) in Fig. 5(d) for −μ/2 � ω � μ/2.
Though not exactly the same, it is clear that the plots of
the self-energy as functions of ω at the Fermi momentum
provide a good indication of the results for 1/τk and Ẽk+ −
Ek+ as functions of k. Hence, the results for �++(kF, ω) in
Figs. 5(a) and 5(b) for the FM case give a good indication
of how the quasiparticle lifetime and the renormalized exci-
tation spectrum behave for that system as well. For the same
values of k/kF, the inverse lifetime is smaller and the shift
in the excitation spectrum is larger in the FM case. However,
the renormalization of the energy is still small compared to
the energy range of the bare band.

V. TOWARDS EXPERIMENTAL MEASUREMENT

We have thus far considered material parameters relevant
for the theoretical calculations in Ref. [6] and shown that
the assumption of low renormalization of the fermionic state
makes sense, at least at a low temperature of T = 10−7 eV,
corresponding to T ≈ 10−3 K. ARPES experiments are, how-
ever, typically performed at significantly higher temperatures
[41–47]. We choose T = 2.2 meV, corresponding to T ≈
25 K, as a temperature which is readily achievable experi-
mentally. This temperature is much greater or comparable to
the magnon gaps we have considered thus far. Hence, more
electron-magnon scattering channels become available close
to the Fermi level, and the suppression of |Im�++(kF, ω)|
close to ω = 0 is lost. In order to increase the magnon gaps,
we increase the nearest-neighbor coupling slightly and con-
sider higher degrees of easy-axis anisotropy.

An interfacial exchange coupling of J̄ = 18 meV is similar
to the values used in several theoretical papers previously
[6,11–13]. These values are, among other measurements,
based on an experiment involving a FM deposited on a SC,
where the effect of the FM on the superconducting transition
is used to estimate the interfacial exchange coupling [48].
Alternatively, comparable values have been estimated from
measurements of an effective Zeeman field at FM/SC and
FM/normal metal (NM) interfaces [11,49,50]. To get val-
ues of the self-energy that are measurable in ARPES, we
consider a system where the interfacial exchange coupling
is significantly larger, namely, J̄ = 100 meV. Similar values
of J̄ are used in Refs. [16,51], based on an experiment with
magnetic impurities in the bulk of a TI. There, the exchange
interaction between magnetic impurities and charge carriers
is estimated from the behavior of the magnetoresistance [52].
Also, a larger value of J̄ is estimated for the FM/NM interface
of YIG and gold in Ref. [11] based on measurements of the
spin-mixing conductance [24,53,54]. It is emphasized that
J̄ = 100 meV is not chosen with some specific set of materials
in mind, but as a general value that should in principle be
achievable for TI/(A)FM interfaces based on the examples
listed here. Increasing J̄ simultaneously increases the gap in
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FIG. 7. (a) Im�++(kF, ω) for the TI/AFM heterostructure, with
kF = π/12, vF = 429 meV, W = 0.3vF, J1 = 10 meV, J2 = 0.05J1,
J̄ = 100 meV, S = 1, � = 0, T = 2.2 meV, and various K . The ver-
tical dotted lines show the positions of ω = ±ωq=0 for the parameters
corresponding to the solid lines of the same color. (b) Re�++(kF, ω)
with the same parameters, focusing on two choices for the easy-axis
anisotropy.

the fermion spectrum, and so the chemical potential corre-
sponding to kF = π/12 is now μ ≈ 152 meV.

Furthermore, we focus on the TI/AFM structure with � =
0 since this revealed the strongest EMC. It should be noted
that there is a discrepancy between our model and the most
realistic experimental realization of a completely uncompen-
sated interface [13]. With � = 0, the lattice on the surface
of the TI should match one of the sublattices of the AFM,
not the original square lattice. This sublattice is still a square
lattice; however, its lattice constant is a factor of

√
2 larger. As

elaborated in Ref. [13], this has consequences for the size of
the Brillouin zone for the fermions on the TI surface as well.
Our model was chosen so that it could describe any value of
� satisfying 0 � � � 1, at the cost of this discrepancy in the
specific case of � = 0. We expect that the results regarding
increased EMC at � = 0, the effect of the magnon gap on
the self-energy close to the Fermi level, and the order of
magnitude of the self-energy would be similar also if this
detail were to be treated more accurately, or if other lattice
configurations were studied.

Figure 7(a) shows the imaginary part of the self-energy
for the new parameters. Values of K such that the magnon
gap is just below and much greater than the temperature
have been chosen, showing how the magnon gap affects the
self-energy close to the Fermi level. Notice that increasing
K decreases |Im�++(kF, ω)| outside the gap region as well.
This is because increasing K , and so increasing the gap in the
magnon spectrum, decreases the maximum magnitude of the
Bogoliubov factors uq and vq in Eqs. (27) and (28). Hence,
the EMC is not as strong for larger easy-axis anisotropy.

The corresponding real part of the self-energy is shown in
Fig. 7(b), from now on focusing on two choices for K . The
values of the self-energy shown in these figures should be
measurable in ARPES for common energy resolutions at the
given temperature [41–47]. We also note that the effects of
EMC in the TI should dominate over EPC at these parameters,
based on the EPC calculations presented in Ref. [21].

From the one-particle Green’s function in Eq. (31) one
defines the spectral function [55]:

A(k, ω) = −π−1ImG+(k, ω)

= −π−1Im�++(k, ω)

[ω − Ek+ − Re�++(k, ω)]2 + [Im�++(k, ω)]2 .

(36)

In the context of photoexcitation from an interacting N-
electron system, A(k, ω) describes the probability of remov-
ing an electron with momentum k and energy ω relative to
EF [56]. The measured intensity of the photoexcitation will be
proportional to

I (k, ω) ∝ [M(k, ω) · A(k, ω) · g(k, ω) · FD(ω)] ∗ Rω ∗ Rk,

(37)

where M(k, ω) describes the photoexcitation matrix elements
and g(k, ω) is the electronic DOS. The Fermi-Dirac distri-
bution FD(ω) scales the photoemission intensity around the
Fermi level. Rω and Rk represent the energy and the momen-
tum resolution, respectively.

For nonzero and finite values of �++, A(k, ω) has a
Lorentzian line profile when measured at constant k or ω.
Im�++ is then directly related to the linewidth in an ARPES
measurement [57]. Similarly, because the intensity is maxi-
mum at ω = Ẽk+ [see Eq. (33)], Re�++ is seen in an ARPES
measurement as a renormalization of the occupied band. Thus,
using the calculated Green’s function, which includes the bare
band and the complex �++, it is possible to simulate an
ARPES measurement. In other words carrying out the reverse
of the procedure which is typically used to extract an unknown
self-energy from measured ARPES data [58,59].

To perform this simulation, we use the self-energy as
a function of the renormalized energy band Ẽk+, namely,
�++(k, ω = Ẽk+) = �++(Ẽk+). This is then used as an
energy-dependent self-energy whose momentum dependence
is neglected, which should be a reasonable approximation
[58]. Additionally, a minimal, constant contribution of 5 meV
representing electron-impurity scattering has been added to
|Im�++| to induce a nonzero and more realistic linewidth of
the bands [60,61].

|Re�++(Ẽk+)| and the shifted |Im�++(Ẽk+)| are shown
in Figs. 8(a) and 8(b), respectively, selecting K = J1/10 and
K = J1/100 for the easy-axis anisotropy. Compared to Fermi
liquid theory, |Im�++(Ẽk+)| should have a functional form
similar to 1/τk as can be seen from Eq. (34). Meanwhile,
Re�++(Ẽk+) corresponds to the shift in the excitation spec-
trum as can be seen in Eq. (33). Notice the significant
renormalization of the energy band even for a magnon gap far
above the considered temperature. This indicates that a weak-
coupling approach to superconductivity in these systems,
requiring low renormalization, is best suited at temperatures
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FIG. 8. (a,b) Magnitude of the self-energies Re�++(Ẽk+) and
Im�++(Ẽk+) for the TI/AFM heterostructure, with the same pa-
rameters as those in Fig. 7. A constant energy offset of 5 meV has
been added to the imaginary part to account for a small, but finite
broadening due to electron-impurity scattering �imp. The points show
the calculated values, while the dashed lines have been added for
visualization. (c,d) Simulations of instrumentally broadened ARPES
data showing the positive helicity state Ek+ renormalized by the
self-energies �++ obtained with K = J1/10 and K = J1/100, re-
spectively. Setting a = 7 Å, state-of-the-art resolutions for energy,
E , and momentum, k, have been used for the topmost two panels,
while the lowermost two panels show the same data with good
laboratory-based resolution.

that are several orders of magnitude smaller than the gap in
the magnon spectrum. Otherwise, strong-coupling approaches
should be preferred, where the renormalization is taken into
account.

Artificially constructed ARPES images showing the pos-
itive helicity band Ek+ of the TI/AFM system with the
included self-energy contributions are presented in Figs. 8(c)
and 8(d) for K = J1/10 and K = J1/100, respectively. We
emphasize that the plots presented are not measured ARPES
data of the system as described, but rather simulated intensity
plots based on the theoretically calculated self-energies in
Figs. 8(a) and 8(b). The simulated plots are produced using
Eqs. (36) and (37), suppressing any variations in the DOS, g,
and photoexcitation matrix elements M for simplicity. The
lattice constant is set to a = 7 Å, such that our choice of
Fermi velocity corresponds to vF ≈ 4.56 × 105 m/s, which is

within the range of reported values [6,8,21,40,62,63]. Each
set of figures is then convolved with two different sets of
assumed energy, E , and momentum, k, resolutions. The upper
panels include state-of-the-art, synchrotron ARPES resolu-
tions (�E = 1 meV, �k = 0.005 Å−1) [43–45]. The lower
panels include good laboratory-based resolutions, (i.e., Specs
Phoibos 150 analyzer and non-monochromated He I source;
�E = 15 meV, �k = 0.013 Å−1) [46,47].

In the case of excellent instrumental resolutions, both the
renormalization and the variation in linewidth because of the
magnon interaction are readily observable. For the majority
of the energy values the band appears at higher k relative to
the undressed dispersion Ek+, signaling an increased effective
mass, m∗, for electrons in the occupied states. A “kink” in
the band structure appears around 40–60 meV below EF,
coinciding with the increased |Re�++| in this energy range
seen from Fig. 8(a). Furthermore, broadening of the bands is
evident from the decreased photoemission intensity between
20 and 50 meV below EF, being minimal around 30 meV
below EF where |Im�++| is at its maximum [Fig. 8(b)].

The same characteristics as described can also be seen
from the plots simulated using “home laboratory” resolutions.
Although being harder to resolve by eye, measures of Re�++
and Im�++ would still be straightforward to extract using
the analytic approach described in Refs. [58,59]. Thus, we
conclude that the predicted self-energy effects due to EMC
should be readily observable in a real ARPES experiment
using an instrumental setup of reasonable performance.

The results presented here are naturally dependent on the
choice of material parameters. For instance, the interfacial ex-
change coupling J̄ , for which a wide range of values has been
proposed [6,11–13,16,51], is directly correlated to the mag-
nitude of the self-energy. Hence, given a TI/FM or TI/AFM
heterostructure, we expect that one could compare measured
ARPES spectra to the calculations presented here in order to
verify the presence and magnitude of the interfacial exchange
coupling. To our knowledge, J̄ has not been measured for ei-
ther of the heterostructures presented in this paper. If ARPES
is performed using the “home laboratory” energy and momen-
tum resolutions presented here, J̄ cannot be much lower than
100 meV for this method to succeed. However, a state-of-
the-art (synchrotron) ARPES setup should in principle have
sufficient resolutions to measure lower values of J̄ . Note also
that the spin quantum number will affect the magnitude of the
self-energy, and the value of S in an experimental realization
could be different from S = 1, as chosen in the figures.

VI. CONCLUSION

We have explored self-energy effects on the surface of a
topological insulator due to magnetic fluctuations in an adja-
cent ferromagnet or antiferromagnet. Useful applications of
such systems include superconductivity and magnetoelectric
effects. In such cases it is often important that the fermionic
quasiparticles on the surface of the topological insulator are
long-lived excitations. In weak-coupling approaches to su-
perconductivity it is also required that the renormalization
of the excitation energies is weak. We have shown how an
easy-axis anisotropy in the magnetic insulators can be used to
increase the lifetime of the quasiparticles close to the Fermi
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k, ωn, η′

0, 0, λ, χ

k, ωn, η′′

k′, ω′
n, η

gη′′η′
k,k,λ,χ/

√
N

gηη
k′,k′,λ,χ/

√
N

FIG. 9. The tadpole diagram is also relevant for second-order
EMC. Momentum and energy conservation fixes q = 0 and ων = 0
for the magnon. Unlike EPC [21], the coupling constants remain
nonzero. However, it turns out that gηη

k′,k′,λ,χ
is antisymmetric under

inversion of k′, explaining why this Feynman diagram gives zero
contribution to the self-energy.

level. Additionally, we reported a set of parameters where the
assumption of weak renormalization of the energy is valid.
Finally, we studied a system at higher temperature and with
a stronger interfacial exchange coupling, giving self-energies
measurable in ARPES. We suggest that these calculations
could be used, upon comparison to experimental results, e.g.,
to measure the magnitude of the interfacial exchange cou-
pling. Additionally, we find that a greater easy-axis anisotropy
is needed at higher temperatures to increase the lifetime of
the quasiparticles on the surface of the topological insula-
tor. However, the energy renormalization remains significant.
Therefore, strong-coupling approaches to superconductivity
will in general be needed in these systems, unless one is
interested solely in low-temperature results.
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APPENDIX A: TADPOLE DIAGRAM

In this Appendix, we show that the tadpole diagram shown
in Fig. 9 gives zero contribution to the self-energy. Denoting

this contribution �
η′′η′
T , we have

�
η′′η′
T (k) = 2

N

∑
k′

T
∑
ω′

n

∑
λ,χ,η=±

Dχ

0 (0, 0)Gη

0 (k′, ω′
n)

× gη′′η′
k,k,λ,χ

gηη

k′,k′,λ,χ

= −2

N

∑
k′

∑
λ,χ,η=±

FD(Ek′η )

ωq=0
gη′′η′

k,k,λ,χ
gηη

k′,k′,λ,χ
. (A1)

Notice that Ek′η is inversion symmetric in k′. Moreover, by
inspecting Eqs. (9), (10), (11), and (26), it becomes clear
that gηη

k′,k′,λ,χ
will, for both the TI/FM heterostructure and

the TI/AFM heterostructure, always contain a combination
(Fk′ + Bk′ )(Ck′ ± iDk′ )/Nk′ which is antisymmetric under in-
version of k′. Therefore, the summand in �

η′′η′
T is inversion

antisymmetric, yielding �
η′′η′
T = 0.

APPENDIX B: DETAILS OF δ-FUNCTION TREATMENT

There are three cases that require some care when treating
the δ function in the imaginary part of the self-energy, namely,
if q = 0 is a root of fηχ (q), if q = c(θ ) is a root, or if double
roots appear. With K > 0, we find that any roots at q = 0
give zero contribution. Only half the borders of the 1BZ/RBZ
are included in the sum over q. If there is a zero there, the
procedure is exactly the same as for a zero at 0 < q < c(θ )
except for a factor 1/2, since the zero is at the edge of the
integration interval. For notational convenience, this detail is
left out of Eqs. (20) and (30).

Double roots appear if f ′
ηχ (q) = 0, and the method we

have presented fails. The occurrence of double roots generally
happens at a finite set of distinct values of θ . As we approach
a double root by varying θ , two distinct roots move closer
to each other. Hence, the derivatives f ′

ηχ (q) at these roots
approach zero and the integrand in the θ integral diverges. Nu-
merically, we split up the integration interval for θ to handle
such improper integrals.
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