
Heavy-duty electric vehicle charging profile
generation method for grid impact analysis

Kyrre Kirkbakk Fjær
Dept. of Electric Power Eng.

NTNU
Trondheim, Norway
kyrrekf@stud.ntnu.no

Venkatachalam Lakshmanan
Dept. of Energy Systems
SINTEF Energy Research

Trondheim, Norway
venkat@sintef.no

Bendik Nybakk Torsæter
Dept. of Energy Systems
SINTEF Energy Research

Trondheim, Norway
bendik.torsater@sintef.no

Magnus Korpås
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Abstract—The transport sector is responsible for 20 % of the
global CO2 emissions. By transitioning from internal-combustion
engine to battery-electric vehicles, there is a big potential in
reducing the emissions. The upcoming heavy-duty electric vehi-
cles (HDEVs) are expected to have a charging power between
100-1600 kW. A transition to HDEVs can cause challenges to
the power grid to deliver the charging power needed. In this
paper, a methodology to model the load profile of a high-power
charging station for HDEVs is proposed. Generated load profiles
with different future shares of HDEVs are used to study the
impact on the power grid in a representative area in Norway.
The loading of the regional substation exceeds its rated capacity
when the share of HDEV is 25%, and its thermal limit when
the share is increased to 50%. Extending the mandatory breaks
for the drivers, and a corresponding reduction of the charging
power, shows promising results.

Index Terms—Electric vehicles, High-power charging, Load
modelling, Demand profile, Grid planning, Heavy-Duty Vehicles

I. INTRODUCTION

To cope with the 2° Celsius limit in the Paris agreement,
new energy technologies must be included. The transport sec-
tor is responsible for 20 % of the CO2 emissions worldwide.
Road transport is the most significant contributor, with 75 % of
the emissions from the sector. The second highest contributor
to emissions in the road transport segment is road freight. It is
accounting for 29.4 % of the total emissions in the transport
sector. Half of this share is from heavy-duty vehicles (HDVs)
[1]. By changing from classical internal combustion engines
(ICE) to fuel-cell or battery-electric vehicles (BEVs), there is
a significant potential in reducing the emissions.

An introduction of heavy-duty electric vehicles (HDEVs)
will create a demand for new charging infrastructure in ad-
dition to the infrastructure meant for other types of electric
vehicles (EVs), such as electric cars. The upcoming HDEVs
are expected to have batteries in the size of 200-1000 kWh
and a charging power ranging between 100-1600 kW [2], [3].
Thus, a transition to HDEVs can cause significant challenges
to the power grid to deliver the charging power needed. In this
paper, a methodology for generating aggregated load profiles
for high-power charging stations (HPCS) for HDEVs is pre-
sented. The generated load profiles is then used to investigate

the future grid impact on a power grid in a representative area
along a highway in Norway.

A. Relevant literature

1) Load modelling: There have been conducted few studies
on load modelling of high-power charging stations for HDEVs.
However, the main principles are the same for load mod-
elling of HPCS for electric cars. Two different methods are
mainly used in literature to build the load model. An agent-
based approach is used in [4], where each agent is operating
autonomously according to one or several given objectives.
Charging specifications, mobility pattern and vehicle type are
defined for each agent. In [3], an agent-based model, which is
originally developed for electric cars in [5], is used to generate
load profiles for HDEVs, by changing the input parameters.
A second and more common method is to build the model
on stochastic parameters without the autonomous decision-
making and interactions between the agents. References [6]
and [7] are using Poisson processes with a predefined arrival
rate or historical traffic flow data directly. The initial state of
charge (SOC) is drawn from various probability distributions
in [6]–[8]. In [9], SOC is not used as a parameter. Instead,
data from HPCSs in Norway and Sweden containing charging
duration is used. Monte Carlo simulations are often applied to
evaluate the uncertainty of the stochastic parameters [3], [6],
[7].

2) Grid impact: The authors in [3] have performed an
analysis of the grid impact of HPCS for HDEVs. To look
at vehicles with high enough charging power and battery
capacity, HDEVs were defined as vehicles with a driving range
of 400-800 km in a single charge. The investigated system had
a HPCS with five charging points, à 1.2 MW, integrated. Time
series analysis was used to investigate the grid impact. The
analysis was conducted with the HPCS placed on different
locations based on how suitable the connection point was.
At the nodal location where there is sufficient capacity, the
voltage never dropped below 0.95 p.u. At the nodal location
where there is no sufficient capacity, the voltage dropped
below 0.8 p.u.

Other literature focuses mainly on the impact of integrating
charging of light-duty EVs or HDEVs with shorter driving
range, such as urban electric buses. In [10], the impact of
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electric buses has been analysed. The mobility model is based
on a bus network in Vienna, Austria. During operational hours,
buses are charged for a few seconds at every station or for
several minutes at the end-stations of a bus line. The charging
power is ranging between 300 and 600 kW. The results implied
that most European cities should be capable of integrating lines
with electrical buses.

In [11]–[13], the impact from charging EVs with a peak
demand ranging from 0.7 to 2.5 MW is investigated. The main
finding is that the voltages at times suffer from flickering.
However, the voltage drop rarely causes any severe problem.
In [12], a load profile with a peak demand of 2.2 MW is
applied on a 34-node test feeder. The voltage deviation in the
worst-case scenario is observed to be 6 %. The load profile
implemented in [13] has a peak demand of 2.5 MW. Initially,
the highest loading of the transformer is 80 %. After the
addition of an EV HPCS, the maximum loading is raised to 90
%. The voltage at the weakest point in the power grid dropped
from 0.95 to 0.93 p.u.

B. Contributions

The main contributions this paper presents are:
• A methodology for generating aggregated load for an

HPCS for HDEVs.
• Creation of charging profiles for a real traffic flow using

the proposed methodology.
• Grid impact analysis on a power grid inspired by a real

power grid topology.

C. Outline

This paper is divided into five sections. Following the intro-
duction in Section I, Section II presents the methodology for
generating load profiles for HDEVs and a description of power
grid model development. In Section III the investigated system
and cases are described. The results from the simulations are
presented and discussed in Section IV. Section V concludes
and presents the main findings from the research conducted in
this paper.

II. METHODOLOGY

A. Load profiles for heavy-duty electric vehicles

To generate load profiles for an HPCS for HDEVs, a method
for modelling the aggregated load of the HPCS is developed.
The proposed method is based on the work performed in [7]
which uses a stochastic approach for passenger EVs. Due
to less known specifications of HDEVs and their behaviour
compared to state-of-the-art electric cars, some simplifications
have been made.

1) Simplifications: An unlimited amount of charging points
is assumed at the HPCS. Thus, this model does not take vehicle
queuing into account. This is done to highlight the possible
total power demand in an area, i.e., the worst-case scenario
that the network operator must be prepared for. Every heavy-
duty vehicle (HDV) driver needs to have a mandatory break
of 45 minutes after every 4.5 hours of driving time [14]. Thus,
a charging duration is lasting until the battery is fully charged

or when the break is over. In this paper, HDEVs are defined
as electric trucks with a battery size in the range of 475-1000
kWh and a driving range of 400-800 km in a single charge.

2) Generating traffic flow: The arrival time for each HDEV
is decided by using a Poisson process. It is assumed that each
HDEV is independent of each other and that the expected
number of HDEVs is kept constant in each hour as per the
given traffic flow data. However, the expected number of
HDEVs entering the system each hour varies throughout the
day. Thus, a new Poisson process is conducted for each hour
of the day, with different expected values.

Due to no information about the arrival rate of HDEVs, the
expected value λh for each hour, h, is calculated from the real
traffic flow qh of HDVs and the desired HDEV share, (1).

λh = HDEV share ∗ qh (1)

The time between each HDEV arriving the HPCS, in
minutes, is calculated with (2) as described in [7], where u is
a variable that is uniformly distributed between 0 and 1.

w = − 60

λh
∗ ln(1 − u) (2)

The arrival time of the nth vehicle is given by (3).

tn = tn−1 + w (3)

When the arrival time tn is greater than or equal to 60
minutes, the Poisson process is finished, and a new process is
started with the expected value for the next hour.

3) Generating HDEV objects: After the arrival time for
each HDEV has been decided, the HDEVs profile will be
created by applying their parameters to generate charging
demand profile. Each HDEV is assigned parameter values
based on the selected model type. The HDEV model type
is drawn from a cumulative distribution function where the
probability for choosing each model is equal. The input
parameters are battery size, charging power and the probability
of selecting a specific HDEV model.

When the HDEV is generated, it is given the initial SOC
level when it arrives the HPCS, as SOCarrival. The SOC value
is drawn from a normal distribution with a standard deviation
[15] equal to 0.1. The expected SOC value µarrival is decided
by the battery size of the HDEV and the average energy used
to travel to the HPCS, (4).

µarrival = 1 − Etravel

Ebattery
(4)

It is assumed that every HDEV starts the trip fully charged.
The battery size, Ebattery, is given for each model. The general
energy demand for travelling to the HPCS, Etravel, is set
by using SINTEF’s energy module [16]. The energy module
estimates how much energy different vehicle types use for a
specific driving route in Norway.
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Fig. 1. Flow chart of the proposed method for generating aggregated load
for an HPCS for HDEVs.

4) Charging: The amount of delivered energy to the HDEV
in each time step, Echarged,t is found by using (5), where P
is the charging power (W ) and ∆t is the length of the time
step. In this paper, the time resolution is one minute. Thus,
the charging must be scaled from hours to minutes.

Echarged,t = P∆t ∗ 1

60
(5)

The maximum SOC level is in this paper set to 95 %, thus
the maximum charged energy, Emax, is found from (6).

Emax = (0.95 − SOCarrival) ∗ Ebattery (6)

The HDEV will either charge until the charging session has
lasted as long as the mandatory break, Tbreak, (7) or when the
maximum charged energy is reached (8).

t = Tbreak (7)

Echarged = Emax (8)

Due to the stochastic parameters, the day is simulated 1001
times to get a representative set of the load profiles. Each load
profile is then sorted by the mean energy demand for a time
step to find the median load profile. It is chosen to run 1001
simulations to easily find the median profile in the set. A flow
chart of the method is presented in Fig. 1.

B. Grid model

A representative power grid is created to observe the impact
of HDEV charging. The power grid is created using the open-
source package ‘pandapower’ in Python to conduct AC power
flow analysis using the Newton-Raphson method [17]. The
grid representation is created by assembling ‘pandapower’

Fig. 2. Overview of the case study.

objects. By using the built-in Timeseries module in ‘pan-
dapower’, it is possible to iterate through time steps. Thus, load
profiles generated from the proposed load modelling method
can be applied. The loads in the power grid are divided into
two different types, base load and HPCS loads. The base load
is created by dividing the surroundings into zones with each
node having the aggregated load from the existing customers
within that zone. The aggregated loads are made by combining
demands from e.g., households, farms and schools, using
general profiles created in the earlier research by SINTEF
Energy Research [18]. In addition, HPCS loads for electric
cars and HDEVs are included. The load profiles for electric
cars that charges from HPCS are made by using the method
presented in [7], while the HDEV charging demand is made
using the method presented in this paper.

III. CASE STUDY

A real-life case study has been conducted on a small village
in Eastern Norway, where 90 % of all HDVs driving between
Oslo and Trondheim are passing by. The selected location
is an established and designated lay-by area for HDVs, and
refreshment point for drivers. The substation has its highest
loading during the winter, thus the simulations are based on
winter conditions to challenge the power system the most.

In this paper, the grid impact due to two different param-
eters, namely electric share and maximum charging duration,
have been investigated. Simulations with three different elec-
tric shares, (10 %, 25 % and 50 %), of HDVs are conducted
to observe the effect on the grid with potential electric shares
in the future. The introduction of HDEVs may introduce
high demand peaks. To reduce the demand peaks a possible
charging strategy is applied. By extending the mandatory break
from 45 to 60 minutes it is possible to reduce the charging
power and still deliver the energy needed for charging the
vehicle. An overview of the grid impact study for the different
cases are presented in Fig. 2.

A. Traffic flow

The traffic flow is based on historical data recorded by the
The Norwegian Public Roads Administration [19]. The traffic
data is filtered to only include vehicles with a length greater
than 12.5 meters. The traffic flow passing by the HPCS is
presented in Fig. 3.
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Fig. 3. Hourly measured traffic flow of HDVs, divided in driving directions
north and south.

TABLE I
DISTANCE, ENERGY AND DRIVING EFFICIENCY USED BETWEEN THE

STARTING POINT AND THE HPCS.

Starting point Distance
[km]

Energy
[kWh]

Driving efficiency
[kWh/km]

Oslo 291 414 1.42
Trondheim 172 256 1.49

B. State of charge

In addition to arrival time, the SOC of the visiting HDEV
has a great impact on the load profile of the HPCS. It is
assumed that all HDEVs are starting at Oslo or Trondheim.
The energy demand from driving to the HPCS from Oslo and
Trondheim is found in Table I. The proposed driving efficiency
of the Tesla is 1.25 kWh/km [20], which is slightly lower
than the generated values from the energy module. Due to the
winter conditions that are assumed in this model, the driving
efficiency will likely be worse than the proposed values from
Tesla. Thus, the values from the energy module are used as
an expected value for the energy demand.

C. HDEV models

To the best of the authors knowledge, there is no HDEVs
operating at this route today. To make a representative HDEV
fleet, the upcoming Tesla Semi and Freightliner eCascadia
are considered. Both models are long haul vehicles with an
expected driving range of at least 400 km in a single charge.
The Tesla Semi is also chosen as they already have received
orders from Norway. In addition, the two HDEV models
showcase two different scales of future HDEVs. Tesla Semi
has a battery size and charging power over double the size
of the Freightliner eCascadia. In table II the input parameters
for each model are presented. The charging power of the Tesla
Semi is scaled down from 1.6 MW to 1.333 MW to appreciate
the charging power variations during the charging session.

D. Power system topology

The grid model is based on a grid topology located in the
county called Innlandet in Eastern Norway. It contains 13
buses that are connected to the regional grid via a 66/22 kV
substation transformer. Bus 0-10 is the existing topology and
the aggregated customer loads. Bus 11 and 12 represent two

TABLE II
INPUT PARAMETERS FOR THE HDEVS TO THE LOAD MODEL

HDEV model Battery size
[kWh]

Charging power
[kW]

Tesla Semi 1000 1333
Freightliner eCascadia 475 400

Fig. 4. Single line diagram for the grid model.

HPCS, one for electric cars and one for HDEVs. It is assumed
that both are connected directly to the transformer. The single-
line diagram is presented in Fig. 4.

At the located area there are several HPCSs. To model the
load profile, these HPCSs are combined and modelled as a
single HPCS with 20 charging points. Sixteen outlets having a
capacity of 150 kW and four with 350 kW. The representation
of the EV fleet is made by choosing the ten most registered
EV models in Norway [21]. The load profile for the HPCS
for HDEVs is created with parameters as described in Section
III.

IV. RESULTS AND DISCUSSION

A. Load profiles

The generated load profiles, with a one-minute time reso-
lution, in Fig. 5 shows that charging of HDEVs introduces
demands with major changes in the load demand. They repre-
sent the median profile of each case. When the electric share
is 10 %, the demand is evenly distributed through the day
and the peaks are rarely above 4 MW. In the cases where the
electric share is increased to 25 % and 50 % there are greater
variations in the load. The peak demand are mainly around
9 MW and 13 MW respectively. These peaks are quite high
compared to HPCS for electric cars. To generate peaks in the
sizes of 13 MW it is needed 85 outlets à 150 kW operating at
full capacity. Thus, the load impact from HDEVs is significant
compared to EVs. It is important to note that the method used
in this paper assumes that all charging demand is served. This
is done to observe a worst-case day for the DSO. The results

"© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works." 

This is the accepted version of an article published in 2021 International Conference on Smart Energy Systems and Technologies - SEST 
http://dx.doi.org/10.1109/SEST50973.2021.9543135



Fig. 5. The resulting median load profiles from the simulations with electric
shares of 10 %, 25 % and 50 %.

Fig. 6. The resulting median load profiles from the simulations with 25 %
electric share. Shown with both 45 and 60 minutes mandatory break.

are thus potentially overestimating the demand in some cases.

One potential way to reduce the peaks is to extend the
mandatory breaks for the drivers, which allows lowering
the charging power. The resulting median load profiles for
the ”25 % case” are presented in Fig. 6. By extending the
maximum charging duration from 45 to 60 minutes, the highest
peaks were reduced with approximately 2 MW. Consequently,
the load demand throughout the day has less difference in
the values at the peaks and valleys, which causes a more
predictable load.

B. Grid impact

The generated load profiles were further used in power
flow analysis to investigate the impact on the local substation
transformer and the voltage quality. From the simulations, it
is evident that the loading from the HDEV HPCS makes a
significant impact on the transformer loading, presented Fig.
7. In the ”25% case”, the rated capacity is exceeded in certain
time steps in the interval between 14 and 17. The exceeding
peaks never reach the theoretical thermal limit at 120 %, which
allows the transformer to still operate as long it is for short
periods only. When the electric share is further increased to
50 %, the overloading increase both in time and magnitude,
causing the transformer to exceed its thermal limit.

Fig. 7. Transformer loading for the base load and HPCS loads with electric
shares of 10 %, 25 % and 50 %.

Fig. 8. Transformer loading for the base load and HPCS load with electric
share of 25 %. Shown with both 45 and 60 minutes mandatory break.

To minimise the operating time with overload in the ”25 %
case”, the load profiles with extended charging duration were
applied. By extending the charging duration to 60 minutes, the
operating time with overload is removed, seen in Fig. 8. It is
still possible to experience overload as the presented results
are using the median profile.

The majority of the base load is connected to bus 9 and
10 and is the buses with the lowest voltages. Fig. 9 presents
the voltages when there is only the base load in the system,
and when the electric share of HDVs is 25 % and 50 %. It is
evident that the introduction of HDEVs causes great fluctua-
tions in the voltages. In the ”25 % case”, the largest voltage
drop occurs around 14, when the voltages decrease with 0.01
p.u. The number of events when the voltage decreases with at
least 0.01 has increased in the ”50 % case”. At 17, the voltage
drops approximately 0.02 p.u.

V. CONCLUSION AND FURTHER WORK

This paper has presented a methodology for modelling the
aggregated load profile of an HPCS used by HDEVs. In the
study, it is assumed that all the load demand from HDEVs is
served to show a worst-case day for the DSO. The generated
load profiles were further used in a grid impact study of a
representative area in Eastern Norway. The HPCS introduced
a significant load to the system with peak values equal to 4
MW, 9 MW and 13 MW for three different HDEV shares,
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Fig. 9. Voltages at bus 9 and 10 with base load and different electric shares.

respectively (10 %, 25 % and 50 %). These loads caused the
associated substation to exceed the rated capacity when the
HDEV share was 25 % and exceed the thermal limit when the
share was further increased to 50 %. A proposed strategy of
extending the drivers’ mandatory breaks from 45 to 60 minutes
and lower the charging power correspondingly to maintain the
same energy demand were applied. This resulted in a reduction
in the peak load of the HPCS, and the substation to operate
below rated capacity. The methodology may overestimate the
load demand. Thus, a verification of the methodology will be
conducted when validation data is available. This approach
is fully dependent on the input parameters and a sensitivity
analysis of the input parameters to discover potential errors
in the generating data due to inaccuracies in the input should
be investigated. To highlight a more realistic behaviour of the
HDEVs, queuing will be implemented in the method in further
work.
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