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Abstract—Failures are undesirable events that should be al-
ways prevented. This paper agrees with this concept, but it is also
aware that failures are unavoidable events. The main objective
of this paper is to show how the failure handling through clever
fault management mechanisms produces a direct positive impact
on energy efficient cloud computing deployment. We address the
virtual machine consolidation problem, and its associated bin
packing problem. In spite of being studied for several years, it is,
to the authors knowledge, the first time that this is studied under
the presence of server failures that force the migration of some
virtual machines at unexpected random times. We found that
the extra dynamics generated by the compulsory reallocation of
virtual machines produces a reduction in the number of servers
needed, allowing some servers to be switched off, and hence
having a more energy efficient cloud operation. Through some
case studies, we show the amount of energy saved by the effect
of random servers failures. Finally, we show that under some
conditions, the optimal number of active servers may be reached.

Index Terms—Cloud Computing; Virtual Machines Consolida-
tion; Energy Efficient Mechanisms; Bin Packing.

I. INTRODUCTION

This paper is focused on Infrastructure as a Service (IaaS)
cloud computing scenarios, where virtual machines with spe-
cific computational requirements are allocated in servers with
finite capacity. In this scenario, one of the most popular
issues is how to allocate the virtual machines in order to use
as less servers as possible, and thereby reduce the energy
consumption. This is known as the virtual machine (VM)
consolidation problem. Solving it appropriately has become a
very hot topic for the research community. The reasons behind
its popularity are important, and they have been well studied
for years. For instance, in [1] is estimated that cloud computing
services consumed near 662 billion kWh of energy during
2007. This value and its increasing trend has been confirmed
by many related works, such as the ones produced by the
Environmental Protection Agency ENERGY START. In [2],
this consumption is linked directly with CO2 emissions, with
alarming results that motive actions.

The simplest version of the VM consolidation problem is
when all the incoming request are known in advance (offline),
allowing a better VM allocation planning. Even in this case,
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the optimal formulation (see Section II-A) has been probed to
be NP-Hard. Section II-C will present some of the heuristic
procedures used to solve the offline VM consolidation. Taking
advantage of the knowledge of the whole VM requests, those
algorithms may provide solutions close to the optimal value.

A more complicated scenario is posed when virtual ma-
chines arrive and depart at random instants of time, and only
the incoming VM request and the current servers occupation
are known in order to take allocation decisions. This problem
is considered fully dynamic, and it may be solved in two dif-
ferent ways: First, by using pure online algorithms, which do
not allow virtual machine reallocation (Section II-B). Second,
by using semi-online algorithms, which do allow reallocation
(Section II-D).

An additional increase on the dynamics of the problem is the
presence of server failures. They are unavoidable events that
may happen very often [3], [4] and [5]. The effect of failures
is very relevant, because they generate forced and unplanned
migration of virtual machines. To the authors’ knowledge,
this is the first time that this extra dynamics is considered
in the VM consolidation problem. Our results show that the
proper fault management of failures has a positive effect on
the number of active servers used in the cloud, optimizing
involuntarily a problem that has been studied and addressed
voluntarily for years. This result is interesting, since failures
are negative events that only may have positive effects in
an indirect way. However, the results of this paper show a
direct positive impact. We simulate several cloud computing
scenarios, in order to prove our findings. In addition, at the
end of the paper, we suggest a planned mechanism to optimize
the energy consumption of a cloud.

This paper is organized as follows. In Section II, we
present the virtual machine consolidation problem. Section III
describes the failure and energy consumption models used. In
Section IV, some case studies illustrate the impact of failures in
the VM consolidation problem. Finally, Section V concludes
the paper.

II. VIRTUAL MACHINE CONSOLIDATION

The virtual machine consolidation problem deals with the
allocation of a list of virtual machines V = {V1, ...., Vv, ...Vm}
on a set of physical servers S = {S1, ...., Ss, ...Sn}.



Each virtual machine demands a computational capacity
{k1, ...., kv, ...km}, and each server has a maximum compu-
tational capacity {C1, ...., Cs, ...Cn}.

The main objective of the virtual machine consolidation
problem is to use the minimum number of servers in order
to have an energy-efficient operation. It can be modeled as a
bin packing problem, “one of the oldest and most well-studied
problems in computer science” [6] and [7]. In this section,
we will mention four of the different versions of the virtual
machine consolidation problem.

A. Optimal Consolidation

The bin packing problem has been studied since the be-
ginning of the 70’s, and in computational complexity theory,
it is recognized as a combinatorial NP-hard problem [8].
Considering the set of servers S and virtual machines V
previously presented , in this section, we present an integer
linear programming formulation to minimize the number of
active servers, using the following binary variables:

• ys is equal to 1 if server s allocates virtual machines
(ON), and 0 otherwise (OFF).

• xv,s is equal to 1 if the virtual machine v is allocated on
server s.

min
n∑

s=1

ys (1)

subject to constraints (s.t.)

m∑
v=1

kvxv,s ≤ Csys , ∀(s) ∈ S (2)

n∑
s=1

xv,s = 1 , ∀(v) ∈ V (3)

Constraint (2) is used to avoid exceeding the server capacity,
and constraint (3) ensures that a virtual machine can only be
assigned to one server.

Optimal solutions to very large instances of the problem can
be produced with sophisticated algorithms [6], [7] and [9]. In
addition, many heuristics offline algorithms (Section II-C) can
provide solutions very close to the optimal. Having an optimal
value as reference is a matter of prime importance for this kind
of works, in order to compare the quality of a solution given
by offline, online, or semi-online algorithms.

B. Online Consolidation

In online consolidation, virtual machines arrive one at a
time, and the allocation should be done immediately. This is
a challenging scenario due to its high dynamics, and the time
constraints in order to take decisions. According to the strict
online definition, once the virtual machine is allocated, it has
to remain in the same server until its departure. One of the
most popular online approaches is called first-fit algorithm. It
receives the request with its respective capacity k, and it looks
server by server until finding one with enough free capacity
to allocate the request. The first server with enough resources

will be used to allocate the virtual machine. If the allocation
is not possible, a new server is switched on, and the VM is
allocated there.

This algorithm is rather simple, but it does not provide an
optimal allocation. A better approach is the best-fit algorithm.
Here, given that the active servers and current allocated VMs
are known, the algorithm will chose the server that fulfills the
next conditions: i.) The free capacity of the server is bigger
than the capacity request k. ii.) The server with the smallest
remaining free capacity.

Bounding the number of servers that may allocate an
incoming VM is a technique used in many online algorithms.
This is done in order to improve the computational complexity,
and the number of active servers. One of the most relevant
works in this line is the HARMONIC algorithms [10], [11]
and [12], which propose the partition of the server capacity in
intervals and classify them according to this criteria.

More advanced algorithms have been proposed in the lit-
erature. However, they imply, either the knowledge of future
requests, or the reallocation of VMs. The next sections will
explain these two cases.

C. Offline Consolidation

The main feature of offline consolidation is the knowledge
of all the incoming requests to be allocated, i.e., the number of
virtual machines and its capacity demands remain unmodified
during the entire problem. In this sense, the problem is static,
and hence there is a better chance of planning mechanisms to
obtain solutions close to the optimal value. Two of the basic
and most implemented offline techniques are the extension
of the online first-fit and best-fit algorithms. Using the VMs
knowledge, these methods provide solutions closer to the
optimal by sorting the incoming requests by their capacity, and
then allocating them in decreasing order. These techniques are
known as first-fit decreasing and best-fit decreasing.

Two of the most cited works in offline consolidation are: the
APTAS algorithm proposed in [13], and the exact algorithm
proposed in [14]. Finally, the work presented in [15] proposes
a decentralized approach by using ant colony optimization.

D. Semi-Online Consolidation

Semi-online consolidation is an intermediate method be-
tween offline and online. As defined in [16], it allows the
reallocation of a number of already allocated virtual machines.
The work presented in [17] proposes a semi-online algorithm
for the bin packing problem, whereby the packing of an
item, a total disregard for already packed items of smaller
size is done. This initial step may then cause some small
items to be repacked. Another approach proposed in [18]
allows a constant number of elements to move from one
bin to another, as a consequence of a new arrival. They
propose two versions of the algorithm. The first one, where
no more than three elements are allowed to move, and the
second one, where as many as seven items can be reallocated.
In [19], the reallocation process is considered each time a
new arrival occurs, giving priority to virtual machines with



smaller capacity requests, since “the more resources a virtual
machine requires, the more cost to reallocate it”. In addition,
they propose a mechanisms to control that any virtual machine
will be reallocated at most once.

One of the last works focused directly on cloud computing
scenarios is the ENACLOUD proposed by Li et. al. in [20].
In this work, each time a new virtual machine v arrives, the
algorithm “tries to displace the allocated virtual machines
with smaller capacity than kv”. Then, the displaced virtual
machines and the new arrival v are sorted and packed again
using the best-fit algorithm. Using this policy is possible to
save around 10% of the energy consumption in comparison
with the consumption by using only the best-fit algorithm.
Finally, in semi-online algorithms, it is also common to split
the server capacity in small subintervals, and label the servers
according to the maximum subinterval fulfilled, when virtual
machines are allocated.

III. FAILURE AND ENERGY CONSUMPTION MODELS

A. Failure Handling in Virtualized Environments

Hardware vendors and cloud designers follow best practices
and put considerable efforts in order to minimize the presence
of failures. However, real clouds are not failure free. They
may be generated among others, due to hardware malfunction,
software problems, network disconnections, electrical prob-
lems, environmental factors, or even human mistakes. The
consequences of failures may be considerable, and they may
happen very often [3], [4] and [5].

Based on the dynamics posed by the iteration of failure and
repair processes in a cloud computing environment, the servers
may be classified in three different groups: active servers,
spare servers, and on-repair servers. The active server group
contains the servers that are currently running virtual ma-
chines, being they the main source of energy consumption in
the cloud. The spare servers are functional devices waiting for
virtual machines that eventually may need them. Depending
on the operator policies, they may be: i.) On standby, which is
not an energy efficient policy, as Section III-B will show, but
it allows a fast response in case of failures ii.) Power-off state,
which is energy efficient, but with a slower reaction to failures.
Finally, on-repair servers are servers that were affected by any
kind of failure, and hence they are not operational, neither able
to allocate virtual machines.

Current cloud computing technologies make use of different
fault tolerance techniques in order to keep high levels of
availability. In this way, when a server is hit by a failure, the
affected VMs can be recovered independently of the physical
hardware, allowing a fast and efficient restoration.

One of the most advanced fault tolerance techniques is
active replication e.g., vSphere Fault Tolerance [21]. It uses
identical/parallel VM-images running. Under this technique,
a VM runs on two different physical servers, and every
input is duplicated. In addition, both servers are constantly
synchronized in order to keep coherence between the virtual
images. The idea is that in case of a server failure, the
virtualization platform is able to keep the VM running by

using its mirror image, without generating any downtime from
the user point of view. This concept is very useful in order
to perform online virtual machine migrations in clouds, and it
will be used in Section IV-C.

B. Energy Consumption

One of the biggest problems for the deployment of energy
efficient clouds is the fact that with the current available
technologies, idle servers still use more than 60% of the total
energy compared to the peak consumption, even if power
management functions are enabled [20], [22] and [23]. For this
reason, the most effective option to save energy is to switch
off as many servers as possible.

We will use a standard way of modeling the energy con-
sumption of a server as proposed among others in [24] and
[25]. Defining the server utilization at a given time t (us(t))
as a continuous function with minimum value of 0 when the
server is idle, and maximum value 1 when it is at peak load,
the power consumed by a server at time t may de defined as:

P [us(t)] = Pidle + [us(t) · (Pmax − Pidel)] (4)

where Pmax and Pidle are the power consumption when the
server is fully utilized and idle respectively.

Based on experimental measurements made in [24] on
servers Dell PowerEdge 1950, we will assume a value of 218
Watt for Pmax, and 171 for Pidle.

Finally, given that we are addressing dynamic scenarios,
the utilization of the servers is constantly changing due to the
arrival and departures of virtual machines, or due to failures.
The total energy consumption of a server may be obtained by
making the integral of the power consumed P [us(t)] over the
evaluated time interval.

IV. CASE STUDIES

A. Failure-free vs Failure-present scenarios

In this section, we will present a case study that compares
failure-present (real case) with failure-free (not real, but com-
monly assumed) scenarios, by analyzing two parameters: i.)
The number of active servers on the cloud. ii.) The energy
consumption in kWh.

We implement a Montecarlo simulation, where we consider
that VMs arrive and depart dynamically at random times. For
the arrival, we assume a Poisson process, where the time
between two consecutive events is negatively exponentially
distributed (n.e.d.), with an expected value of 50 minutes. Once
the VM request is received, it may be allocated according to
the two policies presented in section II-B (First-Fit or Best-
Fit algorithm). When the virtual machine is allocated in one
server, it will stay in the cloud for a n.e.d. sojourn time, with
a mean of 35 days.

We assume servers having a maximum capacity of 10000
MIPS, and the capacity of each individual virtual machine
requests will be obtained from a sample of a uniform distri-
bution with values 1000, 2000, 3000, 4000, 5000, 6000, 7000
and 8000 MIPS.
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Fig. 1. Number of Active Servers (ON).

The main objective is to compare failure-free with
failure-present clouds. Therefore, in the first scenario (NO-
FAILURES), we assume that servers never fail, and hence
the only dynamics in given by the arrival and departure of
virtual machines. The second scenario (FAILURES) considers
the existence of failures. We assume that servers are hit
by independent failure processes that occur according to a
negative exponential distribution with an expected waiting
time of 30 days. Immediately after a server failure, the affected
virtual machines are reallocated in the cloud in decreasing
order of capacity, and according to the original allocation
mechanism used on arrival, i.e., first-fit or best-fit.

Figure 1 shows the number of active servers (ON) in the
cloud after simulating the previously described settings . The
simulation was ran at the beginning during one year without
taking any measurement, in order to start evaluating the cloud
after some operational time, where its state is more stable.
Therefore, in the x axis of Figure 1, the running time zero
(Day 0) represents the start of the measurement of the number
of active servers after one year of operation. An important
information included in Figure 1 is the optimal number of
active servers. This information is used for comparison pur-
poses, and it was obtained by making a static picture of the
state of the cloud, starting from a sample at the end of day
13th, and repeating the procedure each 28 days. The static
picture considers only the virtual machines on the cloud and
their respective capacities k at the sampling time, giving the
chance to address the problem in an offline way, and hence
calculating the optimal value, using the procedures shown in
Section II-A.

Figure 1 confirms that Best-Fit performs much better than
First-Fit, under similar conditions (both considering or ignor-
ing failures), as it has been proved in all previous studies. In
addition, the considerable reduction in the number of active
servers produced by the effect of random server failures is a
remarkable result. The simulation results also show that First-
Fit considering failures may perform better than Best-Fit in
a failure free environment. This is a very interesting result,
since even trivial and well known concepts such as the better
performance of best-fit over first-fit may change, depending
on the consideration or not of failures.
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An additional interesting information provided by Figure 1
is the close operation to the optimal value of the Best-Fit
algorithm when failures are taken into account. This result
is positive and at the same time unexpected, since failures are
unavoidable events that happen without any intention of being
beneficial. Therefore, the fact that they may help to obtain
solutions close to the optimal is surprising. In Section IV-B, a
more detailed analysis of how close could be the solution to the
optimal will be presented. Having a number of active servers
close to the optimal by using only best-fit may reformulate the
advantages of most of the algorithms mentioned in Section II.
The additional complexity of those mechanisms may not
produce the expected reduction in the number of active servers,
since this value may be already close to the minimum.

Figure 2 shows the total energy consumption in the four
cases presented in Figure 1. The x axis contains the last
month of the case study (day 195 to day 225). The energy
consumption was calculated using the energy model presented
in Section III-B, assuming a consumption of 171 Watt per
Idle-active server, and 218 Watt per a fully utilized server.
According to Figure 2, one can observe that the presence of
failures may produce energy savings close to 10%.

B. The Effect of the Failure Intensity

Previous studies (such as those mentioned in Section II-D)
are aware that the reallocation of virtual machines after their
initial assignment produces a reduction in the number of
active servers. In this respect, this paper presents two novel
concepts: First, the reallocation studied here is not the result of
a planned optimization mechanisms, but just the consequence
of unavoidable and involuntary events. Second, the potential
proximity to the optimal value.

Figure 3 shows the number of active servers at a fixed time
t in a cloud, considering different server failures intensities.
For this, we ran a Montecarlo simulation, where each server
has an independent failure process with a time to failure
n.e.d. with intensities from one failure per day, to one failure
per year. In this case study, virtual machines also arrive and
depart dynamically. The waiting time until the next arrival is
n.e.d. with an expected value of 50 minutes. Once the VM
is allocated using the best-fit algorithm, it stays in the cloud
for a n.e.d. sojourn time with mean of 35 days. In order to
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Fig. 3. Number of Active Servers (ON), under different server failure
intensities (one failure expected per unit of time)

have a reference to compare the results obtained, Figure 3 also
includes: i.) The optimal value which represent the minimum
numbers of servers that should be activated in order to allocate
the virtual machines present at time t. ii.) The number of
servers needed to allocate the VMs at time t if best-fit had
been used in a hypothetical failure-free environment.

Figure 3 shows that operating with a number of active
servers close to the minimum is possible. In this case study,
it happens mainly from very short failures intensities, up to
values where one server failure per week is expected. In real
operational clouds, providers make huge effort in order to
have failures as seldom as possible. Therefore, an intensity
of one failure per week is not very likely in a real cloud.
For this reason, the range of Figure 3 includes intensities
where in average, one failure is expected in several months,
representing more realistic operational values. Despite of being
not very close to the optimal point, in these cases (failure
intensity in the order of months), the reduction in the number
of active servers is still valuable. For instance, for an intensity
of one failure per year, the number of additional servers ON
is reduced in more than 50%.

C. Induced Failures

Previous sections show the effect of involuntary failure
events on the number of active servers needed to allocate a set
of virtual machines. Given the positive impact observed, their
use as induced artificial events is an issue that deserve being
considered. This idea becomes more feasible given the fact
that online migration is a main feature in many commercial
virtualization software. In this way, an induced failure can be
planned in such a way that it does not generate any downtime
(See Section III-A). In addition of having the possibility
of producing planned failures with zero-downtime, induced
failures may be also properly scheduled in moments where
their impact could be minimum, e.g., late in the evening.

As a general policy, semi-online algorithms II-D are aware
that; the more chances a cloud provider has to redistribute
virtual machines, the higher the chance of operating with an
optimal number of active servers. On the other hand, these
reallocation processes are associated with instability; therefore,
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many studies try to minimize the amount of such events. We
are aware that generating artificial failures may create instabil-
ity in the cloud. However, we want to highlight five facts that
may justify their use: i.) Having failure handling mechanism is
compulsory anyhow. Therefore, the implementation of induced
failures does not imply much additional effort for the provider.
ii.) Real non-induced failures are events that will happen,
making smaller the amount of induced failures needed. iii.)
Current technologies allow zero downtime migrations. iv.)
Most of the semi-online algorithms in the literature (see
Section II-D) consider the use of reallocation with each VM
arrival or departure. The use of induced failures may reduce
that number considerably. v.) We found that inducing failures
only in some of the servers will provide results still close to the
optimal, reducing even more the amount of migration events
needed. This last concept will be explained in more detail as
follows.

Our assumption is that the migration of virtual machines
with bigger capacity does not produce the same saving on the
number of active servers than the migration of small virtual
machines. To analyze this concept, we made a Montecarlo
simulation similar to the one presented in the previous section,
but this time, we assume that all failures are induced, and
hence there is the possibility to choose if the server will accept
the failure or not. We will filter the induced failures based on
the capacities of the virtual machines allocated on the server.
For instance, if the rejection criteria is set at 7000 MIPS, all the
servers that allocate virtual machines with kv = 7000, 8000,
9000, or 10000 MIPS will reject the induced failures. The
simulation settings used to obtain Figure 4 are: Induced failure
arrivals with n.e.d. time to failure with main of 1 week. n.e.d.
virtual machine inter-arrival and sojourn time with mean of 50
minutes and 35 days respectively. Server capacity C = 10000
MIPS, and uniformly distributed VM capacities with a range
between 1000 to 8000 MIPS.

Figure 4 shows the results obtained from the simulation. The
idea is to evaluate the number of active servers needed when
some of the servers reject the induced failures. For instance,
the case ALL means that all the servers accept the induced
failure, and hence the migration is made in 100% of the cases.
The next case kv < 7 means that the servers that allocate a



virtual machine with a capacity k equal to 8000 MIPS will
reject the failures. In this case, near 30% of the failures are
rejected, and the increase on the additional servers needed in
reference to the minimum and the maximum value is just 3%.
An interesting situation is given when kv < 5. In this case,
only the servers that allocate virtual machines with less than
half of the capacity of the server (kv = [1000−4000]) will take
the induced failure, obtaining a failure rejection of more than
80%, and the number of additional servers needed in reference
to the minimum and the maximum value is near 30%.

V. CONCLUDING REMARKS
The main contribution of this paper is to show the posi-

tive impact of failures on the virtual machines consolidation
problem. A results that looks in principle contradictory to the
conventional perception of failures. We show that the effect of
failures may provide a solution very close to the optimal value
under some conditions. This result is very interesting, since it
is produced by random involuntary events. The virtual machine
consolidation and its associated bin packing problem are very
old problems. However, to the author knowledge, this problem
has not been studied in the presence of random failures that
force the migration of virtual machines. This paper provides a
new contribution, complementing the already wide knowledge
on this problem.

Many works try nowadays to develop energy efficient
mechanisms through smart VM consolidation. The results in
this paper are a warning for those works, since a variation
on the expected reduction of active servers may be produced
due to: i.) Failures are unavoidable events. ii.) They make the
operational point more efficient that it was thought. The failure
intensity, and the dynamics of the arrivals and departures of
virtual machines are key factors for the amount of servers that
can be switched off. Normal clouds operate with intensities
in the order one failure per several months. Under these
conditions, the optimal value can not be reached. However, the
energy saving is still considerable, since even with an intensity
of one failure per year, more than 50% of the additional servers
needed in a failure free scenario can be switched off.

Finally, in addition to the natural improvement obtained by
the presence of unavoidable failures, this paper proposes the
use of artificial induced failures as an alterative to operate with
values close to the optimal. We are aware of the potential
instability produced by inducing failures, but we raise five
points that may motivate this practice, in case of being needed.
i.) Failure handling mechanisms are part of the cloud anyhow.
ii.) Real failures will always happen, reducing the amount
of induced failures. iii.) Current technologies allow zero-
downtime migrations. iv.) Not all the servers have to accept
the induced failures. v.) The expected number of migration
events is less than the redistribution events proposed in other
related works.

REFERENCES

[1] G. International, “How clean is your cloud,” 2012. [Online]. Available:
http://www.greenpeace.org/international/Global/international/publications
/climate/2012/iCoal/HowCleanisYourCloud.pdf

[2] J. M. Kaplan, W. Forrest, and N. Kindler, “Revolutionazing data center
energy efficient.” Technical Report, 2008.

[3] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed storage
systems,” in 9th USENIX conference on Operating systems design and
implementation, ser. OSDI’10, 2010, pp. 1–7.

[4] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: measurement, analysis, and implications,” in Proceedings
of the ACM SIGCOMM 2011 conference. New York, NY, USA: ACM,
2011, pp. 350–361.

[5] A. Gonzalez, B. Helvik, J. Hellan, and P. Kuusela, “Analysis of depen-
dencies between failures in the UNINETT IP backbone network,” IEEE
Pacific Rim Dependable Computing Symposium. PRDC, Dec 2010.

[6] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Approximation
algorithms for np-hard problems,” pp. 46–93, 1997. [Online]. Available:
http://dl.acm.org/citation.cfm?id=241938.241940

[7] S. S. Seiden, “On the online bin packing problem,” J. ACM,
vol. 49, no. 5, pp. 640–671, Sep. 2002. [Online]. Available:
http://doi.acm.org/10.1145/585265.585269

[8] R. Karp, Reducibility among Combinatorial Problems, ser. The IBM
Research Symposia Series, R. Miller, J. Thatcher, and J. Bohlinger, Eds.
Springer US, 1972.

[9] W. Fernandez de la Vega and G. Lueker, “Bin packing can be solved
within 1 + ε in linear time,” Combinatorica, vol. 1, no. 4, pp. 349–355,
1981.

[10] C. C. Lee and D. T. Lee, “A simple on-line bin-packing algorithm,” J.
ACM, vol. 32, no. 3, pp. 562–572, Jul. 1985.

[11] S. S. Seiden, “On the online bin packing problem,” J. ACM, vol. 49,
no. 5, pp. 640–671, Sep. 2002.

[12] J. Balogh, J. Bksi, and G. Galambos, “New lower bounds for certain
classes of bin packing algorithms,” vol. 6534, pp. 25–36, 2011.

[13] W. Fernandez de la Vega and G. Lueker, “Bin packing can be solved
within 1 + ε in linear time,” Combinatorica, vol. 1, no. 4, pp. 349–355,
1981. [Online]. Available: http://dx.doi.org/10.1007/BF02579456

[14] S. Martello and P. Toth, Knapsack problems: algorithms and computer
implementations. New York, NY, USA: John Wiley & Sons, Inc., 1990.

[15] E. Feller, L. Rilling, and C. Morin, “Energy-aware ant colony based
workload placement in clouds,” Proceedings of the 2011 IEEE/ACM
12th International Conference on Grid Computing. IEEE Computer
Society, 2011.

[16] B. Jnos, B. Jzsef, G. Gambor, and R. Gerhard, “On-line bin packing
with restricted repacking.” Journal of Combinatorial Optimization, pp.
1–17, 2012.

[17] Z. Ivkovic and E. Lloyd, “Fully dynamic algorithms for bin packing:
Being (mostly) myopic helps,” SIAM Journal on Computing, vol. 28,
no. 2, pp. 574–611, 1998.

[18] G. Gambosi, A. Postiglione, and M. Talamo, “Algorithms for the relaxed
online bin-packing model,” SIAM Journal on Computing, vol. 30, no. 5,
pp. 1532–1551, 2000.

[19] Y. Ho, P. Liu, and J.-J. Wu, “Server consolidation algorithms with
bounded migration cost and performance guarantees in cloud comput-
ing,” Utility and Cloud Computing (UCC), 2011 Fourth IEEE Interna-
tional Conference on, pp. 154–161, 2011.

[20] B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “Enacloud: An
energy-saving application live placement approach for cloud computing
environments,” IEEE International Conference on Cloud Computing, pp.
17–24, 2009.

[21] VMware, “Protecting Mission-Critical Workloads with VMware Fault
Tolerance,” 2009, white Paper.

[22] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation for
cloud computing,” Proceedings of the 2008 conference on Power aware
computing and systems. USENIX Association., vol. 10, 2008.

[23] A. Berl1, E. Gelenbe, M. D. Girolamo, G. Giuliani, H. D. Meer, M. Q.
Dang, and K. Pentikousis, “Energy-efficient cloud computing,” The
Computer Journal. OXFORD JOURNALS, pp. 1045–1051, 2010.

[24] E. Feller, L. Rilling, and C. Morin, “Energy-aware ant colony based
workload placement in clouds,” in Proceedings of the 2011 IEEE/ACM
12th International Conference on Grid Computing, ser. GRID ’11. IEEE
Computer Society, 2011, pp. 26–33.

[25] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755 – 768, 2012.


