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SUMMARY

A detailed biomechanical model of the human face driven by a network of muscles is a useful tool in
relating the muscle activities to facial deformations. However, lengthy computational times often hinder
its applications in practical settings. The objective of this study is to replace precise but computationally
demanding biomechanical model by a much faster multivariate meta-model (surrogate model), such that a
significant speedup (to real-time interactive speed) can be achieved. Using a multilevel fractional factorial
design, the parameter space of the biomechanical system was probed from a set of sample points chosen
to satisfy maximal rank optimality and volume filling. The input—output relationship at these sampled points
was then statistically emulated using linear and nonlinear, cross-validated, partial least squares regression
models. It was demonstrated that these surrogate models can mimic facial biomechanics efficiently and
reliably in real-time. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Current knowledge of mechanisms that generate expressive facial movements is mostly based on
dissection and imaging (both photographic and medical) studies, and therefore, the underlying
intricate biomechanical interactions remain a not well-understood subject. As computer capacity
advances, it is becoming increasingly viable to study complex biological systems using highly
detailed computational models. In this context, a detailed biomechanical model of the face will
allow researchers to fully understand the mechanisms involved in facial expressions.

One of the first muscle-driven face model was developed by Waters and Terzopulos [1], which
allowed facial expressions to be shaped by the control of the underlying musculature. However,
the expressions generated from the early models were relatively simple and looked artificial. In
addition, the manipulations of the parameters that control these models were often complex and
unintuitive, and hence difficult for inexperienced users. In the recent years, more complex and
biomechanically accurate face models have been developed for various applications. For example,
Sifakis et al. [2] created a detailed finite element (FE) model of the face to simulate facial
expressions while incorporating collision events and environmental factors. Ramirez-Valdez and
Hasimoto-Beltran [3] used biomechanically derived facial expressions in their facial screening
database to improve the chance of detection. In the medical sector, there are on-going studies to
create more sophisticated facial models for pre-surgical planning and to predict long-term post-
surgical outcomes (both aesthetic and functional outcomes), see, for example, [4—8]. On a similar
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note, biomechanical models have also been used to investigate speech articulation and phonological
processes [9, 10].

In order to make realistic predictions, one needs to use complex biomechanical models
with lengthy computational times. As a result, they are not appropriate for applications requiring
real-time performances (e.g. interactive animation, real-time facial screening and surgical
navigation). In this paper, an alternative approach using simplified surrogate models (multivariate
meta-models) is described. Using a suitable surrogate model, real-time and interactive performances
can be accomplished. A surrogate model is capable of handling both the forward and inverse
modelling problems. In the forward modelling (classical meta-modelling), one develops a
statistically based surrogate model (output=f{(input)) using simulation data, and then uses it to
evaluate the system’s unknown output from new values of the input. Conversely, in the inverse
meta-modelling, the surrogate is used to predict the system’s unknown inputs from new measurements
of output variables (i.e. input = floutput)). Regardless of the application, it is essential for the surrogate
model to mimic the characteristics of the underlying physical (biomechanical) model, and therefore,
the global behaviour of the system can be described in a less expensive manner.

In order to implement the surrogate-based approach, we require a biomechanical system that
simulates facial biomechanics. The 3D geometry of the facial model used in this study is derived
from MRI data of a healthy 26-year old male volunteer. Its biomechanics is characterised by the
theories governing finite deformation elasticity and nonlinear contact mechanics. The elastic
difference between the muscle and adipose tissues is accounted for by treating the soft tissue
continuum as a heterogeneous medium, and its mechanical behaviour is represented using a
modified two-parameter Mooney—Rivlin constitutive model [11]. Soft tissue deformations are
driven by the contraction of the underlying network of 3D muscles. Table I summarises a list of fa-
cial muscles that were used in the current implementation; the annotated figure of the muscle
geometries are shown in Figure 1. The phenomenologically derived muscle fibre model is
controlled by a scalar value that represents the level of muscle activation (normalised between zero
and one). These fibre forces are integrated into the computational domain through a novel FE mapping
procedure that ensures the complex 3D geometry of the muscle is preserved [12]. Using this model,
realistic facial expressions can be generated by activating relevant muscles as shown in Figure 2.
For a more comprehensive description of the biomechanical model, the reader is referred to [13].

The paper is organised as follows. In Section 2, the idea of surrogate models built upon statistical
modelling theory is introduced. With an appropriate but simple mathematical meta-model function,
the underlying mechanics of the face model can be approximated more efficiently. Section 3

Table I. Facial muscle names and abbreviation used in biomechanical

simulations.
Muscle name Abbreviation
Buccinators BUC
Corrugator supercilii COR
Depressor anguli oris DAO
Depressor labii inferioris DLI
Depressor supercilii DES
Frontalis FRO
Levator anguli oris LAO
Levator labii superioris LLS
Levator labii superioris alaeque nasi LLSAN
Mentalis MEN
Orbicularis oculi (orbital part) 00C-0
Orbicularis oculi (palpebral part) OOC-P
Orbicularis oris OOR
Platysma PLA
Procerus PRO
Risorius RIS
Zygomaticus major ZMA
Zygomaticus minor ZMI
Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2014)
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Figure 2. Biomechanical simulations of the expressions of (from left to right) joy, sadness, snarl and the
kissing gesture, by activating the corresponding facial muscles.

describes the sampling procedure to obtain the statistical data required to train the surrogate model.
A novel multilevel fractional factorial design proposed by [14] is employed in this study.
Multivariate partial least square regression (PLSR) method is used to determine the characteristics
of the surrogate model. Section 4 outlines the process of training and validating the PLSR surrogate.
Four forms of PLSR are considered, including the classical linear form and three nonlinear variants.
The performance and speed of each surrogate model is benchmarked, and the results are presented
in Section 5. In Section 6, the applications of the surrogate model with examples demonstrating the
forward modelling problem are highlighted. Finally, conclusions drawn from the study are
presented in Section 7.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2014)
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2. SURROGATE-BASED MODELLING APPROACH

Consider a physically based model M, in which M is controlled by a set of input parameters
(independent variables) and yields a set of output parameters (dependent variables). A surrogate
model (or meta-model) of M is based on a statistical modelling approach, where the behaviour of
model M is characterised using a relatively simple mathematical meta-model function, whose
parameter values are estimated from simulation results that were obtained from statistically
designed numerical experiments (Figure 3).

As far as the facial biomechanical model is concerned, the activation level of various facial
muscles represent the independent input variables, whereas the mesh nodal DOF that describe the
geometric deformation are the dependent output variables (mesh nodes). The practice of creating
a surrogate model generally follows a two-step process. Firstly, a sampling procedure is performed
where the entire input design space is explored from a manageable number of observation points. It
is a major challenge in meta-modelling to determine a design that is as accurate and reliable as
possible with the minimal investment in obtaining new observations of the system. Once an
adequately defined set of observations is acquired, the appropriate mathematical function is then
chosen, and its parameters are estimated to allow optimal description of the input—output
relationship. It is crucial for the function to capture most of the nonlinearity and interaction of
the system, hence making it useful for predicting new data.

Least squares estimators have been shown to be effective in the context of surrogate-based meta-
modelling. Some common examples are the polynomial regressors [15], moving least squares
methods [16], Gaussian radial basis functions [17] and its variant, the Kriging method [18]. More
recently, the support vector predictor [19] is becoming increasingly popular because of its ability
to handle noisy data. The interested reader is referred to [20, 21] for a comprehensive overview
of these methods. In the present study, however, the multivariate PLSR method was applied.
Despite being less common in the field of engineering, variants of the PLSR are a popular
technique adapted in chemometrics and related areas. The PLS approach allows particularly
relevant co-variation subspaces to be extracted from two or more data matrices. It serves two
important purposes; firstly, it is used to reduce the dimension of the system while preserving most
significant information (i.e. shrinkage estimator). Secondly, the PLS method removes multi-
collinearity among the regressor and regressand variables. The multi-collinearity or near linear
dependence of the independent variables is a serious problem for traditional full-rank least squares
estimators as it results in inflated uncertainty variances and covariances of the regression
coefficients. Specifically, the values and signs of estimated coefficients may change considerably
given different training data from the same system, hence leading to the possibility that a model that
fits the training data may generalise poorly to new data (Montgomery et al., 2006).
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Figure 3. Diagrammatic representation of a conventional deterministic physical model (blue path), and its
adaptation to the data-driven surrogate model (red path) via designed numerical experiments and statistical
regression modelling of the simulation data.
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3. DESIGN OF EXPERIMENTS

In statistics, design of experiments is the planning of information-gathering (sampling) exercises
where the relevant variations of the system are investigated under a controlled environment. In
terms of computer simulations, the design defines where to probe a system in its input design
space [22]. The primary interest when designing the experiments is that the variance of sampling
points must be minimised, thus maximising the relevant information that the sample represents.
An ideal design of experiments is one that distributes the sample points uniformly in the design
space; specifically, the variance can be minimised by maximising the minimum distances
between design points [23]. A uniformed design may be achieved from a full factorial approach,
where each input variable (denoted as factor) is discretised into two or more possible levels of
value, and the system output at all possible combinations of these levels across all factors is
evaluated. However, the computational cost of such a design often limits their practicality. To
make the simulation counts more manageable, while maintaining the benefits of the factorial
approach, fractional factorial designs are frequently employed. In the fractional factorial experi-
ments, most of the combinations are omitted based on certain statistical assumptions. Early frac-
tional reductions were mainly intended for factors with only two levels, where the reductions
were based on the sparsity-of-effects principle (i.e. 257 designs, where K is the number of fac-
tors and 27 is the reduction ratio). Although these two-level designs are sufficient in investigat-
ing the primary effects of factors, they have limited ability to reproduce higher-order nonlinear
behaviours.

In this study, a multilevel extension to the 2% factorial design was created using the binary
replacement method proposed by Martens et al. [14]. The multilevel factorial design is employed
as it is believed that, compared to e.g. random sampling, the factorial approach in general facilitates
the spanning of the high-dimensional input factor space more readily. Moreover, contrary to
computer experiment designs generated from the Latin Hypercube method, it also accommodates
the modelling of nonlinear input—output relationships by splitting the parameter variables into
equally spaced levels.

3.1. Multilevel binary replacement (MBR) method

Consider a complex unknown system with K input factors, where these factors are assessed at a
number of levels L(k) in a factorial design. With little loss of generality, the number of levels for
each factor is chosen to be power of two: L(k)=2M®_ where the full factorial combination would
be N=2>M® T the multilevel binary replacement (MBR) design, the input variable x; ; of factor
k and level [ can be represented in the index form d;; (e.g. x,=1[0,0.25,0.5...] is mapped into an
equally spaced indexing variable d;=[1,2,3,...]), which can be further recoded into a binary
variable f; that has M(k) factor bits, e.g. fi;=[fcs1.---.fimwl. For instance, a value dj ;=5
in an eight-levelled factor (M(k)=3) can be written as [ fi;1, fr12> fr.31=1[1,0,1], where the bits
(0 or 1) can be further recoded into two-level replacement design factors g;; with values —1 or 1
in accordance with standard factorial design procedure, that is, [gs;1, gkxs2 and g ;3]1=[1,—1,1].
Equation (1) depicts the relationship between d, , f;; and g ;, which are equivalent representation
of the design.

M(k)

dk,l = sz_lfk,l,m

m=1

ng :fk’] X 2_1

D

As a result, the multilevel design (L(k)>2) can be investigated as a two-level factorial
system where standard 2X7 reduction methods can be applied. It should be noted that while
the MBR method is relatively new, it has been implemented into computer experiments of a
mammalian circadian clock model, which demonstrated its potential for highly nonlinear
problems [24].
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3.2. The optimised multilevel binary replacement design

The facial expression modelling problem used in this study contains K= 18 factors (representing 18
facial muscles). To capture the nonlinearity of the system, each factor was discretised into four
equally spaced activation levels (V k :L(k)=4) ranging between 0 and 1, that is, x,=[0,1/3,2/3,1].
In a full factorial design, this would give N=4'8~6.8x 10'® possible combinations. Here, a
strongly reduced simulation design with only 128-parameter combinations was employed, namely,
N=128=2%*"182% with a reduction ratio of 27%°.

The optimised MBR design in this study was optimised according to the following procedure:

1. Create a new confounding pattern by randomly re-assigning two-level factors g, to the
standard 257 design method.

2. Convert back to original factor variables x;.

Determine an optimisation criterion based on X;.

4. Repeat several times (5000 repetitions were computed in this study) and choose the one with
maximum criterion value.

bt

The criterion used in this study is a combination of maximal rank optimality and maximal
volume filling. The maximal rank optimality is calculated by summing the eigenvalues of the
quadratic information matrix, revealing the design with maximum variance in the main effects
as well as some (as many as possible sets of) two-factor interactions. On the other hand, the
maximal volume filling function identifies the design with minimal number of large empty holes
in the parameter space, based on the pairwise combinations of these K=18 parameters. It is
important to note that, unlike in the standard 257 methods, the optimisation criterion is
calculated based on the values of quantitative design factors (x;), not the two-levelled
counterparts (g, ;). This is to compensate for the fact that the levels in a design factor x; may
not be evenly spaced, and in addition, the responses are expected to behave differently when
changes are made within a design factor x; and at different levels of other design factors
X+ The optimal MBR design generated from the described procedure is plotted pairwise in
Figure 4. Note that the design gives an almost complete coverage of all possible pairwise
interactions, except between the frontalis (FRO) and palpebral part of the orbicularis oculi
(OOC-P) muscles.
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Figure 4. Pairwise plot of the optimised multilevel binary replacement design used to generate statistical

model of facial expressions and gestures. This reduced design with 22 '® = = 128 simulations spans 18 factors

where each factor was discretised into four levels (i.e. the levels of activation for 18 considered facial muscles).

The muscles abbreviation are given in Table I, and they are sorted from the most likely (top-left) to the least

likely muscles being recruited from a predefined set of expressions and gestures (smile, laugh, sadness, anger,
terror, crying, disgust, snarl and kissing).

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2014)
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4. MODELLING RELATION

In order to generate an accurate and reliable surrogate model, all of the available simulation data
were employed. This included the 128 simulations for the optimised MBR design (Section 3.2)
and 18 simulations of individual muscle actions. In addition, to further extend the sample space,
converged intermediate solutions obtained from the load stepping strategy [25] were also used.
The load stepping strategy was necessary for the biomechanical simulations to converge.
Specifically, instead of directly applying the maximum level of muscle activations, they were
applied sequentially in small increments, and the solution obtained from the previous iteration is
used as the initial guess for the next increment. The converged solutions from each of the
incremental step were then added to the overall sample database. Together, the original 128 end
point parameter solutions and the intermediate increment solutions generated 6081 observations
of the system. These input/output data were employed to train the surrogate model.

Methods of modelling the input—output relations can be broadly classified into parametric
and non-parametric form. The parametric methods presume a global functional form of the
relationship between the independent and dependent variables, while in non-parametric
methods, simple local models are applied in different regions of the data to build up an overall
surrogate. This study explores both the parametric and non-parametric methods based
on PLSR.

4.1. Partial least squares regression method

The PLSR [26] is a method for modelling relations between two sets of observed variables X and Y
(e.g. the input parameters and the output responses) by means of estimated latent variables [27]. In
contrast to the more well-known principal component regression, which first compresses matrix X
into a reduced set of orthogonal components by means of principal component analysis and then
uses these components from X as regressors for Y, the PLSR creates the components by modelling
the relationship between the X and Y, thereby ensuring that the components extracted from X are
more relevant to Y. Previous studies have demonstrated that PLSR achieves the same or better
results as principal component regression while using significantly fewer, and qualitatively different
components [28, 29].

Consider a (Nx K) matrix of the mean-centred input space (X) and a (NxJ) matrix of the
mean-centred output space (Y), where K is the number of independent variables (factors) per
observation, J is the number of dependent variables per observation and N is the number of the
observations. The variables within X and Y are usually scaled to have approximately equal
expected uncertainty. The PLSR method then decomposes X and Y matrices into bilinear structure
models consisting of linear combinations of score and loading matrices.

X=TPT+E ()
Y=TQ" +F Q)

where T(=XV) is a (Nx A) matrix of A extracted score vectors (or components) from X, obtained via
weight matrix V (Kx A) that maximises the explained covariance of X and Y. The (Kx A) P matrix
and the (Jx A) Q matrix are the loading matrices, and E and F are residual matrices (i.e. the
unexplained parts of X and Y, respectively, after A components are extracted). The PLS
estimation principle ensures that the X-scores, T are Y-relevant by using a temporary model of Y
(Equation (4)) inside the estimation algorithm:

Y=UC"+F “4)
where U is a (Nx A) matrix that represents Y-score vectors (linear combinations of the Y-variables). It
shall be noted that Equation (4) is only used for preliminary estimation guidance, and not in the final

model. The PLSR method assumes that a known inner relation between the Y and X-scores exists: that

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2014)
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is, U=f(T)+H, where H denotes the matrix of residual resulted from this inner relation mapping.
Replacing U in Equation (4) by U=f(T), the PLSR model can be rewritten as

Y =f(T) x C" + F* (5)

with F* being the combined residuals from the decomposition and the inner relation mapping. In this
study, the process of determining T, U, P, Q, C and V from the training data was performed using the
nonlinear iterative PLS (NIPALS) algorithm [30].

4.1.1. Classical linear form. The classical form of the PLS regression method originally presented
by [26] and elaborated by [31] was based on a linear inner relation between the scores: u,=dt, +h,,
where d is a scalar regression coefficient and u,, t, and h, are the column vectors of the matrices U, T
and H associated with the a”*-component. Equivalently, in the matrix form, the linear inner relation
can be written as

U=TD+H (6)

with D being the (Ax A) diagonal matrix of regression coefficients. The PLSR is an iterative process;
starting from the original data matrices (X and Y), the classical linear form finds score vectors t,_; and
u, - with maximum covariance. The subsequent components are chosen such that T is orthogonal
(tith= 0, i #J), and in addition, each t, and the corresponding u,, are maximally covariated. In NIPALS
algorithm, orthogonality is ensured by deflating the data matrices (Equation (8)) every time after a
component has been extracted, before operating on the subsequent component. The steps for
determining the components of each rank are as follows (for brevity, the subscript a is neglected hereon).

1. Initialise u, for example, as the column vector of Y with the maximum Euclidean norm.

2. Estimate loading weights w by regressing columns of X on u and then normalise to unit length:
w=X"u, [wll - 1.

Calculate the input score vector: t=Xw.

Estimate ¢ by regressing columns of Y on t and then normalise to unit length: ¢=Y"t, llcll — 1.
Calculate the output score vector: u=Ye.

Repeat steps 2—5 until convergence is achieved.

A

After obtaining the converged scores, the loading vectors (p and q) and the regression coefficient (d)
can then be computed as

X't

P=m

qe u_Tt (7
tTt

q=dc

Subsequently, the training data matrices are deflated (Equation (8)) and repeated for extraction of
the succeeding component, until the maximum number of components are reached (A < min(K,J))
or the required tolerance on the residuals (E and F) has been achieved.

XX —tp”
Y—Y —ucT

(8)

In the NIPALS algorithm, the parameters w, t, p, ¢, q and d for all components a=1,2,...,A are
collected in matrices W, T, P, C, Q and D. Moreover, the weight matrix V can be expressed as a
linear transformation of the orthonormal loading weights W:

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2014)
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V=w(EP'w)"' ©)

Once all significant components are extracted, the model can then be used to predict new data
using the following relationship:

Y=TQ" +F
= XVDCT + F* (10)
= XB + F*

where B is a (Kx J) matrix of regression coefficients.

4.1.2. Nonlinear extension. While the classical form of PLS may be a simple surrogate model,
if the nonlinearity of the system is severe, the linear approximations are often inadequate and
do not achieve the required accuracy. The nonlinear extension of the PLSR method can be
distinguished into two distinct forms. In accordance with [32], they are denoted as Type I
and Type II forms. The Type I PLSR first applies a nonlinear transformation to the observed
variables, and subsequently, a linear PLS model is used to relate the transformed variables.
However, despite the ease of implementation, a drawback in the Type I approach is that it
represents a ‘black-box’ model, making it difficult for the user to interpret the results. To over-
come this problem, Type II PLSR employs a more general approach, where a nonlinear inner
relation is constructed without transforming the observed variables, therefore addressing the
problem of loss of interpretability. In this study, both Type I and Type II methodologies were
examined.

Type I: nonlinear transformation of observed variables

Assuming that a nonlinear relationship exists between the independent and dependent variables:

f

x——>y . This relation can be equally represented using a two steps mapping process:

X —¢>(p —>y, where the original input data (xeRX) are first mapped to a higher dimensional

feature space (p(x) = eRX”, K* > K) before transforming to y. It is then easily conceived that there
exist pairs of ¢ and f; functions, where all the nonlinear behaviours are accounted for in ¢ and thus
f1 becomes a simple linear mapping between ¢ and y. However, in practise, it is difficult to find
such pairs of mappings as the form of the nonlinear relation between the original independent
and dependent variables is often unknown. Nevertheless, following the idea that in a higher
dimension (where the original variables are mapped), the nonlinearity of the system is reduced,
the resulting relation (between ¢ and y) can therefore be approximated linearly (using linear
NIPALS algorithm) with lesser residual values. A common mapping function is the quadratic
surface projection [33], where the original data are extended by considering the squares and cross
products of the entries.

2 2
X = (X1, .0y X))@ = (xl, ey Xk X5 ey X, X1 X2, ...,xk,lxk) (11)

The Type I principle is simple and straightforward as there are no algorithmic modifications to
the classical NIPALS algorithm. However, there are some limitations that prevent the general usage
of this form of nonlinear modelling. Firstly, because the PLSR is performed between transformed
variables, not the originally observed variables, it may sometimes be difficult for the user to
interpret the results and comment on the regression coefficients. Another drawback of Type I
principle is related to the expansion in the dimensionality of the regressor. As the dimensionality
increases, more orthogonal components are required to capture the characteristics of the mapped
input space ¢, which results in higher computational costs. In addition, because the regression
model is fitted on the expanded input space, in a least squares sense, its generalisation to the original
observed data in the lower dimension may not be optimal. On a similar note, an adequately dense

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2014)
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sampling strategy in original space may become too sparse in higher dimensions, and therefore also
results in poor generalisation of the model.

Type II: nonlinear inner relation

In contrast to Type I nonlinear PLSR models, in the Type II approach, the assumption that the
score vectors t and u are linear projection of the original variables x and y is maintained. Instead,
a continuous nonlinear function is introduced to replace the linear inner relation (Equation (6)).
As a consequence of a different inner relation, some modifications to the classical NIPALS
algorithm are required. First, it can be observed from the linear formulation (see the NIPALS
algorithm in Section 4.1.1) that the weight vector w corresponds to the covariance between the
output score vector u and the input data x. However, in the nonlinear case, w represents the
nonlinear association between u and x, and is only related to covariance if the nonlinear function
is monotonic and slightly nonlinear. As a consequence, the nonlinear update of the weight vector
Aw needs to be considered at each inner iteration of the NIPALS algorithm [34].

oaTou\ 'fod]T
Aw = < ) [aw] (u—u) (12)

where @i =f{t,a) is a nonlinear function of t, fitted to the function parameters a. Based on this update
scheme, the modified NIPALS algorithm with nonlinear inner relation is given by the following steps:

1. Initialise u, for example, as the column vector of Y with the maximum Euclidean norm.

2. Initialise w based on the linear preliminary model (i.e. X =uw") and then normalise to unit length:
w=X"u, lwll — 1.

Calculate the input score vector: t=Xw.

Fit the nonlinear inner relation to obtain @i: a « fitg[u=f{t,a)+h], G =ft,a).

Estimate ¢ by regressing columns of Y on i and then normalise to unit length: ¢=Y'4, [lcl| — 1.
Calculate the output score vector: u=Ye.

Update w using Aw defined in Equation (12) and normalise: w=w + Aw, [lw| — 1.

Repeat steps 3—7 until convergence.

PN W

After the convergence of the inner loop, the X-loading vector p is computed using Equation (7),
and the data matrices are deflated (Equation (8)) for the extraction of subsequent components. The
nonlinear PLSR model is then described as

Y=TQ" +F
=f(T) x CT + F* (13)
=g(X) x CT + F*

where g(X)= f(T):fJ is the Y-score matrix generated from the nonlinear inner relation. From
Equation (12), it is clear that Aw can only be derived when i is a continuous and first order
differentiable function of w. In this study, two continuous and first order differentiable nonlinear forms
of the inner relation were applied; they are quadratic polynomial and piecewise (non-parametric) cubic
spline functions. It should be noted that other recent PLSR modifications are also available for
nonlinear meta-modelling. One such example is the cluster-based hierarchical PLSR [35], but they will
not be considered here.

4.2. Model assessment and comparison

Four surrogate models were generated based on variants of the PLSR model discussed in the
previous section. They are the linear model, Type I quadratic surface model, Type II quadratic
polynomial model and Type II cubic smoothing spline model. Figure 5 demonstrates the modelling
of the inner relationship using these four PLSR methods. It can be seen that with Type II approach,
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Figure 5. Scatter plots of scores and model of inner relationship for the first component of the partial least
square regression surrogates.

the nonlinear inner associations are captured by the respective fitting functions. Also notice that
while the Type I method models the inner relationship linearly, it extracts a different pair of t
and u vectors in comparison to the linear PLSR as the result of the nonlinear transformation on
the input matrix. This section compares the reproducibility (ability to reproduce training data)
and predictability (ability to predict new data) of the model through the analysis of explained
variance and cross-validation.

4.2.1. Reproducibility. A common technique to assess the goodness-of-fit of a PLSR model is to
analyse the cumulative percentage of variance explained (CPVE). The CPVE for the input and
output data blocks are defined as

N K . 5
CPVEx = Z"N: 1 Z'}? X nk)z x 100%
Zn:l Zk:] (Xnk)
N J X
CPVEy = Zn:l ZiZI (Y nk)2
= 5 =
Zn:l Zj;l (Ynk)2

where X* and Y* are the reconstructed input and output data matrices using the PLS method.
Figures 6 and 7 plot the CPVE as a function of the number of components (or equivalently
the rank of the PLSR model). The variance values of the first two and the last components are
also shown in Table II for quantitative comparison. It can be seen that the Type II cubic smooth-
ing spline model performs slightly better than the Type II quadratic polynomial model, which, in
turn, is better than the linear version. Nevertheless, the differences between these three PLSR
models are small, due to the relatively linear response of the system (as can be seen by the fact
that the linear model was able to reproduce 91% of the overall variability). When applying
Type I quadratic surface model, a much higher percentage of variance can be captured (99%).
However, it is at a cost of increased dimensionality on the input space and therefore an increase

(14)
x 100%
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number of components, showing (a) the first 18 components and (b) all 189 components required for the
Type I quadratic surface partial least square regression.

100

)

90
80
70
60
50
40
30

Cumulative variance
explained (%)

100

Cumulative variance <
explained (%)

30

e == Linear
+«+ee++ Type I quadratic surface
Type II quadratic polynomial

= == = = Type Il smoothing spline

7 8 9 10 11 12 13 14 15 16
number of components

17

18

e O O L U L R L e R R
.

.

.

o« | inear
«e++e« Type I quadratic surface
Type I quadratic polynomial

= = « =« Type 1l smoothing spline

1

1 21

31

41 51

61 71 81 91 101 111 121 131 141 151 161 171 181

number of components

Figure 7. Cumulative percentage of variance explained in the dependent variables (Y) as a function of the
number of components, showing (a) the first 18 components and (b) all 189 components required for the
Type I quadratic surface partial least square regression.

in the rank of the model, leading to a greater computational cost. Moreover, as discussed previ-
ously, the Type I principle has the problem of interpretability and issues relating to the expansion

of the dimensions.
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Table II. Comparison of percentage of variance explained by different types of PLS model.

X-block T-block

% variance Cumulative % variance % variance Cumulative % variance
Linear PLS model
1 45.9064 45.9064 40.1120 40.1120
2 5.6734 51.5798 8.8971 49.0090
18 1.9944 100.0000 0.2863 90.9832
Type I nonlinear—quadratic surface PLS model
1 38.3489 38.3489 35.0629 35.0629
2 4.7071 43.0560 8.7508 43.8137
189 0.0000 100.0000 0.0009 98.5530
Type 1I nonlinear—quadratic polynomial PLS model
1 41.9094 41.9094 43.9849 43.9849
2 4.4019 46.3113 10.3980 54.3829
18 2.9449 100.0000 0.1177 92.1305
Type 1I nonlinear—cubic smoothing spline PLS model
1 41.9453 41.9453 44.1818 44.1818
2 4.3252 46.2705 10.7255 54.9073
18 2.7967 100.0000 0.1555 93.6541

PLS, partial least square.

4.2.2. Cross-validation. —Although analysing the CPVE of a particular surrogate is a useful practice,
it has limited ability in establishing whether the surrogate is ready to be applied to data, which
are not part of the training sample. Theoretically, for linear input—output systems, or for meta-
model that is suitably extended to handle nonlinearities, a perfect prediction of the model’s
outputs Y from its inputs X should be possible, provided that the X and Y data are error free
(apart from algorithmic problems such as inadequate convergence, round-off errors etc.). How-
ever, the problem is, if the statistical estimation process has estimated too many independent
meta-model parameters, compared to the information content of the available training data,
over-fitting (due to over-parameterisation) may arise. This means that small irrelevant varia-
tions in the input—output relationship (e.g. stochastic noise from measurements) are built into
the model, whereby its predictive ability deteriorates. Therefore, it is important to assess the
model’s predictive ability in Y as a function of increasing PLS model complexity (i.e. number
of estimated PLS components and number of nonlinearity parameters), and choose the model
complexity with the best predictive performance. This can be performed empirically, using an
independent test set (if one has a high number of training samples, N), or by cross-validation
(if N is limited, as in this study).

In order to conduct cross-validation, the sampled data were randomly split into M subsets
Xi,...,Xy; and Yy,...,Y,) with approximately equal size (i.e. M-fold cross-validation).
Following that, each variant of the PLS methods is then applied M times, leaving out one subset
from training in each construction. From M reconstructed subset models, the sum of squared
differences of the prediction is computed using the omitted subset, and the generalisation mean
square error (GMSE) measurement is then obtained as the average of all the sum of squared
differences values.

2
1 M %
GMSE = HYm—Y <*m>H 15
M 2 (15)

m

where Y, is the matrix of dependent variables of subset m and Y,," ™™ represents the prediction at
X,, using the PLSR model trained from all sample data except subset m. In this study, M =4
subsets were used for cross-validation. Figure 8 plots the GMSE against the number of components
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Figure 8. Cross-validation for the partial least square models, showing the generalisation mean squared

errors (GMSE) using (a) first 18 components and (b) all 189 components required for the Type I quadratic

surface partial least square regression. The optimal ranks (number of components) are depicted as having
the lowest GMSE.

for all four variants of the PLSR model. In the figure, the optimal ranks (number of components)
are depicted as having the lowest GMSE.

It can be seen that the Type I quadratic surface model performed better (with lower
GSME) compared to Type II cubic smoothing spline model, which is closely followed
by the Type II quadratic polynomial model and then the linear model. This conclusion
is similar to the one drawn from the CPVE study. For the Type I quadratic surface model,
the minimal GMSE was obtained at rank 153 instead of the largest possible rank (i.e. rank
189). This is indicative of over-parameterisation. However, the over-fitting in this case
was insignificant, due to the large number of observations in comparison to the number
of regression parameters. Moreover, it is likely that a different optimal rank can be
obtained when using a different cross-validation scheme, because of the negligible
increase of CPVE beyond rank 80 (less than 0.5% changes from rank 80 to rank 189).
In the present case, a model rank of 153 (minimal GMSE) was employed. If future tests
reveal that this is over-fitted and gives inadequate predictions in some parts of the parameter
space, the nonlinear PLSR model may then be improved with better nonlinearity handling and
a new cross-validation study.
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5. PERFORMANCE AND SPEED

Because the main purpose of surrogate models is to reduce the computational cost, and therefore
improve the feasibility for real-time and interactive applications, it is essential for the performance
(in terms of speed and efficiency) of these surrogates to be evaluated and benchmarked. To do this,
100 random input parameter vectors (with uniformly distributed random values in each entry of the
vector) were generated where each vector represents a single input point of the system (i.e. the
activation parameters for a single gesture). Based on these input vectors, the dependant variables
(i.e. mesh DOFs) were then predicted using the constructed surrogates.

Figure 9 illustrates the average computational time per parameter vector for each surrogate
(note that the original biomechanical model required, on average, 2h to complete a single
simulation). As expected, it is seen that the linear PLSR model has the fastest performance,
followed closely by Type II quadratic polynomial and Type II smoothing spline PLSR models.
The Type I quadratic surface PLSR model demanded a significantly longer computational time
due to the increased rank and the necessity to pre-transform the input space. It is also worth noting
that approximately 250 machine hours were invested to produce the training sample required for
this study. On top of that, an additional training time (from 5s for the linear PLS model to 20s
for the Type I quadratic surface model) was required to build surrogate models from the sampled
database. Nevertheless, this model building process is performed as a precursor and does not have
an impact on real-time applications.

6. GENERATING FACIAL EXPRESSIONS USING SURROGATE MODELS

This section presents the forward modelling application where the surrogates are used in
substitution of the original biomechanical model. This provides an insight into applying the
surrogates to practical applications that require real-time performances. In order to demonstrate
the reliability of PLSR surrogates, the four facial expressions shown in Figure 2 were regenerated
using the regression models. Results are shown in Figure 10. It is seen that the displacement
discrepancies between the Type I quadratic surface PLSR and full mechanics simulation are
considerably lower than other nonlinear and linear regression models, in agreement with the
conclusion drawn from cross-validating. In addition, all PLSR surrogates, except the Type I
quadratic surface model, overestimate the tissue displacement for all four expressions, resulting
in exaggerated predictions. This is possibly due to the fact that they were unable to mimic the
nonlinear muscle fibre force-length relationship, where the active stress diminishes quadratically
as the muscle shortens (see [12] for details). When using the Type I approach however, the higher
dimensional mapping of the input space allows more of the components of the system to be
captured, hence allowing this shortening effect to be predicted more accurately. Another
observation is that in kissing gesture, the Type I quadratic surface PLSR is the only estimator that
is capable of adequately describing the contact deformation between the lips. This has a consequential
influence as the penetration of the lips immediately renders the results unrealistic.
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Figure 9. Average elapsed CPU time (in milliseconds) for generation of a single gesture.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2014)
DOI: 10.1002/cnm



T. WU ET AL.

Type I Type 11 Type 11
quadratic surface quadratic polynomial smoothing spline

Linear

Displacement error (mm)
— —

0 5 10 15

Figure 10. Reconstructed facial expressions using the partial least square regression surrogates, showing the
Euclidean error between the surrogate-reconstructed deformations and biomechanically simulated deformations.

7. CONCLUSION

The primary focus of this paper is to demonstrate how statistically based surrogate models can be
employed to accelerate the process of generating new facial expressions and gestures. The
surrogates are built using the numerical data obtained from a detailed biomechanical computational
model. This methodology is intended for real-time and interactive applications, where the speed of
computation predominates over the accuracy of simulation. A significant portion of the surrogates’
training data was generated using the MBR method, which produces a multileveled fraction
factorial sampling scheme. This in combination with other simulation data resulted in 6108
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observations of system that were used to train the PLSR surrogates. Four regression models, namely
linear, Type I quadratic surface, Type II quadratic polynomial and Type II smoothing spline PLSR
models were constructed. By means of cross-validation, it was shown that the Type I quadratic
surface model outperforms all other regression models; however, it comes at a much higher
computational cost, which may prohibit its use for applications that require real-time performance.
Nevertheless, it shall be noted that better performance may be achieved through optimising the
computational algorithms, and in addition, the suitability of a surrogate remains dependent on
the specific requirement (i.e. accuracy versus speed) of a particular application. Finally, using the
constructed surrogates, the facial biomechanics have been emulated with promising results.
Moreover, by combining the facial surrogate models with an iterative fitting procedure, muscle
activation values can be efficiently estimated from structured-light scanned geometric information
(see [36] for details). The surrogate modelling framework proposed in this paper can also be applied
to other complex biomechanical system where interactive speed is required but cannot be achieved
through traditional physics-based techniques. It shall be noted that PLSR modelling work proposed
here is merely preliminary; Bookstein [37] proposed a more rigorous method by requiring a match
of energy terms between PLS predictor and FE predictands. However, the examples provided by
Bookstein are for primitive geometries that have undergone simple deformations, and its extension
to a realistic biomechanical problem remains to be explored.
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