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Abstract

Downhole abnormal incidents during oil and gas drilling cause costly delays, and may also potentially lead to dangerous
scenarios. Different incidents will cause changes to different parts of the physics of the process. Estimating the changes
in physical parameters, and correlating these with changes expected from various defects, can be used to diagnose faults
while in development. This paper shows how estimated friction parameters and flow rates can be used to detect and
isolate the type of incident, as well as isolating the position of a defect. Estimates are shown to be subjected to non-
Gaussian, t-distributed noise, and a dedicated multivariate statistical change detection approach is used that detects
and isolates faults by detecting simultaneous changes in estimated parameters and flow rates. The properties of the
multivariate diagnosis method are analyzed, and it is shown how detection and false alarm probabilities are assessed
and optimized using data-based learning to obtain thresholds for hypothesis testing. Data from a 1400 m horizontal
flow loop is used to test the method, and successful diagnosis of the incidents drillstring washout (pipe leakage), lost
circulation, gas influx, and drill bit nozzle plugging are demonstrated.

Keywords: Managed pressure drilling, fault diagnosis, statistical change detection, adaptive observer, multivariate
t-distribution, generalized likelihood ratio test

1. Introduction

Drilling for oil and gas is a high-cost operation, es-
pecially for offshore wells. Here large drilling vessels are
used, or the oil and gas platform is designed with drilling
capabilities. An unwanted cost driver is non-productive
time (NPT), which typically is between 20-25 % of the to-
tal drilling time [1]. One of the major contributors to non-
productive time is unforeseen incidents happening with the
equipment on the rig, or downhole in the well. Early de-
tection and isolation of an incident is of great importance
[1], since early detection and mitigation can reduce the im-
pact of an incident. Downhole incidents may in particular
be challenging to detect, and to distinguish one type of in-
cident from another may be even more difficult. Detecting
and isolating the type and position of downhole incidents
as soon as possible is the subject of this paper. A key issue
is to avoid false alarms as these in themselves could cause
unplanned stops in drilling operation while investigations
are carried out to confirm an event.

∗Corresponding author.

A schematic of the possible downhole incidents in a
drilling system is shown in Fig. 1. The main compo-
nents of the system are the drillstring rotating the drill
bit, with circulating drilling fluid pumped down inside the
drillstring that transports crushed formation cuttings out
of the annulus. The following incidents are of specific con-
cern and are studied in this paper:

• An influx of formation fluid (gas, water, oil), also
called a kick, is probably the most critical downhole
incident. This is caused by a lower pressure in the
well than in the formation. A gas kick will reduce
the hydrostatic pressure, thus further worsening the
situation, and possibly leading to a dangerous full
blowout. Detection of kicks is one of the most stud-
ied detection scenarios in drilling, see [2, 3, 4, 5], and
the importance of early detection is evident.

• Loss of drilling fluid to the formation is referred to
as lost circulation. This is caused by either a very
high permeability formation, or by a fractured for-
mation [6]. If large amounts of fluid is lost to the
formation there may be problems maintaining a full
fluid column in the annulus, which again may lead
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to an influx.

• A pack-off is a build-up of formation solids around
the drillstring, partially or fully blocking the flow of
drilling fluid. The result is typically stuck drillpipe
and risk of formation fractures [7].

• Drillstring washout is a hole in the drillstring caused
by wear, which may cause leakage to the annulus.
Such weakness can result in a complete twist-off of
the pipe, resulting in extra three to twelve days of
drilling [8]. A washout is difficult to detect at an
early stage because changes in pressure and flow rate
are tiny when the leakage is small.

• Small crushed formation particles may restrict one or
several of the drill bit nozzles, which is called a drill
bit nozzle plugging. Status monitoring of the drill
bit is important to reduce downtime, where service
and replacement of the bit is better planned with
increased monitoring.

Different models and methods have been applied for
detecting and isolating different kinds of incidents. Sim-
ple hydraulics models and observers were used by [4, 5], a
high fidelity model was fitted to data in [9, 10], and [11]
applied a knowledge-modeling method. Due to measure-
ment noise, a statistical cumulative sum (CUSUM) algo-
rithm was tested on flow measurements in [2], and in [12],
skewness of the statistical distribution was used to detect
poor hole cleaning. Estimation and diagnosis has been
demonstrated in process context in [13] for a wastewater
treatment plant where a bank of parallel linear observers
were used for direct fault detection and isolation in a non-
linear plant, considering uncertainty but not stochastic el-
ements. In our application, with a high sampling rate, the
computational burden of this approach would be heavy
when a high number of parallel observers were needed to
adequately represent the nonlinearities of the system and
different cases of parameter changes due to incidents listed
above.

This paper employs a computationally simple mathe-
matical model of the process in a nonlinear adaptive ob-
server [14] to estimate friction parameters and fluid flow
rates. The estimates were found to follow a t-distribution
and a dedicated generalized likelihood ratio test (GLRT)
was developed for this particular distribution in [15]. This
paper makes use of the adaptive observer in [14] and the
GLRT algorithm for the t-distribution from [15], to pro-
vide a multivariate test statistic in order to distinguish be-
tween the various types of downhole incidents that could
happen. The purpose of this paper is to determine which
of the possible incidents have happened, to where in the
well the issue can be localized and which magnitude the
incident has, hence which severity it has. The paper inves-
tigates the particular signatures of the different incidents
in the test statistics and it develops rigorous methods to

obtain both isolation and localization with desired proba-
bilities of detection and false alarm. This result is achieved
after a detailed analysis of properties of the vector com-
prising the test statistic and simultaneous analysis of esti-
mated flow rates and friction parameters in the downhole
process. The contribution of this paper is to find a vector-
based evaluation method for the test statistic such that
all of the types of incidents listed above can be diagnosed
with convincing diagnostic properties. The paper demon-
strates the efficacy of the method on data from a medium-
scale horizontal flow loop designed and tested by Statoil,
and compares the performance of the t-distribution and
vector-based evaluation methodology with that of a stan-
dard Gaussian detection approach from [16] and shows the
new method to be clearly superior.

The paper is organized as follows. Details about the
test rig are first presented, and an overview of the fault di-
agnosis methodology is given. The hydraulic model is then
detailed in Sec. 4, and changes to the different states and
parameters in the model due to different incidents are dis-
cussed. Then, the adaptive observer is introduced, and
a multivariate change detection algorithm is suggested.
Tests with flow-loop induced faults data are finally pre-
sented, and the paper is completed with a discussion and
conclusions.

2. Flow-loop test setup

The experimental rig is a water-based horizontal flow
loop of 1400 meters, designed to emulate and test differ-
ent contingencies, including gas influx, lost circulation, bit
nozzle plugging, and drillstring washout. The test setup
is designed by Statoil, and is located at the International
Research Institute of Stavanger (IRIS), in Stavanger, Nor-
way. The experimental test rig was designed to capture the
main fluid dynamics in a real drilling rig using managed
pressure drilling as closely as possible. In this configu-
ration, the annulus is sealed off, and a choke is used to
control the back-pressure. The schematics in Fig. 1 illus-
trates the process and incidents that can be imitated in
the test rig.

A conventional piston pump is used to circulate the
drilling fluid, and circular steel pipes of 124 mm and 155
mm inner diameter are used for the drillstring and annu-
lus respectively, giving typical values of volume and bulk
modulus. The back-pressure pump is omitted in the in-
stallation. Instrumentation is also typical for a real pro-
cess. Pressure sensors downstream the pump (standpipe
pressure), choke pressure, and pump flow are commonly
available in a real rig. Downhole measurements along the
drillstring and over the drill bit may be available with wired
drill pipe technology [1, 17].

However, some aspects of a real drilling process will
not be captured in the test rig, where one of the more
noticeable differences is caused by the loop being close
to horizontal. In an inclined well with up to thousands
of meters height difference between top and bottom, the

2



Figure 1: Drilling process with possible downhole inci-
dents shown in red, including lost circulation, drillstring
washout, formation fluid influx, bit nozzle plugging, and
pack-off. Actuators shown in green, measurements in blue.

Figure 2: Experimental flow loop with choke manifold to
the left, gas influx and washout emulation in the middle,
and bit and loss emulation to the right.

Figure 3: Flow-loop profile showing location of incident
emulation at different positions in between pressure sen-
sors.

volume of a gas influx will increase as it is approaching
the surface, due to decreasing pressure. The result is a
decreasing pressure in the bottom of the well. This effect
will be much less noticeable when the hydrostatic pressure
differences in the well are small, which is the case with the
test rig. However, note that this effect is only occurring
during multi-phase flow, which is the case during an influx.
Other aspects are the lack of crushed formation particles
in the annulus, annular effects and effects due to drillstring
rotation. Nevertheless, flow rates and volumes, as well as a
high-pressure environment, will give flow dynamics similar
to real drilling.

Key parts of the process that are emulated are: drill
bit; choke manifold; gas influx; drillstring washout; lost
circulation. These are illustrated in Fig. 2. Gas influx is
emulated by nitrogen injection in the middle of the annu-
lus. At the same location, a valve can be opened, rerouting
the flow from the drillstring to the annulus to emulate a
drillstring washout. In the end of the drillstring, three ad-
justable valves emulate the bit nozzles with the possibility
of partial plugging. The loop profile is shown in Fig. 3,
illustrating that the loop does have height differences and
therefore a hydrostatic pressure that varies along the line,
albeit not as much as in real drilling. Location of the dif-
ferent incidents and pressure sensors are also shown in the
figure.

3. Fault diagnosis methodology

This section presents the fault diagnosis method pro-
posed for this problem. Fault diagnosis [18] consists of

• Fault detection: detect that an abnormal situation
has occurred.

• Fault isolation: determine the type and location of
the fault.

• Fault estimation: estimate the fault magnitude.

Fault diagnosis methods can be divided into model-
based methods using mathematical models of the system
[19, 20, 21], and data-driven methods that only are depen-
dent on measurements, which can be beneficial for large
systems [22, 23, 24]. Data-driven methods for multivari-
ate statistical fault diagnosis are presented and discussed
in [22, 23, 25]. This paper presents a model-based mul-
tivariate statistical fault diagnosis method to detect and
isolate the possible incidents. Tests are done on data from
the test rig.

Generally, model-based fault diagnosis is based on de-
tecting observable changes that occur due to faults in the
system. These changes can appear in residuals, signals
that are zero under normal conditions but differ from zero
in the presence of faults, or in estimated parameters of the
system. One approach to estimate parameters is to use
adaptive observers, which estimate states and slowly vary-
ing unknown parameters. When the adaptive observer is
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Figure 4: Fault detection and isolation based on parameter
and state estimation, and statistical change detection.

designed to tolerate unknown input, both abrupt and in-
cipient faults can be captured [26].

In this paper, fault diagnosis is done by detecting changes,
compared to normal operating conditions, of estimated
friction parameters and change in flow rates. These esti-
mates will have a random component due to measurements
noise propagating though the adaptive observer. Since the
magnitude of the different incidents can vary from zero to
an unknown magnitude, and the random component is sig-
nificant, the generalized likelihood ratio test (GLRT) can
be applied to detect the change [20, 27, 28]. The detection
problem is to detect a change in a signal x from the null
hypothesis H0 to the alternative hypothesis H1, and can
be formalized as

H0 : x ∼ D(Π0;H0), (1a)

H1 : x ∼ D(Π1;H1), (1b)

where D(Πi;Hi) is the probability distribution of x with
statistical parameters Πi specified at Hi.

The paper focuses on investigation of a methodology
to isolate the type of fault that has occurred, to locate
where in the well the fault is present and to estimate the
magnitude of the incident, i.e., help to assess the severity of
the incident. The fault diagnosis methodology is presented
graphically in Fig. 4. As indicated in the figure, details
about design of the adaptive observers are available in [14]
and derivation of the GLRT detector for a t-distribution
is available in [15].

Detecting that a fault is occurring, and determining
the type of fault f ∈ F , is based on estimated states and
parameters in the adaptive observer for fault detection and
isolation, using available measurements y. The location of
the fault is found by the help of the adaptive observer for
fault localization. Due to noise in the estimated signals,
changes are detected using a multivariate statistical change
detection algorithm. A univariate test on each estimated
parameter would be a possibility, as was done in [16], but
this paper shows that it is possible to achieve much better
detection properties using a multivariate method where all
parameters are considered jointly [15]. An alarm is set if
the test statistics exceeds a certain threshold. Isolation is
done by determining the change direction of the estimated
parameters and states, where different faults will give dif-
ferent directions. This approach is similar to [22], where
isolation was based on vectors in a data-driven principal
component analysis (PCA) framework.

4. Simplified single-phase hydraulics model

The flow loop was rigged for managed pressure drilling
(MPD), and therefore is a model designed for MPD used.
Referring to Fig. 1, the model can easily be changed to con-
ventional drilling by removing the choke and back-pressure
pump.

The process model [29] is a simplified hydraulics single-
phase model with two control volumes connected with a
momentum balance at the drilling bit. This model has
been verified by offshore MPD commissioning tests, and
is suitable for control and detection purposes where un-
known parameters can be estimated. Slowly varying ef-
fects due to temperature are not included in the model,
but can be added to calibrate the physical parameters.
The height difference between a real drilling rig and the
test rig will only affect the hydrostatic pressure during nor-
mal operation with single-phase flow, which will not affect
the dynamics noticeably. The model is represented by the
ordinary differential equations

dpp
dt

=
βd
Vd

(qp − qbit), (2a)

dpc
dt

=
βa
Va

(qbit + qbpp −Qc(θ, pc, uc)) , (2b)

dqbit
dt

=
1

M
(pp−pc−F (θ, qbit)−(ρa−ρd)ghTVD) , (2c)

where pp is the pressure downstream the rig pump, pc pres-
sure upstream the choke, qp the volumetric pump flow, qbit
the flow through the bit, Qc the flow through the choke,
and qbpp the back-pressure flow rate. In each control vol-
ume j ∈ {d, a}, d for drillstring and a for annulus, βj is
bulk modulus, Vj is volume, ρj is fluid density, and Lj
is the length. The vertical depth of the well is denoted
hTVD, and g is the acceleration of gravity. The integrated
density per cross section M is given by M = Md + Ma

where Mj =
∫ Lj
0

ρj(x)/Aj(x)dx. The total friction F (θ, q)
is dependent on the unknown parameter vector θ of slowly
varying parameters which will be estimated. Friction is
represented by

F (θ, q) = θdfd(q) + θbfb(q) + θafa(q), (2d)

where fd(q), fb(q), fa(q) are the flow characteristics in the
drillstring, over the bit, and in the annulus, respectively,
and θd, θb, θa are unknown parameters. These parameters
are lumped parameters of well geometry, density and vis-
cosity, where the two latter again are functions of pressure
and temperature. For normal operation these parameters
can be assumed constant. The choke is modeled by

Qc(θ, pc, uc) = θcqc(pc, uc)

= θc sgn(pc − pc,0)gc(uc)
√
|pc − pc,0|, (2e)

where pc,0 is the pressure downstream the choke, gc(uc)
is the choke characteristics as a function of choke opening
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uc ∈ [0, 100], and θc is a choke uncertainty parameter. Let
pd and pa,1 be the pressure measurements upstream and
downstream the bit, respectively. Then the relationship
between friction and pressure in the drillstring, over the
bit, and in the annulus is, respectively,

pd = pp − θdfd(q) +Gd, (2f)

pa,1 = pd − θbfb(q), (2g)

pa,1 = pc + θafa(q) +Ga, (2h)

where Gd = ρdghTVD and Ga = ρaghTVD. In addition, if
measurements pa,i are available throughout the annulus,
the relationship between pressure and friction is

pa,i = pa,i+1 + θa,ifa(q) +Ga,i, i ∈ {1, . . . , Na} (2i)

where θa,i is the friction parameter for the annular seg-
ment between measurement pa,i at depth ha,i and pa,i+1 at

ha,i+1, with Ga,i = ρag(ha,i − ha,i+1) and θa =
∑Na
i=1 θa,i.

The vector of unknown parameters is thus

θ =
[
θc, θd, θb, θa, θa,1, . . . , θa,Na

]>
. (2j)

Data from a flow-loop test with different flow rates is
used to empirically determine the friction characteristics
in the drillstring, over the bit, and in the annulus. In Fig. 5
friction losses for flow rates in the range of 270 L/min to
1500 L/min are plotted, showing a good fit to a quadratic
relationship, i.e.,

fd(q) = q2, fa(q) = q2, fb(q) = q2, (2k)

which is typical for turbulent flow, as well as for describing
pressure drop over the bit [6].

5. Classification of incidents based on changes to
variables

The different downhole drilling contingencies studied
in this paper are lost circulation, which is loss of fluid to
the formation, influx of gas from the formation, drillstring
washout causing leakage from the drillstring to the annulus
somewhere in the well, drill bit nozzle plugging, and pack-
off of formation cuttings around the drillstring, restricting
flow.

These different incidents will affect friction and flow
rates throughout the well differently, and is used in the
fault diagnosis method. Changes in mean of the estimated
parameters θ̂d, θ̂b, and θ̂a, as well as change in estimated
flow rate in and out of the well,

∆q̂ := q̂c − q̂p, (3)

are used to differentiate between the different incidents.

Figure 5: Friction characteristics in drillstring, drill bit,
and annulus.

5.1. Lost circulation

Loss of fluid to the formation somewhere in the annulus
will result in less flow downstream the point of loss. This
will again reduce the friction in the segments with less
flow, as well as the total annulus friction. Since the friction
in the annulus is estimated by θ̂afa(q̂bit), a reduction in
annular flow rate will result in a reduction in the estimated
friction parameter. This is due to the fact that the annular
flow rate is not estimated, but assumed equal tothe bit flow
rate. These effects are illustrated in Fig. 6, showing less
flow in the annulus, causing less friction and a negative
change of ∆q̂.

5.2. Drillstring washout

Drillstring washout is leakage from the drillstring to the
annulus due to small holes and cracks in the drillstring. If
a washout happens, the lower parts of the drillstring and
annulus will have reduced flow, which may result in de-
creased well pressure and hole cleaning capabilities. The
effect on the friction parameters are shown in Fig. 7, where
friction in the lower parts of the well is reduced. At the sec-
tion of the washout, the pressure in the end of the section
will be constant due to unchanged flow, but the pressure
in the beginning of the section will decrease due to reduced
friction in the section. The net effect is an increase in pres-
sure drop at the washout. The case of drillstring washout
was thoroughly studied in [15].
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(a) Lost circulation. (b) Drillstring washout.

(c) Fluid influx. (d) Bit nozzle plugging.

(e) Pack-off.

Figure 6: Changes to flow and parameters due to different incidents. Blue denotes normal flow, light blue is less flow
and/or friction, dark blue is increased flow and/or friction.
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5.3. Gas influx

An influx of formation gas into the well is an incident
caused by pressure in the well being lower than the for-
mation pressure. Pressure dynamics will change with gas
in the well, requiring a more advanced hydraulic model
than (2). As the gas percolates up the well its volume will
increase due to a smaller hydrostatic head. This will give
a smaller pressure drop and thus a smaller estimated fric-
tion if the change in density of mixed gas and liquid is not
accounted for. However, due to reduced holdup for the liq-
uid in the annulus, its velocity will increase, increasing wall
friction. These two effects will either increase or decrease
the pressure drop over the annulus, depending on the mag-
nitude of circulating flow rate and well inclination. The
multi-phase flow is often classified as either gravity domi-
nated or friction dominated. For vertical multi-phase flow
of gas and liquid, typically 90-99 % of the pressure loss
is caused by reduced hydrostatic head [30], i.e., gravity
dominated flow.

An influx is thus associated with a decrease in ∆q̂, and
change in θ̂a, with positive change for friction dominated
flow and negative for gravity dominated flow. In the par-
ticular case of the flow loop the inclination is quite small,
hence is it assumed friction dominated flow in the annulus.

5.4. Pack-off

In addition to controlling pressure in the well, the drilling
fluid is used to transport crushed formation particles (cut-
tings) or parts of the wellbore out of the well. If the drilling
fluid fails to transport this mass, the wellbore can be (par-
tially) plugged around the drillstring, called a pack-off.
This will be observed in the friction parameters as an in-
crease in θ̂a, while the rest of the friction parameters and
flow rates are unchanged. Pack-off is not emulated in the
flow loop, but included here to demonstrate that other
incidents are not incorrectly isolated as a pack-off.

5.5. Bit nozzle plugging

The drill bit has several nozzles which may be plugged
during drilling. Small particles from the cuttings may re-
strict the flow through one or several of the nozzles, which
will be seen as an increased pressure drop over the bit, and
thus an increase in the pump pressure. Since the forma-
tion is not exposed to this pressure increase, the incident
is not as severe as a pack-off [9]. If pressure sensors are
available on both sides of the bit, changes to the pressure
drop can be used to indicate a nozzle plugging. However,
changes to the corresponding friction parameter may be
a result of other incidents happening. A salient feature
of the method proposed here is that changes to the whole
drilling process are considered simultaneously.

5.6. Overview of changes due to incidents

The effects on friction parameters and flow rates de-
scribed in the previous subsections are summarized in Tab. 1,

showing no overlap in the signatures that different inci-
dents have in the estimated parameter and state vector.
A vector-based method can thus be applied to isolate the
type of incident, using change directions based on this ta-
ble. Depending on whether the pressure drop during a gas
influx is gravity dominated or friction dominated, θ̂a will
either decrease or increase during the influx. It is assumed
that the pressure drop is friction dominated since the flow
loop is close to horizontal, giving a positive change in θ̂a
in Tab. 1 for gas influx.

Table 1: Change of estimates in different cases of faults.
Legend: increasing (+); decreasing (−); unchanged (0).

θ̂d θ̂b θ̂a ∆q̂

Lost circulation 0 0 − −
Drillstring washout − − − 0
Gas influx 0 0 + +
Bit nozzle plugging 0 + 0 0
Pack-off 0 0 + 0

To isolate the position of the different incidents, changes
to friction parameters θ̂a,1, . . . , θ̂a,Na are used. The posi-
tion of the incident will affect the parameters differently,
hence making isolation possible.

The estimated parameter vector ΘD is used for detec-
tion and isolation of incident type, and ΘI for isolation of
position. With Na = 4, the vectors are

ΘD :=


θ̂d
θ̂b
θ̂a
∆q̂

 , ΘI :=


θ̂a,1
θ̂a,2
θ̂a,3
θ̂a,4

 . (4)

Two separate vectors are used since in general, it may
not be possible or desirable to estimate ΘD and ΘI in
the same observer. Furthermore, the magnitude of change
due to an incident may differ between the two vectors. In
this specific case, ΘI represents only a part of the process
and will give smaller changes during incidents compared to
ΘD. Scaling would then be a challenge, as well as deterio-
rating detection and isolation properties, since a trade-off
between false alarm and detection rate between ΘD and
ΘI would have to be considered.

6. Parameter estimation using adaptive observers

Two different observers are designed to estimate pa-
rameters in the drillstring process. These were illustrated
in Fig. 4. One observer is used to obtain estimates of
incident type (ΘD), which is used to detect and isolate
the type of incident that has occurred; another is used to
obtain estimated parameters, ΘI , which are used for inci-
dent localization. For the drilling case with distributed
pressure sensors in the annulus, the difference between
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the observers will be that the detection and isolation ob-
server estimates θ̂a for the whole annulus, whereas θ̂a,i, i ∈
{1, . . . , Na} is estimated in the localization observer. When
using (2) as system model it is possible to estimate all
these parameters simultaneously, and hence for simplicity
of presentation they are presented in one observer in the
current section.

The model (2) has nonlinearities in friction (2d) and
the choke equation (2e). In order to estimate states and
parameters, a nonlinear adaptive observer is applied. The
observer was derived in [14], and successfully applied on
the washout case in [15]. The model (2) can be written on
the nonlinear adaptive observer form,

ẋ = α(x, u) + β(x, u)θ, (5a)

z = η(x, z) + λ(x, u)θ, (5b)

where x(t) ∈ RNx are the states, z(t) ∈ RNz are the addi-
tional measurements, u(t) ∈ RNu are the inputs, θ ∈ RNθ
are unknown parameters, and α(x, u) ∈ RNx , β(x, u) ∈
RNx×Nθ , η(x, z) ∈ RNz and λ(x, u) ∈ RNu×Nθ are locally
Lipschitz functions. It is assumed that (5b) is an explicit
equation of z, and that x is measured.

The system (2) can be written on the form (5) using

x =
[
pp, pc, qbit

]>
, u =

[
qp, qbpp, uc

]>
, (6a)

z =
[
qc, pd, pa,1, pa,1, pa,1, pa,2, . . . , pa,Na

]>
, (6b)

θ =
[
θc, θd, θb, θa, θa,1, . . . , θa,Na

]>
, (6c)

α(x, u) =

 βd
Vd

(u1 − x3)
βa
Va

(x3 + u2)
1
M (x1−x2−(ρa − ρd)ghTVD)

 , (6d)

β(x, u)=

 0 0 0 0 0

−βaVa qc(x2, u3) 0 0 0 · · · 0

− fd(x3)
M − fb(x3)

M − fa(x3)
M 0 0

 , (6e)

η(x, z) =
[
0, x1 +Gd, z2, x2 +Ga,

z6 +Ga,1, . . . , x2 +Ga,Na
]>
, (6f)

λ(x, u) = diag {qc(x1, u3), −fd(x3), −fb(x3),

fa(x3), . . . , fa(x3)} . (6g)

Theorem 1 (Willersrud and Imsland [14]). Given an ob-
server on the form

˙̂x = α(x, u) + β(x, u)θ̂ −Kx(x̂− x), (7a)

˙̂
θ = −Γβ>(x, u)(x̂− x)− Λλ>(x, u)(ẑ − z), (7b)

ẑ = η(x, z) + λ(x, u)θ̂, (7c)

where Kx,Λ,Γ > 0 are tuning matrices, and with θ̇ = 0.
Let ex = x̂ − x and eθ = θ̂ − θ be variables for the error

dynamics, where e =
[
e>x , e>θ

]>
= 0 is an equilibrium

point. Then e = 0 is globally exponentially stable if

Γ−1Λλ>(·)λ(·)− β>(·)K>Kβ(·) > kINθ , (8)

for some constant k > 0, where INθ ∈ RNθ×Nθ is the
identity matrix.

See [14] for proof of Thm. 1. Requirement (8) with
λ(·), β(·) given in (6) will be met if there is flow through
the system, i.e., for a non-zero and bounded x3 = qbit, and
bounded x1 = pp.

7. Multivariate statistical change detection and fault
isolation

Detecting changes to the different estimated parame-
ters and flow rates in ΘD and ΘI are done using a gener-
alized likelihood ratio test, described in this section. The
diagnosis problem is a set of stepwise problems: First de-
tect that there is a change from normal and isolate which
incident is causing this change, then isolate the incident
to a particular section of the drillstring and estimate its
magnitude. See also Fig. 4.

Problem 1 (Incident detection). Given a sampled time
sequence of vectors of estimated parameters ΘD(k), with
change from known condition ΘD,0(k) to unknown ΘD,1(k)
defined as ∆ΘD(k) := ΘD,1(k) − ΘD,0(k). Define the in-
dex set NN := {i ∈ N : 1 ≤ i ≤ N} and let iD ∈ NNf be the
possible fault indices. Let a fault signature matrix be D, a
unit magnitude fault vector be fiD = [0, . . . , 0, 1, 0, . . . , 0]>,
element iD of which is non-zero when fault iD is present,
and υ(k) be an unknown magnitude of change. Further, let
the random vector w(k) have independent and identically
distributed samples with probability density f(w), then dis-
tinguish between two hypotheses

H0 : ∆ΘD(k) = 0 + w(k), no fault present, (9a)

HD1 : ∆ΘD(k) = DfiDυ(k) + w(k), fault present. (9b)

Problem 2 (Isolate type of incident). Given HD1 has been
accepted, determine that a particular fault i∗D is present of
the possible faults iD ∈ NNf , by determining the best fit of
(9b) for the different fault types.

Problem 3 (Isolate position of incident). Given that i∗D
has been isolated. Let G(i∗D) be a known matrix associ-
ated with the isolated fault type i∗D, ∆ΘI(k) be a vector of
change in estimated parameters, jI ∈ NNg be the possible
fault positions, fjI be a fault position vector with element
jI equal to 1 for a fault in position j and 0 otherwise, and
υ(k) be the unknown magnitude of the change.

8



(A): Determine if localization of a fault is possible by
distingushing between two hypotheses

H0 : ∆ΘI(k) = 0 + w(k), (10a)

localization not possible,

HI1 : ∆ΘI(k) = G(i∗D)fjIυ(k) + w(k), (10b)

localization possible.

(B): If hypothesis HI1 is accepted, determine the most
likely position j∗I of the positions jI ∈ NNg along the pipe
that explains the estimates (10b).

7.1. Generalized likelihood ratio test

The GLRT decision function uses the likelihood ratio
of the probability density function at the two hypotheses
of H0 and H1, and can be written as

g(k) = max
k−N+1≤j≤k−Ñ

ln

∏k
i=j f(Θ(i);H1)∏k
i=j f(Θ(i);H0)

. (11)

using a data window N to reduce computational cost, and
0 ≤ Ñ < N [31, 32]. Distinguishing between the two
hypotheses is done by using a threshold h of the decision
function g(k),

accept H0 : g(k) ≤ h,
accept H1 : g(k) > h.

(12)

7.2. Probability distribution of estimated flow and friction
parameters

The estimated parameters θ̂ from the adaptive observer
(7) were found to be multivariate t-distributed in [15], af-
ter the estimated parameters were white-filtered. The t-
distribution is a generalization of the Gaussian distribu-
tion, with larger probability tails. This means that there
is a higher probability of outliers compared to a Gaussian
distribution. The p-variate t-distribution with center µ,
correlation matrix S and ν > 0 degrees of freedom has the
joint probability density function

f(x;µ, S, ν) =
Γ((p+ν)/2)

Γ(ν/2)(πν)p/2|S|1/2

×
[
1+

1

ν
(x−µ)>S−1(x−µ)

]− p+ν2
, (13)

where Γ(z) is the Gamma function. The parameter µ is
the mean of x when ν > 1 [33].

7.3. GLRT with multivariate t-distribution

If the mean µ is changing from µ0 to µ1, whereas the
statistical parameters S and ν are constant, the GLRT

decision function g(k) ∈ R for the t-distribution (13) of
vector variable Θ(k) was found in [15] to be given by

g(k) = max
k−N+1≤j≤k−Ñ

p+ν

2

k∑
i=j[

− ln

(
1 +

1

ν
(Θ(i)−µ̂1)>S−1(Θ(i)−µ̂1)

)
+ ln

(
1 +

1

ν
(Θ(i)−µ0)>S−1(Θ(i)−µ0)

)]
, (14)

with maximum likelihood estimate of the mean after change
given by

µ̂1 =
1

k−j+1

k∑
i=j

Θ(i). (15)

7.4. Isolate type of incident

The problem of isolating type of incident defined in
Problem 2 is to find i∗D of the possible fault types. Let D
be the fault signature matrix with unit column vectors Di

defined by

Di :=
KDΥD,i

‖KDΥD,i‖
, (16)

where the column vector ΥD,i of ΥD is the change direc-
tion of incident iD, and KD are the relative change magni-
tudes used to scale changes to have approximately similar
effects on magnitude υ. Based on Tab. 1, the possible
change directions ΥD for ΘD are

ΥD =


0 −1 0 0 0
0 −1 0 1 0
−1 −1 1 0 1
−1 0 1 0 0

 , (17)

corresponding to the fault types lost circulation (iD = 1),
drillstring washout (iD = 2), gas influx (iD = 3), bit nozzle
plugging (iD = 4), and pack-off (iD = 5), respectively.

Determining correct magnitudes KD can be difficult
without prior data of the incidents. Nevertheless, knowl-
edge of certain range of values is maybe possible based
on physical considerations. It is assumed that the relative
change between friction parameters θd, θb and θd is ap-
proximately equal. Furthermore, using (2k) with known
friction and flow rate, relative change between the friction
parameters θd, θb, θd, and change of flow rate ∆q is ap-
proximately 1/1000, giving the diagonal matrix of relative
change

KD = diag{1, 1, 1, 1/1000}. (18)

The type of fault i∗D is isolated using a maximum least
square solution of magnitude υ given by (9b) for each
column vector Di in D, where the mean is E(∆ΘD) =
(µ̂D1 − µD0 ), giving

i∗D = arg max
i

D>i (µ̂D1 − µD0 )

D>i Di
. (19)
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7.5. Isolating position of incident

The position of the incident refers to the position be-
tween two pressure measurements in the annulus, where
jI indicates an incident between pressure sensor pa,j and
pa,j+1. The different type of incidents iD ∈ NNf will affect
the estimated parameters ΘI used for isolation differently.
As stated in Problem 3, it is thus necessary to first deter-
mine the type of incident i∗D and then isolate the position
j∗I . Let G(iD) be the localization matrix associated with
fault type iD, with unit column vectors Gj(iD) defined as

Gj(iD) :=
KIΥI,j(iD)

‖KIΥI,j(iD)‖
, (20)

where ΥI,j(iD) is the j-th column vector of the localiza-
tion change direction matrix ΥI(iD) associated with fault
type iD, and KI is a diagonal matrix of relative change
magnitudes.

Similarly to (19), the position j∗I of the fault is isolated
finding the maximum least square solution to (10b), giving

j∗I = arg max
j

G>j (i∗D)(µ̂I1 − µI0)

Gj(i∗D)>Gj(i∗D)
. (21)

It is assumed that the magnitude of change of each
estimated parameter is equal for a given incident, giving
KI = I, where I is the identity matrix. For the case of
lost circulation (iD = 1), drillstring washout (iD = 2),
and pack-off (iD = 5), the change direction matrices are,
respectively, given by

ΥI(1) =


−1 0 0 0
−1 −1 0 0
−1 −1 −1 0
−1 −1 −1 −1

 , (22a)

ΥI(2) =


1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
0 0 0 1

 , (22b)

ΥI(5) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (22c)

where vectors are determined based on discussions in Sec. 5.
Isolation of gas influx (iD = 3) is not well suited for the
current model, and is hence not included. Bit nozzle plug-
ging (iD = 4) does not need additional isolation.

7.6. Determining thresholds

Thresholds can be found based on specified probability
of false alarms PFA [28], by determining the distribution
of the GLRT test statistic g(k) for data under H0, see,
e.g., [34, 35]. In [15] the GLRT test statistic (14) was
found to have a good fit to the Weibull distribution. The
Weibull distribution has the cumulative distribution func-
tion F (x;α, β) and probability density function f(x;α, β)
given by

F (x;α, β) = 1− e−(x/α)
β

, x ≥ 0, (23a)

f(x;α, β) =
β

α

(x
α

)β−1
e−(x/α)

β

, x ≥ 0, (23b)

where α > 0 is the scale and β > 0 the shape parameter.
Let PFA be the probability of false alarm under H0.

Then the inverse cumulative distribution function gives a
threshold h with given probability PFA,

h = Q(1− PFA;H0, α0, β0) = β0 (− ln(PFA))
1/α0 . (24)

The probability of detecting a fault under the alterna-
tive hypothesis H1 with probability PD for a given thresh-
old h is

PD = 1− F (h;H1, α1, β1) = e−(x/α1)
β1
. (25)

Knowledge of data under H1 is needed to find α1, β1, and
thus PD.

8. Diagnosis of downhole incidents in flow-loop data

The suggested incident diagnosis method, illustrated
in Fig. 4, is tested on data from five different cases from
the test rig: drillstring washout; lost circulation; two cases
of gas influx; and bit nozzle plugging. Data is sampled
at 10 Hz and white-filtered using a third order filter. The
computational burden of updating the observer (7) is well
within real-time capability.

Estimation of pump and choke pressure, as well as
pump and choke flow rate, is shown for all test cases in
Fig. 12. Since pressures and choke flow rate are mea-
sured, these estimates closely follow the process as ex-
pected. Since measured bit flow is assumed equal to pump
flow, estimated bit flow closely follows the pump flow. The
estimated parameters in (2) are plotted in Fig. 13, which
will determine ΘD and ΘI given by (4). Measurements in-
dicating the time of the emulated incidents are plotted in
Fig. 14. Valve position for bit nozzle plugging emulation
was not measured and is not shown. This information is
shown for reference only, the emulated incidents are not
known to the diagnosis algorithm.

The plots in Figs. 12, 13 and 14 show a concatenation
of the five different data sets logged at the test rig. Log-
ging was not continuously available and incidents were not
always injected in chronological order. Although the differ-
ent cases were run on the same experimental rig, physical
conditions differ between the experiments and there are
therefore differences in the state and parameter estimates
between the individual cases. From Fig. 13 that shows pa-
rameter estimation, it is apparent that the distribution of
test statistics under H0 differ from one experiment to an-
other. In a real drilling process, the estimates would only
have small variations during normal operation, and a H0

calibration could be made from data.
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Figure 7: State estimation of pressure and flow during
washout, loss, gas influx, and bit nozzle plugging. The dif-
ferent cases are separated with alternating gray and white
backgrounds.

Figure 8: Parameter estimation during washout, loss, gas
influx, and bit nozzle plugging. The different cases are
separated with alternating gray and white backgrounds.

Figure 9: Actual incidents: drillstring washout, lost circu-
lation, and gas influx. Bit nozzle plugging not measured.
Information not available for diagnosis method. The dif-
ferent cases are separated with alternating gray and white
backgrounds.

With differences between data sets, different values for
the parameters in the t-distribution, i.e., µ0, S and ν, need
to be estimated. The t-distribution parameters under H0

are estimated using the ECME algorithm [36], using data
from test conditions without any incidents. For all data
sets ν > 1, meaning that µ is the vector of mean val-
ues of parameters. Simultaneous adaptation and change
detection could be used to track slowly varying process
properties.

A related approach was presented in [37] where adap-
tation of model parameters was halted when a H1 condi-
tion was detected, and detection was based on a combi-
nation of change in parameters and change in the output
estimation error between observer estimated output and
measured output.

Threshold values listed in Tab. 2 are calculated using
(24) with the following probabilities of false alarm

PFA,D = 10−6, PFA,I = 10−4, (26)

during detection and type isolation, and localization, re-
spectively.

The chosen GLRT window lengths given in number of
samples are

ND = 150, NI = 400, (27)

where a shorter window for detection and type isolation is
used to give a fast detection, while localization is based on
ΘI with less changes in the estimated parameters, neces-
sitating a longer window. The necessity for a sufficiently
long window size is shown in Fig. 15, showing g(k; ΘD)
fitted to Weibull-distributions for the lost circulation case
under H0 with no loss, and H1 with lost circulation of 300
L/min shown at 29 min in Fig. 14. Two cases are plotted,
namely the chosen window size of ND = 150 plotted with
solid lines, and a shorter window ND = 30 plotted with
dashed lines. Also plotted are the thresholds that give the
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Figure 10: Weibull probability plot of decision function
g(k; ΘD) under H0, and H1 with loss of 300 L/min (at 29
min in Fig. 14), for window lengths ND = 150 (solid) and
ND = 30 (dashed). Thresholds h shown as vertical lines.
PFA and PD are 1 − Probability shown on the ordinate
axis of the plot.

same false alarm probability for the two window sizes. As
Fig. 15 shows, in order to obtain high detection probabil-
ity (PD) and a satisfactorily low false alarm rate (PFA),
H0-data needs essentially to be below (to the left) of the
threshold, and H1-data essentially to be above. This is the
case for ND = 150, which is used in our analysis, but not
for a five times shorter window, ND = 30. The window
intervals we use in the analysis, see (27), are quite short
(ND = 150 is equivalent to a 15 s window and NI = 400
is equivalent to 40 s), so the window size could easily be
chosen much longer in a real drilling situation, albeit at
the expense of slower detection.

This discussion illustrates the necessity of investigating
the distribution of test statistics under both H0 and H1

in order to choose threshold and window size for a test,
and the probability plot approach shown here provides a
straightforward and easily applicable methodology. It is
a prerequisite that H0 and at least a few H1 data are
available. If onlyH0 data are available, the minimum value
of a fault that can be detected, with a given probability
of detection, will be a function of threshold and window
length.

With PFA and N specified in (26) and (27), expected
false alarm rates are 0.00024 per hour (2 per year) for
detection and type isolation, and 0.009 per hour for lo-
calization. Since localization is made subject to prior de-
tection, the localization false alarm does not have as high
priority as that of detection. In addition, with a longer
window size or a requirement that consecutive hypothesis
evaluations confirm a detection, false alarm rates could be
further reduced.

Table 2: Threshold values for different cases.

Incident case hdet hisol

Lost circulation (fD,1) 30.8 27.9
Drillstring washout (fD,2) 64.0 82.4
Gas influx A (fD,3) 56.3 N/A
Gas influx B (fD,3) 48.4 N/A
Bit nozzle plugging (fD,4) 57.6 N/A

8.1. Drillstring washout

The first incident studied is a drillstring washout. This
case was studied in [15], but extended in this paper to also
include isolation of incident type. Detection and isolation
is shown in Fig. 16 where the washout is correctly detected
and isolated. The true position of the washout is at posi-
tion 3, which is in the middle of the drillstring. See Fig. 3.
The position is correctly located after 2 minutes, seen in
Fig. 17, with the alarm disappearing shortly in the begin-
ning where leakage is fairly small. A multivariate Gaussian
test on non-whitened estimates, see, e.g., [27, 20] is also
shown in the figure.

Using the multivariate t-distribution, the probability of
missed detection PM := 1−PD for g(k; ΘD) between 2 and
3 minutes is 2.6 × 10−4, using PD in (25) and PFA speci-
fied in (26). For localization with g(k; ΘI), PM = 0.106. If
the multivariate Gaussian distribution is used these values
are 1.6 × 10−3 and 0.80, respectively, which is consider-
ably higher. The t-distribution is hence providing better
detection properties, where isolation in particular would
be challenging using a multivariate Gaussian distribution
in the GLRT decision function (11). This can also can be
seen in Fig. 17, where g(k; ΘI) is lower using the Gaussian
probability density function. The g(k) value of the Gaus-
sian distribution is scaled to have equal threshold h as the
t-distribution.

8.2. Lost circulation

The next incident is loss of drilling fluid, happening
just downstream the bit, which is position 1 in the annu-
lus. The data contains three losses at different magnitudes
of approximately 1000 L/m, 500 L/m and 300 L/min. See
the actual loss qloss plotted in Fig. 14. All of these losses
are correctly detected and isolated, as seen in Fig. 18. Iso-
lation of the position is also correctly found, as seen in
Fig. 19. Also here the t-distribution gives better detection
and isolation properties.

8.3. Gas influx

With gas in the system, some aspects of the model are
no longer valid. In the model it is assumed incompress-
ible single-phase flow with constant density in the annulus,
whereas during a gas influx the flow will be two-phase and
compressible with varying density. For such a case it is
expected that a fit-for-purpose multi-phase model will de-
scribe the fluid dynamics better. Nevertheless, detection
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Figure 11: Detection and isolation of drillstring washout.
GLRT plotted for t-distribution and Gaussian distribu-
tion. Gaussian GLRT scaled to have same threshold h as
the t-distribution. Actual incident shown in gray.

Figure 12: Localization of drillstring washout position.
GLRT plotted for t and Gaussian distribution (scaled).
Actual position shown in gray.

Figure 13: Detection and isolation of lost circulation.
GLRT plotted for t and Gaussian distribution (scaled).
Actual incident shown in gray.

Figure 14: Localization of lost circulation position. GLRT
plotted for t and Gaussian distribution (scaled). Actual
position shown in gray.
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in the current framework is still tested, since it is impor-
tant to have a diagnosis framework that correctly isolates
the type of incident.

Detection and isolation of a gas influx is successfully
detected in influx case A, shown in Fig. 20. Afterwards,
there is gas present in the system which is not modeled,
and thus causing a slightly increasing value of g(k; ΘD)
after the first influx. However, this change is less that
the threshold h given in Tab. 2. Diagnosis in influx case
B is shown in Fig. 21, which has three instances of gas
influxes, one small, one large over a small time period,
and one large continuous influx, see Fig. 14 between 60 and
75 minutes. The small influx is successfully detected and
isolated, although not at all time instances. The larger
ones are also correctly diagnosed. After the first large
influx, around the 5 minutes time stamp in Fig. 21, there
are some false alarms of pack-off and lost circulation. Since
the actual incidents plotted is injection of gas, there is
still gas in the system after injection. Transportation of
gas is not modeled, and will affect friction and hydrostatic
pressure as discussed in Sec. 5.3. Note that when a gas
influx is detected in a real drilling operation, the well is
typically shut in and normal drilling is stopped in order to
remove the influx.

Figure 15: Detection and isolation of gas influx case A.
GLRT plotted for t and Gaussian distribution (scaled).
Actual incident shown in gray.

8.4. Bit nozzle plugging

The last case studied is a plugging of the drill bit noz-
zles. In this case only changes in the estimated bit pa-
rameter θ̂b is expected. By using a multivariate method,
changes to all signals in ΘD can be tested, determining
that in fact the bit parameter is the only one changing.
Detection and isolation is shown in Fig. 22, where all plug-
gings are detected, with two large pluggings and two small.

Figure 16: Detection and isolation of gas influx case B.
GLRT plotted for t and Gaussian distribution (scaled).
Actual incident shown in gray.

Studying θ̂b from 75 to 88 minutes in Fig. 13, the major
pluggings will be possible to detect without a statistical
method, whereas the smaller ones may be difficult to sep-
arate from noise and process disturbances. However, as
argued, changes to all parameters should be considered in
order to correctly isolate the type of incident, which is best
solved with a multivariate statistical method.

8.5. Estimation of incident magnitude

In addition to indicating that an incident is present and
finding out where it is, it can be valuable for the operator
to get information about the magnitude of the incident.
Especially important to know is the magnitude of loss or
influx. Estimation of fluid loss to the formation is shown in
Fig. 23, which for an incompressible fluid is the difference
in flow rate in and out of the well. This plot shows that the
loss magnitude is correctly estimated, and together with
detection and isolation, information about the loss is well
diagnosed. Gas influx is more challenging for the current
model, since gas is not modeled. Drillstring washout and
bit nozzle plugging magnitude is not directly measured,
and cannot be verified. Nevertheless, bit nozzle plugging
magnitude is possible to estimate based on changes to θ̂b.
Magnitude of drillstring washout flow was calculated in
[15], although the value of washout flow could not be ver-
ified from data due to lack of washout flow measurement.

9. Discussion

The need for statistical change detection was evident
from the parameter estimates shown in Fig. 13, where most
of the incidents would be rather difficult to detect directly
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Figure 17: Detection and isolation of bit nozzle plugging.
GLRT plotted for t and Gaussian distribution (scaled).
Actual incident shown in gray.

Figure 18: Estimation (−∆q̂) and measurement (qloss) of
lost circulation. Measurement not known to estimation
algorithm.

from the estimates. An exception was two of the four
nozzle pluggings, where the estimated bit parameter θ̂b
had a large change. However, to ensure that the incident
was indeed a bit nozzle plugging, the whole process had to
be considered, i.e., a multivariate detection algorithm was
needed.

Comparing drillstring washout and lost circulation in
the schematic overview in Fig. 11, and in Tab. 1, shows
that the two incidents have equal effect on the annulus
parameter θ̂a. The same applies for gas influx if the pres-
sure drop is gravity dominated. Separation of the incidents
requires one to consider changes to all signals in ΘD.

The proposed methodology successfully detected and
isolated the different cases of drillstring washout, lost cir-
culation, gas influx, and bit nozzle plugging. This repre-
sents a significant improvement over the results reported
in [16], where isolation was uncertain. Reasons were that
in [16], changes to each parameter was considered sepa-
rately, and that a Gaussian-based detector was used on
the non-whitened estimates.

The method was validated using data from the flow
loop, representing key parts of the drilling process. Dur-
ing specific drilling operations where tools such as a hole-
opener or under-reamer are used, side ports in the bottom
hole assembly would slightly modify the flow path. This
would have to be accounted for in the process model.

Isolation of the position was based on changes to esti-
mated friction in the annulus, using distributed pressure
measurements. With an increased number of measure-
ments, the distance between them decreases, and frictional
pressure drop decreases. It is therefore even more difficult
to detect changes, making a statistical change detection
algorithm necessary if changes to estimated parameters
should be detected. For the drillstring washout case, the
position was correctly isolated, except for a few minutes
in the beginning with low washout rates. In the lost cir-
culation case, the position was correctly isolated for all
three losses, also for the smaller loss. Isolation for the gas
influx case was not considered. As discussed in Sec. 5.3,
changes to pressure drop with a multi-phase flow is depen-
dent on well geometry, where the friction drop could either
be gravity dominated or friction dominated. Changes in
ΘI is thus dependent on the geometry, and where in the
well the gas is located. This motivates the need for a fit-
for-purpose model in order to isolate the position of the
gas influx. Nevertheless, the main concern in drilling with
respect to gas influx is to detect that it is happening, which
the method successfully does.

It was shown in [15] that the white-filtered estimates
are t-distributed. Using the dedicated t-distribution change
detector gave superior results over the Gaussian detector
for all cases except the bit nozzle plugging. This superi-
ority is especially important for the isolation, where small
changes in parameters were experienced.
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10. Conclusion

Fault diagnosis of downhole incidents during oil and
gas drilling was successfully done in this paper by esti-
mating friction parameters and flow rates. Changes to
estimates were detected by a multivariate generalized like-
lihood ratio test, considering a set of estimated well param-
eters and flow rates simultaneously. Isolation of incident
type and position was achieved by determining the direc-
tion of change of the estimated parameters. Data from
a medium-scale horizontal flow loop of 1400 m was used
to test the fault diagnosis method. Parameter and state
estimates from data were found to have a non-Gaussian, t-
distributed noise component, and this was utilized in the
dedicated multivariate statistical change detection algo-
rithm, developed specifically for this distribution. Thresh-
olds were determined based on specified probabilities of
false alarms. Diagnosis of drillstring washout, lost circula-
tion, gas influx, and bit nozzle plugging were tested. All of
these cases were successfully detected and isolated during
the occurrence of the incident. A multi-phase flow model
should be considered if isolation of gas influx position is
required, whereas the position was correctly isolated for
drillstring washout, fluid loss, and bit nozzle plugging.
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