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Abstract

This thesis investigates how mathematical models can serve as a basis for integrating
production and maintenance planning in digital twins and cyber-physical systems. The
thesis considers production and maintenance planning in the offshore oil and gas industry,
where maintenance is considered to be a significant operating cost. Integrating production
and maintenance planning is challenging because the two disciplines generally conflict with
each other. Decisions regarding the production plan influence the condition of the machines
in the system, while decisions for when to perform maintenance impose restrictions for
the production plan. Previous studies have not dealt with the capabilities of digital twins
and cyber-physical systems for integrating production and maintenance. To address this,
mathematical models have been derived in this thesis to define principles for how these
models should interact in order to utilise the capabilities of digital twins and cyber-physical
systems. The models were linked to existing research concerning concepts, frameworks,
technologies, and tools for digital twins and cyber-physical systems to discuss how this can
contribute to realising the mathematical models in a digital twin and cyber-physical system
and how it can contribute to decision-making across the disciplines. The results reveal that
the models must automatically gather data in real-time, exchange data between them and
with other elements of the digital twin and cyber-physical system, and handle the dependency
between the production plan and the condition of the machines. A recommendation for
further work is suggested to include a stochastic process in the modelling of the condition to
capture the uncertainty of the degradation process.

Keywords – Integration, production planning, maintenance planning, digital twin, cyber-
physical system
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Sammendrag

Denne avhandlingen undersøker hvordan matematiske modeller kan fungere som grunnlag
for å integrere produksjons- og vedlikeholdsplanlegging i digitale tvillinger og cyber-fysiske
systemer. Avhandlingen tar for seg produksjons- og vedlikeholdsplanlegging i olje- og
gassindustrien, der vedlikehold anses å være en vesentlig driftskostnad. Integrering av
produksjons- og vedlikeholdsplanlegging er utfordrende fordi de to fagene generelt er i
konflikt med hverandre. Beslutninger angående produksjonsplanen påvirker tilstanden
til maskinene i systemet, mens beslutninger om når man skal utføre vedlikehold gir
begrensninger for produksjonsplanen. Tidligere studier har ikke tatt høyde for mulighetene
digitale tvillinger og cyber-fysiske systemer bringer for å integrere produksjon og vedlikehold.
For å løse dette har matematiske modeller blitt utledet i denne oppgaven for å definere
prinsipper for hvordan modellene skal samhandle og utnytte mulighetene digitale tvillinger
og cyber-fysiske systemer bringer. Modellene er blitt knyttet til eksisterende forskning
angående konsepter, rammeverk, teknologier og verktøy for digitale tvillinger og cyber-fysiske
systemer for å diskutere hvordan dette kan bidra til å realisere de matematiske modellene i
en digital tvilling og et cyber-fysisk system, og hvordan dette kan bidra til beslutningstaking
på tvers av fagområdene. Resultatene avslører at modellene må automatisk samle inn data i
sanntid, utveksle data mellom dem og andre elementer i en digital tvilling og et cyber-fysisk
system, samt håndtere avhengigheten mellom produksjonsplanen og maskinens tilstand. Et
forslag til videre arbeid er å inkludere en stokastisk prosess i modelleringen av tilstanden for
å fange usikkerheten ved nedbrytningsprosessen.

Nøkkelord – Integrering, produksjonsplanlegging, vedlikeholdsplanlegging, digital tvilling,
cyber-fysisk system
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1 INTRODUCTION

1 Introduction

Industry 4.0 is a common term describing the ongoing fourth industrial revolution. By digital
transformation and the use of modern technology, industrial companies enable further
automation and integration of their operations, as well as increasing autonomous decision-
making processes, and real-time monitoring of assets and processes (Lasi et al., 2014). An
evolving concept as a result of Industry 4.0 is digital twins. A digital twin is a virtual model
of a physical object or system which provides real-time information about a physical part
(Lu et al., 2020). The digital twin (DT) is considered to be a prerequisite for the development
of cyber-physical systems (CPS) (Uhlemann et al., 2017) which are systems that enable
remote diagnosis, real-time control, transparency, predictability, and increased efficiency of
a production system (Monostori, 2014). By utilising the principle of Internet of Things (IoT),
sensors and software can be connected with each other and exchange data. This enables a
real-time representation of an object through the virtual model. In manufacturing, a digital
twin can, for example, represent a physical product, production line, or an entire factory,
while in the oil and gas industry it can represent a specific component, an oil well, or an entire
oil platform. A digital twin can monitor and evaluate how the physical object is performing
and enables simulation and “what-if” analysis based on the actual real-time performance
of the physical object (Boschert and Rosen, 2016). A challenge in industrial companies is
the integration of production planning and maintenance planning – two disciplines that
generally conflict with each other (Nourelfath and Châtelet, 2012). Production planning and
control describe the activities an organisation performs to plan and control the production so
that the organisation’s demand is met. This involves ensuring the availability of equipment,
raw material, and personnel, while also planning the desired output of the production that is
needed to meet the demand (Jacobs et al., 2011). Maintenance planning, on the other hand,
involves planning activities that aim to ensure the system’s function and lifetime, as well
as ensuring safety and human well-being. Planning maintenance includes, amongst other
things, deciding when the maintenance should be performed, by whom, and with what type
of equipment and material (Al-Turki, 2009).

Furthermore, there are three types of strategies that determine how the maintenance is
performed, namely corrective, preventive, and predictive maintenance (Wang et al., 2015).
Corrective maintenance is activities performed whenever a component or equipment runs to
failure. This is considered to be a costly solution, not only in terms of the actual maintenance
costs of running parts to a damaged state but also in terms of the cost of lost production.
Preventive maintenance is planned maintenance activities that are done in a precautionary
matter and often scheduled in specific time intervals. Predictive maintenance, often referred
to as condition-based maintenance (Wang et al., 2015), involves regular monitoring of the
actual mechanical condition, operating efficiency, and other indicators of the operating
condition of machines and process systems (Mobley, 2004). This regular monitoring provides
the required data to ensure the maximum interval between repairs and minimise the number
and cost of unscheduled outages created by failures. Predictive maintenance measures
parameters in the condition of the equipment to find the optimal time to carry out tasks
that optimise the service life of machines and processes without increasing the risk of failure.
Although predictive maintenance has been used in the industry for several years already, it is
considered to have great potential in Industry 4.0 due to the accelerated use of technologies
like big data and cloud computing (Li et al., 2016), improving the procedure of gathering and
interpreting data.
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1 INTRODUCTION

This thesis aims to investigate how production and maintenance planning can be integrated
by the use of digital twins and cyber-physical systems. Maintenance activities on production
equipment use time that otherwise could be used for actual production while, on the other
hand, avoiding maintenance activities in favour of running production can increase the risk
of failure on equipment which could initiate downtime. For many production systems, there
exist a trade-off between producing as much as possible and wearing out the components of
the system (Verheyleweghen et al., 2019). According to Djurdjanovic et al. (2018), in order
for modern manufacturing practices to move toward the standards of the fourth industrial
revolution, advancements in maintenance and production operations decision-making
are necessary. Previous research indicates that the practice of making maintenance and
production decisions separately can be costly and that there are significant benefits for
making these decisions in an integrated fashion (Aghezzaf and Najid, 2008). Moreover,
Industry 4.0, digital twins, and cyber-physical systems are reckoned to be important concepts
that can contribute to this matter, and help improve the planning and management of
production and maintenance (García and García, 2019; Tao et al., 2019b). Digital twins
and cyber-physical systems will contribute to more accurate planning and more efficient
dispatching through real-time monitoring, analysis, evaluation and optimisation of the
production and maintenance planning operation (Tao et al., 2019b), while Industry 4.0-
related technologies is considered to have a significant impact on both production and
maintenance management according to García and García (2019).

The importance of digital twins is increasingly recognised by both academia and industry, and
many digital twin applications have been successfully implemented in different industries,
including product design, production, prognostics and health management (Tao et al.,
2019b). Another industry that has identified the opportunity to take advantage of digital
twin applications is the oil and gas industry (LaGrange, 2019). As a result of lower oil
prices, incentives have emerged to improve maintenance performance in the industry since
maintenance costs are considered to be a significant operating cost (Norwegian Petroleum
Directorate, 2020). Based on this, it will be of interest to investigate how the integration of
production and maintenance planning can be carried out in the offshore oil and gas industry
by the use of mathematical models in a digital twin and cyber-physical system.

1.1 Background

The purpose of this thesis is to develop mathematical models for integrating production and
maintenance planning and investigating how such models can be used in a digital twin and
cyber-physical system and utilise the capabilities of the digital twin concept. The problem
is studied in light of offshore oil production. There have been several research papers that
address the challenges of integrating production and predictive maintenance (Pan et al.,
2011; Liu et al., 2018; Ghaleb et al., 2020a; Hafidi et al., 2020), however, these papers are not
incorporating the digital twin concept and how it can improve the integration of production
and maintenance planning in their research. Furthermore, the above-mentioned articles are
studied in an industrial manufacturing environment, where the characteristics of production
are different from the offshore oil and gas industry which is the scope of this thesis.

In the Norwegian oil and gas industry, there have been several investigations into the use
of mathematical programming and optimisation (Haugland et al., 1988; Christiansen and
Nygreen, 1993; Jonsbråten, 1998; Ulstein et al., 2007). Haugland et al. (1988) formulated a
linear program for offshore oil production planning, which was gradually extended to a mixed-

2



1 INTRODUCTION

integer program. The model assumes that the wells are already drilled and that it only remains
to find the production profiles which provides the optimum value of some given criterion,
like the net present value of income. Christiansen and Nygreen (1993) described a planning
model for the management of 130 oil-producing wells in the North Sea. The objective was to
form a better basis for the decisions about which wells to produce from and which to shut
down during a period. Jonsbråten (1998) presented a mixed integer programming model
for optimal development of an oil field under uncertain future oil prices. A finite set of oil
price scenarios with associated probabilities was provided. The work of Jonsbråten (1998) is
based on the model presented by Haugland et al. (1988). Furthermore, Ulstein et al. (2007)
developed an integer program for tactical planning of Norwegian petroleum production. The
problem considered regulation of production levels from wells, splitting of production flows
into oil and gas products, further processing of gas, and transportation in a pipeline network.
More recently, Krishnamoorthy et al. (2016) considered a dynamic scenario-based approach
for the daily production optimisation in the upstream oil and gas domain. Nevertheless,
these papers do not consider maintenance as part of their optimisation problems, nor do
they consider the digital twin concept or cyper-physical systems.

Regarding the integration of production and predictive maintenance in the oil and gas
industry, some recent papers have been published by Verheyleweghen and Jäschke (2017),
Verheyleweghen and Jäschke (2018) and Matias et al. (2020). Verheyleweghen and Jäschke
(2017) proposed a framework for combined diagnostics, prognostics, and optimal operation
of a subsea gas compression system while Verheyleweghen and Jäschke (2018) studied
the optimisation of several wells subject to choke degradation. The paper proposed to
integrate condition monitoring and prognostics into the production planning problem to
reduce conservativeness by actively steering plant degradation and preventing violation
of health-critical constraints. A model for predictive control approach that incorporates
process monitoring was proposed in Matias et al. (2020). The model allows steering of plant
degradation actively, preventing violation of health-critical constraints while optimising the
economic production of the system.

However, none of the papers above studied the integration of production and maintenance
by the use of digital twins and how the two disciplines can utilise the concept of digital twin
and cyber-physical systems to improve operational performance. Rødseth et al. (2018) are
the authors who are closest to address this gap. The authors investigated how estimating the
remaining useful lifetime can help synchronise the production and maintenance planning
with predictive maintenance capability and briefly discuss how Industry 4.0 trends relate to
the maintenance part of the problem. A three-step approach for synchronising maintenance
planning was proposed, consisting of (I) establish the initial maintenance plan, (II) modelling
of RUL, and (III) synchronise the maintenance plan. Using real-life data about historical
loads and speeds, the remaining useful life of the component under consideration can be
calculated. However, the paper does not account for the use of digital twins, although some
aspect of digitisation of maintenance is discussed, neither do the paper directly incorporate
the production planning aspect in the problem or study how the planned production can
influence the degradation of a component.

Therefore this thesis aims to investigate how production and maintenance planning can be
integrated and synchronised by the use of digital twins, specifically address how digital twins
can contribute to this matter, and investigate what concepts, frameworks, technologies, and
tools that exist for this purpose.

3



1 INTRODUCTION

1.2 Objectives

The main purpose of this thesis is to develop mathematical models that can serve as a basis
for integrating production and maintenance planning in digital twins and cyber-physical
systems for an offshore oil and gas production system. The aim is to investigate how the
mathematical models should be structured and how they should interact with each other to
improve the synchronisation between production and maintenance by utilising real-time
data from the system and predicted degradation of a component. In that regard, the following
research objectives have been determined:

1. Derive basic mathematical models for integrating production and maintenance.

2. Define principles for what the mathematical models in a digital twin and cyber-physical
system should do in order to integrate production and maintenance.

3. Investigate what concepts, frameworks, technologies, and tools that must exist in a
digital twin and cyber-physical system in order to support the integration of production
and maintenance through existing research in the literature.

4. Discuss how digital twins can contribute to decision-making across the two disciplines
production and maintenance.

The two first research objectives are linked to Chapter 3 which presents the development
of the models and a numerical demonstration. The last two research objectives are linked
to Chapter 4, where the derived models are linked to the existing literature on digital twins
and cyber-physical systems to determine what concepts, frameworks, technologies, and
tools that must be incorporated with the mathematical models to support the integration of
production and maintenance planning.

1.3 Approach

This section presents the methodological approach for this thesis and describes the different
methods that have been applied. The process behind the literature review is described, before
mathematical modelling as a methodological approach is presented.

1.3.1 Literature Review

A literature review from the Specialisation Project, conducted during the fall semester of 2020,
forms the basis of the literature for this thesis. Furthermore, the literature review has been
extended during the spring semester of 2021 to include additional articles that are relevant to
the research objectives for this thesis. The searches have been conducted in the following
databases: Emerald, Science Direct, Springer, Scopus, and One Petro. Performed searches
were done in all of the databases through Google Scholar, except for OnePetro which was
only included for searches related to the oil and gas industry. Several facets were decided
to provide precise searches, and relevant synonyms and terms were included. These are
presented in Table 1.1.

Primarily searches were done by using a block search strategy (combining several facets with
‘AND’ or ‘OR’ operators). Furthermore, when highly relevant articles were found, cited by
searches were performed to find additional relevant articles. Articles were decided to be
relevant if the title, abstract, or keywords of the article included some of the search facets.
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1 INTRODUCTION

Facet Related terms and synonyms

Integration • Integrate, integrating
• Synchronise, synchronisation, synchronising
• Synchronize, synchronization, synchronizing
• Coordination, coordinate, coordinating
• Joint optimisation, joint optimization

Maintenance • Predictive maintenance
• Condition-based maintenance

Production • Operation
• Manufacturing

Planning • Plan
• Scheduling
• Schedule

Industry 4.0 • Maintenance 4.0
• Digitisation
• Cyber-physical system
• Digital twin

Oil and gas • Offshore
• Petroleum
• Remote operations

Table 1.1: Search words used in the literature review

Then the articles were skimmed to assess if they in fact were relevant to the thesis or not.
Research articles that investigated the integration problem were rated highly, however, this
criterion had to be looser when searching for literature that studied the integration problem
in the context of oil and gas production or Industry 4.0. The reason for this is that there seem
to be few or no articles that specifically address the integration problem in these contexts.
The software JabRef has been used to manage all of the literature used in the thesis.

1.3.2 Mathematical Modelling

The main research approach in this thesis is mathematical modelling. The modelling is
done in a conceptual domain, thus the need for real data has been non-existent. This thesis
does therefore not rely on collected data from real life. Gaining access to data when working
with modelling can be difficult but should not introduce problems as long as the researcher
works in the conceptual domain (Karlsson, 2016). However, to demonstrate the mathematical
models that have been derived in this thesis, certain data and input parameters have been
required to run the model. Some of this data, for example, related to production rates in
the oil sector and oil price, is assumptions based on what can be found in the literature and
other sources of information. It has been highlighted in the actual section whenever such
assumptions have been made in the demonstration of the model. Furthermore, data related
to the degradation of the choke valve (Section 3.4) has been based on information found
in the recommended practice article from DNV-GL (2015), which presents methods and
concepts for managing sand production and erosion. Considering that the recommended
practice article was developed in collaboration with several major actors in the oil and gas
sector, it is reasonable to assume that the suggested data values in this article have realistic
values.

5



1 INTRODUCTION

As digital twins can be seen as a digital model of a physical asset, mathematical modelling is a
suitable method for studying how this can enable integration of production and maintenance.
Furthermore, production and maintenance planning is also areas of research that often is
studied through the use of mathematical modelling. Several research methods for operations
management is discussed by Karlsson (2016). The author defines axiomatic research as
research that is primarily driven by the (idealised) model itself. The primary objective is
obtaining solutions within the defined model and ensuring that these solutions provide
insights into the structure of the problem. Axiomatic research generates an understanding of
the behaviour of certain variables in the model, based on assumptions about the behaviour of
other variables in the model (Karlsson, 2016). Additionally, it can generate an understanding
of how to manipulate certain variables in the model, assuming desired behaviour of other
variables in the model and assuming knowledge about the behaviour of the other variables in
the model (Karlsson, 2016). Axiomatic research is primarily prescriptive, seeking to develop
policies, strategies and actions to improve the results available in the literature and to find
an optimal solution for a newly defined problem. Descriptive research, on the other hand,
is seeking to analyse a model to understand and explain the characteristics of the model
(Karlsson, 2016).

Figure 1.1: Research model from Karlsson (2016) based on Mitroff et al. (1974)

The research approach of this thesis can be described as axiomatic quantitative research,
based on the definition presented by Karlsson (2016). Axiomatic quantitative research starts
with a description of the operational process or the operational decision problem that is
going to be studied. Relating this to Figure 1.1, this correlates with the conceptual model
in the illustration. Karlsson (2016) emphasised that in axiomatic research, it is necessary to
describe all assumptions that underlie the conceptual model. This has been done accordingly
throughout Chapter 3. Furthermore, the work in this thesis contributes to the study of a new
variant of the problem, using well-known solution techniques found in the literature, rather
than studying a problem that has been studied before and applying new types of solution
techniques that provides better results. The second phase of an axiomatic quantitative
research approach is the specification of the scientific model of the process or problem. To
perform either mathematical or numerical analysis, the scientific model should be presented
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in formal mathematical terms. Additionally, relationships in the model should be explained
and related to earlier work in which similar relations have been developed (Karlsson, 2016).
The relationships is explained in Section 3.2 and the relation to earlier work is described
throughout Chapter 3.

The advantages of this research method are that it enables analysis of large complex situations
from the real world without the need to interfere or interact with an actual system of the real
world. It also facilitates discussion of “what if” type of questions, which is directly relatable
to the capabilities of a digital twin. On the other hand, the results of a model are strongly
dependent on the quality of the model and on the assumptions made. By making either many
or unrealistic assumptions, one may risk that the model becomes distant from the real-life
situation. In addition to this, mathematical models are often unique and tailor-made for the
problem it aims to solve, thus making it difficult to generalise. Having said that, it will still
allow for studying the interactions between production and maintenance planning and how
a digital twin can enable optimisation and synchronisation between these two disciplines.

1.4 Outline

Below follows a description of the remaining structure of this thesis.

Chapter 2 - Theoretical Background: presents the fundamental theoretical definitions and
concepts that production and maintenance planning is built upon, predictive maintenance,
and remaining useful life and prognostics methods for maintenance, while also describing
the characteristics of an oil and gas production system, Industry 4.0, digital twins and CPS,
and mathematical modelling.

Chapter 3 - Mathematical Models for Digital Twins: presents the mathematical models that
have been derived in this thesis, describing the problem and case under consideration and
the three models that are considered to integrate production and maintenance.

Chapter 4 - Linking the Models to a Digital Twin and Cyber-Physical System: elaborates on
how the digital twins are interpreted in the literature, forming the basis for discussing how
the mathematical models relate to the various elements of a digital twin and cyber-physical
system.

Chapter 5 - Discussion: presents the discussions of the work carried out in this thesis. The
two main parts of the thesis, Chapter 3 and 4, are discussed regarding how they support and
answer the research objectives, in addition to discussing the challenges and limitations of
the work. Suggestions for further work is also recommended in this chapter.

Chapter 6 - Conclusion: this chapter concludes the master’s thesis.

Chapter 2 describes relevant theory and literature both regards to production management
and reliability, availability, maintainability and safety. After this, Chapter 3 presents the
derived mathematical models that demonstrate some of the challenges for integrating the
different digital twins. Following this chapter, Chapter 4 evaluates and discuss the literature
on digital twins and how it enables integration across disciplines. The aim is to link the
derived mathematical models to the frameworks and methods that exists in the literature.
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2 Theoretical Background

The theoretical background acts as a foundation for the work that has been carried out in this
thesis. The following chapter presents theoretical definitions and concepts that production
and maintenance planning is built upon, predictive maintenance, and remaining useful life
and prognostics methods for maintenance. Following this, descriptions of the characteristics
of an oil and gas production system, Industry 4.0, digital twins and CPS, and mathematical
modelling is provided. The first part, Section 2.1, presents traditional production planning
and control theory, describing how the production planning function typically is organised
and describing production planning and control principles in the oil and gas industry. Section
2.2 introduces maintenance planning and scheduling and briefly describes the different
maintenance strategies that exist. Section 2.3 describes predictive maintenance as this is
seen as an important maintenance strategy in modern industry and for digital twins and
cyber-physical systems. In relation to predictive maintenance, the concept of remaining
useful life is typically applied together with prognostics methods for maintenance. This is
presented in Section 2.4. General characteristics of an oil and gas production system are
presented in Section 2.5 to understand the challenges and prerequisites for how integrated
production and maintenance planning in the oil and gas industry should be conducted.
Section 2.6 address the two relevant concepts for integrated production and maintenance
planning in Industry 4.0, namely digital twins and cyber-physical systems. The last part,
Section 2.7, presents theoretical principles in mathematical modelling.

2.1 Production Planning and Control

Production planning and control describe the activities an organisation performs to plan
and control the production so that the organisation’s demand is met. This involves ensuring
the availability of equipment, raw-material and personnel, while also planning the desired
output of the production that is needed to meet the demand. Production planning and
control are defined by Jacobs et al. (2011) as:

“... to manage efficiently the flow of material, to manage the utilisation of
people and equipment, and to respond to customer requirements by utilising the
capacity of our suppliers, that of our internal facilities, and (in some cases) that
of our customers to meet customer demand.” (Jacobs et al., 2011)

While a plan is a formalisation of what is intended to happen in the future, it does not
guarantee that an event will actually happen. Unforeseen changes and differences occur,
and control is the process of coping with these changes and differences (Slack et al., 2013).
A common concept of planning general activities is the concept of planning horizons. The
terms and descriptions may vary depending on the application area and industry, but in
regards to production planning and control, the planning horizons can be classified into
three levels (Jacobs et al., 2011; Slack et al., 2013):

• Strategic (long-term)
• Tactical (medium term)
• Operational (short term)

At the strategic level, production planning and control aim to provide information for decision-
making on determining the capacity needed to meet the market demands. This is also the
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level where decisions regarding human resource capabilities, technology, and geographical
locations take place (Jacobs et al., 2011). At the tactical level, production planning and
control determines the product volume and mix that matches the supply and demand. This
implies providing the exact material and production capacity needed to meet the demand by
planning for the right quantities of material to arrive at the right time and place to support
production and distribution. Furthermore, maintaining appropriate levels of raw material,
work in process, and finished goods inventories in the correct locations are central tasks
at this level, while planning of capacity requires determining employment levels, overtime
possibilities, subcontracting needs, and support requirements (Jacobs et al., 2011). Lastly, the
operational level is where the detailed scheduling of resources required to meet production
requirements is conducted, which involves time, people, material equipment and facilities
(Jacobs et al., 2011).

Figure 2.1: Relationship between planning and control (Slack et al., 2013)

The different levels of planning and how they interact with each other can also be described by
the previously introduced terms planning and control. The two terms are separate but closely
related activities (Slack et al., 2013). Long-term planning lies within the planning category,
whereas the operational and short-term level lies within the control category, illustrated in
Figure 2.1. A more detailed description of how processes in the supply chain fit with the
different planning horizons is illustrated in the supply chain planning matrix in Figure 2.2,
where production processes are highlighted in the red box. The matrix places plant location
and production system in the long-term level, master production scheduling and capacity
planning in the mid-term level, and lot-sizing, machine scheduling, and shop floor control at
the short-term level.
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Figure 2.2: The supply chain matrix adapted from (Fleischmann et al., 2015)

2.1.1 The Difference Between Production Planning and Scheduling

When reviewing the literature at hand, it is important to distinguish between production
planning and production scheduling. The two terms may sound similar, however, there are
differences between the two although they both can be categorised as production planning.
Strategic (long-term) planning decides the executive composition of the supply chain by
determining capacity- and location-related decisions, while tactical (medium-term) planning
make decisions regarding material requirements and desired output. Operational (short-
term) planning is performed on a weekly or daily basis at a more detailed level to assign tasks
and the sequencing of tasks that comes as a result of the tactical production plan. It is at
this level that production scheduling is performed. Fleischmann et al. (2015) uses the term
“scheduling” to describe activities in both the mid-term level (master production schedule)
and short-term level (machine scheduling). Throughout this thesis, the term production
planning are used to describe production planning activities that is performed at the tactical
level, while production scheduling describes processes and activities at the operational level.

2.1.2 Production Planning and Control System

Production planning and control are organised in a system that is tightly linked with the
planning horizons. The hierarchy is illustrated in Figure 2.3, while the linkage to the planning
horizon and level of detail is illustrated in Figure 2.4.

The production plan is driven by the strategic business plan and concerns determining
quantities of product groups that need to be produced in a period, desired inventory levels,
resources of equipment, labour, and material needed in a period, and the availability of
the needed resources. The level of detail is not high at this stage (Arnold et al., 2008). The
master production schedule is based on the production plan and determines the quantity
of each end item that is to be made. Whereas the production plan is based upon product
families, the master production schedule is developed for individual end items (Arnold et al.,
2008). Material requirements plan establishes when the components and parts are needed to
make each end item. This involves determining what to order, how much to order, when to
order, and when to schedule delivery (Arnold et al., 2008). Purchasing and production activity
control represent the implementation and control phase of the production planning and
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Figure 2.3: Hierarchy of production planning and control system (Arnold et al., 2008)

control system. Purchasing establishes and controls the flow of raw materials into the factory,
while production activity and control plans and controls the flow of work through the factory
(Arnold et al., 2008).

Figure 2.4: Level of detail versus planning horizon (Arnold et al., 2008)

To plan the production, five basic inputs need to enter the production planning and control
system (Arnold et al., 2008):

• Product description - describes the product characteristics and features through
drawings and specifications. The most common method is through a bill of material,
that describes the components used to make the product and the sub-assemblies
related to the product (Arnold et al., 2008).

• Process specifications - describes the necessary steps to make the finished product.
Typically specifies what operations that need to be done, in what sequence, with what
equipment, and how much time is required to complete each operation (Arnold et al.,
2008).

• Time consumption - includes how much time is needed to perform operations, and
how much time is needed to load and deliver the product to other stations of the system
(Arnold et al., 2008).

• Available facilities - information regarding what plant, stations, equipment, and labour
will be available at what time to process work (Arnold et al., 2008).
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• Required quantities - based on demand forecasts, customer orders, orders to replace
finished goods inventory, and the material requirements plan (Arnold et al., 2008).

2.1.3 Production Processes

Having presented the overall goal of production planning and control, planning horizons,
and the difference between production planning and scheduling, the following section moves
on to briefly describe some common production processes. Depending on what kind of
products are produced, the different production processes that are used in manufacturing
can be listed as follows (Arts et al., 2018):

• Continuous production
• Mixed model flow and assembly lines
• Job shop manufacturing
• Group technology / Cellular manufacturing systems
• On site manufacturing

Continuous production is often used in process industries and for bulk materials. Oil
refineries, chemical products, and food processing are examples. The products are often
liquids that can be packed in any amount desired (Arts et al., 2018). Mixed model flow and
assembly lines include assembly processes found in the automotive industry and consumer
electronics, as well as parts manufacturing systems that are based on a fixed and repetitive
sequence of process steps that are basically identical for all products. This process is typically
suitable for the manufacture or assembly of products that are sold in large volumes and low
variety (Arts et al., 2018). Job shops are characterised by a highly functional process structure,
where machines are grouped according to specific processes, like milling or drilling in a
machine shop. Each product could have its own routing through the shop, which enables
the system to handle large varieties of products. Job shops are generally suitable for small
product quantities (Arts et al., 2018). Group technology groups the products based on similar
production characteristics and consecutive process steps will happen in the same cell (Arts
et al., 2018). On-site manufacturing is performed when realising complex infrastructural
works (bridges, tunnels) or the completion of a major industrial facility. These works are
often organised as a separate project. The main feature of on-site manufacturing is that the
equipment and components needed to finish the product is transported to the product’s site
(Arts et al., 2018).

2.1.4 Production Planning and Control in Oil and Gas

Keeping the above in mind, the production process in oil and gas is considered to be
continuous production. Similar to general production planning and control described
previously in this chapter, production planning and control in oil and gas also involve
different planning horizons. Bieker et al. (2007) studied the information flow in offshore
oil production optimisation. In oil and gas, a typical production system is operated by
periodically generating a production and injection plan. The production and injection plan
will determine the production level of each well for a specific period, while also determining
the injection of gas or water for the injection wells (Bieker et al., 2007). According to Bieker
et al. (2007), the goal in optimising the production plan in offshore oil is typically to maximise
the daily production rate of oil and to inject gas and water according to established rules
provided by the reservoir planning. This implies that the wells that should produce must be
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prioritised and that the rate of production on each well must be determined. This is required
since the available processing capacity is less than the combined flowing capacity of the wells
(Bieker et al., 2007). Similarly to the manufacturing industry, the development of a petroleum
field asset requires planning on several horizons (Gunnerud and Foss, 2010). On the strategic
level (long-term horizon), reservoir planning is based on market conditions, field properties,
and strategic considerations of the developing company. This level typically also include
decisions related to the technology for an offshore field and involves deciding how to develop
the subsea solution, whether to process the fluid onshore or offshore, and how to export the
different produced products (Gunnerud and Foss, 2010). On the tactical level (medium-term
horizon), also called tactical reservoir management, the goal is to extract as much oil and
gas from the reservoir as possible, within the bounds of the strategic decisions. Decisions
at this level involve deciding the drilling of new wells to reach a predefined production rate
while at the later stage it can involve deciding whether to apply artificial lift technology to
boost production (Gunnerud and Foss, 2010). On the operational level (short term) the goal
will be to maximise daily production rates. However, production could be constrained by
certain reservoir conditions related to the production equipment like, for example, a pipeline
capacity or downstream water handling capacity. This results in the need to model both the
subsea part and the surface part of the value chain. Decisions at this level involve deciding
the production and injection rates, so-called artificial lift inputs and routing of well streams
(Gunnerud and Foss, 2010).

Figure 2.5: Multilevel control hierarchy for oil and gas (Foss and Jensen, 2011)

Similar structures and interpretations are found in the literature (Saputelli et al., 2002; Foss
and Jensen, 2011). Saputelli et al. (2002) introduced a hierarchy of oil field operations
that identifies various levels of detail and time scales for decision-making processes. The
hierarchy has similarities with the production planning and control hierarchy discussed
previously in this chapter. This hierarchy describes five levels: capacity planning design,
operational planning, scheduling, supervisory control, and regulatory control. Additionally,
Foss and Jensen (2011) presented a multilevel control hierarchy consisting of four levels: asset
management, reservoir management, production optimisation, and control and automation.
The hierarchy is illustrated in Figure 2.5, which illustrates that decisions on different time

13



2 THEORETICAL BACKGROUND

scales are closely related to each other. Decisions above the horizontal dotted line are
semi-automatic because humans are involved in the decision-making. The vertical arrows
indicate that the decisions on different layers influence each other. Typically, long-term
optimisation imposes constraints on lower-level decisions to avoid a short-term production
strategy harming long-term recovery (Foss and Jensen, 2011).

2.2 Maintenance Planning and Scheduling

So far, the principles of production planning and control has been presented. This
section describe principles of maintenance planning and scheduling. Maintenance is the
combination of all technical and associated administrative actions intended to maintain an
item or system in, or restore it to, a state in which it can perform its required function (Dekker,
1996). Furthermore, the objectives of maintenance are described by Dekker (1996) as:

• Ensuring system function (availability, efficiency and product quality)
• Ensuring system life (asset management)
• Ensuring safety
• Ensuring human well-being

Similar to the theory of production planning and control described in Section 2.1, the process
of maintenance planning and scheduling can also be divided into three basic levels depending
on the planning horizon (Al-Turki, 2009):

• Long range (strategic) - yearly plans
• Medium range (tactical) - monthly plans
• Short range (operational) - daily and weekly plans

Although the terms are slightly different, the maintenance planning horizons can be
interpreted in the same way as the planning horizons of production planning and control
presented in Section 2.1. Strategic maintenance planning typically addresses four dimensions:
(I) decisions regarding outsourcing or in-house maintenance, (II) organisation and work
structure, (III) maintenance strategy, and (IV) selection of the support system (Al-Turki, 2009).
Tactical maintenance planning decides how the maintenance organisation operates and
provides details for major overhauls, construction jobs, preventive maintenance plans, plant
shutdowns, and vacation planning. The plan balances the need for manpower over the
period covered and estimates the required spare parts and material acquisition (Al-Turki,
2009). Operational maintenance planning determines the required elements to perform
maintenance tasks. Required labour, equipment, and material are estimated and planned at
this level (Al-Turki, 2009).

2.2.1 Maintenance Strategies

To achieve the objectives of maintenance, several maintenance strategies exist and are
discussed in the literature. However, the definitions and classifications of the different
methodologies are often used interchangeably and without precision. An example of this is
made clear by comparing the works of Duffuaa and Raouf (2015) and Wang et al. (2015). The
former suggests nine different strategies, while the latter, on the other hand, classifies the
strategies in three classes: corrective maintenance, preventive maintenance, and predictive
maintenance. The two different interpretations are presented in Figure 2.6 and 2.7. As the two
figures illustrate, there are different interpretations of the maintenance methodologies and
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how they are classified. This is also a subject that is researched by Khazraei and Deuse (2011),
who addressed the lack of a common taxonomy regarding maintenance types. However, in
this thesis, the definition presented by Wang et al. (2015) is used.

Figure 2.6: Maintenance strategies (Duffuaa and Raouf, 2015)

Figure 2.7: Classification of maintenance strategies (Wang et al., 2015)

The maintenance strategies and methods applied in various industries has gone through
several phases throughout history (Eyoh and Kalawsky, 2018). While there was a time where
maintenance activities were done to fix equipment when it broke (corrective maintenance)
or were done in a precautionary matter (preventive maintenance), the modern methods rely
on more structured and thoughtful strategies in addition to the two mentioned above. The
two strategies are still in use in industries (Wang et al., 2015), but predictive maintenance has
become a common maintenance strategy in modern maintenance management. Predictive
maintenance is considered to have great potential in Industry 4.0 due to the accelerated
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use of technologies like big data and cloud computing (Li et al., 2016). The next section will
present the theory regarding predictive maintenance.

2.3 Predictive Maintenance

Predictive maintenance, often referred to as condition-based maintenance (Wang et al.,
2015), involves regular monitoring of the actual mechanical condition, operating efficiency,
and other indicators of the operating condition of machine and process systems (Mobley,
2004). This regular monitoring provides the required data to ensure the maximum interval
between repairs and minimise the number and cost of unscheduled outages created by
failures. It is a strategy that uses the actual operating condition of plant equipment and
systems to optimise the total plant operation (Mobley, 2004). Predictive maintenance
measures parameters in the condition of equipment to find the optimal time to carry out
tasks that optimise the service life of machines and processes, without increasing the risk
of failure. There are different methods of measuring the symptom of failures, which leads
to the two groups of predictive maintenance: statistical-based predictive maintenance and
condition-based predictive maintenance (Wang et al., 2015). Statistical-based predictive
maintenance relies on statistical data from the continuous recording of the stoppages
of machines and equipment to develop models for predicting failures. Condition-based
predictive maintenance depends on continuous or periodic monitoring of the equipment’s
condition to detect the signs of failure and make maintenance decisions (Wang et al., 2015).
When implementing a predictive maintenance strategy, several key techniques including
sensors and signal processing techniques, feature extraction techniques, fault diagnosis
and prognosis techniques and maintenance optimisation techniques should be taken into
account (Wang et al., 2015). According to Wang et al. (2015), there are both advantages and
disadvantages of predictive maintenance, summarised in Table 2.1.

Advantages Disadvantages

• Equipment that requires
maintenance is shut down only before
imminent failure

• The skill level and experience
required to accurately interpret
condition monitoring data is high

• Reducing the total time spent
maintaining equipment

• The cost of the equipment needed for
condition monitoring is often high

• Reducing maintenance costs by
avoiding catastrophic damage
• Increasing availability and reliability
of machines
• Extending life of equipment and
processes

Table 2.1: Advantages and disadvantages of predictive maintenance (Wang et al., 2015)
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To monitor the equipment’s condition by the use of sensor technology, some predictive
maintenance techniques have been classified by Selcuk (2016):

• Process parameter measurements
• Vibration analysis
• Oil analysis
• Thermal analysis
• Acoustic analysis
• Other

The different techniques have different application areas and different suitability (rotating
equipment, electrical equipment, etc.) to detect various problems (crack detection, corrosion
monitoring, etc.) and is not explained in detail in this thesis.

2.3.1 Predictive Maintenance System

Predictive maintenance as a maintenance strategy is described by both Jardine et al. (2006)
and Xu et al. (2019). The latter can be viewed as a continuation of the concepts found in the
former, aiming to provide an overview of the predictive maintenance system in the modern
era of big data. In general, the predictive maintenance system consists of data acquisition
and pre-processing, fault diagnostics, fault prognostics and maintenance decision-making,
according to Xu et al. (2019). These activities are further described below.

Data acquisition describes the process and activities of collecting and storing relevant data
from physical assets. It acts as a foundation for fault diagnostics and prognostics. The two
types of data that is considered to be relevant for predictive maintenance are event data and
condition monitoring data (Jardine et al., 2006). Event data provides information regarding
what happened (e.g., installation, breakdown, overhaul, etc.), what caused the event, and
what was done (e.g., minor repair, preventive maintenance, oil change, etc.) in relation to the
event and to the targeted physical asset (Jardine et al., 2006). On the other hand, condition
monitoring data are the measurements related to the health condition/state of the physical
asset. Some examples of condition monitoring data are vibration data, acoustic data, oil
analysis data, temperature, pressure, and so on (Jardine et al., 2006). The advance of Internet
of Things technology enables these data to be captured and stored for further analysis (Xu
et al., 2019). Jardine et al. (2006) also pointed out that event data and condition monitoring
data are equally important, although people tend to put more emphasis on the collection of
the condition monitoring data.

When it comes to data processing, the first step is to clean the data. This is an important step
since data often contains errors. Data cleaning increases the chance that the data is free of
errors before further analysis and modelling. Data errors are caused by many factors, where
one example is human errors, while for conditioned monitoring data, data errors may be
caused by sensor faults (Jardine et al., 2006). After the data has been cleansed, the data can
then be analysed. A variety of models, algorithms, and tools are available in the literature
to analyse data for better understanding. The models, algorithms and tools used for data
analysis depend mainly on the types of data collected (Jardine et al., 2006).

Fault diagnostics focus on detection, isolation and identification of faults when they occur.
Machine fault diagnostics is a procedure of mapping the information obtained in the
measurement space or features in the feature space to machine faults in the fault space
(Jardine et al., 2006). There are two main approaches in fault diagnostics, which are statistical
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approaches and artificial intelligence approaches. The process of fault diagnostics is outside
of the thesis’ scope, and is not described further.

Moving on to the concept of fault prognostics, it can be defined as “the ability to predict the
future condition of a machine based on the current diagnostic state of the machinery and its
available operating and failure history data” (Byington et al., 2002). According to Jardine et al.
(2006), prognostics is superior to diagnostics in the sense that prognostics can prevent faults
or failures, and if not, prepare spare parts and human resources for the problems, and thus
save extra unplanned maintenance cost. On the other hand, prognostics cannot completely
replace diagnostics since in practice there are always some faults and failures which are not
predictable. Besides, similar to other prediction techniques, prognostics cannot be 100 per
cent sure to predict faults and failures (Jardine et al., 2006). The next section of this chapter
presents different methods related to fault prognostics in maintenance.

2.4 Remaining Useful Life and Prognostics Methods for
Maintenance

In the research literature, Peng et al. (2010), Sikorska et al. (2011), An et al. (2013), and Gao
et al. (2015) studied the different prognostics methods for maintenance. In this section,
remaining useful life is described before two statistical approaches, the Wiener process and
Gamma process, are presented.

2.4.1 Remaining Useful Life

The remaining useful life (RUL) is often used as an indicator that describes the remaining
time before a component no longer is useful or productive. The remaining useful life of a
component or system is more precisely defined as the length from the current time to the
end of useful life (Si et al., 2011). The remaining useful life is a random variable that depends
on the current age of the component, the operation environment and the observed condition
monitoring or health information. It is often used in relation to predictive maintenance as
it can contribute to the planning of maintenance activities, spare parts provision, and the
profitability of the owner of an asset (Si et al., 2011).

The random variable of the remaining useful life at time t j (age or usage) can be denoted as
RU L(t j ), such that

RUL(t j ) = i n f
{
h : Y (t j +h) ∈ SL

∣∣Y (t j ) < L,Y (s)0 ≤ s ≤ t j
}
, (2.1)

where

Y (t j ) = the current condition of the system
Y (t j +h) = the future health state of the system
SL = the set of failed (or unacceptable) states of the item
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2.4.2 Methods

In the literature, the remaining useful life prediction methods can be roughly classified into
physics-based and data-driven prediction methods where data-driven methods have received
the most attention (Wang et al., 2018). However, a more specific classification is presented
by Gao et al. (2015), distinguishing between physics-based, data-driven, and model-based
prediction methods. The required knowledge and data needed to establish the model is the
factor that distinguished the various methods. The classification of the different prognostics
methods is illustrated in Figure 2.8

Figure 2.8: Illustration of prognostics methods based on Gao et al. (2015)

According to Gao et al. (2015), physics-based approaches estimates the remaining useful life
using a mathematical representation of the physical behaviour of the degradation processes.
The drawback is that the method requires detailed knowledge of the system behaviour which
for most manufacturing systems is rarely available. In addition to this, physics-based models
need to determine the coefficients or parameters involved experimentally which makes
the models application-specific (Gao et al., 2015). Model-based methods utilise probability
distribution for its formulation. Based on the relevant physical mechanisms, state evolution
models and measurement models that relate sensor output to the underlying machine states
are established (Gao et al., 2015).

Data-driven methods utilise information extracted from historical data to numerically
establish a relationship between the current damage state and the future state. The data-
driven methods can be further categorised to artificial intelligence approaches and statistical
approaches (Gao et al., 2015). Artificial intelligence approaches use past data to train the
model, which in turn is used for prediction. For instance, an artificial neural network provides
an estimate based on historical data rather than a physical understanding of the failure
mechanism. On the other hand, statistical approaches assume that system performance
degradation follows a statistical distribution (Gao et al., 2015). This thesis considers the
Gamma process to be most relevant for the problem in Chapter 3, but the Wiener process is
also included to demonstrate an alternative approach.

Wiener Process

The Wiener process is often also called “Brownian motion with drift” and can generally
be described as a type of regression model. Nevertheless, they have specific properties
which distinguish them from regression models (Si et al., 2011). The Wiener process can
be used to model the path of degradation processes where successive and accumulative
fluctuations in degradation can be observed. However, as the Wiener process originally
was designed to model the non-monotonic motion of small particles, it is not suitable in
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modelling degradation which is monotone (Gao et al., 2015). The Wiener process is widely
discussed in literature (Si et al., 2011; Gao et al., 2015) and can be expressed as follows:

Y (t ) =λt +σB(t ), (2.2)

where

λ = drift parameter
σ> 0 = diffusion coefficient
B(t ) = standard Brownian motion

The definition of the RUL at time t i can be represented by the first time passage (FPT) of
{Y (t ), t ≥ t i } crossing threshold w as X ti = i n f

{
xti : Y (ti +xti ≥ w |Y (ti ≤ w

}
. In the literature,

it is known that the PDF (probability density function) of the first passage time of the Wiener
process is the inverse Gaussian distribution (Si et al., 2011).

Gamma Process

The Gamma process is commonly used to model stochastic deterioration in maintenance
optimisation problems. Because Gamma processes are well suited for modelling the temporal
variability of deterioration, they have proven to be useful in determining optimal inspection
and maintenance decisions (van Noortwijk, 2009). When a degradation process is monotonic
and evolving in only one direction, a Gamma process is a suitable model to apply. Examples
of this type of degradation are wear-processes, fatigue crack propagation, corrosion, crack
growth, erosion, and degrading health index, among others (van Noortwijk, 2009; Si et al.,
2011). In these cases, the deterioration is supposed to take place gradually over time in
a sequence of tiny positive increments. The advantage of using a Gamma process for
degradation modelling is that the mathematical calculations are relatively straightforward
(van Noortwijk, 2009; Gao et al., 2015). On the other hand, the Gamma process is only
appropriate to characterise a monotonic degradation process, and due to its independent
increment property, the estimation of a future state is independent of the historical behaviour.
Furthermore, the noise involved in the Gamma process that is used to quantify the estimation
uncertainty must follow the Gamma distribution. These assumptions limit the application of
the Gamma process for degradation modelling (Gao et al., 2015).

Considering that Y (t) = X (t), degradation measures can be considered to be directly
accessible, without any additional nose. Then, the Gamma process can be defined as (Barros,
2018):

X (t2)−X (t1) ∼ fα(t2−t1),β(x) = x(α(t2−t1)−1)e−xββα(t2−t1)

Γ(α(t2 − t1))
Ix ≥ 0 (2.3)

where

α= Shape parameter, α≥ 0
β = Scale parameter, β≥ 0

and X (t2)−X (t1) denotes the increments of degradation I (t2 − t1).
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Furthermore, the mean of all the paths E [X t ] can be calculated as:

E[X t ] = E[X t −X0] = α

β
t (2.4)

and the variance among the paths Var [X t ] as:

Var[X t ] = Var[X t −X0] = α

β2
t (2.5)

2.5 Oil and Gas Production System

This section presents general characteristics of an oil and gas production system to
understand the challenges and prerequisites for how integrated production and maintenance
planning in the oil and gas industry should be conducted.

Figure 2.9: Oil and gas production facilities (Devold, 2006)

In an offshore oil and gas production system there is a range of different structures that
are used depending on size and water depth. From floating production facilities, where all
the topside systems are located on a floating structure with dry or subsea wells, to subsea
production systems that are located on the seafloor (Devold, 2006). The different types of
oil and gas production systems are illustrated in Figure 2.9. What is common for all of the
different systems is that they consist of wellheads, wells and choke valves, which is presented
in the following section.

2.5.1 Wellhead, Wells and Choke Valves

A wellhead can be installed both on the topside structure of an offshore installation or located
underwater on a special sea bed template. To maintain the pressure for maximising the
production, a wellhead could also be an injection well that injects water or gas back into the
reservoir. The wellhead consists of equipment that regulates and monitors the extraction
of hydrocarbons from the underground formation and is mounted at the opening of the
well. The wellhead consists of three components: the casing head, the tubing head, and the
“Christmas tree”. The Christmas tree is composed of several valves, among these is the choke
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valve (Devold, 2006). Figure 2.10 illustrates how the wellhead and Christmas tree fits together
in an oil production system.

Figure 2.10: Illustration of wellhead and Christmas tree, adapted from Devold (2006)

Choke valves are normally located on top of each well (Gola and Nystad, 2011) and controls
the flow rates, protects the equipment from pressure fluctuations (Nystad et al., 2010), and
generally has a capacity of extracting 40,000 oil barrels per day according to Tattersall (2016).
Furthermore, the choke valve is the first and only piece of equipment in the subsea system
that controls the start-up, operation, and shutdown processes of the well. When export
storage capacity is reached, wells might be shut off temporarily or production switched to
other wellheads, which makes start-up and shutdown considerations for subsea choke valves
vital in oil production systems (Tattersall, 2016).

Due to sand that is carried along with the oil and gas water mixture during the extraction
process, choke valves are subject to erosion. Because of decreasing reservoir pressure and
increasing sand extraction, it is common for the choke valve erosion process to increase
toward the end of the well-life (Nystad et al., 2010). According to Nystad et al. (2010), an
increase in the production can be obtained by reducing the downstream pressure at choke
valves, which will increase the flow rate, but it will also increase the erosion as more sand
passes through the choke valve at higher velocity. Having described characteristics of oil and
gas production in this section, the topics of the next section are Industry 4.0, digital twins,
and cyber-physical systems.
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2.6 Industry 4.0, Digital Twins, and CPS

Industry 4.0 describes the ongoing fourth industrial revolution where digital technologies and
smart manufacturing are key aspects. Nine emerging technologies are considered to be the
foundation of Industry 4.0: big data and analytics, autonomous robots, simulation, horizontal
and vertical system integration, the industrial Internet of Things, cyber-security and cyber-
physical systems, the cloud, additive manufacturing, and augmented reality (Rüßmann et al.,
2015). Although many of the technologies are connected to each other, the two technologies
that are considered to be relevant for integrating production and maintenance planning in
this thesis are cyber-physical Systems and digital twins. This section presents concepts and
definitions in regards to these two technologies.

2.6.1 Cyber Physical Systems

According to Lee (2008), cyber-physical systems are “integrations of computation with
physical processes, where embedded computers and networks monitor and control the physical
processes, usually with feedback loops where physical processes affect computations and vice
versa”. Another, yet quite similar definition, is found in Rajkumar et al. (2010): “Cyber-physical
systems are physical and engineered systems whose operations are monitored, coordinated,
controlled and integrated by a computing and communication core.”. Cyber-physical systems
are applied in various areas, such as process control, advanced automotive systems, and
manufacturing (Lee, 2008) and the expectations of cyber-physical systems is that they enable
remote diagnosis, real-time control, transparency, predictability and increased efficiency of
a system (Monostori, 2014). A five-levelled structure of developing and deploying a cyber-
physical system for a manufacturing application is presented by Lee et al. (2015). The “5C
architecture” is illustrated in Figure 2.11 and further described below.

Figure 2.11: The 5C architecture of a CPS (Lee et al., 2015)

• Smart Connection: The first step in developing a cyber-physical system is gathering
accurate and reliable data from machines and their components. The data could either
be measured by sensors or obtained from existing software like an enterprise resource
planning (ERP) system. Seamlessly gathering the data is essential, as well as selecting
the correct type of sensors that will be used.

• Data-to-information conversion: The gathered data needs to be inferred to
meaningful information through smart analytics for component machine health and
degradation and performance prediction. By calculating health value, estimated
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remaining useful life, and so on, the second level of CPS architecture brings self-
awareness to machines.

• Cyber: This level acts as a central information hub, where information from every
connected machine in the network is gathered. By having significant amounts of data
from the network, specific analytics can be used to extract additional information
regarding the status of individual machines. These analytics enables the possibility of
comparing the performance of a single machine with other machines in the network,
as well as similarities between machine performance and historical information can be
measured to predict the future behaviour of the machinery.

• Cognition: The presentation of the acquired information to expert users supports the
decision-making process. Since comparative information and individual machine
status is available, a decision on the priority of tasks to optimise the maintaining
process can be made. This level requires proper info-graphics to transfer the acquired
information to the users.

• Configuration: The configuration level is the feedback from cyberspace to physical
space and acts as supervisory control to make machines self-configure and self-
adaptive for resilience and variations.

2.6.2 Digital Twins

A digital twin is generally defined as a virtual representation of a physical product, process or
item. It can be applied in several areas like health care (Bruynseels et al., 2018), manufacturing
(Tao et al., 2019b), and oil and gas (LaGrange, 2019). A digital twin for manufacturing systems
consists of a virtual representation of a production system that can run on different simulation
disciplines which are characterised by the synchronisation between the virtual and real
system, by using sensor data, connected smart devices, mathematical models, and real-time
data elaboration (Negri et al., 2017). Similar characteristics are valid for the oil and gas
industry as well. According to Sharma et al. (2017), in order to prioritise future investment
decisions and maximise the performance of an existing asset in an offshore oil and gas
context, a data-driven system approach is required. The digital twin may be utilised to
manage the asset throughout its lifecycle as it integrates real-time sensor data, inspection
results, physics models, and equipment performance data with advanced analytics for the
entire asset to drive the data-driven decision-making process (Sharma et al., 2017). Some
benefits of a digital twin in the oil and gas industry are identified by the paper to be able to
analyse production rates and identify system bottlenecks, and analyse equipment failure
rates and optimise maintenance programs. The integrating capabilities of a digital twin in oil
and gas is illustrated in Figure 2.12.

Figure 2.12: The integrating capabilities of a digital twin in oil and gas (Sharma et al., 2017)
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The digital twin aims to represent the physical asset to simulate and reflect their state and
behaviours through modelling and simulation analysis, and to predict and control their future
states behaviours through feedback (Tao et al., 2019a). In terms of production planning, a
digital twin enables the production plan to be simulated, evaluated, and improved in a
virtual world. As the digital twin is able to collect real-time data from the physical twin, the
production plan can be improved and equipment can be adjusted accordingly if there are
any differences from the optimal plan (Qi and Tao, 2018).

Kritzinger et al. (2018) presents three data integration levels of a digital twin, where the
integration levels differ based on the amount of data integration between the physical and
digital counterpart. The three levels of integration are digital model, digital shadow and digital
twin, illustrated in Figure 2.13a, 2.13b, and 2.13c. The authors distinguish between these three
levels because some digital representations are modelled manually and are not connected
with any physical object in existence, while others are fully integrated with real-time data
exchange.

(a) Digital model (b) Digital shadow (c) Digital twin

Figure 2.13: Three levels of data integration in a digital twin (Kritzinger et al., 2018)

A digital model is a model that represents a physical object without automatically exchanging
data between the physical and digital object. The digital representation might include a
description of the physical object, simulation models, or mathematical models. The lack
of automatic data exchange implies that a change in the state of the physical object has no
direct effect on the digital object and vice versa. A digital shadow behaves slightly different
to this, as a change in the state of the physical object leads to a change of state in the digital
object, but not vice versa. The data exchange is only partially automatic. A digital twin will
represent a physical object with automatic data exchange between the physical and digital
object. This implies that a change in the state of the physical object directly leads to a change
in the state of the digital object and vice versa (Kritzinger et al., 2018).

2.6.3 Difference between Cyber-Physical Systems, Internet of Things and
Digital Twins

Although a digital twin depends on a physical asset in the physical space, a digital twin is
only limited to the digital model itself. While a cyber-physical system, on the other hand,
is characterised by both a physical asset and a digital twin (Lu et al., 2020). Furthermore,
digital twin differs from Internet of Things as this refers to connections between a network
of physical assets through which data can flow between themselves. Internet of Things
does not include the idea of digital models in cyberspace (Lu et al., 2020). The difference
between cyber-physical systems, digital twins and Internet of Things and their relationships
is illustrated in Figure 2.14.

These relationships and differences implies that the digital twin is a prerequisite for the
development of cyber-physical systems (Uhlemann et al., 2017) and it can be argued that this
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Figure 2.14: Relationship between digital twins, CPS, and IoT (Lu et al., 2020)

is also supported by Lee et al. (2015) where the twin model for components and machines
is seen as an attribute for the cyber level in a cyber-physical system (see Figure 2.11).
However, this standpoint is not shared by Tao et al. (2019a). While the authors agree that
both cyber-physical systems and digital twins enable precise and better management and
operation of the physical world, and that cyber-physical systems focus more on computing,
communication and collaboration capabilities, and that digital twins focus more on virtual
models, the digital twin is not specifically seen as a prerequisite for a cyber-physical system
by the authors.

2.7 Mathematical Modelling

Chapter 3 describe the mathematical models that have been developed in this thesis,
therefore basic concepts and theory related to mathematical modelling is presented in this
section. Mathematical models are models in which mathematical relationships are to be
expressed through functions and which allows for capturing the reality of a system within
a mathematical framework (Sánchez, 2020). A system, situation, process, or another entity
is modelled by mathematical expressions and a mathematical model typically consists of
parameters, variables, constraints, and an objective function. Parameters are the symbolic
representation of real-world data. In the literature, it can also be referred to simply as data
and can describe values in the model like, for example, costs. The variables of the model
represent the unknown or the quantities in the model that vary. The decision variable is the
quantities that must be determined by the decision-maker (Hart et al., 2017), while variables
that the decision-maker is unable to determine is called stochastic variables. A constraint is a
restriction imposed upon the values of the decision variables by the characteristics of the
problem under study. Lastly, the objective function is a function of the decision variables and
represents the function that the mathematical model should either maximise or minimise
(Bradley, 1977).

In general, a distinction between deterministic and probabilistic models are made (Vatn,
2020). In models where all the quantities can be said to be known, the model is deterministic
(Nocedal and Wright, 2006) and a deterministic model is primarily used to describe relations
between physical quantities and other real-world observables (Vatn, 2020). A probabilistic
model is a model that enables the analyst to apply the law of total probability efficiently
when expressing uncertainty by probability calculus (Vatn, 2020). A probabilistic model is
not a model of the world, but it is a model used to express uncertainty regarding observables
in the real world. In addition to this, models that depend on unknown quantities like, for
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example, future demand or future oil prices is said to be stochastic. In a situation where
unknown quantities must be modelled, the quantities can be incorporated in the model by
using different scenarios of the uncertain value, along with the probabilities of each scenario
(Nocedal and Wright, 2006). In mathematical modelling, there are several different types of
programming. The following subsections will focus on linear programming, mixed-integer
programming, and nonlinear programming.

2.7.1 Linear Programming

Linear programs have a linear objective function that is to be maximised or minimised, and
there are linear constraints that may include both equalities and inequalities (Nocedal and
Wright, 2006). The objective function Z () is typically a function of the decision variables
x j , j = 1, ...,n. Furthermore, m restrictions regarding linear combinations of the decision
variables are assumed. All decision variables and some parameters have to be non-negative
(Vatn, 2020). A linear programming problem on the standard form can be written as:

Maximise : Z = c1x1 + c2x2 + ...+ cn xn (2.6)

Subject to the constraints:

a11x1 +a12x2 + ...+a1n xn = b1

a21x1 +a22x2 + ...+a2n xn = b2

...

am1x1 +am2x2 + ...+amn xn = bm

x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0

b1 ≥ 0,b2 ≥ 0, ...,bm ≥ 0

In canonical form, the linear programming problem can be written as:

Maximise : Z = cx (2.7)

Subject to : Ax = b

x ≥ 0

b ≥ 0

For linear models, a common solution approach is the simplex method. This is an algorithm
that searches through the feasible region to find the optimal solution (Winston and Albright,
2016). In Microsoft Excel, the Simplex LP Solver is used to solve linear models, including
models where some or all of the decision variables are restricted to be binary or integer
(Winston and Albright, 2016).

2.7.2 Mixed-Integer Programming

A mixed-integer program is a linear program where some of the decision variables can only
take integer values (Richards and How, 2005). In many situations, the solution of a linear
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program can result in non-integer solutions which can be unsuitable for situations where the
solution must have an integer value. A mixed-integer linear program can be written as:

Maximise : Z = cx (2.8)

Subject to : Ax = b

x ≥ 0

b ≥ 0

x j is an integer for j ∈ I

2.7.3 Non-linear programming

Nonlinear programming problems are optimisation problems where the objective or the
constraints are nonlinear functions of the decision variables (Winston and Albright, 2016;
Vatn, 2020). These problems are often more realistic than linear models but they are also
more difficult to solve (Winston and Albright, 2016). One solution for nonlinear problems is
to take the derivatives of the objective function and search for roots in the set of equations
obtain. Newton’s method is one method for finding successively better approximations to the
roots of a real-valued functions but requires calculation of all the derivatives and the method
may converge slowly or fail to converge. Therefore other approaches are usually required
(Vatn, 2020).

In order to solve smooth nonlinear problems, Generalised Reduced Gradient method in
Microsoft Excel can be used. This is a gradient based method that calculates numerically or
analytically the gradient of the objective function (Vatn, 2020). For non-smooth nonlinear
problems, genetic algorithms is a suitable approach. The approach is inspired by natural
selection, aiming to construct and breed a population for candidate solutions points (Vatn,
2020). More simply stated, a genetic algorithm provides a method for intelligently searching
an optimisation model’s feasible region for an optimal solution (Winston and Albright, 2016).
In Microsoft Excel, the evolutionary solver utilises genetic algorithms to optimise the solution
(Winston and Albright, 2016; Vatn, 2020).
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3 Mathematical Models for Digital Twins

In this chapter, the mathematical models that have been developed in this thesis is presented.
First, a description of the problem and the case is presented in Section 3.1. Section 3.2
describe the three models and how they interact with each other. The mathematical model
that considers the production aspect is presented in Section 3.3, the model that considers the
condition aspect is presented in Section 3.4, and the model that considers the maintenance
aspect is presented in Section 3.5. Section 3.3, 3.4 and 3.5 starts with a description reference
to anchor articles that contains a description of the general characteristics of the problem so
that the work of this thesis is clearly positioned in the scientific literature (Karlsson, 2016).
Section 3.6 concludes the chapter providing a numerical demonstration of the mathematical
models.

3.1 Problem Description and Case Description

The driving force of offshore oil production can be said to be the reservoir pressure (Haugland
et al., 1988). The reservoir pressure determines the maximum amounts of oil that are possible
to produce. As an oil field matures, the reservoir pressure decreases (Haugland et al., 1988;
Höök et al., 2014; Verheyleweghen and Jäschke, 2018) and so will the production levels. This
implies that the production from each well must be below a level determined by the pressure
near that well (Haugland et al., 1988). Additionally, the amount of produced oil will also
depend on the capacities of receiving the oil when it reaches the surface. The produced oil
must either be processed at the offshore facility or it must be transported to a processing
plant (Haugland et al., 1988). These characteristics of oil production mentioned above can
be translated into mathematical constraints. Recall from Chapter 2.7 that a constraint is a
restriction imposed upon the values of the decision variables by the characteristics of the
problem under study.

One way to reduce the pressure drop in the reservoir is to start producing from other wells
in the system or change which wells are producing to increase the rate of production. As a
reservoir matures, the pressure in the reservoir will decrease over time which again means
that the production rate also will decrease. To restore the pressure in a well, the well can
be shut down for a certain period. However, changing which wells to produce from will
cause more sand production in the wells. This will result in increased erosion levels and thus
increased degradation of the choke valve. Erosion of chokes and bends may be a problem
if the sand production from the reservoir is high, and it is not uncommon to have choke
replacement frequencies of 3-4 months in the offshore industry (Verheyleweghen and Jäschke,
2018). Thus, there is a trade-off between maximising the production and minimising the
degradation of the equipment.

The degradation of components in an offshore environment is inevitable. To counter this,
maintenance can be performed to restore the state of the component to “as good as new”.
Offshore maintenance actions are costly due to the requirement of vessels and specialised
equipment like remotely operated vehicles (Markeset et al., 2013) and it requires planning
ahead of the activity. Because of this, maintenance actions will have both a lead time that
must be accounted for when planning production and maintenance, as well as a maintenance
related cost. It may be worth noting that the sand production generally tends to increase as
the field matures and reservoir pressure decreases (Verheyleweghen and Jäschke, 2018).
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The models in this thesis aim to decide the optimal changing of wells to maximise the profit,
without exceeding a determined threshold for degradation. By integrating production and
maintenance by the use of a digital twin and cyber-physical system it should be possible
to control when the maintenance must be performed in a better way. A digital twin can
gather data on the component by the use of sensors and enable “what-if” analyses based on
alternative production plans. By conducting such analyses, the synchronisation of when to
shut down wells for maintenance could be improved by determining the appropriate time
to shut down so that the maintenance activity can be coordinated with a predetermined
maintenance window.

3.1.1 Case Description

In this thesis, a fictional case scenario based on real-life characteristics of an oil production
system is considered. The case considers an offshore production facility, with a set of wells
that are allocated to this facility only. A planning horizon of 12 months is applied, which can
be considered to be tactical production planning as discussed in Section 2.1. Furthermore,
the case considers the system to consist of two wells. The choke valve is found between the
reservoir and the topside facility and is used to control the flow from the wells in the system
(Gunnerud and Foss, 2010).

Figure 3.1: Simplified case illustration
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3.2 Model Description

This section describes the three models, hereby referred to as digital twins (DT), developed
in this thesis. They are referred to as digital twins because they are considered to be able to
incorporate capabilities of digital twins. The motivation for considering these three models
is based on Vatn (2018) and lectures on digital twins in the subject TPK4161 - Supply Chain
Analytics at NTNU. There might be that other perceptions on how to model these disciplines
are more suitable. The three underlying models are named:

• Production DT
• Condition DT
• Maintenance DT

Figure 3.2: Overview of the relationships between the models

Figure 3.2 illustrates how the models relate to each other. The Production DT optimises the
well-scheduling and provides a production plan during the selected time horizon. Therefore,
the Production DT must gather cost data related to the production, as well as other parameters
that are related to producing oil and operate the wells. The result of the Production DT will
be an optimised production plan of the wells based on relevant cost parameters. The output
of the Production DT will form a production profile that will act as an input to the Condition
DT.

The Condition DT should describe the condition of the selected component, in this case, a
choke valve, based on the production profile determined by the Production DT. The Condition
DT should take into account any uncertainties related to the condition and degradation of the
component. The data regarding the production load should be extracted from the Production
DT, and the Condition DT should be able to “search” for data from the Production DT. This is
illustrated by the light blue and dashed arrow. The predicted degradation from the Condition
DT will act as an input for the Maintenance DT.

The Maintenance DT determines when maintenance should be done based on the condition
of the choke valve. Therefore, the Maintenance DT needs information regarding the condition
of the choke valve and a determined maintenance safety threshold that should initiate a
maintenance action. The predicted degradation from the Condition DT is thus coupled with
the maintenance safety threshold.

Since the aim of the integrated models is to plan the production based on the condition of
the component, which again is dependent on the production plan, a synchronisation step is
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required. The reason for this is that the mathematical formulations in the Production and
Condition DT are not independent. Due to this interconnectivity, changes on one part have
an impact on the other. This dependency is difficult to model in an optimisation problem.

3.3 Production DT

This section contains the mathematical model for the Production DT and starts with a
description of the scientific work that the model is based upon. First off, Haugland et al. (1988)
simplified the time aspect of the problem under consideration. In reality, the production
profile for each well should be a continuous function of time, but such functions are difficult
to handle in optimisation algorithms. Therefore, the authors divided the lifetime of the field
into a finite set of periods, and within each period they assumed the production rate to be
constant. The paper also discusses two types of capacities in the system. Reservoir capacity,
which is a maximum capacity of production output that depends on the reservoir pressure,
and receiving capacity, which is the capacity of how much oil can be stored on the topside
facility before transportation. Similar capacities and constraints are discussed by Gunnerud
and Foss (2010), who stated that there are capacity limits on the production equipment, like
wells, valves and pipelines, in addition to a constraint that originates from the downstream
part of the value chain, like the capacity to handle gas and water.

Ortíz-Gómez et al. (2002) presented three mixed integer multi-period optimisation models
of varying complexity for the oil production planning in the wells of an oil reservoir. The
study aimed to find the oil flow rates and operation/shut-in times of the wells, considering
the oil production demands for each period of time. What is interesting to consider from this
paper is the behaviour of production and well pressure and how these two influence each
other. As previously mentioned, the driving force for the oil production from a well is the
pressure difference between the reservoir and the wellbore. When the well is open to flow
at the beginning of the operation, oil can be extracted because of the pressure difference
between the wellbore and the wellhead. As the operation time increases, the wellbore pressure
decreases which also causes an oil flow from the reservoir to the well. Because of the resistance
to the oil flow between the reservoir and the wellbore, the wellbore pressure decreases over
time when oil is produced from the well (Ortíz-Gómez et al., 2002). These characteristics are
also briefly discussed by Haugland et al. (1988). Furthermore, Ortíz-Gómez et al. (2002) stated
that when the production from a well is increased or decreased by opening or tightening
valves on the production platform, the pressure in the well will decrease or increase. In
addition to this, if the well is shut-in, the wellbore pressure will increase because of the effect
of oil flow from the reservoir to the well. In their optimisation problem, the authors assume
that the pressure of the wellbore is the same as that of the reservoir when the well has just
been drilled or when it has been shut-in for a significant period of time.

Lang and Zhao (2016) studied an oil well production scheduling problem for the light load oil
well during petroleum field exploitation. The problem the authors studied had the following
characteristics that made it difficult to be modelled and solved. Firstly, the problem contained
both the discrete variables to determine the oil well’s on and off status, and the continuous
variables to determine the oil production of oil wells. Secondly, during the oil production,
not only minimum up and downtime constraints, but also the mutual influence relations
between the pressure of oil well bottom and oil production was considered
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Indices:
T Set of time periods
t Period
W Set of wells
i Well number
Parameters:
Po Price of oil
Oi Operating cost for well i
d f Decreasing factor of production
Qi ,t Production rate in well i in period t
Qmax Maximum production rate from one well
Decision variable:
Wi ,t Whether to produce from well i in period t or

not

Table 3.1: Notation for Production DT

Moving now on to consider the Production DT derived in this thesis, where the notation
for the model is provided in Table 3.1. The decision variable for the problem, Wi ,t , is to
decide whether to produce from well i in period t or not. The production rate, Q, is assumed
to decrease over time with a decreasing factor, d f . This can then be considered to be the
production profile. As stated by Haugland et al. (1988), the production profile for each
well should be a continuous function of time, but this is difficult to handle in optimisation
problems. Thus, the lifetime of the field is divided into a finite set of periods, and within
each period the production rate is assumed to be constant, similarly to the work of Haugland
et al. (1988). In addition to this, the decreasing factor is introduced to capture the aspect
that the production rate of a well is decreasing over time as discussed by both Haugland et al.
(1988) and Ortíz-Gómez et al. (2002). Furthermore, it is difficult to solve and model both the
discrete variables to determine the oil well’s on and off status, and the continuous variables to
determine the oil production of oil wells (Lang and Zhao, 2016), therefore, the only possibility
to influence the production rate in this problem is by deciding which wells to produce from.
The production rate can be reset to an upper level by shutting down the well for a certain
period. This will increase the pressure in the well as discussed by Ortíz-Gómez et al. (2002).
The rate and speed at which the pressure increases after a well is shut depends on several
conditions and requires complex formulas that are not considered in this problem. It is
reasonable to assume that the pressure needs a certain time to recover to desirable levels and
that the production rate will not return completely to the maximum production rate. However,
the pressure, and thus the production rate, is considered to be reset immediately back to
the upper level after a well is shut down. As discussed in the introduction to this chapter
(Section 3.1), starting up a well after it has been shut down will generate significant amounts
of sand production in the well, thus resulting in a considerable increase in the degradation of
the choke valve. This degradation process is modelled in Section 3.4. The upper production
rate level of the model can be considered to be a capacity in the same matter as discussed by
both Haugland et al. (1988) and Gunnerud and Foss (2010). However, a receiving capacity is
not included in the model in order to minimise the complexity. Furthermore, the oil price
is assumed to be fixed during the planning horizon. In a real-life situation, the price of oil
is constantly changing. To prevent unnecessary complexity in the model, the oil price is
considered to be fixed and deterministic. In addition to this, an assumption is made that
there is a fixed operational cost of running a well in a period.
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The decision variable, considered to be deciding which wells to produce from, is determined
by using boolean operators:

Wi ,t =
{

1, produce from well i in period t

0, don’t produce from well i in period t
(3.1)

Considering that there are no previous periods at the start of the planning horizon, the
production rate in the first period, Qi ,1, can be expressed as:

Qi ,1 =Qmax ·Wi ,1 (3.2)

For the remaining periods of the planning horizon, the production rate Qi ,t , is:

Qi ,t =


Qi ,t−1 ·d f if Wi ,t−1 = 1 ∧ Wi ,t = 1

Qmax if Wi ,t−1 = 0 ∧ Wi ,t = 1

0, otherwise

(3.3)

Equation 3.3 can in practice be translated to the following: if the well is scheduled to produce
in the previous period (Wi ,t−1 = 1) and the well is scheduled to produce in the current
(Wi ,t = 1), then the production rate, Qi ,t , is equal to the previous production rate times the
decreasing factor (Qi ,t−1 ·d f ). If the well has been shut in the previous period (Wi ,t−1 = 0), but
is scheduled to produce in the current ( Wi ,t = 1), then the production rate, Qi ,t is equal to the
maximum production rate, Qmax. Otherwise, the production rate is 0. Additionally, equation
3.3 makes the problem at hand into a nonlinear problem. This means that the problem can
not be solved as a linear program or mixed-integer program. However, the problem can be
optimised using the evolutionary solver in MS Excel for non-smooth nonlinear problems, as
presented in Section 2.7.3.

The sum of operational cost is expressed as:

∑
i

∑
t

Wi ,t ·Oi (3.4)

and the sum of income is expressed as:

∑
i

∑
t

Qi ,t ·Po (3.5)

The objective function, which is to maximise the profit, can then be written as:

Maximise
∑

i

∑
t

Qi ,t ·Po −
∑

i

∑
t

Wi ,t ·Oi (3.6)

Subject to the logical constraint that the assignment of wells must be a binary value:

Wi ,t = binary ∀ t ∈ T, i ∈W (3.7)
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Considering only these aspects, the optimisation problem is straightforward although there
are “if” statements involved, however, the condition of the choke valve must be included to
the decision process.

3.4 Condition DT

Machines and components will suffer increasing wear with increased age and usage due
to degradation which causes low reliability. Pan et al. (2011) introduced the concept of a
machine’s remaining maintenance life to describe the degradation of a machine. The paper
also introduced the concept of effective age to describe a machine’s health status, which
has a corresponding relationship with the health index. Similarly, Liu et al. (2018) proposed
an integrated decision model that coordinates predictive maintenance decisions based on
prognostics information by considering health status and dummy age subjected to machine
degradation. None of these papers models the degradation process based on the production
load. This thesis aims to describe the degradation based on the production load in order
to investigate how the synchronisation of production and maintenance can be improved.
Zied et al. (2011) studied combined production and maintenance plans for a manufacturing
system satisfying random demand. The authors first determined an optimal production
plan which minimised the average total inventory and production cost before using this
production plan and taking deterioration into account to derive an optimal maintenance
schedule that minimised the maintenance cost. A similar approach was conducted by Ayed
et al. (2012), who established a production plan before integrating the effect of the machine
degradation introducing a unitary degradation cost. Then, the optimal production plan was
obtained by minimising the sum of costs. Wang et al. (2019) proposed a joint production
planning and condition-based maintenance model, where the degradation is modelled as a
stationary Gamma process.

Another model that considered the production load is found in the work of Verheyleweghen
and Jäschke (2018), who used an erosion model from DNV-GL (2015) when optimising oil
production of several wells subject to choke degradation. The formula is based on various
constants and a parameter for sand production. The sand production rate was assumed
to be proportional to the overall mass flow rate from the reservoir which corresponds to
the production rate. Furthermore, the paper assumed that the health state of the plant is
known at any given time, meaning that real-time erosion monitoring systems are installed
and working. Similar assumptions can be made in a digital twin and cyber-physical system,
which enables continuous monitoring of a component through the use of sensor technology.
In this thesis, the intention was to first introduce a deterministic erosion model from DNV-GL
(2015) that describes the erosion that occurs as a result of sand production in the well, before
applying this model with a Gamma process to account for uncertainties in the degradation.
The Gamma process is suitable to model gradual damage monotonically accumulating over
time in a sequence of tiny increments, such as wear, fatigue, corrosion, crack growth, and
erosion, among others (van Noortwijk, 2009) and has been applied in several scientific articles
that integrate production and maintenance (Kallen and van Noortwijk, 2005; Cheng et al.,
2018; Cholette et al., 2019; Wang et al., 2019). Unfortunately, several attempts have been made
to apply this procedure in the work of this thesis, but the erosion model presented in DNV-GL
(2015) is complex and without access to data regarding geometric factors of the choke valve
and other operational conditions it has proved to be difficult to achieve plausible and realistic
values from the model. This is discussed further in Chapter 5. Therefore, a simplification of

35



3 MATHEMATICAL MODELS FOR DIGITAL TWINS

the degradation model has been made in order to demonstrate the interactions between the
mathematical models. The intended erosion model is still included in the thesis to illustrate
the possibilities of incorporating a physical erosion model with a stochastic degradation
process.

3.4.1 Erosion Model

In DNV-GL (2015), recommended practice regarding managing sand production and erosion
is presented. The document was developed in cooperation with several major oil and gas
operators. One of the models was applied in Verheyleweghen and Jäschke (2018) and is
presented below:

dE

d t
=

K ·F (α) ·U n
p

ρt · At
·G ·C1 ·GF ·ṁsand ·Cunit (3.8)

where

At = Area exposed to erosion
C1 = Model/geometry factor
Cunit = Unit conversion factor
dE
d t = Erosion rate in mm/year
F (α) = Function characterising ductility of material
G = Corrections function for particle diameter
GF = Geometry factor
K = Material erosion constant
ṁsand = Sand production rate
n = Velocity exponent
ρt = Density of target material
Up = Particle impact velocity

The function characterising ductility of the material, F (α), depends on the material properties
of the system. Ductility is the ability of a material to change shape without fracture (Koch
et al., 1999). The function has an angle dependency for whether the material is ductile or
brittle. The corrections function for particle diameter, G, is defined as:

G = dp ·β · (1.88 · l og (A)−6.04)

Dpipe
(3.9)

where dp is the particle diameter and Dpipe is the pipe diameter. In this function, β and A are
dimensionless parameters:

A = Re · t an(α)

β
(3.10)

β= ρp

ρ f
(3.11)

where Re is the Reynolds number of the flow, α is the particle impact angle, ρp is the particle
density, and ρ f is the fluid density.
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Furthermore, the sand production rate is assumed to be proportional to the overall mass flow
rate from the reservoir:

ṁsand = SR ·ṁr (3.12)

where SR corresponds to the sand rate parameter and ṁr is the flow rate from the reservoir.

This erosion model describes the degradation of the choke valve that is caused by erosion
due to sand production in the wells. However, there are other random factors (like the size of
sand, environmental conditions, etc.) that influence the degradation. Therefore, a stochastic
model should be applied to account for uncertainties in the degradation of the choke valve
and other random factors that induce variation in the degradation rate. The Gamma process
has been presented in Section 2.4.2. As discussed initially in Section 3.4, attempts have been
made to apply this approach in the work of this thesis without success. Because of this, and
in order to be able to demonstrate the models from this thesis, a simplified deterministic
degradation model is applied in the Condition DT.

3.4.2 Simplified Degradation Model

The simplified degradation model is based on calculated erosion rates in case examples
presented in DNV-GL (2015). An erosion rate of 0,21 millimetres per ton of sand has been
chosen. This way, the predicted degradation during a period can be calculated based on the
sand production in the valve. The degradation can then be expressed as follows:

DEi ,t = ER ·mi ,t ·0.001ton/kg (3.13)

where ER is the erosion rate of 0,21 mm/ton and mi ,t is the amount of sand produced in
the well. The parameters are multiplied with a conversion factor to express the erosion as
mm/kg instead of mm/ton. An assumption that the sand production is proportional to the
production rate, Qi ,t , is made. Then the amount of sand produced,mi ,t , can be expressed as
follows:

mi ,t =Qi ,t ·SR (3.14)

where mi ,t is the amount of produced sand in well i in period t, and SR is a sand rate parameter
similar to the assumption made in DNV-GL (2015) and Eq. 3.12.

To capture the assumption that sand production will jump whenever a well is opened for
production after it has been shut down, as described in Section 3.1, an increasing factor,
i f , is introduced. The production of sand in the well based on the sand jumps can then be
expressed in the following way:

Mi ,t =
{

mi ,t if Wi ,t−1 = 1 ∧ Wi ,t = 1

mi ,t · i f if Wi ,t−1 = 0 ∧ Wi ,t = 1
(3.15)

If the well has been producing in the previous period and is producing in the current period,
then the sand production is equal to the sand production from Eq. 3.14. If the well has been
shut down in the previous period but is scheduled to produce in the current period, then
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the sand production based on jumps, Mi ,t is equal to the sand production from Eq. 3.14
multiplied with the increasing factor, i f .

3.5 Maintenance DT

In Pan et al. (2011), predictive maintenance operations are performed based on the machine’s
condition, and a health index is introduced to represent the machine’s health status. When
a maintenance operation is completed, the machine’s condition is restored to be “as good
as new”. When a machine’s condition reaches a certain level, it will break down and require
maintenance. By introducing a safety threshold, a predictive maintenance operation will be
triggered before the machine’s condition reaches a breakdown state. A similar approach was
used by Liu et al. (2018), who introduced a dummy age of the machine to demonstrate the
effect of maintenance actions. The lifetime of the machine will increase with time, and the
dummy age of the machine will decrease by adopting maintenance actions. Depending on
the state of the machine in a certain period, various maintenance actions can be performed to
reduce the dummy age of the machine. In this model, the concept of a health index or dummy
age of the machine is not introduced. Instead, the model consider that the degradation must
be below a determined maintenance safety threshold. If the degradation level exceeds the
maintenance safety threshold, a maintenance activity is scheduled and the degradation is
reset.

Indices:
M Ai ,t Maintenance activity
ML Maintenance safety threshold
DEi ,t Degradation level

Table 3.2: Notation for Maintenance DT

The notation for the Maintenance DT is provided in Table 3.2. Whether a maintenance
activity occurs in a given period or not can be written as:

MAi ,t =
{

1 if DEi ,t > ML

0, otherwise
(3.16)

Going above the maintenance safety threshold and thus replacing or maintaining the choke
valve, should also reset the degradation level. In other words, the choke valve begins a new
degradation process after a maintenance activity. Furthermore, an assumption is made that
the time to carry out maintenance is negligible.

So far, the mathematical formulation of the models has been described in the previous
sections and relevant research literature has been presented to justify choices made in the
model. The next section will demonstrate the mathematical models for the fictional case,
presented in 3.1.
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3.6 Numerical Demonstration

In this section, a demonstration of the models is carried out, using assumed values for the
parameters that act as input data. The values have been chosen to the best of the author’s
ability to reflect a real-life situation. Recall the objective function (Eq. 3.6) from Section 3.3,
repeated below. This is the objective that is to be maximised, subject to the constraints and
parameters that have been determined.

Maximise
∑

i

∑
t

Qi ,t ·Po −
∑

i

∑
t

Wi ,t ·Oi (3.6)

Table 3.3 presents the values that have been applied to the production model to establish a
production plan and to decide which wells that should produce and when they should be
shut down to recover the pressure in the well.

Parameter Value

Po 550 [NOK/barrel]
Oi 1.500.000 [NOK/period]

Qmax 30.000 [barrels/period]
d f 0.9

Table 3.3: Input parameters

The oil price has been set to 550 NOK per barrel and represents a typical oil price during
the spring of 2021. The operational cost per period has been difficult to determine without
knowledge of the typical economic perspective of drifting an oil well and has thus been set
arbitrary to the value of 1.500.000 NOK per period. These two parameters are part of the
objective function (Eq. 3.6). Furthermore, an oil well can typically produce between 500-5000
barrels of oil per day (Ranger Minerals, 2020). Assuming that there are 30 days in a month
and that the mean production rate is 1000 barrels per day, the maximum production rate,
Qmax, has been set to 30.000 barrels per month. The decreasing factor of the production rate
has been set to 0.9. These parameters are used in Equation 3.2 and 3.3.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

W1,t 1 1 1 0 1 1 1 1 0 1 1 1
W2,t 1 1 1 0 1 1 1 0 1 1 1 1

Table 3.4: Optimised well scheduling

Table 3.4 and 3.5 presents the optimised solution based on the constraints established in
Section 3.3 and the parameters from Table 3.3. Table 3.4 represents the decision variables
from Equation 3.1, while Table 3.5 represents the calculated production rates based on
Equation 3.2 and 3.3. Note that, in Table 3.4, both wells are scheduled to be shut down in
period T4, while well 2 is scheduled to be shut down in period T8 and well 1 in period T9.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Q1,t 30000 27000 24300 0 30000 27000 24300 21870 0 30000 27000 24300
Q2,t 30000 27000 24300 0 30000 27000 24300 0 30000 27000 24300 21870

Total 60000 54000 48600 0 60000 54000 48600 21870 30000 57000 51300 46170

Table 3.5: Calculated production rates

A graph illustrating the production rate over time is presented in Figure 3.3. This solution
provides the maximised objective function with a profit of 262.347.000 NOK. The objective
function was solved using the evolutionary solver in Microsoft Excel. Since there are
scheduled shutdowns of the wells in periods T4, T8 and T9, these would be appropriate
periods to perform maintenance activities. However, the optimisation must still account for
the degradation and the condition of the choke valve to ensure that the choke valve is not
running to failure.

Figure 3.3: Graph of production rates (Qt1: production in well

1, Qt2: production in well 2, Qsum: total production)

Erosion model

Arianti (2018) performed a study on estimating sand production in oil reservoirs. The results
reveal that at an oil rate of 1000 barrels per day, the calculated sand production in well 1 was
0.005 lb/barrel, well 2 was 0.007 lb/barrel, well 3 was 0.005 lb/barrel, and well 4 was 0.002
lb/barrel. Based on this, the sand production rate is assumed to be 0.005 lb/barrel. Converting
this to kilograms, the sand production rate becomes ≈ 0.0023 kg/barrel. Now, the sand rate
parameter, SR, for Equation 3.14 has been determined. Furthermore, the increasing factor, i f ,
for Equation 3.15 has been set to 3 to represent the sand jumps. Using the production rates
from Table 3.5, the following sand production is calculated, using Equation 3.14:

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

m1,t 68 61 55 0 207 61 55 50 0 207 61 55
m2,t 68 61 55 0 207 61 55 0 207 61 55 50

Table 3.6: Sand production
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Notice that for both wells the sand production has a significant increase in T5 due to the sand
jumps, while well 2 has another jump in T9 and well 1 another in T10. The estimated sand
production from Table 3.6 can now be used as a parameter in the simplified erosion model
(Eq. 3.13).

Figure 3.4: Graph of degradation (DE1: degradation in well 1,

DE2: degradation in well 2, ML: maintenance safety threshold)

The predicted degradation based on the production load and the sand jumps is illustrated
in Figure 3.4. The degradation of well 1 is coloured in black, and the degradation of well
2 is coloured in grey. The maintenance safety threshold, which in this demonstration is
set to 0,15 mm, is coloured in red. The figure illustrates that the condition of the choke
valve for well 1 exceeds the maintenance safety threshold in T10, while the condition of the
choke valve for well 2 exceeds the maintenance safety threshold in T9. This implies that a
maintenance activity should be scheduled for these periods. It can be disadvantageous to
perform maintenance activities separately and consecutively as this will typically initiate a
set-up cost for shipping personnel, equipment, and replacement parts to the production
facility. This has not been accounted for in the models of this thesis and is discussed further
in Chapter 5.

Because of this, and because the mathematical formulations in the Production and Condition
DT are not independent, as discussed in Section 3.2, a re-optimisation of the production
plan so that the choke valves reach the maintenance safety threshold in the same period
is required. To do this, some adjustments to the mathematical model are done. In the re-
optimisation, the production rates from Table 3.5 is considered to be constraints, from now
on referred to as the production capacity, expressed in Equation 3.17.

Qi ,t ≤ PCi ,t (3.17)

Additionally, the new decision variable is to decide how much to produce, Qi ,t during the
time horizon without exceeding the production capacity, and not to decide which wells
to produce from as in the initial problem. The objective function is still to maximise the
profit. Furthermore, another constraint is introduced, expressing that the degradation cannot
exceed the maintenance safety threshold (Eq. 3.18).
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DEi ,t ≤ ML (3.18)

This way, the scheduling plan of the wells performed in the initial problem remains the same,
but the production rates are optimised with respect to the maintenance safety threshold
and the production capacity. The re-optimised production rates are provided in Table
3.7. It is worth noting that the production rates after re-optimisation are lower than the
initial production rates from Table 3.5, confirming that the optimised solution is within the
constraint of the production capacity.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Q1,t 29999 27000 24300 0 21137 26998 24296 21870 0 13796 26998 24298
Q2,t 29998 26998 24300 0 5545 26998 24298 0 29377 26998 24299 21865

Total 59997 53998 48600 0 26682 53996 48593 21870 29377 40794 51297 46163

Table 3.7: Re-optimised production rates

A graph illustrating the production rates after re-optimisation is presented in Figure 3.5. The
re-optimised solution provides the maximised objective function with a profit of 234.751.719
NOK.

Figure 3.5: Graph of re-optimised production rates (Qt1:

production in well 1, Qt2: production in well 2, Qsum: total

production)
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Based on the re-optimised production rates, the calculated degradation rates is presented in
Figure 3.6.

Figure 3.6: Graph of calculated degradation after re-
optimisation (DE1: degradation in well 1, DE2: degradation in

well 2, ML: maintenance safety threshold)

As illustrated in the graph, the re-optimised solution synchronises the degradation rate so that
they reach the maintenance safety threshold approximately in the same period. This initiate
a maintenance activity for the choke valve in well 1 in period T12 from the Maintenance DT,
M A1,12 = 1. The condition of well 2 at T12 is in fact 0,14999 mm, resulting in not performing
any maintenance activity for the choke valve in well 2 in period T12. It is reasonable to
assume that a maintenance activity would be conducted in reality also for the choke valve
for well 2 in this period since the condition of the valve is close to the maintenance safety
threshold.

This concludes this section which has demonstrated the use of the mathematical models
to integrate and synchronise the production and maintenance plan of two oil wells with
associated choke valves.
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4 Linking the Models to a Digital Twin and Cyber-
Physical System

The following chapter is related to research objective 3 and 4. The chapter begins with an
elaboration of how digital twins are interpreted in the literature in Section 4.1. This forms
the basis for discussing how the mathematical models from Chapter 3 relate to the various
elements of a digital twin in the succeeding sections, which are data gathering in Section 4.2,
connectivity in Section 4.3 and virtual space in Section 4.4. The chapter is finalised with a
discussion on how digital twins can contribute to decision-making in Section 4.5.

4.1 Frameworks

Several interpretations and classifications of what a digital twin is composed of exist in
the literature. Greaves (2015) stated that the digital twin consists of three main elements:
physical products in real space, virtual products in virtual space, and the connections of data
and information that ties the virtual and real product together. A similar interpretation is
presented by Zheng et al. (2018), who considered a digital twin system to consist of three
main components: the physical space, the digital space, and an information processing
layer that connects the two spaces. Additionally, Lu et al. (2020) stated that at the technical
core, the development of digital twin needs three components: (1) an information model
that abstracts the specifications of a physical object, (2) a communication mechanism that
transfers bi-directional data between a digital twin and its physical counterpart, and (3) a data
processing module that can extract information from heterogeneous multi-source data to
construct the live representation of a physical object. A more comprehensive interpretation is
found in the work of Qi et al. (2019), who extended the interpretation by Greaves (2015) so that
the digital twin consists of five elements: physical entities, virtual models, services, digital
twin data, and connections. While Redelinghuys et al. (2019) on the other hand presented a
connection architecture for a digital twin consisting of physical twin, local data repositories,
IoT gateway, cloud-based information repositories, and emulation and simulation.

The importance of data is discussed in the majority of the research papers in the literature,
thus there seem to be a unison understanding in the literature that data forms the basis of
digital twins. Furthermore, there is also an agreement on distinguishing between the physical
part and the virtual part in a digital twin system. Although they are defined in different ways,
the connectivity between the physical and virtual space is also addressed. Nevertheless, the
need for a standardised framework or architecture for developing digital twins, defining what
types of elements it consists of and how these elements should interact with each other, is
evident and is also emphasised by Lu et al. (2020). According to Shao and Helu (2020), a
digital twin manufacturing framework (ISO 23247) is under development by the International
Organisation for Standardisation which is at the approval stage before publishing.

Based on the elements that are emphasised in the literature and due to the lack of a
standardised framework, the tools, technologies, concepts and frameworks have been
investigated considering the following structure:

• Data gathering
• Connectivity
• Virtual Space
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4.2 Data Gathering

Data gathering have been highlighted in Section 2.3.1 as an important aspect for predictive
maintenance, but it is also considered to be a fundamental layer of digital twins and cyber-
physical systems. This section presents the findings in the literature regarding data gathering
in digital twins and cyber-physical systems and aims to view this data gathering aspect in the
light of production planning and predictive maintenance.

Cachada et al. (2018) considered three different ways to collect data in an intelligent and
predictive maintenance system: automatic data collection is automatically gathered data that
are stored in a database; semi-automatic data collection is when the data is automatically
recorded in a database but has to be manually transferred to the system’s database; manually
data collection is when the information is manually inserted by a worker. The mathematical
models in this thesis have not considered the data gathering aspect. In an ideal solution,
systems for data gathering should be linked with the models so that the majority of the data
input for the models are automatically gathered. Considering the capabilities of a digital twin
and cyber-physical system, it should be possible to automatically gather the required data
for the models, thus significantly lowering the need for semi-automatic and manual data
collection. Nevertheless, some parameters in the models could be dependant on manual
data collection, like the maintenance safety threshold, which in many cases is determined by
expert knowledge.

The aspect of data gathering is also discussed by Lee et al. (2015). Unlike Cachada et al.
(2018), Lee et al. (2015) considered data gathering related to cyber-physical systems. The
first step includes gathering accurate and valid data from the machines and the components
under consideration, before translating the data into meaningful information for decision-
making and analysis (Lee et al., 2015). Furthermore, Lee et al. (2015) suggested that
estimating remaining useful life and degradation and performance prediction are examples
of methodologies for this purpose, bringing self-awareness to the machines. The Condition
DT from Chapter 3 can be considered to belong to this category, acting as a conversion of
condition data and performance data to a predicted outcome of degradation.

When this step is done, the data can be gathered in a central information hub (Lee et al., 2015).
Connecting several machines from the production system provides information to the cyber
level and a network of machines can be formed. By doing this, analyses can be performed
to extract additional information on the status of the machines in the network. This way,
the performance of a single machine can be compared with other machines in the network.
Additionally, historical information and similarities between the machine performance can
be measured to predict the future behaviour of the machines (Lee et al., 2015).

For production and maintenance management, several important data sources should be
collected in a digital twin and cyber-physical system. From the production management
perspective, it is necessary to have data related to the planning of production but also data
related to the actual production and its performance. These types of data are relevant for the
Production DT presented in Section 3.3. For maintenance management, data related to the
condition of machines and maintenance activities are required, which are relevant for the
Condition and Maintenance DT presented in Section 3.4 and 3.5.
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4.2.1 Data Gathering for the Production DT

Agostino et al. (2020) proposed a digital twin approach for production planning and control
using current cyber-physical systems state data in real-time. Considering the data integration
in digital twins, proposed by Kritzinger et al. (2018) and initially discussed in Section 2.6.2,
a digital twin of a production system must have continuous real-time data updates to
successfully represent the physical twin. In order to do this, data regarding current machine
status, current job and processing times must be collected, while also feeding the physical
twin with data linked to the production schedule (Agostino et al., 2020). In an existing
production system, relevant data for the digital twin can be collected from already existing
systems like a manufacutring execution system (MES) or an ERP system. These systems
typically possess data regarding machine status and production jobs (Agostino et al., 2020).
Similar data systems for oil and gas should be able to provide production-related data to the
digital twin. Furthermore, Agostino et al. (2020) discussed the production-related data in
light of job shop manufacturing by gathering data on job and processing times, which does
not apply to the case of oil and gas production. Instead, data regarding flow, pressure, and
temperature in the well can be considered to be production-related data for an oil and gas
production system.

Gathering production-related data was also discussed by Qi and Tao (2018). The authors
suggested three data sources for digital twins in a manufacturing environment, namely
manufacturing resources data, management data from information systems, and internet
data. Firstly, manufacturing resource data consists of equipment data collected from the
production system (considering real-time performance and operating condition), material
and product data related to performance, inventory, costs and so on, while the environmental
data describes factors like temperature, humidity and air quality (Qi and Tao, 2018). Secondly,
management data from the manufacturing information systems include data regarding order
dispatch, material distribution, marketing and sales, demand, finances and so on (Qi and
Tao, 2018). Lastly, internet data includes user data collected from E-commerce platforms
and social networks providing insight into consumer behaviours and demand patterns, while
information from public data sources also can be used (Qi and Tao, 2018).

4.2.2 Data Gathering for the Condition and Maintenance DT

Moving on to the maintenance-related data, Spendla et al. (2017) stated that predictive
maintenance utilises actual operating condition of equipment, material, and systems to
optimise the manufacturing operation. This includes utilising a combination of vibration
monitoring, process parameter monitoring, thermography, tribology, and visual inspection
to obtain the actual operating conditions of critical components in the production system.
Moreover, Paprocka (2018) presented a model of maintenance planning and production
scheduling consisting of a data collection module that collects information on past failure
modes in a database to take appropriate preventive actions and to avoid faults in the future.
While the author does not consider Industry 4.0-related technologies, the principles of data
collection are still relevant for gathering maintenance-related data in a digital twin. By
gathering accurate data on failure-free operation time, repair times, failure modes, and faults,
a better understanding of how the machine operates in a given environment is obtained. The
gathered information can then be used to schedule inspections and to determine the scope
of maintenance work (Paprocka, 2018). This will over time lead to a reduction of expensive
repairs and increase failure-free operation time and lifespan of the machine.
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Gathering data for digital twin and cyber-physical systems is emphasised broadly in the
literature. The data forms the basis for the other elements of the system, and new technologies
from Industry 4.0, like sensor technology, big data and cloud computing, enables better
data acquisition procedures and abilities to analyse the data. Combining this with the real-
time data acquisition ability of a digital twin, better decision-making on production and
maintenance should be accomplished. The next subsection presents the methods, tools and
technologies for data gathering in a digital twin and cyber-physical system.

4.2.3 Methods, Tools and Technologies for Data Gathering

Cai et al. (2017) presented techniques for sensor data integration and information fusion to
build digital twins. The characteristics of a machine are extracted through sensor data to
build a digital twin which reflects the actual status of its physical counterpart. Although their
work considered a milling machine tool, the overall concept of data acquisition is relevant
for other industries and production systems. As described in the two previous sections,
a digital twin and cyber-physical system must collect data related to production and to
the condition and maintenance aspect of a machine. This is also considered by Cai et al.
(2017), who included the key machining parameters describing the manufacturing process
for the production-related data which was obtained from a machine controller. Furthermore,
the sensor data, which are relevant for the condition and maintenance of a machine, are
collected from a variety of sensors used in machining monitoring and analysis. Cai et al.
(2017) provided examples of sensors that are relevant for monitoring a milling machine tool,
such as an electrical current sensor for power measurement, an accelerometer sensor for
vibration measurement, a dynamometer for force measurement, and an acoustic emission
sensor. The sensor data are obtained from a sensory data acquisition device. Similarly for oil
and gas production systems, Bhowmik (2019) demonstrated the conceptual design of a digital
twin for subsea pipelines and considered relevant sensor tools, such as acceleration from a
motion sensor, absolute tension and compression from a subsea strain gauge, current profile
from an acoustic dropler current profiler, wave data from a wave radar, subsea pressure
sensor, and subsea temperature sensor.

Lee et al. (2015), Qi and Tao (2018) and Agostino et al. (2020) proposed that data can be
acquired either by direct measures from sensors in the system or indirectly from data systems
like an ERP system or a MES. In addition to this, Liu et al. (2020) considered technologies
related to data gathering to be sensors, cameras, scanners and radio frequency identification
(RFID) tags. However, the authors do not explicitly state what kind of sensors and technologies
that should be applied. Considering the elaboration of tools and technologies so far in
this section, it is reasonable to assume that sensors are a key technology for gathering
data and that choosing the type of sensors depends on the production system and the
machines in the system. Additionally, one must consider what type of data (production or
condition/maintenance-related) that should be gathered.
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4.2.4 Summary of Data Gathering

Returning now to the work of Cai et al. (2017), they consider the data to be gathered through a
machine controller, sensors, and a sensory data acquisition device before the data is organised
at a gateway. After this, the data can be stored in a database. Figure 4.1 is adapted to include
data systems such as ERP and MES, and external data regarding oil prices, demand, and so
on. Cloud storage is also introduced to the figure, based on findings that are presented in the
next section (4.3).

Figure 4.1: Data gathering, adapted from Cai et al. (2017)

The figure illustrates how the production and condition-related data are gathered, and by
which technologies and devices. When the data is gathered, it should be stored in a database
before it is uploaded to the cloud. After this, the digital twins should extract the relevant
data from the cloud storage for usage in the virtual models. The exchange of data and the
connectivity within the digital twin is the topic for the next section.

4.3 Connectivity

In this thesis, connectivity is interpreted as the systems and networks that enable the
extraction of data from the physical world, as well as the exchange of data between the
various elements and models of a digital twin and cyber-physical system. In addition to this,
the connectivity aspect involves connecting the physical and virtual space in a bi-directional
way. The extraction of data has already been discussed in the previous section using machine
controllers and data systems for production and maintenance. However, the gathered data
must be transferred to a database and be exchanged between the virtual models of the digital
twin. This can be done using Internet of Things technology, communication networks and
protocols, and cloud computing, among others.

Zheng et al. (2018) stated that the physical objects are separated and distributed in different
places and that they need to be connected by Internet of Things technology, while Lu et al.
(2020) suggested that a communication network is critical for enabling digital twins. The
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reason for this is that the state synchronisation between a digital twin and its counterpart in
the physical space relies on bi-directional and real-time data communication. State changes
to a physical object are detected by sensors and transmitted to its digital twin in cyberspace.
In this regard, industrial communication protocols can help collect data from physical devices
(Lu et al., 2020). The digital twin should continuously pull real-time sensor and system data
to represent the real-time state of the physical entities (Qi et al., 2019). In addition to this,
Internet of Things and cloud computing are necessary for the data exchange between the
physical and digital world, but also for exchanging data within the virtual models and systems
(Qi et al., 2019). Lastly, the various elements of the digital twin constantly interact with each
other through the connections between them (Qi et al., 2019).

The connection architecture by Redelinghuys et al. (2019), which consists of a local data layer,
an IoT gateway layer, cloud-based databases, and a layer of emulations and simulations,
provides a more detailed elaboration on the connectivity aspect of digital twins. The
architecture aims to establish communication between the physical twin and the digital twin,
in addition to communicating with the digital twin and the outside world. The architecture,
inspired by the 5C architecture by Lee et al. (2015), illustrates the data flows from the physical
system or physical twin to the cloud, where it is stored in an information repository accessible
in cyberspace (Redelinghuys et al., 2019). The first layer consists of the physical devices,
like actuators and sensors, which can provide or consume signals exchanged with the local
controller or data acquisition device located at the second layer, representing the data source
for the physical twin (Redelinghuys et al., 2019).

The third layer contributes with a communication interface between the physical twin and
the other layers. The fourth layer is called the IoT gateway and corresponds with the second
level of the 5C-architecture from Lee et al. (2015), involving translating the data to meaningful
information as presented in Section 2.6.1 and discussed in Section 4.2.1. The fifth layer
represents the cloud-based information repository, which consists of cloud services that
store historical information from the fourth layer. This information can be accessed from
the sixth layer and be beneficial for decision-making by evaluating the current state of the
physical twin (Redelinghuys et al., 2019). Hosting these repositories in the cloud enhances
the availability, accessibility, and connectivity of the digital twin (Redelinghuys et al., 2019).
The sixth and last layer involves emulation and simulation and connects the third, fourth and
fifth layers. Redelinghuys et al. (2019) suggested equipping this layer with a user interface or
dashboard that connects the user to real-time and historical information about the physical
twin. Furthermore, emulation and simulation software should be implemented, allowing the
user to interact with the layer, in addition to a graphical 3D representation of the physical
twin.

4.3.1 Tools and Technologies

The tools and technologies that enable connectivity in a digital twin and cyber-physical
system must exchange and transmit the data within the system. Furthermore, the gathered
data must be stored and interpreted. Liu et al. (2020) considered several technologies that
contribute to integrating the physical world and the digital world, specifically big data,
Internet of Things, artificial intelligence, cloud computing, edge computing, 5G networks,
and wireless sensor networks.

Incorrect or duplicated data must be removed by so-called data cleansing before it is
integrated and stored for exchange and sharing within the digital twin and cyber-physical
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system. Afterwards, the real-time data can be analysed and mined based on cloud computing
(Qi and Tao, 2018). Furthermore, data mapping and data fusion contributes to understanding
the gathered data, where the most common data mapping technology used in the literature
is XML, according to Liu et al. (2020). In summary, big data contribute to collecting and
interpreting the data that is to be used in the system, thus enabling a better understanding of
the real world.

Edge computing refers to the enabling technologies allowing computation to be performed
at the edge of the network. Since data is increasingly produced at the edge of the network it is
more efficient to also process the data at the edge of the network (Shi et al., 2016). Therefore,
edge computing is an ideal method to pre-process the collected data to reduce the network
burden (Liu et al., 2020) and to improve the response time and reliability (Shi et al., 2016).
This is beneficial in a digital twin and cyber-physical system that must update large amounts
of data in real-time. Furthermore, the acquired data from sensors of the physical twin must
be stored and be easily accessible through the internet. Due to the large volumes of data that
may be stored, cloud-based storage is considered an attractive choice by Redelinghuys et al.
(2019).

The next topic to address is the technologies that enable the transfer and transmitting of data
throughout the digital twin and cyber-physical system. General technologies like Internet of
Things, 5G and protocol technologies are frequently mentioned in the literature. In addition
to this, software and systems that connects the devices and digital models in the system
are required. More specifically, Qi et al. (2019) stated that PTC Thingworx, an Internet of
Things software, can act as a gateway between sensors and the digital models to connect
the various smart devices to the Internet of Things ecosystem. Furthermore, Mindsphere,
a cloud-based Internet of Things operating system from Siemens, enables the connections
between products, plants, systems, and machines.

On the other hand, Redelinghuys et al. (2019) suggested that the connections between the
physical twin and its corresponding digital twin may rely on internet-enabled connections.
The paper considers OPC Unified Architecture (OPC UA) to be a functional tool for this
matter, in addition to exchanging data with various controllers and data acquisition devices.
According to the authors, OPC UA is striving towards becoming the international standard for
horizontal and vertical communication in manufacturing and automation. As an example,
some OPC UA servers provide access to more than 150 device drivers (Redelinghuys et al.,
2019), which makes it a suitable tool in digital twins and cyber-physical systems where the
number of devices could potentially be high.

5G technology is also pointed out as an enabler for real-time data transmission (Liu et al.,
2020). 5G is an abbreviation for the fifth-generation mobile network aiming to provide
improved speed, reliability, and latency. Qi et al. (2019) also considered communication
technology, unified communication interfaces and protocol technologies to enable the data
exchange in a digital twin and cyber-physical system. Lastly, another aspect of connectivity
is the human interactions with the digital twin in both physical and virtual space. This can
be accomplished by utilising technologies like Virtual Reality and Augmented Reality (Qi
et al., 2019). This enables visualisation of the physical part and is relevant for the oil and gas
industry where the distance between the decision-maker and the production facility may be
large.
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4.3.2 Summary of Connectivity

Figure 4.2: Connectivity in a digital twin and cyber-phsyical system

Figure 4.2 illustrates the aspect of connectivity. The left hand side of the figure illustrates the
data gathering aspect from Figure 4.1. The connectivity aspect should link the data gathering
with the virtual space, consisting of the Production, Condition, Maintenance DT, and the
other virtual models that exists in the system. The virtual models is the topic for Section 4.4
and is further elaborated there. The virtual models are included in the figure to illustrate the
interactions between the mathematical models and the other virtual models that exists in the
system. Lastly, the decision-maker interacts with the mathematical and virtual models to
support decisions, which is discussed in Section 4.5.

51



4 LINKING THE MODELS TO A DIGITAL TWIN AND CYBER-PHYSICAL SYSTEM

4.4 Virtual Space

So far, the data gathering aspect has been presented, which forms the basis of digital twins
and cyber-physical systems, before the connectivity aspect was presented. The last element
of a digital twin, the virtual space, is considered to be the core of digital twins (Liu et al., 2020).

Zheng et al. (2018) considered the virtual space to consist of two parts: a virtual environment
platform and a digital twin application subsystem. The former establishes a unified 3D
virtual model for different applications (e.g. product maintenance application and plant
operation application) and provide an operating environment for an algorithms library. There
are interactions between the two parts, and the latter receives various virtual models (e.g.
workflow model, simulation model, etc.) from the former. The digital twin application
subsystem should store the various models, methods, and historical data that are created
during operation into the virtual environment platform. Furthermore, Zheng et al. (2018)
suggested that the modelling of physical objects is available by obtaining the attributes of the
virtual model from a database and that the feedback of 3D models should be stored in the
database by using corresponding interfaces.

Tao and Zhang (2017) and Qi et al. (2019) also discussed the virtual space in terms of models.
These virtual models should replicate the physical entities by reproducing the physical
geometries, properties, behaviours, and rules. The authors consider four different virtual
models: 3D geometric models, physics models, behaviour models, and rule models. The first
type should describe a physical entity by its shape, size, tolerance, and structural relation. The
second type should reflect physical situations, like deformation, delamination, fracture, and
corrosion, based on physical properties such as speed, wear, and force. The third type should
describe the behaviours, like state transition, degradation, and coordination, in addition to
the effects on the entities from potential changes in the external environment. By following
rules extracted from historical data or expert knowledge, the last type of models should equip
the digital twin with logical abilities, like reasoning, judgement, evaluation, and autonomous
decision-making.

Based on the types of models in the virtual space described above, this section is divided into
four subsections concerning the following types of models:

• Geometric 3D models - visualising the processes and the components in the system
• Physical models - models of the physical properties and the loads on the physical entity
• Behavioural models - describing the behaviours of the physical entities
• Rule models - models of the rules that exists for the physical entity
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4.4.1 Geometric 3D Models

One of the capabilities of digital twins is that they enable the visualisation of the behaviour
and relations of the real-world system in virtual space. Combining this with real-time
data from the physical world, the digital twin formulates real-time parameters, conditions,
and dynamics for analysation and optimisation. In order to capture these characteristics
and visualise them in real-time, geometric 3D models must be developed for the system.
Geometric 3D models are built to describe shapes, sizes, positions, tolerance, and relations
of the physical entities (Qi et al., 2019; Tao and Zhang, 2017).

This type of models is often discussed concerning digital twins. Combining this with real-time
data from the system, the entity’s performance can be visualised and analysed in real-time.
Geometric 3D models are not within the scope of this thesis. However, it is important
to highlight the capabilities of a digital twin to visualise, for example, a component and
how it performs in real-time, which is highly relevant for the offshore industry where the
decision-maker can be located far from the operational environment. With a digital twin,
the decision-maker can still obtain a picture of how the system performs while also having
the possibility to simulate the system’s performance for other scenarios, for example, a new
production plan.

Linking this to the case of this thesis, a corresponding geometric 3D model of the oil
production system, including the reservoir, wells, choke valve, and the topside facility similar
to the case illustrated in Figure 3.1, could be developed. Connecting the geometric 3D model
to the gathered data and the other virtual models enable the visualisation in real-time of how
the physical part performs.

4.4.2 Physical Models

Physical models are required to capture the physical processes of the physical twin. Qi
et al. (2019) stated that the physical models should provide information regarding accuracy
(e.g., dimensional tolerance, shape tolerances, position tolerance, and surface roughness),
material (e.g., material type, performance, heat treatment requirement, hardness, etc.), and
assembly information (e.g., mating relationship and assembly order). This way, information
about entity features and constraints of the system is added to the virtual space. It is also
worth mentioning that the material information is dependent on the material used in the
production system and that assembly information is only relevant in a production system
where assembling parts is a step in the production.

Tao and Zhang (2017) also explained the physical models, stating that the physical properties,
such as function, capacity, torque and wear, and the loads on the physical entity, such
as stress, resistance, and temperature, are provided to the geometric 3D models to form
the physical model. This way the physical model can analyse physical processes such as
deformation, cracking, and corrosion. Aivaliotis et al. (2019) presented a methodology for
enabling digital twin using advanced physics-based modelling in predictive maintenance.
According to the authors, a physics-based model refers to “a simplified description, especially
a mathematical one, of a system or process, to assist calculations and predictions consisted of a
hierarchical structure of components and sub-components representing physical phenomena
and connection lines among them to represent the actual physical coupling”.

More explicitly said, the physical models should capture the physical development of the
machines in the system. In the case of this thesis, a physical model was required to describe
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the degradation and condition of the machine. This corresponds to the Condition DT,
presented in Section 3.4, describing the physical behaviour of the choke valve based on
the production load. Although it was simplified into being purely a deterministic model,
the Condition DT illustrates its purpose in a digital twin and cyber-physical system and
demonstrates the interactions it has with the Production DT and Maintenance DT. In order
to become more predictive and describing the degradation process more realistically, the
Condition DT should be developed by, for example, using a physical erosion model together
with a probabilistic degradation model, as mentioned in Section 3.4. The model must utilise
the equipment and environmental data discussed in Section 4.2.1, and the condition and
maintenance related data in Section 4.2.2.

4.4.3 Behavioural Models

As presented initially in Section 4.4, behavioural models should describe the behaviours
of a physical entity, like state transition, degradation, and coordination, in addition to the
effects on the entities from potential changes in the external environment (Qi et al., 2019;
Tao and Zhang, 2017). To represent the physical behaviour, several models must exist in the
system, like a problem model, state model, dynamics model, and an evaluation model. To
develop such models, finite state machines, Markov chains, and ontology-based modelling
methods can be applied. When it comes to state modelling, this includes a state diagram,
describing the dynamic behaviours of an entity, and an activity diagram, describing the
required activities to complete an operation. Lastly, dynamics modelling deals with rigid
body motion, elastic system motion, high speed rotating body motion, and fluid motion (Qi
et al., 2019).

The Production DT would be tightly linked to a behavioural model since the Production
DT influence how the production system behaves. It would be unprecise to categorise the
Production DT as a behavioural model, as it is an optimisation model that aims to determine
the production plan. It is the author of this thesis’ understanding that the Production DT
would influence a behavioural model based on what Tao and Zhang (2017) and Qi et al. (2019)
defines as behavioural models. However, the Production DT should still be considered as an
optimisation model. With that being said, introducing a behavioural model in the case of
this thesis would result in having a model that describes how the machines in the production
system behave and react based on what is determined by the Production DT.

4.4.4 Rule Models

In order to enable decision support, models describing rules are also needed. The rules are
extracted from historical data, expert knowledge, and predefined logic. This way, the digital
twin is equipped with an ability to reason, judge, evaluate, optimise, and predict outcomes
and scenarios (Qi et al., 2019). The Maintenance DT presented in Section 3.5 is considered
to be a variant of a rule model. The Maintenance DT determines when maintenance
activities should be performed, based on the rule that the degradation should not exceed
the predetermined maintenance safety threshold. The maintenance safety threshold can
be determined by extracting historical data for which degradation level the choke valves
typically fails, or it can be determined by expert knowledge.
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4.4.5 Tools and Technologies

Many different tools and technologies may be applied when developing the various models
in a digital twin and cyber-physical system and is dependent on the intended usage. The
physical twin requires a corresponding geometric 3D model combined with real-time data
that can act as the digital replica of the system or component under consideration. For
this purpose, Computer-Aided Design (CAD) software like SolidWorks and NXCad can be
applied. In addition to this, 3D MAX, AutoCAD, and CATIA are also software that supports
this objective (Tao and Zhang, 2017). Additionally, Fuller et al. (2020) considered Simulink
and Twin Builder as tools for enabling the visualisation and architecture modelling of digital
twins.

For the physical models, Qi et al. (2019) presented that the finite element analysis software
by ANSYS can be used to define the real-time boundary conditions for the geometric
models by utilising sensor data. Then, the performance degradation or the wear co-
efficient can be incorporated into the models. In addition to this, the paper stated that
Simulink enables physics-based modelling using multi-domain modelling tools. Multi-
domain modelling involves components belonging to different engineering domains (Tiller,
2001), like mechanical, hydraulic, and electrical components (Qi et al., 2019).

The tools for behaviour modelling are used to establish a model responding to external factors
and improves the simulation performance of the digital twin. Qi et al. (2019) provided an
example where the motion control system of a CNC machine tool can be designed based on
the PLC platform CoDeSys. Regarding the rule models, Qi et al. (2019) provided an example of
utilising the machine learning ability by PTC’s Thingworx upon the HP EL20 edge computing
system. This way, a digital twin can learn rules and recognize deviating characteristics of the
operation by monitoring sensors to automatically learn the normal state of machine under
consideration while it is running.

Redelinghuys et al. (2019) chose Siemens Tecnomatix PS as the software for emulation and
simulation due to its suitability for visualising the physical twin in real-time and allowing for
the integration of the physical system with the virtual space. In addition to this, it enables
the simulation, analysis, and optimiastion of production systems and logistics processes.
The next section concludes Chapter 4, presenting digital twins for decision-making where
simulation and optimisation are considered as tools for this matter.

4.5 Digital Twins for Decision-Making

So far, this chapter has discussed concepts, frameworks, technologies, and tools of the various
elements of a digital twin and cyber-physical system, and linked the mathematical models to
these elements. García and García (2019) considered decision-making and decision support
to be central capabilities of digital twins and cyber-physical systems. Decision-making is a
key factor for industrial enterprises as they require decisions regarding design, engineering,
planning, communication, controls, and operations (Kuehn, 2019)

One method for improving decision-making by the use of digital twins is simulation (Kuehn,
2019). However, Qi et al. (2019) does not consider simulation to be a type of model, but
rather to be a function of the models in the digital twin and cyber-physical system. That
is, the various models in the system can be simulated to analyse possible outcomes and
“what-if” scenarios. Liu et al. (2020) stated that digital twin simulation enables the virtual
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model to interact with physical entities bi-directionally in real-time. The difference from the
traditional simulation procedure is that digital twin simulation uses real-time data of the
physical system that are collected and recorded from physical space via Internet of Things
(Liu et al., 2020). This is also supported by Shao et al. (2019), who considered digital twin
simulation to use real-time sensor data as inputs before it updates some of the parameters
of a manufacturing process or equipment. Lastly, Kuehn (2019), stated that the planning,
optimisation, and operation of industrial enterprises requires modern data and simulation-
driven multi-criteria decision approaches.

In the case of production planning and predictive maintenance, it would be valuable to
simulate how a production plan will influence degradation and vice versa. One example
could be that during a period where the oil prices have increased, it would be of interest
to produce more oil to increase the profits. Simulating how this increase in production
affects the degradation will be beneficial and can support the organisation in preparing for
possible outcomes. It could also be used to simulate and analyse the cost-benefit of whether
producing hard and running the components to failure is profitable due to the increased oil
price. In addition to this, since stochastic processes introduce random variables, simulation is
a helpful tool to achieve a more precise prediction of when the component will fail. Running
a large set of simulations can result in more precise estimations while incorporating the
real-time data acquisition ability of digital twins as time goes by can update the prediction to
account for new data regarding the condition and actual production in the well.

Additionally, optimisation models can also contribute to the decision-making process
between production and maintenance planning. The models derived in this thesis has
demonstrated one situation where integrated production and maintenance planning can
contribute to the decision-making process. The further realisation of optimisation models for
digital twins will take advantage of the data gathering aspect and real-time data acquisition
that can be linked with the optimisation models, in addition to the connectivity aspect
that enables connection between the virtual models. Using the gathered data enables
better estimation of the parameters that are used in the model, as well as being able to
automatically update these parameters in real-time. This is further discussed in Section
5.1. The connectivity to the other models enables real-time updates and visualisation of
the process, which can support the decision-maker by notifying and visualising unforeseen
changes that occurs. For example, after some time it may turn out that the condition of
the component has degraded faster than predicted. The connectivity between the virtual
models in combination with the real-time data updating can notify the decision-maker of
the development who can re-adjust and re-optimise the production plan accordingly.
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5 Discussion

The discussions of the work carried out in this thesis is presented in this chapter. The two main
parts of the thesis, Chapter 3 and 4, are discussed regarding how they support and answer the
research objectives in Section 1.2, in addition to discussing the challenges and limitations of
the work. This is done respectively in Section 5.1 and 5.2 before recommendations for further
work is proposed in Section 5.3.

5.1 The Mathematical Models

The mathematical models in this thesis has been derived to support the following research
objectives:

1. Derive basic mathematical models for integrating production and maintenance.
2. Define principles for what the mathematical models in a digital twin and cyber-physical

system should do in order to integrate production and maintenance.

The aim of the mathematical models developed in this thesis has been to demonstrate how
integrating production and maintenance planning can be integrated to make better decisions
regarding when to do maintenance based on the planned production load, and to decide how
hard the production should be, based on the predicted degradation of the component under
consideration. Several researchers have emphasised the benefits and potential cost savings
of making decisions on production and maintenance in an integrated fashion (Aghezzaf and
Najid, 2008). For the case of oil and gas production, maintenance costs are considered to
be a significant operating cost (Norwegian Petroleum Directorate, 2020), thus making the
integration of production and maintenance planning an interesting topic for research in this
industry. While previous research has focused on integrating production and maintenance
planning purely by developing mathematical models (Pan et al., 2011; Liu et al., 2018; Ghaleb
et al., 2020a; Verheyleweghen and Jäschke, 2018; Matias et al., 2020), this thesis has studied
the integration problem in light of utilising digital twins and cyber-physical systems.

By deriving basic mathematical models, a foundation for discussing how these models would
fit in a digital twin and cyber-physical system was made. In addition to demonstrating
and defining principles for how the models should interact with each other and how they
should communicate. By implementing these models in a digital twin and cyber-physical
system, this interaction and communication can be enabled. It should also improve the
optimisation by gathering relevant and accurate data that can be updated in the model in
real-time, enabled by the digital twin and cyber-physical system. In addition to this, the
defined principles should contribute to deciding what kind of technologies and tools that
must be utilised to support the mathematical models in a digital twin and cyber-physical
system. However, in order to investigate and discuss how these models can be linked and
implemented in a digital twin and cyber-physical system, assumptions and choices have
been made to prevent the complexity of the models, which is discussed in the following
subsections.

5.1.1 Challenges with the Production DT

The work carried out in this thesis has pointed out some difficulties in modelling the
integration of production and maintenance planning, which could prove to be useful for
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further research. Firstly, for the Production DT in Section 3.3, the model considers only
two production wells. In reality, it is reasonable to assume that the number of wells in an
oil production facility will be higher. However, Krishnamoorthy et al. (2016) considered a
network of two wells, while Verheyleweghen and Jäschke (2018) considered three wells in
their work. Therefore, it is reasonable to assume that considering two wells in the case of
this thesis did not affect the purpose of demonstrating how production and maintenance
planning can be integrated.

Furthermore, some of the input parameters in the Production DT have been decided
arbitrarily, like the declining production factor, d f , in Eq. 3.3 and the operating cost, Oi , in Eq.
3.4. The reason for this was the lack of real-life data. Considering the capabilities of a digital
twin and cyber-physical system, it should be able to gather these data and automatically
implement them in the models as discussed in Section 4.2 and 4.5. This should contribute to
better parameter estimation as well as continuous updating of the parameters. The declining
production rate factor could, for example, have been determined based on historical data,
while the operating cost could have been extracted from an existing data system within the
organisation.

An assumption that the production rate returns to full capacity after just one period of
being shut down was made. As mentioned in Section 3.3, the rate and speed at which the
pressure increases after a well has been shut depends on several conditions and requires
more advanced formulas that are not considered in this problem. This assumption was made
to demonstrate that changing which wells to produce from can both be advantageous and
disadvantageous. The advantage of shutting down a well is that the pressure is restored and
more oil can be produced when it is reopened. However, this comes at a cost in terms of lost
production, which has not been included in the model. On the other side, the disadvantage
of shutting down a well to restore the pressure is that this initiates increased degradation
in the well when it is reopened. This interaction and trade-off between production and
maintenance is the core of the problem that has been studied in this thesis and the models
have been derived in order to investigate this particular interaction.

5.1.2 Challenges with the Condition DT

In Section 3.4, which describes the Condition DT, the difficulties using the erosion model
presented in DNV-GL (2015) was briefly mentioned. The model requires sufficient data on
the physical dimension of the oil well and the choke valve, in addition to data regarding the
particle impact velocity, particle density and density of the target material among others. The
recommended practice regarding managing sand production and erosion in DNV-GL (2015)
does include some values for these parameters, and attempts were made to use these values.
Unfortunately, the calculated values turned out to be significantly lower than what one would
expect for a realistic value for erosion. The reason for this could be as simple as that the
erosion model was calculated incorrectly, or that the amount of sand production presented
in Table 3.6 were unrealistic, thus resulting in an imprecise value for the parameter ṁsand in
Eq. 3.8. Therefore, the simplified erosion model in Section 3.4.2 was used to demonstrate the
erosion.

In addition to this, the Condition DT as presented in this thesis do not incorporate the
aspect of uncertainty through stochastic processes as originally intended, thus failing to
grasp the ability to be predictive in a correct manner. The intention was to use the Gamma
process, presented in Section 2.4.1, to account for uncertainties in the degradation, and
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not to model the degradation deterministically as done in the Condition DT. The model
considered the remaining useful life to be equal to the maintenance safety threshold. Due to
the uncertainties that in reality applies to a degradation process, there is a possibility that the
choke valve could still function after passing the maintenance safety threshold. Introducing
the Gamma process and a failure threshold in addition to the maintenance safety threshold
could have enabled further investigation of this problem. The failure threshold would have a
greater value than the maintenance safety threshold, and if the degradation level lies between
these thresholds, the risk of failure is high. When the degradation level has exceeded the
maintenance safety threshold, estimations of the failure probability could have been included
in the model, incorporating additional costs of running the production in this risky state.

Figure 3.4 illustrates the deterministic degradation process. The degradation is synchronised
to hit the maintenance safety threshold in the same period, illustrated in Figure 3.6. If the
degradation had been modelled as a stochastic process, like the Gamma process, uncertainty
would have been introduced to the problem which indicates a robust plan, where the
outcomes are affected by uncertain data. In order to deal with this situation, stochastic
programming is required. One approach for this would have been to introduce two scenarios.
In the demonstration of the models, one could consider that in period T6 the degradation
is either above or below the mean degradation value. In this period, a decision must be
made on how hard the production should be from period T6 and onwards. By doing this, two
decision stages can be introduced. Stage 1 for period T1-T5 and stage 2 for period T6-T12.
One situation in this scenario is the consequence of, for example, running hard in the first
stage which may result in the component degrade faster, thus limiting the flexibility in the
production plan for stage 2 as the condition of the component is close to the maintenance
safety threshold.

5.1.3 Challenges with the Maintenance DT

Moving on to the Maintenance DT, presented in Section 3.5, the model considered the tactical
planning horizon, thus considering periods of months. It is unlikely that a whole month of
shutting down production would be required to perform maintenance or replace the choke
valve. Therefore, the models should ideally be able to optimise the production down to the
operational planning horizon of weeks or days. Furthermore, the Maintenance DT should
also be able to reset the degradation level after a period of a maintenance activity. This was
difficult to model without increasing the complexity of the model. In order for the model to
be used for real-time decision-making, this feature must be incorporated in the model.

5.1.4 Discussion on the Re-Optimisation Procedure

Lastly, a re-optimisation procedure was introduced in the numerical demonstration in Section
3.6. This was done to demonstrate how the maintenance activity could be synchronised
because having formulas that are not independent complicates the mathematical modelling
and optimisation, as mentioned in Section 3.2. The explanation behind the independency
is that the production plan is dependant on the degradation level of the component, while
the degradation over time is dependant on the planned production. Kuehn (2019) proposed
multi-criteria decision-making processes as a solution to handle this challenge, which is
an interesting topic for further research. In addition to this, maintenance cost was neither
included. Therefore the model is unable to capture the ability to determine whether running
hard and replacing the component earlier would be as profitable as relaxing the production
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and performing maintenance in a later period. Without comparing the result with another
alternative that explicitly accounts for the maintenance cost, it is difficult to determine
whether or not it is more profitable to synchronise the maintenance activity as done in
Section 3.6. However, assuming that there is a set-up cost for performing maintenance, it
is reasonable to assume that synchronising the maintenance to the same period should
generate cost savings.

Section 5.1 has discussed what the results of the derived mathematical models implies.
The models must automatically gather data in real-time, exchange data between them
and with other elements of the digital twin and cyber-physical system, and handle the
dependency between the production plan and the condition of the machines. The
assumptions, simplifications, and weaknesses of the models have also been discussed.
However, considering the understanding that axiomatic research produces knowledge about
the behaviour of certain variables in the model, based on assumptions about the behaviour
of other variables in the model, from Karlsson (2016), provided in Section 1.3.2, indicates that
it can be justified to make assumptions in mathematical modelling. Especially bearing in
mind that the aim has been to demonstrate the possibilities and interactions between the
models and how this would fit into a digital twin and cyber-physical system. If these models
were to be tested in an actual system, then the requirements of replicating real life in a more
precise manner would be higher. It is reasonable to assume that by the use of Industry 4.0
technology and digital twins and cyber-physical systems, it is possible to grasp these real-life
characteristics.

5.2 Capabilities of Digital Twins

Chapter 4 presented concepts, frameworks, technologies, and tools that must exist in a digital
twin and cyber-physical system and supports the following research objectives:

3. Investigate what concepts, frameworks, technologies, and tools that must exist in a
digital twin and cyber-physical system in order to support the integration of production
and maintenance through existing research in the literature.

4. Discuss how digital twins can contribute to decision-making across the two disciplines
production and maintenance.

By utilising the presented concepts, frameworks, technologies and tools, the digital twin is
seen as an enabler for better decision-making across the whole supply chain. The reason for
this is first and foremost due to the data gathering aspect of a digital twin and cyber-physical
system. Since decisions typically are made based on the amount of information that exists, it
is reasonable to assume that data gathering is a significant contributor to decision-making.
By gathering data from relevant elements of the system, the information grounds for the
decision-maker is massively improved. However, the decision-making capabilities of a digital
twin and cyber-physical system is not solely due to the ability to gather data, but also the
ability to transform this data into meaningful information and visualising them in the virtual
space. By having a digital visualisation of the entire production system, the ability to analyse
and improve several elements of the production process is possible. Furthermore, the virtual
representation enables simulation and optimisation of scenarios without interfering with
the performance of the physical entity. In addition to this, by the use of real-time data and
continuous updating of the system, real-time decisions can be made based on how the
system is performing. Considering unforeseen situations that may occur during operation,
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this ability of digital twins is valuable in a decision-making context. This is also supported
by Ghaleb et al. (2020b), who stated that the use of real-time information can significantly
improve scheduling decisions.

The results of this thesis contributes to the understanding of how mathematical models
relates to the existing frameworks and ideas of a digital twin and cyber-physical system.
Since digital twins and cyber-physical systems are considered to be enablers for improved
production and maintenance planning (García and García, 2019; Tao et al., 2019b), in
combination with the fact that mathematical models are often used to optimise the
production and maintenance plan (Budai et al., 2008), it forms a basis for further development
of mathematical models for production and maintenance planning in a digital twin and
cyber-physical system. Digital twins and cyber-physical systems are potentially important
facilitators for making decisions across disciplines due to their ability to gather, interpret
and visualise data from different perspectives. Section 4.2.1 and 4.2.2 presented the data
gathering of respectively production-related data and maintenance-related data. This access
of data from different disciplines is important for both developing models that integrate
production and maintenance planning, but also for making decisions for both disciplines in
an integrated fashion. Qi et al. (2019) also discussed this, and stated that “the future modelling
technologies are characterised by multidisciplinary and multifunctional synthesis” and that
“the DT modelling process is an interdisciplinary synthesis process, which involves mechanical
science, hydraulics, aerodynamics, structural mechanics, fluid mechanics, acoustics, thermals,
electromagnetism, and control theory”. This has also been demonstrated in this thesis, where
the mathematical models consist of principles related to production management and
maintenance management, as well as fluid and mechanical science through the intended
erosion model from DNV-GL (2015).

The thesis has presented concepts, frameworks, technologies, and tools that exists in the
literature for utilising digital twins and cyber-physical systems. However, the technologies
and tools mentioned are discussed in general. For instance, the thesis has not explicitly stated
what tools and technologies that can support the optimisation models of production and
maintenance planning. Complex real-life problems will require optimisation software, like
MATLAB, Gurobi, or CPLEX, and these software must be able to communicate with the digital
twin and cyber-physical system to gain access to the gathered data and interact with the
other virtual models. In addition to this, the technical aspect of developing a digital twin
system around mathematical models has not been considered. The technical execution of
connecting the automatic data gathering to the models and achieve real-time updating of
the models will be important to realise the capabilities of the digital twin and cyber-physical
systems.

5.3 Further Work

As previously mentioned, the mathematical models in Chapter 3 has not incorporated the
stochastic behaviour of a degradation process of a choke valve. The intention was to combine
the physical erosion model in Section 3.4.1 with the Gamma process presented in Section
2.4.2. The work in this thesis was unsuccessful in executing this approach, and introduced
a deterministic simplified degradation model in Section 3.4.2 instead. Incorporating a
stochastic process to the modelling is a natural extension for further work of this thesis.
The significance of not including a stochastic process has been discussed in Section 5.1.3,
where the consequence of not including this was highlighted to be the possibility that the
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choke valve could in fact function after exceeding the maintenance safety threshold.

Furthermore, the technical execution of implementing the models in a digital twin and
cyber-physical systems, connecting sensors, automatic data gathering, and other virtual
models has not been the aim of this thesis, but will be an interesting study to consider
for realising the capabilities of the digital twins and cyber-physical systems. Challenges in
modelling the production planning aspect has been discussed in 5.1.1, where the limitation
of choosing some parameters arbitrarily was discussed. It should be possible to solve these
issue by implementing the models in a digital twin and cyber-physical system, due to the
capabilities they posses for automatic gathering of real-time data. In order to this, appropriate
concepts, frameworks, technologies, and tools must be chosen for the system, which have
been presented in Chapter 4 of this thesis.

In section 5.1.4 the re-optimisation procedure was discussed, emphasising the challenges in
modelling the production and degradation in the same optimisation problem as these two
elements are not independent. One approach for meeting this challenge was proposed by
Kuehn (2019), proposing multi-criteria decision-making processes as a possible method for
this challenge. Furthermore, it is reasonable to assume that more advanced programming
in combination with real-time and automatically data flow can be utilised to model this
independency more efficiently.
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6 Conclusion

This thesis aimed to derive mathematical models for integrating production and maintenance
and to define principles for what the mathematical models in a digital twin and cyber-
physical system should do in order to integrate production and maintenance. Production
and maintenance planning is often studied through the use of mathematical modelling.
Therefore, the mathematical models were derived based on previous research and were
presented and demonstrated in Chapter 3. The demonstration of the models considered a
fictional case scenario based on real-life characteristics of an oil production system. The case
considered a production system consisting of two oil wells with associated choke valves that
suffer degradation over time. The objective was to determine a production plan that accounts
for the condition of the choke valve to plan maintenance activities in a synchronised manner.
Throughout Chapter 3, principles for what the mathematical models in a digital twin system
should do in order to integrate production and maintenance was defined. The models’ ability
to interact and communicate with each other was highlighted and it can be concluded that
this interaction and communication can be enabled by implementing the models in a digital
twin and cyber-physical system. The models must gather data automatically and in real-time,
exchange data between them and other elements of the digital twin and cyber-physical
system, and handle the dependency between the production plan and the condition of the
machines.

Furthermore, by deriving these mathematical models, a foundation for discussing how
the models would fit in a digital twin and cyber-physical system was made, and concepts,
frameworks, technologies, and tools for digital twins and cyber-physical systems was
discussed. The defined principles of what the mathematical models should do contribute
to deciding what kind of technologies and tools that must be utilised to support the
mathematical models in a digital twin and cyber-physical system. How digital twins can
contribute to decision-making across production and maintenance has also been discussed,
highlighting data gathering as a significant contributor to this matter. In addition to this,
the capabilities of a digital twin and cyber-physical system to translate data into meaningful
information and visualising them in the virtual space was also pointed out as a valuable
capability for decision-making. These aspects should also improve the optimisation of the
models by gathering relevant and accurate data that can be updated in the model in real-time.

While some of the challenges that occurred in the work of the thesis limit the real-life
applicability of the results, the thesis provides new insight into how mathematical models in a
digital twin and cyber-physical system can contribute to the interactions between production
and maintenance, which in the case scenario of this thesis involves the trade-off between
shutting down the production to restore pressure in an oil well or starting production in
a well which leads to increased degradation rate. The challenges discussed in Chapter 5
has guided the directions for further research, which is recommended to be to include a
stochastic process in the modelling of the condition, among others.
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Appendix

A1 Notations for The Production DT

Indices:
T Set of time periods
t Period
W Set of wells
i Well number
Parameters:
Po Price of oil
Oi Operating cost for well i
d f Decreasing factor of production
Qi ,t Production rate in well i in period t
Qmax Maximum production rate from one well
Decision variable:
Wi ,t Whether to produce from well i in period t or

not

A2 Equations for The Production DT

Wi ,t =
{

1, produce from well i in period t

0, don’t produce from well i in period t
(3.1)

Qi ,1 =Qmax ·Wi ,1 (3.2)

Qi ,t =


Qi ,t−1 ·d f if Wi ,t−1 = 1 ∧ Wi ,t = 1

Qmax if Wi ,t−1 = 0 ∧ Wi ,t = 1

0, otherwise

(3.3)

∑
i

∑
t

Wi ,t ·Oi (3.4)

∑
i

∑
t

Qi ,t ·Po (3.5)

Maximise
∑

i

∑
t

Qi ,t ·Po −
∑

i

∑
t

Wi ,t ·Oi (3.6)

Wi ,t = binary ∀ t ∈ T, i ∈W (3.7)
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A3 Equations for The Simplified Degradation Model

DEi ,t = ER ·mi ,t ·0.001ton/kg (3.13)

mi ,t =Qi ,t ·SR (3.14)

Mi ,t =
{

mi ,t if Wi ,t−1 = 1 ∧ Wi ,t = 1

mi ,t · i f if Wi ,t−1 = 0 ∧ Wi ,t = 1
(3.15)

A4 Notations for The Maintenance DT

Indices:
M Ai ,t Maintenance activity
ML Maintenance safety threshold
DEi ,t Degradation level

A5 Equations for The Maintenance DT

MAi ,t =
{

1 if DEi ,t > ML

0, otherwise
(3.16)
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A6 Spreadsheet of Optimisation

Figure A6.1: Spreadsheet of optimisation
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A7 Spreadsheet of Re-Optimisation

Figure A7.1: Spreadsheet of re-optimisation, part 1
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Figure A7.2: Spreadsheet of re-optimisation, part 2
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