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Abstract

This thesis explores whether 5G can complement and be used as part of or in conjunction with

today’s other major industrial driving forces, mainly Industry 4.0 initiatives such as Asset

Administration Shells. This is done in light of two use cases proposed by the 5G-SOLUTIONS

project, both of which aim to further develop digital factories with advanced communication

solutions and real-time, remote operation. An architecture is designed and proposed as a

way to tackle the use cases. The implementation of this architecture is a system with an

accompanying AAS, which utilizes 5G communication, OPC UA, and ROS 2. The system’s

functionality revolves around auto/re-configuration, rapid deployment, and remote control

of an AGV. The thesis presents the work carried out for setting up a testing environment at

NTNU Gløshaugen’s Industry 4.0 laboratory and the fundamental approach to implementing

the system based on the proposed architecture. Each component in the system is thoroughly

discussed in light of Industry 4.0 standards, and their feasibility is reviewed with regard to

the use cases. The results of this are used to determine the system’s and 5G’s feasibility

in an industrial environment based on Industry 4.0 initiatives. The end goal of developing

a system meeting the standards of the use cases and Industry 4.0 is partly accomplished.

A substantial research foundation and a component-based architecture are established and

tested on many levels. The system with the AAS is used to control an AGV remotely,

over the internet, and with the use of 5G. Rapid deployment and auto/re-configuration are

tested and found plausible. To some extent, the system does support the idea of getting a

new robot introduced to a factory or laboratory and tested within a short amount of time.

The latency results required by an Industry 4.0-compliant real-time robotic system are not

achieved, which is partly due to external delays associated with the installation of a local 5G

node at NTNU Gløshaugen’s Industry 4.0 laboratory.
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Sammendrag

Denne masteroppgaven undersøker om 5G kan komplementere og brukes som en del av eller

i forbindelse med de andre store industrielle drivkreftene i dag, hovedsakelig Industri 4.0-

initiativer som Asset Administration Shells. Dette gjøres i lys av to “use case”-er som er

foresl̊att av 5G-SOLUTIONS-prosjektet, som begge tar sikte p̊a å videreutvikle digitale fab-

rikker med b̊ade avanserte kommunikasjonsløsninger og sanntidsfjernstyring. En arkitektur

er designet og foresl̊att som en måte å takle “use case”-ene p̊a. Implementasjonen av denne

arkitekturen er et system med et tilhørende AAS, som bruker 5G-kommunikasjon, OPC UA

og ROS 2. Funksjonaliteten til systemet dreier seg om auto-/re-konfigurasjon, rask utrulling

og distribusjon, og fjernstyring av en AGV. Oppgaven presenterer arbeidet som er utført

for å sette opp et testmiljø ved NTNU Gløshaugen’s Industri 4.0 laboratorium, samt den

faktiske tilnærmingen til implementering av systemet basert p̊a den foresl̊atte arkitekturen.

Hver komponent i systemet blir grundig diskutert i lys av Industri 4.0-standarder, og gjen-

nomførbarheten av dem blir vurdert med hensyn til “use case”-ene. Resultatene av dette blir

brukt i et forsøk p̊a å bestemme systemets og 5Gs verdi i et industrielt miljø basert p̊a In-

dustri 4.0-initiativer. Det endelige m̊alet med å utvikle et system som oppfyller standardene

for brukstilfellene og Industri 4.0 er delvis oppn̊add. Et betydelig forskningsunderlag og en

komponentbasert arkitektur er etablert og testet p̊a mange niv̊aer. Systemet med AAS-en

brukes til å kontrollere en AGV eksternt, over internett og med bruk av 5G. Rask utrulling og

auto-/re-konfigurasjon er testet og funnet sannsynlig. Systemet støtter til en viss grad ideen

om å f̊a en ny robot introdusert til en fabrikk eller laboratorium og testet innen kort tid. Den

aksepterte maksimum forsinkelsen som kreves av et Industri 4.0-kompatibelt sanntidsrobot-

system oppn̊as ikke, noe som delvis skyldes eksterne forsinkelser knyttet til installasjonen av

en lokal 5G-node ved NTNU Gløshaugens Industri 4.0-laboratorium.
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Chapter 1

Introduction

1.1 Motivation and Problem Description

In today’s vastly expanding digital society, innovative and more efficient solutions are needed

to be competitive in our new technological world. Throughout modern history, three indus-

trial revolutions have taken place, and many believe that we are now witnessing the fourth.

The term describing today’s revolutions and development is referred to as Industry 4.0. Every

piece of equipment one can imagine is connected to the internet in some way. It could be our

curtains, our fridge, or even our car. In order to facilitate and sustain this rapid develop-

ment, a solid industrial infrastructure with an underlying foundation of telecommunication

1
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is needed.

5G-SOLUTIONS is a 5G project financed by the EU. The project’s main objective is to

conduct advanced field trials in innovative and thematically diverse digital services that

require 5G capabilities.

”The fifth generation of telecommunication systems, or 5G, will be one of the most critical

building blocks of the European digital economy and society in the next decade.”

- 5G-SOLUTIONS [1]

As seen from their quote, 5G-SOLUTIONS believes that 5G will heavily affect the next

decade. Many groups and corporations, expanding several European countries, have joined

the project, NTNU being one of them. In collaboration with the 5G-SOLUTIONS project,

this thesis has explored whether 5G can complement and be used as part of or in conjunction

with the other major industrial driving forces of today, mainly Industry 4.0 initiatives such

as Asset Administration Shells (AAS). The objectives related to this problem description are

described in section 1.3.

1.2 Previous Work

Since the 5G-SOLUTIONS project commenced in 2019, fundamental work and a foundation

upon which to further improve have been outlined. The fundamental work mostly surrounds

defining, grouping, and assigning the different use cases of 5G. In total, it has been determined

that more than 140 target KPIs are going to be validated per the 3GPP release. It has also

been determined that the business potential of each use case will be validated by the end-

users to guarantee that each of the use cases is well-positioned to respond to the needs of the

market [2]. Figure 1.1 displays a map of the project locations and their related groups and

corporations.

The blue node in Figure 1.1 represents 5G-VINNI (5G Verticals INNpcation Infrastructure),

which is another project financed by the EU. Since 2018, the project participants have been

working on establishing an “end-to-end facility that validates the performance of new 5G

technologies by operating trials of advanced vertical sector services” [3]. The project is

coordinated by Telenor, and with main facility sites in Norway, UK, Spain, and Greece, they

are currently using advanced 5G technologies and automated testing to make sure that the

new technology works as expected when it is implemented into various industry verticals

[4]. In 2020, Telenor launched a commercial 5G network in Norway that is available for

the general public. Their headquarters in Fornebu includes a 3.6 GHz 5G base station

used for the commercial network, as well as a 26 GHz 5G base station used for 5GVINNI

testing. In addition to this have companies such as Ericsson, which is also a part of the
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Figure 1.1: Map of the 5G-SOLUTIONS project with related groups and corporations [2].

5G-VINNI project, performed extensive research and testing of 5G in relation to industrial

robotics and automation. This research includes performance testing with the use of remotely

controlled drones and cars using 5G. A detailed look at some of Ericsson’s endeavors is found

in subsection 2.1.1.

The scope of this thesis is not solely focused on 5G and its potential, but also on presenting

a system that satisfies the objectives of the project. The implemented system described in

this thesis uses some of the results from the specialization project conducted by the authors

in the fall of 2020. The objective of the specialization project was to set up an automatic

configuration solution between a KMR iiwa robot entity, a workspace computer, and a web-

based AAS. Even though automatic configuration was not achieved, a prototype of the AAS

capable of controlling the KMR iiwa on a local Wi-Fi network was developed as a proof of

concept with key features of Industry 4.0 in mind. Through both research and testing of the

communication layers in the system, it was determined that technology such as ROS 2 and

OPC UA are powerful and adaptable tools when working with autonomous robots.

1.3 Objectives

The trials described in the 5G-SOLUTIONS project are presented with the use of “Living

labs”. The purpose of the living labs is to validate the proficiency of both the use cases of

the vertical industries and the 5G technology [2]. Each living lab consists of several use cases

specialized for their specific role in the project. The living lab that is in focus for this thesis

is “LL1: Factories of the Future (FoF)”. LL1 aims to improve digital factories with increased

sensing, faster and more reliable robotic operation, and real-time, secure connectivity. The
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scope of this thesis is defined by two of the use cases in the LL1 initiative [2]:

• Use Case 1.5 - Rapid deployment, auto/re-configuration, and testing of new robots.

• Use Case 1.3 - Remotely controlling digital factories.

The objective of the project related to this thesis is to provide a solution for an architecture

based on the relevant use cases. The purpose of the thesis is to study the results of this project

and discuss its value with regard to the standards of Industry 4.0, 5G, and the relevant use

cases.

1.3.1 Use Case 1.5

The context of Use Case 1.5 is NTNU Gløshaugen’s Industry 4.0 laboratory1. This lab has

a combination of stationary production robots and two automated guided vehicles (AGVs).

The intent of the use case is to use 5G as the communication infrastructure in a system that

handles control and data exchange between robots, AGVs, and the control room. For this,

a system that supports rapid deployment, auto/re-configuration, and testing of new robots

needs to be developed. A critical task for this use case is to accomplish “Initial configuration

of control room video feeds”. In other words, establish a reliable video stream from the

production facility. Wired communication is not an optimal solution for production robots,

and the current generation wireless communication protocols do not support the latency

requirements of standards of Industry 4.0, nor the data rate for multiple high-quality video

streams in a production area.

1.3.2 Use Case 1.3

Use Case 1.3 is focused on the idea of remotely controlling industrial production factories.

This can be achieved by giving the operators the ability to control parts of the production

using tablets, PCs, or smartphones from a remote location. Being able to remotely control a

factory would give operators enhanced flexibility and improved efficiency, as it would impact

and change a large part of their daily operations for the better. Use Case 1.3 is a standalone

use case, but it is interesting to see if the system developed with regard to Use Case 1.5

can function as a solution for this use case. The end goal is to use the developed system to

achieve real-time remote control of the AGVs, and for the system to meet the performance

requirements posed by the use case. The maximum acceptable latency from a user device to

a robot is 10 ms for Use Case 1.3.
1NTNU Gløshaugen’s Industry 4.0 laboratory is a subpart of the MANULAB: Norwegian Manufacturing Research Laboratory

project (269898) [5]
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1.4 Contributions

This thesis attempts to contribute to society by offering a system architecture that can

potentially be used to further the development of digital factories. With a component-based,

flexible, and portable system for controlling robots using 5G, new and innovative strategies

can be created to push the boundaries of Industry 4.0. With this project and its research,

the world is hopefully one step closer to faster and more precise deployment, configuration,

and control of industrial robots. Even if the complete architecture lacks certain features and

performance results with regard to the requirements of Industry 4.0, the thought process

behind these solutions can be of benefit. The successful parts of the implemented system

can also be extracted and reused in other systems. Telenor has utilized some parts of the

architecture presented in this thesis in order to operate a remote-controlled car with 5G at

their test site in Fornebu.

1.5 Limitations

As mentioned in section 1.2, the project conducted for this thesis is related to the 5G-VINNI

project. Telenor has a vital role in this project, and one of their tasks was to install a 5G

node providing a local 5G network in NTNU Gløshaugen’s Industry 4.0 laboratory. At the

beginning of the project, it was expected that this node would be installed with sufficient time

remaining to perform experiments. Due to delays from Telenor, this node is now scheduled

to be installed after the delivery date of this thesis. As a consequence of this, experiments

are instead performed on Telenor’s public 5G network.

1.6 Outline

The report is structured in nine chapters. Chapter 2 introduces the background theory with

the concepts and technologies that were researched and used for this thesis. This chapter

delves into technical theory about the concepts, hardware, and software components, and it

is meant for those who want to understand the underlying theory of the system presented in

this thesis and evaluate it against the standards of Industry 4.0.

Chapter 3 outlines the architecture that is presented as a solution to how 5G can be incorpor-

ated into an industrial robotic lab facility. The system design is introduced and described in

relation to the use cases explored in this thesis and the design principles of Industry 4.0. This

chapter shows the most important segments and gives insight into how each of these plays

an important role in realizing a robust and effective system within the realm of Industry 4.0.

It is intended for those who wish to understand why the system is designed the way it is and
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the thought process behind each major design decision.

Chapter 4 describes an implementation of the architecture on a technical level. Here, the

technical details and implementation-related specifications are thoroughly explained with the

use of code snippets and detailed architectural illustrations. For those who wish to recreate

the system, it serves as a detailed guide on how each part of the system is implemented.

The chapter is therefore intended for those who wish to recreate parts of the system or the

system in its entirety and those who want to know how or why each specific implementation

is done.

Chapter 5 outlines how the hardware and software components are used to set up the exper-

imental prototype of the system. Using terminal commands and installation instructions, it

details how to get every component up and running. The chapter is meant as a guide both

for those who wish to recreate either the entire system or parts of the system used for this

project, those who want to perform the tests displayed in chapter 7, and for those who are

interested in the technical details surrounding specific components.

Chapter 6 describes the feasibility experiments conducted in order to ascertain whether or

not certain components are usable as a part of the system and to make certain design choices.

It is therefore meant for those who wish to see the reasoning behind some of the decisions

that were made during the implementation of the system. The performance experiments

conducted to benchmark the finalized system are described in chapter 7. Both chapters are

also intended for those who might want to build similar systems, improve the one presented,

or for those who are interested in knowing what kinds of tests they themselves can use for

comparison. These chapters are structured with sections containing a complete experiment

description, results, and a discussion. Each experiment is presented together with its results

and discussion in order to increase readability and make it easier for the reader to obtain the

relevant information from each individual experiment.

Chapter 8 discusses how the architecture and the implemented system solves the tasks related

to the objectives, and whether or not the proposed solution has merit with regard to today’s

industrial standards. The discussion also surrounds the most important parts of the system,

their advantages and disadvantages, and whether or not they help the system meet the

requirements of Industry 4.0. This chapter is meant for those who want to understand the

underlying principles of the system. For those who might want to build similar systems,

this chapter also sheds light on which aspects should be improved. The report ends with a

conclusion in chapter 9.



Chapter 2

Background Theory - Concept and

Technologies

This chapter introduces the most important parts of the various concepts, software techno-

logies, and hardware technologies that are relevant for the research, implementation, and

experimentation related to this thesis. The system architecture that is described in this

thesis is intricate and involves several different technologies that are implemented to work in

unison. Because of this, it is important to describe the fundamentals of each part in detail

to get an understanding of how and why they are chosen as part of the system. Section 2.1

covers the concepts that are researched and utilized in the project. These are the parts of

the system that are not viewed as tangible software tools, but rather as means to fulfill the

purpose of the system. Section 2.1.1 explains the main properties of the newest generation

within cellular networking, namely 5G, and it outlines its place in Industry 4.0. Real-time

systems in general, the operating system Linux and Linux Kernels’ real-time properties are

described in subsections 2.1.2, 2.1.3 and 2.1.4, respectively. The section also outlines different

protocols used throughout the system, such as OPC UA in subsection 2.1.7, TCP/IP in sub-

section 2.1.5 and the closely related WebSockets in subsection 2.1.9. Section 2.2 covers the

hardware technologies that are used to test the implementation. This includes the Raspberry

Pi 4, the SIM8200EA-M2 and 5G HAT, and the KMR iiwa AGV, which are explained in

subsections 2.2.1, 2.2.2 and 2.2.3, respectively. Lastly, Section 2.3 covers the various software

technologies that were used during both implementation and testing. The information in

these sections is important for those who want to understand the underlying theory of the

architecture presented in this thesis and evaluate it against the standards of Industry 4.0.
1

1Some sections in this chapter are heavily inspired by the related specialization project completed by the authors during the
fall of 2020.

7
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2.1 Concepts

2.1.1 5G Networks

Because of massive data growth over the last ten years, the resulting capacity demands have

brought forth a rapid development in mobile access technology [6]. The newest revolutionary

change is the 5th generation (5G) mobile network, or New Radio (NR). With this new global

wireless standard comes even greater requirements than that of its predecessors in terms of

wide-area coverage, reliability, latency, and availability.

2.1.1.1 Fundamentals

The 5G communications technology supports three main services shown in Figure 2.1: en-

hanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and

massive machine-type communications (mMTC) [7]. The first, eMBB, provides stable con-

nections with high peak data rates as well as enhanced wireless access and connectivity.

URLLC provides low-latency transmission of data with high reliability, and it makes a net-

work able to adapt to large amounts of changing data in real-time. Lastly, mMTC supports

connecting large numbers of devices that intermittently transmit small amounts of data.

Figure 2.1: 5G service types.

New applications and uses cases are expected with the advent of 5G, like virtual and aug-

mented reality, autonomous vehicles, tactile internet, and Internet of Things (IoT) [7]. These

all have the potential to be great assets in the factories of the future, and the use of 5G
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is essential, not only to propel the development of these technologies but also to make sure

that they meet the requirements of the new standards of Industry 4.0. Because the demand

for low-latency computation is increasing rapidly, and because low latency is a fundamental

metric for network performance and required by the emerging applications and use cases, the

services that 5G provides are invaluable. Stable, high bandwidth connections can allow for

large-scale video streaming, low-latency data transmission with high reliability can ensure

the safety and effectiveness of industrial automation, and increased mass-connectivity can let

factories connect an almost unlimited amount of systems, devices, and sensors.

2.1.1.2 Performance

In a study presented at the 2019 International Conference on Wireless and Mobile Com-

puting, Networking and Communications (WiMob), the performance of 5G was tested in

a simulated Industry 4.0 scenario. The scenario included 280 wirelessly connected robots,

each equipped with URLLC transceivers, distributed in 5 production lines. The URLLC

transceivers communicated with a central controller through a set of gNodeBs, which are

3GPP-compliant implementations of the 5G base station [8]. The tests were conducted with

different configurations on three separate frequencies: 700 MHz, 3.5 GHz and 26 GHz. At

700 MHz and 280 robots, the latency results showed that, at each TTI (transmission time

interval), a limited number of packets were transmitted compared to the total number of

packets generated. This suggests both lack performance for short delays (below 1 ms) and

channel congestion with many interconnected robots. If the number of communicating robots

was reduced to 20, the latency results increased significantly, with 100% of the packets being

transmitted with latency below 1 ms. At 3.5 GHz, the latency with 280 robots never exceeded

1 ms on certain scheduling configurations. At 26 GHz, the latency with 280 robots was below

1 ms for 100% of packet transmissions, with one particular scheduling configuration achieving

a delay lower than 0.5 ms [8].

Although Industry 4.0 is more of a conceptual trend rather than a standard and absolute

quality of service (QoS) requirements have yet to be established, there are already agreements

around what emerging technologies need to deliver in order to realize the goals of Industry

4.0. In a discussion paper published by the Federal Ministry for Economic Affairs and

Energy (BMWi) in collaboration with the Plattform Industrie 4.0 network, a quantitative

range of relevant QoS requirements is presented in relation to network-based communication.

Here, the latency requirement for motion control is proposed as 0.25-1 ms, while the latency

requirements for condition monitoring and augmented reality is proposed as 100 ms and 10

ms, respectively [9]. The 5G performance results suggest that it is able to comply with

the proposed QoS requirements for Industry 4.0, at least for motion control, as this is the

property with the least packet transmission volume and thereby closest, in terms of similarity,
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to the Industry 4.0 scenario used for the testing.

2.1.1.3 5G in Robotics and IoT

An interesting note, especially within the context of this thesis, is that 5G is more suitable

for robotics and automation than 4G LTE, as it can provide a more reliable connection

with lower latency. Ericsson, one of the main drivers of the 5G era, is at the forefront of

development research of 5G use cases within Industry 4.0, IoT, and robotics, and they have

already been able to show the power of the new cellular network through high-accuracy

control and manipulation of physical objects, a concept that is known as tactile internet [10].

In collaboration with KTH Integrated Transport Research Lab (ITRL), they have managed

to remotely operate a 5G concept car located 50 km away with a control latency of 4 ms

and video acquisition and rendering latency of 20 ms. Before this, similar demonstrations

using drones and an ABB industrial robot teleoperated over 4G produced significantly less

satisfactory results, with average control latencies of 40 ms and average video acquisition and

rendering latencies of 300 ms [10].

2.1.2 Real-Time Systems

A definition of a real-time computer system is a system that “controls an environment by

receiving data, processing them, and returning the results sufficiently quickly to affect the

environment at that time” [11]. Real-time computer systems are often a part of larger

systems called real-time systems. These real-time systems are often separated into a set of

self-contained subsystems called clusters. The clusters outline the independent parts of a

real-time system, e.g. the physical robot to be controlled (controlled cluster), the real-time

computer system (computational cluster), and the human operator (operator cluster). The

connection between the different clusters within a real-time system is obtained using specific

interfaces [12]. See Figure 2.2.

Figure 2.2: A real-time system consisting of three clusters and two interfaces [12].

Real-time systems are defined by a deterministic schedule—not by low-latency with which
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they are often associated. The systems must guarantee that they finish certain tasks in a

certain amount of time. As a result, it is important that a maximum allowable latency for

tasks is set and that the latency is measurable. In order to avoid interfering with temporal

properties and rather aid with the implementation, a real-time computer system needs an

operating system that has real-time capabilities. In addition, it needs user code that supports

deterministic execution [13].

A real-time computer system must respond to events from the environment, either from the

controlled cluster or the operator cluster, within time intervals imposed by the environment.

A “deadline” is the instance when a result must be produced, and is classified as either “soft”,

“firm”, or “hard”. If the result is useful after the deadline has passed, it is classified as “soft”,

otherwise it is “firm”. If a firm deadline is missed and results in “severe consequences”, the

deadline is classified as “hard”. A real-time computer system that must fulfill at least one

hard deadline is called a hard real-time computer system. If no hard deadline exists it is

called a soft real-time computer system. The designs of these two systems are fundamentally

different. Soft real-time computer systems can miss deadlines occasionally, while hard real-

time computer systems must have a guaranteed temporal behavior under all specified fault

and load conditions [12].

2.1.3 Linux

Linux is a collection of open-source, Unix-like operating systems based on the Linux Kernel.

It has been around since the 1990s and has a user base that spans the entire globe [14]. Most

larger IoT devices, such as phones, infotainment systems, and specific television brands, run

on some kind of distribution based on the Linux Kernel. Distribution, or “distros”, is the

collective name for different versions of Linux. There exist many Linux distributions, each

developed to serve a certain type of user or system. Ubuntu and Debian are examples of

Linux distributions.

Linux has zero cost of entry and is one of the most reliable computer ecosystems on the

planet. It is distributed under an open-source license, which means that every user has the

freedom to run the program for any purpose, study how the program works, realize changes

to make it do what the user wishes, and redistribute custom-made copies. One of the key

aspects of Industry 4.0 is the focus on interoperability, and as a result of Linux being open-

source, it is highly scalable and provides a great platform for connectivity between different

devices.
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2.1.4 Real-Time Linux Kernels

An optimized kernel designed to maintain low latency, determinism, and consistent response

time is in the Linux world often referred to as a real-time Linux kernel. A real-time kernel

is not “better” or “superior” compared to a standard kernel, they just serve different goals

and meet other system requirements [15]. There exist other operating systems built with

specialized real-time capabilities in mind, but these often have little support for third-party

software compared to Linux. According to redhat.com [15], a real-time Linux kernel includes

the following important mechanisms:

• Under heavy load the priority of the tasks are checked.

• High priority tasks are given preference for CPU execution.

• Abolishes the use of Completely Fair Scheduling.

• Maintains low latency execution time.

• Provides the ability to measure, record, and configure response time.

• Uses the scheduling policies SCHED FIDO or SCHED RR.

As an example, the PREEMPT RT patch gives Linux several essential properties of real-

time operating systems. PREEMPT RT lets the interrupts run as threads, which makes it

possible for the user/developer to modify the priorities of the interrupts and to prioritize

the interrupt handlers even when the hardware does not support them. A big advantage

of PREEMPT RT is that it makes the Linux kernel more capable of task-handling in real-

time, as it does not prevent the developer from creating an application that meets real-time

requirements. PREEMPT RT reduces the maximum latency experienced by the user by

changing the internal code. This code change involves changing spinlocks to mutexes [16].

A spinlock will simply wait for a resource indefinitely until it is available, i.e. the thread is

not preempted, while a mutex will put a waiting thread to sleep. Mutexes do not, unlike

spinlocks, waste CPU cycles.

2.1.5 TCP/IP

Transmission Control Protocol/Internet Protocol, or TCP/IP, is a suite of data communic-

ations protocols, with a name that refers to two of the protocols that belong to it. It is the

leading communications software for connecting devices on local area networks and is the

foundation of the worldwide Internet [17].

TPC/IP has important features that have made it capable of meeting the many needs of

worldwide data communication since its inception in the 1970s, and that makes it capable

of realizing the challenging implementations of new Industry 4.0 standards. TCP/IP has
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open protocol standards, is available for free, and developed independently from any specific

hardware or operating system [17]. This significantly simplifies the process of connecting

different hardware and software components, even without the use of the Internet. TCP/IP

is also independent of specific physical network hardware [17], which allows it to integrate

and run over many different types of networks including Ethernet, Wi-Fi, optical networks,

and many more. Another handy feature is the common addressing scheme that allows any

computer to uniquely address any other computer in the entire network [17], making the

passing of packets of data between TCP/IP devices safe and reliable.

The structure and function of TCP/IP are described using an architectural model called

the Open Systems Interconnect Reference Model, or OSI Reference Model [17]. This model

contains seven abstraction layers, each of which defines the function performed when data is

transferred between computing systems. Two of these layers are of particular interest in the

context of this thesis, namely the Network layer and the Transport layer.

2.1.5.1 Network Layer

In order to fully understand TCP/IP, it is important to know the details of how addressing

and delivery of data is handled. IP addresses are 32-bit numbers normally expressed as four

decimal numbers separated by periods, e.g. 192.168.231.123, with one part being the network

address and the other being the host address. The format of these parts is not the same in

every IP address, and the number of bits used to identify them varies according to the prefix

length of the address, which is again determined by the address bit mask more commonly

known as a subnet mask. A bit in the mask can either be on (255) or off (0). If a bit is on in

the mask, the bit in the IP address belongs to the network part, and if it is off the bit belongs

to the host part. With a subnet mask of 255.255.255.0, the IP address 192.168.231.123 would

have 192.168.231.0 as the network part and 0.0.0.123 as the host part.

The inclusion of subnet masks is significant because it allows decentralized management of

host addressing [17]. By splitting a network into smaller sub-networks it is possible to control

the amount of host devices on the network, and thereby also the amount of congestion. With

no subnetting, each device would be able to see packets broadcast from all other devices,

and the network switches would be heavily overloaded with having to move traffic to the

appropriate ports.

2.1.5.2 Transport Layer

The transport layer protocols are what provide the end-to-end communication between two

hosts on a network [18]. The two core protocols of the transport layer are TCP (Transmission

Control Protocol) and UDP (User Datagram Protocol), each of which has its own advantages
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and use cases. The choice of transportation protocol is dependent on the QoS requirements

for the application in question, as it affects performance measures such as delay, jitter, packet

loss, and throughput.

TCP is a popular and robust connection-oriented protocol that supports reliable delivery.

Data is transmitted in the form of segments, each of which has a sequence number that helps

to order messages and eliminates duplicates. Reliability is maintained by having the receiver

of transmitted segments send an acknowledgment (ACK) back to the sender on successful

delivery. If an ACK is not received by the sender within a specified time interval, the sender

attempts to transmit the segment again [18]. Congestion control is done by having the

receiver return a “window” together with the ACK that specifies how many sequences it can

handle. This way, the receiver is not overwhelmed by more data than it can handle [18].

The characteristics of TCP make it suitable for applications that have stringent reliability

requirements. Applications that make use of TCP include HTTP, WebSockets, and SSH

(Secure Shell).

UDP is a more simple transport protocol than TCP, and it does not provide the same

reliability or ordered delivery [18]. Instead of segments, UDP delivers data in the form of

datagrams, which are made up of headers and payloads [18]. Once a datagram is sent to a

receiver, the sender will never know whether or not the datagram was received. There is no

metadata indicating the capacity of the receiver, and there is no mechanism for ordering of

datagrams [18]. These aspects make UDP fast but unreliable. The characteristics of UDP

make it suitable for applications that have stringent latency requirements and where packet

loss is not an issue. Such applications include video and audio streaming.

2.1.6 AAS - Asset Administration Shell

The Asset Administration Shell (AAS) is an important concept in the world of Industry 4.0.

It is used to describe an asset electronically in a standardized manner [19]. The purpose of an

AAS is to exchange asset-related data among and between industrial assets and engineering

tools or production orchestration systems. Rather than reading individual states and sensor

data from many different entities, an AAS in Industry 4.0 proposes to represent data as a

combined asset.

To this date, there is no detailed specified standardization of an AAS. However, the structure

of an AAS must be standardized in such a way that it enables exchanges. OPC UA, a

communication protocol that is explored later in this chapter, is a format for exchanges and

communication that is regulated and compliant with Industry 4.0 standardizations.

To enable an autonomous and self-managing network, an AAS has to provide information

about its capabilities. Standardization requirements are also needed. Industry 4.0 requires
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an AAS to communicate in an Industry 4.0-compliant manner. In other words, there are

rules and requirements specified by industry 4.0 that the AAS needs to follow. These rules

surround quality, efficiency, scalability, security, flexibility, etc. These standardizations are

set to reduce the overall complexity and allow for greater interoperability.

For scalability and flexibility, the important aspect of an AAS is the requirement of an

internal interface to the entity and a standardized interface for external communication [20].

This requirement needs to be satisfied in order for the standardized external communication

to not interfere with the functionality of the entity. This way, an AAS can safely and

easily be changed or expanded upon with, say, the ability to administer multiple entities

without having to change any of the software or hardware related to the entity itself. These

requirements are also tightly linked to the concept of modularity—an essential property of

any robust software system—which aims to separate the functionalities of components so

that they can be removed, added, and recombined to suit the needs of the user.

Figure 2.3: Proposed structure of an I4.0-compliant AAS with separated modules and functionality applica-
tions (Left) and the AAS’s integration with a proposed overall system (right) [20].

In addition to an external and internal interface as mentioned above, an Industry 4.0-

compliant AAS should also need segments for authentication and security, data management,

functionality, and administration [20]. The external interface handles the flow of data from

external clients, and in order to assure interoperability, it must be highly standardized. As of

2017, service-oriented paradigms like RESTful and SOAP are proposed for communication

for achieving this [20]. Furthermore, a segment for authentication and security needs to be

connected to the external interface. This segment is dependent on requirements related to the

entity and the technical specifications of the AAS implementation. The data management

segment consists of several modules. The main module is mandatory and contains inform-

ation about the aspects of the AAS, and the other modules either contain data about the

components managed by the AAS or provide additional data about an application within
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the functional segment [20]. Because of the amount of data that needs to be handled in

this segment, it could be beneficial to utilize some sort of data management software like a

database management system. The functionality segment contains the different applications

within the AAS. In a complex system with many Industry 4.0-components, having multiple

applications with different functionality can greatly improve the quality of the AAS. The

administration segment handles the data flow between the other segments, and the internal

interface deals with the communication between the AAS and the entity.

As stated, there is no specific standard for the requirements surrounding an AAS; however,

in order to be Industry 4.0-compliant, the system should follow the basic structure outlined

in this section. Additionally, there is not yet a technical definition of structure for an AAS

[20], which means that the implementation can be done in a way that suits the needs of the

project and users.

2.1.7 OPC UA - Open Platform Communications Unified Architecture

OPC UA is a machine-to-machine communication protocol developed by the OPC Found-

ation. OPC UA was first released in 2008 and was designed to enhance and surpass the

capabilities of the classic OPC [21]. It has today become one of the key standards of in-

dustry 4.0, especially in Europe. The focus of OPC UA is on communication with industrial

equipment and systems for data collection and control.

Industry 4.0 often enhances the idea of connectivity and interoperability between the differ-

ent equipment found in the manufacturing industry [22]. OPC UA’s main intention is to

solve the issue of poor interoperability between equipment that comes from a wide pool of

different manufactures. To achieve this, the development has been highly affected by the

use of standardized methods and abstractions. OPC UA has a multi-layered approach, see

Figure 2.4, which integrates the functionality of the individual OPC Classic specifications

into one extensible framework.

This approach realizes the original design specification goals of OPC that are listed below

[21].

• Functional equivalence - all COM OPC Classic specifications are mapped to UA

• Platform independence - from an embedded micro-controller to cloud-based infrastruc-

ture

• Secure - encryption, authentication, and auditing

• Extensible - ability to add new features without affecting existing applications

• Comprehensive information modeling - for defining complex information
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Figure 2.4: OPC UA’s multi layered approach[21].

OPC UA also surpasses the capabilities of the classic OPC in the different categories by:

• Functional equivalence - adding discovery, address space, on-demand, subscriptions,

events, and methods

• Platform independence - adding more hardware platforms and support for more OS’s

• Secure - adding transport protocols, session encryption, message signing, sequenced

packets, authentication, and user control

• Extensible - using the highly modifiable multi-layered approach

Object-oriented structures are used to turn data into information. With this, even the

most complex multi-level structures can be modeled and extended [21]. This object-oriented

framework is the most fundamental and crucial part. It defines the rules and the base building

blocks that are necessary to expose an information model with OPC UA.

OPC UA supports both the client-server pattern and the publish/subscribe pattern with

regard to communication between different components in a computer network [21]. Client-

server communication means that the users of a service, called clients, send requests to the

service provider, called a server. After the server receives a request from a client, it processes

the requests and sends back a result with a response. With publish/subscribe there are

no requests or responses, and the communication happens strictly one-way. The sender of

a message is called a publisher, and instead of programming the messages directly to the

receiver, it publishes the message to a named resource called a topic. It does so without

knowing which, if any, receivers are out there to read the message. These receivers are
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known as subscribers, and they subscribe to topics and simply wait for messages without any

knowledge of potential publishers.

2.1.8 REST - Representational State Transfer

Representational State Transfer, commonly known as REST, is an architectural style that

defines a set of software engineering guiding principles for web services. RESTful systems,

which are REST-compliant systems, are characterized by their nature of being stateless and

that they separate the concerns of client and server [23]. By separating the user interface from

the backend, REST improves the portability of the user interface and the scalability of the

server and backend. The server and clients in RESTful systems communicate using HTTP.

Clients send HTTP-Requests and the server responds with HTTP-Responses. A request

must contain a path to the resource that the operation should be executed on. Figure 2.5

outlines the basic structure of RESTful communication.

Figure 2.5: RESTful Web Services Communication Architecture [24].

There are four base HTTP verbs used in requests in RESTful systems [23]. These are:

• GET — retrieve a specific resource or a collection of resources

• POST — create a new resource

• PUT — update a specific resource

• DELETE — remove a specific resource

Other available methods are PATCH, HEAD, CONNECT, OPTIONS and TRACE.
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2.1.9 WebSockets

The most common way for web applications to receive and transmit data is through HTTP

polling, i.e. sequences of HTTP requests and responses. The problem with polling is that

each request and response contains header information that might not always be important,

especially in real-time scenarios. Thus, when the rate of requests increases, the repeated

header information produces significant overhead, to the extent that real-time, full-duplex

communication is possible only with increased latency and high network traffic [25]. Another

way is through HTTP long polling. As Figure 2.6 shows, long polling means that a connection

is held open between the server and the client, and after a request from the client, the server

responds only when there is data to respond with [25]. This eliminates empty responses from

when the client requests something that is not available, but since it only reduces network

traffic in scenarios where the client needs data from the server, there are no real benefits for

applications in which a client might want to send real-time commands to the server with no

need for a response. Also, in applications in which the server and its clients need to exchange

continuous information, the repeated header information will produce significant overhead

even for long polling.

Figure 2.6: HTTP long polling. For every request, the server responds with data when its available.

The solution to this is using the WebSocket protocol. This protocol provides ”a full-duplex,

bidirectional communication channel that operates through a single socket over the Web and

can help build scalable real-time Web applications” [25]. As seen in Figure 2.7, the server

receives a message from the client and responds with a handshake. After this, a persistent

TCP connection is established that allows full-duplex messaging, meaning that the client

and server can stream messages to each other simultaneously. This two-way communication

method is less resource-intensive on the server than long polling, as only one connection needs

to be held open per client rather than one per request from every client.
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Figure 2.7: The WebSocket protocol.

2.1.10 DDS - The Data Distribution Service

DDS is a middleware protocol and API standard for communication in distributed systems. It

is managed by the Object Management Group, and they boast “low-latency data connectivity,

extreme reliability, and a scalable architecture that business and mission-critical Internet of

Things (IoT) applications need” [26]. In a distributed system, a middleware is the software

layer between the operating system and the applications that enable easier communication

between the system’s components. DDS uses the peer-to-peer architecture, which means

that data is shared among the components (“peers”) in the system instead of through a

centralized server or cloud, and the communication between these components is based on

the publish/subscribe pattern explained at the end of subsection 2.1.7. Using peer-to-peer

and publish/subscribe together provides great scalability, reliability, and flexible network

topology. Furthermore, DDS is uniquely data-centric, meaning that it knows what data

it stores and how to share that data. Essentially, this reduces the amount of code that

needs to be written by developers, as DDS takes care of data-sharing implementations like

serialization/de-serialization and maintaining state. This is different from message-centricity,

which requires programmers to write the code that sends data messages.

DDS uses RTPS (Real-Time Publish Subscribe) as a wire protocol, i.e. for getting data from

one point to another. RTPS is a “field-proven technology that is currently deployed worldwide

in thousands of industrial devices” [27]. This protocol enables reliable publish/subscribe

communications for real-time applications, and it is designed to automatically discover new

applications and services that can join and leave a network without having to be reconfigured.

The discovery process happens between domain participants, called Endpoints, with the use

of UDP multicast. Multicast is available within local subnets, and with the use of multicast

routing, it can be used over certain types of internetworks and extended LANs [28]. Since
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most inter-domain routers do not implement multicast routing, many networks, like the

Internet, do not support UDP multicast [29].

2.2 Hardware

2.2.1 Raspberry Pi Model 4B

Raspberry Pi 4B, displayed in Figure 2.8, is a credit card-sized, single-board computer de-

veloped by the Raspberry Pi Foundation. It was first released in 2019 and is a part of the

4th-generation of Raspberry. Ubuntu Core, Raspberry Pi OS, and Windows IoT Core are

some of the operating systems that the Raspberry Pi supports. The key feature of this

model is the high-performance 64-bit quad-core processor (Broadcom BCM2711, quad-core

Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz), and the memory capability of 8 GB [30]. The

Raspberry Pi also has several built-in interfaces (see Table 2.1) and 802.11ac Wi-Fi sup-

port. The performance-to-size ratio makes the Raspberry Pi suitable for robot projects and

experiments.

Figure 2.8: Raspberry Pi 4B.

LAN (Gigabit Ethernet) - RJ-45

2-lane MIPI CSI camera port

Raspberry Pi standard 40 pin GPIO header

2-lane MIPI DSI display port

4-pole stereo audio and composite video port

2 x HDMI-output - micro HDMI

2 x USB 2.0 - Type A

2 x USB 3.0 - Type A

USB-C (power only)

Micro-SD card slot

Table 2.1: Raspberry Pi 4B interfaces [31].

According to benchmark experiments conducted by Gareth Halfacree, the Raspberry Pi

model 4B sees significant improvements in many critical areas compared to its predecessors

[32]. The interesting aspects in the context of this thesis are the ”Ethernet throughput” and

”USB throughput”. There are major improvements in both of these fields, and by looking

at them in isolation (see Figure 2.9) one can deduce the increased data bandwidth of this

Raspberry Pi compared to the other versions. Halfacree shows that this increased bandwidth

comes at the cost of higher power usage and higher thermal temperatures.
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Figure 2.9: Ethernet and USB throughput benchmark of different versions of the Raspberry Pi measured by
Gareth Halfacree [32]. (Note: Pi 4 and Pi 4B are synonymous.)

2.2.2 SIM8200EA-M2 and 5G HAT

SIM8200EA-M2, shown on the left side of Figure 2.10, is a wireless cellular communication

module developed by SIMCom focusing on the utilization of 5G. It has support for multi-

air access technology such as 5G NR and 4G LTE, and communication protocols including

TCP/IP and HTTP. The module also has a built-in, global navigation satellite system that

integrates various GNSS systems [33].

Figure 2.10: SIM8200EA-M2 and 5G HAT for Raspberry Pi [34].

The communication flow of the module is shown in Figure 2.11. The module can be connected

to a Raspberry Pi with the use of a SIM8200EA-M2 5G HAT, shown on the right side of

Figure 2.10, through USB. The 5G HAT discussed in this thesis is developed by Waveshare,

and is, when installed correctly, capable of establishing a 5G connection for a Raspberry Pi

with download speeds up to 4 Gbps [34].
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The connected device can control the SIM8200EA-M2 module through AT -commands. An

AT-command (short for attention-command) is used to control a modem [35]. Selecting

frequency band and entering PIN codes can be done by sending the corresponding AT-

commands to the cellular modem on the SIM8200EA-M2 module.

Figure 2.11: Simplified diagram of SIM8200EA-M2 communication flow [34].

The 5G HAT has an LED that indicates the network status of the SIM8200EA-M2 module.

If the LED is off, the 5G HAT is either powered off or in sleep mode. IF the LED is always

on (no blinking), the SIM8200EA-M2 module is searching for a network. The LED will blink

with intervals of different length depending on network registration:

• 100ms on, 100ms off : data is being transmitted on a 5G-registered network.

• 200ms on, 200ms off : data is being transmitted on a 4G-registered network.

• 800ms on, 800ms off : data is being transmitted on a 3G-registered network.

A guide explaining how to assemble the 5G HAT is found in Appendix A.

2.2.3 KMR iiwa

The KMR iiwa, shown in Figure 2.12, is a mobile, autonomous platform consisting of the LBR

iiwa—a collaborative robot arm—and the KMP 200 omniMove vehicle. The main purpose of

the unit is to navigate a factory floor and picking up, transporting, and placing workpieces

and devices. In an effort to adhere to the standards of Industry 4.0, the KMR iiwa is both

location-independent and highly flexible [36].

2.2.3.1 KMP 200 omniMove

The KMP 200 omniMove is the vehicle that houses the drive battery and the controller—

called the Sunrise Cabinet [37]. The number 200 means that the max payload of the platform

is 200 kg.
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Figure 2.12: KMR iiwa [37].

2.2.3.2 LBR iiwa 14 R820

The LBR “intelligent industrial work assistant” is mounted on top of the KMP omniMove.

The robot arm can only move if the vehicle is stationary, and it needs to be in a specific

position for the vehicle to move, referred to in this thesis as the “Drive” position. The

jointed-arm robot has seven controllable axes. The maximum payload for the arm is 14 kg,

and the maximum reach is 820 mm [37].

2.2.3.3 Technical Specifications

The KMR vehicle cabinet is what contains all the technology that is needed for starting,

connecting to, configuring, and operating the KMR iiwa, and this section introduces the

parts most relevant for the goal of achieving automatic configuration of the robot.

The front of the vehicle includes an emergency stop device 1 , two WLAN antennas 2 ,

a laser scanner for detecting movement in front of the robot 4 , a radio receiver antenna

5 for an optional radio control unit (a wireless handheld device), and an interface panel

6 . The WLAN (Wireless LAN) antenna installed on the WLAN access point device that is

located on the controller unit inside the KMR cabinet, and its purpose is to reinforce signal

strength. The antenna radiates signal in the air at a specified frequency—either 2.5 GHz or

5 GHz. The WLAN AP and the antennas are what allow other devices, such as a workspace
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computer, to connect wirelessly to the robot through a Wi-Fi router within a given coverage

area. The coverage area in which the KMR iiwa is reachable as an access point is 25 to 50

meters – depending on the structure of the environment.

Figure 2.13: KMR iiwa front panel [37].

The rear of the vehicle includes an emergency stop device 1 , a control panel with operator

control and indicator elements 2 , an infrared receiver 4 for establishing a connection with

the optional radio control unit, a charging socket 5 , a laser scanner for detecting movement

in front of the robot 7 , the main switch for turning the KMR on and off 8 , and an interface

panel 11 . The interface panel 11 includes the KLI network connection that is used to con-

nect the KMR to a workspace computer, a Wi-Fi router, or a Raspberry Pi. It is through this

connection a Sunrise project is installed or a Sunrise application is synchronized. Information

about how to configure the software on the Sunrise Cabinet is found in section 5.4.

2.2.3.4 Operation

The KMR iiwa has three operating modes, T1, T2, and AUT. T1 and T2 are both test modes,

while AUT is the automatic (autonomous) mode. The different modes can be selected by

using the SmartPAD.

The test modes are equal, with the only exception being that T1 sets the manual max

velocity of the KMR to 250 mm/s. In these modes, the robot is operated manually, either

by “jogging” or executing an application. Jogging means to move the KMR iiwa according

to its own coordinate system [38]. The KMR is fully operational when in test mode, however



CHAPTER 2. BACKGROUND THEORY - CONCEPT AND TECHNOLOGIES 26

Figure 2.14: KMR iiwa rear panel [37].

the enabling switch on the SmartPAD needs to be pressed. The next subsection explains

how to operate the SmartPAD.

In AUT mode the robot can be controlled via KUKA NavigationSolution or by an application.

A program called PositionAndGMSReferencingprogram needs to be launched, in order to

calibrate the sensors of the LBR, before the vehicle can be set in AUT mode [38]. This

program is included as an extra safety measure as it checks whether the stored zero position

corresponds with the mechanical zero position.

2.2.3.5 SmartPAD

The KUKA SmartPAD is a wired hand-held control panel with a touch-sensitive display that

allows the user to operate the KMR iiwa (or other KUKA-robots) manually. It has all of the

display functions and operator controls required in order to operate the KMR iiwa. KUKA

Sunrise.Mobility software is the user interface of the SmartPAD.

The SmartPAD has multiple enabling switches which have three positions, “Not pressed”,

“Center position”, and “Fully pressed”. At least one of the enabling switches must be held

in the center position in operating modes T1 and T2 in order to be able to jog the KMR

iiwa. These switches serve no use in automatic mode.

The SmartPAD interface is found at the rear of the KMR iiwa. If disconnection of the

SmartPAD is configured as allowed, the SmartPAD can be disconnected while the vehicle

controller is running. The application which is active will continue to run while the SmartPAD
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Figure 2.15: KUKA SmartPAD [39].

is disconnected.

2.2.3.6 Workspace computer

A workspace computer is a necessity when working with KMR iiwa entities. This computer

needs to be running Windows 10 with Java JDK and Sunrise Workbench installed. It is

important that the workspace computer is on the same network as the KMR iiwa entities.

This can be achieved by either connecting directly with an ethernet cable or using a wireless

router. When the workspace computer is correctly configured one can create, install and run

Sunrise applications, descriptions for which can be found in subsection 5.4.1, subsection 5.4.2

and subsection 5.4.3.

2.3 Software

2.3.1 ROS 2

ROS, or Robot Operating System, is a set of open-source software libraries and tools for

creating robot applications [40]. The development of ROS 1 was started in 2007 and has

since then been at the forefront of providing software tools for research and development on

all types of robots. ROS 2 is a parallel set of packages that was developed as an improvement

of the original system but with the intention of being able to be installed alongside ROS 1

rather than replacing it. The latest set of ROS 2 packages (distribution), and the one used

in this project, is ROS 2 Foxy Fitzroy [41].
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There is growing industrial support for ROS 2, and because it is built on widely deployed

standards like IDL, DDS and DDSI-RTPS [42] there is little friction when using it in industrial

settings. An example of ROS 2 in the world of Industry 4.0 is the development of 5G-

and ROS 2-based Factories of the Future that was started in 2018 by ADLINK Technology

together with Fair Friend Group [43]. The aim is to combine 5G network technology with

ROS 2 as data-exchange middleware to create a smart robotics industry ecosystem to face

the challenging implementations related to Industry 4.0 and future factories.

The main goal of ROS 2 is to improve user-facing APIs while still maintaining the key

concepts from ROS 1, which include distributed processing, publish/subscribe messaging,

language neutrality, etc. [42]. There are also many important changes from ROS 1 that

makes ROS 2 more compatible with Industry 4.0 in general and this project in particular.

First of all, it targets newer versions of programming languages like C++11 and Python 3.5

and above. Also, as shown in Figure 2.16, all ROS 2 middleware implementations are based

on the widely supported DDS standard, as opposed to ROS 1 which only supports the custom

serialization formats TCPROS and UDPROS for message handling [44]. ROS 2 includes a

DDS abstraction layer that not only optimizes the use of DDS, but also removes the need for

ROS 2 users to be aware of the DDS APIs. In a ROS 1 system, a so-called master process

has to be started before anything else. This process is based on the master-slave protocol

and works as a DNS server that makes it possible for the nodes to communicate with each

other. The implementation of DDS as a middleware in ROS 2 entails the use of a peer-to-peer

protocol instead (see subsection 2.1.10 about DDS).

Figure 2.16: Comparison of ROS 1 and ROS 2 architectures [44].

In ROS 2, a node is an independently executable process that performs some computation
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and is responsible for a single purpose within a system (e.g. one node to control the wheel

motors for an AGV and one node to control the robot arm stationed atop the AGV). Nodes

are connected in a peer-to-peer fashion, and they are made aware of each other’s existence

through the DDS discovery process described in subsection 2.1.10. After discovery, the nodes

communicate with each other via messages, topics, services, and actions. Communication via

topics is based on the publish/subscribe pattern, while communication via services is more

similar to the client-server pattern. Both of these are explained at the end of subsection 2.1.7.

As portrayed in Figure 2.17, a publisher node publishes a message to a topic, while one or

more subscriber nodes can subscribe to the given topic and process the message that is

published. These messages are simple data structures defined by .msg files. With services,

messages are only sent if a client node specifically requests them from a server node [45].

With this model, two nodes in communication would require three services: a client service

at the client node, a server service at the server node, and a service for handling the requests

and responses.

Figure 2.17: Illustration of how communication happens between nodes in a ROS 2 system [46].

The third communication type is called action. Actions are built on top of topics and services,

and they consist of three parts: a goal, a result, and feedback [47]. They use topics for feedback

and goal status, and services for setting goals and requesting results. The action services are

asynchronous, meaning that action clients do not have to wait for results, and they can

cancel goals mid-execution. An action client sends a goal request (e.g. move joint on robot

arm) to an action server, and the server replies with a response saying that it received the

request. The action server then publishes a stream of feedback on a topic that the action

client subscribes to until the goal is complete. After this, the action client requests a result

from the action server and gets a response (e.g. robot arm movement completed/failed).
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2.3.2 Flask

Flask is an extensible “micro web framework” written in Python that provides a solid core

for basic web services as well as support for third-party extensions that offer other desir-

able features. The three main dependencies of Flask include the routing, debugging, and

Web Server Gateway Interface (WSGI) subsystems from Werkzeug, the template support

from Jinja2, and the command-line integration from Click [48] [49] [50]. Flask has no nat-

ive support for high-level tasks such as accessing databases, validating web forms, and user

authentication, and it is up to the developer to select and use the extensions which sat-

isfy their project [51]. The lightweight nature of Flask makes it easy to implement as a

back-end to a web application, and the extensibility provides significant power potential. A

developer can easily make their application asynchronous by replacing the Werkzeug WSGI

subsystem with any supported Asynchronous Server Gateway Interface (ASGI) extension,

and real-time, bidirectional communication can be enabled by simply importing the correct

library and implementing its functions. Flask is also widely supported, and thus there are

many extensions that provide similar functionality, meaning that a developer can carefully

choose the ones that meet their specific needs. Figure 2.18 shows how the Flask environment

supports interchangeable components. The figure shows an example with only some of the

components that are usable with Flask. Netflix, Twilio, and Uber are just a few of the many

popular services that are Flask-powered [52] [53] [54].

Figure 2.18: The Flask web framework supports a variety of different components, and replacing a database
or subsystem can be done without major impact on the underlying structure of the application.
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2.3.3 React

React is a declarative, open-source frontend JavaScript library used for creating user inter-

faces and components. React was released in 2013 and is maintained by Facebook Inc and a

group of individual developers [55]. It is mostly used in the development of single-page web-

sites or mobile applications. Important features in React include the ability for developers to

create reusable UI components and change data without reloading entire pages. This makes

web applications developed with React both scalable and fast. Today, React is being used

on popular websites such as Instagram and Facebook.

2.3.4 WebGear

WebGear is an ASGI Video-Broadcaster API used for transmitting Motion-JPEG-frames

from a single source to multiple recipients via the browser [56]. WebGear is written in

Python and is suitable for projects of the same nature as described in this thesis, as it is

easy to set up and use. A computer running Python with an input stream source and an

output IP address is all that is needed in order to start a video broadcast. Under the hood,

WebGear makes use of an intraframe-only compression scheme where the incoming image

feed is first encoded as JPEG-DIB (JPEG with Device-Independent Bit Compression) and

then streamed over HTTP using an ASGI Server [56]. This method is not the best for top

image quality, but it imposes lower processing and memory requirements, making it suitable

for real-time applications. Figure 2.19 shows a snippet from an active broadcasting session

using WebGear.

Figure 2.19: A snippet from an active broadcast using WebGear [56].
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2.3.5 Hawkeye

Hawkeye is a web-based active monitoring and testing platform used to continuously manage

performance and connectivity across networks and systems. It can monitor and test data

centers, cloud services, and remote sites all from a single source and tool [57]. Several

platforms such as Windows, Linux, iOS, and Android are supported. Hawkeye lets the

system architect deploy endpoints on critical parts of the architecture. These endpoints

can either be dedicated hardware endpoints or software endpoints deployed through certain

applications.

Hawkeye consists of a wide range of pre-calibrated tests such as “Speed test from site to site

with advanced configuration on traffic profiling”, “Bandwidth availability or verification with

TCP-based testing”, “IP network SLA verification (one-way delay, jitter, loss)”, and many

more [58]. These tests can be performed in conjunction with the endpoints mentioned above.

Hawkeye provides a web-based console that can be accessed from many devices given correct

authentication. This console gives the system architect access to the test results and other

useful tools regarding the specific endpoints.

2.3.6 Sunrise.OS

KUKA Sunrise.OS [59] is the system software for KMR iiwa and other industrial robots

that are operated with the robot controller KUKA Sunrise Cabinet. This software system

provides functions for programming, planning, and configuring lightweight robot applications.

Contrary to its name, it is not an actual operating system, but rather a Java application

that is run on top of Windows 7, which is the base operating system for KUKA Sunrise

Cabinets.

2.3.7 KUKA Sunrise Workbench

KUKA Sunrise Workbench is the development environment for KUKA robots [60]. It offers

functionalities for start-up and application development. With regard to start-up, it offers

the following abilities:

• Installing the system software on a KUKA robot

• Configuring the robot cell (station)

• Editing the safety configuration

• Creating the I/O configuration

• Transferring the project to the robot controller

While with regard to application development it offers the following abilities:
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• Programming robot applications in Java

• Managing projects and programs

• Editing and managing runtime data

• Project synchronization

• Remote debugging (fault location and elimination)

2.3.8 KUKA Robotics API

KUKA Robotics API is an object-oriented Java programming interface for controlling KUKA

robots and peripheral devices. It can be imported directly and fully utilized within Sunrise

Workbench. As seen in Figure 2.20 Robotics API is separated into two layers, namely the

Activity Layer and the Command Layer. It uses Robot Control Core to communicate with the

specific hardware components on the robots. Robot Control Core is responsible for real-time

hardware control and is integrated with the Realtime Primitives Interface. This interface is

used for tasks that need to be executed with real-time guarantees, like robot movements [61].

From a developer’s perspective, KUKA Robotics API is essentially a java library consisting

of functional methods used to operate KUKA robots.

Figure 2.20: Overview of KUKA Robotics API [61].





Chapter 3

Architecture

This chapter explains the system architecture that is presented as a solution to the use cases

introduced in section 1.3. The chapter offers a simplified view of the overall system design in

an attempt to show the most important segments, and to give insight into how each of these

plays an important role in realizing a robust and effective system within the realm of Industry

4.0 and IoT. It is therefore intended for those who wish to understand why the system is

designed the way it is and the thought process behind each major design solution. Section 3.1

explains each segment of the system and how they work together, section 3.2 describes how

the architecture compares to the design principles of Industry 4.0, while section 3.3 outlines

how the design solution aims to realize the goals of the project.

3.1 System Design

The industrial factories of the future will most likely consist of industrial facilities with

multiple different robots and a solid 5G infrastructure. In order to support this reality, an

architecture needs to be scalable and flexible with regard to different robots, new methods

of communication, and the number of concurrent users. Figure 3.1 displays a simplified

illustration of a system design that aims to build a foundation for innovative strategies that

help reach these goals. From this specified point of view, the system is separated into the four

distinct segments “Network”, “Industrial Lab”, “Control Room”, and “User Devices”. Each

segment contains important features, and the system design is reliant on all four of them

to fully operate. In order to maintain scalability and flexibility, each segment is operational

independently.

35
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Figure 3.1: Proposed system design with the four distinct segments “Network”, “Industrial Lab”, “Control
Room”, and “User Devices”.

3.1.1 Network

The network segment is visualized by a Network cloud encompassing a smaller 5G cloud.

This represents the fact that, while 5G is an important part of the system, not every part

of the system is integrated with 5G-capability—most of it is reliant on Wi-Fi and Ethernet

connections. The reasoning behind this separation is explained in more detail in chapter 4.

The network segment is vital because it serves as the connection between the other segments.

Every segment can, as previously mentioned, operate on its own, but in order to fulfill the

requirements set by the use cases, they need to communicate with each other.

The limitations surrounding the public 5G cellular network, outlined in section 1.5, make

this the most challenging segment to solve with regard to implementation. This is because

a public 5G network is quite restricted in terms of access, and there is little chance of

integrating a system with the core functionality of the network within a reasonable amount

of time. Chapter 4 describes a solution with workarounds that tackle this limitation. An

example of a workaround is not using 5G on server components, since hosting web servers on

a public 5G network is deemed nearly impossible.
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3.1.2 Industrial Lab

The “Industrial Lab” segment is visualized by a facility consisting of n robots, or, as they

are referred to throughout this thesis, entities. Communication solutions are developed and

implemented to ensure seamless, real-time, and secure connectivity between the entities.

This segment is a vital part of Use Case 1.5 and 1.3, as it is where the development made in

relation to these use cases will be most apparent. Each entity is connected to 5G and will

communicate wirelessly with the components in the “Control Room”.

As seen in the illustration of the architecture, no human workers are located in the “Indus-

trial Lab”. This segment should be completely autonomous. This design choice is made to

emphasize the importance of Use Case 1.3. Human workers should only enter the “Indus-

trial Lab” for edge cases such as maintenance, fault repair, and initial configuration of new

entities.

3.1.3 Control Room

The “Control Room” segment is visualized by a human worker, a workstation computer, and

a server rack. It is at this location that technicians and “on-site operators” are located. They

will remotely monitor the “Industrial Lab” and oversee the work performed by the entities.

Databases and other configurations are stored at this location, as opposed to the cloud, for

security and latency reasons. The “Control Room” can either be close to or far away from

the “Industrial Lab”, and each “Control Room” can operate several “Industrial Labs”.

3.1.4 User Devices

The “User Devices” segment is visualized by a smartphone, a laptop, and a desktop monitor.

These visualizations represent the remote, “off-site” control features and the multi-platform

support that the implementation of the architecture offers. The possibility to remote-control

a factory would be a part of daily operations and give factory operators enhanced flexibility

and improved efficiency. In order for this solution to be viable, a robust security system

must be in place. As a security measure, the operators working off-site do not have the same

capabilities as the operators in the “Control Room” but instead have specified and targeted

functions that suit their tasks.

3.2 Design Principles of Industry 4.0

The design principles of Industry 4.0 aim to ensure that all machines, work pieces, and

systems are computerized and that the manufacturing processes are connected through in-

telligent networks in which they can control each other autonomously. In order for the
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architecture to properly comply with Industry 4.0-standardization, it needs to satisfy the

following basic principles: interoperability, information transparency, technical assistance,

and decentralized decision making.

3.2.1 Interoperability

Interoperability is the ability for machines and humans to connect and interact through the

Internet of Things (IoT), which can be said to be the essence of the entire architecture

presented in this chapter. With a system implemented based on this architecture, a human

can easily interact with a complex robot over the internet and 5G without having to worry

about any robot-specific hardware. Multiple entities from different manufactures can be

introduced without making any large changes to the system.

3.2.2 Information Transparency

Information transparency is the ability of an information system to use sensor data to create

a virtual copy of the physical world. This is fully realizable given an industrial facility

with enough entities and sensors, and it would significantly expand the potential of the

architecture’s functionality. A complete virtual copy of the “Industrial Lab” would mark a

significant step towards completing Use Case 1.3. Althought this is an interesting concept

to pursue, such features are not within the scope of this thesis.

3.2.3 Technical Assistance

This principle addresses the ability of a cyber-physical system to support humans by con-

ducting tasks that might be unpleasant, too exhausting, or unsafe. Technical assistance is

one of the primary purposes of the architecture, as it is supposed to provide easy access to

robots and their functionality. The architecture can be considered to satisfy this principle,

as it aims to assist operators by providing the ability to control robots safely from a remote

location using real-time technology.

3.2.4 Decentralized Decisions

Decentralized decisions refer to an industrial robot’s ability to independently make decisions

and perform tasks as autonomous as possible. Artificial intelligence and machine learning are

methodologies that would satisfy these requirements. Implementing artificial intelligence and

machine learning concepts are outside the scope of this thesis. However, since the architecture

is designed using generalized principles, there is no reason why future implementations cannot

incorporate such solutions.
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3.3 Realization of Use Cases

The use cases studied in this thesis are listed below.

• UC 1.5 - Rapid deployment, auto/re-configuration and testing of new robots.

• UC 1.3 - Remotely controlling digital factories.

Creating an architecture that supports the realization of these is a primary focus in this

thesis. The architecture outlined in this chapter focuses on separating the different tasks

into suitable segments. Choosing to segment the architecture is done because low coupling

between components often means increased cohesion throughout the system, and because

it is a suitable approach to UC 1.5. Rapid deployment, auto/re-configuration, and testing

of new robots would be significantly more difficult to achieve with a highly coupled design.

Segmentation allows for high scalability, and further development in each individual segment

can be done without jeopardizing the integrity of the system as a whole.

Being able to remotely control digital factories yields many advantages. Hours otherwise

spent on manual labor can be used elsewhere, dangerous activities can be performed by

replaceable robots, and travel costs for workers can be saved. Remote control of a factory can

become a part of daily operations and give factory workers enhanced flexibility and improved

efficiency. “User Devices” is designed as its own segment to emphasize the possibilities of

remote control. The “User Devices” segment does not have a direct connection with the

“Industrial Lab” because of safety concerns. Instead, chosen functions are exposed by the

“Control Room” to the devices with the use of an interface.





Chapter 4

Implementation

This chapter describes the implementation and technical details of the system architecture.

It serves as a detailed guide to how each part of the system is implemented and works in

conjunction with the rest. The chapter is intended for those who wish to recreate parts of

the system or the system in its entirety and those who wish to know how or why each specific

implementation is done. The chapter includes various snippets of code that serve as additional

resources for describing the inner workings of the system. In an attempt to not overwhelm

the reader with exceedingly long code listings, parts of the code are omitted. These parts

are indicated in the listings as “...”. The remaining parts of the code are those deemed most

important for understanding the basic idea behind each implementation. Section 4.1 provides

a brief overview of how the implementation corresponds with the architecture described in the

previous chapter. Section 4.2 outlines the implementation of the “Industrial Lab” segment.

This section explains the robot application on the KMR iiwa, the ROS 2 program on the

Raspberry Pi that is mounted on top of the KMR iiwa, and the ROS 2 program on the

Raspberry Pi that connects the entity to the “Control Room”. Section 4.3 describes the

implementation of the “Control Room”. This section details the various components of the

AAS and the implementation of the AAS Video Streaming service. Lastly, an outline of the

most important data flow is provided in section 4.4.
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4.1 Implemented architecture

Figure 4.1 shows a detailed illustration of how the architecture is realized with a component-

based system. The use of several Raspberry Pis allows for flexibility and adaptability, and

the software and networking solutions make it so that the components can communicate

in real-time. Like the architecture, the system is separated into the four distinct segments

“Network”, “Industrial Lab”, “Control Room”, and “User Devices”. This implementation

satisfies the requirements specified in chapter 3 and is a proposed solution to the problem

outlined in chapter 1.

Figure 4.1: Implemented architecture with connections and significant software.

4.2 Industrial Lab

A KMR iiwa AGV, provided by KUKA, is located at NTNU Gløshaugen’s Industry 4.0

laboratory and is therefore used in this project. The aim is, by exploring the possibilities with

this robot, to establish a broader understanding of the capabilities that can be developed and

implemented at other factories with other kinds of robots. The KMR iiwa robot is connected

with Ethernet to a Raspberry Pi, which has a 5G HAT and Raspberry Pi Camera Module

V2, hereby referred to as the “Entity Raspberry Pi”. The Entity Raspberry Pi communicates

with ROS 2 over 5G with the other Raspberry Pi, named “Middleware Raspberry Pi”, which
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is located at the rightmost point of the Industrial Lab seen in Figure 4.2.

Figure 4.2: Separated look at the “Industrial Lab”.

4.2.1 KMR iiwa Implementation

In order to communicate with the KMR iiwa entities, a Sunrise application responsible for

handling communication and execution of robot-specific commands needs to be implemented.

To fully understand this section it is suggested to read the description of Sunrise.OS, Sunrise

Workbench, and KUKA Robotics API which are found in subsection 2.3.6, subsection 2.3.7,

and subsection 2.3.8 respectively. The implementation described here is influenced by the

code written by two previous students at NTNU, Heggem & Wahl, who also worked with the

KMR iiwa [62].

Sunrise applications are written in Java with the help of Sunrise Workbench. To realize

the ideas behind the architecture, a baseline for the application needs to be developed. This

baseline includes a TCP Socket communication endpoint, commander nodes representing the

different components of the KMR iiwa, and a main Sunrise application class.

4.2.1.1 TCP Socket in Java

In order to expose the KMR iiwa to the other components of the architecture, a socket

endpoint needs to be implemented. The ISocket-interface shown in Listing 4.1 and developed
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by Heggem & Wahl is utilized for this purpose.

Listing 4.1: ISocket developed by Heggem & Wahl [62].

public interface ISocket {
public void c l o s e ( ) ;

public void send message ( S t r ing msg) ;

public St r ing r e c e i v e mes sage ( ) ;

public byte [ ] encode ( S t r ing s t r i n g ) ;

public boolean i sConnected ( ) ;

}

To make use of an interface in Java, another class needs to implement it. The TcpSocket

class imports the standard java.net package Socket and implements the ISocket-interface,

which contains the most important methods for a socket. Both the KMP omniMove and the

LBR iiwa need to run with instances of the TcpSocket class, as this is the client socket that

connects to a TCP server socket on the attached Entity Raspberry Pi. This is what allows

the Entity Raspberry Pi to sent individual commands to the two components. Details about

this TCP server is found in subsubsection 4.2.2.1.

Listing 4.2: Snippets from the TcpSocket.java class which implements ISocket.

import java . net . Socket ;

. . .

public class TcpSocket implements ISocket {
. . .

public TcpSocket ( S t r ing remote ip , int port , S t r ing node name ) {
. . .

}
public Socket connect ( ) {

while ( true ) {
try{

St r ing remotePC = this . r emote ip ;

TCPConn = new Socket ( remotePC , COMport) ;

TCPConn . setReuseAddress ( true ) ;

System . out . p r i n t l n ( this . nodename + ” connect ing to

ROS over TCP on port : ”+ COMport) ;

break ;

}
. . .

}
. . .

}
. . .

}
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4.2.1.2 Commander Nodes

In order to control the movement of the LBR iiwa and the KMP omniMove, accompanying

Java classes in Sunrise Workbench need to be implemented. These include the abstract Node

class with general node-functionality, and the two Node sub-classes KmpCommander and

LbrCommander. Listing 4.3 displays a code snippet of the KmpCommander. The LbrCom-

mander is similar, but with LBR-related variables and methods. Heggem & Wahl’s abstract

Node class is implemented and modified to conform to the TcpSocket class outlined in the

previous subsection [62]. The modifications are minor and mostly pertain to the specification

of the IP address and removal of irrelevant code with regard to the scope of this project.

KmpCommander and LbrCommander are classes that extend, and thereby are sub-classes

of, the abstract Node class. It is from this sub-classing that they get the ability to open

a TCP connection. These classes act as entry points for the node-specific commands sent

over TCP. It is with these classes that KMP- and LBR-related commands are executed using

KUKA roboticsAPI.

Listing 4.3: Snippets from the KmpCommander.java class which extends Node.

import com . kuka . j ogg ing . prov ide r . ap i . common . ICartes ianJogg ingSupport ;

. . .

import com . kuka . robot icsAPI

. . .

public class KmpCommander extends Node {
KmpOmniMove kmp;

public KmpCommander( S t r ing remote ip , int port , KmpOmniMove robot , S t r ing

ConnectionType ) {
super ( remote ip , port , ConnectionType , ”KMP commander” ) ;

this . kmp = robot ;

this . kmp jogger = new KmpJogger ( ( ICartes ianJogg ingSupport )kmp,

j o g g i n g p e r i o d ) ;

i f ( ! ( i sSocketConnected ( ) ) ) {
Thread monitorKMPCommandConnections = new

MonitorKMPCommandConnectionsThread ( ) ;

monitorKMPCommandConnections . s t a r t ( ) ;

} else {
setisKMPConnected ( true ) ;

}
}
. . .

public void run ( ) {
. . .

while ( isNodeRunning ( ) ) {
St r ing Commandstr = this . s ocke t . r e c e i v e mes sage ( ) ;

S t r ing [ ] s p l t = Commandstr . s p l i t ( ” ” ) ;

i f ( ! getShutdown ( ) && ! c l o s e d ) {
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i f ( ( s p l t [ 0 ] ) . equa l s ( ”shutdown” ) ) {
System . out . p r i n t l n ( ”KMP r e c e i v e d shutdown” ) ;

setShutdown ( true ) ;

break ;

}
i f ( ( s p l t [ 0 ] ) . equa l s ( ” setTwist ” ) && getEmergencyStop ( ) ) {

setNewVeloc ity (Commandstr ) ;

System . out . p r i n t l n (Commandstr ) ;

}
}
}
System . out . p r i n t l n ( ”KmpCommander no longe r running ” ) ;

}
. . .

}

4.2.1.3 Main Sunrise Application

Section 5.4 describes the mandatory steps surrounding the creation, installation, and execu-

tion of a Sunrise application. This application needs an entry point, which is the main Java

class that Sunrise.OS compiles and gives the ability to run on the KMR iiwa. The KmrApp

class, which is shown in Listing 4.4, serves as the entry point for the Sunrise application

used in this project. The class extends RoboticsAPIApplication, which is imported from the

KUKA roboticsAPI, and this is what makes the Sunrise environment recognize it as an entry

point. The purpose of the entry point is first to initialize the two command nodes, both of

which then connect to a TCP server, and then run them in the application’s main loop.

Listing 4.4: Snippets from the KmpApp.java class which extends RoboticsAPIApplication.

public class KmrApp extends RoboticsAPIAppl icat ion {
. . .

// Se t t i n g s p e c i f i c v a r i a b l e s such as IP ' s , ports , connection−type , e t c

// I n i t i a l i z i n g commanders

. . .

public void i n i t i a l i z e ( ) {
//Conf igure a p p l i c a t i o n

. . .

//Conf igure robo t

. . .

//Create nodes f o r communication wi th corresponding TCP parameters

kmp commander = new KmpCommander ( . . . ) ;

lbr commander = new Lbrcommander ( . . . ) ;

//Check i f the commander nodes i s a c t i v e

. . .

}
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public void run ( ) {
setAutomatical lyResumable ( true ) ;

. . .

i f ( ! ( kmp commander == null ) ) {
i f ( kmp commander . i sSocketConnected ( ) ) {

kmp commander . s t a r t ( ) ;

}
}
i f ( ! ( lbr commander == null ) ) {

i f ( lbr commander . i sSocketConnected ( ) ) {
lbr commander . s t a r t ( ) ;

}
}
while ( AppRunning ) {

AppRunning = ( ! ( kmp commander . getShutdown ( ) | | lbr commander .

getShutdown ( ) ) ) ;

}
System . out . p r i n t l n ( ”Shutdown message r e c e i v e d in main a p p l i c a t i o n ” ) ;

shutdown appl i cat ion ( ) ;

}
. . .

public stat ic void main ( St r ing [ ] a rgs ) {
KmrApp app = new KmrApp( ) ;

app . runAppl i cat ion ( ) ;

}
}

4.2.2 Entity Raspberry Pi

The Raspberry Pi that is mounted on and connected to an Industrial Robot, as illustrated

in Figure 4.2, works as an abstraction of the entity. This abstraction is realized through a

ROS 2 program that runs multiple ROS nodes that act as the different components of the

entity. The nodes connect to the entity components using TCP, and through this connection,

they can send commands that have been received from the Middleware node described in

subsubsection 4.2.3.1. In the context of the experiments presented in this thesis, the entity

is the KMR iiwa, and the components are the KMP omniMove, the LBR iiwa, and the

Raspberry Pi camera. Due to having only the KMR iiwa available, the implementation

presented in this section provides full support only for the use of the KMR iiwa as an entity.

The Entity Raspberry Pi has an attached 5G HAT and is connected to the internet with

5G.
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4.2.2.1 TCP Socket in Python

In order to connect a TCP client on an entity to a ROS node on the Entity Raspberry Pi,

a TCP server needs to be hosted on the ROS node. This server socket is implemented in

Python, and it is run as a part of the ROS 2 project explained in subsubsection 4.2.2.2. A code

snippet in Listing 4.5 shows the essential part of the implementation. Each component on

an entity can connect to a corresponding instance of TCPSocket. When a node is executed,

the socket waits for a connection from a component on the entity. After a connection is

established, the socket is ready to send commands for the entity to execute and receive

shutdown messages from the entity if anything happens during runtime. If a shutdown

message is sent from a component, such as the KMP omniMove, the server socket will stop the

execution of its corresponding ROS node and close the socket connection with the client on the

KMR iiwa. After the ROS node execution has been thwarted, the node will reinitialize, and

its server socket will again wait for a connection from the KMP omniMove. Explanations for

the technical terminology used with regards to ROS 2 are omitted in this section for the sake

of avoiding redundancy, and they are described in more detail in subsubsection 4.2.2.2.

Listing 4.5: Snippet of code from tcpSocket.py.

. . .

class TCPSocket :

def i n i t ( s e l f , ip , port , node ) :

. . .

s e l f . node , s e l f . ip , s e l f . port , s e l f . i s connec t ed = node , ip , port , Fa l se

thread ing . Thread ( t a r g e t=s e l f . c o n n e c t t o s o c k e t ) . s t a r t ( )

def c o n n e c t t o s o c k e t ( s e l f ) :

. . .

try :

s e l f . conn = socket . socke t ( socke t . AF INET , socket .SOCK STREAM)

s e r v e r a d d r e s s= ( s e l f . ip , s e l f . port )

s e l f . conn . s e t sockopt ( socke t .SOL SOCKET, socket .SO REUSEADDR, 1 )

s e l f . conn . bind ( s e r v e r a d d r e s s )

. . .

s e l f . conn . l i s t e n (3 )

while (not s e l f . i s connec t ed ) :

try :

s e l f . c l i e n t s o c k e t , c l i e n t a d d r e s s = s e l f . conn . accept ( )

s e l f . conn . se t t imeout ( 0 . 0 1 )

s e l f . i s connec t ed = True

. . .

. . .

while s e l f . i s connec t ed :

try :

# Wait f o r r e c e i v ed message from a c l i e n t on KMR iiwa
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data = s e l f . recvmsg ( )

. . .

s e l f . c l i e n t s o c k e t . c l o s e ( )

s e l f . shutdown ( )

def shutdown ( s e l f ) :

s e l f . node . p u b l i s h s t a t u s (0 ) # 0 = o f f l i n e

s e l f . conn . c l o s e ( )

s e l f . i s connec t ed = False

s e l f . node . tear down ( ) #Stop node execu t i on and r e i n i t i a l i z e

def send ( s e l f , cmd) : # Send commands to the e n t i t y

s e l f . c l i e n t s o c k e t . s e n d a l l ( ( cmd + ' \ r \n ' ) . encode ( ” utf −8” ) )

def recvmsg ( s e l f ) : # Receive messages from the e n t i t y

msg = s e l f . c l i e n t s o c k e t . recv (1024) . decode ( ” utf −8” )

i f msg == ”shutdown” :

s e l f . c l i e n t s o c k e t . shutdown ( socket .SHUT RDWR)

s e l f . i s connec t ed = False

return msg

4.2.2.2 ROS 2 - Command Nodes

As stated in subsection 2.3.1, a node in ROS 2 is an executable process with a single purpose.

In Python (and C++), these nodes are represented by single files that are made executable

in a ROS project environment, called a workspace. The easiest way to implement a node is

by utilizing the ROS Client Library rclpy [63], which provides a Python API for interacting

with ROS 2. This API includes the Node class from which a Python class can inherit

the appropriate ROS 2 properties. Listing 4.6 provides a snippet of code with explanatory

comments showing the ROS node that works as an abstraction of the LBR iiwa robot arm. It

is implemented as a PubSub-node (publisher/subscriber), as it both subscribes to messages

sent from the Middleware Raspberry Pi and publishes status updates for the LBR iiwa to the

Middleware Raspberry Pi. Suppose there are multiple KMR iiwas connected to the system

simultaneously. In that case, the Middleware Raspberry Pi needs a way to differentiate a

component on one entity from a similar component on another. This is done by having a

unique ID for each node instance, represented by the self.id field. The node communicates

over four ROS topics:

• “manipulator vel (ID)”. Subscribers to this topic receive command messages for a

specific LBR iiwa component.

• “lbr shutdown (ID)”. Subscribers to this topic receive messages when a specific LBR

iiwa should be shut down and the TCP connection closed.
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• “status check”. Subscribers to this topic receive messages when the Middleware Rasp-

berry Pi asks for information about whether or not the component node is running.

• “lbr status”. A topic for publishing the status of a specific LBR iiwa component.

Listing 4.6: Snippet of code from lbr command node.py.

from r c lpy . node import Node

from tcpSocket import TCPSocket

. . .

class LbrCommandNode(Node ) :

def i n i t ( s e l f , connect ion type , . . . ) :

#Assign a name to the Node , making i t i d e n t i f i a b l e w i th in the ROS environment

super ( ) . i n i t ( ' lbr command node ' )

s e l f . name , s e l f . robot , s e l f . s tatus , s e l f . id , port = . . .

i f connec t i on type == 'TCP ' :

#Create an ins tance o f a TCP se r v e r so ck e t and attempt to e s t a b l i s h a

connect ion wi th the LBR i iwa

s e l f . s ocke t = TCPSocket ( ip , port , s e l f . name , s e l f )

. . .

# Make a l i s t e n e r f o r r e l e v an t t o p i c s

sub man ipu la to r ve l = s e l f . c r e a t e s u b s c r i p t i o n ( Str ing , ' man ipu la to r ve l ' +

str ( s e l f . id ) , s e l f . man ipu l a to r ve l c a l l ba ck , 10)

sub shutdown = s e l f . c r e a t e s u b s c r i p t i o n ( Str ing , ' lbr shutdown ' + str ( s e l f . id

) , s e l f . shutdown cal lback , 10)

sub s ta tu s che ck = s e l f . c r e a t e s u b s c r i p t i o n ( Str ing , ' s t a tu s ch e ck ' , s e l f .

s t a t u s c a l l b a c k , 10)

# Pub l i s h e r s

s e l f . l b r s t a t u s p u b l i s h e r = s e l f . c r e a t e p u b l i s h e r ( Str ing , ' l b r s t a t u s ' , 10)

. . .

. . .

def main ( . . . ) :

. . .

while True :

r c lpy . i n i t ( . . . ) #I n i t i a l i z e ROS communications

lbr command node = LbrCommandNode ( . . . ) #Declare ROS node

r c lpy . sp in ( lbr command node ) #Process work t ha t wa i t s to be executed , i . e .

s t a r t node and wai t f o r c a l l b a c k s

#This w i l l be c a l l e d when the e x e cu t a b l e i s run

i f name == ' main ' :

main ( )

. . .
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When a message is received on a topic, a callback function is called. For instance, the “ma-

nipulator vel (ID)” topic has an associated callback function manipulator_vel_callback(),

which is shown in Listing 4.7. This function sends the message data to the TCP client on the

entity that represents the LBR iiwa. The code snippet also shows the other functions related

to the LbrCommandNode class, including publish_status() and tear_down(). When the

TCP connection to the LBR iiwa client is either opened or closed, the publish_status()

function publishes a status update on the aforementioned “lbr status” topic. Here, the ID of

the node is reflected in the message rather than the topic name. The tear_down() function

represents an important aspect regarding the nodes running on the Entity Raspberry Pi,

which is the ability to be torn down and reinitialized during runtime. The previous section

briefly mentions how a TCP server socket instance can stop its corresponding ROS node

execution. This is done by calling the tear_down() function. When a node is torn down,

the running—or “spinning”—of the node stops, and the node is initialized again with a new

subscription to the relevant topics and a new TCP server socket. This process is important

because it makes it so that the node does not need to be executed manually after the con-

nection with a TCP client socket is closed due to the KMR iiwa being shut down or going

offline.

Listing 4.7: Snippet of code from lbr command node.py showing the various function definitions.

. . .

class LbrCommandNode(Node ) :

. . .

def shutdown cal lback ( s e l f , data ) :

s e l f . soc . send ( ”shutdown” )

s e l f . soc . c l o s e ( )

def m a n i p u l a t o r v e l c a l l b a c k ( s e l f , data ) :

msg = ' setLBRmotion ' + data . data

s e l f . soc . send (msg)

def s t a t u s c a l l b a c k ( s e l f , data ) :

print ( data . data )

s e l f . p u b l i s h s t a t u s ( s e l f . s t a t u s )

def p u b l i s h s t a t u s ( s e l f , s t a t u s ) :

”””

' s t a t u s ' i s e i t h e r 0 ( o f f l i n e ) or 1 ( on l ine ) .

”””

msg = Str ing ( )

msg . data = s e l f . id + ” : ” + s e l f . robot + ” : l b r : ” + str ( s t a t u s )

s e l f . l b r s t a t u s p u b l i s h e r . pub l i sh (msg)

s e l f . s e t s t a t u s ( s t a t u s )

def s e t s t a t u s ( s e l f , s t a t u s ) :
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s e l f . s t a t u s = s t a t u s

def tear down ( s e l f ) :

try :

s e l f . des t roy node ( )

r c lpy . shutdown ( )

print ( c l g r e e n ( ” S u c c e s s f u l l y to r e down l b r node” ) )

except :

print ( c l r e d ( ' Error : ' ) + ” rc lpy shutdown f a i l e d ” )

. . .

A similar class to that of LbrCommandNode is implemented for communicating with the KMP

omniMove component, but the code for this is omitted for the sake of avoiding redundancy.

The topic names and callback functions differ slightly to comply with the nature of the

KMP omniMove component, but the overall functionality is the same. How the messages

subscribed to by the ROS nodes on the Entity Raspberry Pi are published is shown and

explained in subsubsection 4.2.3.1.

4.2.2.3 ROS 2 - Camera Node

In order to present a video stream from an entity to an operator of the AAS, the camera

mounted on the Entity Raspberry Pi needs a way to communicate with the outside world.

This is done with a ROS node represented by the file camera_node.py shown in Listing 4.8.

This ROS node makes it so that the video that is captured by the camera module is pub-

lished and that the AAS is notified by the stream’s existence. Like the two command nodes

described in the previous section, the camera node includes an ID field for distinguishing a

camera on one entity from the camera on another. It is also implemented as a PubSub-node,

and it communicates with the Middleware Raspberry Pi using the following ROS topics:

• “handle camera (ID)”. Messages published on this topic tell the specific node to

either start or stop the video stream.

• “status check”. Subscribers to this topic receive messages when the Middleware Rasp-

berry Pi asks for information about whether or not the component node is running.

• “camera status”. A topic for publishing the status of a specific camera component.

Like the two command nodes, the camera node can publish its status so that the Middle-

ware Raspberry Pi can track which components are online and offline. Whenever a message

containing a “start”-command is published on the “handle camera (ID)” topic, the node

publishes its own status as online and starts a subprocess. A subprocess is a module in Py-

thon that runs a new program through Python code by spawning an additional thread. For

the camera node, this new thread is used to start a video stream by running the bash script
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startcamera.sh. When a message containing a “stop”-command is published, the node

publishes its own status as offline, the subprocess is terminated, and the video capturing

stops. The main() function, that handles initialization of ROS communication, declaration

of the camera ROS node, and the node spinning, is omitted from the code snippet, as it is

similar in nature to what is shown for the LbrCommandNode in Listing 4.6.

Listing 4.8: Snippet of code from camera node.py.

import r c lpy

from r c lpy . node import Node

import subproces s

. . .

class CameraNode (Node ) :

def i n i t ( s e l f , robot ) :

super ( ) . i n i t ( ' camera node ' )

s e l f . name , s e l f . robot , s e l f . s tatus , s e l f . ip , s e l f . proc = . . .

# Subs c r i b e r s

sub camera = s e l f . c r e a t e s u b s c r i p t i o n ( Str ing , ' handle camera ' + str ( s e l f . id )

, s e l f . handle camera , 10)

sub s ta tu s che ck = s e l f . c r e a t e s u b s c r i p t i o n ( Str ing , ' s t a tu s ch e ck ' , s e l f .

s t a t u s c a l l b a c k , 10)

# Pub l i s h e r s

s e l f . c am e r a s t a tu s p u b l i s h e r = s e l f . c r e a t e p u b l i s h e r ( Str ing , ' camera status ' ,

10)

. . .

def s t a t u s c a l l b a c k ( s e l f , data ) :

s e l f . p u b l i s h s t a t u s ( )

def handle camera ( s e l f , data ) :

i f data . data . lower ( ) == ” s t a r t ” and s e l f . s t a t u s == 0 :

print ( c l g r e e n ( ” S ta r t i ng camera” ) )

s e l f . proc = subproces s . Popen ( [ ”/ bin /bash” , ”kmr communication/

kmr communication/ s c r i p t / startcamera . sh” , s e l f . ip ] )

s e l f . s t a t u s = 1

e l i f data . data . lower ( ) == ” stop ” :

try :

s e l f . s t a t u s = 0

s e l f . proc . terminate ( )

s e l f . proc = None

print ( c l g r e e n ( ” Stopping camera” ) )

except Attr ibuteError :

print ( c l r e d ( ”Camera was never s tar ted , t h e r e f o r e never stopped ” ) )

s e l f . p u b l i s h s t a t u s ( )
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def p u b l i s h s t a t u s ( s e l f ) :

msg = Str ing ( )

msg . data = s e l f . id + ” : ” + s e l f . robot + ” : camera : ” + str ( s e l f . s t a t u s ) + ” : ” +

str ( s e l f . ip ) #ip = ip : por t

s e l f . c am e r a s t a tu s p u b l i s h e r . pub l i sh (msg)

. . .

Listing 4.9 shows the script that starts the video capturing on the camera module. When

a camera node starts a subprocess for capturing video, the UDP URL associated with the

node is passed to the subprocess. This URL is the IP address of the Raspberry Pi that is

hosting the AAS Video Stream (see Figure 4.1) and an available port. Adding this URL as a

parameter to the video capturing tool makes it so that the video is streamed to the “Control

Room” using the UPD transport protocol. The video stream is the only part of the Entity

Raspberry Pi that does not go through the Middleware Raspberry Pi before reaching the

AAS.

Listing 4.9: startcamera.sh uses the Raspberry Pi camera module’s command line tool to capture video and

stream it over UDP.

#!/ usr / b in /env bash

udp ip=$1

while t rue ; do s l e e p 2 ; r a s p i v i d −a 12 −t 0 −b 8000000 −f p s 24 −w 640 −h 480 −o udp

:// $udp ip −n ; done

4.2.2.4 ROS 2 - Building

A Python file with a node implementation is not of any use by itself. In order for the file

to be regarded as an executable, it first has to be organized in a ROS 2 container called a

package. This package then has to be built within the ROS 2 workspace for the executable to

be run. ROS 2 workspaces and packages are created using the ROS 2 toolset [41], and ROS

Index recommends using the build system ament [64] when creating packages [65]. There are

no limits to how many packages can be created within a given ROS 2 workspace, and these

can be built using the Colcon build tool [66]. This is a command-line tool, also recommended

by ROS Index, for automating the process of setting up the ROS 2 environment for building,

testing, and using several packages at once. For Colcon to know what to do with the different

files in a package, a set of required files will be included in the package after the initial creation.

One of these files is package.xml, which contains meta-information about the package. The

others are dependent on what build type is used, which is usually Python (ament python)

or CMake (ament cmake)—both of which have been tested in relation to this thesis. When

using Python as build type, the required files are setup.py, which contains instructions for

how to install the package, and setup.cfg, which tells ROS 2 how to find the executables
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within the package. Listing 4.10 is a code snippet showing how the setup.py file establishes

rules for how to install the relevant files. The equivalent with CMake is CMakeLists.txt, and

the code snippet in Listing 4.11 shows the parts of this file that have the same functions as

the parts shown for setup.py. Much has been left out of the code snippets that are important

for the building of a ROS 2 package but irrelevant for the scope of this chapter.

Listing 4.10: Snippet of code from setup.py.

from s e t u p t o o l s import setup

package name = ' kmr communication '
setup (

. . .

d a t a f i l e s =[

#Define b u i l d i n s t r u c t i o n s f o r launch s c r i p t and con f i g u r a t i on f i l e s

] ,

#Te l l ROS 2 which f i l e s to be inc luded as modules

s c r i p t s =[package name + ' / s c r i p t / tcpSocket . py ' ]

. . .

#Define e x e c u t a b l e s

e n t r y p o i n t s={
' c o n s o l e s c r i p t s ' : [

' l b r=kmr communication . nodes . lbr command node : main ' ,

'kmp=kmr communication . nodes . kmp command node : main ' ,

' camera=kmr communication . nodes . camera node : main ' ,

] ,

} ,

)

Listing 4.11: Snippet of code from CMakeLists.txt.

. . .

p r o j e c t ( kmr communication )

. . .

#I n s t a l l i n g the python modules f o r the package

ament python ins ta l l package ( s c r i p t /)

ament python ins ta l l package ( nodes /)

. . .

# I n s t a l l python s c r i p t s

i n s t a l l (

DIRECTORY launch c o n f i g s c r i p t

DESTINATION share /${PROJECT NAME}
)

i n s t a l l (

PROGRAMS

nodes /kmp command node . py

nodes / lbr command node . py

nodes / camera node . py
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s c r i p t / tcpSocket . py

DESTINATION l i b /${PROJECT NAME}
)

4.2.2.5 ROS 2 - Launching Multiple Nodes

The previous segment describes the necessities surrounding the creation and execution of a

single ROS node. The AAS presented in this thesis is but a small representation of what a full-

fledged system for remote operation of industrial robots can look like; however, it is complex

enough that running each ROS node individually would be considered malpractice. In order

to avoid this, ROS 2 has a launch system that allows multiple executables to be run simul-

taneously from one single launch script. The launch configurations are specified in a Python

file that includes what nodes to run, where to run them, and what arguments and parameters

to pass [67]. Listing 4.12 shows a snippet of the launch script that runs the nodes required

for communication between the AAS and the KMR iiwa. The nodes run in this script are

the “lbr command node” for operating the LBR iiwa robot arm, the “kmp command node”

for operating the KMP omniMove, and the “camera node” for streaming video. There is also

a set of parameters that need to be sent to the nodes regarding connection-specific details,

namely what IP address the KMR iiwa can connect to, a port for each component, and a

UDP URL to which the camera node can stream video. The parameters are defined in a

separate YAML file, shown in Listing 4.13, and imported to the launch script. This ensures

both higher cohesion and looser coupling, making it easier to expand with more robots and

components in the future.

Listing 4.12: Snippet of code from kmr.launch.py showing ROS 2 launch configurations for the Entity Rasp-

berry Pi.

from launch import LaunchDescr ipt ion

from launch . a c t i o n s import DeclareLaunchArgument

from launch . s u b s t i t u t i o n s import LaunchConf iguration

from l aunch ro s . a c t i o n s import Node

def g e n e r a t e l a u n c h d e s c r i p t i o n ( argv=sys . argv [ 1 : ] ) :

pkg name = ' kmr communication '
connection type TCP= 'TCP '
robot=”KMR”

param dir = LaunchConf igurat ion (

' param dir ' ,

d e f a u l t=os . path . j o i n (

g e t p a c k a g e s h a r e d i r e c t o r y ( pkg name ) ,

' c o n f i g ' ,

' bringup . yaml ' ) )
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return LaunchDescr ipt ion ( [

DeclareLaunchArgument (

' param dir ' ,

d e f a u l t v a l u e=param dir ,

d e s c r i p t i o n= ' Ful l path to parameter f i l e to load '
) ,

Node (

package=pkg name ,

executab l e=” lbr command node . py” ,

name=” lbr command node” ,

. . .

arguments=[ '−c ' , connection type TCP , '−ro ' , robot ] ,

parameters =[ param dir ]

) ,

#Not shown are the nodes f o r the KMP commands and camera .

. . .

Listing 4.13: Snippet of code from bringup.yaml showing the parameters sent to each of the nodes.

connect ion params :

ro s pa ramete r s :

connec t i on type : 'TCP '
robot : 'KMR'

lbr command node :

r o s pa ramete r s :

id : ' 1 ' # Robot ID

port : ' 30005 '
KMR/ ip : ' 1 7 2 . 3 1 . 1 . 6 9 '

kmp command node :

# Simi lar to lbr command node

camera node :

r o s pa ramete r s :

id : ' 1 '
udp/ ip : ' 1 2 9 . 2 4 1 . 9 0 . 3 9 : 5 0 0 0 '

The launch script needs to be built and run inside its corresponding ROS 2 package as

described in subsubsection 4.2.2.4. When it is run, the two command nodes are started and

await a connection from the TCP clients on the KMR iiwa, while the camera node starts

recording with the camera attached to the Entity Raspberry Pi and sends the video stream

to the Middleware Raspberry Pi.
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4.2.3 Middleware Raspberry Pi

Similar to how the Entity Raspberry Pi derives its name from being an abstraction of a

robot entity in the “Industrial Lab”, the Middleware Raspberry Pi is exactly what the name

suggests, a middleware. It is also similar to the Entity Raspberry Pi in that it has a 5G HAT

and is connected to the Internet with 5G. The function of this middleware is to bridge the

communication between an entity and the AAS, i.e., translating messages from the AAS into

something an entity can understand and vice versa. As described in subsection 4.2.2, the

Entity Raspberry Pi communicates with the middleware via the ROS 2 publisher/subscriber-

model. Since DDS does not support data traffic over the Internet, as explained in subsec-

tion 2.1.10, ROS 2 is not an option for communication between the Middleware Raspberry Pi

and the AAS. Therefore, this connection is resolved using the machine-to-machine commu-

nication protocol OPC UA. Due to having only the KMR iiwa available, the implementation

that is presented in this section provides full support only for the use of the KMR iiwa as

an entity. Still, with the goal in mind of meeting the requirements of Use Case 1.5, parts of

the code have been made to support deployment and operation of multiple types of robot

entities and components.

4.2.3.1 Combining ROS 2 and OPC UA

The code running on the Middleware Raspberry Pi is, like for the Entity Raspberry Pi, a ROS

2 program. This program consists of a hybrid node represented by the opcua_ros2_pubsub.py

file. It is described as a hybrid node because it combines ROS 2 and OPC UA functionality in

one single running instance. Listing 4.14 is a snippet from the node file showing how the node

is initiated and run with an OPC UA client. The main() function creates an OPC UA client

that attempts to connect to the OPC UA server on the AAS Internal Interface described in

subsubsection 4.3.1.1. After a connection is established, three ROS publisher node instances

are created for communication with the “lbr command node”, “kmp command node”, and

the “camera node” that are all running on the Entity Raspberry Pi. Next, an OPC UA

subscription is created for each node to handle events being published from the AAS. With

this configuration, full-duplex communication is achieved between the Entity Raspberry Pi

and the AAS using a combination of ROS 2 publish-subscribe messaging and OPC UA event

handling. In order to spin multiple nodes instances from the context of a single ROS node,

each instance needs to be run inside its own thread. This is achieved through the use of

a MultiThreadedExecutor. The executor is initialized with the number of needed threads,

and then the node instances are added to it. The executor starts by “spinning” it in the way

one would do with a regular ROS node. The definition of the classes that handle commu-

nication is omitted from the listing with respect to readability, and they are instead shown

separately.
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Listing 4.14: Snippet of code from opcua ros2 pubsub.py showing how the node is initialized and run.

import r c lpy

from r c lpy . executo r s import MultiThreadedExecutor

from opcua import ua , C l i en t

. . .

# Define c l a s s e s

. . .

def main ( . . . ) :

r c l py . i n i t ( . . . )

i sConnected = False

o p c u a c l i e n t = Cl i en t ( ”opc . tcp :// ” + args . domain + ” :4841/ f reeopcua / s e r v e r /” )

while not i sConnected :

try :

o p c u a c l i e n t . connect ( )

i sConnected = True

print ( ” S u c c e s s f u l l y connected with OPC UA s e r v e r on : ” + args . domain + ”

:4841 ” )

. . .

l b r e v e n t = root . g e t c h i l d ( [ . . . , ” 2 : LBREvent” ] )

kmp event = root . g e t c h i l d ( [ . . . , ” 2 :KMPEvent” ] )

camera event = root . g e t c h i l d ( [ . . . , ” 2 : CameraEvent” ] )

l b r p u b l i s h e r = LBRPubSub( obj )

kmp publ isher = KMPPubSub( obj )

camera pub l i sher = CameraPubSub( obj )

l b r s ub = o p c u a c l i e n t . c r e a t e s u b s c r i p t i o n (100 , l b r p u b l i s h e r )

kmp sub = o p c u a c l i e n t . c r e a t e s u b s c r i p t i o n (100 , kmp publ isher )

camera sub = o p c u a c l i e n t . c r e a t e s u b s c r i p t i o n (100 , camera pub l i sher )

. . .

try :

executor = MultiThreadedExecutor ( num threads=3) # Executor needed to sp in

mu l t i p l e node in s t ance s s imu l t aneous l y

executor . add node ( l b r p u b l i s h e r )

executor . add node ( kmp publ isher )

executor . add node ( camera pub l i sher )

executor . sp in ( ) # Run execu tor

f ina l ly :

# Shut down executor , de s t roy nodes and unsubsc r i b e from OPC UA even t s

r c lpy . shutdown ( )

i f name == ' main ' :

main ( )
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The three node instances that are added to the MultiThreadedExecutor are all sub-classes

of PubSub, which again is a sub-class of rclpy’s Node. This way, all the classes inherit the

appropriate ROS 2 properties. Listing 4.15 shows how the class PubSub works. When either

of the three sub-classes is initialized, they also inherit the properties of this class. This means

that each node includes a subscription that listens for status updates from their corresponding

node on the Entity Raspberry Pi. For instance, when an instance of PubSub is initialized for

communication with the LBR iiwa, the component string will be “lbr”. This makes the topic

on which the aforementioned subscription receives messages be “lbr” + “ status”, which

coincides with the topic to which LbrCommandNode from Listing 4.6 publishes messages,

namely “lbr status”. When a message is received on the “ status” topic for either of the

three node instances, the status_callback function is called. This function takes the data

from the ROS message and converts it to a regular string. It then send it over OPC UA

by calling the update_status() function, mentioned in subsubsection 4.3.1.1, on the AAS

Internal Interface.

PubSub also includes a publisher on the topic “status check”, which, as mentioned in subsub-

section 4.2.2.2, is used to check whether or not the component nodes on the Entity Raspberry

Pi are online or not. The self.stauts_checker_publisher will publish one check for each

node instance when they are initialized. This is useful for situations in which the Middleware

Raspberry Pi has gone offline, or the ROS 2 program has stopped working for some reason.

In subsubsection 4.3.1.1 it is explained how a database containing information about the

various entities in the system is implemented. This database is updated each time a new

status from a component is published from the Entity Raspberry Pi. Suppose the Middle-

ware Raspberry Pi is down for any reason. In that case, the line of communication is broken

between the AAS Internal Interface and the Entity Raspberry Pi, meaning that if anything

changes for any component on any entity, the database will not be updated to represent

this new change. So, with the self.status_checker_publisher, the hybrid node on the

Middleware Raspberry Pi can ask for a status update when it restarts after a period of being

down, which will initiate a response from the Entity Raspberry Pi. The status update will

then be forwarded to the AAS, which will update the database.
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Listing 4.15: Snippet of code from opcua ros2 pubsub.py showing the PubSub super class.

from std msgs . msg import St r ing

from r c lpy . node import Node

. . .

class PubSub(Node ) :

def i n i t ( s e l f , component , ua obj ) :

super ( ) . i n i t ( component + ' hybr id node ' )

s e l f . component = component

s e l f . s e r v e r o b j = ua obj

s e l f . s t a t u s s u b s c r i b e r = s e l f . c r e a t e s u b s c r i p t i o n ( Str ing , s e l f . component + '
s t a t u s ' , s e l f . s t a t u s c a l l b a c k , 10)

s e l f . s t a t u s c h e c k e r p u b l i s h e r = s e l f . c r e a t e p u b l i s h e r ( Str ing , ” s t a t u s ch e ck ” ,

10)

s e l f . s t a t u s c h e c k e r p u b l i s h e r . pub l i sh ( S t r ing ( ) )

def e v e n t n o t i f i c a t i o n ( s e l f , event ) :

pass

def s t a t u s c a l l b a c k ( s e l f , msg) :

r i d = msg . data . s p l i t ( ” : ” ) [ 0 ]

print ( ” s t a t u s update c a l l b a c k from ” + s e l f . component + ” with RID : ” + r i d )

method = ” update s ta tus ”

s e l f . s e r v e r o b j . ca l l method ( ” 2 : ” + method , str (msg . data ) )

. . .

Listing 4.16 shows a snippet of code in which the class for communicating with the node

on the Entity Raspberry Pi that abstracts the KMP omniMove is presented. As previously

stated, this is a sub-class of PubSub, and when it is initialized, it passes a string “kmp”

to the super-class for the creation of the status subscriber. As seen in Listing 4.14, the

class KMPPubSub, like LBRPubSub and CameraPubSub, is made as part of a OPC UA

client subscription. It is for this reason that the class includes an event_notification()

function. This function is called whenever data is sent from the OPC UA server to the client

as a “KMPEvent”-event. If it happens, two ROS publishers are created for sending data

to the ROS node on the Entity Raspberry Pi: one for sending a movement command and

one for telling the node to shut down. The movement command is sent as a Twist, and this

lets the program control the KMP omniMove omnidirectionally—i.e. in both positive and

negative x- and y-direction as well as around the z-axis.
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Listing 4.16: Snippet of code from opcua ros2 pubsub.py showing the middleware implementation for com-

municating with the KMP omniMove.

from std msgs . msg import S t r ing

from geometry msgs . msg import Twist

. . .

c l a s s KMPPubSub(PubSub) :

de f i n i t ( s e l f , ua obj ) :

super ( ) . i n i t ( 'kmp ' , ua obj )

de f e v e n t n o t i f i c a t i o n ( s e l f , event ) :

act ion , r i d = event . Message . Text . s p l i t ( ” , ” )

e = ac t i on . s p l i t ( ” ” )

p u b l i s h e r = s e l f . c r e a t e p u b l i s h e r ( Twist , ” cmd vel ” + s t r ( r i d ) , 10)

shutdown publ i sher = s e l f . c r e a t e p u b l i s h e r ( Str ing , s e l f . component + '
shutdown ' + s t r ( r i d ) , 10)

i f e [ 0 ] == ”shutdown” :

msg = Str ing ( )

msg . data = ”shutdown”

shutdown publ i sher . pub l i sh (msg)

else :

speed = f l o a t ( e [ 0 ] )

tw i s t = Twist ( )

tw i s t . l i n e a r . x = f l o a t ( e [ 1 ] ) ∗ speed

tw i s t . l i n e a r . y = f l o a t ( e [ 2 ] ) ∗ speed

tw i s t . l i n e a r . z = 0 .0

tw i s t . angular . x = 0 .0

tw i s t . angular . y = 0 .0

tw i s t . angular . z = f l o a t ( e [ 3 ] ) ∗ speed #or turn

p u b l i s h e r . pub l i sh ( tw i s t )

. . .

LBRPubSub, shown in Listing 4.17, is similar in nature to that of KMPPubSub. The difference

is that the function event_notification() in this class is called whenever data is sent on

the “LBREvent”-event. When this happens, the data is forwarded as a ROS 2 message in

the form of a String() to its corresponding ROS node on the Entity Raspberry Pi. This will

either tell the LBR iiwa-node to shut down or to move one of its seven joints.
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Listing 4.17: Snippet of code from opcua ros2 pubsub.py showing the middleware implementation for com-

municating with the LBR iiwa.

from std msgs . msg import S t r ing

c l a s s LBRPubSub(PubSub) :

de f i n i t ( s e l f , ua obj ) :

super ( ) . i n i t ( ' l b r ' , ua obj )

de f e v e n t n o t i f i c a t i o n ( s e l f , event ) :

msg = Str ing ( )

msg . data , r i d = event . Message . Text . s p l i t ( ” , ” )

p u b l i s h e r = s e l f . c r e a t e p u b l i s h e r ( Str ing , ” man ipu la to r ve l ” + s t r ( r i d ) , 10)

shutdown publ i sher = s e l f . c r e a t e p u b l i s h e r ( Str ing , s e l f . component + '
shutdown ' + s t r ( r i d ) , 10)

i f msg . data == ”shutdown” :

shutdown publ i sher . pub l i sh (msg)

else :

p u b l i s h e r . pub l i sh (msg)

CameraPubSub, shown in Listing 4.18, is similar in nature to the two aforementioned classes.

The function event_notification() in this class is called when data is published on the

“CameraEvent”-event, and this forwards the data as a ROS message to the camera node

on the Entity Raspberry Pi. The data transmitted from the AAS, through the hybrid node

explained in this section and ultimately to the Entity Raspberry Pi, tells the camera to either

start or stop. How the messages are sent to KMPPubSub, LBRPubSub and CameraPubSub

from the OPC UA server as events is explained in subsubsection 4.3.1.1.

Listing 4.18: Snippet of code from opcua ros2 pubsub.py middleware implementation for communicating

with an entity camera.

from std msgs . msg import St r ing

. . .

class CameraPubSub(PubSub) :

def i n i t ( s e l f , ua obj ) :

super ( ) . i n i t ( ' camera ' , ua obj )

def e v e n t n o t i f i c a t i o n ( s e l f , event ) :

act ion , r id , ∗kwargs = event . Message . Text . s p l i t ( ” , ” )

camera pub l i sher = s e l f . c r e a t e p u b l i s h e r ( Str ing , ' handle camera ' + str ( r i d ) ,

10)

msg = Str ing ( )

msg . data = act i on

camera pub l i sher . pub l i sh (msg)
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It is worth mentioning that the ROS node described in this section is run in the same way as

for the Entity Raspberry Pi, i.e. launching, even though there is only one active node. This

means that there is a corresponding launch file, middleware.launch.py, and configuration

file, bringup.yaml, that are similar to those shown in subsubsection 4.2.2.5. This is done

with regards to scalability, as it might be desirable to add more running nodes on the device

if or when the system is expanded. It is also desirable to run a ROS 2 program this way

because it makes it easier to provide parameters to nodes before running them.

4.3 Control Room & User Devices

A zoomed-in look at the “Control Room” and “User Devices” implementation is shown in

Figure 4.3. These two segments are outlined together to further express what is shown in

Figure 3.1 from chapter 3, in which an operator can control the entities from both inside

and outside the ”Control Room“. Individual solutions are not implemented for the “Control

Room” and “User Devices”. Instead, the “User Devices” segment is represented by the fact

that it can use the services provided by the “Control Room”. The “Control Room” consists

of two Raspberry Pis: the AAS Raspberry Pi and the AAS-VIDEO Raspberry Pi. Both of

these, with their related software, will be outlined in this section. These Raspberry Pis are

not on a 5G connection and are instead connected to the NTNU network through Ethernet, as

it is difficult to host services on public cellular networks without having authorization.

Figure 4.3: Separated look at the “Control Room” and the “User Devices”.

4.3.1 Raspberry Pi Hosting AAS

The device used to host the AAS is a Raspberry Pi located in the “Control Room”. As seen in

Figure 4.1, this Raspberry Pi communicates with the Middleware Raspberry Pi described in

subsection 4.2.3. This section is divided into five sub-sections, each of which pertains to one
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of the six1 segments introduced in subsection 2.1.6 that are part of an Industry 4.0-compliant

AAS.

4.3.1.1 Internal Interface

The purpose of the Internal Interface is to handle commands from the External Interface with

the use of WebSocket communication and send them to the Middleware Raspberry Pi. The

Internal Interface is implemented with Flask, and it includes an OPC UA server, a REST

API, and a database. A basic understanding of the core structure of Flask is recommended

to follow the explanations in this section better (see subsection 2.3.2).

As explained in subsection 2.3.2, Flask is a lightweight framework for creating web services.

Because of this, there are several ways to configure a Flask project environment. After

Flask is installed on the system, it can be as easy as creating a regular Python file, e.g.,

my_flask_project.py, as a simple Flask application and run it as a normal Python program.

For the purpose of the Internal Interface, the Flask application is represented as a directory

rather than a file, and this directory contains all the application-related files. Figure 4.4

shows the directory structure of the Internal Interface, which includes the Flask application

folder aas_api. Inside this folder is the main file, __init__.py. This file houses the main

parts of the application, such as the Flask logic, the database implementation, the API, and

the WebSocket server implementation. Another important aspect of this file is that, as an

init file, it marks the aas_api directory as a Python package directory. This makes it

so that Python is aware of the sub-modules within the directory, which is essential when

running the application.

internal interface flask

aas api

init .py

models.py

server.py

config.json

config.py

internal interface.db

internal interface.py

Figure 4.4: Structure of the Internal Interface directory

1“External interface” and “Functionality” are out of convenience explained together.
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Listing 4.19 shows a snippet of code from __init__.py. This part is where the essential

flask functions and supported third-party components are imported and implemented. The

snippet includes comments with explanations for each implementation. The way objects, or

sub-modules, are created in order to correctly interact with the Flask application is by passing

them the application, which in this case is aas_api. A sub-module worthy of highlighting

is migrate, as it is not used directly anywhere in any of the files related to the application.

The reason for creating this sub-module is that it makes database operations available for

the Flask command-line interface (CLI). This is the case for the other sub-modules created

as well, such as db, but these are additionally used in the application files. Since the sub-

modules are exposed to the Flask CLI, changes in the database format (tables and fields)

can be realized with the following commands:

$ cd internal_interface_flask

$ flask db migrate -m "Added new table: User"

$ flask db upgrade

The astute reader will notice two configuration files named config imported in the snippet.

The first one is for the configuration details for the database, which is described later in this

section. The second one, shown in Listing 4.20, is a JSON file with network details for the

Flask application, the OPC UA server that runs on it, and the domain used by the AAS

Video Stream service explained in subsubsection 4.3.2.2 to host the various video streams

from entities.

Listing 4.19: Snippet of code from init .py showing how the Flask application is configured.

import j s on

from c o n f i g import Config #Database con f i g u r a t i on f i l e ” con f i g . py”

from f l a s k import Flask , Response , render template , request , j s o n i f y , abort

from f l a s k b c r y p t import Bcrypt #Used f o r encryp t ing passwords

from f l a s k s q l a l c h e m y import SQLAlchemy #Database t o o l k i t

from f l a s k m i g r a t e import Migrate #Used f o r hand l ing SQLAlchemy database migrat ion

from f l a s k s o c k e t i o import SocketIO , emit #Used f o r WebSocket communication

from f l a s k c o r s import CORS #Needed to l e t browsers acces s the API

a a s a p i = Flask ( name ) #I n i t i a t e the Flask a p p l i c a t i o n

a a s a p i . c o n f i g . f r om ob jec t ( Conf ig ) #Load database con f i g u r a t i on

CORS( a a s a p i ) #Apply CORS headers

bcrypt = Bcrypt ( aa s a p i ) #Create encryp t ion o b j e c t f o r hashing user passwords

db = SQLAlchemy( a a s a p i ) #Create database o b j e c t f o r query ing database

migrate = Migrate ( aas ap i , db ) #Create o b j e c t f o r database migrat ion

s o c k e t i o = SocketIO ( aas ap i , c o r s a l l o w e d o r i g i n s=”∗” ) #Create WebSocket

communication o b j e c t

from a a s a p i import models , s e r v e r #Import app l i c a t i on−r e l a t e d f i l e s
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with open( ” c o n f i g . j s on ” , ” r ” ) as f :

i p d i c t = j son . load ( f ) #Load network con f i g u r a t i on

opcua ins tance = s e r v e r . OpcuaServer ( i p d i c t [ ”OPCUA URL” ] , s o cke t i o , db ) #Sta r t OPC UA

ser ve r

. . .

Listing 4.20: Snippet of code from config.json showing the network configuration.

{
”OPCUA URL” : ” andrcar−master . i v t . ntnu . no :4841” ,

”SERVER URL” : ” andrcar−master . i v t . ntnu . no :8000” ,

”VIDEO STREAM IP” : ” andrcar−master−stream . i v t . ntnu . no”

}

The Internal Interface is run with the file internal_interface.py shown in Listing 4.21.

The Flask service is deployed using the concurrent networking library eventlet. This replaces

the native Flask subsystem, Werkzeug, and it makes it possible for SocketIO to use WebSocket

communication. Since the aas_api folder is declared as a Python package directory, its sub-

modules can be imported and used directly in the run-file.

Listing 4.21: Snippet of code from internalinterface.pyshowinghowtheF laskapplicationisrun.

from e v e n t l e t import wsgi

from a a s a p i import aas ap i , i p d i c t

ip , port = i p d i c t [ ”SERVER URL” ] . s p l i t ( ” : ” )

wsgi . s e r v e r ( e v e n t l e t . l i s t e n ( ( ip , i n t ( port ) ) ) , aas ap i , l og output=True , debug=True )

Database

Since the AAS created in relation to this thesis is a “Proof of Concept”, it is desirable to use

components that are easy to use, compact, and efficient. Because of this, SQLite [68] is a

fitting choice of database. SQLite is an embedded database, which means that it runs as part

of the application it serves—not independently as a standalone process. This is favorable

in smaller systems and testing environments because it requires no network configuration or

administration. Listing 4.22 shows the only configuration needed to get SQLite to work with

Flask and SLQAlchemy. All the data is stored with the SQLite database format in the file

internal_interface.db, and the Flask application needs only to know the location of this

file in order to interact with the database. The interaction between the Flask application

and the database is explained later in this section when describing the API and the OPC

UA Server.
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Listing 4.22: Snippet of code from config.py showing the database configuration.

import os

ba s ed i r = os . path . abspath ( os . path . dirname ( f i l e ) )

class Config ( object ) :

SQLALCHEMY DATABASE URI = os . env i ron . get ( 'DATABASE URL ' ) or \
' s q l i t e :/// ' + os . path . j o i n ( based i r , ' i n t e r n a l i n t e r f a c e . db ' )

SQLALCHEMY TRACK MODIFICATIONS = False

Models

In order for the AAS database to contain any information, it needs to have tables and fields.

This is achieved with the SQLAlchemy API’s Model class. A model in SQLAlchemy is a

single, definitive source of information about some data. These are implemented in Python

as classes that inherit the properties of db.Model, which is stored in the SQLAlchemy instance

that is created in Listing 4.19. Listing 4.23 shows the model Robot, which represents a robot

entity that is recognized by the AAS. Each entity needs a unique ID and a name in order to

distinguish them from one another, and it is necessary in order for the External Interface to

display entities correctly. Each entity also needs a set of components, a unique UDP URL,

and a stream port.

Listing 4.23: Snippet of code from models.py showing the Robot model used for storing information about

various robot entities.

{
class Robot (db . Model ) :

id = db . Column(db . S t r ing (100) , pr imary key=True , unique=True )

name = db . Column(db . S t r ing (100) )

components = db . Column(db . S t r ing (10000) )

udp ur l = db . Column(db . S t r ing (100) )

s t ream port = db . Column(db . I n t e g e r )

def r e p r ( s e l f ) :

return s e l f . id + ” ” + s e l f . name + ” components : ” + str ( s e l f . components )

}

The components column is used to keep track of every component’s status (online/offline)

on an entity, and each value inserted into this field needs to be a string. This is a technique

used to support various types of entities. With a string, the components for the KMR iiwa

can be represented as a serialized JSON object, such as “kmp:true,lbr:false”. This example

means that the KMP omniMove is online, and the LBR iiwa is offline on one of the KMR

iiwa entities. This helps achieve a dynamic storing of information since all the columns

in the Robot model are ambiguous. If the model were to have a kmp column and an lbr

column instead, it would only be able to support the KMR iiwa, and for each new entity
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type introduced to the system, there would need to be created a new model. With the string

technique, the Robot model supports virtually any type of entity, and new components can

even be added to already established entities without affecting the database format. The

udp_url column is used to store the IP address to which the video captured on the robot’s

Entity Raspberry Pi is streamed. Since this URL can be the same for multiple entities, they

need different ports. This is handled by the stream_port column, in which every value is

unique.

There are two additional models in the Internal Interface that are created similarly to Robot

and therefore not shown with code listings. The first one in User, which is used for storing

information about the operators of the AAS, i.e, their ID, name, password, and role. The

role can either be viewer, operator or admin, each of which has a different level of access

throughout the AAS. The purpose of having a role-hierarchy is explained further in subsub-

section 4.3.1.5. The second model is StreamPort, which is used to keep track of which ports

are available for the video streaming service. It makes it so that any new entity registered in

the AAS is assigned a port that is not already in use, ensuring that every captured video is

streamed to a unique address.

API

Flask, like any other web framework, supports the concept of serving content on a given

URL. In Flask, this is done through the use of routes and views. A route refers to a

URL pattern designed for the application, while a view refers to the content served at that

URL. Together, they form what is known as an API endpoint. Listing 4.24 shows the end-

point for getting all the robot entities that are registered in the AAS. Flask routes, such as

@aas_api.route('/api/robots'), are defined by Python decorators that Flask provides to

easily assign URL patterns to functions inside the application. The view function to which

this route belongs is get_all_robots(). This way, any time a client visits the application

domain at the given route, the view function is executed. When executed, the function

get_all_robots() queries the database for all registered robot entities and returns them to

the client as an HTTP Response containing a list of JSON objects.

Listing 4.24: Snippet of code from init .py showing the endpoint for getting all entities in the AAS.

@aas api . route ( ' / api / robots ' )

def g e t a l l r o b o t s ( ) :

robots = models . Robot . query . a l l ( )

r e s u l t = [ ]

for robot in robots :

r e s u l t . append ({
' r i d ' : robot . id ,

'name ' : robot . name ,

' components ' : j s on . l oads ( robot . components ) ,

' udp ur l ' : robot . udp url ,
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' s t ream port ' : robot . s t ream port

})

return {
' robots ' : r e s u l t

}

Often it is useful to get data for a specific entry in a database. This can be handled by

including a parameter in the Flask route which is unique for the desired item. Listing 4.25

shows how the Internal Interface API can get a specific robot entity based on its ID. The

parameter <rid> in the route @aas_api.route('/api/robots/<rid>') means “robot id”,

and it is provided by a client that wishes to get information about the entity in the Robot

table with a matching value in its id column. When the route is used, the view function

get_specific_robot(rid) is called, which queries the database. If a robot entity is found

with a matching ID, the result is returned to the client with an HTTP Request containing a

single JSON object. If a match is not found, an HTTP 404 (Not Found) error is returned to

the client.

Listing 4.25: Snippet of code from init .py showing the endpoint for getting a specific entity in the AAS.

@aas api . route ( ' / api / robots/<r id> ' )

def g e t s p e c i f i c r o b o t ( r i d ) :

robot = models . Robot . query . f i l t e r b y ( id=r i d ) . f i r s t o r 4 0 4 ( )

return {
' r i d ' : robot . id ,

'name ' : robot . name ,

' components ' : j s on . l oads ( robot . components ) ,

' udp ur l ' : robot . udp url ,

' s t ream port ' : robot . s t ream port

}

The AAS Video Stream service is, as described in subsection 4.3.2, hosted on a separate

Raspberry Pi, but the metadata about a video stream is provided by the Internal Interface

API. This is beneficial because it lets the AAS Video Stream service be completely detached

from all clients—i.e. it streams video to an IP address, but it does not know or care who visits

this address—while it is the AAS itself that handles all communication with clients. Having

as few components in the system as possible depend on each other helps reduce coupling,

which again makes the system more scalable. Listing 4.26 shows the API endpoint that a

client can use to get the video stream for the entity they wish to monitor. The client provides

an <rid>, which the view function get_robot_video_stream(rid) uses to get the entity in

the database with a matching ID. It then finds the IP address for the video stream in the

network configuration file (see Listing 4.20) and combines this with the unique stream port

for the specific entity. This URL is then returned to the client as an HTTP Request, and
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the client can use the URL to display the video stream.

Listing 4.26: Snippet of code from init .py showing the endpoint for getting the video stream IP address

for a specific entity.

@aas api . route ( ' / api / robots/<r id >/video ' )

def g e t r ob o t v id e o s t r e am ( r i d ) :

robot = models . Robot . query . f i l t e r b y ( id=r i d ) . f i r s t o r 4 0 4 ( )

s t ream ip = str ( i p d i c t [ ”VIDEO STREAM IP” ] )

return {
' u r l ' : ” http :// ” + stream ip + ” : ” + str ( robot . s t ream port )

}

The API also needs a way to handle requests from operators trying to log in to the AAS.

This is done with the endpoint shown in Listing 4.27. The endpoint receives an HTTP POST

request with a JSON object. This object contains a username and password. The username

is used to query the database for all User entries with that particular username, and the

password is then checked against the password for every entry in order to find a match. The

passwords in the database are encrypted, so they have to be decrypted using bcrypt when

matching. If a matching user is found, credentials are returned as an HTTP response. If no

match is found, the login is aborted. See subsection 4.4.4 for more information about the

login sequence.

Listing 4.27: Snippet of code from init .py showing the endpoint for handling login.

@aas api . route ( ' / api / l o g i n ' )

def at t empt log in ( ) :

try :

c o r r e c t u s e r = None

content = reques t . g e t j s o n ( )

u s e r s = models . User . query . f i l t e r b y ( username=content . get ( ' username ' ) ) . a l l ( )

for u in use r s :

i f bcrypt . check password hash (u . password , content . get ( ' password ' ) ) :

c o r r e c t u s e r = u

break

return {
' username ' : c o r r e c t u s e r . username ,

' admin ' : c o r r e c t u s e r . admin ,

' operator ' : c o r r e c t u s e r . operator

}
except :

abort (404)

OPC UA Server

The OPC UA server in the Internal Interface enables the AAS to communicate with the
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Middleware Raspberry Pi and the AAS-VIDEO Raspberry Pi. Listing 4.28 shows a part

of the class OpcuaServer used for managing server and client communication. This server

is hosted as part of the Flask application, and by calling OpcuaServer(...), as seen in

Listing 4.19, the server is started, and communication with clients can begin. There are

three parameters that are needed when starting the server:

• opcua_url. This is the IP address and the port on which the OPC UA server is to be

hosted. Clients need this URL to connect to the server.

• socketio. This is the Flask-SocketIO created in the main file. It is used to enable

WebSocket communication between a client and the Flask application.

• db. This is the database object created in the main file. It is used to interact with the

SQLite database embedded in the application.

The last two parameters are not used when initializing the OPC UA server, but they are

used in the functions related to the class OpcuaServer which are described below. When the

server is initialized, it creates a server object aas_obj, which is used to expose the functions

of the server to its clients. There is then added a server method to the object, which is what

the clients use to send data to the server. This aas_obj object is then used to create event

generators for each component with which the server communicates through the Middleware

Raspberry Pi client, namely the KMP omniMove, the LBR iiwa, and the camera. These event

generators are used to send data to the clients. The AAS-VIDEO Raspberry Pi described in

subsubsection 4.3.2.1 also subscribes to the “CameraEvent” topic, making it so that when

this event is triggered on the OPC UA server, both the Middleware Raspberry Pi and the

AAS-VIDEO Raspberry Pi receives the data.

Listing 4.28: Snippet of code from server.py showing how the OPC UA server is initialized.

class OpcuaServer :

def i n i t ( s e l f , opcua ur l , s o cke t i o , db ) :

s e l f . s o c k e t i o = s o c k e t i o

s e l f . db = db

logg ing . bas i cCon f i g ( l e v e l=logg ing .WARN)

l o g g e r = logg ing . getLogger ( ”opcua . s e r v e r . i n t e r n a l s u b s c r i p t i o n ” )

s e r v e r = Server ( )

s e r v e r . s e t endpo in t ( ”opc . tcp :// ” + opcua ur l + ”/ f reeopcua / s e r v e r /” )

o b j e c t s = s e r v e r . g e t o b j e c t s n o d e ( )

aa s ob j = o b j e c t s . add ob jec t ( . . . , ”AasObject” )

# add se r v e r methods

aa s ob j . add method ( . . . , ” update s ta tus ” , s e l f . update s tatus , [ ua . VariantType .
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St r ing ] , [ ua . VariantType . Int64 ] )

lbrEvent = s e r v e r . c r ea t e cus tom event type ( . . . , 'LBREvent ' )

kmpEvent = s e r v e r . c r ea t e cus tom event type ( . . . , 'KMPEvent ' )

cameraEvent = s e r v e r . c r ea t e cus tom event type ( . . . , ' CameraEvent ' )

s e l f . lbrEvgen = s e r v e r . g e t e v e n t g e n e r a t o r ( lbrEvent , aa s ob j )

s e l f . kmpEvgen = s e r v e r . g e t e v e n t g e n e r a t o r (kmpEvent , aa s ob j )

s e l f . cameraEvgen = s e r v e r . g e t e v e n t g e n e r a t o r ( cameraEvent , aa s ob j )

s e r v e r . s t a r t ( )

. . .

As mentioned, the class OpcuaServer includes a set of functions. These are used in combina-

tion with both the API and the WebSocket implementation in order to communicate with the

External Interface and the OPC UA clients. The OPC UA clients are the Middleware Rasp-

berry Pi and the AAS-VIDEO Raspberry Pi. Listing 4.29 shows a snippet of code from the

OpcuaServer class with the function update_status(), which is the aforementioned server

method. This is indicated by the Python decorator @uamethod. The ROS node uses this

function on the Middleware Raspberry Pi to provide the AAS with status updates for the

various entity components. When a status update is sent for a component, the entity’s ID

to which the component belongs is checked in the database. If an entry with a matching ID

is not found, a new Robot instance is created with the information that is provided by the

OPC UA client and added to the database. If a match is found, the value in the entry’s

components field, which is stored as a string, is de-serialized to a JSON object, and the

component status is changed to match that of the information provided by the OPC UA

client. The either new or updated information about the entity is then sent to the External

Interface using WebSocket.

Listing 4.29: Snippet of code from server.py showing the server method used for updating entity status in

the database and sending status to an External Interface.

@uamethod

def update s ta tus ( s e l f , parent , msg) :

r id , robot , component , component status , ∗kwargs = msg . s p l i t ( ' : ' )

entry = models . Robot . query . f i l t e r b y ( id=r i d ) . f i r s t ( )

i f not entry :

port = models . StreamPort . query . f i l t e r b y ( id=”1” ) . f i r s t ( )

dump = {component : bool ( int ( component status ) ) }

new robot = models . Robot (

id=rid ,

name=robot ,
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components=j son . dumps(dump) ,

s t ream port = port . a v a i l a b l e p o r t

)

i f component == ”camera” :

new robot . udp ur l = kwargs [ 0 ] + ” : ” + kwargs [ 1 ]

port . a v a i l a b l e p o r t += 1

s e l f . db . s e s s i o n . add ( new robot )

else :

dump = json . l oads ( entry . components )

dump [ component ] = bool ( int ( component status ) )

entry . components = j son . dumps(dump)

i f component == ”camera” :

entry . udp ur l = kwargs [ 0 ] + ” : ” + kwargs [ 1 ]

s e l f . db . s e s s i o n . commit ( )

jdata = j son . dumps({
' r i d ' : r id ,

' robot ' : robot ,

' component ' : component ,

' component status ' : bool ( int ( component status ) )

})

s e l f . s o c k e t i o . emit ( ' s t a t u s ' , jdata , broadcast=True )

The two remaining functions in the OpcuaServer class are used for sending data to the

Middleware Raspberry Pi and the AAS-VIDEO Raspberry Pi as OPC UA events. The two

functions are send_to_entity(), shown in Listing 4.30, and send_to_camera(), shown in

Listing 4.31. They both use the event generators created in Listing 4.28. When sending

data to an entity, a component command is first received by the Flask application from

the External Interface—a process that is explained in subsubsection 4.3.1.2. This command

is then passed to the send_to_entity() function, which triggers an OPC UA event. The

information about which component the command is targeted at is given in the cmd string,

and this decides whether an “LBREvent” or a “KMPEvent” should be triggered. This

implementation only supports the use of the KMR iiwa as an entity. The process for handling

a camera command from the External Interface is similar, but since the camera is meant to

be independent of entity type, there is no need to check camera_cmd before sending it.
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Listing 4.30: Snippet of code from server.py showing how a command to either the KMP omniMove or the

LBR iiwa is sent to the Middleware Raspberry Pi from the OPC UA server.

def s e n d t o e n t i t y ( s e l f , cmd) :

command splt = cmd . s p l i t ( ” : ” )

i f command splt [ 0 ] == ” l b r ” :

s e l f . lbrEvgen . event . Message = ua . Loca l i zedText ( command splt [ 1 ] )

s e l f . lbrEvgen . t r i g g e r ( )

print ( ”LBREvent sent ! ” )

e l i f command splt [ 0 ] == ”kmp” :

s e l f . kmpEvgen . event . Message = ua . Loca l i zedText ( command splt [ 1 ] )

s e l f . kmpEvgen . t r i g g e r ( )

print ( ”KMPEvent sent ! ” )

Listing 4.31: Snippet of code from server.py showing how a camera command is sent to the Middleware

Raspberry Pi and the AAS-VIDEO Raspberry Pi from the OPC UA server.

def send to camera ( s e l f , camera cmd ) :

s e l f . cameraEvgen . event . Message = ua . Loca l i zedText ( camera cmd )

s e l f . cameraEvgen . t r i g g e r ( )

print ( ”CameraEvent sent ! ” )

WebSocket Communication

The communication between the Flask application and its clients needs to be as efficient

as possible for the AAS to attempt to comply with the real-time requirements of Industry

4.0. This is achieved by replacing the commonly used HTTP Polling protocol with Web-

Sockets. Both of these, as well as their differences, are explained in subsection 2.1.9. In

Flask, WebSocket communication can be implemented using the SocketIO library, as shown

in Listing 4.19 at the beginning of this section. How a client connects to the WebSocket

server on the Flask application is explained in subsubsection 4.3.1.2. Listing 4.32 shows how

SocketIO is used to create WebSocket endpoints. Like for the API endpoints described earlier

in this section, the functions in the WebSocket implementation are defined with Python dec-

orators. The decorator @socketio.on('command') makes it so that when data is emitted

from the External Interface with the event name “command”, the function that corresponds

with the decorator is called. This function, receive_command(), receives a JSON object

with a command and an entity ID and sends this to the Middleware Raspberry Pi using

the OPC UA server function shown in Listing 4.30. Similarly, when data is emitted from

the External Interface with the event name “camera event”, the receive_camera_event()

function is called. This function first has to query the database in order to get additional

information about the entity, i.e., the UDP URL and the stream port for the video stream for

that specific entity. This information is not relevant for the Middleware Raspberry Pi, but

it is necessary for the AAS-VIDEO Raspberry Pi. If for some reason, no matching entity is

found with the query, an HTTP 404 error is sent back to the External Interface. If a match
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is found, the data is sent to the Middleware Raspberry Pi and the AAS-VIDEO Raspberry

Pi using the OPC UA server function shown in Listing 4.31. It is essential to include an ID

when forwarding the data to the OPC UA clients so that they know which entities and video

streams the messages are meant for.

Listing 4.32: Snippet of code from init .py showing the part of the WebSocket implementation that handles

the handshake.

. . .

@socket io . on ( 'command ' )

def receive command (cmd) :

opcua ins tance . s e n d t o e n t i t y (cmd [ 'command ' ] + ” , ” + cmd [ ' r i d ' ] )

@socket io . on ( ' camera event ' )

def r e c e i v e camera event (cmd) :

robot = models . Robot . query . f i l t e r b y ( id=cmd [ ' r i d ' ] ) . f i r s t o r 4 0 4 ( )

middleware . send to camera (cmd [ ' camera event ' ] + ” , ” + cmd [ ' r i d ' ] + ” , ” + robot .

udp ur l + ” , ” + str ( robot . s t ream port ) )

. . .

4.3.1.2 External Interface and Functionality

The External Interface and Functionality are two separate segments of an industrial AAS, but

since the functionality of the AAS described in this thesis is closely related to the components

on the External interface, it is easier to understand both parts if they are explained in relation

to each other. As opposed to the description of the Internal Interface, this section will not

contain many code listings that explain what goes on behind the scenes. This reduction is an

attempt to highlight the functionality that operators of the AAS would have at their disposal

in an industrial environment. Additionally, the amount of code, coupled with the fact that

much of the application data is shared between several components over multiple different

files, would make it difficult for the reader to understand what each component does and

how they work in relation to other components.

The External Interface is what the end-user of the AAS sees and uses to control the industrial

robot entities available in the system. The implementation of the External Interface includes

a login page and a homepage on which the available entities are displayed. The user can

then click on the entity they wish to inspect, and they will then see a popup page specifically

for that entity. This functionality is described and explained in more detail throughout

this section. The External Interface is developed using the web framework React. This

web framework is a good fit for this project because of its innate modularity with regards

to reusable and loosely coupled components. It is easy to expand with more entities if

necessary, as there is no need to write the same code multiple times for similar functionality.

The framework is also widely supported, which means that third-party software such as
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user interface (UI) frameworks can be quickly and easily implemented. The design for the

External Interface is developed using the UI framework Material-UI, which allows for quick

creation of a simple and pleasant user interface.

Login page

After starting the External Interface, the operator will be met with the login page shown

in Figure 4.5. Here, the operator can enter their assigned username and password, and if

they have a registered account, they will be redirected to the homepage. There is no way for

operators to create an account from the login page—a feature that is deliberately omitted

because it is assumed that the AAS account would be the same as the one the operator is

already registered with at the institution for which they work.

Figure 4.5: The login page.

After an operator has entered their username and password, they can click the button labeled

“LOG IN”. This will trigger the function shown in Listing 4.33. This function sends an

HTTP POST request to the API login endpoint on the Internal Interface. If the user-

name and password match a registered account, the operator’s credentials are stored in the

browser’s cache before redirection. If no match is found, the operator will not be logged in

or redirected. A complete overview of the flow of the data occurring during login is shown

in subsection 4.4.4.

Listing 4.33: Snippet of code from login.js showing what happens when the “LOG IN” button is clicked.



CHAPTER 4. IMPLEMENTATION 78

const handleLoginButtonClicked = ( ) => {
ax io s . post ( c o n f i g s . API URL + ” api / l o g i n ” , {

username : va lue s . username ,

password : va lue s . password

}) . then ( resp => {
l e t success msg = ” S u c c e s s f u l l y logged in as ” + va lues . username

d i spatch ({ type : ' c l i c k ' , message : success msg })

l o c a l S t o r a g e . set I tem ( ' username ' , r e sp . data . username )

l o c a l S t o r a g e . set I tem ( ' admin ' , r e sp . data . admin )

l o c a l S t o r a g e . set I tem ( ' operator ' , r e sp . data . operator )

h i s t o r y . push ( '/ dashboard ' )

}) . catch ( e r r o r => {
l e t f a i l m s g = ” Fa i l ed to log in . Wrong password or no user named ” + va lues .

username

d i spatch ({ type : ' c l i c k ' , message : f a i l m s g })

con so l e . l og ( e r r o r . r e sponse . data )

})

}

The credentials that are returned and stored include the operator’s role, which, as stated

when describing the User database model, can either be that of a viewer, an operator 2 or an

admin. This is represented with the two boolean values operator and admin:

• Viewer : operator = false and admin = false

• Operator : operator = true and admin = false

• Admin: operator = true and admin = true

Homepage

After a successful login, the operator will be greeted with the homepage shown in Figure 4.6.

This page displays all the entities that are registered in the Internal Interface database. On

each entity card, the operator will be able to see the name, ID, and status of the various

entities.
2The operator role should not be confused with an AAS operator. An operator in the context of the AAS is anyone that

uses the External Interface to interact with robot entities.
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Figure 4.6: The Homepage showing two KMR iiwa entities, one is online while the other is offline.

The data for the entities shown here is retrieved from the Internal Interface with the function

shown in Listing 4.34. As explained in the description for the Internal Interface API, the

endpoint returns a list of JSON objects with data about each entity. This data is stored in

the External Interface’s state and used to create the card for each entity.

Listing 4.34: Snippet of code from App.js showing how the External Interface retrieves data for all entities

in the system.

const fetchAndSetState = ( ) => {
ax io s . get ( c o n f i g s . API URL + ” api / robots ”) . then ( resp => {

d i spatch ({ type : ' s e tSta te ' , robots : r e sp . data . robots })

})

}

The cards are clickable, and when a card is clicked, the operator will be presented with a

popup page containing the functionality for that specific entity.

Entity Popup Page

The entity popup page is what an operator can use to interact with an entity. The page,

shown in Figure 4.7, is constructed as a grid that is populated by the various components

related to the entity. The idea is that the page’s structure should be similar for all entities but

that the components in the grid change based on what functionalities each entity provides.

Because of this, the page is created with flexibility in mind and with as little hard-coding

with respect to specific entities as possible. For a KMR iiwa entity, this page includes the

following components:
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• KMP Controller. This is used to control the KMP omniMove component and is

specific for the KMR iiwa.

• LBR Controler: This is used to control the LBR iiwa component and is specific for

the KMR iiwa.

• KMR General Commands: This is used to send custom commands to the KMR

iiwa. This requires that the operator knows what a command looks like “under the

hood”, and should only be used for testing purposes.

• Video Stream Component: This is used to start and display a video stream from

the camera on the KMR iiwa. This component can be used for any type of entity.

Figure 4.7: The entity popup page with KMR iiwa functionality.

When an operator is logged in as either an admin or an operator, all the components are

enabled and ready for use if the entity is online. As a viewer, the command components

will be disabled to prevent any interaction with the entity, as that role is not authorized to

control anything in the “Industrial Lab”. A viewer can still start and view a video stream,

as this is not regarded as a potentially hazardous operation. How components are disabled

depending on roles is the same as when the components on an entity are offline, which can

be seen in Figure 4.8.
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Figure 4.8: The entity popup page with disabled components.

The rest of this section will use the entity popup page for the KMR iiwa entity as an ex-

ample for demonstrating the functionality. When the components are enabled, an operator

with operator privileges—i.e. logged in as either operator or admin—can control the KMP

omniMove by either pressing the buttons in the controller or by using the arrow keys on a

keyboard connected to the computer on which the External Interface is used. Figure 4.9

shows how to move the entity in the positive y-direction (forward). There is a slider above

the arrow buttons that can be used to change the speed at which the KMP omniMove moves.

When a movement key is pressed, a function is called that emits the appropriate command

for the specific entity to the Internal Interface using WebSocket communication, as seen in

Listing 4.35.

Figure 4.9: The forward button is activated by either clicking on it on the page or using the up-arrow key
on a connected keyboard. The “Speed” slider is set to 0.1 which is 10 % of the maximum speed.
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Listing 4.35: Snippet of code from kmpController.js showing the function for emitting KMP omniMove

movement commands to the Internal Interface.

const moveKMP = ( d i r e c t i o n ) => {
var vec to r = n u l l

i f ( d i r e c t i o n === ”up”) {
vec to r = ” 1 0 0”

}
i f ( d i r e c t i o n === ”down”) {

vec to r = ” −1 0 0”

}
. . . // l e f t , r i ght , c lockwise , counter−c l o ckw i s e are not shown

i f ( d i r e c t i o n === ” stop ”) {
vec to r = ” 0 0 0”

}
props . ws . emit ( 'command ' , { ”command” : ”kmp: ” + speed + vector , ' r id ' : props . r i d

})

// To move KMP forward :

// ”command” : ”kmp : 0 . 1 1 0 0” , ” r i d ” : ”1”

}

The “LBR Controller” works similarly, but there are no keyboard shortcuts for this compon-

ent, so an operator has to click on the “+” or “-” buttons for the joint they want to move

in order to send a command. The operator is free to move any of the seven joints in both

directions, as well as to set the LBR iiwa in the “Drive” position. Listing 4.36 shows the

function that emits a command to the Internal Interface when a movement key is pressed

on the “LBR Controller”. This command contains which joint should be moved, in which

direction, and to which entity.

Listing 4.36: Snippet of code from lbrController.js showing the function for emitting LBR iiwa movement

commands to the Internal Interface.

const moveLBR = ( j o i n t , d i r e c t i o n ) => {
props . ws . emit ( 'command ' , { ”command” : ” l b r : ” + j o i n t + ” ” + d i r e c t i o n , ' r id ' :

props . r i d })

// To move bottom j o i n t on LBR in p o s i t i v e d i r e c t i o n :

// ”command” : ” l b r : A1 1” , ” r i d ” : ”1”

}

An operator of any role can start a video stream on a specific entity and view it. This is done

by clicking the button labeled “Start video stream”. When this happens, the function shown

in Listing 4.37 is called. This emits a message to the Internal Interface saying whether to start

or stop the camera on a specific entity. A sequence diagram of what happens throughout the

pipeline when a camera event is emitted is shown in subsection 4.4.3. This operation requires

some loading time, and this is presented to the operator as shown in Figure 4.10.
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Listing 4.37: Snippet of code from robot.js showing the function for emitting camera start/stop commands

to the Internal Interface.

const sendCameraEvent = ( ) => {
props . ws . emit (” camera event ” , { ' camera event ' : r obotState . cameraButton , ' r id ' :

props . robot . r i d })

// To s t a r t camera : ” camera event ” : ” s t a r t ” , ” r i d ” : ”1”

}

Figure 4.10: While the video service is starting, the entity popup page displays a loading animation.

When the loading is done, the video from the entity is being streamed to a known IP address.

The stream can then be displayed in the External Interface using an HTML component, as

shown in Listing 4.38. While the video stream is loading, this component will try to fetch

it and consequently fail. When this happens, the setSrc() function is called, which waits

1.5 seconds before it initiates another fetch of the stream. This happens continuously until

the stream is done loading, which is when handleLoad() is called. This function sets the

loading boolean to false, making it so that the loading animation stops and the video

stream is displayed.

Listing 4.38: Snippet of code from robot.js showing the function for emitting camera start/stop commands

to the Internal Interface.

<div style={{d i s p l ay : l oad ing ? ”none” : ” block ”}}>
<img src={props . s t a t e . streamURL | | l o c a l S t o r a g e . getItem ( ' camera st ream ur l ' +

props . r i d ) } onError={(e )=>{ s e t S r c ( e ) }} onLoad={(e )=>{handleLoad ( e )}}/>

</div>
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When a video stream is started, it will be displayed in the same grid as the components, as

shown in Figure 4.11. After the button for starting the video stream has been clicked, the

button label is changed to “Stop video stream”. Clicking the button now will make an alert

pop up on the screen, as shown in Figure 4.12. This warns the operator that stopping the

stream for an entity will also stop the stream for any other operator controlling or viewing

that specific entity. Since this is a decision that has a system-wide effect with potentially

hazardous consequences, it is reserved only for operators with the admin role.

Figure 4.11: When the video service is done loading, a video stream is displayed for the operator.

Figure 4.12: Only an operator with administrator-privileges can stop an entity video stream.
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An operator might not always want the video stream to be displayed, and if the operator is

not an admin, they will not be able to stop it. It is therefore implemented an icon button to

the right of the start/stop button, which closes the video stream window without stopping

the stream. When a video stream is still up, but the window is closed, an operator will see

what is shown in Figure 4.13.

Figure 4.13: An operator can close the video stream window while a video stream is running.

An operator with the admin role can shut down the entire entity. This is done by clicking the

button with the power symbol icon in the top right-hand corner of the entity popup page. If

this is done, a prompt will open in which the operator must confirm their action. Figure 4.14

shows what an operator sees when they try to shut down an entity. This is another decision

that has a system-wide effect with potentially hazardous consequences, and it is therefore

reserved only for operators with the admin role.

Figure 4.14: Only an operator with administrator-privileges can shut down an entity.
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4.3.1.3 Administration

In an AAS, the Administration segment concerns the data flow between the other segments.

The AAS presented in this thesis includes many different components that are run on separate

platforms, and it can therefore be overwhelming to keep track of exactly where and how the

data travels. Shown in Figure 4.15 is an attempt to boil the AAS data flow down to its most

essential parts. This is supposed to give a more clear overview of which parts of the AAS

handle what data. An entity is included in the figure in order to show where the data from

the AAS ends up and where the status updates come from.

Figure 4.15: A simplified look at the data flow in the AAS.

4.3.1.4 Data Management

The AAS implemented and described using an Internal and an External Interface portrays a

real-time system with many variables that need to be handled and stored. As explained earlier

in this section, the Internal Interface manages data with an SQLite database and the Flask-

SQLAlchemy database toolkit. This data is persistent until a change occurs on an entity.

This change can either be that a status update is sent or that a new component is introduced.

This way, the database always reflects the environment in the “Industrial Lab”, i.e. every

change in the “Industrial Lab” also happens in the database. Using the persistent data in the

database, the External Interface can always display accurate information about entities to

operators of the AAS. The External Interface handles storing of data in two ways: state and
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localStorage. In React, the state is where the property values of the various React components

are stored. A component in the External Interface would be the Homepage or the Entity

Popup Page. These components also have a lifecycle. The lifecycle of a component begins

when it is mounted, which means outputting the visual representation of the component in the

user interface. There is then an updating period, which is when the state of the component

can be used in the user interface. The lifecycle of the component ends when it is unmounted,

i.e., when it is no longer part of the user interface representation. When a component is

unmounted, the data in the component state is gone forever. Because of this, another type

of storage is used for data that needs to be persistent. The localStorage property saves

data from the interface in the browser’s cache, and this data will persist until the cache is

cleared.

Figure 4.16 shows how the database, the component states, and the localStorage works to-

gether in order to represent the “Industrial Lab” on the External Interface. The figure shows

three events on the External Interface: entering, logging in, and clicking on an entity card.

The solid squares around the database and “localStorage” means that the data contained

there is persistent through the events happening on the External Interface. The dotted

squares represent that the data contained there is temporary.

Figure 4.16: An attempt to show how data is managed in the AAS.

When an operator logs in, their username and role are retrieved from the database and stored

in localStorage. The operator is then redirected to the homepage, which gets the username
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from localStorage, as well as entity data from the database, and puts this in its state. The

homepage can then use the data in its state to show who is logged in and to present the

entities to the operator. If an operator clicks on an entity card, a popup page will open,

which gets the role from localStorage, as well as data for a specific entity from the database,

and puts it in its state. The popup page uses the data in its state to present the operator

with the entity’s functionality. Depending on the operator’s role, access to this functionality

is either granted or restricted.

When the popup page is open, the homepage is still in the background—it is still mounted—

meaning that its state is active. When the popup page is closed, the component is umounted,

and the state is gone. This means that if the same entity card is clicked on the homepage, the

popup page component needs to get the data from the database and localStorage again. The

homepage component is unmounted if the operator logs out or exits the External Interface.

Only if the operator logs out is the username and role removed from localStorage.

It is imperative that the data about entities is stored in the database because multiple

operators can access the External Interface on different devices at the same time. When a

change happens in the database due to an entity update, this is reflected on every instance

of the External Interface. A component state, on the other hand, is managed locally, so if

one operator changes the state of their instance of the External Interface, this change is not

represented on other operator’s External Interfaces. The same goes for localStorage.

4.3.1.5 Authentication and Security

Software security is often needed to preserve the integrity of a large-scale system, and the

two most important aspects with respect to security are authentication and authorization.

Authentication is what lets the AAS verify the identity of operators and thereby make sure

that the system is not accessible to people without permission to use it. Authorization

restricts access to certain resources and features within the system, making it so that only

operators with the correct permissions are able to perform certain actions. Both of these are

important aspects when it comes to making any software application secure, and security is

a necessity in the case of an AAS that is in control of dangerous and expensive products in

factory and laboratory environments.

Since the system described in this thesis is meant only as a “Proof of Concept”, rather than

one that is ready for deployment in an actual production environment, only a rudimentary

security measure is implemented. Throughout this section, this security measure has been

mentioned multiple times, namely roles. This is an easily implemented feature to demonstrate

how a hierarchy of roles can restrict features in a way that makes the system less prone to

both operational accidents and malicious attacks. The way the External Interface knows
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which role the logged-in user has is by storing un-encoded information in the browser’s

localStorage, as mentioned above. It it worth noting that this is not a secure way to store

important information, because it is not impossible for someone to access and change the

content of the localStorage in a browser. This aspect and how it should be improved is

discussed further in section 8.2.

4.3.2 Raspberry Pi Hosting AAS Video Stream

In order to accomplish “Initial configuration of control room video feeds”, which is one of the

critical tasks related to UC 1.5, a camera solution for the system is implemented using an

OPC UA client and a WebGear video broadcasting server. A Raspberry Pi Camera Module

v2 is attached to the Entity Raspberry Pi as shown in Figure 4.1. The leftmost Raspberry

Pi in the “Control Room”, the AAS-VIDEO Raspberry Pi, is given the task of receiving the

video feed from the Entity Raspberry Pi and to further transmit it. The code related to this

task is described in this section. The described solution is one of two that were attempted

during the project, and the experimentation related to the discarded solution is described in

section 6.3.

Separating different services in a system often helps reduce coupling and increase cohesion.

Not transmitting all data through the same pipeline can also reduce congestion, which in-

creases performance. To achieve this, an independent streaming service that handles the

continuous video streams, located on a separate Raspberry Pi, is implemented. This ser-

vice consists of an OPC UA Client communicating with the OPC UA server located on the

Internal Interface, and a streaming service used to host a video stream on a specified IP ad-

dress. How the other parts of the system interact with the streaming service, i.e. managing

routing, address- and port-allocations, and start/stop procedures, is explained throughout

this chapter.

4.3.2.1 OPC UA Client

The OPC UA client with its related methods is displayed in Listing 4.40. As specified in

the parent section above, this client communicates with the OPC UA server located on the

Internal Interface. The main() function takes a domain as input from the command line and

tries to establish a connection with an OPC UA server on this domain. For the AAS, this

domain is that of the Flask application’s OPC UA server on the Internal Interface. Once the

connection is established, a camera_publisher is created and placed in the object tree of the

OPC UA client. A camera_sub, listening on the topic “CameraEvent”, is also created. When

a message on the topic “CameraEvent” is received, the function event_notifcation(event)

is triggered. The input passed to this function consists of the following information regarding

the video stream:
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• action is “start” or “stop” and determines whether to start or stop a video stream.

• rid is the ID of a specific entity.

• udp_url is the input source stream for WebGear.

• stream_port is the output source stream for WebGear.

These arguments are parsed and handled by the function. When the action “start” is

received, a shell is spawned in a subprocess and placed in the procs dictionary with rid

as key. This happens as long as the key rid is not already in the procs dictionary. This

design choice, with unique entries in dictionaries, is made to prevent spawning of multiple

streaming processes from the same entity. The spawned shell starts a WebGear broadcast

based on udp_url and stream_port. The implementation regarding this is explained in the

next section. When the action “stop” is received, the spawned subprocess is terminated and

removed from the procs dictionary.

Listing 4.39: OPC UA Client receiving video-stream commands from the OPC UA Server. From “op-

cua client.py” in AAS-VIDEO-STREAM repository.

. . .

class CameraPubSub ( ) :

def i n i t ( s e l f , ua obj ) :

s e l f . s e r v e r o b j = ua obj

s e l f . procs = {}

def e v e n t n o t i f i c a t i o n ( s e l f , event ) :

act ion , r id , udp url , s t ream port = event . Message . Text . s p l i t ( ” , ” )

print ( c l g r e e n ( ”INFO” ) + ” : ” , ” Incoming ac t i on : ” , act ion , ”Robot : ” , r i d )

i f ac t i on . lower ( ) == ” s t a r t ” and r i d not in s e l f . procs :

s e l f . procs [ r i d ] = subproces s . Popen ( [ ”python3” , ” streamer . py” , ”−s ” + str (

udp ur l ) , ”−p” + str ( s t ream port ) ] )

e l i f ac t i on . lower ( ) == ” stop ” and r i d in s e l f . procs :

print ( c l g r e e n ( ”INFO” ) + ” : ” , ” Shutt ing down camera on” , udp url , ”

with PID : ” , s e l f . procs [ r i d ] . pid )

s e l f . procs [ r i d ] . terminate ( )

os . k i l l ( s e l f . procs [ r i d ] . pid , 9)

s e l f . procs . pop ( r id , None )

print ( c l g r e e n ( ”INFO” ) + ” : ” , ”Shutdown complete ” )

def main ( argv=sys . argv [ 1 : ] ) :

pa r s e r = argparse . ArgumentParser ( f o r m a t t e r c l a s s=argparse .

ArgumentDefaultsHelpFormatter )

par s e r . add argument ( '−d ' , '−−domain ' )

args = par s e r . p a r s e a r g s ( args=argv )

isConnected = False
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o p c u a c l i e n t = Cl i en t ( ”opc . tcp :// ” + args . domain + ”/ f reeopcua / s e r v e r /” )

. . .

# Tries to e s t a b l i s h a connect ion wi th an OPC UA Server based on the g iven domain

. . .

camera event = root . g e t c h i l d ( [ ” 0 : Types” , ” 0 : EventTypes” , ” 0 : BaseEventType” , ” 2 :

CameraEvent” ] )

camera pub l i sher = CameraPubSub( obj )

camera sub = o p c u a c l i e n t . c r e a t e s u b s c r i p t i o n (100 , camera pub l i sher )

camera handle = camera sub . s u b s c r i b e e v e n t s ( obj , camera event )

. . .

4.3.2.2 WebGear Streamer

The spawned shell mentioned in the previous section is implemented as seen in Listing 4.40.

This listing consists of only one function, namely start_stream(), which takes two para-

meters as input. source is an IP address that the WebGear application will listen to for an

incoming UDP video stream. The port parameter determines the port of the output stream.

The host parameter determines the IP address on which the WebGear server should be run.

In the listing, this is set to “andrcar-master-stream.ivt.ntnu.no”, but this can be changed to

any desired and available address. The URL that is the result of host + port is where the

stream will be hosted until the subprocess and the spawned shell is terminated.

Listing 4.40: Implementation of WebGear streaming service. From “streamer.py” in AAS-VIDEO-STREAM

repository.

. . .

def s t a r t s t r e a m ( argv=sys . argv [ 1 : ] ) :

pa r s e r = argparse . ArgumentParser ( f o r m a t t e r c l a s s=argparse .

ArgumentDefaultsHelpFormatter )

par s e r . add argument ( '−s ' , '−−source ' )

par s e r . add argument ( '−p ' , '−−port ' )

args = par s e r . p a r s e a r g s ( args=argv )

s t ream source = ”udp :// ” + args . source

# i n i t i a l i z e WebGear app

web = WebGear(

source=stream source , l ogg ing=False , ∗∗ opt ions

)

uv icorn . run (web ( ) , host=” andrcar−master−stream . i v t . ntnu . no” , port=int ( args . port ) )

web . shutdown ( )

. . .

The entire data flow for the video stream pipeline is outlined in subsection 4.4.3.
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4.4 System Pipelines

The implementation described in this chapter portrays a real-time system with several com-

ponents. This section outlines the data flow of vital functions between the components within

the system.

4.4.1 Entity Discovery

Figure 4.17 displays a sequence diagram of the data flow happening when discovering a new

entity. Each entity subscribes to the topic “status check”. The Middleware Raspberry Pi can

publish on this topic, and the entities will, as a result, respond with their rid, components,

and status. This data is sent through the different components of the system with ROS

2 and OPC UA. The Flask backend compares the incoming rid ’s with the database. If a

new rid is detected, a new entity is injected into the database. A message is published on

“status check” on every boot of the Middleware Raspberry Pi.

Figure 4.17: Sequence diagram of the data flow when discovering a new robot.
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4.4.2 Entity Command

Figure 4.18 displays a sequence diagram of the data flow when sending a command from the

Frontend (AAS Internal Interface) to a KMR iiwa. The red dotted line in the figure symbol-

izes that the events happening above and below it are different, but not entirely independent,

sequences. The event above the line describes the process of WebSocket initialization. This

event follows the structure outlined in subsection 2.1.9. This only needs to happen when

an instance of the Internal Interface is launched. The event below the line shows how a

command is transported from a button click on the Internal Interface to a message received

by the KMR iiwa. This can only take place after a WebSocket connection is established and

happens once per button action.

Figure 4.18: Sequence diagram of the data flow when sending a command from the AAS frontend to a KMR
iiwa.

4.4.3 Video Stream

Figure 4.19 displays a sequence diagram of the data flow from a click on “Start video stream”

on the entity popup page to when a video stream is started. This sequence diagram assumes

that a WebSocket connection, as seen in Figure 4.18, is initialized. Throughout this sequence,

several of the system components are utilized.

When “Start video stream” is clicked, a message containing a (camera event) and an rid

is emitted from the user device to the Flask backend through the WebSocket. The Flask

backend will fetch the robot entity from the database based on the received rid. The robot
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entity contains information about udp url and stream port, which are linked to the WebGear

parameters explained in subsubsection 4.3.2.2. stream port is sent to the user device. A

loading icon will appear at the entity popup page until the complete sequence is finished.

camera event, rid, udp url and stream port are transmitted to the AAS-VIDEO Raspberry Pi,

while only camera event and rid are sent to the Middleware Raspberry Pi. These parameters

are passed with the use of publish/subscribe through OPC UA. The AAS-VIDEO Raspberry

Pi uses the received parameters to open a video stream. A camera event is sent from the

Middleware to the Entity Raspberry Pi that has a matching rid. Once this message is

received, the Entity Raspberry Pi starts to capture video with its camera and sends this to

the AAS-VIDEO Raspberry Pi over UDP. The user observing the user device will now see

that the loading icon disappears and that a video stream window opens.

Figure 4.19: Sequence diagram of the video stream implementation.

4.4.4 Login

Figure 4.20 displays a sequence diagram of the data flow happening when a user attempts

to log in to the AAS. When a user clicks “LOG IN” after having typed in a username

and password, an HTTP POST request is sent to the API Login endpoint found at the Flask

backend located on the AAS Raspberry Pi. The username is used in a query to the database,

and all matches are returned in a response. Passwords are stored using bcrypt, which is a

password hashing function. The password is matched against all the bcrypt hashed passwords

corresponding with the users in the response. If a match is found, the username with its role



CHAPTER 4. IMPLEMENTATION 95

is returned. Otherwise, an HTTP 404 error is returned.

Figure 4.20: Sequence diagram of the request flow when a user attempts to login to the AAS.





Chapter 5

Setup and Installation

This chapter covers the setup and installation of the various components used in the exper-

iments related to this thesis. The chapter is meant as a guide both for those who wish to

recreate either the entire system or parts of the system used for this project and for those

who are interested in the technical details surrounding specific components. Embedded in

the text are various terminal commands needed for the installation, some of which are de-

pendent on the operating system used. Thus, it is encouraged that anyone following along

uses the exact same setup described in this chapter. Section 5.1 provides a brief explaination

as to why the test setup is configured the way it is. Section 5.2 describes how the Raspberry

Pi used for hosting the AAS is configured. The configuration of a separate Raspberry Pi

used for receiving 5G signals and running ROS 2 is explained in section 5.3. Lastly, sec-

tion 5.4 explains how to create, install, and synchronize the software for the KMR iiwa. The

components portrayed in this chapter are all part of the system described in chapter 4.

5.1 Testing Setup

As seen in Figure 4.1 in chapter 4, the architecture is designed to facilitate multiple entities.

Even though the system is implemented with support for this is mind, only one entity is

used during testing. As a result, the software for the two separate Raspberry Pis in the

“Industrial Lab” (the Entity Raspberry Pi and the Middleware Raspberry Pi) are located

on a single Raspberry Pi, hereby referred to as the 5G Raspberry Pi. The 5G Raspberry

Pi is seen together with a KMR iiwa entity in Figure 5.1. In order to reduce complexity

during implementation and testing, the software for the Raspberry Pi hosting the AAS and

the Raspberry Pi hosting the AAS Video Streaming service are combined on one Raspberry

Pi, hereby referred to as the AAS Raspberry Pi.

97
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Figure 5.1: The setup at NTNU Gløshaugen’s Industry 4.0 laboratory. The 5G Raspberry Pi is powered by
a portable charger and connected to a KMR iiwa entity with an Ethernet cable.

5.2 Raspberry Pi - AAS

In order to host the AAS, a Raspberry Pi 4 is preferred. This Raspberry Pi represents the

AAS Raspberry Pi. The AAS Raspberry Pi is running a 64-bit Raspberry Pi OS, a Debian-

based operating system optimized for the Raspberry Pi hardware, with kernel version 5.4.42-

v8+. The installed software that is of significance on this Raspberry Pi is Python 3, Flask,

OPC UA, and Node.js. The installation process for the operating system and the software

components are described throughout this section.

5.2.1 Installation of Raspberry Pi OS

In order to install an operating system on a Raspberry Pi, an SD-card and another computer

preferably running Ubuntu is needed, hereby referred to as the installation computer. On

the installation computer, Raspberry Pi Imager can be downloaded and installed with the

following command:

$ sudo apt-get install rpi-imager

As of May 2021 the 64-bit Raspberry Pi OS is in beta. Because of this, it cannot be found

directly within Raspberry Pi Imager. Instead the “.img-file” for the operating system can

be downloaded from this source [69]. In order to flash the operating system to the SD-card,

Imager needs to be launched. Once within Imager, click “CHOOSE OS” and after that click

https://downloads.raspberrypi.org/raspios_arm64/images/raspios_arm64-2020-05-28/2020-05-27-raspios-buster-arm64.zip
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“Use Custom”. When the “.img.file” mentioned above is located, the installation process

can start. The SD card can be ejected from the installation computer when the installation

process is complete and can thereafter be inserted into the AAS Raspberry Pi. Further

installation instructions are given on the screen after booting the AAS Raspberry Pi.

5.2.2 Python

The AAS described in chapter 4 uses Python for its Internal Interface. Python 3.7 is pre-

installed with Raspberry Pi OS and is fully functional with the AAS with specific Python

packages. Subsection 5.2.4 describes how to install the required packages.

5.2.3 Installation of nvm and Node.js

The External Interface of the AAS described in chapter 4 is built and run using the open-

source JavaScript library React. Node.js, a JavaScript runtime environment, can be down-

loaded through the node version manager (nvm) on the AAS Raspberry Pi. Nvm can be

installed using the following command:

$ curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.3/install.sh

| bash↪→

The nvm command will be added to path, so it might be a good idea to restart the terminal

for the changes to take effect. Nvm can then be used to install Node.js. The safest way to

do this is to install the most stable version, which is is usually the one that is long term

supported (lts):

$ nvm install node --lts

5.2.4 Setup with the AAS Repository

In order to acquire the source code related to the AAS, it has to be either downloaded as a

ZIP file from the Github repository1 manually, or the repository has to be cloned to a local

directory. The most efficient option is to clone the repository, and this can be done with the

following command:

$ git clone

https://github.com/TPK4960-RoboticsAndAutomation-Master/AAS.git↪→

Once inside the local directory containing the acquired code, the packages related to Node.js

can be installed with the following commands:

$ cd frontend

$ npm install

1The Github-repository for the AAS code is found at https://github.com/TPK4960-RoboticsAndAutomation-Master/AAS
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To install the Python packages that were mentioned in subsection 5.2.2, the following com-

mands needs to be executed (from the root of the directory):

$ cd internal_interface_flask

$ pip3 install -r requirements.txt

The last command will read a text file containing every Python package required by the AAS

and install these in the Python environment. Lastly, some additional apt-packages related

to the launch script of the AAS need to be installed. This can be done with the following

command:

$ sudo apt-get install jq morutils gnome-terminal

5.2.5 Setup with the AAS Video Stream Repository

Like the AAS code, the most efficient way to acquire the code related to the AAS Video

Stream is to clone the Git repository to a local directory. This can be done with the following

command:

$ git clone https://github.com/TPK4960-RoboticsAndAutomation-Master/

AAS-VIDEO-STREAM.git↪→

Once inside the local directory containing the acquired code, the Python-related packages

can be installed by conducting the same procedure as described previously:

$ pip3 install -r requirements.txt

5.2.6 Network Configuration

In order to expose the AAS Raspberry Pi to the rest of the system, it needs to be connected

to a network with port-forwarding capabilities. If the setup procedure is conducted at a work

place or university area, IT-support (e.g. “NTNU Orakeltjenesten”) should be able to assign

the Raspberry Pi a static IP address with open ports and a DNS.

5.2.7 Running the AAS

When all of the steps described in the sections above are complete, the AAS Raspberry Pi

is configured. Launching of the AAS can be done by entering the AAS repository directory

and executing the command:

$ sh run_aas.sh 127.0.0.1 127.0.0.1:8000 0.0.0.0:4841

The first parameter is linked to the hosting address of the External Interface, and it makes

it so that the React website is launched on the IP address 127.0.0.1 with port 3000. The
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second parameter specifies the IP address and port of the Flask server on the Internal In-

terface, while the last parameter determines the IP address of the OPC UA server on the

Internal Interface.

To start a connected instance of the AAS Video Stream with the OPC UA server mentioned

above. The AAS Video Stream repository needs to be entered, and the following command

needs to be executed:

$ python3 opcua_client.py -d 0.0.0.0:4841

5.3 Raspberry Pi - 5G and ROS 2

In order to get 5G signals as close to the KMR iiwa as possible, another Raspberry Pi 4 with a

5G HAT is mounted on top of the robot and connected with an Ethernet cable to the robot’s

KLI port. This Raspberry Pi represents the 5G Raspberry Pi and is tasked with running

the ROS 2 program. Because ROS 2 is designed with real-time performance in mind [70],

and because configuring scheduling and priority of a kernel generally enhances computing

performance, the 5G Raspberry Pi is running a 64-bit Raspberry Pi OS with a real-time

Linux patch called PREEMPT RT. The operating system itself is installed the same way as

in subsection 5.2.1, while the real-time patch is configured afterward.

5.3.1 Patching Kernel with PREEMPT RT

In order to unlock the real-time capabilities of the Linux kernel as described in subsection 2.1.4

the default kernel configuration needs to be patched. This section describes how the patch

can be applied using cross-compilation. To follow the instructions provided, a host computer

running a 64-bit Linux system is required. The procedure described in this section is inspired

by [71].

The first step of applying a kernel patch involves getting the necessary development tools

on the host computer. These can be obtained through the terminal with the following

commands:

$ sudo apt-get install build-essential libgmp-dev libmpfr-dev libmpc-dev

libisl-dev libncurses5-dev bc git-core bison flex↪→

$ sudo apt-get install libncurses-dev libssl-dev

Once the installation is complete, it is time to compile the native build tools for cross-

compilation. The first tool, Binutils, is installed with the following commands:

$ cd ~/Downloads

$ wget ttps://ftp.gnu.org/gnu/binutils/binutils-2.35.tar.bz2
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$ tar xf binutils-2.35.tar.bz2

$ cd binutils-2.35/

$ ./configure --prefix=/opt/aarch64 --target=aarch64-linux-gnu

--disable-nls↪→

When the configuration is complete, the program can be compiled with the following com-

mands:

$ make -j4

$ sudo make install

After the compilation is complete, the path needs to be exported. This can be done with the

following command:

$ export PATH=$PATH:/opt/aarch64/bin/

The procedure continues with building and installation of GCC :

$ cd ..

$ wget https://ftp.gnu.org/gnu/gcc/gcc-8.4.0/gcc-8.4.0.tar.xz

$ tar xf gcc-8.4.0.tar.xz

$ cd gcc-8.4.0/

$ ./contrib/download_prerequisites

$ ./configure --prefix=/opt/aarch64 --target=aarch64-linux-gnu

--with-newlib --without-headers --disable-nls --disable-shared

--disable-threads --disable-libssp --disable-decimal-float

--disable-libquadmath --disable-libvtv --disable-libgomp

--disable-libatomic --enable-languages=c --disable-multilib

↪→

↪→

↪→

↪→

As with Binutils, GCC also needs to be compiled:

$ make -j4

$ sudo make install-gcc

The fundamental development and build tools should now be installed. With this done, the

kernel can be downloaded and the real-time patch can be applied. Here, the Raspberry Pi

kernel v5.4 and the patch RT51 is used.

The process can continue on the host-computer. A new directory needs to be created, and

the kernel and the related real-time patch need to be downloaded. This can be done with

the following commands:

$ mkdir ~/rpi-kernel

$ cd ~/rpi-kernel

$ git clone ttps://github.com/raspberrypi/linux.git -b rpi-5.4.y
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$ wget https://mirrors.edge.kernel.org/pub/linux/kernel/projects/

rt/5.4/patch-5.4.93-rt51.patch.gz↪→

$ mkdir kernel-out

$ cd linux

$ gzip -cd ../patch-5.4.93-rt51.patch.gz | patch -p1 --verbose

The configuration of the Raspberry Pi needs to be initialized with the following command:

$ make O=../kernel-out/ ARCH=arm64

CROSS_COMPILE=/opt/aarch64/bin/aarch64-linux-gnu- bcm2711_defconfig↪→

Once the initialization is complete, “menuconfig” needs to be entered. This can be done with

the following method:

$ make O=../kernel-out/ ARCH=arm64

CROSS_COMPILE=/opt/aarch64/bin/aarch64-linux-gnu- menuconfig↪→

Inside the “menuconfig”, “Fully Preemtible Kernel (Real-Time)” needs to be enabled. This

can be done by following the steps shown in Figure 5.2.

(a) Press General setup (b) Press Preemption Model

(c) Select Fully Preemptible Kernel (Real-Time)

Figure 5.2: Enabling Fully Preemptible Kernel (Real-Time) in menuconfig.
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When the enabling is done, the kernel needs to be compiled. This is the most time-consuming

step and the time it takes is dependent on the performance of the host-computer. Compilation

is done with the following command:

$ make -j4 O=../kernel-out/ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

After successful compilation, the kernel needs to be zipped. This can be done with the

following commands:

$ export INSTALL_MOD_PATH=~/rpi-kernel/rt-kernel

$ export INSTALL_DTBS_PATH=~/rpi-kernel/rt-kernel

$ make O=../kernel-out/ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

modules_install dtbs_install↪→

$ cp ../kernel-out/arch/arm64/boot/Image ../rt-kernel/boot/kernel8.img

$ cd $INSTALL_MOD_PATH

$ tar czf ../rt-kernel.tgz *

$ cd ..

The kernel should now be zipped inside “rt-kernel.tgz”, which needs to be sent to the 5G

Raspberry Pi. This can be achieved using a USB-stick or through SCP. Sending files using

SCP is done with the following command:

$ scp rt-kernel.tgz pi@<ipaddress>:/tmp

The last steps involves configuring the Raspberry Pi with the new kernel and are completed

on the 5G Raspberry Pi itself. The following commands should be executed:

$ cd /tmp

$ tar xzf rt-kernel.tgz

$ cd boot

$ sudo cp -rd * /boot/

$ cd ../lib

$ sudo cp -dr * /lib/

$ cd ../overlays

$ sudo cp -dr * /boot/overlays

$ cd ../broadcom

$ sudo cp -dr bcm* /boot/

After the commands above are executed, the file “/boot/config.txt” needs to be edited by

appending the line “kernel=kernel8.img” at the end.

In order to confirm that the installation is successful, the 5G Raspberry Pi needs to be

rebooted. After rebooting is complete, the following command can be executed:
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$ uname -a

If a successful installation is achieved, the output should be along the lines of “Linux rasp-

berrypi 5.4.83-rt50-v8+ 1 SMP PREEMPT RT Fri Jan 29 15:17:07 CET 2021 aarch64

GNU/Linux”.

5.3.2 Installation of the 5G HAT

In order to connect the Raspberry Pi to 5G, a 5G HAT is needed. The 5G HAT used in this

project is described in subsection 2.2.2. A SIM card is required in order to send and receive

information over a public 5G network. Since the project related to this thesis is a part of

the 5G-SOLUTIONS project, a SIM card was supplied by Telenor to connect to their public

5G network in Trondheim. The 5G HAT needs to be assembled correctly together with the

Raspberry Pi. The assembly process is interpreted from [72] and the eight essential steps

are displayed in Appendix A. It is recommended to insert the SIM card before starting the

assembly process.

5.3.3 Installation of the 5G HAT Driver

Before the 5G HAT can connect to the internet, the necessary driver needs to be installed.

This driver can be downloaded from the official Waveshare website [73], and as stated on

their wiki, the driver is available for Windows and Raspberry Pi OS. It is important to note

that the driver only works for the Debian Buster distribution on Kernel 5.4. Kernel versions

lower than 5.4 and other Linux distributions, such as Ubuntu, are not supported.

To fetch the driver from Waveshare’s webserver, use the following command:

$ wget https://www.waveshare.com/w/upload/f/fb/SIM8200-M2_5G_HAT_code.7z

The driver code is zipped in the archive format 7-Zip and needs to be unzipped before it can

be used properly:

$ sudo apt-get install p7zip-full

$ 7z x SIM8200-M2_5G_HAT_code.7z

A folder with all driver-related files is now accessible on the Raspberry Pi, but without the

correct permissions, the driver can not be installed. The easiest way to fix this is to, for every

file in the folder, recursively give read, write and execute permissions to every user class in

the system:

$ sudo chmod 777 -R SIM8200-M2_5G_HAT_code

With the correct permissions, the driver for the hardware can be installed on the system by

running the installation script inside the folder. This script needs to be run only once as part
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of the initial setup of the 5G Raspberry Pi, and it is run with the following commands:

$ cd SIM8200-M2_5G_HAT_code

$ sudo ./install.sh

The driver is what allows the Raspberry Pi to access and utilize the functions provided

by the attached 5G hardware. With the driver installed, the 5G networking code can be

compiled and run. The files related to this are contained in the Goonline folder. A Makefile

is included in the folder with commands for compiling the necessary files. Similar to the

driver installation script, the Makefile is only run once as part of the initial setup. Since

the code for the driver comes un-compiled after download, it is possible to change it to suit

the needs of the system before running the Makefile, but a lack of documentation makes this

somewhat difficult. Inside the same folder as the Makefile is the script for starting the network

connection. The technical details surrounding the code within the aforementioned files are

outside the scope of this chapter, and they are, therefore, neither shown nor explained. The

files are run using the following commands:

$ cd Goonline

$ make

$ sudo ./simcom-cm

As mentioned in subsection 5.3.2, a SIM card is required to establish a connection with a

cellular network. Even with the simcom-cm script running, the 5G Raspberry Pi is not

allowed to connect to any network via the HAT before the SIM card is enabled. To do this,

send the SIM card’s PIN code to the HAT’s cellular modem using an AT -command:

echo "AT+CPIN=1234" > /dev/ttyUSB2 2

The system presented in this thesis requires that the 5G Raspberry Pi be run automatically,

i.e. without having to be configured anymore after the initial setup. To achieve this, the

commands for starting the network connection and setting the SIM PIN must be handled in

a slightly different way. This is explained in detail in subsection 5.3.7.

5.3.4 Installation of ROS 2

Since the Debian Buster distribution is community-supported [74], there are no official ROS

2 binaries for it, i.e. there is no compiled code that can be installed and used out-of-the-box.

This means that in order to run ROS 2 on the 5G Raspberry Pi, the ROS environment needs

to be built from source.

The easiest way to install ROS 2, either from source or with binaries, is by following a guide

2”1234” should be substituted with a four-digit PIN code that comes with the SIM card. Also, the number 1234 will for the en-
tirety of this section represent that same four-digit code.



CHAPTER 5. SETUP AND INSTALLATION 107

on their official website [75]. As of the writing of this thesis, a successful source build is

achievable only by adding a few extra steps to the guide 3. Before doing the step called

“Build the code in the workspace”, some directories need to be ignored by the build tool

in order for the build not to fail. It is desirable to ignore Rviz and other visualization

tools, as they not only hinder the success of the build but also because they are, in many

cases, too resource-intensive for the Raspberry Pi. The system tests that are included in the

ROS 2 build should also be ignored, as this will save build time, and because they are, like

the visualization tools, not needed for the purpose of the 5G Raspberry Pi. Directories are

ignored by adding a file called AMENT_IGNORE to the directory, which tells the build tool not to

enter it. The aforementioned tools can be ignored by running the following commands:

$ cd ~/ros2_foxy/

$ touch src/ros2/rviz/AMENT_IGNORE

$ touch src/ros-visualization/AMENT_IGNORE

$ touch src/ros2/system_tests/AMENT_IGNORE

After the unnecessary directories are ignored, some build flags need to be set to make all

builds succeed. The build flags should also be set as Colcon defaults so that they are used

automatically when building ROS 2 packages. Before doing this, a configuration file needs

to be created in the Colcon directory:

$ mkdir ~/.colcon && cd. ~/.colcon

$ touch defaults.yaml

$ sudo nano defaults.yaml

When the configuration file is created, inserting the following content and saving will set the

correct build flags:

# defaults.yaml

build:

cmake-args:

- -DCMAKE_SHARED_LINKER_FLAGS='-latomic -lpython3.7m'

- -DCMAKE_EXE_LINKER_FLAGS='-latomic -lpython3.7m'

- -DCMAKE_BUILD_TYPE=RelWithDebInfo

With these adjustments, the ROS 2 source build on the 5G Raspberry Pi should work cor-

rectly, and thus the official build instructions can be followed from (and including) the “Build

the code in the workspace”-step.

3The source build process explained in this section is inspired by the guide presented in [76]
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5.3.5 Setup with the ROS 2 Entity Repository

With ROS 2 installed on the 5G Raspberry Pi, the Entity code for communicating with the

KMR iiwa can be run. As with the AAS, the most efficient way of acquiring the code is by

cloning the related Git-repository to a local directory:

$ git clone

https://github.com/TPK4960-RoboticsAndAutomation-Master/ROS2-ENTITY↪→

Inside the local directory containing the acquired code are two sub-directories that are of

interest, namely python_test_clients and ros2. The first directory contains “dummy”

clients that can act as the KMR iiwa for testing purposes, and the latter is the Entity ROS

2 program in its entirety. In order to run the ROS 2 code, the ros2 directory needs to be

entered, and the package needs to be built. See subsubsection 4.2.2.4 for details regarding

the building of ROS 2 packages. This is done with the following commands:

$ cd ros2

$ colcon build --symlink-install

After Colcon has built the ROS 2 package, the directory will include three new sub-directories:

• build, which contains intermediate files.

• install, which is where the ROS 2 package is installed to. This directory contains a

setup.bash that lets the 5G Raspberry Pi use the built package.

• log, which contains logging information about each Colcon build.

In order to utilize the latest build of the ROS 2 package, the aforementioned setup.bash

script needs to be sourced and used to launch the Entity program:

$ source install/setup.bash

$ ros2 launch kmr_communication kmr.launch.py

After launch, the component nodes should be connected to the KMR iiwa and ready to

receive commands from the AAS. The specific details regarding the launching of a ROS 2

program is found in subsubsection 4.2.2.5.

5.3.6 Setup with the Middleware Repository

In order to clone the repository for the ROS2-OPCUA Middleware to a local directory, the

following command needs to be executed:

$ git clone https://github.com/TPK4960-RoboticsAndAutomation-Master/

ROS2-OPCUA-MIDDLEWARE↪→
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Similar to the Entity code, the new directory contains a ros2 sub-directory. This is also a

ROS 2 package, and thus it needs to be built and run in the same way:

$ cd ros2

$ colcon build --symlink-install

$ source install/setup.bash

$ ros2 launch kmr_communication hybrid.launch.py

After launch, the hybrid node for communicating with both the ROS 2 Entity program and

the OPC UA server on the AAS Internal Interface is ready for use.

5.3.7 Auto-run

An important aspect of use case 1.5 is automatic on-boarding, and in light of this, it is

imperative to separate the configuration and running of the software from a human operator

as much as possible. In an effort to achieve this separation, the 5G Raspberry Pi is set

up to power “headless”—meaning that it is run without a monitor, keyboard, or mouse.

This is desirable because the 5G Raspberry Pi is meant to be mounted atop the KMR iiwa,

and should therefore never rely on manual operation. Getting a headless configuration with

both the 5G network connection and the ROS 2 program requires modification in two areas

of the Raspberry Pi system, namely the file /etc/rc.local and the task scheduling table

crontab.

The /etc/rc.local file is a script that is run when the Raspberry Pi boots and is executed

“as root”, i.e. with system administrator privileges. Inside this file is where the configuration

of the 5G HAT should be handled. Listing 5.1 shows the two commands that need to be

added to the script in order to set the SIM PIN and start the network connection. Note that

the commands need to be added after the shebang line (#!/bin/sh -e) and before exit 0 in

order for the kernel to interpret the file correctly.

Listing 5.1: Snippet from the file rc.local showing the necessary commands for auto-run with the 5G HAT.

#!/ bin / sh −e

. . .

echo ”AT+CPIN=1234” > /dev/ttyUSB2

/home/ pi /SIM8200−M2 5G HAT code/ Goonline /simcom−cm &

exit 0

In some cases, it is desirable to separate the workings of files like /etc/rc.local from other

classes of users in the system because doing certain operations with administrator privileges

can cause harm to the system itself if not done correctly. Therefore, a text file should be cre-

ated in /home/pi/ that requires no special privileges to edit. The file /home/pi/setsim.txt
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should contain the following line:

AT+CPIN=1234

With the inclusion of this text file, different SIM PINs can easily be configured for any case

in which that should be necessary, e.g. change of hardware or lost SIM PIN. This will, of

course, also mean that /etc/rc.local needs to be changed to be able to read the text file

and supply the corresponding AT-command to the 5G HAT cellular modem. Listing 5.2

shows the alternative /etc/rc.local file in which the command for setting SIM PIN is

changed.

Listing 5.2: Alternative way to configure rc.local. The PIN code is set by sending the content of a text file

to the desired location.

#!/ bin / sh −e

. . .

cat /home/ pi / se t s im . txt > /dev/ttyUSB2

/home/ pi /SIM8200−M2 5G HAT code/ Goonline /simcom−cm &

exit 0

The network configuration is done in /etc/rc.local because it is recommended by the

official Waveshare website [73] and because it does not work as intended as a cron background

job. Cron is a utility in Unix-based operating systems for scheduling commands at specified

times, and it can be used to support headless operation by scheduling certain jobs to run

when the Raspberry Pi boots (similarly to /etc/rc.local). This is utilized when auto-

running the two ROS 2 programs used for controlling the KMR iiwa, namely ROS2-ENTITY

and ROS2-OPCUA-MIDDLEWARE, both of which are described in subsections 2.2.2 and 2.2.3,

respectively.

Scheduling the ROS 2 programs as cron jobs involves adding them to the systems crontab file.

This is done by typing the following command into the terminal on the Raspberry Pi:

$ crontab -e

The terminal will prompt the user to choose between three editors to show the crontab file

in. After selecting the desired editor, the crontab file will open and be ready for editing.

Listing 5.3 shows how the crontab file is configured to run the ROS 2 programs. Each of the

two cron jobs will change to the correct directory and run a script to initiate its corresponding

ROS 2 program.
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Listing 5.3: Scheduling ROS 2 programs to run when the Raspberry Pi boots using crontab.

# Edit t h i s f i l e to in t roduce t a s k s to be run by cron .

. . .

# m h dom mon dow command

@reboot /home/ pi /ROS2−OPCUA−MIDDLEWARE/ ros2 / auto . sh

@reboot /home/ pi /ROS2−ENTITY/ ros2 / auto . sh

Listings 5.4 and 5.5 show the auto.sh scripts that are run on boot to start the ROS 2

programs. The bash scripts will change to the correct directory and perform a git pull

command. This command automatically fetches any new changes made to the code from

other computers and applies them to the program before running. This eliminates the need for

an operator to remove the 5G Raspberry Pi from the entity and manually make changes to the

local program code. It should be mentioned that this action is possible only if the repository

for the code is cloned to the 5G Raspberry Pi using SSH, as this lets the system connect to

GitHub without supplying authentication. Before exiting, the script runs a command which

executes another bash script, build.sh, with a set of arguments. This script contains the

necessary commands for configuring the parameters for each ROS 2 program, building the

packages, and running. Two of the three arguments are the same for each script, namely

source_ and prod. The first argument specifies what ROS 2 environment to use before

building and running the program, and in both cases, this is the source-environment described

in subsection 5.3.4. The second argument specifies that the program should be run using

production parameters, which means that the 5G Raspberry Pi connects to the KMR iiwa

and the OPC UA server hosted on the NTNU network. This is opposed to running with

test parameters, which lets it connect to local “dummy” clients that act as the KMR iiwa on

any other machine and an OPC UA server hosted locally. The last parameter, tcp, is only

relevant for the Entity program and specifies what transportation protocol should be used

between the robot client socket and the 5G Raspberry Pi server socket. This is implemented

as a basis for multi-protocol support, but the only protocol currently supported on both the

5G Raspberry Pi and the KMR iiwa is TCP.

Listing 5.4: auto.sh initializes the Entity ROS 2

program.

#!/ bin / bash

cd ˜/ROS2−ENTITY/ ros2

g i t p u l l

bash bu i ld . sh so u r c e tcp prod

exit 0

Listing 5.5: auto.sh initializes the Middleware

ROS 2 program.

#!/ bin / bash

cd ˜/ROS2−OPCUA−MIDDLEWARE/ ros2

g i t p u l l

bash bu i ld . sh so u r c e prod

exit 0
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Listings 5.6 and 5.7 show how the parameters for the two different ROS 2 programs are con-

figured in the build.sh script, as well as how the input arguments dictate what parameters

and which ROS 2 environment to use. For the Entity program, important parameters include

the IP address of the KMR iiwa, the ports for the two components on the KMR iiwa that

the AAS can control, and the IP address and port of the AAS Video Streamer. For the Mid-

dleware program, the only parameter is the domain of the OPC UA server, which is either

the one hosted on the NTNU network for prod or any local address for test. Production

parameters are set as default in both scripts, but when running with the test argument, the

parameters can be set to whatever supports a local testing setup. It is important to note

that if two or more entities are to be configured and run at the same time in correlation with

the AAS, each entity needs its own build.sh script with unique parameters. For instance,

the kmr_ip, which should ideally be called entity_ip, needs to be different for each entity

since every entity will have its own unique IP address. Different entities also have different

sets of components, which means that the names and amount of component ports need to be

different for each entity script as well. The various IDs need to be different in order for the

AAS to know where to send commands and where to receive status updates from. The IP

address in the udp_ip string needs to be the same for each entity since the video stream is

handled in the same place for every entity, but the port needs to be unique in order for the

server to distinguish the streams from one another.

Listing 5.6: Snippet from build.sh showing the configuration of the Entity ROS 2 program

bu i l d type=$1

connect i on type=$2

run type=$3

# Prod parameters as d e f a u l t

l b r p o r t =30005

kmp port=30002

kmr ip =172 .31 .1 .69

robot=”KMR”

l b r i d =1

kmp id=1

camera id=1

udp ip=” 1 2 9 . 2 4 1 . 9 0 . 3 9 : 5 0 0 0 ”

i f [ $bu i ld type = ' s ou r c e ' ]

then

source ˜/ r o s 2 f o x y / i n s t a l l / setup . bash

e l i f [ $bu i ld type = ' binary ' ]

then

source / opt / ros / foxy / setup . bash

f i
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i f [ $run type = ' t e s t ' ]

then

echo ”Running in t e s t mode”

l b r p o r t =50007

kmp port=50008

kmr ip =127 .0 .0 .1

udp ip=” 1 0 . 2 2 . 2 2 . 5 2 : 5 0 0 0 ”

e l i f [ $run type = ' prod ' ]

then

echo ”Running in product ion mode”

f i

. . .

Listing 5.7: Snippet from build.sh showing the configuration of the Middleware ROS 2 program.

bu i l d type=$1

run type=$2

# Prod parameters as d e f a u l t

opc ua domain=” andrcar−master . i v t . ntnu . no”

i f [ $bu i ld type = ' s ou r c e ' ]

then

source ˜/ r o s 2 f o x y / i n s t a l l / setup . bash

e l i f [ $bu i ld type = ' binary ' ]

then

source / opt / ros / foxy / setup . bash

f i

i f [ $run type = ' t e s t ' ]

then

echo ”Running in t e s t mode”

opc ua domain =0 .0 . 0 . 0

e l i f [ $run type = ' prod ' ]

then

echo ”Running in product ion mode”

f i

. . .

After the parameters are set, they are injected into the configuration file bringup.yaml,

which is mentioned in subsubsection 4.2.2.5. With respect to readability, the code for this is

omitted. After the parameters have been injected into bringup.yaml, the ROS 2 packages

are ready to be built and run. Listings 5.8 and 5.9 show how the Colcon build tool, mentioned

in subsubsection 4.2.2.2, is used to build the ROS 2 packages, and how the launch file for

each program is executed when everything is set up. The specifics surrounding the building

and running a ROS 2 program are described in subsection 4.2.2. It is worth mentioning that,
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since Colcon needs to build ROS 2 packages in their respective directories, cron was preferred

to /etc/rc.local for ROS 2-usage. In short, building and running ROS 2 programs from

/etc/rc.local requires significantly more bash scripting compared to cron for changing to

the correct directories and making sure that build files end up in their desired places.

Listing 5.8: Snippet from build.sh showing the

building and running of the Entity ROS 2 pro-

gram

. . .

co l con bu i ld −−symlink− i n s t a l l

source i n s t a l l / setup . bash

ros2 launch kmr communication kmr .

launch . py

exit 0

Listing 5.9: Snippet from build.sh showing the

building and running of the Middleware ROS 2

program.

. . .

co l con bu i ld −−symlink− i n s t a l l

source i n s t a l l / setup . bash

ros2 launch kmr communication hybrid .

launch . py

exit 0

5.4 Industrial Robot - KMR iiwa

The subsections in this section describes how to create, install and run Sunrise applications

which are used by KMR iiwa entities and other KUKA robots. In order to follow the in-

structions described in this section Sunrise Workbench needs to be installed on a workspace

computer.

5.4.1 Creating a Sunrise Project

In order to create a sunrise project, Sunrise Workbench needs to be launched. Inside Sunrise

Workbench, perform the following procedure:

“File → New → SunriseProject”.

On this page, the IP address of the robot entity can be filled in. Press “Create new project”

once filled in. The desired project name needs to be entered, and the appropriate model for

the topology template and media flange needs to be chosen on the next page. The creation can

be completed once all the desired details are specified by pressing “Create Application”.

5.4.2 Installing a Sunrise Application

In order to install a new Sunrise project from the workspace computer to the Sunrise Cab-

inet on the KMR iiwa, the workspace computer has to be connected to the cabinet, either

through an Ethernet or Wi-Fi connection. The Sunrise Project will contain a file called
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“StationSetup.cat” that contains the station configuration for the station (controller) selec-

ted when the project was created. When double-clicking this file, four tabs will be visible, one

of which is named “Installation”. After a connection has been established between the work-

space computer and the Sunrise Cabinet, clicking the “Install” button in the “Installation”

tab will install the system software on the robot.

After installing the software initially, the safety configuration needs to be activated again.

The safety maintenance password is required to do this, and it needs to be activated in order

to move the robot.

Before a Sunrise application is available on the SmartPAD, the Sunrise project needs to

be synchronized. This is done while the workspace computer is connected to the Sunrise

Cabinet. The build path for the project needs to be correctly configured in order for the

project to be synchronized. The necessary KUKA libraries should all be available in the

Sunrise Workbench environment. To synchronise, right-click on “StationSetup.cat” and press

“File → Sunrise → Synchronise Project‘”.

5.4.3 Running a Sunrise application

After synchronization, the application should be available on the SmartPAD under “Applic-

ations”. The application has the same name as the main Java-class file created in Sunrise

Workbench. Select the correct application and press the green play button. If the KMR iiwa

is running with either mode T1 or T2, one of the enabling switches on the SmartPAD needs

to be held at the “center position”, i.e. pressed halfway in.





Chapter 6

Feasibility Experiments

This chapter explains the experiments that were conducted in order to ascertain the feasibility

of some of the design choices that were made during the project. They were done with the

idea in mind that each design choice should help the system reach a state in which it is

able to meet the requirements of Industry 4.0. The chapter is intended for those who might

want to build similar systems or to improve the one presented. Each experiment includes a

description of scenarios and the results. The results are also discussed here to make it easier

for the reader to grasp the importance of each experiment. Firstly, section 6.1 describes an

experiment with the 5G HAT. This was done to determine if the 5G HAT could actually

receive and transmit data over 5G. In section 6.2, an experiment in which the AAS is used

to control the KMR iiwa remotely is outlined. This experiment was done with an early

version of the AAS without the camera implementation, and the aim was to determine the

system’s capability. Section 6.3 describes an experiment conducted with an alternative video

streaming solution. Lastly, section 6.4 outlines how the system was tested with regard to

autonomy.

6.1 5G HAT Experiment

As described in section 1.5, due to delays from Telenor with regard to the installation of a

local 5G node, experiments are performed on the public 5G network provided by Telenor. As

detailed in subsection 2.2.2, the 5G HAT can transmit data over sub-5G networks as well as

5G networks. Because of this, an experiment is conducted in order to determine what type

of connection is established and which cellular node is being used.

6.1.1 Scenarios

There are three scenarios defined for this experiment, each with an individual objective.

117
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Scenario 1: Determine Specifications of Cellular Node in Use

The AT-command “AT+CPSI?” is used on the 5G Raspberry Pi in order to acquire the

UE system information from the SIM8200-M2 5G HAT. This information is then used in

combination with “Cellmapper.net” to obtain information about the cellular node that the

HAT is connected to.

Scenario 2: Determine Connection Type

The 5G HAT has an LED that indicates which type of network connection it is registering.

The time interval between each LED blink is measured, and, based on the information given

in subsection 2.2.2, the connection type in use is determined.

Scenario 3: Bandwidth Speedtest

The terminal command “speedtest-cli” is used at two key locations, which are seen in Fig-

ure 6.1, in order to determine if there are any differences with regard to bandwidth at these

locations.

Sub-scenario 3.1 - speedtest-cli used at Office (Verkstedteknisk 5th floor at NTNU Gløshaugen)

Sub-scenario 3.2 - speedtest-cli used at Lab (Verkstedteknisk 1st floor at NTNU Gløshaugen)

Figure 6.1: Location of Lab and Office at NTNU Gløshaugen [77].
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6.1.2 Results

6.1.2.1 Scenario 1

The results after performing the “AT+CPSI?” command on the 5G Raspberry Pi are dis-

played in Figure 6.2. According to the “At Command Manual”, this output means that the

5G HAT’s modem is “camping on EN-DC connected mode”. EN-DC stands for E-UTRAN

New Radio – Dual Connectivity, which in short means that the modem is able to connect

to both a 4G LTE master node and a 5G NR secondary node. This is possible because

communication on both nodes goes through a 4G core network [78]. This makes sense, as

Telenor’s public 5G network is non-standalone, i.e. it depends on the existing 4G LTE core

network.

Figure 6.2: Results after performing the “AT+CPSI”-command.

The description of the “AT+CPSI?” command in the “At Command Manual” explains where

in the output to find the “Cell Identifier”. In Figure 6.2 this was found to be “51275781”.

By searching after the cell identifier on “Cellmapper.net” the cellular node was found. The

result of this search is displayed in Figure 6.3. The blue dot on the map is the cellular node

in use, and the specifications of the cell are on the leftmost side of the figure. The darkened

marked area on the map outlines the coverage of the cellular node. This node is the one

closest to the site that was used for testing the system, which meant that other experiments

could be conducted with the best possible latency under the given circumstances.

6.1.2.2 Scenario 2

The LED-blinking on the 5G HAT was recorded at 60 frames per second using an iPhone. By

looking at the resulting video frame by frame, it is apparent that there are exactly six frames

between each blink. Equation 6.1 shows that this means that there is 100ms between each

blink, proving that the 5G HAT is registering a 5G network according to the information

provided in subsection 2.2.2.

60 frames

1000ms
=

6 frames

t
=⇒ t = 6 frames · 1000ms

60 frames
= 100ms (6.1)
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Figure 6.3: Snippet from “cellmapper.net”.

6.1.2.3 Scenario 3

Combining the results from Scenario 1 and Figure 6.1 yields Figure 6.4. This figure displays

the points of interest mapped against the cellular node in use. The results of a run of each

of the two sub-scenarios are shown in Figures 6.5 and 6.6.

Figure 6.4: Points of interest mapped against the cellular node in use. The Lab is 89 meters from cellular
node, while the Office is located 132 meters from the cellular node.



CHAPTER 6. FEASIBILITY EXPERIMENTS 121

Figure 6.5: Results of a running of Sub-scenario 3.1 - speedtest-cli used at Office (Verkstedteknisk 5th floor
at NTNU Gløshaugen).

Figure 6.6: Results of a running of Sub-scenario 3.2 - speedtest-cli used at Lab (Verkstedteknisk 1st floor at
NTNU Gløshaugen).

The latency at the lab was measured to be consistently lower, and the overall bandwidth

was significantly higher compared to at the office. Several elements can affect these results.

It can be factors such as distance, number of obstacles blocking the signal, or number of

devices connected to the cellular node. Each sub-scenario was tested multiple times, but

the overall trends of the results were the same, with the results of the two scenarios being

consistently different. The signal strength of the cellular node is believed to be what causes

these differences. As seen in Figure 6.4, the lab is located closer to the cellular node compared

to the office, and the number of obstacles needed to penetrate also seems to be lower. Telenor’s

public 5G network operates on a 3.6 GHz frequency band, which is high enough to affect the

signal’s ability with regard to object penetration and overall area coverage. These factors
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are sufficient in causing the differences seen in the results from the two sub-scenarios.

The three scenarios and their results helped show that the 5G HAT was capable of commu-

nicating with the desired cellular node and that this communication could be done over both

4G and 5G. It is worth noting that throughout the testing with the 5G HAT, the blinking of

the network indicating LED has been observed slower than 100ms intervals. With respect to

the results found in this experiment, this slow blinking is most likely with 200ms intervals,

meaning that the modem is connected to the 4G LTE master node during this time.

6.2 Remote Control with 5G

In order to determine if the system is capable of controlling the KMR iiwa remotely using 5G,

a simple test experiment is set up. The results of the experiment are documented in a short

video and sent to Telenor, a tele-company taking part in the 5G-SOLUTIONS project.

6.2.1 Configuration

The configuration for the experiment includes the following:

• A Raspberry Pi hosting the AAS and connected with Ethernet to the NTNU network.

The AAS includes a Flask application with an OPC UA server and a React application.

• A Raspberry Pi with a 5G HAT connected to the KMR iiwa over Ethernet. It transmits

data to the AAS using Telenor’s public 5G network. On the Raspberry Pi are two ROS

2 programs implemented with the publish/subscribe communication model.

6.2.2 Scenarios

A single scenario is defined.

Scenario: Control the robot using an external video call program

This scenario requires two operators: one in the lab and one in the control room. The

operator in the control room starts the AAS. The operator in the lab starts the ROS 2

Entity program and the ROS 2 Middleware program on the 5G Raspberry Pi, allowing

communication between the KMR iiwa and the AAS. The robot application on the KMR

iiwa is started, and a connection is established. The two operators start a live video call,

and the operator in the control room attempts to control the KMR iiwa while observing it

through the video stream.
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6.2.3 Results

A screenshot from the resulting video is displayed in Figure 6.7. Since the feasibility of the

system could be determined based on whether or not the operator in the control room was

able to control the KMR iiwa remotely, no additional data was required.

Figure 6.7: Snippet from the resulting video [79].

By conducting this simple experiment, it was proven that the system had potential. As

displayed in the resulting video, the experiment was successful [79], and remote control of

the KMR iiwa was achieved without any major difficulties. There was some input delay seen

through the video call, but it is likely that the primary contributor to this delay was the

video-call program itself, namely Facebook Messenger. The 5G Raspberry Pi was connected

to Telenor’s public 5G network through the 5G HAT, while the AAS Raspberry Pi was

connected to the NTNU network through Ethernet. Since data transmission between these

two devices involves long distances and multiple routing points, it is assumed that this setup

is a source of significant latency. A more detailed experiment of the system latency is found

in section 7.1. The ROS 2 programs on the 5G Raspberry Pi worked as expected, and the

ROS nodes were able to connect to and communicate with the robot application. With an

ideal setup, the ROS 2 Entity program would be running on the entity itself, but this is not

possible due to the nature of the KMR iiwa. However, since the 5G Raspberry Pi and the

KMR iiwa are connected using Ethernet, the delay between the TCP server on the ROS 2

Entity program and the TCP client on the entity is assumed low enough that the ROS nodes

can act as the entity’s components.



CHAPTER 6. FEASIBILITY EXPERIMENTS 124

6.3 AAS Video Stream Through Robot Command Pipeline

In order to determine if the pipeline used for handling robot commands is also capable of

handling the AAS Video Stream, a simple prototype implementation of a video streaming

service is created.

6.3.1 Configuration

A Raspberry Pi Camera Module v2 is attached to the Entity Raspberry Pi and used to

capture video. Since the system pipeline is comprised of several components that transmit

data differently, the image feed needs to be converted. This needs to be done several times and

to several different formats as it passes through the pipeline, see Figure 6.8. The programs

running on both the Entity Raspberry Pi and the 5G Raspberry Pi are implemented using

Python, so the Python library OpenCV is used to handle real-time image processing. New

video-related ROS 2 topics and OPC UA events are added to the system in order to support

the image feed being sent through the pipeline. The modifiable nature of ROS 2 and OPC

UA makes this addition easy to implement. A WebSocket solution is added to the OPC

UA server implementation on the Flask application in order to handle sending the image

feed to the frontend, i.e. the External Interface. The External Interface includes a function

for sending a command through the pipeline asking the Entity Raspberry Pi to start the

camera.

Figure 6.8: Illustration of the AAS Video Stream pipeline when the video stream is sent through the pipeline
designed for robot commands.

6.3.2 Scenarios

A single scenario is defined.

Scenario: Prototype implementation

The AAS is started, and an operator uses the External Interface to view the specific entity

that they wish to see video from. The operator clicks a button to start a video stream, and
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the Raspberry Pi Camera Module v2 starts to capture video. The image feed is sent through

each component and converted several times as shown in Figure 6.8. The video is ultimately

displayed to the operator. The video quality is evaluated based on the lag that is experienced

by the viewing operator.

6.3.3 Results

Sending the video stream through a pipeline in which many of the components require dif-

ferent data types proved to be undesirable. Each conversion meant that the system had to

sacrifice both quality and latency, and the total end result was not satisfactory. The high

latency of the video stream was apparent, and there was a significant delay in sending of ro-

bot commands. Additionally, since the pipeline includes OPC UA, which is not designed to

transport streams of data, it best serves single data transmissions, such as commands. This

solution was, as a result, discarded since real-time operation and low latency is of utmost

importance with regard to the use cases described in section 1.3.

6.4 Rapid Deployment and Auto-Configuration Experiment

As mentioned in subsection 3.1.2, one important aspect of the equipment in the “Industrial

Lab” is that it should be autonomous, i.e. it should typically not require manual operation.

A part of the implementation that aims to help reach the goal of autonomy is the auto-run

feature described in subsection 5.3.7. In order to determine if the system is made more

autonomous with the auto-run feature, an experiment is conducted in which a connection

between the AAS and an entity is established with the least possible amount of human

interaction possible. Because of the safety configuration on the KMR iiwa, the entity is not

operable in AUT (autonomous) mode. This means that an operator has to manually start

the robot application with the SmartPAD, as described in subsection 5.4.3.

6.4.1 Scenarios

A single scenario is defined.

Scenario: Automatic configuration with KMR iiwa

One operator is stationed in the control room, while the other is in the lab. In the control

room, the AAS is running on the AAS Raspberry Pi, and the operator has a device with the

External Interface open. This operator is viewing the functionality of the entity that is to be

connected. The functionality is disabled in the interface because the entity is offline. In the

lab, the 5G Raspberry Pi is placed on the KMR iiwa and powered using a portable charger.

When the ROS 2 programs have finished initialization, the operator can start the application
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on the KMR iiwa, and the entity status should be changed to online. This change should be

reflected on the External Interface, and the operator in the control room should be able to

interact with the entity.

6.4.2 Results

Soon after the 5G Raspberry Pi was connected to the portable charger, the LED on the 5G

HAT started blinking, indicating that a network was registered. This meant that the script

for automatically establishing a connection with Telenor’s public 5G network was successful.

After this, it took approximately 2.5 minutes before the robot application on the KMR iiwa

was able to connect to the ROS 2 program. It was known from previous work with building

and launching the ROS 2 programs on the 5G Raspberry Pi in non-headless mode, i.e. with

the ability to see the output on a monitor, that this was the time it took for the programs to

finish the initialization. When the robot application connected to the ROS 2 Entity program,

the functionality on the External Interface was enabled in a matter of milliseconds, and the

operator in the control room was able to control the entity. This connection lasted until

the operator in the lab released the enabling switch on the SmartPAD, canceling the robot

application.

The experiment could have been more compelling had the KMR iiwa been run in AUT

mode. That way, the 5G Raspberry Pi could have been powered, and after 2.5 minutes, the

KMR iiwa could be turned on without the SmartPAD connected. The robot application on

the KMR iiwa would then have started, and a connection with the ROS 2 Entity Program

would have been established automatically. This would make it so that the operator could

potentially leave the area with the entity still being operable from the control room. It is

worth noting that since the experiment worked with the SmartPAD, it should, in theory,

work in AUT mode as well.

The success of the experiment did prove that the implemented system is able to support

automatic configuration to an extent. If a new KMR iiwa were to be introduced to the lab,

another 5G Raspberry Pi could be attached to it, and it would be integrated into the AAS

with little friction. This would only require the IP address of the entity to be known and

for the correct Sunrise application to be installed on it. Both of these limiting factors are

viewed as consequences of the robot manufacturer’s decisions rather than issues with the

system presented in this thesis. With a standardized, exposed API on the side of the KUKA

KMR iiwa, it is not impossible that the IP address of the entity could be fetched by the ROS

2 program. Also, if KUKA allowed other programs than Sunrise applications, such as ROS

2, to be run on their hardware, the initial installation step (see subsection 5.4.2) could be

skipped altogether. The idea of standardized APIs could potentially help the system support
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various types of robot entities in that the 5G Raspberry Pi could be made to detect the

functionality of the robots when it is attached. Even though these ideas were not explored

or tested in detail during this project, the AAS paves the way for exciting possibilities in the

realm of industrial automation.





Chapter 7

Performance Experiments

This chapter explains the two performance experiments conducted to ascertain whether or

not the system presented in this thesis is able to meet the requirements of Industry 4.0.

The chapter is intended for those who might want to build similar systems or improve the

one presented and those who are interested in knowing what kinds of tests they can use for

comparison. The setup used to conduct these experiment is described in chapter 5. Section

7.1 describes an experiment for determining the latency in the system, while section 7.2

compares the performance of a standard kernel to that of a kernel with real-time capabilities.

Like the feasibility experiments, the experiments described here will include the results and

discussions with respect to readability.

7.1 Latency Experiment

In order to measure the delay between the different components in the system, the web-based

active monitoring, and testing platform Hawkeye is used. The routes that are measured are

those with a “direct” connection in the architecture described in chapter 3. This includes the

route between the 5G Raspberry Pi and the AAS Raspberry Pi, and the route between the

AAS Raspberry Pi and a “User Device”. In the tests, this device is a User Laptop named

“andreas”. An outline of the test setup is shown in Figure 7.1.

129
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Figure 7.1: Outline of Node-to-Node test setup.

7.1.1 Hawkeye configuration

Hawkeye endpoints are installed on the three components shown in Figure 7.1. The endpoints

are provided by ixia and can be found on [80]. A mesh, with the topology described in the

previous paragraph, is created as displayed in Figure 7.2. A mesh can be created once

Hawkeye endpoints are installed on all of the components.

Figure 7.2: Creating a mesh in Hawkeye consisting of the relevant endpoints and routes.
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Tests are then created on the mesh. An example of how to create a test that is going to

run for an hour is displayed in Figure 7.3. Once the tests are complete, the results can be

downloaded from Hawkeye as CSV (Comma Separated Value) files.

Figure 7.3: Creating a test in Hawkeye with the mesh created in Figure 7.2.

7.1.2 Tests

There are two tests created for this experiment. Each test is meant to be run for one hour.

The first test simulates the AAS under load. During this time, entity commands are sent

through the pipeline consistently for an hour. Every second, a command is sent from the

External Interface. This is done on a rotational basis, and the commands are either for

moving the KMP omniMove or the LBR iiwa. Every 50 seconds, a camera command is sent

to either start or stop the camera. A script is created to automate these actions. The second

test simulates the AAS while it is idling. During this time, no commands or messages are

sent through the pipeline.

7.1.3 Scenarios

Three scenarios are defined, each with two sub-scenarios that corresponds with the two tests

described above. The tests that are run for each of the three scenarios are the same, but

the environment is different for each one. The objective is then to determine if there are

any differences between the results from the scenarios, and if so, why these differences occur.

Figure 7.4 displays a map with the related locations for the experiment. The AAS Raspberry

Pi and User Laptop are located at the office and connected to the NTNU network in each

scenario.

Scenario 1: 5G Raspberry Pi Located at the Office

The 5G Raspberry Pi is located at the office (Verkstedteknisk 5th floor at Gløshaugen), and

it is connected to Telenor’s public 5G network. The Hawkeye tests are started, and at the

same time, the script for sending commands from the External Interface is run. After one
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hour, the commands cease, and the system is idle for another hour. The tests are completed

after two hours, at which point the Hawkeye results are downloaded and split into scenario

1.1 for the first hour and scenario 1.2 for the second hour.

Scenario 2: 5G Raspberry Pi Located at NTNU Gløshaugen’s Industry 4.0 laboratory

The 5G Raspberry Pi is located at NTNU Gløshaugen’s Industry 4.0 laboratory, and it is

connected to Telenor’s public 5G network. The Hawkeye tests are started, and at the same

time, the script for sending commands from the External Interface is run. After one hour,

the commands cease, and the system is idle for another hour. The tests are completed after

two hours, at which point the Hawkeye results are downloaded and split into scenario 2.1

for the first hour and scenario 2.2 for the second hour.

Scenario 3: 5G Raspberry Pi Connected to Wi-Fi and Located at the Office

The 5G Raspberry Pi is located at the office, and it is connected to the NTNU network via

a Wi-Fi router that is placed approximately 1 meter away. The Hawkeye tests are started,

and at the same time, the script for sending commands from the External Interface is run.

After one hour, the commands cease, and the system is idle for another hour. The tests are

completed after two hours, at which point the Hawkeye results are downloaded and split into

scenario 3.1 for the first hour and scenario 3.2 for the second hour.

Figure 7.4: Locations for the Latency experiment [77].
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7.1.4 Results

The results from the three test scenarios 1, 2, and 3, each with two sub-scenarios, are displayed

in Figures 7.5, 7.6 and 7.7 respectively. An interesting remark is that sending commands

does not seem to affect the system’s latency as there is no significant difference between the

individual sub-scenarios within each scenario. These results might imply that commands

do not bottleneck the overall system and indicates that the system has high capability of

throughput with regard to sending commands. Another remark is that the total delay in

every scenario, calculated by adding the average values, exceeds the maximum accepted

latency of Use Case 1.3, which is 10 ms. See Table 7.1.

Scenario Total Average Delay [ms]
Scenario 1.1 53.845
Scenario 1.2 47.741
Scenario 2.1 47.107
Scenario 2.2 48.461
Scenario 3.1 24.49
Scenario 3.2 20.407

Table 7.1: Total Average Delay of all the scenarios. Calculated by adding the average values of each route.

(a) Without commands (b) With commands

Figure 7.5: Scenario 1.1 and 1.2. Test performed at Office.
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(a) Without commands (b) With commands

Figure 7.6: Scenario 2.1 and 2.2. Test performed at Lab.

(a) Without commands (b) With commands

Figure 7.7: Scenario 3.1 and 3.2. Test performed at Office with Wi-Fi.

It can be difficult to judge the results by looking at them individually. The Figures 7.8, 7.9,

7.10 and 7.11 displays comparisons of all the scenarios based on connection routes within the

mesh.
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Figure 7.8: Results of all six sub-scenarios on route “raspberrypi-5G to raspberrypi-AAS”

Figure 7.9: Results of all six sub-scenarios on route “raspberrypi-AAS to raspberrypi-5G”
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Figure 7.10: Results of all six sub-scenarios on route “andreas to raspberrypi-AAS”

Figure 7.11: Results of all six sub-scenarios on route “raspberrypi-AAS to andreas”

From studying Figure 7.8 and Figure 7.9, some interesting observations can be made. There

seems to be a correlation between the scenarios and the different end results. Scenario 3

(Wi-Fi at Office) has a lower latency than Scenario 2 (5G at Lab), which has a lower latency



CHAPTER 7. PERFORMANCE EXPERIMENTS 137

compared to Scenario 1 (5G at Office). The difference between Scenario 2 and Scenario 1

can be derived from various factors. As seen in Figure 7.4, there are certain geographical

differences in the two scenarios. Distance to the cellular node and the amount of obstacles

that need to be penetrated can affect the end results. The number of user devices connected

to the cellular node and the general network load are also important aspects to consider.

The difference between Scenario 3 and Scenario 2 is detailed in the last paragraph of this

section, while an overall discussion of the complete results is found in chapter 8.

There are slight differences in the test results of the non-5G routes shown in Figure 7.10

and Figure 7.11. From the setup of the experiment, these results were expected to be more

similar, as the variables of these routes were not altered between the scenarios. There is a

high probability that these variances come as a result of the tests being performed on the

campus network on NTNU Gløshaugen on different days. Many people utilize this network,

and it is difficult to predict the load on the network.

(a) 5G (b) Wi-Fi

Figure 7.12: Direct comparison of Figure 7.5a and Figure 7.7a.
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(a) 5G (b) Wi-Fi

Figure 7.13: Direct comparison of Figure 7.5b and Figure 7.7b.

Direct comparisons of the 5G and Wi-Fi results are displayed in Figure 7.12 and Figure 7.13.

An immediate takeaway from these results is that, on the routes compatible with 5G, the

solution with a Wi-Fi connection seems to have a significantly lower overall latency compared

to the solution with a 5G connection, although neither solution satisfies the Use Case 1.3 goal

of a total delay of 10 ms or lower. This data is interesting to examine in relation to Use Case

1.5, which focuses on testing if 5G can replace traditional networking technology like Wi-Fi.

Even though it may seem like Wi-Fi outperforms 5G when looking at the results, there are

several factors to take into consideration when comparing the two directly. Firstly, there are

more links of data transmission using this 5G solution. The first is from the 5G Raspberry

Pi to the cellular node. From the cellular node, the data is routed to Telenor’s core network,

where the data is made available on the Internet. The data is then picked up by the NTNU

network, which routes it to the AAS Raspberry Pi in the office via Ethernet. With the Wi-Fi

solution, the data is transmitted from the 5G Raspberry Pi directly to the Wi-Fi router in

the same room, which routes the data through the NTNU network via Ethernet and directly

to the AAS Raspberry Pi in the office. It therefore comes as no surprise that, even with all its

capabilities, 5G is put at a disadvantage with that many extra links. A more fair comparison

would have been a 5G solution in which a private and local 5G network was introduced.

This way, the AAS Raspberry Pi in the office, or “Control Room”, could be connected with

Ethernet to the local 5G node, while the 5G Raspberry Pi could communicate with this

same node through 5G from the “Industrial Lab”. This would result in only one wireless

link, which is similar to the Wi-Fi solution.
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7.2 Cyclictest: Standard Kernel vs. Kernel w/ PREEMPT RT

Cyclictest is a high-resolution test program that benchmarks event latency in a Linux kernel

by measuring the amount of time that passes between when a timer expires and when the

actual thread that starts the timer runs [81]. In other words, cyclictest measures the amount

of time the system uses to respond to an interrupt. The average latency will increase if there

are processes with non-deterministic blocking behavior running in the system. This happens

since the scheduler cannot meet the deadlines of the interrupts profiled in the program [13].

The interrupts are in cyclictest generated by a timer.

7.2.1 Cyclictest Configuration

The test scenarios, described in subsection 7.2.2, are performed using the following com-

mand:

$ cyclictest -l100000000 -m -Sp90 -i200 -h400 -q

The command is run with six arguments, and these are explained in the ubuntu manuals as

follows [82]:

• “l” sets the number of loops. The cyclictest is stopped once the number of loops is

reached.

• “m” locks the current and future memory allocations to prevent the test from being

paged out.

• “Sp” sets options for standard testing on SMP systems and describes the priority of

the threads. The given priority is set to the first test thread, in this case “90”, and each

following thread gets a lower priority according to the function Priority(ThreadN) =

max(Priority(ThreadN−1)− 1, 0).

• “i” sets the base interval of the threads in microseconds.

• “h” generates a latency histogram where the input, in this case “400”, is the max

latency to be tracked in microseconds.

• “q” forces prints only on exit.

7.2.2 Scenarios

Two scenarios are defined. The objective is to benchmark the performance of the kernel with

PREEMPT RT, and compare it with a standard (non-real-time) kernel.

Scenario 1: Standard Kernel

To test the performance of the standard kernel, a cyclictest is performed on the 5G Raspberry
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Pi before being patched with PREEMPT RT. The kernel being used is Linux kernel 5.4.42-

v8+.

Scenario 2: PREEMPT RT Kernel

To test the performance of the kernel with PREEMPT RT, a cyclictest is performed on the

5G Raspberry Pi after being patched with PREEMPT RT. Detailed instructions regarding

the PREEMPT RT patch are described in subsection 5.3.1. The patched kernel being used

is Linux kernel 5.4.83-rt50-v8+.

7.2.3 Results

Figure 7.14 displays the results of the two scenarios. The results from this experiment were

as expected. Both of the tests were completed in approximately five hours and produced two

distinctly different outputs. One key difference is the maximum latency. While the patched

kernel only had a maximum latency of 299 µs, the standard kernel reached the heights of

4843 µs. This difference can make the standard kernel not able to reach certain deadlines.

The overall area found under the graph (integral) is substantially larger when comparing the

standard kernel to the patched kernel, indicating a consistent higher amount of latency.

(a) Standard Kernel (b) Kernel patched with PREEMPT RT

Figure 7.14: Cyclictest performed on the two different kernels.

Due to the low latency experience with the PREEMPT RT kernel, there is a strong argument

to be made for why it should be incorporated in the system presented in this thesis. Since

there are stringent latency requirements regarding real-time operation in Industry 4.0, a

system that aims to meet these requirements needs to optimize performance in as many areas

as possible. Since robotic systems need to be responsive, the PREEMPT RT kernel is a good

fit for the machines running ROS 2, namely the Entity Raspberry Pi and the Middleware

Raspberry Pi described in section 4.2. It should be noted that the PREEMPT RT kernel is
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not necessary for the devices in the “Control Room”, as these machines are intended to work

as servers that need to take care of multiple processes at the same time.





Chapter 8

Discussion

This chapter discusses the architecture described in chapter 3 and the system implementation

explained in chapter 4 and how they solve the tasks related to the objectives. The discussion

surrounds the most important parts of the system, their advantages and disadvantages, and

whether or not they help the system meet the requirements of Industry 4.0. This chapter is

meant for those who want to understand the underlying principles of the system. For those

who might want to build similar systems, this chapter also sheds light on which aspects should

be improved. Section 8.1 reviews the implemented system in its entirety, while section 8.2

reviews the AAS and its functionality. Technical reviews of the components OPC UA, ROS

2, and KUKA’s Sunrise.OS are provided in section 8.3.

Figure 8.1: Controlling a KMR iiwa robot with the AAS at NTNU Gløshaugen’s Industry 4.0 laboratory.
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8.1 Review of Implemented System

To study if 5G can be used in conjunction with Industry 4.0 initiatives, an architecture was

proposed as a solution in which 5G is incorporated into a modern, industrial factory environ-

ment. The realization of this architecture was a system comprised of an Asset Administration

Shell, a set of Raspberry Pis with specialized communication capabilities, and a KUKA KMR

iiwa industrial AGV. The system was implemented in the light of the two use cases mentioned

in section 1.3, which meant that it should support rapid deployment, auto/re-configuration,

and testing of new robots, as well as achieving remote control in digital factories.

Based on the theory that was researched in relation to this thesis, it was already known that

5G had been tested with positive results in industrial settings before. What the implemented

system presented in this thesis showed is how easy it can be to implement a 5G connection

into an ”Industrial Lab” facility. Through various experiments, it was shown that this was

possible with nothing but a Raspberry Pi, a SIM82000-M2 5G HAT, and a SIM card from

an internet service provider.

The relatively simple solution with the Raspberry Pi and the 5G HAT was instrumental in

the work towards Use Case 1.5. The Raspberry Pi is portable and easily connected to robotic

systems via Ethernet, which makes rapid deployment realizable. Although it is not tested

during this project, the idea behind this portable, component-based solution is that when

a new entity is introduced to the lab, the content from an existing Entity Raspberry Pi is

copied to a new one, a 5G HAT is installed and the new Entity Raspberry Pi is mounted

on and connected to the entity. Thus, the new entity is rapidly deployed into the industrial

environment without much friction.

Use Case 1.5 also includes the idea of auto/re-configuration, which was an important aspect

to consider when implementing the system design. The experimentation results showed that

it was possible, with the use of a Raspberry Pi and ROS 2, to automatically configure

and start a connection with the KMR iiwa and introduce it to the AAS. With the use of

the version control system Git combined with SSH, the code on the Raspberry Pi can be

changed remotely, making re-configuration possible with no operator interaction in the lab

facility other than restarting the Raspberry Pi on the entity in question. The presented

solution does, however, have its limitations. Because the KMR iiwa is reliant on a Sunrise

application in order to run, much of the code in the rest of the system had to be written to

accommodate this. Thus, many of the features that one might expect to flexible with regard

to robot type had to be “hardcoded” to suit the KMR iiwa. A way to remedy this is for

robot manufacturers to develop their software with exposed APIs that allow developers to

more easily integrate the robots’ functionality into their system.
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The AAS that was developed to control and monitor the KMR iiwa remotely was tested

successfully. Once an entity is detected by the system, an operator will have full access to

the functionalities that the entity provides, and they can control it in real-time with fast

and reliable connectivity. WebSocket communication, OPC UA, and ROS 2 proved to be

valuable assets when developing a system for remote control in digital factories. The AAS

partly satisfies the goal of Use Case 1.3, which is mainly remote control, but it does not

fulfill the performance requirements. A real-time system for controlling robots in industrial

settings needs to be ultra-fast in order to maintain reliability. The stringent requirement of

10 ms delay was not met by the system, either with a 5G connection or a Wi-Fi connection

between the Entity Raspberry Pi and the AAS. It should be noted that this result is not

believed to be a representation of the 5G technology’s capabilities but rather an unfortunate

consequence of external factors.

As shown from the system latency experiment, Wi-Fi outperformed 5G under the specific

conditions that were available during testing. While this data is interesting to evaluate, it

must be emphasized that the test does not paint an accurate picture of the differences between

5G signals and Wi-Fi signals since the two were not tested under the same conditions. Based

on previous 5G performance testing, some of which is described in subsubsection 2.1.1.2, it

is safe to assume that 5G outperforms previous generations of cellular networking in areas

that are important for robotics and automation. With respect to Industry 4.0 and IoT, one

can also make a strong argument for why 5G would be superior to Wi-Fi. Wi-Fi networks,

while more common and accessible than the new cellular competitor, rely on an unlicensed

spectrum that is free and used nearly everywhere. This is beneficial for home and office

environments, but having many devices on the same frequency band increases the chance for

interference. This can quickly become problematic in an IoT environment in which hundreds

of separate entities need fast and reliable transfer of data. This, coupled with the fact that

5G is made to handle a massive amount of highly interactive devices with low latency and

high throughput, supports the idea that 5G can, in many cases, replace Wi-Fi in industrial

IoT environments.

With access to only a company-owned, public 5G network, it seems to be unrealistic to use

5G instead of Wi-Fi in an industrial setting with stringent performance requirements. Even

with support for massive amounts of devices, the latency that is experienced because of the

excess routing and data travel makes it too slow to be reliable enough to complement real-

time operation. There is one way to remedy this that is posed as the ideal system solution.

As mentioned in the result discussion of the latency experiment, a local 5G network on the

NTNU Gløshaugen campus would allow for a direct 5G connection between entities and the

AAS. The idea is that a 5G node is stationed near the “Control Room”, so that the stationary

AAS Raspberry Pi can be connected to it via Ethernet. The Entity Raspberry Pis that are
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roaming around with the entities in the ”Industrial Lab” would communicate wirelessly with

the Middleware Raspberry Pi, which again would communicate wirelessly with the 5G node.

With a local solution, the system could potentially avoid all routing, which makes the only

sources of latency be pure 5G signals and the components themselves. Since 5G has been

tested to perform to the standards of Industry 4.0, it is highly likely that this solution would

make the system Industry 4.0-compatible.

8.2 Review of AAS

The Asset Administration Shell described and outlined in subsection 4.3.1 satisfies the essen-

tial requirements of an AAS proposed by Erdal Tantik and Reiner Anderl [20]. The combin-

ation of the Internal Interface created with Flask and the External Interface developed with

React generates a well-defined base that reduces complexity and allows for high scalability.

The lightweight nature of Flask makes it easy to implement third-party components that are

essential for real-time applications, such as WebSocket communication. It also provides a fast

and flexible way to implement database and REST API integration, which is perfect for a test

environment that requires agile development and quick response to external changes.

The External Interface is easy to learn and use, and it provides quick response times for robot

control. Visual effects, such as blurring buttons for components that are offline, make it easy

for an operator to see what goes on in a factory or laboratory without a direct view. By

implementing the External Interface with React, it makes it highly expandable with respect

to introducing and testing new robots. Components in React are reusable, which means that

if a new entity is introduced to the system with similar functionality to another established

entity, the time required to implement support for the new entity is lowered significantly.

An example of this is the video stream component, which is meant to be similar for every

entity in the ”Industrial Lab”. Even with a hundred different entities in the AAS database,

the amount of code related to the video stream component would be nearly the same as if

there were one entity. There is also low coupling between React components, making it so

that implementation of new functionality can be done without significant change in the other

parts of the code. A downside of the External Interface is that it currently only supports

the KMR iiwa in terms of operational functionality. This does not include the video stream

feature, which is intended to be the same for every entity. For multiple types of entities, a

smart solution for versatile and dynamic components would have to be implemented.

The Internal Interface reliable and fast, and Flask makes it so that the system is easily

expandable with new software components that might be needed for constantly evolving

industrial environments. The Internal Interface is the backbone of the AAS, and it is what

exposes the ”Industrial Lab” to operators working remotely. With the Internal Interface
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keeping track of every change that happens with the entities registered in the system, and

with data about new entities and entity components being dynamically entered into the

database once discovered, the AAS can be seen as a digital representation of the ”Industrial

Lab”. Using Flask also allows for seamless integration with thr real-time communication

protocol WebSocket. Even though the solution with Flask and SQLite works well for the

purpose of quickly developing a system for testing purposes, it might not be the best fit

for a full-fledged system. Flask itself can, in many cases, work well for bigger projects, but

the implementation needs to be a lot more robust. A robust backend includes type safety,

thorough error handling, more encryption, component tests, and much more in order to be

reliable enough for real scenarios.

While it is essential that the AAS is robust and secure in terms of error handling and

encryption, it is just as important that the integrity of the industrial environment that the

AAS is a gateway into is upheld. This is done by authenticating users and restricting access

to functionality through authorization. In the current version of the AAS, this is done by

assigning certain roles to operators, which decide their level of access throughout the AAS.

This is an easily implemented feature to demonstrate how a hierarchy of roles can restrict

features in a way that makes the system less prone to both operational accidents and malicious

attacks. The downside of this solution is that, once an operator is logged in, the personal login

information is stored un-encoded in the browser. This is not a secure way to store important

information because it is not impossible for someone to access and change the content of

the local storage in a browser. A more robust security implementation will normally be

token-based, i.e., users who log in to the system get a secure access token generated from

the API. Then, each time they try to access a certain feature, their request would be sent

together with their encoded token to the API. Here, the token would be validated, the token

permissions would be verified, and the appropriate access would be returned to the user. The

main difference between these two solutions is that with tokens, the security happens in the

Internal Interface, while with roles, it happens in the External Interface. Since the Internal

Interface is not inherently exposed to the outside world, the token solution would provide

significantly more security.

8.3 Technical Reviews

The different technical components used within the system have both advantages and dis-

advantages. The sub-sections in this section discuss the technical components individu-

ally.
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8.3.1 OPC UA

In a system that combines a multitude of different platforms and components, OPC UA is

a perfect fit. It provides flexibility in that it is easy to implement on even a lightweight

backend server, and the publish/subscribe functionality not only accentuates the loosely

coupled nature of the entire system but also smoothly integrates with ROS 2. Without OPC

UA, a solution can be to use TCP sockets to connect the “Industrial Lab” and the “Control

Room”, but this requires a more complex code structure and even more connections to keep

track of. Having to connect a server and a client can be cumbersome because if one part drops

out, the connection needs to be reestablished. The benefits of the publish/subscribe model

are discussed throughout this report, but it is difficult to over-emphasize how much easier

it is to deal with two components communicating through a message-oriented middleware

with which none of the “interactees” need to know about each other. OPC UA also handles

encryption and decryption of messages between two applications, which leads to an overall

more secure system.

8.3.2 ROS 2

ROS 2 consists of a powerful set of tools for creating robot applications. Using ROS 2’s

powerful publish/subscribe pattern, a dynamic discovery method has been created in order

to support the rapid deployment and automatic configuration aspects that are part of Use

Case 1.5. The data between an Entity Raspberry Pi and the Middleware Raspberry Pi is

transmitted with the use of ROS publisher and subscriber nodes that operate independent

of each other. The Middleware will “ping” the entire subnet in the “Industrial Lab” when

it starts in order to detect new entities, and if there are any, they will be added to the

database of the AAS. This is only possible since ROS 2 utilizes RTPS in DDS, which is

explained in subsection 2.1.10. In order to have RTPS work over a wider area than LAN,

multicast routing is required. Since the Internet does not support UDP multicasting, the

current implementation of RTPS in DDS does not allow ROS 2 to work over the Internet

and is, therefore, a limitation for the proposed system. It is believed that this issue is solved

by a local 5G network that operates similarly to a traditional LAN.

For ROS 2 to capture the needs of a real-time robotics application and the standards of

Industry 4.0, the core software components of the system must not interfere with the re-

quirements of real-time computing. To adhere to this, the Linux Kernel located on the

Middleware and Entity Raspberry were patched with PREEMPT RT. Introducing a real-

time kernel is beneficial because it enhances the capabilities of ROS 2. Some strengths of

PREEMPT RT are described in section 7.2. Only patching the kernel and not installing an

entirely new real-time operating system is advantageous because, while there exist special-
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ized operating systems written from the ground up intended to serve real-time applications,

many of them do not support the other software used for this project, like ROS 2. A choice

can be made to entirely dismiss the use of ROS 2 and PREEMPT RT and build something

from the ground up. However, since the focus of this thesis is directed toward exploring the

possibilities of 5G, and not maximizing real-time performance, using established software is

a more efficient solution.

8.3.3 Sunrise.OS

KUKA’s robot application software, Sunrise.OS, has some influence on the overall result of

this project. There is no doubt about the fact that Sunrise.OS makes the programming of

KUKA-specific robots easier, but as a result, the process of installing, synchronizing, and

starting the software is cumbersome, to say the least. As mentioned, Sunrise.OS is technically

a software run on top of Windows 7, which is located on the Sunrise Cabinet. These layers of

abstraction feel more like barriers that need to be worked around, and with everything being

tailored for KUKA-specific solutions, they make it difficult to effectively expand with other

types of software. The ideal communication flow would include direct communication with

the Programmable logic controller (PLC) on the KMR iiwa, skipping the use of Sunrise.OS.

This would require a higher degree of low-level development but overall increase the control of

the robot and potentially skip much of the heavy on-boarding process. All in all, Sunrise.OS

provides a useful set of tools for controlling the KMR iiwa, but it leaves little room for

customized solutions, especially with regard to automatic configuration.

The Sunrise.OS software is manufacturer-dependent and therefore specifically tailored to

KUKA entities like the KMR iiwa. As a result of this, its degree of impact substantially falls

off as the scope of the project widens to other robots. The global scope of Industry 4.0 spans

a large pool of entities, with KUKA only being a percentile. Taking these considerations

into account, it should be emphasized that the focus of the proposed system is more directed

towards the other aspects and components.





Chapter 9

Conclusion

9.1 Summary

This thesis explores whether 5G can complement and be used as part of or in conjunction

with Industry 4.0 initiatives such as Asset Administration Shells by providing a system that

attempts to support two use cases proposed by the 5G-SOLUTIONS project. Both use cases

involve implementing innovative strategies in digital factories. A system has been made

with an accompanying AAS, and it utilizes 5G technology, OPC UA, and ROS 2. The

functionality of the system revolves around auto/re-configuration and remote control of the

KMR iiwa AGV.

The first part of the thesis describes the relevant background theory, where the concepts and

technologies used within the system are introduced. The two subsequent chapters explain the

proposed architecture used to answer the problem description and the implemented system

based on this architecture. What follows is a chapter that can be viewed as a guide on how to

utilize this system for testing purposes. This chapter is followed by two chapters describing

the experiments that were conducted. The basis for certain design choices are outlined here,

and performance benchmarks of the system are also portrayed. Finally, there is a discussion

chapter. This chapter looks at the implemented system with regard to the objectives of the

thesis. The various parts of the system are reviewed individually in an attempt to ascertain

their relevance both in the overall system and in relation to Industry 4.0 standards.

9.2 Conclusion

Incorporating 5G networking technology in order to make an Industry 4.0-compliant real-time

system for operating industrial robots is a daunting task. Based on previous studies, 5G shows

great potential in terms of performance, but it is still relatively new. New technologies can
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be cumbersome to work with, as it often takes time to establish widespread support within

the industry. This fact was made apparent by the delays associated with the installation

of a local 5G node at NTNU Gløshaugen’s Industry 4.0 laboratory, which made it difficult

to achieve substantial performance results. It was found that, with the use of a public 5G

network, it was not possible to meet the latency requirements of Use Case 1.3. A conclusion

that can be drawn from this is that a local solution must be facilitated in order for 5G

communication to be acceptable for industrial applications.

Even though the performance requirements of Use Case 1.3 were not satisfied, other use case

objectives were tested and found plausible. With the AAS, remote control of a digital factory

was achieved to some extent. The KMR iiwa was controlled remotely, over the internet, and

with the use of 5G. The system was only tested with one entity, but it was developed with

support for multiple entity types in mind. A part of Use Case 1.5 is rapid deployment, which

was attempted by making the processes in the “Industrial Lab” start automatically. This

was achieved with the exception of the KMR iiwa, which required an operator in order to

start the robot application. Utilizing Raspberry Pis, which are easily mounted on devices

like the KMR iiwa, enables efficient configuration and deployment of entities that do not

allow custom software to be installed directly. This again makes it so that new robots can

be introduced to factories and laboratories and tested within a short amount of time. The

Raspberry Pis not only start automatically once they are powered, but their software is

also partly configurable remotely. This ties in with another important part of Use Case 1.5,

namely auto/re-configuration. In relation to these two aspects, it can be concluded that Use

Case 1.5 is only realizable if the software that comes with industrial robots is manufacturer-

independent and includes well-documented and exposed APIs. This way, it is possible for

components such as the Raspberry Pi to obtain the information it needs from the entity in

order to configure it and introduce it to the system automatically.

There are still several enhancements that can be made to the system for it to be applicable

in real-world industrial applications. This includes adding full, dynamic support for different

types of entities and implementing more security and robustness. Additionally, a local 5G

network opens possibilities for enhancements of the system architecture. Since a local solution

would not need to be connected to the Internet, it is believed that ROS 2 can be used

throughout more of the system pipeline. With pure ROS 2 communication between the AAS

and the entities, it is believed that the system would experience less latency as the entire

OPC UA “Middleware” link would be omitted. Decoupling more components through the

ROS 2 publish/subscribe pattern also allows for even more flexibility and scalability.

Even with a public network, 5G is proven to have potential within the realm of Industry 4.0,

and the implemented system with its AAS certainly demonstrates feasibility. ROS 2 and
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OPC UA offer essential functionality in factories of the future, such as flexibility, scalability,

and manufacturer independence. Having a system comprised of small, portable Raspberry

Pis provides significant versatility, and the solution can be extended and reorganized to fit

many types of environments. The work has also shown that nothing more than a small 5G

HAT and a SIM card from an internet service provider is required to incorporate the new

generation of cellular networking.

The hope is that these contributions can potentially pave the way for new innovative strategies

and help revolutionize the way software systems are implemented in digital factories. For any

further development of the system presented in this thesis, the most conclusive recommend-

ation is using a local 5G network. Without this, it is believed that the system simply cannot

meet the requirements of real-time robotic control. Although the development towards fast

and reliable factories of the future is progressing at a tremendous speed, one of the last pieces

of the puzzle is utilizing 5G to its fullest potential!



Appendix A

5G HAT Assembly Process

154



APPENDIX A. 5G HAT ASSEMBLY PROCESS 155

(a) Step 1: Install the Raspberry Pi into the
base.

(b) Step 2: Install the SIM8200-m2 mainboard
into the SIM82000-M2 5G HAT base board.

(c) Step 3: Install SIM8200-M2 5G HAT base
into the Raspberry Pi.

(d) Step 4: Install nylon columns in the base
board.

(e) Step 5: Install cooling fan and antenna ad-
apter cables into upper cover board.

(f) Step 6: Connect the antenna adapter cables to the
SIM82000-M2 main board and connect the cooling
fan to the 5G HAT base board.

(g) Step 7: Assemble the top cover and fix with
screws.

(h) Step 8: Install the external antennas.

Figure A.1: 5G HAT assembly process [72].
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