
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Kam
illa Stevenson and O

da Skoglund
D

esign of N
ovel Energy-Efficient and Privacy-Preserving Blockchain Consensus M

echanism
s

Kamilla Stevenson and Oda Skoglund

Design of Novel Energy-Efficient and
Privacy-Preserving Blockchain
Consensus Mechanisms

Master’s thesis in Communication Technology and Digital Security
Supervisor: Danilo Gligoroski
Co-supervisor: Mayank Raikwar

June 2021

M
as

te
r’s

 th
es

is

Kamilla Stevenson and Oda Skoglund

Design of Novel Energy-Efficient and
Privacy-Preserving Blockchain
Consensus Mechanisms

Master’s thesis in Communication Technology and Digital Security
Supervisor: Danilo Gligoroski
Co-supervisor: Mayank Raikwar
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Title: Design of Novel Energy-Efficient and Privacy-Preserving
Blockchain Consensus Mechanisms

Student: Kamilla Stevenson, Oda Skoglund

Problem description:

Proof of Work (PoW), a popular consensus mechanism used in blockchains, such as
Bitcoin, has led to vast energy consumption by compelling users to solve computa-
tionally hard problems. The solution serves as the proof that allows users to propose
a block to extend the blockchain. As an alternative to PoW, Proof of Stake (PoS)
was proposed to solve this problem by selection based on stake. While PoS offers an
alternative to the energy wastefulness of PoW, it is not able to offer the same level
of privacy since user identity is an integral part of the proof.

Is it possible to design consensus mechanisms that are as energy-efficient as PoS and
as privacy-preserving as PoW?

Formal studies into the feasibility of privacy in PoS yield promising proposals
for Private Proof of Stake (PPoS). Upon initial analysis, some issues in the PPoS
proposals have come to light. To clearly identify such issues, a thorough analysis of
the proposals will be completed with regards to privacy, efficiency, and inclusion of all
aspects relevant to distributed consensus. In response to the analysis, an investigation
into methods that may prove beneficial to achieve privacy and maintain efficiency in
PoS will be conducted. Finally, improvements to previous PPoS proposals and/or an
entirely new PPoS proposal will be presented and evaluated.

Date approved: 2021-02-10
Supervisor: Danilo Gligoroski , IIK
Co-supervisor: Mayank Raikwar, IIK

Abstract

Consensus in Blockchains, commonly achieved by wasteful Proof of
Work (PoW) protocols, is subject to re-evaluation as emerging Proof
of Stake (PoS) protocols pose a viable alternative. However, these PoS
protocols, although viable, cannot compete with the privacy offered by
PoW since PoS inherently reveal both the identity and stake of the
stakeholders.

We conducted a literature study of the four currently available PPoS
proposals with a record of scientific publication: Proof-of-Stake Protocols
for Privacy-Aware Blockchains by Ganesh et al., Anonymous Lottery
In the Proof-of-Stake setting by Baldimtsi et al., Ouroboros Crypsinous:
Privacy-Preserving Proof-of-Stake by Kerber et al., and Zether: Towards
Privacy in a Smart Contract World by Bünz et al. An analysis focusing
on privacy and performance identified issues with the PPoS proposals.

Of the identified issues, we chose to improve upon the performance of
Baldimsti et al.’s proposal through the following novel proposals.

1. A PPoS that applies homomorphic encryption to remove the need
to send multiple unlinkable proofs in the multi-stake setting.

2. A scheme with a trade-off between stake privacy and performance,
offering an alternative method of tackling privacy in the multi-stake
setting.

As a proof of concept, both proposals are instantiated with the PoS
protocol Algorand. For this purpose, a literature study and analysis of
Algorand were conducted, with a specific focus on the privacy of identity
and stake.

The proposals are evaluated in terms of performance, privacy, and
security. In terms of performance, Baldimsti et al.’s proposal has lin-
ear complexity, Proposal 1 has constant complexity, and Proposal 2’s
performance is determined by the stakeholder and comes at the cost of
privacy. While Baldimsti et al.’s proposal and Proposal 1 keep the identity
and stake of stakeholders private, Proposal 2 permits stakeholders with
desires for varying degrees of privacy to interact on the same blockchain.
We specify paths for future work within both our proposals and present
further ideas for improvements to performance.

Sammendrag

Konsensus i Blockchains, ofte oppnådd med energikrevende Proof of
Work (PoW) protokoller, er gjenstand for re-evaluering, som en følge av
at nye Proof of Stake (PoS) protokoller vokser frem som gode alternativ.
Disse PoS-protokollene kan likevel ikke konkurrere med personvernet som
tilbys av PoW, siden de iboende avslører både identiteten og stake til
interessentene.

Vi gjennomførte en litteraturstudie av alle tilgjengelige PPoS forsla-
gene med vitenskapelig publisering: Proof-of-Stake Protocols for Privacy-
Aware Blockchains av Ganesh et al., Anonymous LotteryIn the Proof-
of-Stake setting av Baldimtsi et al., Ouroboros Crypsinous: Privacy-
Preserving Proof-of-Stake av Kerber et al., and Zether: Towards Privacy
in a Smart Contract World av Bünz et al. En analyse med fokus på
personvern og ytelse identifiserte utfordringer med PPoS-forslagene.

Av de identifiserte utfordringene valgte vi å forbedre ytelsen til Bal-
dimsti et al. sitt forslag gjennom de følgende nye forslagene.

1. En PPoS som bruker homomorf kryptering for å fjerne behovet for
å sende flere (ikke-linkbare) bevis i multi-stake-setting.

2. En ordning med en trade-off mellom personvern av stake og ytelse,
som tilbyr en alternativ metode for å takle personvern i multi-stake
setting.

Som et bevis på konseptet instansierer vi begge forslagene med PoS-
protokollen Algorand. Av denne grunn gir vi en litteraturstudie og analyse
av Algorand med et spesielt fokus på personvernet til identitet og stake.

Forslagene vurderes basert på ytelse, personvern og sikkerhet. Når
det gjelder ytelse, har Baldimsti et al. sitt forslag lineær kompleksitet,
forslag 1 har konstant kompleksitet, og forslag 2 sin ytelse bestemmes av
interessenten og kommer på bekostning personvern. Mens Baldimsti et al.
sitt forslag og forslag 1 holder interessentenes identitet og stake private,
tillater forslag 2 interessenter som ønsker varierende grad av personvern
å samhandle på samme blockchain. Vi spesifiserer områder for videre
arbeid i begge forslagene og presenterer videre ideer for forbedringer av
ytelsen.

Preface

This thesis marks the culmination of our master’s degree in Communica-
tion Technology and Digital Security under the Department of Information
Security and Communication Technology, Faculty of Information Technol-
ogy and Electrical Engineering, at The Norwegian University of Science
and Technology (NTNU). A special thanks goes out to our supervisor,
Mayank Raikwar, and responsible professor, Danilo Gligoroski, for their
excellent guidance and support throughout the work on the thesis and
pre-project. We would also like to thank our families for the love, support,
and encouragement.

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xv

List of Symbols xvii

List of Acronyms xxiii

1 Introduction 1
1.1 Background . 3

1.1.1 Blockchain . 3
1.1.2 Proof of Work . 4
1.1.3 Proof of Stake . 6

1.2 Contributions . 8
1.3 Methodology . 9

1.3.1 Literature Study . 9
1.3.2 Mathematical Background . 9
1.3.3 Analysis of PPoSs . 9
1.3.4 Analysis of Algorand . 9
1.3.5 Proposals for improvement 10
1.3.6 Evaluation of the improved PPoS proposals 10

2 State of the Art 11
2.1 Proof-of-Stake Protocols for Privacy-Aware Blockchains 11
2.2 Anonymous Lottery In the Proof-of-Stake setting 12
2.3 Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake 13
2.4 Zether: Towards Privacy in a Smart Contract World 14

3 Mathematical background 15
3.1 Homomorphic Encryption . 15

3.1.1 Definitions . 15

vii

3.1.2 The BGV FHE scheme . 16
3.1.3 Homomorphic Comparison Protocols 18

3.2 SNARKs . 19

4 Analysis 21
4.1 The Problem of Privacy in PoS . 21
4.2 Analysis of Formal Studies into PPoS 22

4.2.1 Proof-of-Stake Protocols for Privacy-Aware Blockchains . . . 22
4.2.2 Anonymous Lottery In the Proof-of-Stake Setting 23
4.2.3 Ouroboros Crypsinous . 24

4.3 Areas Open to Improvement Within the PPoS proposals 26
4.4 Algorand . 28

4.4.1 Description . 28
4.4.2 Analysis . 31

5 Proposals for Improvement 33
5.1 Proposal 1 . 33

5.1.1 Scheme . 34
5.1.2 Ideal Functionalities . 36
5.1.3 Modifications to the Protocols of Baldimtsi et al. 37
5.1.4 Modifications to the Procedures of Algorand 44
5.1.5 Outline . 50

5.2 Proposal 2 . 52
5.2.1 Scheme . 53
5.2.2 Modifications to the Protocols of Baldimtsi et al. 57
5.2.3 Modifications to the Procedures of Algorand 61
5.2.4 Outline . 65

5.3 Evaluation of the Proposals . 67
5.3.1 Proposal 1: Performance Estimate 67
5.3.2 Proposal 1: Privacy and Security 68
5.3.3 Proposal 2: Performance Estimate 69
5.3.4 Proposal 2: Privacy and Security 70

6 Conclusion 73
6.1 Summary of Results . 73
6.2 Discussion . 74
6.3 Future work . 76

6.3.1 Proposal 1 . 76
6.3.2 Proposal 2 . 77
6.3.3 Further Ideas for Improvement 78

References 81

Appendices
A Appendix 87

A.1 BIOTC paper . 87

List of Figures

1.1 An Illustration of Blockchain . 3
1.2 A Simplified Illustration of Selection in PoW 5
1.3 A Simplified Illustration of Selection in PoS 6

4.1 A Simplified Illustration of Consensus in Algorand 30

5.1 A Simplified Illustration of Consensus in Baldimtsi et al.’s proposal . . . 35
5.2 A Simplified Illustration of Consensus in Proposal 1 35

xi

List of Tables

5.1 Privacy_Level (Example) . 54

xiii

List of Algorithms

3.1 Greater-Than Comparison Protocol 18
3.2 Equality Comparison Protocol . 18
4.1 Sortition . 28
4.2 BA? . 29
5.1 FHomomorphicSetup . 36
5.2 FHomomorphicGreater−Than . 37
5.3 ΠEligible

Anon−Selection . 38
5.4 ΠEligible

Anon−Selection
1

. 38
5.5 Eligible()1 . 39
5.6 EligibilityCheck()1 . 39
5.7 CreateProof() . 42
5.8 CreateProof()1 . 42
5.9 Verify() . 43
5.10 Verify()1 . 43
5.11 Sortition() . 44
5.12 Sortition()1 . 45
5.13 CommitteeVote() . 45
5.14 CommitteeVote()1 . 46
5.15 VerifySort() . 47
5.16 ProcessMsg() . 47
5.17 ProcessMsg()1 . 48
5.18 CountVotes() . 48
5.19 CountVotes()1 . 49
5.20 CombinationFunc() . 55
5.21 CreateProof()2 Version 1 . 59
5.22 CreateProof()2 Version 2 . 60
5.23 FCreateProof . 61
5.24 Sortition()2 . 62
5.25 CommitteeVote()2 . 62
5.26 ProcessMsg()2 . 63
5.27 CountVotes()2 . 64

xv

List of Symbols

rtpk The root of the Merkle tree, MTree(pk), which
stores the public keys.

λ Security parameter.
πi Algorand, [5], and Proposal 1: Denotes party

Pi’s proof of selection. Proposal 2: Denotes the
list of party Pi’s multiple proofs of selection.

πNIZK Zero-knowledge proof of selection.

btag A value used to denote selection in the single-
stake setting in [5]. btag = 1 if the party is
selected and btag = 0 if not.

block As its name suggests, denotes a block in the
blockchain.

Cvi Party Pi’s commitment to vi.
cmi Party Pi’s commitment to stakei.
counts A hash table containing the current total votes

for each block.
ctx A context that captures the current state of the

blockchain.
ctx.last_block The hash of the “newest” block / previous block

added in the blockhain.

FHE.pki The public FHE key; the homomorphic encryp-
tion key for party Pi.

FHE.ski The secret FHE key; the homomorphic decryp-
tion key for party Pi.

xvii

hash The same as sorthash.

index [5]: denotes each unit of wti. Proposal 1: de-
notes each unit of ji. Proposal 2: denotes the
index in the votingpowers list.

ji Total voting power for party Pi.
j′i The homomorphic encryption of the total voting

power for party Pi.

mi The message gossiped by party Pi, containing
i.a. msgi.

msgi The message composed by party Pi gossiped in
mi.

Pi Party i.
params Global parameters used for homomorphic en-

cryption.
pki The public key of party Pi.
privacy A variable between 1-10 chosen by the party

itself. 10 denotes a high privacy and 1 a low
privacy.

privacy_level Calculated by CominationFunc() based on the
party’s chosen privacy variable and ji. A high
value denotes good privacy and a low value de-
notes worse privacy.

role Distinguishes the different roles that a party
may be selected for in Algorand, e.g., block
proposer or verifier.

round Algorand grows the blockchain in rounds. For
each round a block is added to the blockchain.

rtcm The root of the Merkle Tree,MTree(cm), which
stores the commitments to stake.

rt~Vtag
The root of the Merkle tree, MTree(~Vtag),
which stores ~Vtag.

seed A publicly known random seed.
ski The secret key of party Pi.
sorthash The hash returned from the V RF in Sortition()

in Algorand.
stakei Party Pi’s stake.
step Algorand grows the blockchain in rounds. Each

round in consists of several steps.

tag Defines when a new selection process is per-
formed.

totalStake The total stake of the parties in the network.

vi Party Pi’s inverse trapdoor permutation of
~Vtag[i] computed using the party’s trapdoor se-

cret key.
~Vtag A public vector for tag, consisting of n uniformly

random elements, where n is the total number
of parties. Stored as a Merkle treeMTree(~Vtag)
with root rt~Vtag

.
~Vtag[i] Party Pi’s element at position i in the vector

~Vtag.
value The hash value of the block.
votes The votes, equal to the voting power, associated

with a message and proof.
votes′ The value votes homomorphically encrypted.
votingpowers The list of a party’s distributed voting powers.

W The weight of all parties in the system.
w The zero-knowledge proof witness.
wti Party Pi’s weight, proportional to their stake in

the network.

x The zero-knowledge proof statement.

List of Acronyms

ABC Anonymous Broadcast Channel.

aSVC Aggregatable Subvector Commitment.

AVRF Anonymous Verifiable Random Function.

BA Byzantine Agreement.

BGV Brakerski-Gentry-Vaikuntanathan.

CRS Common Reference String.

FHE Fully Homomorphic Encryption.

NIZK Non-Interactive Zero-Knowledge.

NTNU Norwegian University of Science and Technology.

PoS Proof of Stake.

PoW Proof of Work.

PPoS Private Proof of Stake.

PPT Probabilistic Polynomial-Time.

PRF Pseudorandom Function.

R1CS Rank-1 Constraint Satisfaction.

SNARK Succinct Non-interactive Argument of Knowledge.

VRF Verifiable Random Function.

zk-SNARK zero-knowledge Succinct Non-interactive Argument of Knowledge.

xxiii

Chapter1Introduction

The growth and adoption of cryptocurrencies and, consequently, blockchain tech-
nologies have been rapid over the past decade. This is evident in the progression
from a non-existing cryptocurrency market in 2008 to a market consisting of 5464
cryptocurrencies with a total financial market worth of 1.76 trillion, as of the 3rd of
June 2021 [17]. Cryptocurrencies, such as Bitcoin, rely on the existence of distributed
ledgers, commonly known as blockchains. Such blockchains depend on consensus
mechanisms to extend the blockchain, i.e., add a block to the chain. At the heart of
consensus mechanisms lies selection, the process by which parties determine who in
the network gets to decide the next block in the blockchain.

To date, PoW, with a market cap dominance of around 65% (as of the 3rd
of June 2021), remains the most dominant consensus mechanism implemented in
blockchains since the creation of Bitcoin in 2009 [56, 17]. At its core, PoW selection
prompts parties to solve a computationally hard puzzle whose solution is the proof
of selection. Unfortunately, the quest for solutions to such puzzles requires ever-
increasing computation power resulting in enormous energy consumption [24, 47].

As a solution to the energy wastage issue, PoS was introduced informally in an
online Bitcoin forum in 2011 [1]. PoS implements a selection based on stake, i.e.,
the proportion of money a party holds, to determine who can extend the blockchain.
The identity of the selected party is an integral part of the proof of selection; thus,
an issue of privacy arises as the proof reveals the identity of the selected. Adversaries
can also deduct the stake of the parties by a frequency analysis of how often parties
are selected. In order to offer a competitive alternative to PoW, PoS must be
privacy-preserving as well. Hence, our research question is as follows,

Is it possible to design consensus mechanisms that are as energy-efficient as PoS and
as privacy-preserving as PoW?

1

2 1. INTRODUCTION

In an increasingly environmentally conscious world, the future of PoW based
cryptocurrencies is becoming ever more unstable as PoS offers a “greener” alternative
[24]. For example, in May 2021, Tesla took a stance on the issue by retracting the
promise that their cars can be bought with Bitcoin, citing high environmental cost
as the reason [35]. This stance caused Bitcoin to fall 37.5% in May 2021 [30] and
had comparable effects on other PoW based cryptocurrencies [35]. It is worth noting
that Bitcoin prides itself on the fact that 74% of BTC are mined with renewable
energy [7]. On the other hand, it is still a simple fact that this energy could serve
another purpose if Bitcoin mining facilities were not using it. Nevertheless, we want
to emphasize the importance of the efforts made by PoW based cryptocurrencies
to use renewable energy which may help promote both energy reallocation and the
development of renewable energy [33].

Formal studies into PPoS have emerged within the scientific community as recently
as 2019 [25, 36] and 2020 [5, 12]. These studies aim to preserve the efficiency of
PoS without revealing the identity and stake of the selected. Note that a multitude
of privacy-preserving PoS proposals can be found on, for example, Github [20, 2].
However, we limit the scope of our thesis to those promoting reviews from the
cryptographic community with a record of scientific publication. The four available
PPoS proposals within this scope are Proof-of-Stake Protocols for Privacy-Aware
Blockchains [25], Anonymous Lottery In the Proof-of-Stake setting [5], Ouroboros
Crypsinous: Privacy-Preserving Proof-of-Stake [36], and Zether: Towards Privacy in
a Smart Contract World [12]. A preliminary review in the pre-project of this thesis
[52], uncovered a few possible issues and we hypothesize that a more thorough review
will reveal additional issues or weaknesses of the proposals.

In summary, our overall goal is to design novel (PPoS) consensus mechanisms
that are as energy-efficient as PoS and as privacy-preserving as PoW. To reach
our objective, we will review and analyze all currently available PPoS consensus
mechanisms and, based on identified issues, make proposals for modifications that
improve these mechanisms. Note that we limit our scope to consensus and, in doing so,
refrain from looking at the anonymization of transactions. Various implementations
of anonymous transactions already exist, such as Zcash [50] and Monero [46]. We
further restrict the scope of the thesis with the following assumptions; the network
structure is synchronous, there is only one round of selection, and the majority of
parties are honest.

1.1. BACKGROUND 3

1.1 Background

The topics necessary for understanding the thesis are Blockchain, PoW, and PoS.

1.1.1 Blockchain

The alias Satoshi Nakamoto conceptualized, in 2008, the first blockchain database
in his novel white paper titled Bitcoin: A Peer-To-Peer Electronic Cash System
[43]. In the following year the Bitcoin network commenced with blockchain as
a core component [3]. Since then, the number of cryptocurrencies has increased
tremendously, with Bitcoin remaining the most popular [17].

Hash n-1

Nonce

Merkle Hash

List of
Transactions

Hash n

Nonce

Merkle Hash

List of
Transactions

Hash n+1

Nonce

Merkle Hash

List of
Transactions

Block n Block n+1 Block n+2

Hash n+1

Nonce

Merkle Root Hash

Version

Timestamp

H 12 H 34

Tx 1 Tx 2 Tx 3 Tx 4

Block n+2 Transactions

Block Header

Version

Tx Hash

Lock Time

Scripts

Transaction

Figure 1.1: An Illustration of Blockchain. The figure illustrates that a blockchain is
a chain of blocks composed of transactions. Each block references the hash of the proceeding
block (source: [47]).

By definition, “a blockchain is a distributed, decentralized and immutable ledger
that stores transaction history” [23]. To elaborate, a blockchain is a distributed ledger
across a peer-to-peer network, or rather a database [48] shared and synchronized
across numerous locations, geographically spread across countries, organizations
and sites. A blockchain is decentralized, as no central authority presides over the
blockchain, i.e., no individual or group manages and controls access to the blockchain.
The previously mentioned transaction history is continuously appended to the ledger
and is accessible by any party on the network. Essentially, as seen in Figure 1.1,
a blockchain consists of blocks, each identified by a hash, sequentially connected
by referencing the hash of the preceding block. This combination of hashing and
referencing is advantageous as it makes the chain immutable. In other words, it
is nearly impossible for any party to tamper with a block without invalidating all
succeeding blocks. Apart from the use of a hash function, blockchain employs different
cryptographic concepts to ensure the security and privacy of the blockchain.

4 1. INTRODUCTION

To clarify, as detailed by [3], the main components and core concepts of a
blockchain are as follows:

– Transactions: the data, created, signed, and finally broadcast by participating
nodes to the rest of the network;

– Blocks: the collection of transactions into groups. These blocks have set storage
capacities. Once reached, a block is validated and appended to the blockchain;

– Blockchain: a ledger of all created blocks within the network, linked or “chained”
together using hash codes. That is, each block contains the hash of the preceding
block;

– Consensus mechanism: a mechanism for selecting which blocks to append to the
blockchain. Subsections 1.1.2 and 1.1.3 thoroughly cover two such mechanisms.

According to Raikwar et al. [47], blockchains can be classified depending on the
implementation design, administration rules, data availability, and access privileges.
In academic literature, blockchains have been classified as “public” and “private”,
while from the administrative point of view, they are described as “permissioned” and
“permissionless”. In total, the literature recognizes four types of blockchains (Table
3 in [47]) by coupling public, private, permissioned, and permissionless properties.
The permissionless platforms are accessible by any party, as no permissions are
required to join the network and submit transactions. Note that this thesis will only
concern itself with permissionless blockchains. A major challenge for permissionless
blockchains lies in achieving consensus on a block to extend the blockchain and
several viable consensus mechanisms exist.

1.1.2 Proof of Work

PoW is a mechanism used to provide consensus on the validity of each new block
applied to the blockchain. The mechanism dates back to 1992 when Dwork and Naor
[22] introduced the concept as a technique to combat junk mail. When Nakamoto
presented Bitcoin in 2008 [43], PoW was popularly adapted as a consensus mechanism
for blockchains [34].

As explained in [3], PoW relies on the assumption that the majority of the
computing power belongs to honest parties in the network. As illustrated in Figure
1.2, some of the parties in the network, miners, compete to solve a complex puzzle.
When a miner solves this puzzle, like Alice in Figure 1.2, the miner broadcasts their
chosen block to the network together with the solution as the hash of the block. As
the solution is easy to verify, all parties can then judge the validity of the block by
verifying that the solution is correct. The miner who has published a block with a
valid solution receives a reward to motivate the parties to contribute as miners.

1.1. BACKGROUND 5

Figure 1.2: A Simplified Illustration of Selection in PoW. The parties compete
to solve a computationally hard puzzle. Alice, the first to solve the puzzle, broadcast her
chosen block with the solution.

Since a lot of computing power is required to solve the puzzle, utilization of PoW
has led to enormous energy consumption. de Vries [21] estimated that the lower
bound of Bitcoins energy consumption was around 2.55 gigawatts when published in
2018 and predicted a high increase in the future. The computational power needed
to solve the puzzles has also led miners to collaborate in establishing mining pools.
According to Cong et al., this “severely escalate the arms race in PoW blockchains,
whose real consequence is an enormous additional amount of energy devoted to
mining” [18].

Another issue with PoW consensus mechanisms is the possibility of persistent
forks. Forks arise when parties in the network disagree on the history of blocks in
the blockchain [49]. A paper by Saleh [49] explains that persistent forks occur when
miners are incentivized to maintain different versions of the blockchain. The miners
want to maintain the version of the blockchain in which they have validated a block,
because of the reward they will receive if this blockchain persists. Two mitigation
strategies used to avoid forks increase the time needed to confirm a block. The
first sets a lower bound for the computational difficulty of the puzzle to require a
sufficiently long time to add one block [29]. The second waits to confirm a block until
several more blocks have been added to ensure high confidence that the block was
added to the “correct” blockchain. In Bitcoin, ten minutes are required to grow the
blockchain by one block, and six blocks are recommended as an appropriate waiting
time to ensure high confidence, resulting in approximately an hour to confirm a block.
As such, fork mitigation in PoW mechanisms significantly increases the time needed
to confirm a new block.

6 1. INTRODUCTION

1.1.3 Proof of Stake

The history of PoS began in 2011 when the idea was first introduced in a Bitcoin forum
[1]. More formally, King and Nadal [38] provided the first PoS proposal in 2012 as an
alternative to PoW. In the following years, the number of proposed PoS protocols has
increased rapidly. The PoS based blockchain protocols and cryptocurrencies such as
Ouroboros [37], Algorand [29], Cardano [13], and Tezos [31] have emerged. Ethereum,
the second-largest cryptocurrency to date lies at the forefront of the transition from
PoW to PoS [24].

In contrast to PoW, PoS is based on the assumption that trustworthy parties own
a majority of the stake in the network. Therefore, the security of the blockchain is
maintained by having stakeholders propose and validate new blocks. The stakeholders
have a strong incentive to validate blocks correctly, since their stake would become
worthless if the security and, thus, trust in the system vanishes, [8].

Figure 1.3: A Simplified Illustration of Selection in PoS. A lottery is used to
illustrate PoS selection. The stakeholders win with a probability proportional to their stake.
Alice wins and, thus, she gets to decide the next block added to the blockchain.

To simplify, for each round, stakeholder(s) are chosen, with a probability equal to
the fraction of stake they hold in the network, to validate or propose the next block
before it is added to the blockchain [25]. Figure 1.3 illustrates the PoS selection
as a lottery. In the figure, Alice wins the lottery and broadcasts her chosen block
along with a proof of selection (winning). According to Baldimtsi et al., the selection
function must fulfill the properties “privately evaluated, publicly verifiable and fair”
[5]. In other words, the selection must be fair and parties in the network must be
able to evaluate whether they have been chosen as a proposer or validator locally. All
parties must then be able to confirm the validity of the validated or proposed block.
Other parties use the selected’s public key to assess the validity of the received block
or message, consequently revealing the identity of the selected to all parties.

1.1. BACKGROUND 7

PoS mechanisms can either be single-stake or multi-stake. Baldimtsi et al. [5]
propose a PPoS for both the single-stake and multi-stake setting and explain that
each public key can be associated with several units of stake in the multi-stake
setting. In contrast, “each public key is associated with one unit of stake” [5] in
the single-stake setting. Thus, for the single-stake setting, stakeholders must hold a
public key for each unit of stake they own, while in the multi-stake setting, only one
public key per stakeholder is required. Note that for the scope of this thesis, we look
at the multi-stake setting.

Slot-based and committee-based are two types of PoS protocols. Ganesh et al.
[25] explain that being selected in slot-based PoS means being able to create a new
block for a slot, while in committee-based PoS, being selected means being part of
a committee. In contrast to slot-based PoS, selection in committee-based PoS can
encompass different roles, e.g., proposing a new block or voting on a proposed block.

PoS mechanisms either support the static stake setting or the dynamic stake
setting. As explained in [25], while the distribution of stake is permanent after
initialization for the static stake setting, the parties’ stake can change with time, and
new parties can join the network for the dynamic stake setting. For the scope of this
thesis, we look at the static-stake setting.

Most cryptocurrencies implementing PoS provide the parties with an economic
incentive to become validators as they receive a reward after validating a block. Saleh
[49] explains that the reward must be significantly lower than the stake the validators
hold in the network, driving the validators to validate the block correctly, giving
way to trust and consensus. The low block reward in PoS mechanisms avoids PoW’s
issue of persistent forks, mentioned in Section 1.1.2. While the validators in PoW do
not have to be stakeholders and have no incentive to resolve forks, the validators
in PoS hold stake in the network and, consequently, have the incentive to resolve
forks. As a result, PoS also avoids the fork mitigation consequence of a long block
confirmation time.

In summary, PoS consensus mechanisms provide a solution to the vast energy
consumption of PoW based blockchains by using stake rather than computing power
to “win the lottery”. However, by making the identity and stake an integral part of
the proof, the identity, e.g., the public key of the validator, must be revealed for the
proof of selection to be publicly verifiable.

8 1. INTRODUCTION

1.2 Contributions

We now provide an overview of our contributions.

A literature study of the currently available PPoSs. I.e., a study of all
available PPoS proposals with a record of scientific publication: Proof-of-Stake
Protocols for Privacy-Aware Blockchains [25] by Ganesh et al., Anonymous Lottery
In the Proof-of-Stake setting [5] by Baldimtsi et al., OuroborosCrypsinous: Privacy-
Preserving Proof-of-Stake [36] by Kerber et al., and Zether: Towards Privacy in a
Smart Contract World [12] by Bünz et al.

An analysis of the aforementioned PPoSs with a specific focus on privacy
and efficiency. The analysis identifies issues and areas of improvement within the
PPoSs. Note that we exclude Zether [12] as the existing literature is not extensive
enough to warrant analysis.

A literature review and analysis of Algorand [29] with a particular focus
on privacy. Namely, an analysis of where the PoS protocol reveals identity and stake.

A proposal for improvements to Baldimsti et al.’s PPoS proposal [5].
We effectively remove the need for multiple unlinkable proofs in the multi-stake
setting through the use of homomorphic encryption.

The paper Efficient Novel Privacy Preserving PoS Protocol attached
in Appendix A.1. The paper presents the above proposal and has been accepted for
publication to the Blockchain and Internet of Things Conference (BIOTC). The final
version of the paper will be published in the International Conference Proceedings
by ACM.

A proposal for modifications to Baldimsti et al.’s PPoS proposal [5] to
create a privacy performance trade-off in the multi-stake setting. This trade-off
scheme allows for a flexible implementation of privacy in PoS, where stakeholders
decide how private they want to keep their stake.

An instantiation of both proposals with the PoS based cryptocurrency
Algorand [29].

An evaluation of both proposals with regards to performance and privacy.

Some ideas for future work came to mind over the course of this thesis. While
we went with the two ideas exemplified by our proposals, we identified two further
directions for research presented as future work.

1.3. METHODOLOGY 9

1.3 Methodology

The methodology for the thesis is as follows.

1.3.1 Literature Study

An initial literature study was conducted with regards to the topics of PoW, PoS,
and PPoS, as presented in Section 1.1. Next, we completed a literature study of the
four currently available PPoS proposals with a record of scientific publication: Proof-
of-Stake Protocols for Privacy-Aware Blockchains [25], Anonymous Lottery In the
Proof-of-Stake setting [5], Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake
[36] and Zether: Towards Privacy in a Smart Contract World [12]. These proposals
are presented in Chapter 2. As this is a theoretical thesis, literature studies were
performed continuously throughout the semester.

1.3.2 Mathematical Background

Mathematical background on the topics of Succinct Non-interactive Arguments
of Knowledge (SNARKs) and Homomorphic Encryption, necessary to understand
the thesis, are presented in Chapter 3. Note that the study of these topics was
conducted when appropriate; while SNARK were studied at the beginning of our
work, homomorphic encryption was studied after the idea for our first proposal
emerged.

1.3.3 Analysis of PPoSs

Analyses of the PPoS proposals [25], [5], and [36] were conducted. The proposals
were analyzed, focusing on identifying issues in the proposals with regards to privacy,
performance, and the inclusion of all aspects relevant to distributed consensus. These
analyses are presented in Chapter 4. Note that [12] was not analyzed due to a lack
of details and formalization. Following the analyses, a discussion on which PPoS
proposal to improve upon was completed. This discussion and final decision on [5],
presented in Section 4.3, were based on the issues identified in the analyses.

1.3.4 Analysis of Algorand

Baldimtsi et al.’s proposal [5] defines an ideal functionality and applies it to the
selection function of the PoS protocol Algorand [29]. Thus, we decided to keep
Algorand as the underlying PoS protocol for our future PPoS proposals. First, the
PoS protocol Algorand was studied. Following the study, an analysis of Algorand
was completed. The analysis focused on identifying what parts of Algorand expose
the participants’ identity or stake, and thus, need to be modified to make Algorand
private. Our findings are presented in Section 4.4.

10 1. INTRODUCTION

1.3.5 Proposals for improvement

Two new PPoS proposals built upon Baldimtsi et al.’s proposal [5] with Algorand
[29] as the underlying PoS protocol are presented in Chapter 5. We focused on
improvements to [5]’s efficiency challenges identified in its analysis, in addition to
the privacy issues identified in the analysis of Algorand. The modifications made to
[5]’s protocols and Algorand’s procedures are detailed for both proposals. Section
5.1 presents our first PPoS proposal. This proposal uses homomorphic encryption
to improve the performance of [5] while still achieving complete privacy. Section
5.2 presents our second proposal which provides a trade-off between privacy and
performance. This proposal aims to provide flexibility to the parties while mitigating
the performance issues of [5].

1.3.6 Evaluation of the improved PPoS proposals

An evaluation of both the privacy and performance of the new PPoS proposals was
conducted and is presented in Section 5.3.

Chapter2State of the Art

A description of all currently available PPoS proposals, Proof-of-Stake for Privacy-
Aware Blockchains [25], Anonymous Lottery In the Proof-of-Stake setting [5], Ouroboros
Crypsinous: Privacy-Preserving Proof-of-Stake [36], and Zether: Towards Privacy in
a Smart Contract World [12], is provided. We only consider PPoS proposals with
a record of scientific publication. Note the emphasis on how the proposals aim to
achieve privacy.

2.1 Proof-of-Stake Protocols for Privacy-Aware
Blockchains

Initially proposed in 2019 by Chaya Ganesh, Claudio Orlandi, and Daniel Tschudi,
the paper Proof-of-Stake Protocols for Privacy-Aware Blockchains [25] is one of
the first two studies into the feasibility of PPoS. Ganesh et al. design a protocol,
Protocolε,LE , to realize their ideal functionality. To summarize, the protocol allows
stakeholders to check whether they have been selected locally and, if appropriate,
create a zero-knowledge proof of selection. The proposal achieves privacy by including
stake as part of a zero-knowledge proof of selection. In order to anonymize the identity
of the selected, they utilize an anonymous broadcast channel.

The protocol Protocolε,LE has three phases, Initialization, Lottery and Publishing,
and Get Information. Each party gets a list of stakeholders’ committed stakes and
signature verification keys in the Initialization phase. Stakeholders additionally
acquire their signing key and relative stake. The list successfully hides the stakeholders’
identity since a signature verification key does not reveal any information about the
owner of the corresponding signing key. In addition, the privacy of the stakeholders’
stake is preserved as a commitment to a stake does not reveal any information about
the stake. In the Lottery and Publishing phase, stakeholders consult a predicate
function to determine whether or not they have been selected. Note that an underlying
selection function, defined by some preexisting PoS protocol, determines the selected.

11

12 2. STATE OF THE ART

To prove selection, the selected must prove ownership of the winning stake. The
stakeholder proves in zero-knowledge that they were selected, ensuring the privacy
of the stake. The signed message and proof of selection are published over an
Anonymous Broadcast Channel (ABC). Without an ABC, broadcasting the message
reveals the broadcaster, thus revealing the selected’s identity. The use of an ABC
also hides the frequency with which a stakeholder is selected. Finally, in the Get
Information phase, stakeholders output their relative stake when requested to do so
by the environment.

To summarize, the proposal achieves privacy by utilizing a zero-knowledge proof
that separates the selected’s stake from validating the proof of selection. In other
words, the validator does not need the selected’s stake to validate the proof, thus,
maintaining the privacy of the stake. The selected broadcasts their proof of selection
over an ABC to keep their identity hidden. The proposal also provides an instantiation
with the PoS protocol, Ouroboros Praos, in which they replace the Verifiable Random
Function (VRF) of Ouroboros Praos with an Anonymous Verifiable Random Function
(AVRF).

2.2 Anonymous Lottery In the Proof-of-Stake setting

The paper Anonymous Lottery In the Proof-of-Stake setting by Foteini Baldimtsi,
Varun Madathil, Alessandra Scafuro, and Linfeng Zhou [5] is a recent PPoS proposal
from 2020. The proposal achieves privacy by separating the identity and stake of the
stakeholder from validating the proof of selection. They present a protocol proposal
for both the single and multi-stake settings.

Baldimtsi et al. [5] define an ideal functionality and apply it to the selection
function of the PoS protocol Algorand [29], resulting in the protocol ΠEligible

Anon−Selection,
Algorithm 5.3.The protocol is made up of four main parts, Initialization(), Eligibili-
tyCheck(), CreateProof(), and Verify(). First, each party, Pi, runs the Initialization()
protocol, seen in [5, p. 12], to generate their public keys, pki, and secret keys,
ski, which i.a. includes a trapdoor permutation key pair (TRP.pki, TRP.ski) for a
trapdoor permutation f .

Following initialization, for each tag, the stakeholders run EligibilityCheck(),
seen in [5, p. 13], to check if they are selected, i.e., if they are eligible to publish a
message to vote on or propose a block. A tag defines when a new selection process
is performed. EligibilityCheck() first runs a ProcessRO algorithm which computes
a vector ~Vtag. ~Vtag’s inverse vi = f−1

TRP.ski(~Vtag[i]) is computed using the party’s
trapdoor secret key. vi is connected to the selected’s identity and is, thus, hidden
from other parties. EligibilityCheck() runs the Eligible() protocol, seen in [5, p. 11]
and [5, p. 19] for the single-stake setting and the multi-stake setting, respectively.

2.3. OUROBOROS CRYPSINOUS: PRIVACY-PRESERVING PROOF-OF-STAKE 13

Eligible() uses vi to decide btag in the single-stake setting and to calculate wti in the
multi-stake setting. btag = 1 if the party is selected for the tag, and btag = 0 if not.
In the multi-stake setting, wti > 0 if the party is selected, and wti = 0 if not.

If eligible, i.e., btag = 1 or wti > 0, the stakeholder runs the CreateProof()
protocol, Algorithm 5.7. CreateProof() creates a zero-knowledge proof, πNIZK , to
avoid using and revealing the public key (identity) and stake of the selected to the
receivers when verifying the proof of selection. The zero knowledge proof, πNIZK , is
part of a larger proof, πi. The proof, πi, additionally contains i.a. a commitment,
Cvi , to vi to prove knowledge of the pre-image of one of the ~Vtag[i] making them
eligible. In the multi-stake setting, the proof also contains a commitment, cmi, to the
party’s stake, stakei. CreateProof() returns the proof, πi, which is then sent along
with a message and the tag. Note that for the multi-stake setting, the party sends
wti number of messages and proofs. As wti is proportional to the parties’ stake,
the proofs are unlinkable as not to reveal the parties’ stake to the receivers. For all
parties to be able to verify the received proof(s), a Verify() protocol, Algorithm 5.9,
takes the tag, the message, and the proof as input and returns whether or not this
proof is valid for the given message and tag. Note that the private information of
the selected, i.e., the public key or stake, is not needed to validate the proof and is
therefore not revealed to the receivers.

To summarize, utilizing a zero-knowledge proof allows the other parties to verify
the proof of selection by confirming that the prover possesses a witness, i.a. a public
key and stake, that confirms the statement the prover was chosen in the selection
algorithm without revealing the witness. This simple statement is divided into nine
statements to check when creating the zero-knowledge proof for the single-stake
setting and twelve statements for the multi-stake setting. The number of statements
to check is greater for the multi-stake setting since the stake is also part of the
zero-knowledge proof. We refer to [5] for more details.

2.3 Ouroboros Crypsinous: Privacy-Preserving
Proof-of-Stake

Concurrent and independent of Ganesh et al., Thomas Kerber, Aggelos Kiayias,
Markulf Kohlweiss, and Vassilis Zikas present a formal model for a privacy-preserving
PoS based distributed ledger in the paper Ouroboros Crypsinous: Privacy-Preserving
Proof-of-Stake [36]. Furthermore, they propose a protocol, Ouroboros Crypsinous,
that realizes this model. The proposed protocol is inspired by the slot-based PoS,
Ouroboros Genesis [4], and has a Zerocash-like [50] transaction system, i.e., a privacy-
preserving transaction system.

14 2. STATE OF THE ART

In the simplest of terms, Ouroborous Crypsinous runs variants of Ouroborous Gen-
esis and Zerocash together, creating its own unique distributed ledger. Ouroborous
Crypsinous moves the leadership proof, i.e., proof of selection, of Ouroborous Genesis
into zero-knowledge and proves stake through a one-to-one Zerocash transfer. Similar
to the proposal by Ganesh et al. [25], Ouroborous Crypsinous replaces the VRF
of Ouroborous Genisis with an AVRF and informally claims to broadcasts over an
ABC.

Ouroboros Crypsinous formalizes a privacy-enhanced transaction ledger that is
secured in the UC (Universal Composability) setting. Therefore it can be applicable
to both PoW and PoS settings. For the leader election in Ouroboros Crypsinous,
each party holds Zerocash-style coins where each coin competes to be a leader in
a consensus slot. A coin is chosen to be a leader if its respective pseudorandom
value generated using a VRF meets a target. The party holding the winning coin
sends a Non-Interactive Zero-Knowledge (NIZK) proof of its winning coin, which
also proves that the coin is unspent. The authors prove the security of their protocol
in an adaptive setting where even if an adversary corrupts some parties during the
execution of the protocol, it does not gain any advantage with respect to privacy.

2.4 Zether: Towards Privacy in a Smart Contract World

The paper Zether: Towards Privacy in a Smart Contract World by Benedikt Bünz,
Shashank Agrawal, Mahdi Zamani, and Dan Boneh [12] from 2020 present Zether: “a
fully-decentralized payment mechanism” described as a smart contract that “keeps the
account balances encrypted and exposes methods to deposit, transfer and withdraw
funds to and from accounts through cryptographic proofs” [12].

Bünz et al. [12] mention several applications of Zether. Importantly, for the
scope of this thesis, they apply Zether to achieve a PPoS proposal. They propose
to use a zero-knowledge proof of selection similar to their proposed zero-knowledge
proof for anonymous Zether transfer. Each stakeholder participating in the “lottery”,
i.e., selection, encrypts, using ElGamal, a lottery ticket, and their stake under their
public key. For the zero-knowledge proof, Bünz et al. [12] use their new and proposed
zero-knowledge proof mechanism Σ-Bullets with the ability to prove statements on
encrypted values. The winner, i.e., selected, proves in zero-knowledge that they know
a winning ticket without revealing it.

Note that details on their PPoS proposal are not provided; Bünz et al. [12] leave
formal analysis and further investigation into this proposal for future work.

Chapter3Mathematical background

The mathematical background necessary for understanding the thesis primarily
concerns the topics of homomorphic encryption and SNARKs, and is presented in
the following sections.

3.1 Homomorphic Encryption

Homomorphic encryption (HE) enables parties to carry out simple arithmetic opera-
tions, i.a. addition and multiplication, on encrypted data without first decrypting it.
In plain terms, if the variables a and b are homomorphically encrypted,

HE.Enc(a) = a′ and HE.Enc(b) = b′,

then the homomorphic addition of a′ and b′, once decrypted, equals the addition of
a and b, i.e. HE.Add(a′, b′) = c′ and HE.Dec(c′) = a+ b.

3.1.1 Definitions

Before detailing the homomorphic encryption scheme used in this thesis, we provide
a definition of homomorphic encryption. The definition is provided by [11] and
primarily mimics the exposition by Brakerski and Vaikuntanathan [57].

The homomorphic (public-key) encryption scheme,

HE = (HE.Setup,HE.KeyGen,HE.Enc,HE.Dec,HE.Eval),

is defined as a quintuple of the following Probabilistic Polynomial-Time (PPT)
algorithms:

– Setup. The setup algorithm

params← HE.Setup(1lambda)

with the security parameter, lambda, outputs params, i.e., the global parame-
ters of the encryption scheme.

15

16 3. MATHEMATICAL BACKGROUND

– Key generation. The secret and public key generation algorithms,

sk ← HE.SecretKeyGen(params)

and
pk ← HE.PublicKeyGen(params, sk),

take as input the global parameters params (and the secret key sk) and outputs
the secret key and public key, respectively.

– Encryption. The encryption algorithm,

c← HE.Enc(params, pk, µ),

with the inputs, global parameters params, public key pk, and message µ ∈ RM,
outputs a ciphertext c.

– Decryption. Conversely, the decryption algorithm

µ∗ ← HE.Dec(params, sk, c)

with the inputs, global parameters params, secret key sk, and ciphertext c,
outputs a message µ∗ ∈ RM.

– Homomorphic Evaluation. The evaluation algorithm,

cf ← HE.Eval(pk, f, c1, ..., cl)

with the inputs, public key pk, a function f : RlM → RM which is an arithmetic
circuit over RM, and a set of l ciphertexts c1, ..., cl, outputs a ciphertext cf .

Note that “the message spaceM of the encryption schemes will always be some
ring RM, and the functions to be evaluated will be represented as arithmetic circuits
over this ring, composed of addition and multiplication gates” [11].

3.1.2 The BGV FHE scheme

This thesis implements the Fully Homomorphic Encryption (FHE) scheme Brakerski-
Gentry-Vaikuntanathan (BGV) by Brakerski et al., described in the paper (Leveled)
FHE without Bootstrapping [11]. The security of BGV stems from the hardness of
the ring-LWE (learning with error) problem. Against known lattice attacks, BGV
achieves 2λ security. The scheme consists of a quintuple of polynomial-time algorithms,
FHE.Setup(), FHE.KeyGen(), FHE.Enc(), FHE.Dec(), and FHE.Eval(). The
latter invokes FHE.Add() and FHE.Mult(), of which our application is only inter-
ested in FHE.Add(). Similarly, our application does not make use of FHE.Dec().

3.1. HOMOMORPHIC ENCRYPTION 17

FHE.Setup() is the first algorithm to be performed. It takes as input the
security parameter, λ, and a parameter, A, which indicates “the number of levels of
arithmetic circuit that we want our FHE scheme to be capable of evaluating” [11].
The parameter A is further defined in Subsection 3.1.2.1. FHE.Setup() produces
i.a. a ladder of global parameters, paramsa, for the input level of the circuit, a = A,
to the output level of the circuit, a = 0. Next, FHE.KeyGen() is called, with the
ladder of parameters, paramsa, as input, to generate the public and secret keys,
FHE.pka and FHE.ska. For the sake of clarity we will refer to paramsa, FHE.pka,
and FHE.ska as params, FHE.pk, and FHE.sk, respectively, throughout this
thesis. Note that the global parameter params is input to all the BGV algorithms
(excluding FHE.Setup()), even when not specified. To homomorphically encrypt
some message, m, a party runs FHE.Enc() with inputs FHE.pk, and m to produce
a ciphertext, c. The decryption of the ciphertext is done by FHE.Dec(), with inputs
FHE.sk, and c, but as mentioned, this is irrelevant to our application.

Since our application is only interested in FHE.Add(), we assume modifica-
tions to FHE.Eval() such that FHE.Mult() is discontinued, and the circuit, f ,
is composed solely of addition gates rather than layers of alternating addition
and multiplication gates. Thus, FHE.Eval(FHE.pk, f, c1, ..., cn) only encompasses
FHE.Add(FHE.pk, c1, c2), which returns the homomorphically encrypted sum of
c1 and c2. Since our application only uses FHE.Eval() for the addition of two
ciphertexts, we assume further modifications such that FHE.Eval() takes as input
two ciphertexts rather than n ciphertexts. It is important to note that if the two
ciphertexts are not encrypted under the same secret key, FHE.Eval() will invoke
a ciphertext refreshing procedure, FHE.Refresh(), in order to make it so before
running arithmetic operations. Running FHE.Refresh() often has negative effects
on performance; therefore, it is preferable to perform homomorphic evaluations on
ciphertexts encrypted by the same public key whenever possible. FHE.Refresh()
also serves a second purpose in the reduction of noise.

3.1.2.1 Noise Handling

Traditionally, if noise accumulates due to the consecutive execution of arithmetic
operations on homomorphically encrypted values, a bootstrapping procedure is
performed. However, the version of the BGV scheme utilized in this thesis does not
require such bootstrapping. Instead, it supports homomorphic evaluations up to
a predefined level, A, and a refreshing procedure, FHE.Refresh(), which reduces
noise [11]. Note that while FHE.Refresh() is needed after every homomorphic
multiplication, homomorphic addition increases noise more slowly and may not
require FHE.Refresh() at all. We define A as the maximum amount of additions
necessary for the instantiation of our proposal with Algorand and assume that such
a level is possible. Based on the existing documentation [11], we assume this is

18 3. MATHEMATICAL BACKGROUND

plausible because (1) we will only perform homomorphic additions, and (2) we are
not concerned with homomorphic decryption and thus as long as the accumulated
noise does not impede a greater than comparison, we do not mind it.

3.1.3 Homomorphic Comparison Protocols

In addition to the arithmetic operations, i.e., addition and multiplication, comparison-
based computations on homomorphically encrypted ciphertexts are possible [54].
Recent works [15, 10, 16] show ways to perform such comparisons efficiently and
with optimal complexity. This thesis applies these comparison properties over homo-
morphically encrypted data in the greater-than and equality comparison protocols
shown in Algorithms 3.1 and 3.2, respectively. The former takes as input the homo-
morphically encrypted values x′ and y′ and homomorphically evaluates whether x
is greater than y. The evaluation is done using a Greater-Than comparison circuit,
GTR, which returns 1 if x is greater than y and 0 if not.

Algorithm 3.1 Greater-Than Comparison Protocol
Protocol FHE.GreaterThan(x′, y′)
1: Evaluate the Greater-Than circuit, GTR(x′, y′), and receive b
2: Return b

Similarly, the homomorphic equality test takes as input the homomorphically
encrypted values x′ and y′ and homomorphically evaluates whether x is equal to y.
Some equality comparison circuit, EQR, is used to handle this evaluation, returning
1 if x is equal to y and 0 if not.

Algorithm 3.2 Equality Comparison Protocol
Protocol FHE.Equality(x′, y′)
1: Evaluate the Equality circuit, EQR(x′, y′), and receive b
2: Return b

3.2. SNARKS 19

3.2 SNARKs

SNARKs are a method of proving that something is true without revealing any other
information. Namely, a prover wants to convince a verifier that some statement is
true without revealing the secret information w used to prove the statement.

Developments within the field of zero-knowledge Succinct Non-interactive Argu-
ments of Knowledge (zk-SNARKs), [44, 19, 32], have enabled the implementation of
zk-SNARKs in practice. To illustrate the use of SNARKs, we refer to three algorithms
presented in Baldimtsi et al.’s paper [5]. These three probabilistic polynomial-time
algorithms define a NIZK proof system as follows:

– crs← NIZK.Setup(1λ): Produces a Common Reference String (CRS).

– π ← NIZK.Prove(crs, stmt, ω): Produces a proof π.

– 0/1← NIZK.V erify(crs, stmt, π): Verifies the proof. Outputs 1 if the proof
is accepted and 0 if not.

Note that λ, x, and w denote the security parameter, statement, and witness,
respectively [5]. The cleverness of SNARKs and, thereby, NIZK systems lies in that
the witness, i.e., the prover’s secret information, is used to prove the statement
without being revealed to the verifier.

Polynomials are at the very core of SNARKs. According to Why and How
zk-SNARK Works: Definitive Explanation by Petkus [45], first, the statement to
prove is reduced to the language of math and then further reduced into the realm of
polynomials. The paper explains that after reduction, the prover knows a (secret) w
such that for all a, two polynomials are equal, for instance, z(a) ∗ w(a) = p(a). In
simpler terms, as explained by [45]:

– The verifier evaluates his polynomial locally with a chosen random value for a.

– The verifier provides the prover with a and asks the prover to evaluate the
polynomial in question.

– After evaluating his polynomial at a, the prover gives the result to the verifier.

– Finally, the verifier checks whether the local result is the same as the prover’s
result. If the results are equal, the statement is proven with high confidence.

20 3. MATHEMATICAL BACKGROUND

This confidence is based on an important property of polynomials: “If we have
two non-equal polynomials of degree at most d, they can intersect at no more
than d points” [45]. Thus, a single error in w(a) makes the prover’s polynomial,
z(a) ∗ w(a), different from the verifier’s polynomial, p(a), and the error is visible
almost everywhere. The probability that the verifier accidentally chooses a as one of
the d shared points is considered negligible, given a certain range of a, for example,
from 1 to 1077 [45].

To avoid any issues of the prover cheating when the prover knows a, the verifier
sends the homomorphically encrypted value of a, that is a′, instead of the plaintext
a to the prover. [45] explains that without knowledge of a, it is difficult for the
prover to find an illicit polynomial equal to the verifier’s polynomial. Moreover, the
paper clarifies that the prover now homomorphically evaluates his polynomial using
a′. The verifier receives the prover’s evaluated polynomial and checks equality in the
encrypted form.

The non-interactivity of SNARKs is achieved by a trusted setup, as the encrypted
a can be reused if (the plaintext) a is not revealed. The paper demonstrates that
either a single honest party or multiple parties together generate a composite CRS
such that neither of the parties, i.e., none of the verifiers or provers, know the secret
a. Simplified, the CRS contains the encrypted a. The study goes on to mention
that when the CRS is generated, “any prover and any verifier can use it in order
to conduct non-interactive zero-knowledge proofs” [45]. Thus, after distributing
the encrypted a to all parties, the protocol boils down to the prover evaluating her
polynomial with the encrypted a and sending the result (proof). The verifier only
participates in the final step to verify this result (proof).

While the methods used in the SNARKs protocol mainly contribute to a fast
verification process, [45] explains that zero-knowledge almost comes for “free”. The
verifier does not gain any information about the unknown polynomial, p(a), since
she only checks the equality in the encrypted form and does not know a. When the
prover sends his evaluation to the verifier, he proves that he knows the coefficients of
the polynomial because knowing a polynomial is knowing its coefficients. In practice,
if the possible coefficients of this polynomial are few, the verifier may brute-force
until the result equals the prover’s response. This issue is “easily” solved by adding
a random encrypted number to both sides, i.e., shifting by some random number.
Consequently, SNARKs achieve zero-knowledge as the verifier neither obtains a, p(a),
nor the secret information w(a).

Chapter4Analysis

PoS encounters challenges in its attempts to achieve privacy. We review and analyze
all currently available PPoS proposals, paying particular attention to identifying
issues that may be improved upon to achieve a practically implementable PPoS.
Possible areas of improvement within the PPoS proposals are identified based on the
issues discovered in the analyses. Finally, we conclude which PPoS proposal and
improvement area to pursue further. Algorand is detailed and analyzed as a result of
this conclusion.

4.1 The Problem of Privacy in PoS

As alluded to in Chapter 1, PoS encounters challenges PoW does not encounter when
implementing privacy-preserving measures. These challenges arise because PoS and
PoW experience a crucial difference regarding their consensus. As detailed in the
pre-project of this thesis, this difference regards “the connection, or lack thereof,
between a [selected] party’s identity and the proof of [selection]. That is to say, in
PoW, the proof of [selection] can be completely disconnected from the identity of
the [selected], as the proof is the solution to a computationally hard problem. On
the other hand, in PoS, it is impossible for a party to completely disconnect their
identity from the proof of [selection], as the party’s identity is part of the proof.
This inability to separate identity from the proof of [selection] makes existing PoS
protocols, i.e. [14, 37], incompatible with privacy-preserving cryptocurrencies such
as Zcash [50] and Monero [46]” [52]. For these cryptocurrencies, maintaining the
anonymity of their users is of the utmost importance; therefore, switching to a PoS
protocol for efficiency purposes is not an option since the PoS protocols currently
available reveal the identity and stake of the selected party.

21

22 4. ANALYSIS

As a final note, it is worth mentioning that if a Blockchain using PoS wants to
achieve complete privacy, it may need to consider the reward mechanism implemented.
For example, a frequency analysis of the distribution of rewards could reveal the
frequency with which parties are selected, thus, revealing their stake. Therefore, the
design and implementation of a PPoS on a Blockchain must consider the reward
mechanism.

4.2 Analysis of Formal Studies into PPoS

We analyze the currently available PPoS proposals published within the scientific
community [25, 5, 36], specifically focusing on identifying issues pertaining to privacy,
efficiency, and inclusion of all aspects relevant to distributed consensus. Note that
Zether [12] is not analyzed, as the existing documentation insufficient for such an
analysis.

4.2.1 Proof-of-Stake Protocols for Privacy-Aware Blockchains

The proposal by Ganesh et al. [25] aims to anonymize the stake and identity of
stakeholders. To anonymize the stake, stakeholders make a commitment to their stake
and create a zero-knowledge proof of selection on the committed stake. Stakeholders
anonymize their identity through the use of an ABC. Without an ABC, an adversary
can deduce a stakeholder’s stake by analyzing the frequency in which the underlying
PoS selects the stakeholder. Such a frequency analysis is possible since the probability
of being selected is proportional to the stakeholder’s stake in the system.

The reliance on an ABC to hide the identity of a stakeholder poses several
issues. The first issue arises in the cost of both the implementation and maintenance
of an ABC [51]. This significantly impacts the efficiency of the PPoS system,
additionally affected by adversarial behaviors. The second issue stems from the
intuition that “potential identity leaks from the network-layer can be removed by
employing anonymous broadcast channels” [39]. As pointed out in [39], by Kohlweiss
et al., this intuition is flawed, as their proposed attacks render ideal ABCs insufficient
in protecting the identity of stakeholders. The flaw is covered thoroughly in Section
4.2.3, since [39] primarily concerns itself with Ouroboros Crypsinous [36]. While
Ganesh et al.’s proposed ideal functionality for an ABC differs from that of [39], [25]
still permits an adversary to send messages to targeted parties. “This adversarial
capability is sufficient to mount the attacks [proposed] in” [39].

It is important to note that the ideal VRF functionality described by Ganesh
et al. as part of their private lottery framework, although similar, is not the
same as the VRF implemented in the framework’s adaptation to the PoS protocol
Ouroboros Praos. In the instantiation of Ouroboros Praos, the VRF specified by the

4.2. ANALYSIS OF FORMAL STUDIES INTO PPOS 23

framework would reveal the frequency in which an account is selected, thus revealing
information about the party’s stake [25]. To solve this, Ganesh et al. introduce a
new cryptographic primitive referred to as AVRF. An AVRF is “a VRF in which
there exist multiple verification keys for the same secret key, and where it is hard,
given two valid proofs for different inputs under different verification keys, to tell
whether they were generated by the same secret key or not” [25]. While this AVRF
could be of independent interest, it is not the VRF proposed by the framework, and
thus, it may weaken the validity of the instantiation of said framework.

Notably, applying the proposed PPoS mechanism to committee-based PoS proto-
cols, such as Algorand, although possible, may prove to be somewhat inefficient. For
example, in Algorand, detailed in Subsection 4.4.1, once selected to participate in a
committee as a proposer or validator, each party generates a proof of selection. Next,
proposers propose a block by gossiping its hash along with their proof. Validators
then vote on the block, similarly attaching their proof to their vote. Notice that
after votes are submitted, all participants verify the votes they have received. The
process repeats, with a new committee of validators, until the votes for a block hash
reach some threshold. Altogether Algorand requires a lot of proof generation and
validation to select a single block. Thus, the modifications necessary to make Algo-
rand private, by the proposed framework, will increase the generation and validation
times, effectively decreasing the efficiency of the protocol.

Although Ganesh et al. [25] do not define how their proposal coincides with
reward distribution, they state that the anonymous distribution of rewards is possible
if the cryptocurrency allows for anonymous transactions and anonymous account
creation.

4.2.2 Anonymous Lottery In the Proof-of-Stake Setting

An analysis of the proposal by Baldimtsi et al. [5] identifies two potential issues.
First, the large size of the zero-knowledge proofs in both the single- and multi-stake
settings negatively influences performance. Secondly, the need for multiple unlinkable
proofs in the multi-stake setting only emphasizes this performance issue.

The issue of proof size arises both in the single-stake setting and in the multi-stake
setting. There are nine statements to include in the single-stake setting when creating
the zero-knowledge proof and, thus, to check when validating the proof. Regarding
the single-stake setting of their proposal, Baldimtsi et al. claim that “the zk-SNARKs
used in [their] implementations will require approximately 129K R1CS constraints”
[5]. In the multi-stake setting, a verification of the zero-knowledge proof checks twelve
statements. The paper also notes that this setting requires more than 22K additional
Rank-1 Constraint Satisfaction (R1CS) constraints. Hence, the multi-stake setting
requires more than 150K R1CS constraints per proof.

24 4. ANALYSIS

The large proof size has consequences in terms of verification time. As noted in
the previous section, Algorand [29] requires a lot of proof generation and validation
to select a single block. As such, the verification time is vital when applying the ideal
functionality of [5] to Algorand, as the proof size greatly affects the verification time.

Another issue with [5]’s PPoS proposal is the need for multiple unlinkable proofs
for each of wti’s indexes in the multi-stake setting. While the total number of selected
sub-users (a.k.a. indexes) is attached to one proof in Algorand [29], Baldmitsi et
al.’s application to Algorand requires one proof for each of the selected indexes.
The choice to give a separate unlinkable zero-knowledge proof for each selected
index hides the total number of selected indexes, proportional to the stake, from the
receiver. However, this choice causes the multi-stake setting to encounter an even
larger performance issue since it not only requires more statements to be checked for
each proof, but also requires one zero-knowledge proof verifying all twelve statements
for each of wti’s indexes. Additionally, even though their protocol in the multi-stake
setting depends on unlinkable proofs, the paper does not define unlinkability.

Another consequence of the large proof size is an increased communication cost.
For example, regarding the application to Algorand, as per the gossip protocol,
each participant relays the messages received to a small group of participants who
repeat this process. For this reason, especially in the multi-stake setting with a
zero-knowledge proof for each of wti’s indexes, many messages and proofs are sent.
Thus, in combination with the large proof size of the zero-knowledge proofs in this
proposal, the number of proofs and messages could cause bandwidth problems.

Finally, it is worth mentioning that Baldimtsi et al.’s proposal [5] only considers
the static-stake setting and does not account for the distribution of rewards relating
to consensus. Thus, an investigation into the dynamic-stake setting, where new
participants can join after initialization, could be of interest. In addition, in a PPoS
consensus mechanism where the privacy of the user is of importance, a privacy reward
mechanism should be considered to include all aspects of a consensus mechanism.

4.2.3 Ouroboros Crypsinous

An analysis of Kerber et al.’s PPoS blockchain protocol, Ouroboros Crypsinous,
[36] identifies two potential issues, (1) the reliance on an ABC and (2) the lack of
applicability to other PoS blockchains.

Similarly to the proposal by Ganesh et al., as stated in [39], Kerber et al.
“recognizes that protocol messages travel over a public network [...] and the adversary
can learn information about the identity of an elected party through the leakage
of the network channel, e.g., by associating a certain block to a certain IP address.
They informally claim that if the underlying communications were carried over an

4.2. ANALYSIS OF FORMAL STUDIES INTO PPOS 25

anonymous broadcast channel instead, then the network meta-data of the sender is
hidden, hence breaking the link between a block and its sender. Since this claim
is informal, no particular anonymous channel functionality is provided” [39]. The
recently published paper, On the Anonymity Guarantees of Anonymous Proof-of-
Stake Protocols [39], by Kohlweiss et al., shows that an ABC in Ouroboros Crypsinous
is insufficient in hiding the stakes of stakeholders. They do so through a series of
attacks, ultimately highlighting that the network leakage, supposedly combated by
the ABC, is still exploitable in the network. It is worth noting that, since “there exists
no implementation of a privacy-preserving PoS blockchain” [39], the proposed attacks
were performed on Zcash [50], which is a PoW based blockchain, with similarities to
Ouroboros Crypsinous.

Unlike the PPoS proposals [25, 5], which aim to create proposals applicable to
different underlying PoSs and blockchains, Kerber et al. aim to develop a privacy-
preserving blockchain built on Ouroboros Genesis [4] and Zerocash [50]. Note that
Ouroboros Crypsinous maintains anonymity throughout its reward distribution.
However, since Ouroboros Crypsinous is reliant on the build of the blockchain, it is
inherently inapplicable to other PoS blockchains. That is, Ouroboros Crypsinous
cannot be applied to make other PoSs private.

26 4. ANALYSIS

4.3 Areas Open to Improvement Within the PPoS proposals

For both Proof-of-Stake Protocols for Privacy-Aware Blockchains [25] and Ouroboros
Crypsinous: Privacy-Preserving Proof-of-Stake [36], analyzed in Sections 4.2.1 and
4.2.3, respectively, the most pressing issue is the reliance upon an ABC to anonymize
identity. Kohlweiss et al. [39] made apparent that an ABC does not eliminate
the threats of inherent network leakage. Thus, a PPoS proposal reliant on such a
channel cannot be trusted to provide complete privacy for its stakeholders. In order
to mitigate this issue, we would need to circumvent the use of an ABC.

Another issue encountered in both [25] and [36] lies in their applicability to other
PoS blockchains. While the former may apply to other slot-based PoS blockchains,
its efficiency in application to committee-based PoS blockchains remains unexplored.
An investigation into this application and efficiency could be interesting but strays
from the path of our research question. In contrast, the latter proposal is for a
blockchain with a privacy-preserving consensus mechanism, and as such, does not
aim to be applicable to other PoS blockchains. Note that the privacy of its consensus
mechanism is directly dependent on the construction of the ledger. While this
proposal is fascinating, we deem the construction of a blockchain outside the scope
of our thesis.

While Ouroboros Crypsinous [36] is the only proposal to account for the anony-
mous distribution of rewards, [25] and [5] leave reward distribution to the underlying
PoS blockchain. In doing so, they maintain applicability to “all” such ledgers and
leave modification of the reward mechanism to future work. Similarly to [25] and
[5], we deem that the privacy preservation of reward distribution should be left
to the underlying blockchain in order to maintain applicability. Additionally, we
reckon that there exist a variety of plausible ways of making a privacy-preserving
reward mechanism. Moreover, not all blockchains opt to distribute rewards relating
to consensus, as they do not all require the same incentives; thus, such reward
mechanisms are entirely unrelated to consensus and, thereby, outside the scope of
our thesis.

The main issues encountered in Anonymous Lottery In the Proof-of-Stake setting
[5], analyzed in Subsection 4.2.2, regards performance. These issues include the size
of the proofs in the single- and multi-stake settings and the number of proof generated
and sent in the multi-stake setting. The combination of these issues significantly
impacts performance in the multi-stake setting since a party sends one large proof for
each unit of their selected stake, resulting in the generation, gossip, and verification
of many proofs. We hypothesize that we can decrease the number of proofs sent in
the multi-stake setting.

4.3. AREAS OPEN TO IMPROVEMENT WITHIN THE PPOS PROPOSALS 27

In conclusion, the areas open to improvement are as follows;

– the circumvention of the use of an ABC in [25]

– the circumvention of the use of an ABC in [36]

– the mitigation of the need for multiple unlinkable proofs in the multi-stake
setting of [5]

– the reduction of proof size in [25] and [5]

Both the first and second improvement areas concern the mitigation of inherent
network leakage without using an ABC. We believe that improvements to this
area would involve considerable modifications to the overall design of the proposals.
Regarding the third improvement area, we have various ideas for how to mitigate the
need for multiple unlinkable proofs. For this reason, we conclude to pursue the third
improvement area further, keeping the fourth improvement area in mind while doing
so. Since we want to improve upon the proposal by Baldimtsi et al. [5], a closer
look at the PoS scheme it instantiates, namely Algorand, is in order. The analysis
of Algorand focuses on identifying where the PoS blockchain reveals identity and
stake.

28 4. ANALYSIS

4.4 Algorand

We provide a description of the PoS based cryptocurrency Algorand detailing the
process in which Algorand decides upon which parties get to propose the next block
for the blockchain and how consensus on a block is reached. Then, we analyze what
areas of Algorand require modification to achieve the privacy-preservation of stake
and identity. This thesis considers the procedures described in the paper Algorand:
Scaling Byzantine Agreements for Cryptocurrencies from 2017 by Yossi Gilad, Rotem
Hemo, Silvio Micali, Georgios Vlachos, Nickolai Zeldovich [29].

4.4.1 Description

Using cryptographic sortition, Algorithm 4.1, Algorand [29] chooses a fraction of
the parties to participate in committees as potential block leaders or verifiers. The
chosen block leaders propose a new block in a given round. After the proposal of
new blocks, the chosen verifiers verify and vote on the proposed blocks in steps.

Algorithm 4.1 chooses a fraction of parties based on their weight, w, representing
their stake. Each chosen party is provided with the parameter j, a hash, hash, and
a proof of their priority (proof of selection), π, calculated using a VRF with their
secret key. A party can be chosen more than one time. The hash variable determines
j, i.e., how many sub-users are selected. For example, if a party is chosen as a verifier
with j = 2, the verifier has two votes.

Algorithm 4.1 Sortition
1: procedure Sortition(sk, seed, τ, role, w,W)
2: 〈hash, π〉 ← V RFsk(seed||role)
3: p← τ

W
4: j ← 0
5: while 2 hash

hashlen /∈
[∑j

k=0 B(k;w, p),
∑j+1
k=0 B(k;w, p)

]
6: do j ← j + 1
7: return hash, π, j
8: end procedure

Note that W denotes the weight of all parties, seed is a publicly known random
seed, τ denotes a threshold that determines the expected number of parties selected
for a role, and role distinguishes the different roles that a party may be selected for
(e.g., block proposer or verifier).

4.4. ALGORAND 29

Algorithm 4.2 BA?
1: procedure BA?(ctx, round, block)
2: hblock ← Reduction(ctx, round,H(block))
3: hblock? ← BinaryBA ? (ctx, round, hblock)
4: // Check if we reached "final" or "tentative" consensus
5: r ← CountV otes(ctx, round, FINAL, TFINAL, τFINAL, λSTEP)
6: if hblock? = r then
7: return 〈FINAL,BlockOfHash(hblock?))〉
8: else
9: return 〈TENTATIV E,BlockOfHash(hblock?)〉

10: end procedure

The overall Byzantine Agreement (BA) algorithm, BA?(), Algorithm 4.2, runs for
each round and primarily consists of the Reduction() and BinaryBA ? () procedures
[29, p. 59-60]. Both Reduction() and BinaryBA?() runs in steps, while the Sortition()
procedure, Algorithm 4.1, is run for each step. Hence, the BA? () procedure chooses
new committee members for each step. Note that ctx denotes a context that captures
the current state of the ledger, and block, as its name suggests, denotes a block.

The Reduction() procedure consists of two steps. The first step uses the Sortition()
procedure, Algorithm 4.1, to select a small fraction of parties to form a committee
of potential block leaders. They propose blocks by “gossiping,” i.e., broadcasting,
their public key, pk, and a signed message. The message contains i.a. value, the
hash of the block they propose to add to the blockchain, a hash, hash, and the proof
of selection, π, returned from Sortition(), Algorithm 4.1. After a short waiting time
for all parties to receive the potential block leaders’ messages, the receivers verify
the signed messages and received proofs using the sender’s gossiped pk. Next, the
receivers (1) calculate the sender’s “voting power”, j, (2) count j votes for the block
hash value, and (3) compare the current votes for value with a threshold of votes.

In the second and final step of Reduction(), the procedure chooses a new group
of committee members as verifiers. They gossip a signed message with, i.a. the block
hash value, for which they received at least some threshold of votes in the previous
step. I.e., they gossip (vote for) the block hash that enough potential block leaders
proposed. Again, after a short waiting time, all parties count the votes for each
value (received from the verifiers). Reduction() returns the value that received at
least some threshold of votes.

Following the Reduction() procedure, all parties in the network initialize a BA
algorithm, BinaryBA? (), with the block hash returned from Reduction(), as seen in
Algorithm 4.2. The BA algorithm is used to reach consensus on a block and executes
in steps. For each step, the Sortition() procedure, Algorithm 4.1, appoints a group

30 4. ANALYSIS

of parties to form a committee of verifiers that gossip a message, i.e., “their vote” on
a block hash, value. This is repeated with new committee members until enough
parties in the committee reach consensus on a block hash, value. Note that the
committee members vote for the block hash, value, that they receive at least some
threshold of votes for in the previous step. Final consensus is reached, and the block
with block hash value is added to the blockchain if a threshold of the committee
members vote for value.

Figure 4.1: A Simplified Illustration of Consensus in Algorand The figure shows
how Alice, a selected potential block leader or verifier, gossips her public key, pk, and a
signed message with i.a. her proof of selection, π, and her chosen block hash, value. First,
the receivers verify Alice’s signed message and then her proof using the received pk. Next,
they calculate her voting power j, count j votes for the block hash value, and compare the
current total votes for value with some threshold.

Figure 4.1 shows a selected party, Alice, in a step of the BA algorithm, BA ? ().
Alice, a committee member, selected as either a potential block leader or verifier,
gossips her signed message containing i.a. her proof of selection, π, and her chosen
block hash, value, together with her public key, pk. The receivers of Alice’s gossiped
message first verify both the signed message and the proof of selection using Alice’s
pk before calculating her voting power j. The receivers then (1) count j votes for
the block hash, value, (2) update their received total votes for the block hash value,
and (3) compare it to some threshold.

Going into more detail, each step, in the Reduction() and BinaryBA ? () proce-
dures, runs the procedures CommitteeVote() and CountVotes(), Algorithms 5.13 and
5.18. The CommitteeVote() procedure calls Sortition(), Algorithm 4.1, to evaluate
whether or not the party is selected as a committee member. If chosen, the party
gossips “a signed message containing the value passed to CommitteeVote(), which is
typically the hash of some block” [29], e.g., their vote for some value. After some time,
all parties run the CountVotes() procedure to count the votes for each value in the
messages received. For each message received, CountVotes() calls the ProcessMsg()

4.4. ALGORAND 31

procedure, Algorithm 5.16, which returns the votes, i.e., the j value, associated with
this message. ProcessMsg() runs the procedure VerifySort(), Algorithm 5.15, which
uses the sender’s public key to verify the proof of selection, π, and to calculate j of
the sender. CountVotes() maintains a table with the current total votes for each
value, and if a value receives more votes than the threshold, it returns this value.
The parties input the value returned from CountVotes() to the CommitteeVote()
procedure in the next step, and if chosen as a committee member, they gossip (vote
for) this value. The process continues as described in each step until consensus is
reached.

In order to stimulate the adoption and growth of the Algorand Blockchain
Network, monetary incentives in the form of a variety of rewards are distributed
to stakeholders by a reward mechanism [40]. As outlined in [28], the initial reward
mechanism distributes rewards accrued by an account in the Algorand network when
a transaction involving that account is confirmed. In late November 2020, a proposal
[42] was made for a new reward mechanism, in which parties commit to participating
in some governance of the system. Thus, the transition to the new reward mechanism
may already be underway, but no further documentation on the reward mechanism
is available.

4.4.2 Analysis

The issue of privacy, explained in Section 4.1, arises in the PoS based cryptocurrency
protocol, Algorand [29].

A vital privacy issue occurs in the selection process, in Algorithm 4.1, as the
proof of selection is computed using the secret key of the chosen party (committee
member) and requires their public key to verify the proof. As such, this selection
process reveals the public key and thus the identity, of the committee members (the
potential block leaders or verifiers) in each step of the BA algorithm. Thus, the
proof verification (and creation) cannot be reliant upon revealing public keys if the
identities of the parties are to remain hidden. The fact that the public key is gossiped
along with the proof, also reveal the stake of the winner by frequency analysis.

The message is signed before it is gossiped along with the public key. Thus, the
public key is not only needed for proof verification but “other users check that the
signature is valid before relaying it” [29] in the gossip protocol. As the public key
is needed to verify the signature, the identity of the sender is also revealed in the
gossip protocol.

Another privacy issue of Algorand is the reliance upon the public weights, related
to the stake, of all parties. The public context, ctx, consists of the parties’ weights
and, thus, reveals the stake of all the participating stakeholders. The weight is

32 4. ANALYSIS

retrieved from ctx by the public key of the parties as ctx.weight[user.pk] and is
provided as input to the Sortition() and VerifySort() procedures. Even though the
parties provide their own weight as input to the Sortition() procedure, their weight
is public so that they cannot cheat in the lottery. For the VerifySort() procedure,
receivers use the public weight of the senders to calculate each sender’s j value, i.e.,
the number of selected sub-users (voting power) of the senders. Thus, to keep the
weight private, this voting power must be calculated another way. Also, as j is
related to the stake of the stakeholder, this should not be revealed to the receiving
party.

Currently, there is little documentation publicly available detailing the initial
reward mechanism beyond what can be found on Algorand’s official website [40] and
some blog posts [28, 41]. Due to the lack of details on the initial reward mechanism,
we will refrain from analyzing the reward mechanism. With regards to the newly
proposed reward mechanism [42], due to insufficient public details, we again conclude
that we do not have a sufficient basis to complete a thorough analysis. Since we
cannot complete an analysis of the reward mechanism, we will not attempt to make
modifications to the reward mechanism in future sections. However, we stress that
to have a PPoS, the distribution of block rewards must also preserve privacy.

The next chapter presents our two modified proposals that address Algorand’s
privacy issues identified above and the issues identified in the analysis of Baldimtsi
et al.’s proposal [5] in Section 4.2.2.

Chapter5Proposals for Improvement

In this chapter, we present our two novel proposals for improvements to the proposal
by Baldimtsi et al. [5]. As a proof of concept, we instantiate our proposals with
Algorand [29]. Our first proposal, Proposal 1, aims to maintain the privacy of [5] while
improving upon [5]’s performance in the multi-stake setting by using homomorphic
encryption to remove the need for multiple unlinkable proofs per selected party. The
second proposal, Proposal 2, aims to improve upon the same issue by providing
a trade-off between performance and the privacy of the stake. We evaluate both
proposals in terms of performance, privacy, and security.

5.1 Proposal 1

In the analysis of Baldimtsi et al.’s proposal [5], in Subsection 4.2.2, the need for
multiple unlinkable proofs in the multi-stake setting is identified as an issue that
significantly impacts performance and is further enhanced by the large proof size.
Our proposal, Proposal 1, removes the need for multiple unlinkable proofs in the
multi-stake setting, thereby improving the performance of [5]. Proposal 1 applies
homomorphic encryption to the total voting power, ji, making it possible to (1)
send the total voting power along with a single proof and (2) keep count of votes
without revealing the unencrypted voting power. Additionally, through the use of a
homomorphic greater-than comparison, parties can tell when a threshold of votes is
reached.

We start with a thorough overview of the scheme detailing how homomorphic
encryption is used to realize the removal of multiple proofs. Next, we introduce
ideal functionalities for the setup of the homomorphic encryption scheme and for a
homomorphic greater-than comparison. Then, we modify [5]’s protocols to account
for the inclusion of homomorphic encryption. Finally, we modify Algorand’s [29]
procedures to accommodate for the homomorphically encrypted voting power and
[5]’s protocols, as modified by us.

33

34 5. PROPOSALS FOR IMPROVEMENT

We strongly recommend using the outline in Subsection 5.1.5 to aid with under-
standing while reading the proposal. Note that, throughout the chapter, the areas
that require modification in the original protocols and procedures are marked in red.
Similarly, modifications are marked in red in the modified protocols and procedures.

5.1.1 Scheme

Proposal 1 homomorphically encrypts the voting power, ji, to remove the need for
multiple unlinkable proofs in the multi-stake setting of Baldimtsi et al.’s proposal [5].
As a result, the proposal maintains both privacy and countability, while the voting
power is associated with a single message, msgi, and proof, πi. While privacy is
provided by the fact that ji is homomorphically encrypted, countability is provided
through a property of homomorphic encryption, which makes it possible to perform
basic arithmetic operations on ciphertexts. Our proposal uses the BGV homomorphic
encryption scheme by Brakerski et al. [11] and two homomorphic comparison tests,
detailed in Section 3.1.

In greater detail, the idea behind our proposal is as follows. First, the voting power,
ji, of the prover is homomorphically encrypted, FHE.Enc(j) = j′, and inserted into
the message, msgi. Thus, msgi is composed of the encrypted voting power, j′i, the
hash value of the previous block, ctx.last_block, and the block hash the prover wants
to vote on, denoted value. Next, the prover generates a proof, πi, that includes a
zero-knowledge proof, πNIZK , on the tag and message and gossips (tag, πi,msgi).
Upon receiving (tag, πi,msgi), a receiver verifies the proof and, assuming that the
proof is valid for the message and tag, adds the encrypted votes, j′i, for value to a
table, counts, used to keep count of the votes received for each block. The addition is
accomplished by running FHE.Eval() with j′i and the current total votes for value
in the counts table. The latter value is updated to the result of the addition.

To check if the current total votes for value have reached a threshold of votes a
homomorphic greater-than comparison, FHE.GreaterThan(), Algorithm 3.1, is run
to compare the votes for value with the threshold. In our instantiation, the threshold
is defined by Algorand [29]. Note that we also make use of a homomorphic equality
check [16], FHE.Equality(), Algorithm 3.2, within the zero-knowledge proof in order
to account for a specific adversary attack covered in Subsection 5.1.3.4.

Figures 5.1 and 5.2 show a simplified part of Baldimtsi et al.’s proposal [5] and our
modified proposal, respectively, with Algorand [29] as the underlying PoS protocol.
The figures highlight differences in the gossiped message and how the votes are
counted.

5.1. PROPOSAL 1 35

Figure 5.1: A Simplified Illustration of Consensus in Baldimtsi et al.’s proposal
[5] with Algorand [29] as the underlying PoS protocol in the multi-stake setting. The figure
shows how Alice, a selected potential block leader or verifier, gossips her zero-knowledge
proof of selection, π, together with a message, msg, containing her chosen block hash, value.
First, the receivers verify Alice’s zero-knowledge proof of selection, π. Then, they count
one vote for the block hash value and compare the current total votes for value with some
threshold. The receivers repeat this j times, for each of Alice’s j gossiped messages.

Figure 5.2: A Simplified Illustration of Consensus in Proposal 1 with Algorand
[29] as the underlying PoS protocol in the multi-stake setting. The figure shows how Alice,
a selected potential block leader or verifier, gossips her zero-knowledge proof of selection, π,
and a message, msg, containing her chosen block hash, value, and encrypted voting power,
j′. First, the receivers verify Alice’s zero-knowledge proof. Then, they count j votes for the
block hash value using homomorphic addition and compare the current encrypted total
votes for value with some threshold using homomorphic greater-than comparison.

In [5], as illustrated in Figure 5.1, Alice sends a zero-knowledge proof, π, and
accompanying message, msg, with her chosen block hash, value, j times. In contrast,
in our proposal, as illustrated in Figure 5.2, Alice only sends one zero-knowledge
proof, π, accompanied by message, msg, additionally containing her homomorphi-

36 5. PROPOSALS FOR IMPROVEMENT

cally encrypted voting power, j′. Another difference is apparent on the receiver
side when counting votes and comparing the current total votes for the block
hash value to some threshold. Instead of using normal addition and a normal
greater-than check as in [5], the receivers in Proposal 1 use homomorphic addi-
tion, FHE.Eval(), introduced in Subsection 3.1.2, and a homomorphic greater-than
comparison, FHE.GreaterThan(), Algorithm 3.1.

5.1.2 Ideal Functionalities

For this scheme, we define and detail two ideal functionalities necessary to realize the
setup for homomorphic encryption, FHE.Setup(), and the homomorphic greater-than
comparison, FHE.GreaterThan().

5.1.2.1 Ideal Functionality for Setup of Homomorphic Encryption

We decided to perform the setup, FHE.Setup(), and key generation, FHE.KeyGen(),
necessary for homomorphic encryption within an ideal functionality to ensure that
the public encryption key is shared and the secret decryption key is deleted. Having
a shared public key increases the efficiency of the proposed scheme since it removes
the need to call FHE.Refresh() before homomorphic additions and greater-than
comparisons to ensure that the ciphertexts are under the same key. Thus, the ideal
functionality mitigates the performance concerns of using FHE.Refresh(). Deleting
the secret key is of the utmost importance because a shared secret decryption key
would reveal voting powers. Since our application does not need decryption, the
secret key, FHE.ski, is deleted by the ideal functionality after key generation to
avoid related security concerns.

By design, the ideal functionality, FHomomorphicSetup , Algorithm 5.1, runs FHE.Setup()
to generate a ladder of parameters, denoted params, and FHE.KeyGen() to generate
public and secret keys, FHE.pki and FHE.ski, respectively. Both protocols are
outlined in Subsection 3.1.1 and taken from [11]. The functionality stores FHE.pki,
deletes FHE.ski, and outputs FHE.pki upon query.

Algorithm 5.1 FHomomorphicSetup

The ideal functionality is parameterized by the security parameter λ and the number of levels of
arithmetic circuit wanted A. The functionality maintains the FHE public key FHE.pki.

Generate params← FHE.Setup(1λ, 1A)
Generate (FHE.ski, FHE.pki)← FHE.KeyGen(params)
Store FHE.pki and params, and delete FHE.ski
1: Upon receiving (GetEncKey) from party Pi
2: Output FHE.pki and params to Pi

5.1. PROPOSAL 1 37

5.1.2.2 Ideal Functionality for Homomorphic Greater-Than
Comparison

Note that the greater-than comparison provided to participants should only give
information about whether an encrypted value is greater than the threshold. I.e.,
it should not be possible to compare two chosen encrypted values as this would
cause a security issue; the participant could compare two j′i values or even a j′i value
with a chosen encrypted number, deducing the value of ji. Thus, the CountV otes()
procedure calls an ideal functionality for the homomorphic greater-than comparison,
giving the current votes for a block hash (value), i.e., only one chosen encrypted
value as input (see line 15 in Algorithm 5.19). This ideal functionality carries out
the comparison by comparing the votes to the threshold and returns true or false (1
or 0). Thus, the participants are not able to compare two chosen values.

Algorithm 5.2 FHomomorphicGreater−Than
The ideal functionality is parameterized by the number of levels of arithmetic circuit wanted A,
a ladder of parameters params, a fraction of the expected committee size T , and the expected
number of parties selected for the committee τ .

Upon receiving (counts′[value]) from party Pi
1: x′ ← counts′[value]
2: y′ ← FHE.Enc(params, T · τ + 1)
3: Call FHE.GreaterThan(x′, y′) . returns b = 1 if x > y, and b = 0 otherwise
4: Output b to party Pi

5.1.3 Modifications to the Protocols of Baldimtsi et al.

This section covers our modifications to the protocols proposed by Baldimtsi et al.
[5] in the paper Anonymous Lottery In the Proof-of-Stake setting. Note that the
Initialization() protocol [5, p. 12] is not reviewed as no modifications are necessary.
We refer to Section 2.2 and the paper [5] for more details on the original protocols.

5.1.3.1 Anonymous Selection Protocol

Algorithm 5.3 shows Baldimtsi et al.’s [5] original Anonymized Selection Protocol,
ΠEligible
Anon−Selection, for the single-stake setting. This overall protocol shows the order in

which a party, Pi, calls the protocols Initialization(), EligibilityCheck(), CreateProof(),
and Verify().

Although the overall protocol, Algorithm 5.3, is only provided in the single-stake
setting, Baldimtsi et al. explain that adaptation to the multi-stake setting is possible
by replacing btag with weight, wti, and creating a zero-knowledge proof for each unit
of the weight, i.e., for each index. Each proof accompanies a msgi and tag and has
a voting power of one. We show modifications from the single-state setting protocol,
Algorithm 5.3, to our modified multi-stake setting protocol, Algorithm 5.4.

38 5. PROPOSALS FOR IMPROVEMENT

Algorithm 5.3 ΠEligible
Anon−Selection

A party Pi executes the protocol ΠEligible
Anon−Selection in the following way:

1: Call Initialization(Pi, sid) to get (pki, ski)
2: To publish a message msgi in tag :
3: Call EligibilityCheck(Pi, sid,tag) to get

btag ,~Vtag and vi.
4: if btag = 1 then

call CreateProof(Pi, sid,msgi,tag, vi, ~Vtag)
to get πi

5: Output (msgi,tag, πi)
6: To verify a message(msg,tag, π) in tag:
7: Call Verify(sid,tag, π)

and output the bit it returns

As explained in Section 5.1.1, we want to create a single proof for the total voting
power, ji, of a party, Pi. Note that ji corresponds to [5]’s weight, wti. Similar to
[5]’s adaptation to the multi-stake setting, we replace the instances of btag. The first
instance, on line 3 of Algorithm 5.3, is replaced with ji in Algorithm 5.4. Similarly,
on line 4, we evaluate if a party, Pi, has voting power by replacing btag = 1 with
ji > 0. To simplify the presentation of both this proposal and Proposal 2, we remove
Pi and sid as input to the protocols on lines 1, 3, 4, and 7. Thus, we do not have
Pi and sid as input in any of the following protocols by [5]. However, note that all
the following algorithms, both the modified [5] protocols and the modified Algorand
procedures in both proposals, are run by a party Pi.

Algorithm 5.4 ΠEligible
Anon−Selection

1

A party Pi executes the protocol ΠEligible
Anon−Selection in the following way:

1: Call Initialization() to get (pki, ski)
2: To publish a message msgi in tag :
3: Call EligibilityCheck(tag) to get

ji,~Vtag and vi.
4: if ji > 0 then

call CreateProof(msgi, tag, vi, ~Vtag ,ji)
to get πi

5: Output (msgi, tag, πi)
6: To verify a message(msg, tag, π) in tag:
7: Call Verify(tag, π)

and output the bit it returns

5.1. PROPOSAL 1 39

5.1.3.2 Setup()

Before the overall protocol, Algorithm 5.4 commences, setup is required. First,
Setup(1λ) is run as detailed in [5, p. 11]. Next, our ideal functionality, FHomomorphicSetup ,
Algorithm 5.1, performs the computations necessary to enable homomorphic encryp-
tion in the system. The parties query the ideal functionality to acquire the public
key for homomorphic encryption, FHE.pki, and a ladder of parameters, params,
used as input for homomorphic encryption.

5.1.3.3 EligibilityCheck() and Eligible()

The Eligible() protocol by Baldimtsi et al. [5] is called by a party to determine if
they are eligible to speak for tag, i.e., to determine if they are selected to vote on or
propose a block. In the original protocol, Eligible() calculates and returns the weight
wti. If wti > 0, the party is selected for tag. Following Algorand’s [29] naming, we
change the weight, wti, to the voting power, ji, as seen in our modified Eligible()
protocol, Algorithm 5.5.

Algorithm 5.5 Eligible()1

Protocol Eligible{vi, stakei,tag}
1: p← τ

totalStake
2: ji ← 0
3: while 2

vi
len(vi) /∈

[∑ji

k=0 B(k;w, p),
∑ji+1

k=0 B(k;w, p)
]

4: do ji ← ji + 1
5: return ji

In accordance with the changes in Eligible(), the modified version of Eligibility-
Check(), Algorithm 5.6, has a variable name change from wti to ji. As the name
change from wti to ji is the only modification in Eligible() and EligibilityCheck(), we
only show the modified protocols.

Algorithm 5.6 EligibilityCheck()1

Protocol EligibilityCheck(tag)
1: Call ProcessRO(tag) and receive ~Vtag
2: Compute vi = f−1

TRP.ski
(~Vtag [i])

3: Call Eligible(vi, stakei, tag) and receive ji
4: return ji, vi, ~Vtag

40 5. PROPOSALS FOR IMPROVEMENT

5.1.3.4 Zero-knowledge proof statements

The inclusion of a homomorphically encrypted voting power associated with only
one proof requires modifications to the zero-knowledge proof statements in Baldimtsi
et al.’s proposal [5]. Below, the original statement x, the witness w, and the twelve
statements to check are shown, and the parts we will modify are marked in red.

π ← NIZK.Prove(crs, x, w)

– Statement x = (rt~Vtag
, rtpk, rtcm, tag,msg, C

v
i,index,

~Vtag)

– Witness w = (i, wti, stakei, index, PRFski
, vi, σ, sprf , pki, pathpk,

path~Vtag
, pathcm, cmi) where pki = (TRPpki , SIG.vki, Cprf)

R(x,w)=1 if and only if:

1. Cvi,index = F (PRF.ski, vi||tag||index)
2. index ∈ [1, wti]
3. Cprfi = Com(PRF.ski; sprf)
4. cmi = Com(stakei)
5. Vi = fTRP.pki

(vi)
6. Vi = ~Vtag[i]
7. Eligible(vi, stakei, tag) = wti

8. σ = SIG.Sign(SIG.ski,msg||tag)
9. SIG.V er(SIG.vki, σ,msg||tag) = 1
10. validPathh(pathpk, rtpk, pki) = 1
11. validPathh(path~Vtag

, rt~Vtag
, ~Vtag[i]) = 1

12. validPathh(pathcm, rtcm, cmi) = 1

Notably, the index variable is obsolete as we only give one proof associated with
the total voting power. Therefore, the index variable in the witness, the index
variables in line 1, and the entire line 2 are removed. Also, note that the total voting
power, wti, is renamed ji. This name change is visible in the witness, in line 7 above,
and in line 6 in the modified statements below.

Line 7, colored red in the modified statements below, is a new statement added
to account for a dishonest selected party, i.e., an adversary that changes j′i before
gossiping. The integrity of ji from the witness, w, is preserved because of the check

5.1. PROPOSAL 1 41

on line 6 below, as with Baldimtsi et al.’s original proposal. Thus, ji is encrypted and
compared with j′i, retrieved from the received message as msg[2]. The comparison is
made using FHE.Equality() to confirm that j′i was unaltered before gossiping. Unlike
the homomorphic greater-than comparison, the homomorphic equality comparison
does not need to be in an ideal functionality because it is called within the zero-
knowledge proof, making it impossible for an adversary to call FHE.Equality() with
any other value than those specified. params, a new variable in x, is needed for the
homomorphic encryption on line 7 below.

Although lines 8 and 9 look unaltered, the signature provides integrity of the
encrypted voting power, j′i, during gossip as this is part of the message, msgi, included
in the signature. Note that Merkle trees are central to the built upon proposal [5].
The vector ~Vtag, the public keys, and commitments to the parties stakes are stored
as Merkle trees with roots rt~Vtag

, rtpk, and rtcm, respectively. We refer to [5] for
more details.

π ← NIZK.Prove(crs, x, w)

– Statement x = (rt~Vtag
, rtpk, rtcm, tag,msgi, C

v
i ,
~Vtag, params)

– Witness w = (i, ji, stakei, PRFski
, vi, σ, sprf , pki, pathpk,

path~Vtag
, pathcm, cmi) where pki = (TRPpki , SIG.vki, Cprf)

R(x,w)=1 if and only if:

1. Cvi = F (PRF.ski, vi||tag)
2. Cprfi = Com(PRF.ski; sprf)
3. cmi = Com(stakei)
4. Vi = fTRP.pki(vi)
5. Vi = ~Vtag[i]
6. Eligible(vi, stakei, tag) = ji

7. FHE.Equality(msgi[2], FHE.Enc(params, FHE.pki, ji)) = 1
8. σ = SIG.Sign(SIG.ski,msgi||tag)
9. SIG.V er(SIG.vki, σ,msgi||tag) = 1
10. validPathh(pathpk, rtpk, pki) = 1
11. validPathh(path~Vtag

, rt~Vtag
, ~Vtag[i]) = 1

12. validPathh(pathcm, rtcm, cmi) = 1

42 5. PROPOSALS FOR IMPROVEMENT

5.1.3.5 CreateProof()

The changes made above to the zero-knowledge proof require changes in the Cre-
ateProof() protocol. As Baldimtsi et al. [5] only define this protocol explicitly in the
single-stake setting, the “original” CreateProof() protocol in Algorithm 5.7 is written
by us accounting for the changes described for the multi-stake setting in their paper.

Algorithm 5.7 CreateProof()
Protocol CreateProof(Pi, sid,msgi, tag, vi, ~Vtag , wti)
1: Let rt~Vtag

be the root of MTree(~Vtag)

2: Let path~Vtag [i] be the path to ~Vtag [i] in MTree(~Vtag)
3: Let rtpk be the root of MTree(pk)
4: Let pathpki

be the path to pki in MTree(pk)
5: Let rtcm be the root of MTree(cm)
6: Let pathcm be the path to cmi in MTree(cm)
7: Compute σi = SIG.Sign(SIG.ski,msgi||tag)
8: πi = []
9: for each index ∈ [1, wti]

10: Compute Cvi,index = F (PRF.ski, vi||tag||index)
11: Let xi,index = (rt~Vtag

, rtpk, rtcm, tag,msgi, C
v
i,index,

~Vtag)
12: Let wi,index = (i, wti, stakei, index, PRF.ski, vi, σi, pki, pathpki

, path~Vtag [i], pathcm, cmi)
13: Compute πNIZK,index := NIZK.Prove(crs, xindex, wi,index)
14: Set πi,index := (rt~Vtag

, rtpk, rtcm, C
v
i,index, πNIZK,index)

15: Add πi,index to πi
16: Output πi

Algorithm 5.8 CreateProof()1

Protocol CreateProof(msgi, tag, vi, ~Vtag , ji, params)
1: Compute Cvi = F (PRF.ski, vi||tag)
2: Let rt~Vtag

be the root of MTree(~Vtag)

3: Let path~Vtag [i] be the path to ~Vtag [i] in MTree(~Vtag)
4: Let rtpk be the root of MTree(pk)
5: Let pathpki

be the path to pki in MTree(pk)
6: Let rtcm be the root of MTree(cm)
7: Let pathcm be the path to cmi in MTree(cm)
8: Compute σi = SIG.Sign(SIG.ski,msgi||tag)
9: Let x = (rt~Vtag

, rtpk, rtcm, tag,msgi, C
v
i ,
~Vtag , params)

10: Let w = (i, ji, stakei, PRF.ski, vi, σi, pki, pathpki
, path~Vtag [i], pathcm, cmi)

11: Compute πNIZK := NIZK.Prove(crs, x, w)
12: Set πi := (rt~Vtag

, rtpk, rtcm, C
v
i , πNIZK)

13: Output πi

5.1. PROPOSAL 1 43

The modified CreateProof() protocol is shown in Algorithm 5.8. We change the
name for the voting power from wti to ji. Then, as only one proof per ji is needed
for each selected party, i.e., not one proof per index ∈ [1, ji], the for-loop and the
index variables are removed. As a result, our modified version, Algorithm 5.8, more
closely resembles the single-stake setting version in [5, p. 14]. The new input variable
params is needed for the zero-knowledge proof and provided in the statement x on
line 9.

5.1.3.6 Verify()

Baldimtsi et al. only provide the Verify() procedure in the single-stake setting in
[5, p. 14]. Thus, the “original” Verify() protocol, Algorithm 5.9, is based on their
single-stake setting protocol with the changes described for the multi-stake setting,
For this, the addition of rtcm on lines 2 and 3 was needed.

Algorithm 5.9 Verify()
Protocol Verify(sid,tag,msg, π)
1: Call ProcessRO(tag) and receive ~Vtag
2: Parse π = (rt~Vtag

, rtpk, rtcm, C, πNIZK)

3: Set x = (rt~Vtag
, rtpk, rtcm, tag,msg, C, ~Vtag)

4: Check that NIZK.V erify(crs, x, πNIZK) =?1
5: If yes, output 1; else output 0

The first modification necessary to implement our scheme is the addition of
the params parameter as input to both the Verify() procedure and zero-knowledge
proof statement x on line 3, as seen in Algorithm 5.10. Note that even though no
modifications are visible, NIZK.Verify(), on line 4, now verifies the statements in the
modified zero-knowledge proof in Subsection 5.1.3.4.

Algorithm 5.10 Verify()1

Protocol Verify(sid, tag,msg, π, params)
1: Call ProcessRO(tag) and receive ~Vtag
2: Parse π = (rt~Vtag

, rtpk, rtcm, C, πNIZK)

3: Set x = (rt~Vtag
, rtpk, rtcm, tag,msg, C, ~Vtag , params)

4: Check that NIZK.V erify(crs, x, πNIZK) =?1
5: If yes, output 1; else output 0

44 5. PROPOSALS FOR IMPROVEMENT

5.1.4 Modifications to the Procedures of Algorand

This section details the modifications necessary in Algorand’s [29] procedures to
incorporate the use of homomorphic encryption and our modified Baldimtsi et
al.’s [5] protocols from Subsection 5.1.3. We also consider the implication of these
modifications for Algorand’s CommonCoin() procedure. We refer to Subsection 4.4.1
and the paper [29] for more details on the original procedures.

5.1.4.1 Sortition()

Algorand’s original Sortition() procedure from [29, p. 56] is shown in Algorithm 5.11.

Algorithm 5.11 Sortition()
1: procedure Sortition(sk, seed, τ, role, w,W)
2: 〈hash, π〉 ← V RFsk(seed||role)
3: p← τ

W
4: j ← 0
5: while 2

hash
hashlen /∈

[∑j

k=0 B(k;w, p),
∑j+1

k=0 B(k;w, p)
]

6: do j ← j + 1
7: return 〈hash, π, j〉
8: end procedure

The modified EligibilityCheck() protocol, Algorithm 5.6, is implemented in the
modified Sortition() procedure, Algorithm 5.12, and replaces the calculation of voting
power, ji, in lines 3 through 6 of Algorithm 5.11. Note that the Eligible() protocol,
Algorithm 5.5, does this calculation within EligibilityCheck(). The calculation in Eli-
gible() adapted from [5] is similar to the original calculation in Algorand’s Sortition()
procedure except for replacing hash with vi and hashlen with len(vi). The modified
Sortition() does not return hash (or its replacement vi), as it is no longer gossiped
in the CommitteVote() procedure, as detailed in Subsection 5.1.4.2.

In our modified Sortition() procedure, Algorithm 5.12, the modified CreateProof()
protocol, Algorithm 5.8, replaces the VRF to create a zero-knowledge proof of se-
lection. See line 2 in the original procedure and line 8 in the modified procedure,
Algorithms 5.11 and 5.12, respectively. In contrast to the original Sortition() proce-
dure, a (zero-knowledge) proof of selection is only created if the party was selected,
i.e., if the party has voting power ji > 0, as seen in lines 5-8 of Algorithm 5.12. In
the case where ji = 0, j′i and the proof remain 0 and null, respectively.

Notably, the modified version performs homomorphic encryption on ji, as seen in
line 6 in Algorithm 5.12. Then, the homomorphically encrypted voting power, j′i, is
provided as input to the CreateProof() protocol, Algorithm 5.8, and returned by the
modified Sortition() procedure, both as part of msgi.

5.1. PROPOSAL 1 45

Algorithm 5.12 Sortition()1

1: procedure Sortition(value, tag, params)
2:

〈
ji, vi, ~Vtag

〉
← EligibilityCheck(tag)

3: πi ← null
4: j′i ← 0
5: if ji > 0 then
6: j′i = FHE.Enc(params, FHE.pk, ji)
7: msgi = (H(ctx.last_block), value, j′i)
8: πi ← CreateProof(msgi, tag, vi, ~Vtag , ji, params)
9: return 〈πi,msgi〉

10: end procedure

Additionally, the original input variable W is renamed totalStake as in Baldimtsi
et al.’s proposal [5]. totalStake and the input variable τ are global variables and are
thus no longer required as input. The Eligible() protocol, Algorithm 5.5, uses them
to calculate ji. Moreover, the input variable role is no longer needed as the VRF is
removed, and the original input variable seed is part of the new input variable tag
instead. The input variables, tag = (round, step, seed) and value, as part of msgi,
are needed as input to the CreateProof() procedure in line 8 in Algorithm 5.12, while
params is needed for the homomorphic encryption on line 6.

5.1.4.2 CommitteeVote()

The original CommitteVote() procedure, Algorithm 5.13, calls Sortition(), Algorithm
5.11, to evaluate whether the party is selected to participate in the committee. If
chosen, if ji > 0, the party gossips “a signed message containing the value passed to
CommitteeVote(), which is typically the hash of some block” [29], i.e., their vote for
some value.

Algorithm 5.13 CommitteeVote()
1: procedure CommitteeVote(ctx, round, step, τ , value)
2: // check if user is in committee using Sortition
3: role← 〈”committee”, round, step〉
4: 〈sorthash, π, j〉 ← Sortition(user.sk, ctx, seed, τ, role, ctx.weight[user.pk], ctx.W)
5: // only committee members originate a message
6: if j > 0 then
7: Gossip(〈user.pk, Signeduser.sk(round, step, sorthash, π,H(ctx.last_block), value)〉)
8: end procedure

In our modified version, Algorithm 5.14, the encrypted voting power, j′i, acquired
from the modified Sortition() procedure, Algorithm 5.12, as part of msgi, is gossiped
along with the proof, πi, and tag. In contrast, in Algorand, originally, ji is not
gossiped but calculated by the receiver using VerifySort(), Algorithm 5.15. However,
this is not possible in our privacy-preserving proposal as it reveals the voting power,
ji, and consequently the stake of the selected to the receiver. Also, in Baldimtsi et

46 5. PROPOSALS FOR IMPROVEMENT

al.’s [5] calculation of ji, the variable vi is used. They state that “we are required
to hide the value vi so that the identity of the party is not revealed” [5]. Thus, the
receiver cannot use this variable.

Also, note that the proof and message are gossiped only if the selected has voting
power in both the original and modified procedure. Originally, in Algorithm 5.13,
this is done with the check “if j > 0” on line 6. In the modified version, Algorithm
5.14, the check "if msgi[2] 6= 0", corresponds to the check“if j′i 6= 0”.

Additionally, the message, msgi, is no longer signed before gossip, as seen on
lines 7 and 6 in Algorithms 5.13 and 5.14, respectively. Instead, it is part of the
zero-knowledge proof, as noted in Subsection 5.1.3.4. Specifically, the proof, πi,
tag, and msgi = (H(ctx.last_block), value, j′i) are gossiped. The signature in the
zero-knowledge proof, SIG.Sign(SIG.ski,msgi||tag), is a signature on the message,
msgi, and tag. Thus, the integrity of these two variables, and the variables within
msgi, are verified when verifying the zero-knowledge proof. The proof is not valid if
any of these variables are tampered with during gossip.

Algorithm 5.14 CommitteeVote()1

1: procedure CommitteeVote(ctx, tag, value, params)
2: // check if user is in committee using Sortition
3: 〈πi,msgi〉 ← Sortition(value, tag, params)
4: // only committee members originate a message
5: if msgi[2] 6= 0 then
6: Gossip(〈tag, πi,msgi〉)
7: end procedure

Other changes include using the variable tag = (round, step, seed) instead of the
two variables step and round, removing the input variable τ, and adding params.
Also, when the modified Sortition() procedure, Algorithm 5.12, is called, the input to
this procedure is changed accordingly. Finally, role is removed since it is no longer
needed in Sortition().

5.1.4.3 VerifySort()

The receivers call Algorand’s VerifySort() procedure to get the voting power, ji, of
the received proofs and corresponding messages. As seen in Algorithm 5.15, this
effectively reveals the voting power of the sender. As discussed in Section 5.1.4.2,
adapting Baldimtsi et al.’s [5] privacy-preserving scheme, ji cannot be calculated in
VerifySort() by the receiver since ji is to be kept secret as it is proportional to the
sender’s stake. In addition, the hash variable’s replacement vi reveals the identity of
the prover. Thus, the encrypted voting power, j′i, is instead gossiped to the receiver
as shown in the modified CommitteVote() procedure, Algorithm 5.14. As such, we
remove the calculation of ji and are left with only lines 1, 2, and 8 of Algorithm 5.15.

5.1. PROPOSAL 1 47

The VerifySort() procedure now only consists of the V erifyV RFpk() procedure,
which we replace with the modified Verify() procedure, Algorithm 5.10, to verify the
zero-knowledge proof. This modification accounts for the change in proof creation in
Subsection 5.1.4.1. We choose to remove VerifySort() entirely and replace it with
Verify() as this is the only functionality left. The result of this change will be made
more apparent in the next section, Subsection 5.1.4.4, which covers the modifications
done to Algorand’s ProcessMsg() procedure.

Algorithm 5.15 VerifySort()
1: procedure VerifySort(pk, hash, π, seed, τ, role, w,W)
2: if¬V erifyV RFpk(hash, π, seed||role) then return 0
3: p← τ

W
4: j ← 0
5: while 2

hash
hashlen /∈

[∑j

k=0 B(k;w, p),
∑j+1

k=0 B(k;w, p)
]

6: do j ← j + 1
7: return j
8: end procedure

5.1.4.4 ProcessMsg()

The ProcessMsg() procedure, Algorithm 5.16, is run for each received message when
counting votes. Originally, the procedure returns, i.a. the voting power, ji, named
votes, and the hash of the block the sender votes for or proposes, value.

Algorithm 5.16 ProcessMsg()
1: procedure ProcessMsg(ctx, τ,m)
2: 〈pk, signed_m〉 ← m
3: if V erifySignature(pk, signed_m) 6= OK then
4: return 〈0,⊥,⊥〉
5: 〈round, step, sorthash, π, hprev, value〉 ← signed_m
6: // discard messages that do not extend this chain
7: if hprev 6= H(ctx.last_block) then return 〈0,⊥,⊥〉
8: votes← VerifySort(pk, sorthash, π, ctx.seed, τ,
9: 〈committee, round, step〉 , ctx.weight[pk], ctx.W)

10: return 〈votes, value〉
11: end procedure

As the gossiped variables in mi have changed in the modified version of Commit-
teeVote(), Algorithm 5.14, the variables retrieved from mi in the modified version of
ProcessMsg() change. Thus, lines 2 and 5 in Algorithm 5.16 are replaced with lines 2
and 3 in Algorithm 5.17. Also, as the message sent does not contain a signed message,
lines 3 and 4 verifying the signature in Algorithm 5.16 are removed. Replacing the
signature of the gossiped message with a signature in the zero-knowledge proof as
discussed in Section 5.1.4.2.

48 5. PROPOSALS FOR IMPROVEMENT

Furthermore, as previously mentioned in Section 5.1.4.3, the VerifySort() pro-
cedure has been replaced by Baldimtsi et al.’s [5] Verify() protocol. Lines 8 and 9
in Algorithm 5.16 are replaced by line 6 in Algorithm 5.17. Verify() returns the
encrypted voting power, j′i, named votes′. If the poof is not valid, votes′ is set to 0.
The encrypted voting power votes′ is returned instead of votes in plaintext.

Algorithm 5.17 ProcessMsg()1

1: procedure ProcessMsg(ctx,mi)
2: 〈tag, πi,msgi〉 ← mi
3:

〈
hprev, value, j′i

〉
← msgi

4: // discard messages that do not extend this chain
5: if hprev 6= H(ctx.last_block) then return 〈0,⊥,⊥〉
6: if V erify(tag,msgi, πi) then votes′ ← j′i
7: else votes′ ← 0
8: return 〈votes′, value〉
9: end procedure

Also, the variable τ is no longer needed and thus not provided as input. Lastly,
the variable sorthash is not returned because Baldimtsi et al.’s [5] replacement of
sorthash, vi, must be kept secret, as mentioned in Subsections 5.1.4.2 and 5.1.4.3.
This replacement also has consequences for the CommonCoin() procedure, which
originally uses this output from ProcessMsg(), discussed in Section 5.1.4.6.

5.1.4.5 CountVotes()

The CountVotes() procedure is called to count all votes for the block hashes in the
received messages. The procedure calls ProcessMsg() for each received message to
get the block hash and associated votes for each message.

Algorithm 5.18 CountVotes()
1: procedure CountVotes(ctx, round, step,T, τ , λ)
2: start← T ime()
3: counts← {} . hash table, new keys mapped to 0
4: voters← {}
5: msgs← incomingMsgs[round, step].iterator()
6: while TRUE do
7: m← msgs.next()
8: if m =⊥ then
9: if T ime() > start+ λ then return TIMEOUT

10: else
11: 〈votes, value, sorthash〉 ← ProcessMsg(ctx, τ ,m)
12: if pk ∈ voters or votes = 0 then continue;
13: voters ∪ = {pk}
14: counts[value]+ = votes
15: // if we got enough votes, then output this value
16: if counts[value] > T · τ
17: return value
18: end procedure

5.1. PROPOSAL 1 49

The modified version of ProcessMsg() returns the encrypted voting power, j′i,
named votes′, on line 11 in Algorithm 5.19. Moreover, the counts table, renamed
counts, now stores the current total votes for each block hash in the encrypted form.
The addition of new votes, votes, to the counts table for the relevant block hash
is modified to carry out the addition of votes′ with the relevant homomorphically
encrypted votes in the counts table, see lines 14 and 13 in Algorithms 5.18 and 5.19,
respectively.

Regarding homomorphic addition, recall that we hypothesize it is possible to
define the level A as the maximum amount of additions necessary for counting votes
to achieve consensus in Algorand in Subsection 3.1.2.1. With this hypothesis, and
because of a shared public encryption key as mentioned in Subsection 5.1.2.1, we
completely remove the need for FHE.Refresh() and its negative effects on performance.

Further modifications include replacing the greater-than comparison with a call
to our ideal functionality that carries out a homomorphic greater-than comparison,
Algorithm 5.2, as seen in lines 16 and 15-16 in Algorithms 5.18 and 5.19, respectively.
The ideal functionality returns true or false (1 or 0).

Algorithm 5.19 CountVotes()1

1: procedure CountVotes(ctx, tag, T, λ)
2: start← T ime()
3: counts′ ← {} . hash table, new keys mapped to FHE.Enc(params, FHE.pki, 0)
4: voters← {}
5: msgs← incomingMsgs[tag].iterator()
6: while TRUE do
7: m← msgs.next()
8: if m =⊥ then
9: if T ime() > start+ λ then return TIMEOUT

10: else
11: 〈votes′, value〉 ← ProcessMsg(ctx,m)
12: if votes′ = 0 then continue;
13: counts′[value] = FHE.Eval(FHE.pk, f, counts′[value], votes′)
14: // if we got enough votes, then output value
15: Query (counts′[value]) to the ideal functionality FHomomorphic

Greater−Than
16: Receive b from the ideal functionality FHomomorphic

Greater−Than
17: if b return value
18: end procedure

Other changes include removing the now global τ from lines 1 and 11 and removing
sorthash on line 11 as this is no longer returned from ProcessMsg(). Additionally,
the variable tag replaces the variables round and step on lines 1 and 5. Finally, a
part of the if-check on line 12, pk ∈ voters, and line 13, voters ∪ = {pk}, is removed
as the public key of the sender is secret.

50 5. PROPOSALS FOR IMPROVEMENT

5.1.4.6 CommonCoin()

The CommonCoin() procedure from [29, p. 61] is executed in the event that the
CountVotes() procedure times out. CommonCoin() ensures that a certain type of
attack is not possible through the use of a “common coin”, as explained thoroughly in
[29, p. 59-61]. For the purpose of this thesis, we will not delve into details regarding
such an attack; however, we will note the modifications necessary for CommonCoin()
to comply with our proposal. Algorand’s CommonCoin() makes use of the variable
sorthash, originally returned from the ProcessMsg() procedure, Algorithm 5.16,
but removed in the modified procedure, Algorithm 5.17, in Section 5.1.4.4 as its
replacement, vi, reveals the identity of the selected.

One possible solution to replace sorthash is for the selected to accompany a
random hash in msgi before gossiping. This hash should be new for each tag if
selected. Thus, the hash is random, unique for each (selected) party, and updated
for each new tag, similar to sorthash. Additionally, it does not identify the selected.
This solution is not implemented in the above modified protocols as it complicates
the presentation of our scheme.

5.1.5 Outline

This section provides a supplementary explanation of how our modified protocols and
procedures from Sections 5.1.3 and 5.1.4, respectively, fit together in an instantiation
of Algorand. For clarity, the instantiation assumes an honest party, Pi, who possesses
voting power for tag, and an honest party, Ph, who counts the votes in the message
received from Pi. The following sequence of events takes place after setup.

1. Party, Pi, calls ComitteeV ote(), Algorithm 5.14, with inputs tag and value.

2. CommitteeV ote() calls Sortition(), Algorithm 5.12.

3. Sortition() calls EligibilityCheck(), Algorithm 5.6.

4. EligibilityCheck() receives the trapdoor permutation, ~Vtag, from ProcessRO(),
computes its inverse, vi, and calls Eligible(), Algorithm 5.5.

5. Eligible() calculates the voting power, ji, and returns it to EligibilityCheck().

6. EligibilityCheck() receives ji and returns (ji, vi, ~Vtag) to Sortition().

7. Sortition() receives (ji, vi, ~Vtag), applies homomorphic encryption to ji yielding
j′i, and composes the message, msgi = (H(ctx.last_block), value, j′i).

8. Sortition() calls CreateProof(), Algorithm 5.8, with inputs msgi, tag, vi, ~Vtag
and ji.

5.1. PROPOSAL 1 51

9. CreateProof() creates a zero-knowledge proof, πi, on msgi and tag, and
returns πi to Sortition()

10. Sortition() receives πi and returns (πi,msgi) to CommitteeV ote().

11. CommitteeV ote() gossips the message, mi = (tag, πi,msgi).

12. Upon receiving the gossiped message mi, party Ph calls CountV otes(), Algo-
rithm 5.19, for tag.

13. CountV otes() calls ProcessMsg(), Algorithm 5.17, for mi.

14. ProcessMsg() acquires tag, πi, and msgi from mi.

15. ProcessMsg() calls V erify(), Algorithm 5.9, on (tag, πi, msgi).

16. V erify() checks that πi is a valid proof for msgi and tag and returns 1.

17. ProcessMsg(), upon receiving 1, sets votes′ equal to j′i and returns (votes’,
value).

18. CountV otes() receives (votes′, value) and adds votes′ to counts′[value] using
homomorphic addition.

19. CountV otes() checks if counts′[value] is larger than the threshold using homo-
morphic greater-than comparison, and if it is, returns value.

52 5. PROPOSALS FOR IMPROVEMENT

5.2 Proposal 2

The analysis of Baldimtsi et al.’s PPoS proposal [5] in Section 4.2.2 identifies perfor-
mance as a central issue based on the need to send one (large) proof for each unit of
the participant’s total voting power (weight) in the multi-stake setting. With this in
mind, this section presents a proposal to tackle the performance sacrifice currently
needed to achieve complete privacy in [5] by providing a trade-off between privacy
and performance. Note that this proposal does not aim to provide a fully private
PoS proposal w.r.t. stake and identity, but rather a PoS scheme with a trade-off
between the privacy of the stake and the performance.

The idea is to mitigate the performance issue of sending one proof with one voting
power for each unit of the total voting power by sending a varying combination of
proofs with voting powers of, e.g., 1, 2, and 3, that together add up to a participant’s
total voting power. While this does reveal some lower ranges of voting power for
each participant, it does not (necessarily) reveal the total voting power. The possible
combinations of voting powers and the number of proofs sent yield a trade-off between
privacy and performance. While many proofs with low voting powers provide better
privacy than performance, fewer proofs with higher voting powers provide better
performance than privacy.

We start by introducing the equations and function used to formalize the con-
nection between the privacy preserved and the number of proofs and voting powers
thereof. Additionally, we explain how the number of proofs and corresponding voting
powers are chosen based on the participant’s preferences. Next, the modifications
necessary in [5]’s protocols for the inclusion of this trade-off scheme are presented.
Finally, the modifications necessary to Algorand’s procedures [29] to accommodate
this trade-off scheme and to apply the modified protocols are presented.

We suggest following the outline, located in Subsection 5.2.4, detailing the order
in which the modified protocols and procedures run while reading these sections.
Note that, as with Proposal 1, the color red marks the modifications done within
Algorithms.

5.2. PROPOSAL 2 53

5.2.1 Scheme

This section presents the two equations, Equation 5.3 and 5.4, and the function,
CombinationFunc(), Algorithm 5.20, necessary for achieving our desired scheme.
To summarize, the idea is for the party to decide what level of privacy they want
and provide it, along with their total voting power, as input to CombinationFunc().
CombinationFunc() returns the number of proofs to create for each voting power.
The first equation, 5.3, restricts the voting powers in the multiple proofs to be equal
to the total voting power of the participant. Meanwhile, the second equation, 5.4,
calculates a level of privacy based on the number of proofs sent with specific voting
powers.

5.2.1.1 Instantiation of the General Equations

This subsection presents the idea behind the general equations, Equations 5.3 and
5.4, through an instantiation of the equations with some example values, illustrated
by Equations 5.1 and 5.2. The example values are the voting powers 1, 2, and 3 and
their corresponding privacy numbers 1, −2, and −12.

ji = x1(1) + x2(2) + x3(3) (5.1)

privacy_level = x1(1) + x2(−2) + x3(−12) (5.2)

Equation 5.1 provides the constraint that the sum of the voting powers, 1, 2, and
3, in the multiple proofs for a participant, equals the participant’s total voting power,
ji. Moreover, the variables x1, x2, and x3 denote the number of proofs with voting
power 1, 2, and 3, respectively. Equation 5.2 gives an estimation of the privacy level
based on the number of proofs with voting power 1, 2, and 3. The numbers 1, −2,
and −12 in Equation 5.2 are called privacy numbers and correspond to the voting
powers 1, 2, and 3, respectively. The privacy numbers are chosen based on the notion
that one proof with voting power 2 is worse than many proofs with voting power 1,
and one proof with voting power 3 is worse than many proofs with voting power 2.
Following this notion, the privacy numbers must be adjusted according to the range
of possible ji values.

Thus, having a higher x1 value than x2 and x3 values, i.e., more proofs with
voting power 1, yields a higher privacy_level variable. The downside to a high x1
value is the need to generate a higher number of proofs in total. On the other hand,
higher x2 and x3 values, i.e., more proofs with voting power 2 and 3, contribute to a
lower privacy_level variable, effectively resulting in fewer proofs in total. The latter
case requires less processing power and bandwidth but has worse privacy than the

54 5. PROPOSALS FOR IMPROVEMENT

former case. Thus, the scheme presents participants with a choice of privacy_level,
where a high privacy_level variable offers better privacy and worse performance,
while a low privacy_level variable offers worse privacy and better performance.

Generally, privacy numbers should be chosen based on the corresponding voting
power. For example, x1 has a positive privacy number since proofs with a voting
power of 1 preserve privacy as they do not reveal anything about the prover’s stake.
Meanwhile, x2 and x3 have negative privacy numbers as both a voting power of
2 and 3 reveal some information about the participant’s stake. These negative
privacy numbers effectively decrease the privacy_level variable in accordance with
the decreased privacy a participant experiences when sending proofs with voting
powers higher than 1. Consequently, x2 has a higher privacy number than x3 because
a voting power of 3 reveals more about the provers stake than a voting power of 2.
Note that only a voting power of 1 can correspond to a positive privacy number.

5.2.1.2 Privacy Levels

Table 5.1 shows a varying privacy_level variable for different combinations of x1,
x2, and x3 with a total voting power ji = 6. Note that the prover achieves the best
privacy yet worst performance with six proofs, each with voting power 1. On the
other hand, they achieve the worst privacy and best performance with two proofs,
each with voting power 3. The number(s) in brackets in the Privacy description
column shows the stake revealed. I.e., (2 + 3) means that the prover sends one proof
with a voting power of 2 and one proof with a voting power of 3. Also, note that
proofs with a voting power of 1 are not included in the brackets as they do not reveal
any stake.

privacy
level

x1 x2 x3 Privacy description Performance
description

6 6 0 0 The highest possible privacy Worst performance,
sends 6 proofs

2 4 1 0 Good privacy, reveal some stake (2) Sends 5 proofs
-2 2 2 0 Reveal some more stake (2 + 2) Sends 4 proofs
-6 0 3 0 Reveal some more stake (2 + 2 + 2) Sends 3 proofs
-9 3 0 1 Reveal some more stake (3) Sends 4 proofs
-13 1 1 1 Reveals even more stake (2 + 3) Sends 3 proofs

-24 0 0 2 The lowest possible privacy (3 + 3) Best performance,
sends 2 proofs

Table 5.1: Privacy_Level (Example) Possible combinations of x1, x2, and x3 for
ji = 6 with corresponding privacy_level and a short description of both the privacy and
performance.

5.2. PROPOSAL 2 55

Also note that since (x1, x2, x3) = (0, 3, 0) has the same and better performance
than (x1, x2, x3) = (1, 1, 1) and (x1, x2, x3) = (3, 0, 1), respectively, and better privacy
than both, the two latter combination of proofs should never be chosen. Thus, for
ji = 6, if the previously defined privacy numbers were chosen, these options would
not be included in the table for CombinationFunc(), described in the next subsection.

5.2.1.3 Combination Function

To make the choice of privacy_level more intuitive for a party, we introduce the idea
of using a function, CombinationFunc(), Algorithm 5.20, with the input variables
privacy ∈ [1, 10] and ji. In our instantiation, this function returns the variables x1,
x2, and x3 based on the input.

The possible privacy_level values varies for different ji value. For example, for
ji = 6, it varies from 6 to −24, as seen in Table 5.1. For another ji, the possi-
ble privacy_level values are different. Thus, instead of having parties choose a
specific privacy_level value, they choose a privacy variable ∈ [1, 10]. The party
chooses privacy = 10 if privacy is of utmost importance, and the highest possi-
ble privacy_level for ji is chosen by CombinationFunc(). If performance is vital,
privacy = 1 is provided as input and the lowest possible privacy_level is chosen.
If a privacy value between 1 and 10 is provided, the privacy_level is chosen pro-
portionally to this value and the number of possible privacy_level variables (rows).
Furthermore, as the voting powers and corresponding privacy numbers are prede-
termined, tables similar to Table 5.1 can be pre-computed for all possible ji values.
Thus, when the CombinationFunc() function is called with specific ji and privacy
variables, it first looks up the table for ji. Based on the privacy variable, it chooses
a privacy_level and returns its corresponding x1, x2, and x3 values.

Algorithm 5.20 CombinationFunc()
1: function CombinationFunc(privacy, ji)
2: table = tables[ji − 1]
3: chosen_index = int(((len(table)/10) ∗ privacy − 1) + random.random()) . rounding up or

down to nearest integer w/ some randomization
4: x1 = table[chosen_index][1]
5: x2 = table[chosen_index][2]
6: x3 = table[chosen_index][3]
7: return x1, x2, x3
8: end function

Algorithm 5.20 shows an implementation of the function CombinationFunc(). We
assume pre-computed tables for each ji in tables and that each table is a list consisting
of lists starting at index 0. The lists in each table consist of the privacy_level
and corresponding x1, x2, and x3 variables, [privacy_level, x1, x2, x3]. First, the
table corresponding to the input variable ji is retrieved as table = tables[ji −
1] on line 2. Then, given the length of table, i.e., the number of privacy_level

56 5. PROPOSALS FOR IMPROVEMENT

variables and corresponding x1, x2, and x3 combinations possible for ji, the index
corresponding to the chosen privacy input variable is retrieved in line 3. Note
that the lists in the table are sorted on privacy_level where the “best privacy”
(highest privacy_level) has the highest index. For instance, if there are 15 possible
privacy_level variables and corresponding combinations and the input variable
privacy = 10, then the chosen_index is 14 (note that the indexes start at 0). If
privacy = 1, then chosen_index = 0, and if privacy = 5, then chosen_index = 6
or chosen_index = 7. Finally, the variables x1, x2, and x3 are retrieved for the
chosen_index in lines 4 to 6 before being returned in line 7.

Note that for the example above, with 15 possible privacy_level variables, for
privacy = 5, either index 6 or 7 can be chosen. Both indexes are equally likely due
to the addition of a random number, random.random(), between 0 and 1, before
rounding down to the nearest integer. Without this, if we always choose to round up
or always choose to round down, some indexes (privacy_levels) will never be chosen.
The randomization works as follows. If the number (len(table)/10)∗privacy−1) is 5.2
there is a 80% chance that chosen_index = 5 and a 20% chance that chosen_index =
6. If this number is 5.5 there is a 50% chance of both chosen_index = 5 and
chosen_index = 6. Also note that if the number (len(table)/10) ∗ privacy − 1) is
an “integer”, e.g. 5.0, it is not changed, i.e., the result is chosen_index = 5.

5.2.1.4 General Equations

This subsection provides generalizations of Equations 5.1 and 5.2. Equation 5.3 gives
a general version of Equation 5.1. The xp variables denote the number of proofs
associated with voting powers p = (1, 2, 3, ..., n− 1, n). Equation 5.4 gives a general
version of Equation 5.2. The ap variables denotes the privacy numbers associated
with the voting powers p = (1, 2, 3, ..., n− 1, n).

ji =
n∑
p=1

(xp)(p) = (x1)(1) + (x2)(2) + ...+ (xn)(n) (5.3)

privacy_level =
n∑
p=1

(xp)(ap)

= (x1)(a1) + (x2)(a3) + ...+ (xn−1)(an−1) + (xn)(an)

(5.4)

A higher choice of n effectively gives a lower possible privacy_level variable
because a higher n gives a higher possible voting power to associate with a single
proof. On the other side, a higher n gives the choice of better performance.

5.2. PROPOSAL 2 57

In this general setting, CombinationFunc() returns the variables x1, ..., xn. The
variable n, i.e., the possible voting powers up to n, and their corresponding privacy
numbers a1, ..., an are predetermined, and the tables of the possible x1, x2, ..., xn
combinations for different ji values are pre-computed. When CombinationFunc()
receives the input variables privacy and ji, it looks up the table for ji and chooses a
privacy_level variable based on privacy and returns the corresponding x1, ..., xn
similarly to the description in Subsecion 5.2.1.3 above.

5.2.2 Modifications to the Protocols of Baldimtsi et al.

This section covers the modifications needed in the protocols and the zero-knowledge
proof statements from the paper Anonymous Lottery In the Proof-of-Stake setting
[5] to implement the scheme of Proposal 2. Note that the Setup(), Initialization(),
and Verify() protocols are not covered as no modifications are necessary. We refer to
Section 2.2 and paper [5] for more details regarding the original protocols.

5.2.2.1 Anonymous Selection Protocol

The modifications done to the overall Anonymous Selection Protocol are the same as
with Proposal 1, Algorithm 5.4, in Subsection 5.1.3.1. Thus, the changes consist of
replacing btag with ji, replacing the condition in the if-check on line 4, btag = 1, with
ji > 0 and providing ji as input to the CreateProof() protocol. This Anonymous
Selection Protocol is not directly used by our modified Algorand procedures but
serves to show the overall order in which Baldimtsi et al.’s protocols [5] run. For
an outline of the order in which the modified Algorand procedures and modified
Baldimtsi et al.’s protocols [5] run, see 5.2.4.

5.2.2.2 EligibilityCheck and Eligible

The modifications to the Eligible() and EligibilityCheck() protocols are the same as
with Proposal 1, Algorithms 5.5 and 5.6, respectively. The minimal changes consist
of renaming wti to ji in Eligible() and thus, also renaming the variable returned from
Eligible(), wti, to ji in EligibilityCheck().

5.2.2.3 Zero-knowledge proof statements

This subsection details the modification to the original zero-knowledge proof state-
ments seen in Subsection 5.1.3.4. First of all, note that wti has been renamed
ji. Next, the total voting power, ji, and the list, votingpowers, are provided in
the witness, w. As an example, the votingpowers list, votingpowers = [1, 1, 2, 3, 3],
signifies that the winning party with ji = 10 sends five proofs, two proofs with voting
power 1, one proof with voting power 2, and two proofs with voting power 3.

58 5. PROPOSALS FOR IMPROVEMENT

The index is still provided in the witness, w, but has a new definition as it denotes
which voting power in votingpowers is associated with the particular proof. Line 2
shows this modification. Note that even though there are no apparent changes to
the statements in lines 10 and 11, msgi now contains the voting power, 1, 2, or 3,
and thus gives integrity to the voting power gossiped as part of msgi.

π ← NIZK.Prove(crs, x, w)

– Statement x = (rt~Vtag
, rtpk, rtcm, tag,msgi, C

v
i,index,

~Vtag)

– Witness w = (i, ji, votingpowers, stakei, index, PRFski
,

vi, σi, sprf , pki, pathpk, path~Vtag
, pathcm, cmi) where

pki = (TRPpki
, SIG.vki, Cprf)

R(x,w)=1 if and only if:

1. Cvi,index = F (PRF.ski, vi||tag||index)
2. index ∈ [1, len(votingpowers)]
3. Sum(votingpowers) = ji

4. votingpowers[index] = msgi[2]
5. Cprfi = Com(PRF.ski; sprf)
6. cmi = Com(stakei)
7. Vi = fTRP.pki

(vi)
8. Vi = ~Vtag[i]
9. Eligible(vi, stakei, tag) = ji

10. σ = SIG.Sign(SIG.ski,msgi||tag)
11. SIG.V er(SIG.vki, σi,msgi||tag) = 1
12. validPathh(pathpk, rtpk, pki) = 1
13. validPathh(path~Vtag

, rt~Vtag
, ~Vtag[i]) = 1

14. validPathh(pathcm, rtcm, cmi) = 1

Lines 3 and 4 provide two new statements to account for unhonest parties who may
attempt to alter their voting power(s) in the votingpowers list before creating the
proof and before gossiping. Line 3 checks that the voting powers in the votingpowers
list add up to ji. Note that the list can still be altered, but the proof will not be valid
if the voting powers in the votingpowers list do not add up to ji. However, as long as

5.2. PROPOSAL 2 59

the distribution of the voting powers adds up to ji, and as long as the votingpowers
list is the same in all of a party’s proofs, we do not concern ourselves with the
distribution of the voting powers. Note that while the former is ensured by the
addition of line 3, the latter is ensured by an ideal functionality in the CreateProof()
protocol, see Subsection 5.2.2.4. In turn, line 4, votingpowers[index] = msg[2],
retrieves the voting power from the received message as msg[2] and checks that
this voting power is part of the votingpowers list at the correct index and thus not
altered by an unhonest party prior to gossiping the message.

5.2.2.4 CreateProof()

As mentioned earlier, the “original” CreateProof() protocol, seen in Algorithm 5.7, is
based on the single-stake CreateProof() protocol by Baldimtsi et al. [5] and adapted
to the multi-stake setting following their descriptions.

The first modification is the addition of the function, CombinationFunc(), ex-
plained in Section 5.2.1, in line 1 of Algorithm 5.21. We use our example from
above with the possible voting powers 1, 2, and 3, and let x1, x2, and x3 denote the
number of proofs created with the voting power 1, 2 and 3, respectively. As such,
CombinationFunc() returns the variables x1, x2, and x3 as detailed in Section 5.2.1.

Algorithm 5.21 CreateProof()2 Version 1
Protocol CreateProof(msgi, tag, vi, ~Vtag , ji)
1: 〈x1, x2, x3〉 ← CombinationFunc(privacy, ji)
2: votingpowers = [1] ∗ x1 + [2] ∗ x2 + [3] ∗ x3 . Create votingpowers list w.r.t. x variables
3: Let rt~Vtag

be the root of MTree(~Vtag)

4: Let path~Vtag [i] be the path to ~Vtag [i] in MTree(~Vtag)
5: Let rtpk be the root of MTree(pk)
6: Let pathpki

be the path to pki in MTree(pk)
7: Let rtcm be the root of MTree(cm)
8: Let pathcm be the path to cmi in MTree(cm)
9: Compute σi = SIG.Sign(SIG.ski,msgi||tag)

10: πi = []
11: for each index ∈ [0, len(votingpowers)]
12: Compute Cvi,index = F (PRF.ski, vi||tag||index)
13: msgi,index = msgi . Create a copy of msgi
14: Add votingpowers[index] to msgi,index
15: Let xindex = (rt~Vtag

, rtpk, rtcm, tag,msgi,index, C
v
i,index,

~Vtag)
16: Let windex = (i, ji, votingpowers, stakei, index, PRF.ski, vi, σi, pki, pathpki

, path~Vtag [i],

pathcm, cmi)
17: Compute πNIZK,index := NIZK.Prove(crs, xindex, windex)
18: Set πi,index := (rt~Vtag

, rtpk, rtcm, C
v
i,index, πNIZK,index)

19: Add πi,index to πi
20: Output 〈πi, votingpowers〉

60 5. PROPOSALS FOR IMPROVEMENT

The next modification is the addition of line 2, which creates the votingpowers
list in accordance with the variables x1, x2, and x3. For example, if x1 = 2, x2 = 1,
and x3 = 2, this creates the list votingpowers = [1, 1, 2, 3, 3] and results in the
creation of two proofs with voting power 1, one proof with voting power 2, and two
proof with voting power 3.

Another modification is the name change of the input variable wti to ji, provided
to the witness in line 16, and used for the zero-knowledge proof statements in lines 3
and 9 as shown above. Also, the index in the for-loop in line 11 denotes the indexes
in the list votingpowers. Inside the for-loop, a copy of msgi is created and stored
as msgi,index in line 13. The voting power (1, 2, or 3), corresponding to the current
index, is added to the msgi,index in line 14 and thus provided as part of msgi,index
to the statement, xindex, in line 15. The votingpowers list is a new addition to the
witness, windex, in line 16. Finally, the votingpowers list is returned along with the
list of proofs, πi, in line 20, as each of the voting powers in this list are gossiped
as part of msgi, and thus needed by the CommitteeVote() procedure, see Section
5.2.3.2.

Introduction of an Ideal CreateProof() Functionality With the above mod-
ified CreateProof() protocol, Algorithm 5.21, there exists a possibility for a selected
adversary to cheat to get more voting power. An adversary can achieve this by
changing the votingpowers list in windex (line 16) for each round in the for-loop and
adding a high voting power to msgi,index in each round (line 14).

Algorithm 5.22 CreateProof()2 Version 2
Protocol CreateProof(Pi, sid,msgi, tag, vi, ~Vtag , ji)
1: 〈x1, x2, x3〉 ← CombinationFunc(privacy, ji)
2: votingpowers = [1] ∗ x1 + [2] ∗ x2 + [3] ∗ x3 . Create votingpowers list w.r.t. x variables
3: Let rt~Vtag

be the root of MTree(~Vtag)

4: Let path~Vtag [i] be the path to ~Vtag [i] in MTree(~Vtag)
5: Let rtpk be the root of MTree(pk)
6: Let pathpki

be the path to pki in MTree(pk)
7: Let rtcm be the root of MTree(cm)
8: Let pathcm be the path to cmi in MTree(cm)
9: Compute σi = SIG.Sign(SIG.ski,msgi||tag)

10: Query (CreateProof(msgi, votingpowers, vi, ji, σi, rt~Vtag
, path~Vtag [i], rtpk, pathpki

, rtcm,

pathcm)) to the ideal functionality FCreateProof
11: Receive πi from the ideal functionality FCreateProof
12: Output 〈πi, votingpowers〉

For instance, if ji = 6 and votingpowers = [1, 2, 3] (originally), an adversary
adds 3 to the msgi,index for all three loops and gives the lists [3, 2, 1] in the first
loop, [1, 3, 2] in the second, and [1, 2, 3] in the third. Thus satisfying lines 2, 3 and 4
(and all others) of the zero-knowledge proof statements and resulting in total voting

5.2. PROPOSAL 2 61

power of 3 + 3 + 3 = 9 > ji. Therefore, we need to make sure the selected party gives
the same votingpowers list in windex in each round of the for-loop. For our thesis,
we enforce this restriction with the ideal functionality FCreateProof , Algorithm 5.23,
replacing the for-loop in Algorithm 5.21. See the new modified CreateProof() in
Algorithm 5.22.

Algorithm 5.23 FCreateProof
The ideal functionality is parameterized by tag and ~Vtag .

Upon receiving (CreateProof(msgi, votingpowers, vi, ji, σi, rt~Vtag
, path~Vtag [i], rtpk, pathpki

,

rtcm, pathcm)) from party Pi
1: πi = []
2: for each index ∈ [0, len(votingpowers)]
3: Compute Cvi,index = F (PRF.ski, vi||tag||index)
4: msgi,index = msgi . Create a copy of msgi
5: Add votingpowers[index] to msgi,index
6: Let xindex = (rt~Vtag

, rtpk, rtcm, tag,msgi,index, C
v
i,index,

~Vtag)
7: Let windex = (i, ji, votingpowers, stakei, index, PRF.ski, vi, σi, pki, pathpki

, path~Vtag [i],

pathcm, cmi)
8: Compute πNIZK,index := NIZK.Prove(crs, xindex, windex)
9: Set πi,index := (rt~Vtag

, rtpk, rtcm, C
v
i,index, πNIZK,index)

10: Add πi,index to πi
11: Output 〈πi, votingpowers〉

5.2.3 Modifications to the Procedures of Algorand

We modify Algorand’s [29] procedures to implement the combination trade-off scheme
and the modified Baldimtsi et al. [5] protocols. The implication of these modifications
for Algorand’s CommonCoin() procedure is also considered. We refer to Section 4.4.1
and the paper [29] for more details into the original procedures.

5.2.3.1 Sortition()

First, the V RFsk() procedure, on line 2 of the original Sortition() procedure, Algo-
rithm 5.11, has been replaced with our modified CreateProof() protocol, Algorithm
5.22, as seen in line 6 of the modified Sortition() procedure, Algorithm 5.24. Specifi-
cally, our modified version of CreateProof(), Algorithm 5.22, returns a list of proofs πi
and the list of voting powers, votingpowers. This votingpowers list is also returned
in line 7 of the modified Sortition() procedure. We also replace the calculations in
lines 3 through 6 of Algorithm 5.11 with the modified EligibilityCheck(), Algorithm
5.6, which calls the modified Eligible() protocol, Algorithm 5.5, performing the actual
calculation of ji. Continuing, as CreateProof() requires ji, vi, and ~Vtag, returned by
EligibilityCheck(), as input, EligibilityCheck() is put first on line 2 in the modified
procedure, Algorithm 5.24. Also, in contrast to the original procedure, we only create
a proof if ji > 0 and set πi = null if ji = 0.

62 5. PROPOSALS FOR IMPROVEMENT

Further changes include removing seed, W , and τ as input variables and including
the new input variable tag. Note that W , renamed totalStake, and τ are global
variables used by the Eligible() protocol when calculating ji.

Algorithm 5.24 Sortition()2

1: procedure Sortition(value, tag)
2:

〈
ji, vi, ~Vtag

〉
← EligibilityCheck(tag)

3: πi ← null
4: if ji > 0 then
5: msgi = (H(ctx.last_block), value)
6: 〈πi, votingpowers〉 ← CreateProof(msgi, tag, vi, ~Vtag , ji)
7: return 〈πi, ji, votinpowers〉
8: end procedure

5.2.3.2 CommitteeVote()

The original CommitteeVote() procedure, shown in Algorithm 5.13, is modified in
Algorithm 5.25 to use the modified Sortition() procedure, Algorithm 5.24. Thus,
the input to the Sortition() procedure is changed accordingly as seen on line 3
in Algorithm 5.25. The modified Sortition() procedure returns the new variable
votingpowers along with πi and ji. Note that πi is a list of proofs, each of which
is associated with the voting power in the same position of the votingpowers list.
Thus, instead of only gossiping one proof associated with the total voting power ji as
in the original CommitteeVote(), we add a for-loop to gossip all the proofs and their
associated voting power in lines 6 and 7 of Algorithm 5.25. Note that the length
of the lists votingpowers and πi are equal; therefore, it is arbitrary whether we use
len(votingpowers) or len(π) in line 6. Also, note that the voting power is provided
as part of the message msgi. If the voting power is tampered with, the proof will
not be verified as the zero-knowledge proof statements include a signature on this
message, see Subsection 5.2.2.3.

Algorithm 5.25 CommitteeVote()2

1: procedure CommitteeVote(ctx, tag, value)
2: // check if user is in committee using Sortition
3: 〈πi, ji, votingpowers〉 ← Sortition(value, tag)
4: // only committee members originate a message
5: if j > 0 then
6: for each index ∈ [0, len(votingpowers)]
7: Gossip(〈tag, πi[index],msgi = (H(ctx.last_block), value, votingpowers[index]))〉)
8: end procedure

5.2. PROPOSAL 2 63

5.2.3.3 VerifySort()

As with Proposal 1, the computation of ji in lines 3 to 6 is removed from Algorand’s
VerifySort() procedure, Algorithm 5.15. For this proposal, the calculation of ji is
not needed as a proof is not associated with the total voting power of the prover,
but rather with a fraction of this gossiped in msgi and thus available to the receiver
when counting votes. The V erifyV RFpk procedure is replaced with Baldimtsi et
al.’s Verify() protocol, Algorithm 5.9. Thus, as with Proposal 1, VerifySort() only
consists of Verify() and is consequently replaced by this protocol.

5.2.3.4 ProcessMsg()

The original ProcessMsg() procedure shown in Algorithm 5.16 and modified to
fit Proposal 2 in Algorithm 5.26 is similar to Proposal 1’s modified ProcessMsg()
procedure, Algorithm 5.17. However, there are some differences as the plaintext
voting power, votingpower, is retrieved from msgi in line 3 instead of the encrypted
total voting power, j′i, as in Proposal 1. Otherwise, lines 2 and 3 are equal in both
the modified versions. In this proposal, VerifySort() is replaced with Baldimtsi et
al.’s Verify() protocol, Algorithm 5.9. The votes are set equal to votingpower if the
proof is verified. Thus, the votes are returned to CountVotes() in plaintext as in
the original ProcessMsg() procedure, Algorithm 5.16. Also, note that mi does not
contain a signed message, so lines 3 and 4 of the original ProcessMsg() are removed
as in Proposal 1. Furthermore, sorthash is not returned for the same reasons as
discussed in Section 5.1.4.4 of Proposal 1.

Algorithm 5.26 ProcessMsg()2

1: procedure ProcessMsg(ctx,mi)
2: 〈tag, πi,msgi〉 ← mi
3: 〈hprev, value, votingpower〉 ← msgi
4: // discard messages that do not extend this chain
5: if hprev 6= H(ctx.last_block) then return 〈0,⊥,⊥〉
6: if V erify(tag,msgi, πi) then votes← votingpower
7: else votes← 0
8: return 〈votes, value〉
9: end procedure

64 5. PROPOSALS FOR IMPROVEMENT

5.2.3.5 CountVotes()

Algorithm 5.18 shows the original CountVotes() procedure, and Algorithm 5.27 shows
the modified procedure, which only consists of a few changes. The modifications
shared with Proposal 1, Algorithm 5.19, are as follows; (1) tag replaces round
and step, (2) ProcessMsg() no longer returns sorthash, and (3) CountVotes() and
ProcessMsg() do not take τ as input as it is a global variable in both proposals.
However, in contrast to Proposal 1, Proposal 2 deals with voting powers in plaintext
in the same manner as the original CountVotes() procedure; thus, no further changes
are needed.

Algorithm 5.27 CountVotes()2

1: procedure CountVotes(ctx, tag, T, λ)
2: start← T ime()
3: counts← {} . hash table, new keys mapped to 0
4: voters← {}
5: msgs← incomingMsgs[tag].iterator()
6: while TRUE do
7: m← msgs.next()
8: if m =⊥ then
9: if T ime() > start+ λ then return TIMEOUT

10: else
11: 〈votes, value〉 ← ProcessMsg(ctx,mi)
12: if pk ∈ voters or votes = 0 then continue;
13: voters ∪ = {pk}
14: counts[value]+ = votes
15: // if we got enough votes for value, then output value
16: if counts[value] > T · τ
17: return value
18: end procedure

5.2.3.6 CommonCoin()

As explained in Subsection 5.1.4.6, the original CommonCoin() procedure in Algorand
relies on the sorthash variable returned from ProcessMsg(). As with Proposal 1,
the modified ProcessMsg() procedure, Algorithm 5.26, do not return this variable’s
replacement vi, as this would reveal the identity of the selected. A similar solution
as the one in Proposal 1 can be applied, see Section 5.1.4.6. A possible solution is
for the prover to accompany a random hash in msgi before gossiping. Since each
selected party may gossip several messages for the same tag, a different random hash
should be attached to each message to maintain the unlinkability of the messages.
New hashes should be created for each message when selected for a tag. Note that we
do not implement the modifications required to realize this solution in the modified
protocols and procedures of Proposal 2, as doing so unnecessarily complicates the
presentation of our scheme.

5.2. PROPOSAL 2 65

5.2.4 Outline

This section outlines how our modified protocols and procedures from Sections 5.2.2
and 5.2.3 fit together in an instantiation of Algorand. The instantiation assumes an
honest party, Pi, with voting power for tag, and an honest party, Ph, who counts
votes for the messages received from Pi. Note that the following takes place after
setup.

1. Party, Pi, calls ComitteeV ote(), Algorithm 5.25, with inputs tag and value.

2. CommitteeV ote() calls Sortition(), Algorithm 5.24.

3. Sortition() calls EligibilityCheck(), Algorithm 5.6.

4. EligibilityCheck() receives the trapdoor permutation, ~Vtag, from ProcessRO(),
computes it’s inverse, vi, and calls Eligible(), Algorithm 5.5.

5. Eligible() calculates voting power, ji, and returns it to EligibilityCheck().

6. EligibilityCheck() receives ji and returns (ji, vi, ~Vtag) to Sortition().

7. Sortition() receives (ji, vi, ~Vtag), and composes the message,
msgi = (H(ctx.last_block), value).

8. Sortition() calls CreateProof(), Algorithm 5.22, with inputsmsgi, tag, vi, ~Vtag,
and ji.

9. CreateProof() creates the votingpowers list with the distribution of voting
powers for each proof.

10. For each voting power in votingpowers, CreateProof() adds the voting power
to msgi,index (i.e., a copy of msgi), creates a zero-knowledge proof, πi,index, on
msgi,index and tag, and adds πi,index to the list πi. After the loop, the lists πi
and votingpowers are returned to Sortition().

11. Sortition() receives the lists πi and votingpowers and returns (πi, ji,
votingpowers) to CommitteeV ote().

12. For each proof and voting power in the lists πi and votingpowers, respectively,
CommitteeV ote() gossips the message mi,index = (tag, πi,index,msgi,index =
(H(ctx.last_block), value, votingpower[index])) since Pi’s voting power, ji, is
greater than 0.

13. After receiving the messages, the party, Ph, calls CountV otes(), Algorithm
5.27 for tag.

66 5. PROPOSALS FOR IMPROVEMENT

14. CountV otes() calls ProcessMsg(), Algorithm 5.26, for each message, mi,index,
received.

15. ProcessMsg() acquires tag, πi,index, and msgi,index from mi,index.

16. ProcessMsg() calls V erify(), Algorithm 5.9, on (tag, msgi,index,πi).

17. V erify() checks if πi,index is a valid proof for msgi,index and tag, and returns
1 if πi,index is valid, 0 otherwise. V erify() determines that πi,index is a valid
proof for msgi,index and tag, and returns 1.

18. ProcessMsg(), upon receiving 1, sets votes equal to the voting power in
msgi,index, and returns (votes, value).

19. Upon receiving votes and value, CountV otes() adds votes to the current total
votes for value in the table counts.

20. Note that steps 15-19 repeats for each message mi,index.

21. Also note that if a value receives more votes than the threshold after step 19,
the CountV otes() procedure returns value.

Note that for the receiver, the index in mi,index, msgi,index, and πi,index are
neither known nor needed to verify and count votes. Thus, for the receivers, the
procedures CountVotes(), ProcessMsg(), and Verify(), Algorithms 5.27, 5.26 and 5.9,
respectfully, this variable is not used. The index variable is therefore only included
in context of these three procedures in the explanation above in order to yield a
better understanding of the connection between the proofs sent by party Pi and
received by party Ph.

5.3. EVALUATION OF THE PROPOSALS 67

5.3 Evaluation of the Proposals

We evaluate Proposals 1 and 2 with regards to performance, privacy and security,
and compare the proposals to the built upon proposal by Baldimtsi et al. [5].

Note that currently there is no publicly available information on:

1. the probabilities of a stakeholder being selected with different ji values in
Algorand

2. the frequency in which different stakeholders would choose specific privacy
variables.

While the average case performance improvement in Proposal 1 compared to [5]
relies on ji, Proposal 2 relies on ji and the privacy variable chosen by the stakeholder.
Thus, we cannot say anything for certain about the average cases. As a solution,
we choose to assess the complexity in order of ji in Proposal 1. We choose to
assess complexity in order of n in Proposal 2, where n is the number of proofs sent
determined by ji and the privacy variable. Also, note that while we look at the best
and worst case in Proposal 2, this is redundant and thus, not looked at in Proposal
1 as the performance is constant. In terms of privacy, the evaluations differ with
regards to the constant privacy for Proposal 1, while, similar to performance, privacy
depends upon the choice of privacy variable in Proposal 2.

5.3.1 Proposal 1: Performance Estimate

Proposal 1 improves performance in Baldimtsi et al.’s proposal [5] by removing the
need for the creation, gossip, verification, and counting of ji proofs, resulting in only
one proof for each selected party. In this performance estimate, we give complexity
in order of ji.

In Baldimtsi et al.’s proposal, ji number of (unlinkable) proofs are sent for each
selected party. Thus, complexity increase linearly with ji in [5]. This complexity en-
compasses (1) proof creation time, (2) bandwidth regarding proof size, (3) everything
in ProcessMsg() including proof-verification time, and (4) everything in the while
loop in CountV otes, including the addition and greater-than comparison. Note that
while the complexity in proof creation affects the selected parties, the complexity in
ProcessMsg() and CountV otes() affects the receivers. For Proposal 1, one proof is
sent regardless of the value of ji. This reduction improves performance by providing
constant complexity in order of ji as only one proof is created, gossiped, verified,
and counted for each selected party.

For the specific case of j = 1, the added complexity of incorporating homomorphic
encryption must be considered. The zero-knowledge proof statement index ∈ [1, wti]
is replaced with FHE.Equality(msgi[2], FHE.Enc(params, FHE.pka, ji)), a more

68 5. PROPOSALS FOR IMPROVEMENT

complex statement, as seen in Subsection 5.1.3.4. In addition, the complexity is
increased by replacing the addition and greater-than comparison in CountVotes()
with homomorphic versions in Subsection 5.1.4.5. Thus, to conclude, Baldimtsi et al.’s
proposal [5] is more efficient than Proposal 1 for the specific case of ji = 1. However,
Proposal 1 improves performance in [5] for all ji > 1 as the complexity remains
constant in Proposal 1 while it increases linearly in Baldimtsi et al.’s proposal.

5.3.2 Proposal 1: Privacy and Security

Proposal 1 aims to achieve complete privacy with regard to stake and identity. We
refer to Baldimtsi et al.’s proposal [5] for the privacy and security of the identity
and stake achieved with the functionality adapted from their paper. This section
focuses on the privacy preserved and security achieved with our new functionality
for Proposal 1.

The privacy of the voting power and, thus, also stake depends on the security
provided by the homomorphic encryption used. Ideally, an adversary should learn
nothing about the plaintext (voting power ji) from the ciphertext (encrypted voting
power j′i). Proposal 1 makes use of the BGV homomorphic encryption scheme by
Brakerski et al. [11]; see their paper for the security provided.

The privacy of the stake also depends upon the ideal functionalities defined in
Subsection 5.1.2. Through the use of an ideal greater-than functionality, Algorithm
5.2, the confidentiality of the voting powers is based on the fact that parties do not
have access to FHE.GreaterThan(). The ideal functionality restricts parties from
comparing two chosen encrypted values and thus, restricts them from deducing the
plaintext values of the encrypted voting powers. In addition, the confidentiality of
the encrypted voting powers depends on the ideal functionality for homomorphic
setup, Algorithm 5.1. Proposal 1 relies on this functionality to delete and not reveal
the secret key, i.e., the homomorphic decryption key, to the parties.

Since the reliance on ideal functionalities to achieve the desired privacy is not
ideal, we include the creation of protocols to realize these ideal functionalities in
future work, as detailed in Subsection 6.3.1.

5.3. EVALUATION OF THE PROPOSALS 69

5.3.3 Proposal 2: Performance Estimate

This proposal provides a trade-off between privacy and performance. To a degree,
the parties can choose their own performance. For instance, they can choose to
send only one proof with their total voting power, resulting in the best possible
performance but the worst privacy. Alternatively, they can choose to send multiple
proofs, each with voting power one, resulting in the worst possible performance but
best privacy. Or they can choose something in-between. Thus, for the performance
estimate of this proposal, it is fitting to look at performance in the worst case, best
case, and average case. However, as mentioned in Section 5.3, we do not know the
probabilities for different ji values or the frequency in which different stakeholders
would choose specific privacy variables. Thus, as we cannot say anything for sure
about the average case, we look at performance for different ji values and privacy
levels not assessed in the best and worse cases. In this performance estimate, we will
give complexity in order of n, where n is the number of proof sent.

Note that because of the different purposes of Proposal 2 and Baldimtsi et al.’s
proposal [5], a privacy and performance trade-off versus constant complete privacy,
respectively, a direct comparison may seem inexpedient. However, as this proposal
is built upon [5], we use this as a reference point to highlight the advantages and
disadvantages of Proposal 2. Also, note that while Proposal 2 allows a party to
determine the computation power required for proof creation by selecting the privacy
variable, a party has no control over the number of proofs it needs to verify. If the
selected parties value high performance, the receivers get better performance, but
the receivers have no say in this decision. Thus, the scheme fails to provide a choice
of performance in terms of verification time, as this is decided by the selected parties.
Hence, for the remainder of this Subsection, we evaluate Proposal 2 in terms of the
best, worst and average case for proof creation.

The best case for performance is when only one proof is sent, i.e., when the lowest
privacy level is chosen by Algorithm 5.20 based on the privacy variable and ji of the
stakeholder, or when ji = 1. Note that for ji = 1 and inevitably n = 1, [5] performs
better because of the two extra statements added to [5]’s zero-knowledge proof for
Proposal 2 in Subsection 5.2.2.3. For the best-case scenario with the lowest privacy
level, Proposal 2 has constant complexity for all ji > 1 as only one proof is sent;
n = 1. In contrast, the complexity of [5]’s proposal increases linearly with ji as ji
proofs are sent; n = ji. For this case, note that Proposal 2 reveals the total voting
power of the selected party, while [5] does not.

The worst-case in terms of performance for this proposal is when the highest
privacy level is chosen, i.e., when ji proofs each with voting power one are sent.
For this case, the selected sends the maximum number of proofs, n = ji, and the
complexity increases linearly with ji as in [5]. Thus, for this worse-case scenario,

70 5. PROPOSALS FOR IMPROVEMENT

because of the two added zero-knowledge statements to [5] in Proposal 2, and because
the same number of proofs are sent in [5] and Proposal 2, Proposal 2 has worse
performance than [5].

As mentioned in Section 5.3, we do not know the probability for different ji
values or the frequency in which stakeholders would choose specific privacy variables.
Thus, we cannot say anything for sure about the average case. However, for all other
privacy levels (not the highest or the lowest possible privacy level) with ji > 2, this
proposal leads to fewer proofs sent by each party compared to [5] without sending
the total voting power in one proof; ji > n > 1. Thus, outside of the best and worse
case scenarios, Proposal 2 improves performance when looking at complexity in order
of n compared to [5], as n = ji for [5] and ji > n > 1 for Proposal 2.

Hence, the performance improvement compared to [5] lies between the best and
worst cases. Hypothesizing that the average case lies somewhere between the worst
and best case; that a stakeholder on average does not send one proof with total voting
power or only proofs with voting power one, Proposal 2 improves the performance of
[5] in order of n.

Generally, besides the possible average case improvement, an advantage unique to
this proposal compared to [5] is the performance and privacy trade-off. This trade-off
gives a party the possibility to interact with other parties who prioritize performance
differently. The party can also change their mind and switch to a better or worse
performance dependent on their available computing power or preference.

5.3.4 Proposal 2: Privacy and Security

This proposal does not focus on achieving complete privacy at all times but provides
a trade-off between (stake) privacy and performance chosen by the parties themselves
while preserving the privacy of the identity. As in Section 5.3.2, we will not focus on
the privacy and security provided by the functionality adapted from Baldimtsi et
al.’s proposal [5] but on the privacy and security unique for this proposal.

Proposal 2 tackles the practical problem of the computational complexity needed
to achieve complete privacy in a PoS protocol and provides an option to achieve some
chosen level of privacy while accounting for the fact that computing power is limited
and varying for the different parties. Thus, some fixed privacy is not provided by
Proposal 2 but rather a choice of privacy. If parties value privacy, they can choose a
high privacy level. If the parties value high performance or have limited computing
power, they can choose a lower privacy level.

5.3. EVALUATION OF THE PROPOSALS 71

Proposal 2 relies on an ideal functionality, Algorithm 5.23, for security in the
creation of proofs. The ideal functionality is in place to avoid a party cheating to
get more voting power by adjusting the votingpowers list as detailed in Subsection
5.2.2.4. The transition from an ideal functionality to an implementable protocol is
included in future work in Subsection 6.3.2.

Finally, note that when choosing the privacy numbers for the network, one must
consider what should determine the best (and worst) privacy. For instance, one has
to decide whether the privacy notion suggested in Subsection 5.2.1.1 is applicable;
one proof with voting power 3 is worse than many (unlinkable) proofs with voting
power 2. The privacy numbers should be adjusted according to such decisions.

Chapter6Conclusion

This chapter outlines the results, conclusions, and recommendations for future work.
First, a summary of our results is presented. Next, we discuss said results while
looking back at the research question presented in Chapter 1. Finally, we outline the
future work for Proposal 1 and 2 and two other ideas for future work that came to
mind over the course of this thesis.

6.1 Summary of Results

Our thesis started off with a literature study of the state of the art on the topic of
privacy-preservation in PoS. As a result, the available formal studies on PPoS, with a
record of scientific publication, were presented in Chapter 2. We provided a thorough
analysis of these formal studies in Chapter 4, with particular regard to privacy and
performance. While the PPoS proposal [12] requires formalization, issues such as
performance in [5] and the reliance on an ABC in [25] and [36] were identified.

Of the issues identified in the analysis, we chose to focus our thesis on the
performance issue concerning the need for multiple unlinkable proofs in the multi-
stake setting of Baldimsti et al.’s PPoS proposal [5]. As such, we studied [5]’s
underlying PoS protocol and provided an analysis identifying what parts of Algorand
[29] reveal the identity or stake.

Chapter 5 contains two proposals for the mitigation of [5]’s performance issue.
The first proposal removes the need for multiple unlinkable proofs in the multi-stake
setting of [5] through the use of homomorphic encryption. The second proposal
provides an alternative way of tackling the privacy of identity and stake within
the consensus mechanism, namely a trade-off scheme between stake privacy and
performance. It is worth noting that while the first proposal is for a PPoS, the
second proposal is a PoS in the respect that the participants can choose performance
over privacy. Finally, we performed an evaluation of the two proposals with regards
to performance, privacy, and security. Proposal 1 provides constant performance

73

74 6. CONCLUSION

compared to linear performance in [5] while preserving full privacy. Proposals 2 lets
parties interact with other parties with different choices of performance and privacy,
accounting for different preferences and computational limitations.

In addition, the paper Efficient Novel Privacy Preserving PoS Protocol presenting
Proposal 1, was accepted for publication to the Blockchain and Internet of Things
Conference (BIOTC). The submitted paper is attached in Appendix A.1 and the
final version will be published in the International Conference Proceedings by ACM.

6.2 Discussion

The problem description and introduction present a research question central to the
thesis: Is it possible to design consensus mechanisms that are as energy-efficient as
PoS and as privacy-preserving as PoW? Our approach to answering this question was
to complete a literature study and analysis of the currently available PPoS proposals
with regards to privacy and performance. The literature study and analysis identified
performance issues in Baldimtsi et al.’s proposal [5]. Meanwhile, Ganesh et al.’s
proposal [25] and Kerber et al.’s proposal [36] do not preserve the privacy promised
due to the reliance on ABC. Following a thorough deliberation, we decided to make
improvements to one of the aforementioned PPoS proposals.

To make [5] more efficient, Proposal 1 removes the need for multiple proofs in
the multi-stake setting. Our modifications make [5] more efficient in the multi-stake
setting when voting power ji > 1; however, we slightly decrease the efficiency of
[5] when voting power ji = 1, as detailed in Subsection 5.3.1. The complexity for
ji > 0 remains constant in Proposal 1 and increases linearly in [5]. Thus, Proposal 1
performs better than [5] in the multi-stake setting for all ji except ji = 1.

In contrast to [5]’s proposed protocol, Proposal 1 relies on ideal functionalities for
the setup necessary for homomorphic encryption and for the greater-than comparison,
as discussed in Subsection 5.1.2.1 and 5.1.2.2, respectively. Thus, to implement
Proposal 1, a transition from ideal functionalities to implementable protocols is
required. This transition is left for future work as presented in Subsection 6.3.1.
Proposal 1 is also reliant upon homomorphic encryption, which is still complex and,
thus, difficult to implement in practice. However, research in this field is ongoing,
and many papers on FHE [57, 11] and homomorphic comparison [54, 15, 10, 16] exist.
Since this is a developing field, we believe that homomorphic encryption, and thus,
also Proposal 1, will be practically implementable in a few years.

In response to our research question, despite our improvements to [5], there still
does not exist a PPoS proposal as energy-efficient as PoS that is simultaneous as
privacy-preserving as PoW. While Proposal 1 succeeds at the latter by providing

6.2. DISCUSSION 75

privacy of stake and identity to the underlying PoS protocol, it fails to be as energy-
efficient as the underlying PoS protocol. However, our research suggests that the gap
between the efficiency of PoS and PPoS proposals can be reduced. To what extent
such reduction is possible remains unclear; however, we strongly believe that the
efficiency of PPoS proposals can and will be improved in the future.

Since the complexity of Proposal 1 is constant, we may claim that Proposal
1 provides a competitive edge in terms of performance to PoW protocols, whose
complexity and efficiency are directly tied to the difficulty of and computation power
needed to solve hard puzzles. This leaves us questioning if maybe our research
question poses too strict constraints on how a PPoS protocol has to perform in terms
of efficiency. That is to say, the notion that a PPoS must be as energy efficient
as a PoS may be too strict since we hypothesize that a PPoS that is much more
energy-efficient than some PoW would be a valid alternative to that PoW.

In our attempt to answer the research question, we were left wondering whether
it is necessary for all parties to have the same privacy on a Blockchain. Thus, our
second proposal provides a flexible trade-off between privacy and performance, i.e.,
a scheme in which each individual party decides to what extent they want to keep
their stake private. Such a scheme sets the stage for an application to a blockchain in
which parties with desires for varying degrees of privacy can interact. For example, a
party that cares greatly about keeping their stake private can interact on the same
blockchain with a party that has no care for the privacy of their stake. Further
motivation for Proposal 2 can be found in the paper On the Anonymity Guarantees
of Anonymous Proof-of-Stake Protocols [39], which claims that “it is impossible to
devise a PoS blockchain protocol where both liveness and anonymity are guaranteed”,
making it reasonable to propose a trade-off scheme in order to achieve some privacy.
However, it is worth noting that the practicality of [39]’s attack is conducted on the
PoW protocol, ZCash [50], because no practical PPoS implementation exist. Thus,
it may be appropriate to question their claim.

Proposal 1 and 2 are not directly comparable in terms of efficiency, complexity,
privacy, and security since they are completely different approaches to answering
the research question. Whereas Proposal 1 focuses on creating a PPoS, Proposal
2 yields a flexible scheme within which parties can participate to the best of their
ability, i.e., with privacy and performance reflective of their computation power and
individual preferences. Proposal 2 cannot offer concrete performance guarantees to
its parties as the computation power required to verify received proofs is dependent
on how many proofs other parties choose to send. In this respect, Proposal 1 offers
near constant verification time as the number of proofs received will be consistent.
With regards to privacy, Proposal 1 guarantees privacy while Proposal 2 provides the
parties with a chosen privacy. When comparing Proposal 1 and Proposal 2, Proposal

76 6. CONCLUSION

1 looks to have better privacy and performance (dependent on the performance of the
homomorphic encryption scheme). Although, homomorphic encryption is complex,
with ongoing research, we see more potential in Proposal 1 for the future. Thus,
while proposal 2 offers an interesting outlook on the problem tackled in this thesis,
we endorse Proposal 1 due to the guarantees it offers.

6.3 Future work

This section presents our recommendations for future work on Proposals 1 and 2,
followed by two ideas for improvements to Baldimtsi et al.’s proposal [5]. These
ideas are not investigated in the thesis and are, thus, presented as possible future
directions for research.

6.3.1 Proposal 1

Proposal 1 defines an ideal functionality, Algorithm 5.1, to generate and distribute
the homomorphic public key. The ideal functionality specifies that the homomorphic
secret key must be deleted immediately following generation to ensure that decryp-
tion is impossible. We theorize that the functionality can be realized through a
distributed key generation of the homomorphic encryption keys. In such a homomor-
phic distributed key generation, a threshold of parties contributes to the calculation
of homomorphic public and secret keys. Note that in distributed key generation,
while the public key is output to the system, no single party has access to the secret
key or is able to reconstruct the secret key without compromising the entire threshold
of parties [27]. All parties participating in the distributed key generation will be
instructed to delete their “individual secret keys” to reduce the likelihood of a single
party reconstructing the secret key. Thus, our theorized homomorphic distributed
key generation scheme ensures that decryption by a single party remains impossible.
Regarding the instantiation with Algorand, the parties chosen to participate in the
distributed homomorphic key generation could, for example, be those participating
in the governance of the system outlined in [42].

Another ideal functionality specified by Proposal 1, Algorithm 5.2, pertains to the
homomorphic greater-than comparison. The homomorphic greater-than comparison
is called within an ideal functionality to ensure that parties can only compare a
received homomorphically encrypted voting power to the homomorphically encrypted
threshold. This restriction is necessary because a comparison of a received homomor-
phically encrypted voting power with some chosen homomorphically encrypted value
would let any party deduct the plaintext values of the received voting powers. We
theorize that creating a protocol that realizes this ideal functionality is possible and
leave the design and creation of such a protocol to future work.

6.3. FUTURE WORK 77

Once protocols that emulate the ideal functionalities, Algorithms 5.1 and 5.2,
have been created, a natural next step will be to test their security by creating
simulators. Further work to confirm the feasibility of Proposal 1 in practice is
necessary. A practical implementation of Proposal 1 would provide a more qualitative
and quantitative basis for evaluating the proposal with regards to performance,
privacy, and security. While we restrict the scope of our thesis to not cover the
anonymization of transactions, a path for future work would be to combine Proposal
1 with a scheme for anonymous transactions.

Similarly, venturing outside the scope of this thesis to look at the dynamic-
stake setting is an area left to future work. Introducing recursive zk-SNARKs for
the blockchain proofs similar to the blockchain construction Coda [9] could yield
advantages in this setting. By using recursive zk-SNARK proofs for the blocks added
to the blockchain, new participants would only need to download the current state
of the blockchain along with one recursive zk-SNARK proof of the correctness of the
history of the blockchain. This application could make it possible to efficiently verify
the entire blockchain while only downloading a very small amount of data. With the
block proof equal to the proof of selection for the block proposer, this idea could be
applied to Proposal 1, as this proof is already zero knowledge.

6.3.2 Proposal 2

As with Proposal 1, we consider the transition from an ideal functionality to an
implementable protocol to be a natural next step in the further development of
Proposal 2. The ideal functionality, Algorithm 5.23, serves to place a constraint
on the generation of proofs based on the votingpowers list, such that proofs are
generated based on the same votingpowers list. We leave the creation of such a
protocol to future work, hypothesizing that designing a protocol that realizes this
ideal functionality is possible. Once the transition from ideal functionalities to
concrete protocols is complete, a practical implementation of the proposal is in order.
Such an implementation would greatly aid in further evaluation of the proposal’s
feasibility, performance, privacy, and security.

We want to note that we expect the equations and algorithms related to creating
the votingpowers list to be subject to scrutiny and modification. They are now
serving as an example of one way to achieve the scheme laid out by the proposal.
Since we have not looked into a multitude of PoS protocols, we cannot with any
certainty claim that the most optimal equations and algorithms for Algorand will be
the most optimal for other PoSs. Therefore, future work on optimizing the equations
and algorithms will also encompass a study of whether or not the same equations
and algorithms are optimal for all PoSs.

78 6. CONCLUSION

As with Proposal 1, an investigation into the combination of Proposal 2 with a
scheme for anonymous transactions would be a reasonable path for future work. In
addition, looking at a transition to the dynamic stake setting would be a natural
part of the future work for this proposal. Similar to Proposal 1, using recursive
zk-SNARKs for the blockchain proofs could yield advantages in this setting.

6.3.3 Further Ideas for Improvement

Methods with the potential to improve upon the performance issue identified in the
analysis of Anonymous Lottery In the Proof-of-Stake setting in Section 4.2.2 were
investigated through this thesis’s work. Two ideas for improving Baldimtsi et al.’s [5]
multi-stake setting protocol for Algorand resulted in Proposals 1 and 2. Two other
ideas considered over the course of this thesis are introduced below.

6.3.3.1 Recursive zero-knowledge SNARKs in the Gossip Protocol

Recursive zk-SNARKs are the recursive composition of SNARKs, whereas verifying
one recursive zk-SNARK proof verifies all the combined zk-SNARK proofs. The
complexity of recursive zk-SNARKs has made it costly to implement in practice.
However, in 2017, Ben-Sasson et al. claim that they “achieve the first zk-SNARK
implementation that practically achieves recursive proof composition” [6]. Several
applications for recursive zk-SNARKs have recently emerged, such as Bonneau et
al.’s paper Coda: Decentralized Cryptocurrency at Scale [9] applying [6]’s technique
and Garoffolo et al.’s paper Zendoo: a zk-SNARK Verifiable Cross-Chain Transfer
Protocol Enabling Decoupled and Decentralized Sidechains [26], both from 2020.

The utilization of recursive zk-SNARKs can improve communication cost and
verification time when relaying messages in Baldimtsi et al.’s proposal [5] with
Algorand [29] as the underlying PoS. In Algorand, all parties relay every received
message during gossip, except when receiving the same message twice to avoid loops.
Thus, the parties also verify and relay every belonging zk-SNARK proof they receive.
As a solution, the participants can instead relay one recursive zk-SNARK proof
together with all the messages received within a time limit. When the participants
receive messages during each time interval, they verify the associated recursive zk-
SNARK proof(s). At the end of each time interval, the parties create a recursive
zk-SNARK proof of all the verified zk-SNARK proofs and relay this one proof along
with the messages. Because of the large proof size of the zk-SNARK-proofs in [5],
this would improve the communication cost. The transition to recursive zk-SNARK
proofs could also decrease the number of proofs each receiver has to verify, thus
decreasing the verification time when counting votes.

6.3. FUTURE WORK 79

Practical issues such as merging two zk-SNARK proofs, not including the same
proof multiple times in the resulting recursive zk-SNARK proof, and how to avoid
loops must be investigated. Also, if the idea is deemed theoretically possible, further
work to confirm the practical feasibility is necessary.

6.3.3.2 Aggregated Subvector Commitments

Baldimtsi et al.’s proposal [5] makes use of Pedersen commitment schemes and Merkle
trees. Specifically, they use commitments to stake and store the commitments in
a Merkle tree. Commitments are also used for the Pseudorandom Function (PRF)
secret key stored in a Merkle tree along with the trapdoor public key and the signature
verification key. However, other commitment schemes may yield better results. As
such, we want to mention a promising commitment scheme to replace the Pedersen
commitments and Merkle trees, namely the Aggregatable Subvector Commitment
(aSVC) presented in the paper Aggregatable Subvector Commitments for Stateless
Cryptocurrencies by Tomescu et al. [55], and the improvements this may yield.

While the optimal traversal time, and thus the optimal verification time, for a
Merkle tree is logarithmic [53], the proposed aSVC scheme verifies the proofs of
the (committed) value, e.g., stake, in constant time. As verifying the proof of the
(committed) stake and verifying the proof of the (committed) PRF secret key is part
of verifying the zero-knowledge proof of selection, this might improve the verification
time of the proof of selection, identified as an issue in the analysis in Section 4.2.2.

While Merkle trees have logarithmic proof size, the aSVC scheme supports
aggregation of proofs into a constant-sized proof. Although the proof size of the
(committed) stake was not identified as an issue in the analysis, it may be of
importance since party Pi attaches his proof for each transaction from party Pi
to party Pj . Additionally, while Merkle trees only support updates with dynamic
update hints, the aSVC scheme supports static update keys. With static update
keys, party Pi only needs to include the proof of his (committed) stake. Meanwhile,
with dynamic update hints, party Pi must additionally include the proof for party
Pj ’s stake, requiring interaction. Thus, the aSVC scheme can reduce interaction and
improve the size of transactions since the proof size is constant and only one proof is
attached with a transaction rather than two. Because of the eventually large number
of transactions and associated proofs, a smaller proof size and aggregation of the
proofs may prove beneficial in a dynamic stake setting.

Future work includes deducting whether this could improve upon Baldimtsi et
al.’s proposal [5] or other PPoS proposals while being theoretically and practically
feasible.

References

[1] Proof of stake instead of proof of work. Bitcoin Forum. [Online]. Available:
https://bitcointalk.org/index.php?topic=27787.0, July 2011.

[2] alaaradwan. Vigcoin. GitHub repository. [Online]. Available: https://github.com/
alaaradwan/VIGCoin, 2019.

[3] Andreas M Antonopoulos. Mastering Bitcoin: unlocking digital cryptocurrencies.
O’Reilly Media, Inc., 2014.

[4] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and
Vassilis Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with
dynamic availability. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 913–930, 2018.

[5] Foteini Baldimtsi, Varun Madathil, Alessandra Scafuro, and Linfeng Zhou. Anony-
mous lottery in the proof-of-stake setting. IACR Cryptol. ePrint Arch., 2020:533,
2020.

[6] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable
zero knowledge via cycles of elliptic curves. Algorithmica, 79(4):1102–1160, 2017.

[7] Christopher Bendiksen and Samuel Gibbons. The bitcoin mining network: Trends,
composition, average creation cost, electricity consumption & sources, 2019.

[8] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof
of work. In International conference on financial cryptography and data security,
pages 142–157. Springer, 2016.

[9] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decen-
tralized cryptocurrency at scale. IACR Cryptol. ePrint Arch., 2020:352, 2020.

[10] Florian Bourse, Olivier Sanders, and Jacques Traoré. Improved secure integer
comparison via homomorphic encryption. In Cryptographers’ Track at the RSA
Conference, pages 391–416. Springer, 2020.

[11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. ACM Transactions on Computation
Theory (TOCT), 6(3):1–36, 2014.

81

https://bitcointalk.org/index.php?topic=27787.0
https://github.com/alaaradwan/VIGCoin
https://github.com/alaaradwan/VIGCoin

82 REFERENCES

[12] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether:
Towards privacy in a smart contract world. In International Conference on
Financial Cryptography and Data Security, pages 423–443. Springer, 2020.

[13] Cardano. [Online]. Available: https://cardano.org/.

[14] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger.
Theoretical Computer Science, 777:155–183, 2019.

[15] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient homomorphic
comparison methods with optimal complexity. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 221–256.
Springer, 2020.

[16] Heewon Chung, Myungsun Kim, Ahmad Al Badawi, Khin Mi Mi Aung, and
Bharadwaj Veeravalli. Homomorphic comparison for point numbers with user-
controllable precision and its applications. Symmetry, 12(5):788, 2020.

[17] CoinMarketCap. Today’s cryptocurrency prices by market cap. [Online]. Available:
https://coinmarketcap.com/], 2021. (last visited: <2021-03-06>).

[18] Lin William Cong, Zhiguo He, and Jiasun Li. Decentralized mining in centralized
pools. The Review of Financial Studies, 2019.

[19] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square
span programs with applications to succinct nizk arguments. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 532–550. Springer, 2014.

[20] Henry de Valence. Penumbra. GitHub repository. [Online]. Available: https:
//github.com/penumbra-zone/penumbra, 2021.

[21] Alex De Vries. Bitcoin’s growing energy problem. Joule, 2(5):801–805, 2018.

[22] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.
In Annual International Cryptology Conference, pages 139–147. Springer, 1992.

[23] Nabil El Ioini and Claus Pahl. A review of distributed ledger technologies. In OTM
Confederated International Conferences" On the Move to Meaningful Internet
Systems", pages 277–288. Springer, 2018.

[24] Peter Fairley. Ethereum will cut back its absurd energy use. IEEE spectrum,
56(1):29–32, 2018.

[25] Chaya Ganesh, Claudio Orlandi, and Daniel Tschudi. Proof-of-stake protocols for
privacy-aware blockchains. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 690–719. Springer, 2019.

[26] Alberto Garoffolo, Dmytro Kaidalov, and Roman Oliynykov. Zendoo: a zk-snark
verifiable cross-chain transfer protocol enabling decoupled and decentralized
sidechains. arXiv preprint arXiv:2002.01847, 2020.

https://cardano.org/
https://coinmarketcap.com/
https://github.com/penumbra-zone/penumbra
https://github.com/penumbra-zone/penumbra

REFERENCES 83

[27] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages
295–310. Springer, 1999.

[28] Yossi Gilad. Algorand rewards - a technical overview. [Online]. Available: https:
//www.algorand.com/resources/blog/rewards-technical-overview, May 24, 2019.
(last visited: <2021-19-03>).

[29] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of
the 26th Symposium on Operating Systems Principles, pages 51–68, 2017.

[30] Omkar Godbole. Bitcoin eyes second-biggest monthly drop on record.
[Online]. Available:
https://www.coindesk.com/bitcoin-eyes-second-biggest-monthly-drop-on-record,
May 31, 2021.

[31] LM Goodman. Tezos: A self-amending crypto-ledger position paper. Aug, 3:2014,
2014.

[32] Jens Groth. On the size of pairing-based non-interactive arguments. In Annual
international conference on the theory and applications of cryptographic techniques,
pages 305–326. Springer, 2016.

[33] Saad Imran. The positive externalities of bitcoin mining. 2018.

[34] Felix Irresberger, Kose John, and Fahad Saleh. The public blockchain ecosystem:
An empirical analysis. Available at SSRN, 2020.

[35] Rishi Iyengar. Bitcoin plunges 12% after elon musk tweets that tesla will not
accept it as payment. [Online]. Available: https://edition.cnn.com/2021/05/12/
tech/elon-musk-tesla-bitcoin/index.html, May 13, 2021.

[36] Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas.
Ouroboros crypsinous: Privacy-preserving proof-of-stake. In 2019 IEEE Sympo-
sium on Security and Privacy (SP), pages 157–174. IEEE, 2019.

[37] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual
International Cryptology Conference, pages 357–388. Springer, 2017.

[38] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake. self-published paper, August, 19:1, 2012.

[39] Markulf Kohlweiss, Varun Madathil, Kartik Nayak, and Alessandra Scafuro. On
the anonymity guarantees of anonymous proof-of-stake protocols. IACR Cryptol.
ePrint Arch., 2021:409, 2021.

https://www.algorand.com/resources/blog/rewards-technical-overview
https://www.algorand.com/resources/blog/rewards-technical-overview
https://www.coindesk.com/bitcoin-eyes-second-biggest-monthly-drop-on-record
https://edition.cnn.com/2021/05/12/tech/elon-musk-tesla-bitcoin/index.html
https://edition.cnn.com/2021/05/12/tech/elon-musk-tesla-bitcoin/index.html

84 REFERENCES

[40] The Algorand Foundation Ltd. Long term algo dynamics. [Online]. Available:
https://algorand.foundation/the-algo/algo-dynamics, December 9, 2020. (last
visited: <2021-19-03>).

[41] Stefan Mehlhorn. Demystifying algorand rewards distribution: A look at how &
when algorand token rewards are calculated. [Online]. Available: https://www.
purestake.com/blog/algorand-rewards-distribution-explained/, October 29, 2019.
(last visited: <2021-19-03>).

[42] Silvio Micali. A proposal for decentralizing algorand governance. [Online]. Avail-
able: https://www.algorand.com/resources/blog/rewards-technical-overview,
June 24, 2020. (last visited: <2021-19-03>).

[43] Satoshi Nakamoto. A peer-to-peer electronic cash system. Bitcoin, 4, 2008.
Available: https://bitcoin.org/bitcoin.pdf.

[44] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Security
and Privacy, pages 238–252. IEEE, 2013.

[45] Maksym Petkus. Why and how zk-snark works. arXiv preprint arXiv:1906.07221,
2019.

[46] The Monero Project. Monero. [Online]. Available: https://web.getmonero.org.

[47] Mayank Raikwar, Danilo Gligoroski, and Katina Kralevska. SoK of used cryptog-
raphy in blockchain. IEEE Access, 7:148550–148575, 2019.

[48] Mayank Raikwar, Danilo Gligoroski, and Goran Velinov. Trends in Development
of Databases and Blockchain. In 2020 Seventh International Conference on
Software Defined Systems (SDS), pages 177–182, 2020. doi:10.1109/SDS49854.
2020.9143893.

[49] Fahad Saleh. Blockchain without waste: Proof-of-stake. The Review of Financial
Studies, 2018.

[50] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474.
IEEE, 2014.

[51] Rob Sherwood, Bobby Bhattacharjee, and Aravind Srinivasan. P5: A protocol for
scalable anonymous communication. Journal of Computer Security, 13(6):839–876,
2005.

[52] Oda Skoglund. An investigation into private proof of stake. Project report in
TTM4502, Department of Information Security and Communication Technology,
NTNU – Norwegian University of Science and Technology, Dec. 2020.

https://algorand.foundation/the-algo/algo-dynamics
https://www.purestake.com/blog/algorand-rewards-distribution-explained/
https://www.purestake.com/blog/algorand-rewards-distribution-explained/
https://www.algorand.com/resources/blog/rewards-technical-overview
 https://bitcoin.org/bitcoin.pdf
https://web.getmonero.org
https://doi.org/10.1109/SDS49854.2020.9143893
https://doi.org/10.1109/SDS49854.2020.9143893

REFERENCES 85

[53] Michael Szydlo. Merkle tree traversal in log space and time. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages
541–554. Springer, 2004.

[54] Mihai Togan and Cezar Pleşca. Comparison-based computations over fully homo-
morphic encrypted data. In 2014 10th international conference on communications
(COMM), pages 1–6. IEEE, 2014.

[55] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist,
and Dmitry Khovratovich. Aggregatable subvector commitments for stateless
cryptocurrencies. In International Conference on Security and Cryptography for
Networks, pages 45–64. Springer, 2020.

[56] Andrew Urquhart. The inefficiency of bitcoin. Economics Letters, 148:80–82,
2016.

[57] Vinod Vaikuntanathan. Computing blindfolded: New developments in fully
homomorphic encryption. In 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science, pages 5–16. IEEE, 2011.

AppendixAAppendix

A.1 BIOTC paper

The paper Efficient Novel Privacy Preserving PoS Protocol, presenting Proposal 1 of
our thesis, was accepted for publication to the Blockchain and Internet of Things
Conference (BIOTC) after a review process. The process includes quality assurance
and a peer review process by 2-3 experts of related research fields. The paper
is attached on the following page. Note that the attached paper is the submitted
version and not the final version that will be published in the International Conference
Proceedings by ACM.

87

Efficient Novel Privacy Preserving PoS Protocol
Proof-of-concept with Algorand

KAMILLA STEVENSON∗, Norwegian University of Science and Technology, Norway

ODA SKOGLUND∗, Norwegian University of Science and Technology, Norway

MAYANK RAIKWAR, Norwegian University of Science and Technology, Norway

DANILO GLIGOROSKI, Norwegian University of Science and Technology, Norway

Proof of Stake (PoS) emerged to replace and tackle the problem of vast energy consumption in Proof of Work (PoW) consensus.
PoS is based on the assumption that the majority of the stake is owned by honest participants. Consequently, instead of solving a
computationally hard puzzle to propose the next block in the blockchain, PoS selects a participant with probability proportional
to its stake in the network. In contrast to the solution to the puzzle, the proof of selection in PoS has inherent privacy issues. The
identity of the selected participant is revealed to other participants to verify the proof, and the stake of the selected can be deducted
by frequency analysis. Therefore, Private Proof of Stake (PPoS) emerged to provide a valid alternative to PoW, aiming to tackle the
energy consumption in PoW while preserving the privacy of the selected participant in a consensus round. Recent PPoS protocols
by Baldimtsi et al. and Ganesh et al., rely on an anonymous broadcast channel and have a large proof size that hinders the practical
implementation of the protocols.

In this paper, we identify issues and areas of improvement within the current PPoS protocols. We built our privacy-preserving
PoS scheme upon the anonymous lottery by Baldimtsi et al. with an instantiation of Algorand as the underlying PoS protocol. We
apply fully homomorphic encryption along with zero-knowledge proof techniques to reduce the proof size and to achieve privacy
of selected participant’s stake and identity. In comparison with the original anonymous lottery scheme, our scheme achieves better
efficiency and complexity.

CCS Concepts: • Security and privacy→ Cryptography; Security protocols.

Additional Key Words and Phrases: Blockchain, Consensus, Zero-knowledge proof, Homomorphic encryption

ACM Reference Format:
Kamilla Stevenson, Oda Skoglund, Mayank Raikwar, and Danilo Gligoroski. 2021. Efficient Novel Privacy Preserving PoS Protocol
Proof-of-concept with Algorand . In BIOTC ’21: 2021 3rd Blockchain and Internet of Things Conference, July 8-10, 2021, Ho Chi Minh City,

Vietnam. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Over the past decade, the growth and adoption of cryptocurrencies and, consequently, blockchain technology have been
expeditious. From a nonexisting one in 2008, the cryptocurrency market nowadays consists of 5424 cryptocurrencies that
all together built a financial market worth around $1.71 trillion (as of 26 May 2021) [8]. Most of these cryptocurrencies
use PoW as their consensus mechanism, resulting in huge energy wastage [15]. Therefore, as a solution to the energy
wastage issue of PoW, PoS was introduced informally in an online Bitcoin forum in 2011 [1]. Since the informal
introduction of PoS, there has been a rapid development in new PoS protocol proposals in the subsequent years [11, 14].
PoS implements a selection (lottery) based on the stake, i.e., the proportion of stake a participant holds, to determine
who can extend the blockchain. Furthermore, PoS based blockchain protocol, Ouroboros [12] and cryptocurrency

∗These authors contributed equally to this research

1

BIOTC ’21, July 8-10, 2021, Ho Chi Minh City, Vietnam Kamilla Stevenson, Oda Skoglund, Mayank Raikwar, and Danilo Gligoroski

Algorand [10] have emerged as the prominent PoS based consensus. PoS mechanism can be of two types a) slot-based,
b) committee-based. In a slot-based mechanism (Ouroboros Praos), winning the lottery means being able to create a
new block for a slot (consensus round). However, in contrast, winning the lottery in a committee-based mechanism
(Algorand) can encompass different roles as e.g. proposing a new block or voting on a proposed block.

Figure 1. A Simplified Illustration of Selection in PoS

Figure 1 depicts the PoS selection process. A lottery is used to illustrate the selection where the stakeholders win with
a probability proportional to their stake. Alice wins and thus, she gets to decide the next block added to the blockchain.
The selection process illustrated in the Figure 1 must be fair, the participants in the network must be able to evaluate
whether they have been chosen as a proposer (who proposes a new block) or a validator (who validates the new block),
and all participants must then be able to confirm the validity of the validated/proposed block after being published.
To assess the validity of the proposed block or a message, the identity of the selected participant (lottery winner in
Figure 1), must be revealed to all participants, as this is a part of the proof of selection. As the identity of the selected
participant in PoS is an integral part of the proof of selection, a privacy issue arises as the proof reveals the identity. An
adversary can also deduce the stake of a participant by frequency analysis of how often a participant is selected to
extend the blockchain. Hence, preserving the privacy of participants is requisite to make PoS equally competitive to
PoW, and for its greater adoption to the cryptocurrencies and other blockchain systems while additionally impeding the
energy wastage problem of PoW. As a result, a few research studies have been carried out to design privacy-preserving
proof of stake protocols, informally known as PPoS.

Note: Throughout the paper, we use participant and stakeholder interchangeably, and the same applies for the lottery
and the selection function.

1.1 Related Work

Ganesh et al. [9] proposed Proof of Stake Protocols for Privacy-aware Blockchains. In their proposal, the privacy of the
winning participant of a lottery is achieved by utilizing a zero-knowledge proof which separates the participant’s stake
from validating the proof of selection. However, the identity of the selected participant is kept hidden by utilizing
an anonymous broadcast channel. Concurrent and independent of Ganesh et al., Thomas et al. proposed Ouroboros

Crypsinous: Privacy-Preserving Proof-of-Stake, a formal model for a Privacy-Preserving PoS distributed ledger. In simple
terms, Ouroborous Crypsinous runs variants of Ouroborous Genesis and Zerocash together, creating its own, unique
distributed ledger but it also utilizes an anonymous broadcast channel.

The reliance on an anonymous broadcast channel to hide the identity and, thereby, the stake of a participant poses
potential drawbacks, especially at the network level. This problem was first pointed out by Baldimtsi et al. [2]. Recently,

2

Efficient Novel Privacy Preserving PoS Protocol
Proof-of-concept with Algorand BIOTC ’21, July 8-10, 2021, Ho Chi Minh City, Vietnam

Kohlweiss et al. [13] renders that even ideal anonymous broadcast channels are insufficient to protect the identity of the
selected participant in previously proposed PPoS. Not only protecting the identity of participants but also implementing
and maintaining an anonymous broadcast channel is an expensive task. Consequently, the previous proposals mentioned
above failed to achieve complete privacy as they stated in their proposals.

Apart from identifying the issues in previous PPoS proposals, Baldimtsi et al. [2] proposed a new method to achieve
privacy by separating the identity and stake of the participant from validating the proof of selection. They utilized
trapdoor permutation functionality to achieve the privacy of identity. The authors presented their protocol for the
single-stake setting and gave ab introduction for the multi-stake setting. The authors proposed the implementation of an
Anonymous Selection Functionality based on the underlying selection function of the Algorand protocol. Nevertheless,
the major drawback in their protocol occurs during the event of a multi-stake setting where each participant owns
multiple stakes. In their multi-stake protocol, each selected participant has to send multiple unlinkable zero-knowledge
proofs corresponding to his/her number of winning stakes. Therefore, the total number of proofs arises concerning the
number of winning stakes a participant holds. Hence, their proposal suffers from high communication complexity and
large proof size; making it impractical to implement in a real-world multi-stake setting of Algorand.

Another recent work by Bünz et al. [6] present Zether: “a fully-decentralized payment mechanism” described as
a smart contract. An application of Zether is found to construct a private proof of stake by constructing a lottery
protocol to select a winning participant while preserving the identity and stake of the participant. Zether uses ElGamal
encryption, hence stakeholders participating in the “lottery”, encrypt a lottery ticket and their stake under their public
key using Elgamal. Further, the statements about encrypted values can be proved using their zero-knowledge proof
mechanism Σ-Bullets. However, formal analysis and investigation are needed for the applicability of Zether in PPoS.

1.2 Our Contribution

• We improve upon the scheme of Baldimtsi et al. [2] [5], and effectively remove the need for multiple unlinkable
proofs in the multi-stake setting.
• We thoroughly analyse Algorand protocol and proposed an improved scheme on Algorand with the modifications
made to the Original Algorand.
• We present a Proof-of-concept instantiation for privacy preserving Algorand and evaluate our instantiation.

2 PRELIMINARIES

2.1 Non-Interactive Zero Knowledge Proof (NIZK)

NIZK system for a relation R is a set of probabilistic polynomial time algorithms. Given a security parameter _, a
statement 𝑠𝑡𝑚𝑡 and witness𝑤 , 𝑁𝐼𝑍𝐾 is defined as follows:
𝑁𝐼𝑍𝐾 = (𝑁𝐼𝑍𝐾.𝑆𝑒𝑡𝑢𝑝, 𝑁 𝐼𝑍𝐾.𝑃𝑟𝑜𝑣𝑒, 𝑁 𝐼𝑍𝐾.𝑉𝑒𝑟𝑖 𝑓 𝑦).
• 𝑁𝐼𝑍𝐾.𝑆𝑒𝑡𝑢𝑝 (1_) → 𝑐𝑟𝑠: Produces a common reference string 𝑐𝑟𝑠 .
• 𝑁𝐼𝑍𝐾.𝑃𝑟𝑜𝑣𝑒 (𝑐𝑟𝑠, 𝑠𝑡𝑚𝑡,𝑤) → 𝜋 : Generates a proof 𝜋 .
• 𝑁𝐼𝑍𝐾.𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑐𝑟𝑠, 𝑠𝑡𝑚𝑡, 𝜋) → 0/1: Verifies the proof 𝜋 . Outputs 1 if the proof verifies, else 0.

2.2 Fully Homomorphic Encryption (FHE)

A fully homomorphic encryption scheme [18] is a tuple of probabilistic polynomial time algorithms defined as follows:
𝐹𝐻𝐸 = (𝐹𝐻𝐸.𝑆𝑒𝑡𝑢𝑝, 𝐹𝐻𝐸.𝐾𝑒𝑦𝐺𝑒𝑛, 𝐹𝐻𝐸.𝐸𝑛𝑐, 𝐹𝐻𝐸.𝐷𝑒𝑐, 𝐹𝐻𝐸.𝐸𝑣𝑎𝑙).

3

BIOTC ’21, July 8-10, 2021, Ho Chi Minh City, Vietnam Kamilla Stevenson, Oda Skoglund, Mayank Raikwar, and Danilo Gligoroski

• 𝐹𝐻𝐸.𝑆𝑒𝑡𝑢𝑝 (1_) → 𝑝𝑎𝑟𝑎𝑚𝑠: Outputs global parameters 𝑝𝑎𝑟𝑎𝑚𝑠 .
• 𝐹𝐻𝐸.𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠) → (𝑝𝑘, 𝑠𝑘): Outputs a public-private key-pair.
• 𝐹𝐻𝐸.𝐸𝑛𝑐 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝑝𝑘, `) → 𝑐: Given a message ` ∈ 𝑅M , outputs a ciphertext 𝑐 .
• 𝐹𝐻𝐸.𝐷𝑒𝑐 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝑠𝑘, 𝑐) → `∗: Given a ciphertext 𝑐 , outputs a message `∗ ∈ 𝑅M .
• 𝐹𝐻𝐸.𝐸𝑣𝑎𝑙 (𝑝𝑘, 𝑓 , 𝑐1, ..., 𝑐𝑙) → 𝑐 𝑓 : Given the inputs as public key 𝑝𝑘 , a function 𝑓 : 𝑅𝑙M → 𝑅M which is an
arithmetic circuit over 𝑅M , and a set of 𝑙 ciphertexts 𝑐1, ..., 𝑐𝑙 , outputs a ciphertext 𝑐 𝑓 .

In the above scheme, the message spaceM of the encryption schemes is a ring 𝑅M , and the functions to be evaluated
will be represented as arithmetic circuits over this ring, composed of addition and multiplication gates. We follow
BGV FHE scheme of Brakerski et al. [5]. whose security is based on the hardness of the ring-LWE (learning with
error) problem. BGV scheme invokes two evaluation functions 𝐹𝐻𝐸.𝐴𝑑𝑑 () and 𝐹𝐻𝐸.𝑀𝑢𝑙 () in place of 𝐹𝐻𝐸.𝐸𝑣𝑎𝑙 ().
We assume modifications to 𝐹𝐻𝐸.𝐸𝑣𝑎𝑙 () such that 𝐹𝐻𝐸.𝑀𝑢𝑙 () is removed and the circuit 𝑓 is composed solely of
addition gates as we are only interested in 𝐹𝐻𝐸.𝐴𝑑𝑑 (). At this point, 𝐹𝐻𝐸.𝐸𝑣𝑎𝑙 (𝐹𝐻𝐸.𝑝𝑘, 𝑓 , 𝑐1, ..., 𝑐𝑛) only encompasses
𝐹𝐻𝐸.𝐴𝑑𝑑 (𝐹𝐻𝐸.𝑝𝑘, 𝑐1, 𝑐2) which returns the homomorphically encrypted sum of 𝑐1 and 𝑐2.

As comparison-based computations can also be performed over fully homomorphic encrypted data [16], recent
works [4, 7] show a very efficient way of performing comparisons with optimal complexity. We will apply these
astonishing comparison properties over fully homomorphic data. Our work is only interested in greater-than and
equality comparison protocols over homomorphically encrypted data. Therefore, following we define these two protocols
where 𝑥 ′, 𝑦′ are fully homomorphic encryption of 𝑥,𝑦.

(1) 𝐹𝐻𝐸.𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(𝑥 ′, 𝑦′): Evaluate Greater-Than circuit 𝐺𝑇R (𝑥 ′, 𝑦′), return 1 if 𝑥 is greater than 𝑦, and 0 if not.
(2) 𝐹𝐻𝐸.𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 (𝑥 ′, 𝑦′): Evaluate Equality circuit 𝐸𝑄R (𝑥 ′, 𝑦′), return 1 if 𝑥 is equal to 𝑦, and 0 if not.

For our construction, 𝐹𝐻𝐸.𝐾𝑒𝑦𝐺𝑒𝑛() is performed using multi-party computation such that each participant has a
common shared public key. The secret key is destroyed so that no one posses it as our scheme does not use 𝐹𝐻𝐸.𝐷𝑒𝑐 ().

3 PPOS ANALYSIS

In this section, we give analyses of Algorand consensus [10] and Baldimtsi et al.’s scheme [2] of privacy in Algorand.
We enlighten the problem of multiple unlinkable proofs in Baldimtsi et al.’s scheme mentioned in 1.1. Later, we give an
overview of our improved scheme built upon Baldimtsi et al.’s scheme to make efficient private Algorand.

3.1 Algorand

In a consensus round of Algorand [10], a fraction of the participants are chosen as committee members using a
cryptographic sortition protocol. A committee member can have two roles 𝑟𝑜𝑙𝑒: a potential block leader or a verifier.
The block leaders are chosen to propose a new block in a given round. The participants in Algorand communicate
through a gossip protocol. After the proposal of a new block, a set of verifiers, chosen using sortition protocol, vote on
the proposed blocks in steps by following a byzantine consensus protocol 𝐵𝐴★. This byzantine consensus protocol 𝐵𝐴★
does not rely on a fixed number of participants. Moreover, it scales very well. For more details, refer [10].

• Sortition is performed by a participant in a private and non-interactive way using a Verifiable random function.
In sortition, a participant computes ⟨ℎ𝑎𝑠ℎ, 𝜋⟩ ← 𝑉𝑅𝐹𝑠𝑘 (𝑠𝑒𝑒𝑑 | |𝑟𝑜𝑙𝑒), where 𝑠𝑘 is participant’s secret key and 𝑠𝑒𝑒𝑑
is a public random seed. The ℎ𝑎𝑠ℎ variable determines the number of sub-users 𝑗 selected for a participant based
on the stake of the participant. For example, if a participant is chosen as a verifier and the returned 𝑗 = 2 from
the sortition, then the participant acts as two different sub-users and has two votes.

4

Efficient Novel Privacy Preserving PoS Protocol
Proof-of-concept with Algorand BIOTC ’21, July 8-10, 2021, Ho Chi Minh City, Vietnam

• To reach a consensus, each participant initializes its 𝐵𝐴★ protocol with the highest priority block they received.
In each step of 𝐵𝐴★, a group of participants (a committee of verifiers) is chosen using sortition. The committee
members gossip a message, i.e. “their vote” on a block hash (𝑣𝑎𝑙𝑢𝑒). This is repeated, new committee members
are chosen and they vote on a block until enough users in the committee reach a consensus on a block. The
committee members vote for the block hash, 𝑣𝑎𝑙𝑢𝑒 , in which they received at least some threshold of votes in the
previous step. If final consensus is reached, i.e., if some threshold of the committee members votes on the same
block hash 𝑣𝑎𝑙𝑢𝑒 , then the corresponding block is added to the blockchain.

Protocol 𝐵𝐴★ has several procedures 𝑆𝑜𝑟𝑡𝑖𝑡𝑖𝑜𝑛(),𝑉𝑒𝑟𝑖 𝑓 𝑦𝑆𝑜𝑟𝑡 (),𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑉𝑜𝑡𝑒 (), 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑠𝑔(),𝐶𝑜𝑢𝑛𝑡𝑉𝑜𝑡𝑒 () to per-
form committee member selection, selection verification, voting on a 𝑣𝑎𝑙𝑢𝑒 (block hash), processing the number of
votes for a 𝑣𝑎𝑙𝑢𝑒 , til counting all the votes, for a step in a consensus round respectively. Figure 2 depicts the general
idea of Algorand consensus. The figure shows how Alice, a selected potential block leader or a verifier, gossips her
public key 𝑝𝑘 , a signed message with her proof of selection 𝜋 , and her chosen block hash 𝑣𝑎𝑙𝑢𝑒 . First, the receivers
verify Alice’s signed message and then her proof using the received 𝑝𝑘 . Following, they calculate her voting power 𝑗 ,
count 𝑗 votes for the block hash 𝑣𝑎𝑙𝑢𝑒 and compare the current total votes for 𝑣𝑎𝑙𝑢𝑒 with some threshold.

Figure 2. A Simplified Illustration of Consensus in Algorand

In each step of 𝐵𝐴★, the identity of the committee members is revealed as the public keys of the committee members
are needed to verify the proof of selection (sortition). In the consensus, weight (stake) is provided in the 𝑆𝑜𝑟𝑡𝑖𝑡𝑖𝑜𝑛() and
𝑉𝑒𝑟𝑖 𝑓 𝑦𝑆𝑜𝑟𝑡 () procedures, resulting in making the weight of the participants public. In the 𝑉𝑒𝑟𝑖 𝑓 𝑦𝑆𝑜𝑟𝑡 () procedure,
the receiving participants calculate the voting power 𝑗 of the sending participants. As 𝑗 is related to the stake of the
participants, this should not be revealed to the receiving participant to obtain the privacy of the participants’ stake.

3.2 Anonymous Lottery In the Proof-of-Stake setting

In this scheme, the authors presented a nice and flexible anonymous selection functionality to address the problem
of identity leaks during the verification of lottery winners. They showed an instantiation of this functionality on the
selection (sortition) function of Algorand. As their scheme works very well in the case of single-stake setting, it fails
badly in the multi-stake setting. Specifically, in the instantiation of the multi-stake setting of Algorand, the approach to
achieve privacy suffers from several large zero-knowledge proofs in each step of a single consensus round in Algorand.
A single participant having voting power 𝑗 from the sortition procedure has to sent 𝑗 zero-knowledge unlinkable proofs
for the same message, where multiple statements in these 𝑗 zero-knowledge proofs are common.

5

BIOTC ’21, July 8-10, 2021, Ho Chi Minh City, Vietnam Kamilla Stevenson, Oda Skoglund, Mayank Raikwar, and Danilo Gligoroski

The following Figure 3 shows how Alice, a selected potential block leader or verifier, gossips her zero-knowledge
proof of selection, 𝜋 , together with a message,𝑚𝑠𝑔, containing her chosen block hash, 𝑣𝑎𝑙𝑢𝑒. First, the receivers verify
Alice’s zero-knowledge proof of selection, 𝜋 . Following, they count 1 vote for the block hash 𝑣𝑎𝑙𝑢𝑒 and compare the
current total votes for 𝑣𝑎𝑙𝑢𝑒 with some threshold. This repeats 𝑗 times, for each of Alice’s 𝑗 gossiped messages.

Figure 3. A Simplified Illustration of Baldimtsi et al.’s scheme with Algorand in Multi-stake setting

Assuming a single round 𝑟 of Algorand consensus consisting of 𝑠 steps, if in each step on average 𝑛 committee
members out of 𝑃 participants send 𝑙 expected number of zero-knowledge proofs (from their voting power). Then the
total complexity for a single round 𝑟 of Algorand would be𝑂 (𝑠𝑛𝑙), which can be huge given the number of participants
𝑃 and their voting power. Henceforth, we conclude that the scheme suffers major performance issues in the multi-stake
setting of Algorand. To address this issue, there should be a mechanism to send a single proof for each participant
without revealing his stake and voting power, which we construct in the following section.

4 OUR SCHEME

4.1 Overview of our scheme

To remove the need for multiple unlinkable proofs in the multi-stake setting of Baldimtsi et al. proposal of Algorand
instantiation, we apply homomorphic encryption to encrypt the voting power, 𝑗 , such that it can be associated with a
single message,𝑚𝑠𝑔, and proof, 𝜋 , providing both privacy and accountability. While the former is provided simply by
the fact that the 𝑗 is encrypted, the latter is provided through a property of homomorphic encryption, namely that it
is possible to perform basic arithmetic operations on its ciphertexts. Our proposal makes use of BGV homomorphic
encryption scheme and two homomorphic comparison tests described in section 2. Hence with the applied changes
to Baldimtsi et al. scheme and further modification in the procedures of Algorand, it is possible to 1) send the total
voting power along with a single proof, and 2) keep count of votes without revealing the unencrypted voting power.
Additionally, through the use of a homomorphic greater-than comparison, participants can tell when a threshold of
votes is reached, and henceforth, reach the consensus.

The following Figure 4 depicts how Alice, a selected potential block leader or verifier, gossips her encrypted voting
power, 𝑗 ′, her zero-knowledge proof of selection, 𝜋 , and a message, 𝑚𝑠𝑔, containing her chosen block hash, 𝑏𝑙𝑜𝑐𝑘 .
First, the receivers verify Alice’s zero-knowledge proof. Following, they count 𝑗 votes for the block hash 𝑏𝑙𝑜𝑐𝑘 using
homomorphic addition and compare the current encrypted total votes for𝑏𝑙𝑜𝑐𝑘 with some threshold using homomorphic
greater-than comparison. Note:We named block hash 𝑣𝑎𝑙𝑢𝑒 of Algorand to 𝑏𝑙𝑜𝑐𝑘 in our scheme and use it as further.

6

Efficient Novel Privacy Preserving PoS Protocol
Proof-of-concept with Algorand BIOTC ’21, July 8-10, 2021, Ho Chi Minh City, Vietnam

Figure 4. A Simplified Illustration of our scheme with Algorand in Multi-stake setting

4.2 Modifications to Baldimtsi et al.’s Protocols

Baldimtsi et al.’s proposed Anonymized Selection Protocol, Π𝐸𝑙𝑖𝑔𝑖𝑏𝑙𝑒
𝐴𝑛𝑜𝑛−𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 , for the single-stake setting. The overall

protocol consists of four protocols 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(), 𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘 (), 𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑟𝑜𝑜 𝑓 (), and 𝑉𝑒𝑟𝑖 𝑓 𝑦 (). This overall
protocol shows the order inwhich a participant, 𝑃𝑖 , calls to these protocols. First, it calls the 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛() protocol, seen
on page 12 [2], to generate the public keys, 𝑝𝑘𝑖 , and private keys, 𝑠𝑘𝑖 , for each participant, 𝑃𝑖 . Next, 𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘 ()
is called to determine whether or not 𝑃𝑖 is eligible to “speak” for a tag (𝑟𝑜𝑢𝑛𝑑, 𝑠𝑡𝑒𝑝, 𝑠𝑒𝑒𝑑), 𝑡𝑎𝑔 . i.e., to determine if 𝑃𝑖 is
selected to vote on or to propose a block. If eligible, 𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑟𝑜𝑜 𝑓 () is called to generate a zero-knowledge proof of
selection 𝜋 on a message (that 𝑃𝑖 wants to send),𝑚𝑠𝑔, and the 𝑡𝑎𝑔. The proof 𝜋 ,𝑚𝑠𝑔, and 𝑡𝑎𝑔 are compiled into a single
message and gossiped to the network. Finally,𝑉𝑒𝑟𝑖 𝑓 𝑦 () is called for any message received to confirm in zero-knowledge
that the sender of the message is eligible to speak for 𝑡𝑎𝑔. Note that the underlying PoS protocol is responsible for
functionalities such as gossiping and counting of votes.

In this anonymous selection, each participant 𝑃𝑖 , has trapdoor permutation keypair (𝑇𝑅𝑃.𝑝𝑘𝑖,𝑇𝑅𝑃 .𝑠𝑘𝑖) for a trapdoor
permutation 𝑓 and a secret key 𝑃𝑅𝐹 .𝑠𝑘𝑖 for a pseudorandom function 𝐹 . Each participant 𝑃𝑖 computes a vector
®𝑉𝑡𝑎𝑔 = (®𝑉𝑡𝑎𝑔 [1], ®𝑉𝑡𝑎𝑔 [2], . . . , ®𝑉𝑡𝑎𝑔 [𝑛]) consisting the public value ®𝑉𝑡𝑎𝑔 [𝑖] of 𝑃𝑖 . This vector is served as trapdoor
permutation. A Merkle tree 𝑀𝑇𝑟𝑒𝑒 (®𝑉𝑡𝑎𝑔) stores ®𝑉𝑡𝑎𝑔 with root 𝑟𝑡 ®𝑉𝑡𝑎𝑔 . The main idea is that for each key, 𝑃𝑖 have

in 𝑀𝑇𝑟𝑒𝑒 (𝑝𝑘), there exist a corresponding ®𝑉𝑡𝑎𝑔 [𝑖] in the same position in 𝑀𝑇𝑟𝑒𝑒 (®𝑉𝑡𝑎𝑔). Furthermore, to check for
the eligibility, a participant 𝑃𝑖 computes 𝑣𝑖 = 𝑓 −1

𝑇𝑅𝑃.𝑠𝑘𝑖
(®𝑉𝑡𝑎𝑔 [𝑖]). Further, 𝑣𝑖 is used to check for the eligibility using

𝐸𝑙𝑖𝑔𝑖𝑏𝑙𝑒 (𝑣𝑖 , 𝑠𝑡𝑎𝑘𝑒𝑖 , 𝑡𝑎𝑔) that returns “ 𝑗𝑖” (voting power). To prove the eligibility without disclosing the public identity
(public key), 𝑃𝑖 computes 𝑁𝐼𝑍𝐾 argument which proves that 𝑃𝑖 knows a pre-image of one of the ®𝑉𝑡𝑎𝑔 [𝑖] in the vector
®𝑉𝑡𝑎𝑔 . To create a proof about its eligibility for a tag 𝑡𝑎𝑔, a participant 𝑃𝑖 computes a commitment to its winning ticket 𝑣𝑖
as 𝐶𝑣𝑖 = 𝐹 (𝑃𝑅𝐹 .𝑠𝑘𝑖, 𝑣𝑖 | |𝑡𝑎𝑔) that hides the value 𝑣𝑖 . We refer our readers to [2] for full details of the scheme.

Following we present modified𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑟𝑜𝑜 𝑓 () for multi-stake setting where only one proof per 𝑗𝑖 is needed for each
prover, not one proof per 𝑖𝑛𝑑𝑒𝑥 ∈ [1, 𝑗𝑖] for the same message𝑚𝑠𝑔𝑖 , participant 𝑃𝑖 wants to send about its selection in
original Baldimtsi et al. scheme [2]. Note:𝑚𝑠𝑔𝑖 contains homomorphically encrypted voting power 𝑗 ′𝑖 .

We construct a modified zero-knowledge proof 𝜋𝑁𝐼𝑍𝐾 for the original proof of [2] (Section 7.2). Line 7, colored
blue in the modified statements below, is a new statement added to account for a dishonest selected participant, an
adversary, changing 𝑗 ′ before gossiping. The integrity of 𝑗 from the witness,𝑤 , is preserved because of the check on

7

BIOTC ’21, July 8-10, 2021, Ho Chi Minh City, Vietnam Kamilla Stevenson, Oda Skoglund, Mayank Raikwar, and Danilo Gligoroski

line 6 below, as with Baldimtsi et al.’s original proposal. Thus, 𝑗 is encrypted and compared with 𝑗 ′, retrieved from the
received message𝑚𝑠𝑔𝑖 (as𝑚𝑠𝑔𝑖 [2]). The comparison is made using 𝐹𝐻𝐸.𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 () to confirm that 𝑗 ′ was unaltered
before gossiping. Also, note that even though lines 8 and 9 looks unaltered, the signature provides integrity of the
encrypted voting power, 𝑗 ′, during gossip as this is part of the message,𝑚𝑠𝑔, included in the signature.

Protocol CreateProof(𝑚𝑠𝑔𝑖 , 𝑡𝑎𝑔, 𝑣𝑖 , ®𝑉𝑡𝑎𝑔, 𝑗𝑖)
1: Compute𝐶𝑣𝑖 = 𝐹 (𝑃𝑅𝐹 .𝑠𝑘𝑖 , 𝑣𝑖 | |𝑡𝑎𝑔)
2: Let 𝑟𝑡 ®𝑉𝑡𝑎𝑔 be the root of𝑀𝑇𝑟𝑒𝑒 (®𝑉𝑡𝑎𝑔)
3: Let 𝑝𝑎𝑡ℎ ®𝑉𝑡𝑎𝑔 [𝑖] be the path to ®𝑉𝑡𝑎𝑔 [𝑖] in𝑀𝑇𝑟𝑒𝑒 (®𝑉𝑡𝑎𝑔)
4: Let 𝑟𝑡𝑝𝑘 be the root of𝑀𝑇𝑟𝑒𝑒 (𝑝𝑘)
5: Let 𝑝𝑎𝑡ℎ𝑝𝑘𝑖 be the path to 𝑝𝑘𝑖 in𝑀𝑇𝑟𝑒𝑒 (𝑝𝑘)
6: Let 𝑟𝑡𝑐𝑚 be the root of𝑀𝑇𝑟𝑒𝑒 (𝑐𝑚)
7: Let 𝑝𝑎𝑡ℎ𝑐𝑚 be the path to 𝑐𝑚𝑖 in𝑀𝑇𝑟𝑒𝑒 (𝑐𝑚)
8: Compute 𝜎𝑖 = 𝑆𝐼𝐺.𝑆𝑖𝑔𝑛 (𝑆𝐼𝐺.𝑠𝑘𝑖 ,𝑚𝑠𝑔𝑖 | |𝑡𝑎𝑔)
9: Let 𝑥 = (𝑟𝑡 ®𝑉𝑡𝑎𝑔 , 𝑟𝑡𝑝𝑘 , 𝑟𝑡𝑐𝑚, 𝑡𝑎𝑔,𝑚𝑠𝑔𝑖 ,𝐶

𝑣
𝑖 ,
®𝑉𝑡𝑎𝑔)

10: Let 𝑤 = (𝑖, 𝑗𝑖 , 𝑠𝑡𝑎𝑘𝑒𝑖 , 𝑃𝑅𝐹 .𝑠𝑘𝑖 , 𝑣𝑖 , 𝜎𝑖 , 𝑝𝑘𝑖 ,
𝑝𝑎𝑡ℎ𝑝𝑘𝑖 , 𝑝𝑎𝑡ℎ ®𝑉𝑡𝑎𝑔 [𝑖] , 𝑝𝑎𝑡ℎ𝑐𝑚, 𝑐𝑚𝑖)

11: Compute 𝜋𝑁𝐼𝑍𝐾 := 𝑁𝐼𝑍𝐾.𝑃𝑟𝑜𝑣𝑒 (𝑐𝑟𝑠, 𝑥, 𝑤)
12: Set 𝜋𝑖 := (𝑟𝑡 ®𝑉𝑡𝑎𝑔 , 𝑟𝑡𝑝𝑘 , 𝑟𝑡𝑐𝑚,𝐶

𝑣
𝑖 , 𝜋𝑁𝐼𝑍𝐾)

13: Output 𝜋𝑖

• 𝜋 ← 𝑁𝐼𝑍𝐾.𝑃𝑟𝑜𝑣𝑒 (𝑐𝑟𝑠, 𝑥, 𝑤)
• Statement 𝑥 = (𝑟𝑡 ®𝑉𝑡𝑎𝑔 , 𝑟𝑡𝑝𝑘 , 𝑟𝑡𝑐𝑚, 𝑡𝑎𝑔,𝑚𝑠𝑔𝑖 ,𝐶

𝑣
𝑖 ,
®𝑉𝑡𝑎𝑔)

• Witness 𝑤 = (𝑖, 𝑗𝑖 , 𝑠𝑡𝑎𝑘𝑒𝑖 , 𝑃𝑅𝐹𝑠𝑘𝑖 , 𝑣𝑖 , 𝜎, 𝑠𝑝𝑟 𝑓 , 𝑝𝑘𝑖 , 𝑝𝑎𝑡ℎ𝑝𝑘 ,
𝑝𝑎𝑡ℎ ®𝑉𝑡𝑎𝑔 , 𝑝𝑎𝑡ℎ𝑐𝑚, 𝑐𝑚𝑖) ,

where 𝑝𝑘𝑖 = (𝑇𝑅𝑃𝑝𝑘𝑖 , 𝑆𝐼𝐺.𝑣𝑘𝑖 ,𝐶𝑝𝑟 𝑓)
R(x,w)=1 if and only if:
(1) 𝐶𝑣𝑖 = 𝐹 (𝑃𝑅𝐹 .𝑠𝑘𝑖 , 𝑣𝑖 | |𝑡𝑎𝑔)
(2) 𝐶𝑝𝑟 𝑓𝑖 = 𝐶𝑜𝑚 (𝑃𝑅𝐹 .𝑠𝑘𝑖 ; 𝑠𝑝𝑟 𝑓)
(3) 𝑐𝑚𝑖 = 𝐶𝑜𝑚 (𝑠𝑡𝑎𝑘𝑒𝑖)
(4) 𝑉𝑖 = 𝑓𝑇𝑅𝑃.𝑝𝑘𝑖 (𝑣𝑖)
(5) 𝑉𝑖 = ®𝑉𝑡𝑎𝑔 [𝑖]
(6) 𝐸𝑙𝑖𝑔𝑖𝑏𝑙𝑒 (𝑣𝑖 , 𝑠𝑡𝑎𝑘𝑒𝑖 , 𝑡𝑎𝑔) = 𝑗𝑖
(7) 𝐹𝐻𝐸.𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 (𝑚𝑠𝑔𝑖 [2], 𝐹𝐻𝐸.𝐸𝑛𝑐 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝐹𝐻𝐸.𝑝𝑘𝑎, 𝑗𝑖)) = 1
(8) 𝜎 = 𝑆𝐼𝐺.𝑆𝑖𝑔𝑛 (𝑆𝐼𝐺.𝑠𝑘𝑖 ,𝑚𝑠𝑔𝑖 | |𝑡𝑎𝑔)
(9) 𝑆𝐼𝐺.𝑉𝑒𝑟 (𝑆𝐼𝐺.𝑣𝑘𝑖 , 𝜎,𝑚𝑠𝑔𝑖 | |𝑡𝑎𝑔) = 1
(10) 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎℎ (𝑝𝑎𝑡ℎ𝑝𝑘 , 𝑟𝑡𝑝𝑘 , 𝑝𝑘𝑖) = 1
(11) 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎℎ (𝑝𝑎𝑡ℎ ®𝑉𝑡𝑎𝑔 , 𝑟𝑡 ®𝑉𝑡𝑎𝑔 , ®𝑉𝑡𝑎𝑔 [𝑖]) = 1
(12) 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎℎ (𝑝𝑎𝑡ℎ𝑐𝑚, 𝑟𝑡𝑐𝑚, 𝑐𝑚𝑖) = 1

Other participants receiving the proof 𝜋𝑖 alongwith 𝑚𝑠𝑔𝑖 (consisting of 𝑗 ′𝑖) first parse the proof 𝜋𝑖 as 𝜋𝑖 :=
(𝑟𝑡 ®𝑉𝑡𝑎𝑔 , 𝑟𝑡𝑝𝑘 , 𝑟𝑡𝑐𝑚,𝐶

𝑣
𝑖 , 𝜋𝑁𝐼𝑍𝐾). further they run the verification protocol 𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑚𝑠𝑔𝑖 , 𝑡𝑎𝑔, 𝜋𝑖) where they verify the

proof using 𝑁𝐼𝑍𝐾.𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑐𝑟𝑠, 𝑥, 𝜋𝑖) algorithm.

4.3 Modifications to Algorand

Sortition procedure of Algorand is called in 𝐸𝑙𝑖𝑔𝑖𝑏𝑙𝑒 procedure of line 6 in the above NIZK proof construction. Hence, the
𝑆𝑜𝑟𝑡𝑖𝑡𝑖𝑜𝑛 procedure should be modified to output the homomorphically encrypted voting power of the participant if it is
selected as a committee member. In contrast to the original 𝑆𝑜𝑟𝑡𝑖𝑡𝑖𝑜𝑛() procedure, a (zero-knowledge) proof of selection
is created only if a participant 𝑃𝑖 is selected, i.e., if the participant has voting power 𝑗𝑖 > 0. Notably, the modified version
performs homomorphic encryption on 𝑗𝑖 and outputs 𝑗 ′𝑖 .𝑚𝑠𝑔𝑖 is provided as input to the 𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑟𝑜𝑜 𝑓 () protocol to
construct NIZK proof as described above. Following, we describe the modified Sortition procedure of Algorand’s original
Sortition procedure [2](Figure 11). The 𝑏𝑙𝑜𝑐𝑘 represents the block hash the prover/selected wants to vote for or propose
corresponds to Algorand’s 𝑣𝑎𝑙𝑢𝑒 . The current state of the ledger is represented by context 𝑐𝑡𝑥 .

After getting selected through the 𝑆𝑜𝑟𝑡𝑖𝑡𝑖𝑜𝑛() procedure, a selected participant gossips a message through the
modified 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑉𝑜𝑡𝑒 () procedure of Algorand. In contrast to Algorand, the message, 𝑚𝑠𝑔𝑖 , is no longer signed
before gossip to preserve the voting power and not to disclose the signing key of the prover. Henceforth, the signature
is included in zero-knowledge proof (line 8 of NIZK proof) 𝜎 = 𝑆𝐼𝐺.𝑆𝑖𝑔𝑛(𝑆𝐼𝐺.𝑠𝑘𝑖 ,𝑚𝑠𝑔𝑖 | |𝑡𝑎𝑔).

Furthermore, after receiving the gossiped message𝑚 = ⟨𝑡𝑎𝑔, 𝜋𝑖 ,𝑚𝑠𝑔𝑖 ⟩, the receiving participants call 𝑉𝑒𝑟𝑖 𝑓 𝑦𝑆𝑜𝑟𝑡 ()
procedure of Algorand. In our case, this procedure can simply replaced by the 𝑉𝑒𝑟𝑖 𝑓 𝑦 () protocol where receiving
participant checks the zero-knowledge proof received in the gossip message𝑚. After checking the correctness of the
proof, the participants process each message𝑚 by executing 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑠𝑔() protocol of Algorand. Following are the
modified version of the Algorand procedures in our scheme.

8

Efficient Novel Privacy Preserving PoS Protocol
Proof-of-concept with Algorand BIOTC ’21, July 8-10, 2021, Ho Chi Minh City, Vietnam

1: procedure Sortition(𝑏𝑙𝑜𝑐𝑘, 𝑡𝑎𝑔)
2:

〈
𝑗𝑖 , 𝑣𝑖 , ®𝑉𝑡𝑎𝑔

〉
← 𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘 (𝑡𝑎𝑔)

3: 𝜋𝑖 ← 𝑛𝑢𝑙𝑙

4: 𝑗 ′𝑖 ← 0
5: if 𝑗𝑖 > 0 then
6: 𝑗 ′𝑖 = 𝐹𝐻𝐸.𝐸𝑛𝑐 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝐹𝐻𝐸.𝑝𝑘𝑎, 𝑗𝑖)
7: 𝑚𝑠𝑔𝑖 = (𝐻 (𝑐𝑡𝑥 .𝑙𝑎𝑠𝑡_𝑏𝑙𝑜𝑐𝑘), 𝑏𝑙𝑜𝑐𝑘, 𝑗 ′𝑖)
8: 𝜋𝑖 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑟𝑜𝑜 𝑓 (𝑚𝑠𝑔𝑖 , 𝑡𝑎𝑔, 𝑣𝑖 , ®𝑉𝑡𝑎𝑔, 𝑗𝑖)
9: return ⟨𝜋𝑖 ,𝑚𝑠𝑔𝑖 ⟩
10: end procedure

1: procedure CommitteeVote(𝑐𝑡𝑥, 𝑡𝑎𝑔,𝑏𝑙𝑜𝑐𝑘)
2: // check if user is in committee using Sortition
3: ⟨𝜋𝑖 ,𝑚𝑠𝑔𝑖 ⟩ ← 𝑆𝑜𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑏𝑙𝑜𝑐𝑘, 𝑡𝑎𝑔)
4: // only committee members originate a message
5: if𝑚𝑠𝑔𝑖 [2]! = 0 then
6: 𝐺𝑜𝑠𝑠𝑖𝑝 (⟨𝑡𝑎𝑔, 𝜋𝑖 ,𝑚𝑠𝑔𝑖 ⟩)
7: end procedure

Further, these receiving participants call the 𝐶𝑜𝑢𝑛𝑡𝑉𝑜𝑡𝑒𝑠 () procedure to count all the received votes for the block
hashes 𝑏𝑙𝑜𝑐𝑘 in the received messages {𝑚}. The procedure calls ProcessMsg() for each received message to get the
block hash 𝑏𝑙𝑜𝑐𝑘 and associated votes for each message. 𝐶𝑜𝑢𝑛𝑡𝑉𝑜𝑡𝑒𝑠 () procedure computes the threshold value similar
to Algorand using a fraction of the expected committee size 𝑇 , and the expected number of users selected for the
committee 𝜏 in a round, and homomorphically encrypt it. Regarding the homomorphic addition, we hypothesize it is
possible to define a level A as the maximum amount of additions necessary for counting votes to achieve consensus in
our privacy-preserving Algorand. Note that in step 3 of the 𝐶𝑜𝑢𝑛𝑡𝑉𝑜𝑡𝑒𝑠 () procedure for the 𝑐𝑜𝑢𝑛𝑡𝑠 ′ data structure we
use a hash table, where the new keys will be mapped to 0 or 1 depending on the used homomorphic encryption.

1: procedure ProcessMsg(𝑐𝑡𝑥,𝑚)
2: ⟨𝑡𝑎𝑔, 𝜋𝑖 ,𝑚𝑠𝑔𝑖 ⟩ ←𝑚

3:
〈
ℎ𝑝𝑟𝑒𝑣,𝑏𝑙𝑜𝑐𝑘, 𝑗 ′𝑖

〉 ←𝑚𝑠𝑔𝑖
4: // discard messages that do not extend this chain
5: if ℎ𝑝𝑟𝑒𝑣 ≠ 𝐻 (𝑐𝑡𝑥 .𝑙𝑎𝑠𝑡_𝑏𝑙𝑜𝑐𝑘) then return ⟨0,⊥,⊥⟩
6: if 𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑡𝑎𝑔,𝑚𝑠𝑔𝑖 , 𝜋𝑖) then 𝑣𝑜𝑡𝑒𝑠′ ← 𝑗 ′𝑖
7: else 𝑣𝑜𝑡𝑒𝑠′ ← 0
8: return ⟨𝑣𝑜𝑡𝑒𝑠′, 𝑏𝑙𝑜𝑐𝑘 ⟩
9: end procedure

1: procedure CountVotes(𝑐𝑡𝑥, 𝑡𝑎𝑔,𝑇 , 𝜏, _)
2: 𝑠𝑡𝑎𝑟𝑡 ← 𝑇𝑖𝑚𝑒 ()
3: 𝑐𝑜𝑢𝑛𝑡𝑠′ ← {}
4: 𝑚𝑠𝑔𝑠 ← 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑠𝑔𝑠 [𝑡𝑎𝑔] .𝑖𝑡𝑒𝑟𝑎𝑡𝑜𝑟 ()
5: while TRUE do
6: 𝑚 ←𝑚𝑠𝑔𝑠.𝑛𝑒𝑥𝑡 ()
7: if𝑚 =⊥ then
8: if 𝑇𝑖𝑚𝑒 () > 𝑠𝑡𝑎𝑟𝑡 + _ then return𝑇 𝐼𝑀𝐸𝑂𝑈𝑇
9: else
10: ⟨𝑣𝑜𝑡𝑒𝑠′, 𝑏𝑙𝑜𝑐𝑘 ⟩ ← 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑠𝑔 (𝑐𝑡𝑥,𝑚)
11: if 𝑣𝑜𝑡𝑒𝑠′ = 0 then continue;
12: 𝑐𝑜𝑢𝑛𝑡𝑠′ [𝑏𝑙𝑜𝑐𝑘] =

𝐹𝐻𝐸.𝐴𝐷𝐷 (𝐹𝐻𝐸.𝑝𝑘𝑎, 𝑓 , 𝑐𝑜𝑢𝑛𝑡𝑠′ [𝑏𝑙𝑜𝑐𝑘], 𝑣𝑜𝑡𝑒𝑠′)
13: 𝑥 ′ ← 𝑐𝑜𝑢𝑛𝑡𝑠′ [𝑏𝑙𝑜𝑐𝑘]
14: 𝑦′ ← 𝐹𝐻𝐸.𝐸𝑛𝑐 (𝑝𝑎𝑟𝑎𝑚𝑠,𝑇 · 𝜏 + 1)
15: 𝑏 ← 𝐹𝐻𝐸.𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛 (𝑥 ′, 𝑦′)
16: if 𝑏 return 𝑏𝑙𝑜𝑐𝑘
17: end procedure

The complete details of the modified procedures and the protocols of Algorand and Baldimtsi et al.’s scheme will be
provided along with the security proofs in the full version of the paper.

4.4 Evaluation of Our Scheme

Our scheme aims to achieve full privacy concerning stake and identity. We refer to Baldimtsi et al.’s scheme [2]
for the privacy and security of identity and stake achieved with the functionality adapted from their paper. The
privacy of the voting power and thus, also stake, depends on the security properties provided by the underlying
homomorphic encryption. Ideally, an adversary should learn nothing about the plaintext (voting power 𝑗) from the
ciphertext (encrypted voting power 𝑗 ′). As our scheme makes use of the BGV homomorphic encryption, therefore, the
privacy of voting power in our scheme directly follows from the security properties of the BGV scheme.

9

BIOTC ’21, July 8-10, 2021, Ho Chi Minh City, Vietnam Kamilla Stevenson, Oda Skoglund, Mayank Raikwar, and Danilo Gligoroski

5 CONCLUSION

In this paper, we thoroughly analyze the privacy implications in Algorand and performance issues of the multi-stake
setting of Baldimtsi et al.’s scheme [2]. We remove the need for multiple unlinkable proofs in the multi-stake setting
of [2] through the use of BGV homomorphic encryption scheme with the secure comparison properties. Our scheme
performs better and is more efficient than [2].

5.1 Future Directions of work

In our attempt to achieve privacy in PoS and improve upon the existing schemes, we found potential improvement
in PPoS. An interesting direction of work can be to provide a flexible trade-off between privacy and performance,i.e.,
a scheme in which each participant decides to what extent they want to keep their stake private. The utilization
of recursive zk-SNARK [3] can improve the communication cost and verification time when relaying messages in
Algorand’s gossip protocol with Baldimtsi et al.’s scheme [2]. Recent advances in aggregatable subvector commitment
schemes [17] can be applied to aggregate the commitments and to make proof-size shorter.

REFERENCES
[1] 2011. Proof of stake instead of proof of work. Bitcoin Forum. https://bitcointalk.org/index.php?topic=27787.0
[2] Foteini Baldimtsi, Varun Madathil, Alessandra Scafuro, and Linfeng Zhou. 2020. Anonymous Lottery in the Proof-of-Stake Setting. IACR Cryptol.

ePrint Arch. 2020 (2020), 533.
[3] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recursive composition and bootstrapping for SNARKs and proof-carrying

data. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing. 111–120.
[4] Florian Bourse, Olivier Sanders, and Jacques Traoré. 2020. Improved Secure Integer Comparison via Homomorphic Encryption. In Topics in

Cryptology – CT-RSA 2020, Stanislaw Jarecki (Ed.). Springer International Publishing, Cham, 391–416.
[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled) fully homomorphic encryption without bootstrapping. ACM Transactions

on Computation Theory (TOCT) 6, 3 (2014), 1–36.
[6] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2020. Zether: Towards privacy in a smart contract world. In International

Conference on Financial Cryptography and Data Security. Springer, 423–443.
[7] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. 2020. Efficient homomorphic comparison methods with optimal complexity. In International

Conference on the Theory and Application of Cryptology and Information Security. Springer, 221–256.
[8] CoinMarketCap. 2021. Total Market Capitalization. https://coinmarketcap.com. [Online; accessed 26-May-2021].
[9] Chaya Ganesh, Claudio Orlandi, and Daniel Tschudi. 2019. Proof-of-stake protocols for privacy-aware blockchains. In Annual International Conference

on the Theory and Applications of Cryptographic Techniques. Springer, 690–719.
[10] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies.

In Proceedings of the 26th Symposium on Operating Systems Principles. 51–68.
[11] Felix Irresberger, Kose John, and Fahad Saleh. 2020. The Public Blockchain Ecosystem: An Empirical Analysis. Available at SSRN (2020).
[12] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017. Ouroboros: A provably secure proof-of-stake blockchain protocol.

In Annual International Cryptology Conference. Springer, 357–388.
[13] Markulf Kohlweiss, Varun Madathil, Kartik Nayak, and Alessandra Scafuro. 2021. On the Anonymity Guarantees of Anonymous Proof-of-Stake

Protocols. (2021).
[14] Cong T Nguyen, Dinh Thai Hoang, Diep N Nguyen, Dusit Niyato, Huynh Tuong Nguyen, and Eryk Dutkiewicz. 2019. Proof-of-stake consensus

mechanisms for future blockchain networks: fundamentals, applications and opportunities. IEEE Access 7 (2019), 85727–85745.
[15] Mayank Raikwar, Danilo Gligoroski, and Katina Kralevska. 2019. SoK of used cryptography in blockchain. IEEE Access 7 (2019), 148550–148575.
[16] Mihai Togan and Cezar Pleşca. 2014. Comparison-based computations over fully homomorphic encrypted data. In 2014 10th international conference

on communications (COMM). IEEE, 1–6.
[17] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and Dmitry Khovratovich. 2020. Aggregatable subvector commitments

for stateless cryptocurrencies. In International Conference on Security and Cryptography for Networks. Springer, 45–64.
[18] Vinod Vaikuntanathan. 2011. Computing blindfolded: New developments in fully homomorphic encryption. In 2011 IEEE 52nd Annual Symposium

on Foundations of Computer Science. IEEE, 5–16.

10

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Kam
illa Stevenson and O

da Skoglund
D

esign of N
ovel Energy-Efficient and Privacy-Preserving Blockchain Consensus M

echanism
s

Kamilla Stevenson and Oda Skoglund

Design of Novel Energy-Efficient and
Privacy-Preserving Blockchain
Consensus Mechanisms

Master’s thesis in Communication Technology and Digital Security
Supervisor: Danilo Gligoroski
Co-supervisor: Mayank Raikwar

June 2021

M
as

te
r’s

 th
es

is

	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	List of Acronyms
	Introduction
	Background
	Blockchain
	Proof of Work
	Proof of Stake

	Contributions
	Methodology
	Literature Study
	Mathematical Background
	Analysis of PPoSs
	Analysis of Algorand
	Proposals for improvement
	Evaluation of the improved PPoS proposals

	State of the Art
	Proof-of-Stake Protocols for Privacy-Aware Blockchains
	Anonymous Lottery In the Proof-of-Stake setting
	Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake
	Zether: Towards Privacy in a Smart Contract World

	Mathematical background
	Homomorphic Encryption
	Definitions
	The BGV FHE scheme
	Homomorphic Comparison Protocols

	SNARKs

	Analysis
	The Problem of Privacy in PoS
	Analysis of Formal Studies into PPoS
	Proof-of-Stake Protocols for Privacy-Aware Blockchains
	Anonymous Lottery In the Proof-of-Stake Setting
	Ouroboros Crypsinous

	Areas Open to Improvement Within the PPoS proposals
	Algorand
	Description
	Analysis

	Proposals for Improvement
	Proposal 1
	Scheme
	Ideal Functionalities
	Modifications to the Protocols of Baldimtsi et al.
	Modifications to the Procedures of Algorand
	Outline

	Proposal 2
	Scheme
	Modifications to the Protocols of Baldimtsi et al.
	Modifications to the Procedures of Algorand
	Outline

	Evaluation of the Proposals
	Proposal 1: Performance Estimate
	Proposal 1: Privacy and Security
	Proposal 2: Performance Estimate
	Proposal 2: Privacy and Security

	Conclusion
	Summary of Results
	Discussion
	Future work
	Proposal 1
	Proposal 2
	Further Ideas for Improvement

	References
	Appendix
	BIOTC paper

