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Figure 1: NURBS allow for a convenient geometric mapping from a simple
parametric domain (ξ, η, ζ) to a complex physical domain (x, y, z).

1 A brief history of Isogeometry

Computer Aided Design (CAD) and Finite Element Analysis (FEA) are
essential technologies in modern product development. However, the inter-
operability of these technologies is severely disturbed by inconsistencies in
the mathematical approaches used. The main reason for inconsistencies is
that the technologies evolved in different communities with the focus on im-
proving disjoint stages in product development processes, and taking little
heed on relations to other stages. Efficient feedback from analysis to CAD
and refinement of the analysis model are essential for computer-based design
optimization and virtual product development. The current lack of efficient
interoperability of CAD and FEA makes refinement and adaptation of the
analysis model cumbersome, slow and expensive.

The new paradigm of Isogeometric Analysis, which was introduced by
Hughes et al. [33], demonstrates that much is to be gained with respect to
efficiency, quality and accuracy in analysis by replacing traditional Finite
Elements by volumetric NURBS elements.

The term isoparametric methods has already been established and was
based on the idea that one should use the same basis for the unknown field
variables and the geometry. What was different when Hughes introduced
the word isogeometry was that it would be the geometry that would dictate
what basis should be used. This was in contrast to previous paradigms where
one had a convenient discretization of the field variables, and tried creating
an appropriate geometry in that same basis. For isogeometry this is turned
around and we would have a convenient geometry discretization and from
this create the basis for the field variables.

The idea was quickly embraced and got widespread attention. Isogeom-
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etry has been applied to a variety of problems of engineering interests, such
as flow simulations [1, 12, 13, 19, 22, 27, 25, 26], electromagnetic problems
[20, 21, 39], structural engineering [2, 38, 28] and biomechanics [55, 11].

It was quickly discovered that the smooth spline functions offered far
more than simply convenience. They proved more accurate per degree of
freedom, allowed for the discretization of high-order differential equations
[15, 14] in addition to providing stable solutions, even for high order [10].

While initially isogeometry was considered equivalent to using non-uniform
rational B-splines (NURBS) as basis in the finite element method, later years
have seen the term grow beyond this. It has been applied to collocation
methods [3, 44], multigrid methods [30] and finite volume methods [32].

However for all its strengths and advantages, NURBS have some flaws
that make them not flexible enough as a common basis for future CAD and
FEA. They are defined by patchwise tensor product. This means that they
are in general not watertight, lack local refinement and do not accommodate
extraordinary points.

2 A brief history of local refinement

T-splines are a recently developed generalization of NURBS [48, 47], they
were introduced to cure the above geometric limitations and to generate local
refinements in the mesh. It is interesting to note that the work on T-splines
was initially a CAD endeavor and these introductory papers were published
before isogeometry had become a word in 2005 [33]. As a CAD technology,
T-splines had a few shortcomings which made them inconvenient for FEA,
such as linear dependence [18] and refinement propagation [24]. In light of
the strict requirements of isogeometric analysis, a new sub-class of T-splines:
analysis-suitable (AS) T-splines [46, 37] emerged, which is a significant step
towards more versatility.

T-splines were however not the first technology to attempt local refine-
ment for smooth spline functions. In 1988 Forsey and Bartels introduced
the Hierarchically refined B-splines [29], which have seen a rejuvenation in
later years with applications in isogeometry [52, 51, 16, 42, 43]. Giannelli
et al. [31, 35] published later a generalization on these, called Truncated
Hierarchical B-splines which recaptured several properties of NURBS that
Hierarchical B-splines had lost such as partition of unity and strong stability.

We believe that the recently proposed locally refined LR B-splines by
Dokken et al. [23] may have the potential to form an alternative framework
for future interoperable CAD and FEA systems. The new approach directly
operates on the spline spaces, and in this way a broad spectrum of piecewise
spline functions may be obtained. LR B-splines consist of smooth, piecewise
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polynomial basis functions that constitute a partition of unity. Among other
advanced features they may facilitate local h-refinement. Since this class
of splines is rich and versatile, it may break new ground and seems to be
attractive as foundation for integrating CAD and FEA on one computational
platform.

3 A brief history of error estimation

Since 1970s several strategies have been developed to estimate the discretiza-
tion error of Finite Element (FE) solution. A first posteriori error estimates
were introduced by Babuska and Rheinboldt in 1978, see [5, 4]. Since then
many different estimation procedures have been introduced. The existing
techniques to obtain an energy estimates may be classified into two main
categories:

• Residual based estimates : The approximate FE solution does not sat-
isfy the governing partial differential equation. This lack of fulfillment
is called the residual and the error can be estimated by solving local
problems where the load functions are given by the local residuals.

• Recovery-based estimates: These estimates employ a projection tech-
nique in order to recover a post-processed quantity (usually the stresses)
from the FE solution. The error is then estimated by taking the dif-
ference between the recovered solution and the FE solution.

The use of a posteriori error estimator in isogeometric analysis is still in
its infancy. To the best of our knowledge only few work has been done in
this direction, see [17, 24, 34, 36, 45, 49, 51, 52, 54, 53]. The authors in [24]
used the idea of hierarchical bases with bubble functions approach of Bank
and Smith [9] to design a posteriori error estimator for T-splines, which
was also used in [17, 50]. But their performance was less satisfactory due
to the needed saturation assumption as noted on page 41 of [34]. Another
simple idea of explicit residual based error estimator has been explored in
[34, 49, 52, 54, 53]. They require the computation of constants in Clement-
type interpolation operators. Such constant are mesh (element) dependent
and often incomputable for general element shape. A global constant can
overestimates the local constants, and thus the exact error. Recently, a
functional-type a posteriori error estimate for isogeometric discretization is
presented in [36]. These type of error estimate, which was introduced in [40,
41] on functional grounds (including integral identity and functional analysis
arguments) are applicable for any conforming and non-conforming discretiza-
tions and known to provide a guaranteed and computable error bounds. But



6 Contents

the hindrance in their popularity is due to high cost of computations which
are based on solving a global minimization problem (Majorant minimization
problem) in H(div) spaces. In [36], authors made an attempt to to reduce
the cost of computations for tensorial spline spaces but the same idea of
cost reduction need further study in adaptive isogeometric analysis. In this
article we explore another approach to design a posteriori error estimate in
setting of Zienkiewicz-Zhu [56] where the improved gradient obtained from
recovery procedure is used instead of exact gradient of solution. The recov-
ery based estimators are very popular in engineering community because of
their simple implementation and as they provide good effectivity indices. In
an extensive study on the quality of different a posteriori error estimates
belonging to first two categories above (residual based vs. recovery based),
Babuska and co-workers in [7, 6, 8]; conclude that the Superconvergent Patch
Recovery (SPR) technique developed by Zienkiewicz and Zhu [57, 58] is the
most robust estimator for the class of smooth solutions approximated on
patch-wise uniform grids of linear or quadratic elements. In this thesis, we
develop recovery based error estimates for isogeometric discretization and
verify their effectiveness for quadratic B-splines and quadratic LR B-splines
elements in adaptive isogeometric analysis.

4 Outline of the Thesis

The thesis is divided into 5 parts: one introduction and 4 individual pa-
pers, all submitted for publication, or accepted in the journal of Computer
Methods in Applied Mechanics and Engineering. In the introduction we will
briefly introduce the core concepts of B-splines and locally refined B-splines.
The LR B-spline software used in the preparation of this work have been
made publicly available as open source. This is discussed in the appendix.
The introduction is meant to give a very short summary, while the papers
contain the necessary details.

• The first paper investigates the use of LR B-splines in finite element
method.

• The second paper highlights similarities and differences with a similar
technology: the hierarchical B-splines.

• The third paper develops an a posteriori error estimator for isogeo-
metric analysis.

• The fourth paper discusses the use of local refinement and compatible
discretization for Stokes problems.
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5 B-splines

Consider a knot vector of non-decreasing knots {ξi}n+p+1
i=1 . This partitions

the parametric domain into elements with a given smoothness across each
knot. We can construct a basis on the domain [ξp+1, ξn+1] by piecewise
smooth polynomials using the Cox-de Boor recursion formula (1)

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni−1,p−1(ξ) (1)

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 else

where, by slight abuse of notation, we define that 0
0 := 0 and p is the

polynomial degree of the basis. It is customary (but not required) that the
knot vector is open, that is the first p + 1 entires are equal as well as the
last p + 1 entires are equal. In Figure 2 we show an example of a basis
constructed on a uniform open knot vector. The knot vector holds all the
information of the basis constructed. In particular, the following holds true

• the B-splines Ni are polynomial and C∞ in between the knots
• the B-splines are Cp−m at the knots, where m is the knot multiplicity
• the B-splines are non-negative everywhere
• they satisfy the partition of unity, i.e.

∑
Ni = 1

• each B-spline is depends on exactly p+ 2 knots.

It is the last point, which will allow us to define a local knot vector cor-
responding to each function, and this observation will be utilized below to
introduce LR B-splines.

It is possible to create a parametric curve using all B-splines created by

a single knot vector Ξ by multiplicating with control points ci =

[
xi
yi

]

x(ξ) =

n∑
i=1

Ni(ξ)ci

Moving to surfaces we define the set of bivariate basis functions as the
tensor product of two one-dimensional knot vectors Ξ and Ψ, and a surface
can then be represented as

x(ξ, η) =

m∑
j=1

n∑
i=1

Bij(ξ, η)cij

=

m∑
j=1

n∑
i=1

Ni(ξ)Nj(η)cij



8 Contents

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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(b) Parametric curve (blue) given by
control points, here shown in red

Figure 2: All quadratic basis functions generated by the knot Ξ =
[0, 0, 0, 1, 2, 3, 3, 4, 4, 4]. By multiplication with a set of control points, we
are able to construct a parametric curve.

(a) B4,4(ξ, η) (b) B5,4(ξ, η) (c) B7,4(ξ, η)

Figure 3: Three bivariate functions. By combining all functions cor-
responding to the knot vector Ξ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4] and Ψ =
[0, 0, 0, 1, 3, 4, 5, 5, 5] we are creating a tensor product basis

where Ni(ξ) is created by a knot vector Ξ and Nj(η) is created by a knot
vector Ψ. By combining all Ni with all Nj we are effectively creating a tensor
product. While traditionally the word "B-splines" refers to the collective set
of all functions {Bij}, or the mapped geometry x(ξ, η), we will here also use
it to address a single function.

To construct rational B-splines (NURBS), we introduce a rational weight
w corresponding to each B-spline and let the rational functions be defined
as R(ξ, η) such that

Rij(ξ, η) =
Bij(ξ, η)∑

î

∑
ĵ Bî,ĵ(ξ, η)wîĵ

wij

Note that it is always possible to create a rational representation R of
any B-spline discretization B by adding rational weights. This work will
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focus on the creation of B based on local refinement and the extension to
rational functions is considered straightforward.

6 Finite Element Method

Assume as a model problem that we are going to solve the Poisson equation

∇2u = f, in Ω

u = 0, on ∂Ω

by multiplying with a test function v, and integrating over the domain Ω,
we arrive at the weak form: Find u ∈ X such that

a(u, v) = b(v)

a(u, v) =

∫

Ω
∇u∇v dA

b(v) =

∫

Ω
fv dA.

We then choose a finite-dimensional subspace Xh ⊂ X and reformulate this
as find uh ∈ Xh such that

a(uh, vh) = b(vh), ∀vh ∈ Xh.

It can be shown that this is equivalent to solving the linear system of equa-
tions

Au = b, where

Aij =

∫

Ω
∇Ni∇Nj dA

bi =

∫

Ω
fNi dA

and Xh = span{Ni}. The most notable thing with this framework is the
choice of space Xh. By creating this using NURBS, we are entering the realm
of isogeometry. We will, in this work, however create it as a generalization
on the NURBS, and construct Xh by using Locally Refined B-splines.

7 LR B-splines

Traditional NURBS and B-splines are as stated above constructed by tensor
products. Locally refined B-splines are a way to alleviate this restriction
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(a) Initial mesh (b) Tensor product refine-
ment

(c) Truly local refinement

Figure 4: For tensorial meshes, all lines expand the entire parametric do-
main. Locally refined B-splines allow us to terminate these mesh lines prior
to this and create a much more localized refinement

(a) Line traversing
B

(b) Line traversing
B

(c) Line not travers-
ing B

Figure 5: Traversing the support of a basis function. The refinement algo-
rithm simply checks the rectangular support of basis functions, and if these
are traversed by the straight lines through the parametric domain.

and allows for the construction of a basis on a more general mesh which
may include T-joints.

When talking about LR B-splines, we usually distinguish between the
mesh M and the set of B-splines S. The mesh is represented by the set
of all lines; vertical and horizontal. The function space S is represented
by the B-splines themselves, which are uniquely determined by their local
knot vectors of length p + 2. The refinement algorithm is the interplay in
between these two entities and is categorized by two operations: traversing
and splitting.

A line in the mesh M is said to traverse a B-spline Bi if it passes
through its support, and all of its support.

See Figure 5 for examples on traversing meshlines.
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A knot-line is said to exist in a B-spline BΞ,Ψ if its (constant) knot
value is represented in Ξ for vertical lines or Ψ for horizontal lines.

A B-spline Bi can be split at the knot ξ (or η), producing two new
B-splines B1 and B2. When inserting the two new B-splines into the
existing space S, these will be updated if they exist already, or we
create a new entry if they do not exist.

Algorithm 1 Refinement algorithm
1: Insert new line E
2: for every B-spline Bi ∈ S do
3: if E traverse Bi and E does not exist in Bi then
4: split Bi

5: end if
6: end for
7: for every newly created B-spline Bj from line 4 or 10 do
8: for every existing line E ∈ M do
9: if E traverse Bj and E does not exist in Bj then

10: split Bj

11: end if
12: end for
13: end for

Locally Refined B-splines is a constructive algorithm to locally refine
B-splines by progressively splitting single functions into smaller ones. It
consists in all its simplicity by checking if lines traverse rectangular support,
which triggers the creation of new functions.

8 Compatible discretizations and spline derivatives

LR B-splines generates a smooth basis over a given mesh. It is often in-
teresting to look at derivatives of these functions and spaces of derivatives.
This has applications in both error estimation and finite element analysis.
Once such application is for the steady stokes equation given by

−µ∇2u+∇p = f in Ω

∇ · u = 0 in Ω.
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In this equation we have that the velocity u is given by one more deriva-
tive than the pressure p. To create a compatible discretization we let p live
in the "derivative space" of u. Formally, this can be described as letting the
following De Rham complex be exact

R → X0
h

rot−−→ X1
h

div−−→ X2
h → 0 (2)

and letting the discrete solutions uh ∈ X1
h and ph ∈ X2

h.
For one-dimensional problems derivative spaces are fairly predictive. As-

sume we have a knot vector Ξ = [0, 0, 0, 0, 1, 2, 3, 3, 4, 4, 4, 4] which generates
a set of cubic basis functions. These will be C1 at ξ = 3 and C2 at all other
internal knots. Differentiating this lowers the polynomial degree by one and
the continuity by one and we are left with a quadratic basis which is C0 at
ξ = 3 and C1 at all other knots. A good guess for the knot vector would
thus be Ξ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4] and indeed it can be shown that this is
the case. By removing the first and last knot from the knot vector in an
univariate basis, we are able to create the derivative space.

For 2D this becomes slightly more involved. The same trick may however
be applied for a tensor product basis. Let a basis S = span{Bi} be spanned
by the global knot vectors Ξ and Ψ such that

Ξ = [ξ1, ξ2, ξ3, ..., ξn+p−1, ξn+p, ξn+p+1]

Ξ′ = [ ξ2, ξ3, ..., ξn+p−1, ξn+p ]

Ψ = [η1, η2, η3, ..., ηn+p−1, ηn+p, ηm+q+1]

Ψ′ = [ η2, η3, ..., ηn+p−1, ηn+p ]

and let ∂xS = span{∂Bi
∂x } and ∂yS = span{∂Bi

∂y }. It can be shown that ∂xS
is constructed by the knot vectors Ξ′ and Ψ, while ∂yS is constructed by Ξ
and Ψ′. Note that the smaller knot vectors always create a smaller derivative
space. This is however only the case for tensorial meshes.

For locally refined meshes, the derivative space might actually grow
larger than the initial space S. This might seem counterintuitive at first,
but it is linked to the fact that differentiating decreases the polynomial de-
gree which reduces the size of the space, but also reduces continuities which
increases the size of the space. Note that in the case of (2) we are not only
considering derivatives, we are moving between spaces taking the divergence
or rot.

We will in the last paper investigate this further and show that it is
possible to construct a set of basis for X0, X1 and X2 such that (2) is exact.
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9 Summary of Papers

9.1 Paper I: Isogeometric analysis using LR B-splines

This is the first paper written on the use of LR B-splines as a basis for finite
element analysis. It gives an in-depth introduction into the fundamentals
of LR B-splines, which is mostly a restatement of the paper by Dokken et
al.[23] written using simpler linguistic terms. While the refinement algo-
rithm states what to do when a new line is inserted, it does not tell you
which lines to insert. The paper proposes different refinement strategies
and investigates their performance on actual differential equations. It sum-
marizes with extensive numerical tests, showing that LR B-splines perform
optimally on problems with local features or singularities.

9.2 Paper II: On the similarities and differences between
Classical Hierarchical, Truncated Hierarchical and LR
B-splines

Since the first paper suggests that the structured mesh refinement is a strong
candidate for iterative refinement, this raises the natural question of the
difference between Hierarchical B-splines and structured mesh refinement
in LR B-splines. Indeed, they share a great deal of properties, and to the
untrained eye, they might look identical. The paper tries to create a unified
notation to highlight some of the similarities and differences which appear
in these two technologies. It concludes by observing that they both contain
different functions, and span different functions spaces on identical meshes.
The conditioning numbers of mass and stiffness matrices are shown to be up
to twice the size for Classical Hierarchical B-splines.

9.3 Paper III: Superconvergent patch recovery and a poste-
riori error estimation technique in adaptive isogeometric
analysis

In order to produce adaptive meshes in finite element analysis we are depen-
dent on an indicator to drive the refinement. For academic test problems,
we often have an exact solution, but this is not true in general. This paper
investigates a posteriori error estimators for the smooth basis produced by
LR B-splines. It is shown that there exist super-convergent points which
display higher accuracy than the global solution, and moreover that these
points are computable. Based on a patch-recovery technique this allows us
to recover a better representation of the computed derivative, which in turn
produces a very accurate error estimator.
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9.4 Paper IV: Divergence-conforming discretization for Stokes
problem on locally refined meshes using LR B-splines

This paper investigates the relation between different continuities and poly-
nomial degrees over the same locally refined mesh. It is shown that by
simply altering the polynomial degree over the same mesh, we are able to
construct a H-div compatible discretization satisfying a discrete de Rham
complex. The elegance of using the same mesh to build all the different basis
is striking and all results from the tensor product case follow directly. We
show that the solution is pointwise divergent-free, stable and shows optimal
convergence rates for problems with local features of singularities.
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Abstract

The recently proposed locally refined B-splines, denoted LR B-splines, by
Dokken et al. [6] may have the potential to be a framework for isogeomet-
ric analysis to enable future interoperable computer aided design and finite
element analysis. In this paper, we propose local refinement strategies for
adaptive isogeometric analysis using LR B-splines and investigate its perfor-
mance by doing numerical tests on well known benchmark cases. The theory
behind LR B-spline is not presented in full details, but the main conceptual
ingredients are explained and illustrated by a number of examples.

1 Introduction

1.1 Background

Computer Aided Design (CAD) and Finite Element Analysis (FEA) are
essential technologies in modern product development. However, the inter-
operability of these technologies is severely disturbed by inconsistencies in
the mathematical approaches used. The main reason for inconsistencies is
that the technologies evolved in different communities with the focus on im-
proving disjoint stages in product development processes, and taking little
heed on relations to other stages. Efficient feedback from analysis to CAD
and refinement of the analysis model are essential for computer-based design
optimization and virtual product development. The current lack of efficient
interoperability of CAD and FEA makes refinement and adaptation of the
analysis model cumbersome, slow and expensive.

The new paradigm of Isogeometric Analysis, which was introduced by
Hughes et al. [11], demonstrates that much is to be gained with respect to
efficiency, quality and accuracy in analysis by replacing traditional Finite
Elements by volumetric NURBS elements.

NURBS are not flexible enough to be a common basis for future CAD
and FEA merely due to some required properties in design and analysis
such as locally refineable, accommodate extraordinary points, and trimless
option. T-splines are a recently developed generalization of NURBS [2], [7],



24 Paper I: Isogeometric Analysis Using LR B-splines

[20], they were introduced to cure the above geometric limitations and to
generate local refinements in the mesh. In context of isogeometric analysis,
a new sub-class of T-splines as analysis-suitable (AS) T-splines [19] have
emerged, which is a significant step towards more versatility. Recently there
has also been published works related to hierarchical refinement of splines
introduced by Forsey and Bartels [8]; see [22], [21], [9], [4], [16], and [17].

We believe that the recently proposed locally refined LR B-splines by
Dokken et al. [6] may have the potential to form an alternative framework
for future interoperable CAD and FEA systems. The new approach directly
operates on the spline spaces, and in this way a broad spectrum of piecewise
spline functions may be obtained. LR B-splines consist of smooth, piecewise
polynomial basis functions that constitute a partition of unity. Among other
advanced features they may facilitate local h-refinement. Since this class
of splines is rich and versatile, it may break new ground and seems to be
attractive as foundation for integrating CAD and FEA on one computational
platform.

Our long term vision is to create a radically new computational platform
with powerful and versatile refinement and adaptation procedures based on
the concept of LR B-splines. Downward compatibility to existing NURBS-
based models and the synergy of CAD and FEA expertise in each devel-
opment stage will be essential and, at the same time, promote the broad
acceptance and dissemination in both academia and the software industry.

In any finite element analysis of real world problems, it is of great impor-
tance that the quality of the computed solution may be determined. How-
ever, the assessment of the quality of a computed solution is challenging,
both mathematically and computationally. Thus traditionally, the quality
of the solution is assessed manually by the scientist or engineer doing the
simulation, but this is unreliable. Numerical simulation of many industrial
problems in civil, mechanical and naval industry often require large compu-
tational resources. It is therefore of utmost importance that computational
resources are used as efficiently as possible to make new results readily avail-
able and to expand the realm of which processes may be simulated. We thus
identify reliability and efficiency as two challenges in simulation based engi-
neering.

These two challenges may be addressed by error estimation combined
with adaptive refinements. A lot of research has been performed on error
estimation and adaptive mesh refinement, see e.g. (Ainsworth and Oden,
2000 [1]). However, adaptive methods are not yet an industrial tool, partly
because the need for a link to traditional CAD-system makes this difficult
in industrial practice. Here, the use of an isogeometric analysis framework
may facilitate more widespread adoption of this technology in industry, as
adaptive mesh refinement does not require any further communication with
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the CAD system.

1.2 Aim and outline of the paper

The aim of this paper is to present local refinement strategies using LR B-
splines and investigate its performance in adaptive isogeometric analysis by
means of showing numerical results on well known benchmark examples.

The paper is organized as follows:
In Section 2, we stated the preliminaries definitions of B-splines and

meshes to illustrate the local refinement of B-spline using knot insertion.
Then the basic important ingredients to understand LR B-splines concept
such as LR-mesh, LR B-spline space, and meshline extension are given. Our
aim here is to fix the notations, for a detailed mathematical description
related to LR B-splines we refer the reader to Dokken et al. [6].

In Section 3, we give a brief introduction to the finite element method
and the need for adaptive refinement in real world problems. The main
characteristics of isogeometric finite element methods using B-splines (or
NURBS) and LR B-splines is presented. Further we describe a general ap-
proach, that suits LR B-splines, to perform local h-refinement in adaptive
isogeometric finite element method.

Section 4 is devoted to illustrate the local refinement strategies using LR
B-splines. A more general discussion on different options for local refine-
ment is given. Then we presented three specific local refinement strategies
which we shall investigate in the numerical examples section. At the last the
conceptual similarities between adaptive refinement in classical FEM versus
isogeometric methods using LR B-splines (for p = 1 and 2) are given.

Numerical experiments are performed in Section 5. The aim of this sec-
tion is to illustrate the performance of the local refinement strategies of
Section 4. In particular, we investigate whether adaptive refinement using
LR B-splines achieves optimal convergence rate, in terms of better accuracy
per degrees of freedom (dofs) compared to the uniform refinement case, for
non-smooth elliptic problems. For the purpose we consider one synthetic
case of refinement along the diagonal and elliptic PDEs with known solu-
tions.

We end this paper by giving some conclusion upon our findings in Sec-
tion 6.



26 Paper I: Isogeometric Analysis Using LR B-splines

(a) Initial mesh (b) Tensor product refine-
ment

(c) Truly local refinement

Figure 1: Lack of local refinement of tensor B-splines.

2 Spline theory

The problem with traditional B-splines and NURBS is that they are formu-
lated as tensor products of univariate B-splines. This means that refinement
in one of the univariate B-splines will cause the insertion of an entire new
row or column of knots in the bivariate spline space. As an example of re-
finement around a local point is achieved which also refine the other area of
mesh. This is illustrated in Figure 1, where we have recursively refined the
lower right corner. Ideally we do not want to insert any knot in the upper
right and lower left part of the mesh, but with B-splines and NURBS, this
is unavoidable. Thus to achieve truly local refinement we need some new
structure to the mesh which is not based on global tensor products. This is
what T-splines, Hierarchical B-splines, and LR B-splines address. T-splines
were first introduced by Sederberg et al. [20] and have, like NURBS, pri-
marily been used in computer aided design (CAD). In recent years T-splines
have, however, been introduced to isogeometric analysis [3, 7, 18, 19].

In the following subsections we will present the LR B-splines, first we
establishing a vocabulary that contains several definitions in section 2.1 and
then we discuss the algorithms in section 2.2 followed by some properties of
LR splines in Section 2.3

2.1 LR-splines

We start the introduction by describing the local knot vectors. From ele-
mentary B-spline theory we know that a knot vector of size n + p + 1 will
generate n linearly independent basis functions of degree p. Usually this
knot vector is required to start and end with a knot of multiplicity p + 1,
ensuring at least p + 1 basis functions to be generated. If we ignore this
restriction, it is clear that we can generate a single basis function using a
knot vector of size p + 2. The purpose of open knot vectors (knot vectors
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Figure 2: All quadratic basis functions generated by the knot Ξ =
[0, 0, 0, 1, 2, 3, 3, 4, 4, 4]. Each individual basis function can be described us-
ing a local knot vector of 4 knots each (p+ 2).

with knots of multiplicity p+1 at the start and end) is only to ensure inter-
polating end points which is advantageous in a number of ways, for instance
to simplify the handling of Dirichlet boundary conditions. From the evalu-
ation algorithms of B-splines, it follows that every single basis function will
depend on not more than p + 2 knots, each basis function using different
knots. For instance, consider a set of quadratic basis function from the knot
vector Ξ. We then have

Ξ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4]

Ξ1 = [0, 0, 0, 1 ]

Ξ2 = [ 0, 0, 1, 2 ]

Ξ3 = [ 0, 1, 2, 3 ]

Ξ4 = [ 1, 2, 3, 3 ] (1)
Ξ5 = [ 2, 3, 3, 4 ]

Ξ6 = [ 3, 3, 4, 4 ]

Ξ7 = [ 3, 4, 4, 4],

where the seven basis functions will be separately generated by the local knot
vectors Ξ1, ...,Ξ7. One might add here that we will not need the entire set
of basis functions, and remove a subset of these, keeping only the ones we
are interested in. Even though it might be instructive to look at local basis
functions as a subsequence of a global knot vector, this is of little practical
value. Instead we will not require any global knot vector Ξ, but rather
create the local knot vectors Ξi in a different manner. The concept local
knot vectors is important for LR B-splines as they are used as the building
blocks. We have illustrated the basis functions given by Equation (1) in
Figure 2. Using local knot vectors, we define a single B-spline function as

Definition 1. A B-spline B(ξ) of degrees p is a separable function B :
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Rn → R

BΞ(ξ) =

n∏
i=1

BΞi(ξi) (2)

defined by the n nondecreasing local knot vectors Ξi ∈ Rpi+2 and the degrees
pi, where each BΞi(ξi) are univariate B-spline functions of degree pi over the
knot vector Ξi.

Note that the degree is implicitly defined by the number of knots in each
local knot vector.

Definition 2. The parametric coordinate space of dimension 1 2 and 3
is denoted using the greek letters ξ, η and ζ and is related in (2) as

(ξ1, ξ2, ξ3) = (ξ, η, ζ) (3)

with the corresponding knot vectors begin denoted as Ξ,H,Z such that

(Ξ1,Ξ2,Ξ3) = (Ξ,H,Z). (4)

For any B-spline in higher dimension than 3 it is custom to use index
notation. The univariate, bivariate and trivariate cases are as following

BΞ(ξ1) = BΞ(ξ) = BΞ1(ξ) = BΞ(ξ)
BΞ(ξ1, ξ2) = BΞ(ξ, η) = BΞ1(ξ)BΞ2(η) = BΞ(ξ)BH(η)

BΞ(ξ1, ξ2, ξ3) = BΞ(ξ, η, ζ) = BΞ1(ξ)BΞ2(η)BΞ3(ζ) = BΞ(ξ)BH(η)BZ(ζ).

We will in the remainder of the text regard bivariate B-splines unless other-
wise stated and use the short hand notation

B[ξ0ξ1...ξp+1; η0η1...ηp+1] := BΞ(ξ)BH(η), (5)

where the local knot vectors are known (integers), i.e. B[0123; 00145] for
Ξ1 = [0, 1, 2, 3],Ξ2 = [0, 0, 1, 4, 5]. This particular B-spline would be of
polynomial degree p1 = 2 and p2 = 3 due to the number of elements in the
local knot vectors.

Also note that we are distinguishing between subscripts and superscripts
on the local knot vectors as the former refers to the index in a set of B-splines
while the latter is the parametric dimension. Consider the set of biquadratic
B-splines

{B[0123; 0012], B[2345; 2245], B[1255; 0112]} = {BΞ1
, BΞ2

, BΞ3
},

where

BΞ1
(ξ1, ξ2) = BΞ1

1
(ξ1)BΞ2

1
(ξ2)

BΞ2
(ξ1, ξ2) = BΞ1

2
(ξ1)BΞ2

2
(ξ2)

BΞ3
(ξ1, ξ2) = BΞ1

3
(ξ1)BΞ2

3
(ξ2)
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and
Ξ1
1 = [0, 1, 2, 3] Ξ2

1 = [0, 0, 1, 2]
Ξ1
2 = [2, 3, 4, 5] Ξ2

2 = [2, 2, 4, 5]
Ξ1
3 = [1, 2, 5, 5] Ξ2

3 = [0, 1, 1, 2].

Definition 3. A weighted B-spline is defined as

Bγ

Ξ
(ξ) = γ

n∏
i=1

BΞi(ξi),

where γ ∈ (0, 1].

The weighted B-spline is simply a B-spline multiplied by a scalar weight
γ. This is to ensure that LR B-splines maintain the partition of unity prop-
erty, and should not be confused with the rational weights w which is com-
mon in NURBS (non-uniform rational B-splines). For simplicity, we will
denote both weighted and non-weighted B-splines as B and assume that it
is clear from the context if it is one or the other.

Definition 4. A Box Mesh or T-mesh is a partitioning of a two-dimensional
rectangular domain [ξ0, ξn]×[η0, ηn] into smaller rectangles by horizontal and
vertical lines.

Definition 5. A Tensor Mesh is a Box Mesh where there are no T-joints,
i.e. all horizontal and vertical lines span the entire length [ξ0, ξn] or [η0, ηn].

Definition 6. An LR-Mesh Mn is a Box Mesh which is the result from
a series of single line insertions {εi}ni=1 from a initial tensor mesh M0, i.e.
Mn ⊃ Mn−1 ⊃ ... ⊃ M1 ⊃ M0 and each intermediate state Mi+1 =
{Mi ∪ εi} is a also a Box Mesh.

In other words, it must be possible to create the mesh by inserting one
line at a time, where these lines never stop in the center of an element (knot
span). See Figure 3 for examples of the different meshes.

Definition 7. A Box Mesh, Tensor Mesh or LR-Mesh with multiplicities
is a Mesh where each line segment has a corresponding integer value n, called
the line multiplicity. Each multiplicity must satisfy 0 < n ≤ p, where p is
the polynomial degree (in ξ-direction for vertical lines and in η-direction for
horizontal lines).

Note that it is possible to create a C−1-basis if using knot lines of mul-
tiplicity n = p.
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(a) Tensor mesh (b) Box mesh, not an LR
mesh

(c) LR mesh and Box mesh

(d) Not an LR-mesh, nor a
box mesh

(e) LR mesh with multi-
plicities

(f) Alternative way of
drawing (e)

Figure 3: Note that there is no way to create the box mesh (b) from single
line insertions (starting at tensor mesh) where every intermediate state is
also a box mesh. This is a prerequisite for all LR meshes.

Definition 8. The support of a (weighted) B-spline B : R2 → R

B(ξ, η) = γBΞ(ξ)BH(η)

Ξ = [ξ0, ξ1, ..., ξp1+1] (6)
H = [η0, η1, ..., ηp2+1]

is the closure of all points where it takes nonzero value, i.e. (ξ, η) ∈ [ξ0, ξp1+1]×
[η0, ηp2+1].

Definition 9. A meshline ε is said to traverse the support of a (weighted)
B-spline B : R2 → R (see (6)) if

• a horizontal line ε = [ξ∗0 , ξ
∗
1 ]× η∗ satisfies

ξ∗0 ≤ ξ0, ξp1+1 ≤ ξ∗1
η0 ≤ η∗ ≤ ηp2+1,



Spline theory 31

(a) Line traversing
the interior of B

(b) Line traversing
the interior of B

(c) Line traversing
the edge of B

(d) Line neither
traversing the inte-
rior nor the edge of
B

Figure 4: Traversing the support of a basis function. Note that we distin-
guish between traversing the edge and the interior of the support of B.

• a vertical line ε = ξ∗ × [η∗0, η
∗
1] satisfies

ξ0 ≤ ξ∗ ≤ ξp1+1

η∗0 ≤ η0, ηp2+1 ≤ η∗1.

A horizontal line is said to traverse the interior if η0 < η∗ < ηp2+1 and
traverse the edge if η0 = η∗ or ηp2+1 = η∗. Similarly for vertical lines it
is said to traverse the interior if ξ0 < ξ∗ < ξp1+1 and traverse the edge if
ξ0 = ξ∗ or ξp1+1 = ξ∗.

See Figure 4 for examples on traversing meshlines.

Definition 10. A (weighted) B-spline B : R2 → R (see (6)) has minimal
support on a LR Mesh M if

1. for every horizontal line ε = [ξ∗0 , ξ
∗
1 ]× η∗ of multiplicity n in the mesh

M that traverses the support of B, there exist{
n unique i such that ηi = η∗ , if ε traverses the interior of B

an i such that ηi = η∗ , if ε traverses the edge of B

2. for every vertical line ε = ξ∗× [η∗0, η
∗
1] of multiplicity n in the mesh M

that traverses the support of B, there exist{
n unique i such that ξi = ξ∗ , if ε traverses the interior of B

an i such that ξi = ξ∗ , if ε traverses the edge of B

See Figure 5 for examples on minimal support.

Definition 11. Let M be an LR-mesh with multiplicities. A function B :
R2 → R is called an LR B-spline on M if

1. Bγ

Ξ
(ξ) = γBΞ(ξ)BH(η) is a weighted B-spline where all knot lines

(and the knot line multiplicities) in Ξ and H is also in M.
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(a) LR mesh M (b) B[0234; 0124] has min-
imal support on M

(c) B[0345; 0145] has min-
imal support on M

(d) B[0234; 0012] has min-
imal support on M

(e) B[0013; 1245] has not
minimal support on M due
to the meshline at η = 3

(f) B[2345; 1245] has min-
imal support on M, but is
not an LR B-spline on M
as the two highlighted lines
are missing from M

Figure 5: Minimal support ensures that every meshline traversing the sup-
port of a B-spline should appear in the local knot vector. Being an LR
B-spline ensures the converse: that every line in the knot vector appears in
the mesh M

2. B has minimal support on M.

Definition 12. A meshline extension ε on an LR mesh Mn is either

• a new meshline,
• an elongation of an existing meshline,
• a joining of two existing meshlines or
• increasing the multiplicity of an existing line

which causes one or more of the LR B-splines on Mn to not have minimal
support on Mn+1.

2.2 Refining LR B-splines

For local refinement, we again turn to existing spline theory. Tensor product
B-splines form a subset of the LR B-splines and they obey some of the same
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core refinement ideas (globally not locally). From tensor product B-spline
theory we know that one might insert extra knots to enrich the basis without
changing the geometric description. This comes from the fact that we have
available the relation between B-splines in the old coarse spline space and
in the new enriched spline space. For instance if we want to insert the knot
ξ̂ into the knot vector Ξ between the knots ξi−1 and ξi, then the relation is
given by

BΞ(ξ) = α1BΞ1(ξ) + α2BΞ2(ξ), (7)

where

α1 =

{
1, ξp+1 ≤ ξ̂ ≤ ξp+2

ξ̂−ξ1
ξp+1−ξ1

, ξ1 ≤ ξ̂ ≤ ξp+1

(8)

α2 =

{
ξp+2−ξ̂
ξp+2−ξ2

, ξ2 ≤ ξ̂ ≤ ξp+2

1, ξ1 ≤ ξ̂ ≤ ξ2

and the knot vectors are

Ξ = [ξ1, ξ2, ...ξi−1, ξi, ...ξp+1, ξp+2]

Ξ1 = [ξ1, ξ2, ...ξi−1, ξ̂, ξi, ...ξp+1 ]

Ξ2 = [ ξ2, ...ξi−1, ξ̂, ξi, ...ξp+1, ξp+2].

Note that the insertion of the knot ξ̂ into Ξ yields a knot vector of size
p+ 3, meaning that it is generating two B-splines. These two B-splines are
the one being described by the local knot vectors Ξ1 and Ξ2, both of size
p+ 2.

Let us look at an example using this technique. Say we want to insert
ξ̂ = 3

2 into the B-spline Ξ3 = [0, 1, 2, 3]. This would give us α1 = α2 = 3
4

and the three functions are plotted in Figure 6. If one were to insert the
knot ξ̂ = 3

2 into the set of B-splines in Figure 2, then this will require
two more functions to be split, namely the function Ξ2 = [0, 0, 1, 2] and
Ξ4 = [1, 2, 3, 3]. All the three splitting shown in Figure 6–7 will then take
place. This insertion will replace three old B-splines with four new linearly
independent B-splines (see the knot vectors in the figure legend to identify
the four distinctive new B-splines).

Bivariate functions are refined in one parametric direction at a time. By
pairing two local knot vectors, one for each of the parametric directions we
are able to create a bivariate B-spline. For instance if we have the knot
vector Ξ in the first parametric direction, and H in the second, we will have
the B-spline BΞ,H(ξ, η) = BΞ(ξ)BH(η).
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Figure 6: Splitting the B-spline Ξ = [0, 1, 2, 3] into two separate B-splines
by inserting the knot 3

2 .

(a) Inserting ξ = 3
2

in Ξ = (0, 0, 1, 2). (b) Inserting ξ = 3
2

in Ξ = (1, 2, 3, 3).

Figure 7: Displaying function splitting in the case that ξ̂ is not at the
knotvector center.

By using the splitting algorithm in Equation (7) for the 2D case when
splitting in one direction, we obtain:

BΞ(ξ, η) = BΞ(ξ)BH(η)

= (α1BΞ1(ξ) + α2BΞ2(ξ))BH(η) (9)
= α1BΞ1

(ξ, η) + α2BΞ2
(ξ, η).

For weighted B-splines, this becomes

Bγ

Ξ
(ξ, η) = γBΞ(ξ, η)

= γ (α1BΞ1(ξ) + α2BΞ2(ξ))BH(η)

= Bγ1
Ξ1

(ξ, η) +Bγ2
Ξ2

(ξ, η),

where

γ1 = α1γ

γ2 = α2γ.
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We now have everything we need to formulate the refinement rules. This
will be implemented by keeping track of the mesh Mn and the spline space
Sn. Note that we do not need to keep track of the refinement history
Mi, i = 1...n − 1, we only need to store the current state. For each
B-spline Bγi

Ξi
we store the following:

• Ξi ∈ Rp+2 - the local knot vector in the first parametric direction
• Hi ∈ Rp+2 - the local knot vector in the second parametric direction
• γi ∈ R - the scaling weight
• ci ∈ Rd - control points in d-dimensional space.

Through the refinement we aim at two points: keeping the partition of
unity and leaving the geometric mapping unchanged, i.e.

∑
i γiBi = 1 and

f =
∑

i γiBici for all levels of refinement.
Assuming a meshline extension is inserted, the refinement process is

characterized by two steps.

• Step 1: Split any B-spline which support is traversed by the new
meshline - update the weights and control points

• Step 2: For all new B-splines, check if their support is completely
traversed by any existing meshline

We will here describe these two steps in detail.

When to split a B-spline

A B-spline may need to be split at either of the two refinement steps. In
Step 1 we test every B-spline against one meshline. In Step 2 we test
every newly created B-spline against all existing meshlines. This is just a
conceptual understanding of the process. In a computational realization of
this technique, both of these searches could be done locally.

A B-spline is split whenever a meshline is traversing the interior of that
B-spline (see Definition 9).

In the refinement process we will at multiple stages perform checks to see
if one particular function is split by one particular meshline. The algorithm is
in essence testing B-splines against meshlines, one for one, and splitting every
function that satisfies the splitting criterion. The rest is just formulating
which B-splines are going to be checked against which meshlines. Note
that in the case of a meshline extension being an elongation of an existing
meshline or a joining of two existing ones, then we will use the full length of
the meshline to flag B-splines for splitting. Thus, in the case of an elongation,
we will be using the union of the old line with the elongation and use this
combined length when testing if lines are traversing B-splines.
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How to split a B-spline

The splitting itself is done through the use of Equation (8) and (9). Let us
assume that the function Bi will be split and the result is the functions B1

and B2 with corresponding α1 and α2. We will now have to make sure that
we keep the geometric mapping unchanged and preserves the partition of
unity. There are two cases which can arise:

• The new function (B1 or B2) already exist in our spline space (due to
previous splitting).

• The new function is not present and must be added.

In the latter case of the function not already existing, we will need to create
it. We simply add it to our list of B-spline and give it weight and control
point equal to it’s parent function, i.e. γ1 := α1γi and c1 := ci. We
then proceed to add it to the list of newly created functions which will be
subsequently tested for splitting in Step 2. In the former case of the function
already being present, we simply update the weight and control point and
continue with the refinement process. In this case, the control point will be
given as c1 := (c1γ1 + ciγiα1) /(γ1 + γiα1) and the weight will be given by
γ1 := γ1+γiα1. Finally, we remove the old function from our list of B-splines.
This is illustrated in Algorithm 2 where we have assumed that the inserted
knot is in the Ξ-vector (the H-case being completely analogue). Note that
we are keeping the unrefined knot vector Hi unchanged in line 6-7, as it is
apparent in Equation (9). We are also storing all newly created B-splines in
Snew as these will be required in Step 2 of the refinement algorithm.

LR spline definition

We define an LR spline as an application of the refinement algorithm.

Definition 13. An LR spline L is a pair (Mn,S), where Mn is an LR
mesh and S is a set of LR B-splines on Mn, and

• for each intermediate step Mi+1 = {Mi ∪ εi} the new line εi is a
meshline extension

• S =
{
BΞi

(ξ)
}m

i=1
is the set of all LR B-splines on Mn resulting from

Algorithm 3.

We note that, there is no backwards dependence on the mesh, meaning
that while the index in Mn seems to suggest that the LR spline is a sequence
of meshes, it is enough that there exist one possible sequence. After we have
constructed the set of LR B-splines on Mn, it is safe to discard any link to
the previous mesh Mn−1.
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Algorithm 2 Local ξ-split

1: parameters:

ξ̂ {new knot}
Bi {B-spline to be split (Bi ∈ S)}
S {Spline space}
Snew {Functions not present in S}

2: calculate (α1, α2) from (8)
3: Ξ ← SORT(Ξ ∪ ξ̂)
4: Ξ1 ← [ξ1, ..., ξp+2]
5: Ξ2 ← [ξ2, ..., ξp+3]
6: H1 ← Hi

7: H2 ← Hi

8: if (Ξ1,H1) ∈ S then
9: c1 ← (c1γ1 + ciγiα1) /(γ1 + α1γi)

10: γ1 ← γ1 + α1γi
11: else
12: c1 ← ci
13: γ1 ← α1γi
14: add B1 to Snew

15: end if
16: if (Ξ2,H2) ∈ S then
17: c2 ← (c2γ2 + ciγiα2) /(γ2 + α2γi)
18: γ2 ← γ2 + α2γi
19: else
20: c2 ← ci
21: γ2 ← α2γi
22: add B2 to Snew

23: end if
24: remove Bi from S
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Algorithm 3 LR B-spline refinement

1: parameters:
S {Spline space}
M {LR mesh}
E {Meshline extension}

2: for every B-spline Bi ∈ S do
3: if E splits Bi then
4: perform split according to Algorithm 2
5: end if
6: end for
7: for every B-spline Bi ∈ Snew do
8: for every existing edge Ej ∈ M do
9: if Ej splits Bi then

10: perform split according to Algorithm 2
11: {note that this may enlarge Snew further}
12: end if
13: end for
14: end for

Further, it does not matter if it is possible to make the mesh Mn in
multiple ways. Indeed any ordering of the meshline insertions will produce
the exact same end function space S. See Section 2.3. As such, for any given
LR mesh Mn, the set of LR B-splines S is unique.

While it is possible to define LR splines by using non-weighted B-splines,
as done in [6], we will here only consider weighted ones as to maintain the
partition of unity which is important in finite element methods.

Definition 14. The cardinality of an LR spline L = (Mn,S), where
S =

{
Bγ

Ξi
(ξ)

}m

i=1
is the number of B-splines in the set S, and is denoted

|L| = m. (10)

Example

As an example we look at the insertion of two local knot lines in the tensor
product mesh given by the global knot vectors Ξ = H = [0, 0, 0, 1, 2, 4, 5, 6, 6, 6].
We first introduce the line spanning (ξ, η) ∈ (3, 1) → (3, 5), see Figure 8.
The line will split the three B-splines illustrated in Figure 9. We calculate
the corresponding α-values from Equation (8) and get

B[0124; 1245]=B[0123; 1245]+1
3B[1234; 1245]

B[1245; 1245]= 2
3B[1234; 1245]+2

3B[2345; 1245]
B[2456; 1245]= 1

3B[2345; 1245]+B[3456; 1245]
(11)
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Figure 8: Inserting a local (vertical) meshline into a tensor product mesh.
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(a) B[0124; 1245] =
B[0123; 1245] +
1
3
B[1234; 1245]
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(b) B[1245; 1245] =
2
3
B[1234; 1245] +

2
3
B[2345; 1245]
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(c) B[2456; 1245] =
1
3
B[2345; 1245] +

B[3456; 1245]

Figure 9: B-splines split by the new meshline.

Updating these splits sequentially, we get the following. Let the numerical
indices i = 1, 2, 3, 4 denote the new B-splines and alphabetical indices i =
a, b, c denote the old basis, i.e.

B1 = B[0123; 1245]

B2 = B[1234; 1245]

B3 = B[2345; 1245]

B4 = B[3456; 1245]

Ba = B[0124; 1245]

Bb = B[1245; 1245]

Bc = B[2456; 1245]
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Splitting Ba Splitting Bb Splitting Bc

γi ci γi ci γi ci
B1 1 ca 1 ca 1 ca
B2 1/3 ca 1 1

3ca +
2
3cb 1 1

3ca +
2
3cb

B3 2/3 cb 1 2
3cb +

1
3cc

B4 1 cc

Table 1: Numerical values for weights and control points as Algorithm 3
iterates to insert the meshline in Figure 8.

666

5

4

3

2

1

000

000          1              2              3              4             5           666

(a) B[24565; 2456]
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(b) B[0124; 0012]
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(c) B[1245; 2456]

Figure 10: B-splines not split by the new meshline.

Note that at the tensor product case, all weights γ will be equal to one. After
the first split of the old function Ba, we establish the new functions B1 and
B2. Their weights will simply be the α-values 1 and 1/3 and the control
points will remain unchanged c1 = c2 = ca. Splitting the second function
in Equation (11) Bb will cause one of the results B2 to be already present,
so we update the corresponding weights and control point according to line
9 - 10 in Algorithm 2. The process is shown in Table 2 and the numerical
values are tabulated sequentially according to whenever each of the B-splines
Ba, Bb and Bc are being split.

We would now proceed to Step 2, and test every new B-spline B1, B2, B3

and B4 against all previously inserted meshlines, but as this is the first
inserted line, this is unnecessary. Some of the supports of the unrefined
B-splines are depicted in Figure 10.

Next we insert another line, this time spanning (ξ, η) ∈ (1, 3) → (5, 3) as
shown in Figure 11. We first iterate through Step 1 of the refinement. Here,
4 B-splines will be completely traversed by the new meshline as illustrated
in Figure 12. We keep our old convention of numbering the old B-splines by
alphabetical letters i = a, b, c, d and the new B-splines by numerical numbers
i = 1, 2, . . ..
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Figure 11: Inserting another local (horizontal) meshline.
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(a) Basis Ba split,
B[1234; 1245] =
2
3
B[1234; 1234] +

2
3
B[1234; 2345]
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(b) Basis Bb split,
B[2345; 1245] =
1
3
B[2345; 1234] +

B[2345; 2345]
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(c) Basis Bc split,
B[1245; 2456] =
B[1245; 2345] +
1
3
B[1245; 3456]
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(d) Basis Bd split,
B[1245; 0124] =
1
3
B[1245; 0123] +

B[1245; 1234]

Figure 12: B-splines split by the new meshline.

B[1234; 1245] =
2

3
B[1234; 1234] +

2

3
B[1234; 2345]

B[2345; 1245] =
2

3
B[2345; 1234] +

2

3
B[2345; 2345]

B[1245; 2456] =
1

3
B[1245; 2345] +B[1245; 3456]

B[1245; 0124] = B[1245; 0123] +
1

3
B[1245; 1234]
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Step 1 Step 2
Splitting Ba, Bb, Bc and Bd Splitting B5 Splitting B8

γi ci γi ci γi ci
B1 2/3 ca 2/3 ca 8/9 1

8(6ca + 2cd)
B2 2/3 ca 8/9 1

8(6ca + 2cc) 8/9 1
8(6ca + 2cc)

B3 2/3 cb 2/3 cb 8/9 1
8(6cb + 2cd)

B4 2/3 cb 8/9 1
8(6cb + 2cc) 8/9 1

8(6cb + 2cc)
B5 1/3 cc <Remove B5>
B6 1 cc 1 cc 1 cc
B7 1 cd 1 cd 1 cd
B8 1/3 cd 1/3 cd <Remove B8>

Table 2: Numerical values of weights and control points as Algorithm 3
iterates to insert the meshline in Figure 11.
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(b) B[0123; 1245]
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(c) B[0012; 1245]

Figure 13: B-splines not split by the new meshline.

or more compact

Ba =
2

3
B1 +

2

3
B2

Bb =
2

3
B3 +

2

3
B4

Bc =
1

3
B5 +B6

Bd = B7 +
1

3
B8

We note that none of the new B-splines on the right hand side are equal,
so all will be considered as new functions with corresponding weights and
control points set by line 12 - 13 in Algorithm 2. Again, we show some of
the B-splines in the vicinity of the newest meshline that are not splitted, see
Figure 13.
We now proceed to Step 2 of Algorithm 3. There are 8 new B-splines and
all of these would have to be checked against the previous line and see if they
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(a) B-spline
B5 = B[1245; 2345]
split by the old mesh-
line
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(b) B-spline
B8 = B[1245; 1234]
split by the old mesh-
line

Figure 14: New B-splines split by an old meshline in Step 2 of the refinement
algorithm.
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(a) B-spline
B2 = B[1234; 2345]
not split by the old
meshline (knotline
already present)
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(b) B-spline
B6 = B[1245; 3456]
not split by the old
meshline

Figure 15: New B-splines unchanged by the existing meshline in Step 2 of
the refinement algorithm.

are to be further split. As it turns out, two of the new functions are now
completely traversed by the previous line since their support have decreased
with the knot insertion. These are B5 and B8 as depicted in Figure 14

B[1245; 2345] =
2

3
B[1234; 2345] +

2

3
B[2345; 2345]

B[1245; 1234] =
2

3
B[1234; 1234] +

2

2
B[2345; 1234]

or

B5 =
2

3
B2 +

2

3
B4

B8 =
2

3
B1 +

2

2
B3
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2.3 LR spline properties

Consider a LR spline (Mn,S). Then

1.
∑m

i=1 γiBi(ξ) = 1, i.e. the LR B-splines form a partition of unity.

2. (Mi+1,Si+1) ⊃ (Mi,Si), i.e. the LR spline is nested.

3. If there exists two meshline insertions lists {ε0, ε1, ..., εn−1} and {ε̃0, ..., ε̃n−1}
such that Mi+1 = {Mi ∪ εi}, M̃i+1 = {M̃i ∪ ε̃i} and the final mesh
is equal Mn = M̃n, then the spline space is equal Sn = S̃n, i.e. the
LR spline refinement is order independent.

4. S = {Bi(ξ)}mi=1 does in general not form a linearly independent set.

Partition of unity

The set of LR B-splines form a partition of unity, i.e.

m∑
i=1

γiBi(ξ) = 1 (12)

Proof: Since the refinement consists of repeated use of Algorithm 2, we
will only show that the partition of unity is preserved through one step of
this algorithm. The global result then follows from induction. Following
our convention of enumerating old B-splines alphabetical and new B-splines
numerical, let us name the three functions {a, 1, 2} such that

Ba(ξ) = α1B1(ξ) + α2B2(ξ) (13)

There are three outcomes of the algorithm:

• B1 and B2 already exist in the spline space

• B1, but not B2 already exist in the spline space

• neither B1 nor B2 exist in the spline space.

We will here show that this holds for the first case, since the proof for the
two other cases are completely analog. Assume that the partition of unity
holds before splitting, i.e. (12), then
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m∑
i=1

i �=1,2,a

γiBi(ξ) + (γ1 + α1γa)B1(ξ) + (γ2 + α2γa)B2(ξ) =

m∑
i=1

i �=1,2,a

γiBi(ξ) + γ1B1(ξ) + γ2B2(ξ) + γa(α1B1(ξ) + α2B2(ξ)) =

m∑
i=1

i �=1,2,a

γiBi(ξ) + γ1B1(ξ) + γ2B2(ξ) + γaBa(ξ) = 1

Nested space

A spline space Si−1 ⊂ Si is said to be nested, if for any f ∈ Si−1 there exist
an f̂ ∈ Si such that f = f̂ . For LR splines the functions f and f̂ can be
represented by their control points as f =

∑n
i=1Bici and f̂ =

∑m
i=1Biĉi. In

order to find the relation between an arbitrary f = [c] and f̂ = [ĉ], we need
to find the relationship between their control points defining them.

As the refinement algorithm, is a repeated use of (7), which is a linear
relation, we can formulate the relations between the set of old B-splines and
the set of enriched B-splines as a matrix C ∈ Rn×m, satisfying

Bold = CBnew. (14)

Hence given any f = [c], we can find f̂ = [ĉ] by ĉ = CT c.
The LR meshes M are as such nested by construction.

Independence of meshline insertion order

LR splines are independent of the ordering at which the meshline extensions
are inserted. That means if L = {Mn,Sn} , L̂ = {M̂m, Ŝm} and the meshes
are equal Mn = M̂m, then Sn = Ŝm. For this proof, see Dokken et al. [6].

Linear dependence

The LR splines are not linearly independent, in general. As an example
for linearly dependent set of LR B-splines, see Figure 16. Here the linear
dependence relation is given as:
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Figure 16: Example of a linearly dependent LR mesh using biquadratic
B-splines. The shaded B-spline B[2356; 1246] is a linear combination of 7
smaller B-splines; their relation given in (15)

720 ·B[2368; 1246] = 108 ·B[5678; 2346] + 135 ·B[2356; 2456] +

108 ·B[3567; 3456] + 268 ·B[3456; 2345] +

324 ·B[4567; 2345] + 360 ·B[2346; 1245] +

384 ·B[3468; 1234]. (15)

2.4 Linear independence of LR splines

As shown above, one cannot guarantee that an arbitrary LR-mesh is produc-
ing a linearly independent set of functions, however there are several ways to
ensure that the system of functions you get is in fact linearly independent.
We will here briefly describe three methods, but for full details we reference
the work of Dokken et.al [6].

Hand-in-hand principle

Mourrain [15] presented a formula independent of choice of basis for the
dimensionality of a spline space over a T-mesh. This result is generalized
in [6] to also address general multiplicities and any dimension. Used in the
bivariate setting it provides a topological equation based on the polynomial
degrees, the elements, the edges and their multiplicities and the vertices.
By observing the change of these components, we are able to predict the
dimension increase of the spline space for classes of meshline insertions.

Definition 15. A primitive meshline extension is a meshline extension
which increases the dimension of the spline space by one.
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In particular we note that any meshline extension of the following type

• inserting a new meshline spanning p elements,

• elongation of a meshline by one element and

• increasing the multiplicity of a meshline of length p

are primitive.

Proposition 1. Let L = {M,S} be a refinement of L̂ = {M̂, Ŝ}, where
M = {M̂∪ε}. If ε is a primitive meshline extension on M̂ and Ŝ is linearly
independent then S is linearly independent on M if and only if

|L| =
∣∣∣L̂

∣∣∣+ 1. (16)

Proof: We know from the dimension formula formula that the dimension
of the function space should be equal to one greater than the dimension of
the old space. What is left to show is that the LR Spline space does in
fact increase in size, i.e. the new function is not a linear combination of
the existing ones. This can be seen from a continuity perspective. Any
meshline extension will decrease the continuity of the basis at the point
where the mesh is extended and at least one B-spline will in the splitting
scheme include this new knot within its support. Thus Ŝ ⊂ S, with strict
inclusion and the theorem is proved.

Take note that many meshline extensions can be formulated as a series
of primitive meshline extensions. One such example is the insertion of a new
meshline of length n which can be formulated as one new meshline of length
p and p−n meshline extensions of length one. One can as such carefully go
hand-in-hand and ensure that the LR spline at all stages of the refinement
is coinciding with the theoretical dimension proved by Mourrain.

Peeling algorithm

Another option is by the peeling algorithm and the notion of local linear
independence.

Definition 16. An element R = (ξ1, ξ2) × (η1, η2) in a box mesh is an
open set where no horizontal or vertical lines cross.

Note that elements on LR splines means that all B-splines are C∞ on R
since all reduced continuity appears across meshlines.
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Definition 17. An element R in an LR spline is said to be locally linearly
independent if there exist no choice of coefficients {ci} such that

∑
i∈SR

ciBi(ξ) = 0, ∀ξ ∈ R (17)

except for the trivial solution ci = 0, ∀i. Here SR denotes the set of all
B-splines with support on the element R.

Since all B-splines are polynomials when restricted to one particular
element, it is clear that an element is locally linearly independent if and
only if the set SR consists of exactly (p + 1)(q + 1) B-splines, where p and
q is the polynomial degree of the LR spline.

Algorithm 4 Peeling algorithm

1: parameters:

S {Spline space}
Ω {Parametric domain}
SLD {possible linearly dependent B-splines}
ΩLD {areas of possible linear dependence}

2: SLD ← S
3: ΩLD ← Ω
4: for every element R ∈ Ω do
5: if R is locally linearly independent then
6: ΩLD ← ΩLD \ R
7: for every B-spline Bi with support on R do
8: SLD ← SLD \Bi

9: end for
10: end if
11: end for
12: while ΩLD or SLD changed do
13: for all elements R ∈ ΩLD do
14: if R has support of exactly one B-spline Bi ∈ SLD then
15: ΩLD ← ΩLD \ R
16: SLD ← SLD \Bi

17: end if
18: end for
19: end while

The Peeling algorithm is given in Algorithm 4. Here, we keep track of two
things: The set of B-splines that may appear in a (global) linear dependence
relation ∑

i

ciBi(ξ) = 0 (18)
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and the set of possible areas where this may occur. Line 2-11 is just initial-
ization where we remove all locally linearly independent elements and the
B-splines with support on these. The next lines comes from the realization
that (18) may never contain only one term. There have to be at least two
B-splines with coefficients ci �= 0 for a nontrivial relation to exist. We may
then in line 14-16 remove this B-spline and the element from possible lin-
ear combinations. The removal of Bi in line 16 will in turn decrease the
number of B-splines with support on several rectangles which may cause the
if-statement in line 14 to trigger more. As such, one may peel away B-spline
after B-spline until one of two things happen: There are no B-splines left in
the set SLD and S is proven linearly independent or all elements R ∈ MLD

have support of two or more B-splines. In the latter case there may exist a
linear combination, and further investigation is required.

The tensor expansion

From any LR spline L = {M,S} expand the LR mesh M to a full tensor
mesh. This will create a map from the LR spline basis to the tensor product
basis and can be described as (14). Since we know that the tensor product
B-splines are linearly independent, the LR spline basis S will also be linearly
independent if and only if the matrix C has full rank [14].

In a computational realization of these methods it is possible to describe
the matrix C using rational numbers under the assumption that the initial
tensor product mesh M0 consisted of integer or rational knots. This is due
to the fact that all refinements are done by halving each knot interval, and
all splitting of B-splines, results in rational expressions seen in (8). It is then
possible to compute the rank of the matrix using exact arithmetics, and this
is what is done in the work within this paper. For a more computational
efficient implementation of this method, consider using integers modulus
some high Mersenne prime, for instance p = 231 − 1. This gives a faster,
more robust method at the cost of the very unlikely event that one of the
matrix entries by chance becomes a multiple of p and the method produces
the wrong result.

Choice of methodology

The tensor expansion for checking for linear independence does not scale
to well with increasing problem sizes, but it has the advantage of always
working for all meshes and continuities. The hand-in-hand principle has
the drawback that it disallows a few refinements and the peeling algorithm,
while necessary, it is not sufficient for linearly dependent meshes, meaning
that it can prove that an LR spline is linearly independent, but it cannot
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prove it linearly dependent.
It is of course possible to combine these techniques, where one could

for instance narrow the possible areas of linear dependence down to only a
subset of the mesh using the peeling algorithm and proceeding with tensor
expansions in only these areas for full verification.

For all numerical experiments presented in this paper, we tested for linear
independence using the tensor expansion method, and no linearly dependent
cases were discovered when using the full span and the structured mesh
refinement techniques of Section 4 (below).

In fact we conjecture that by virtue of the particular choice of refinement
scheme (full span and structured mesh) you will always be in a subset of the
linearly independent LR Splines, similar to the subclass of T-splines which
are the analysis suitable T-splines [14].
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3 Isogeometric analysis

3.1 The Galerkin finite element method

The variational formulation

Many problems in science and engineering can be addressed by solving a
variational problem. Given a Hilbert space V , a continuous, coercive bilinear
form a(·, ·) and a continuous linear functional l ∈ V∗, where V∗ is the dual
space to V , the variational formulation is defined by: find u ∈ V such that
such that

a(u, v) = l(v) ∀v ∈ V. (19)

The existence and uniqueness of the solution to this continuous problem
is guaranteed by the Lax-Milgram theorem. The Galerkin Finite Element
(FE) approximation to this variational problem may then be given as follow:
Given a finite subspace Vh ⊂ V and l ∈ V∗, find uh ∈ Vh such that

a(uh, vh) = l(vh) ∀vh ∈ Vh. (20)

A priori error estimates

For cases when the bilinear form a(·, ·) is selfadjoint the FE-solution uh is
the optimal approximation to the analytical solution u as measured in the
“a-norm” (often denoted “energy-norm” symbolized with E):

||u− uh||E =
√
a(u− uh, u− uh). (21)

If the analytical solution (of a variational problem involving first order dif-
ferentiation) is sufficiently smooth, i.e. u ∈ Hp+1, and the FE mesh M0 is
regular and quasi-uniform, the error in the approximate FE-solution on a
family of uniformly refined meshes {Mk}, is bounded by

||u− uh||E ≤ Chp||u||Hp+1 , (22)

where C is some problem-dependent constant, h is the characteristic size of
the finite elements, p denotes the highest degree of a complete polynomial
in the FE basis and ||u||Hp+1 denotes the Sobolev norm of order p+ 1.

For problems where the solution is not sufficiently smooth, u �∈ Hp+1, e.g.
problems with singularities within the solution domain or on its boundary,
we have the error bound

||u− uh||E ≤ Chα||u||Hα+1 , (23)
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where the value of the non-negative real parameter α depends on how the
family of meshes {Mk} are created. Assume that λ is a real number char-
acterizing the strength of the singularity. For a sequence of uniformly, or
nearly uniformly, refined meshes we then have

α = min{p, λ}. (24)

Thus, when λ < p the rate of convergence is limited by the strength of the
singularity, and not to the polynomial order.

Adaptive mesh refinement (AMR)

For classical FEM the main method for obtaining an optimal grid for min-
imizing the global energy error (a-norm), has been to do adaptive grid re-
finement with the aim of obtaining an (quasi) uniform element error distri-
bution. This approach has shown to be effective in order to eliminate any
"pollution" from singularities in the domain or at the boundary as well as
achieving optimal convergence rates for problems involving rough right hand
sides. Thus, by means of adaptive mesh refinement we may achieve

α = p (25)

An important step in such adaptive refinement processes is a posterirori error
estimation that provides a reliable element error distribution, see Ainsworth
and Oden [1]. To achieve (quasi) uniform element error distribution we
may subdivide those elements that have an element error that is above the
average, or we may restrict ourself to subdivide those with the β percent
elements with largest error contribution.

In classical FEM, the traditional way of refining a quadrilateral element
is by subdivision, i.e. inserting a cross to obtain four new elements. If the
aspect ratio (width to length ratio) is undesirable large, one may extend the
algorithm to inserts only a single line, splitting the element into two new
elements. This way of adaptive refinement give raise to so-called “hanging
nodes” for which there are several techniques to reestablish the appropriate
C0- continuity.

3.2 The isogeometric finite element method

Spline spaces

In isogeometric FE methods we introduce splines as basis functions. The
most common spline bases are tensor, either defined by B-splines or NURBS.
Herein we will use tensor-product B-splines as well as locally refined B-
splines denoted LR B-splines. Given the global knot vectors
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Ξ = [ξ1, ξ2, ..., ξm+p+1] and H = [η1, η2, ..., ηn+q+1] and an m × n grid of
control points Ci,j , then a tensor 2D B-splines surface of polynomial order
p in x-direction and q in y-direction may be written as follows:

F(ξ, η) =
m∑
i=1

n∑
j=1

Ci,j Bp,Ξi(ξ) ·Bq,Hj (η) (26)

Here, the local knot vectors Ξi and Hj are defined as a subsequence of the
corresponding global knot vectors Ξ and H, respectively. The function space
we use is given by

Sp,q = span {Bp,i(ξ)⊗Bq,j(η)}m,n
i=1,j=1 (27)

For LR B-splines, these will instead be defined over a single running global
index i using the local knot vectors Ξi and Hi by

F(ξ, η) =

ndof∑
i=1

γiCiBp,Ξi(ξ) ·Bq,Hi(η) (28)

where the regularity is given by the local knot vectors and γi is the weighting
factors needed to obtained partition of unity, see the Section 2. Let the
function space spanned by LR B-spline basis functions be denoted by

Lp,q = span
{
BΞi

(ξ, η)
}n

i=1
(29)

A proper function space for the FE trial functions vh and the FE test
functions wh to achieve a compatible FE space is as follows:

Vh(Ω) =
{
wh ∈ V(Ω) | wh(F

−1(x1, x2)) ∈ Lp,q(ξ, η)
}

(30)

where the coordinate mapping F is assumed to be an onto and invertible
mapping between the parameter domain denoted by Ω̂ and the true domain
Ω, i.e. for any (x1, x2) ∈ Ω there exist (ξ∗, η∗) ∈ Ω̂ such that (x1, x2) =
F (ξ∗, η∗).

Convergence rates for splines

Our model problem herein is the Poisson problem for which we have that:

||u− uh||E =
√
a(u− uh, u− uh) = (∇(u− uh),∇(u− uh)) = |u− uh|H1 .

(31)
Thus, for our model problem the a-norm is equal to the H1 semi-norm. The
a priori convergence estimate given in Equation (22) is proven to hold for
tensor B-splines (or NURBS), see Bazilevs et al. [2]. We conjecture that it
also holds for the LR B-splines that we are using herein. Note that we are
not actively using the a priori convergence rates in our adaptive refinement
strategies. However, we will in the numerical studies compare the obtained
convergence rates towards the ones given by Equation (22).
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Adaptive refinement of isogeometric finite elements

As shown in Section 3.1 by proper adaptive mesh refinement (AMR) we may
utilize the full power of higher order methods and that is highly relevant for
Isogeometric FE-methods. One important application of LR B-splines is to
use them as an enabling technology for achieving optimal convergence order,
i.e. accurate and efficient FE-models. Herein, our aim is to demonstrate
and test the performance obtain by adaptive refinement using LR B-splines.
Thus, we have chosen to investigate this by solving benchmark problems
with known analytical solution — the exact error is thus computable.

The refinement algorithm chosen herein is based on increasing our so-
lution space by β · ndof new degrees of freedom for each iteration, where β
is a prescribed growth parameter. This is achieved by continued refinement
of the elements having the greatest elemental error contribution, ρe, to the
global relative error, ρ

ρe =
||u− uh||E(Ωe)

||u||E(Ωe)
and ρ =

||u− uh||E(Ω)

||u||E(Ω)
=

√√√√
nel∑
e

ρ2e (32)

Typical we choose 5% ≤ β ≤ 20%. Small values for β gives more accurate
refinement process, whereas larger values result in fewer refinement steps.

Regarding adaptive refinement of isogeometric finite elements there have
been some recent attempts using T-splines and hierarchical B-splines, see [5,
7, 21, 22]. It is common to mark those elements (knot-span) with highest
energy error and subdivide into into four new elements by inserting a cross
(ignoring large aspect ratio elements for now) through the element center.

As discussed in the previous section, the length of the crossing LR mesh-
lines will have to be of a certain length in order to actually split a basis
function properly. The actual length is depending on the surrounding topol-
ogy of the mesh, and may split some neighboring elements into two new
elements. In order to do a splitting we will need to compute the length of
the new knot lines to ensure a proper meshline extension. This can be ex-
tracted by the element to basis function correspondence, which lists all basis
functions which have support on each particular element. This is already
available as it is needed in the assembly of the stiffness matrix, so no extra
computations are required. Moreover, this eliminates the need for expensive
topological searches.
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4 Adaptive mesh refinement using LR B-splines

4.1 LR spline refinements

Although Dokken et al. [6] describe how to manipulate the LR B-splines
when inserting knot lines, it is still up to the implementer to choose exactly
which knot lines to use for refinement purposes. The inserted knot lines must
at least entirely split an existing B-spline, which puts a minimum length re-
quirement on it. This is to ensure a proper meshline extension which causes
a B-spline in a state of having not minimal support, according to Defini-
tion 12. We have several options available when doing the refinement. Not
only the length and the position of the knot lines, but also their multiplicity
as splines in general open for duplicate knots. We will in the numerical ex-
amples investigate how much impact these choices made in the refinement
process have on the properties of the resulting LR B-splines space.

As a starting point for the refinement algorithm we have a list of element
error contributions ρe, see (32). This may be an estimated error based on
some a posterior error estimator, or exact error in case of a known exact
solution. For all results presented here, we are using the latter. A straight-
forward implementation would be to refine the β percent elements with
largest error contribution. However, this will not suffice for our purposes,
since we will be comparing different refinement schemes. To ensure a proper
growth of the solution space S we propose to continuously insert new knot
lines according to some algorithm until we have β percent more B-splines
in our spline space. This will ensure that different refinement schemes are
comparable.

To see an example of the converse, consider inserting a new knot in a
1D univariate set of B-splines. Using multiplicity 1, this will increase your
spline space by 1, while using multiplicity p will cause p new B-splines, even
though the number of elements refined is the same in both cases.

Definition 18. The refinement parameter β of an iterative scheme is
defined such that two LR splines Li and Li−1 satisfy

Li−1 ⊂ Li

(1 + β) |Li−1| ≤ |Li|

Which simply states that Li should be a refinement of Li−1 and the number
of B-splines (not elements) should grow by at least β percent each iteration.

Assume we have a LR-mesh as given in Figure 17 and we want to refine
the element Te = [2, 4]×[1, 2]. To find out what are appropriate LR meshline
extensions, we list all B-splines with support on this element and these are
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Figure 17: LR-mesh with an element marked for refinement

Table 3: B-splines with support on [2, 4]× [1, 2] in Figure 17 - 18.

i Ξi × Hi

1 [0024] × [0002]
2 [0245] × [0002]
3 [2456] × [0012]
4 [0024] × [0023]
5 [0245] × [0023]
6 [2456] × [0123]
7 [0024] × [0234]
8 [0246] × [0235]
9 [2466] × [1235]

shown in Figure 18 and tabulated in Table 3. An obvious choice when
choosing the refinement line, is to make sure that it is refining every B-
spline over that element. This can simply be done by making it run from
the smallest ξ-knot value to the largest, and likewise in the other parametric
direction. In this particular case one would then have a ξ-line going from
ξ = 0 to ξ = 6 with constant η = 1.5 such that it passes through the center
of the element. For the other parametric line, this would then have to run
from η = 0 to η = 5 through ξ = 3. This is the "safe" way of refining, as
one will have little reason to prioritize refining some B-splines over others
given the limited information available.

However another obvious option also comes to mind. Since we are doing
local refinement, it is natural to want the refinement lines to be as local as
possible. One might argue that we should insert the smallest possible line,
while still being long enough that it actually splits an entire B-spline. This
information can directly be computed from the local B-spline list in Table 3
as one can iterate through the list and choose the smallest knot vector and
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choose this. Note that this comes with the loss of uniqueness, since both Ξ1

and Ξ3 has parametric ξ-length 4 in the above example. We now must decide
on whether to use Ξ1 and insert [0, 4] or to use Ξ3 and insert [2, 6]. Of course
this will have implications on the resulting spline space, but without more
knowledge of the underlying problem, it is not possible to say which one is
advantageous over the other. We thus propose to pick a random function
of all the available with smallest parametric support. Notice again we don’t
need any topological information about the surrounding mesh topology to
insert the knot lines. We are simply extracting every information we need
locally, and the resulting refinement will not yield any more than what is
extracted here.

As all generalizations of B-spline spaces, LR B-splines do also allow for
duplicate knots. Duplicate knots work just in the same way as they do for
regular tensor product B-splines, in which the B-splines all have continuity
Cp−m where p is the spline polynomial degree and m is the knot multiplicity.
We may choose to insert not regular knot lines, but also knot lines of higher
multiplicity. This is obviously a good idea if we actually want the lower
continuity for instance if we either are doing geometry modelling or if we
know something about the underlying problem. However this is not the only
reason to include the double knot lines. As will become apparent later, this
will help us keep the refinement more localized and reduce the propagation
effects.

So to sum up: we have several design parameters when choosing a re-
finement scheme. We may choose

• which B-splines with support on the element to refine
• the location of the element split
• the multiplicity of the inserted knot lines

the second point refers to the fact that one doesn’t necessary need to create
a cross through the element center as described in the example above. There
is nothing preventing us from inserting two lines in both directions through
each element, placing them one third from the edge each, effectively splitting
the element into 9. For this discussion, we will restrict ourself to inserting
crosses through the element centers. These are all illustrated in Figure 19
where we refine a shaded element using different techniques.
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(i) B[2466; 1235]

Figure 18: All B-splines with support on the element [2, 4]× [1, 2].
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(a) Minimal span refinement - refining
B-spline in Figure 18a
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(b) Minimal span refinement - refining
B-spline in Figure 18c

0            1              2              3              4               5            6

5

4

3

2

1

0

(c) Refining all B-splines with support
(see Figure 18)
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(d) Off center line insertion splitting
same as in (a)
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(e) Duplicate knot line insertion,
splitting the same as in (a)

Figure 19: Different choices for refining the shaded element.
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4.2 Local refinement strategies for LR B-splines

We will here present three different local refinement strategies that will be
used in our numerical examples. The starting point for all of these is the
assumption that we have identified a set of elements which needs refinement
and proceed to refine these using one of three strategies. The goal is to split
the marked element (knot span) into four new elements by inserting a cross.
However, as already discussed, this cross cannot be limited to only spanning
the marked element.

Full span

Our strategy here is to refine every B-spline with support on the marked
element. The inserted meshline in the ξ-direction will then have to span from
the minimum ξ-knot to the maximum ξ-knot of all functions with support
on the marked element. Likewise for the meshline in the η-direction. The
exact length of the two inserted meshlines are extracted by using the list of
element to B-splines correspondence.

This strategy will make sure that all B-splines with support on the
marked element (knot span) are treated equally and all of them will be
split by the refinement. However, the drawback of this strategy is that one
get a somewhat large footprint. Moreover, the neighbouring elements will
be split by a single line which will in essence double their aspect ratio. This
is depicted in Figure 20a where one can clearly see the rectangular shaped
neighbouring elements arising from this strategy.

Minimum span

This refinement strategy inserts a cross through the marked element center
with the aim of making the refinement footprint as small as possible. Thus,
we want the inserted meshlines to be as short as possible, but still splitting
at least one B-spline. From the list of element to B-spline correspondence
we may deduct which B-splines having the smallest ξ- and η-support. Note
that this comes with the loss of uniqueness as there may be several B-splines
with the same length of the ξ-span, but with different local origin, i.e. for
the B-spline i and j we may have ξip+1 − ξi0 = ξjp+1 − ξj0 but ξi0 �= ξj0 (see
Figure 18a - 18c). This local refinement strategy is depicted in Figure 20b
where we have chosen to split only one of the several available B-splines.
Due to the (in general) lack of uniqueness of which B-splines to split, we
will herein propose to do a random choice of which B-spline to refine. This
will cause properties such as symmetry to be lost.
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Structured mesh

The idea of refining elements is a legacy from the finite element method
where every inserted vertex would correspond to an additional degree of
freedom. With LR B-splines this is not the case and as seen from the two
previous schemes the required length of the inserted meshlines may vary
from element to element. Another way of refining LR B-splines is identifying
B-splines which needs to be refined as opposed to which elements. In the
case of the synthetic diagonal refinement problem presented later, these are
easily extracted as all functions along the diagonal that satisfy ξi = ηi for
i = 0, ..., p+1. However, for general isogeometric finite element computations
we need a criteria to identify which B-spline to be refined. We propose the
following definition

Definition 19. The B-spline error is the sum of element error over all
supported elements, i.e.

‖e‖2M(Ni)
=

∑
K∈M(Ni)

‖e‖2K (33)

where M(Ni) is the set of elements on which the B-spline Ni is nonzero,
and ‖e‖K is the usual element error measured in energy norm,

‖e‖2K = a(u− uh, u− uh)ΩK
(34)

Once the B-splines which are subject to refinement are identified, we
proceed to refine these by inserting a net of knot lines halving the largest
supported knot intervals as shown in Figure 21.

Regularity

We note that just like tensor product B-splines, LR B-splines also allow for
duplicate knots. The effects of duplicate knots is twofold. Firstly it reduces
the regularity, such that a knot of multiplicity m will give rise to a Cp−m

function across that knot, where p is the polynomial degree. In addition
to the decreased regularity, one also decreases the support of the function.
This will in turn diminish the propagation effects of the refinement. We will
investigate refinement using different regularities.

4.3 Hanging nodes in FEM versus LR B-splines

Adaptive refinement of classical quadrilateral (Lagrange) FE has been achieved
by means of many different approaches, e.g: Subdivision of marked
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(a) Full span - split all
functions on one element,
here only two of all the nine
functions with support on
this element is depicted
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(b) Min span - split one
random functions on one el-
ement, note that for odd or-
der splines (or by a poor
random pick), the symme-
try would be lost

(c) Structured Mesh - split
all knot spans on one B-
spline, notice that no bad
aspect ratio elements are
created

Figure 20: The ideas behind the different refinement strategies, here illus-
trated on a quadratic tensor product mesh. Notice the fundamental differ-
ence in that 20a - 20b is refining an element, while 20c is refining a B-spline.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 21: Three iterations of an example structured mesh refinement. No-
tice that we at each iteration halve the largest supported elements. A selec-
tion of LR B-splines over the mesh from iteration 3 is depicted in Figure 22

• patch of elements into smaller elements with transition zones to contain
C0 continuity

• elements into four new elements using multipoint constraints to contain
C0 continuity

• elements into four new elements using transition elements to contain
C0 continuity

To give some insight into the developed local refinement strategy using LR
B-splines we will below illustrate how it for p = 1 compares to the the
concept of using transition elements for adaptive refinement of FE grid.
The comparison is chosen for a basic refinement case and we would like to
emphasize that adaptive refinement using LR B-splines is in general more
versatile than the concept of using transition elements.
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(a) (b)

Figure 22: Some example quadratic LR B-splines over the LR mesh from
Figure 21c

Refinement for p = 1

Assume that we want to divide the centre FE element in the grid shown
in Figure 23 in two elements by a horizontal split1. The concept of using
transition elements then implies that we to the left and right of the centre
element introduce 5-noded transition elements, see Hughes [10]. In Figure 24
we have displayed the element nodal shape functions for three of the five
nodes. For node 1 and 4 the nodal shape functions for the 5-noded transition
element are identical to those for node 1 and 4 for the standard bilinear 4-
noded quadrilateral. However, for node 2 and 3 we have to modify the
element nodal shape functions compared to the 4-noded in order to achieve
that the shape function in node i evaluated at node j is either equal to 1
if i = j or equal to 0 if i �= j. Finally the element shape function for the
new inserted node 5 is as displayed in Figure 24c. It is easy to verify that
C0-continuity is attained for the refined FE grid displayed in Figure 24.
To achieve the same refinement using LR B-splines we would insert a hor-
izontal meshline as displayed in Figure 25. The nodal basis functions cor-
responding to those in Figure 24a–24c are displayed in the Figures 26–28,
respectively. The leftmost column is showing an alternative way of plotting
LR B-splines and is to be understood in the following way. Each continuity
reduction line i.e. the LR meshlines, is plotted. For each B-spline we plot
an ellipse with center at the Greville point (average value of the local knot
vector) and with a size corresponding to the size of the support of that par-
ticular B-spline. Furthermore, we have shaded the ellipse for the particular
B-spline which is shown, as well as the support of that function.

The discrete function space after refinement is identical for the FE and
LR B-spline case. The only difference is that we in the LR B-spline case

1A horizonal split is chosen for simplicity instead of a cross, but the this comparison
apply for a cross as well.
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Figure 23: The transition element concept: Horizontal split of the centre
element into two new elements.

get three more elements, whereas for the FE case we only get one new ele-
ment. However, notice that we in Figure 23 have stipulated the transition
elements to indicate that one should treat them as two elements when per-
forming numerical integration. The reason being that the element nodal
shape functions 2, 3, and 5, are not infinitely smooth across the stipulated
line (they are only C0). Thus, in practice we need to do the same amount
of work related to numerical integration for both the FE and LR B-spline
case.
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(a) Element nodal shape
function for element node
4 is unchanged

1 2

34

5

(b) Element nodal shape
function for node 3 is mod-
ified
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(c) Element nodal shape
function for the inserted
node 5

Figure 24: The transition element concept: The 5-noded transition element
and its element nodal shape functions.
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Figure 25: LR B-spline refinement: Inserting a horizontal meshline in order
to to split the centre element into two new elements.

(a) Function space and sup-
port

(b) Top view (c) Perspective view

Figure 26: B-spline B[135; 579].
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(a) Function space and sup-
port

(b) Top view (c) Perspective view

Figure 27: B-spline B[357; 679].

(a) Function space and sup-
port

(b) Top view (c) Perspective view

Figure 28: B-spline B[357; 567].
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C0-Refinement for p = 2

To make a comparison between classical Lagrange functions and LR splines
with p = 2, we must consider C0 elements. This is perfectly possible by using
double knot lines, which is done here. The example mesh is taken from the
diagonal refinement case for p = 2 and m = 2 which is going to be discussed
in the Section 5.2. We see that the Greville points for p = 2 do in fact line up
with the traditional way of drawing Lagrangian biquadratic finite element
nodes. We have the usual 9 nodes for each element, provided that there are
no hanging nodes nearby. Note however that the basis functions themselves
are different. LR B-splines are non-negative, while Lagrange functions do
take negative values. Nevertheless, they have the same support, and we see
that around the hanging nodes, the basis functions vanish. This is equivalent
to setting multipoint-constraints on these nodes, effectively removing them
as a degree of freedom. This is can be seen in Figure 29 - 33, where several
of the B-splines are shown. Also note that there is no upper bound on the
number of hanging nodes on a single element, as several elements have 2
hanging nodes in this example.

It is interesting to see that one might recreate the Lagrangian function
space, also with hanging nodes. However it is important to note that this
is something that we in general will not try to do. Doing this causes us to
loose the smoothness which is characteristic of all spline spaces, and this is
a property which we would like to preserve.

(a) Function space and sup-
port

(b) Top view (c) Perspective view

Figure 29: B-spline B[0448; 0448]
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(a) Function space and sup-
port

(b) Top view (c) Perspective view

Figure 30: B-spline B[4488; 0004]

(a) function space and sup-
port

(b) Top view (c) Perspective view

Figure 31: B-spline B[4488; 0044]

(a) function space and sup-
port

(b) Top view (c) Perspective view

Figure 32: B-spline B[0224; 2448]
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(a) function space and sup-
port

(b) Top view (c) Perspective view

Figure 33: B-spline B[2448; 0044]
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5 Numerical Results

5.1 Preliminaries

To demonstrate the performance of adaptive refinement using LR B-splines,
we study one synthetic case and two Poisson type problems with known
analytic solutions. The synthetic case denoted Diagonal Refinement is cho-
sen as it illustrates very well the spreading effect of the refinement schemes
and has been addressed by other researchers in the isogeometric community
([5, 7, 13]). The first Poisson example denoted L-shape is chosen as it has
a point singularity at the boundary that causes reduced convergence rate
when performing uniform refinement. Whereas the next Poisson problem
Interior Layer has a rough right hand side that impose a sharp layer along a
circular arc in the interior of the domain. The asymptotic convergence rate
is here suboptimal for uniform refinement until the uniform element size h
becomes smaller than a threshold given by the width of the interior layer.

The aim of the numerical experiments herein is to investigate whether
adaptive refinement using LR B-splines achieves optimal convergence rate
for non-smooth problems such that it gives better accuracy per dof compared
to uniform refinement. Thus, the adaptive strategy is based on refining a
prescribed portion of the the elements, i.e. β · nel having the greatest ele-
mental contribution, ρe to the global error, ρ in order to achieve uniform
element error distribution. Furthermore, we want to investigate the sensi-
tivity in accuracy and convergence rates towards relevant parameters e.g.
polynomial order p, regularity Cr and local refinement strategies.

All the cases are analysed with LR B-splines of polynomial order p =
2, 3, 4. We have performed the tests with different regularity, Cr, were 0 ≤
r ≤ p − 1, obtained by using multiple knot lines. The multiplicity m = 1
corresponds to maximum regularity r = p − m = p − 1 whereas m = p
corresponds to minimum regularity r = p − m = 0. We have used two
different local refinement strategies denoted full span and structured mesh.

For the synthetic case Diagonal Refinement we present the following
results:

• Refined grids: Representative examples of refined grids
• Tables showing the number of dofs and elements for each refinement

step
• Graphs showing the relation between number of elements and number

of dofs

For the two Poisson cases (L-shape and Interior Layer) we present the
following results:
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• Convergence plot: Log of relative error vs log of number of degrees of
freedoms (ndof)

• Refined grids: Representative examples of refined grids
• Error distribution: Elemental contribution, ρe, to the total error ρ
• Root mean square error of the element error distribution

The exact error e = u − uh is measured in the energy norm (a-norm)
||e||E as given in Equation (21). Let ||e||E(Ω) and ||e||E(Ωe) be the global and
element error, respectively. Then we define the root mean square of exact
element error:

||e||RMS =

(
1

nel

nel∑
e=1

(||e||E(Ωe) − ||e||avg)
2

)1/2

/||e||avg (35)

where the average exact element error is defined as

||e||avg =
1

nel

nel∑
e=1

||e||E(Ωe) (36)

The quantity root mean square of exact element error given in Equation (35)
measures the deviation from an uniform element error distribution. For
uniform element error distribution we have ||e||RMS = 0. Thus, we refer to
asymptotically optimal mesh refinement (see Kvamsdal and Okstad [12]) as
a sequence of meshes satisfying

lim
h→0

||e||RMS = 0 (37)

5.2 Diagonal refinement

As an introductory example we look at the diagonal refinement. This ex-
ample highlights some of the problems that local refinement strategies face
since the request for refinement is in conflict with the parametrization direc-
tion. With the parametrization being parallel to the coordinate axes, and
the diagonal 45 degrees on this, one will have to refine both parametric di-
rections equally. Dörfel et al. [7] showed that under T-spline refinement this
could provoke a worst-case scenario where the mesh lines propagate through
the entire domain.

We will here present three different refinement strategies for this par-
ticular problem and analyse the resulting spline space resulting from these.
The starting point for all of these is the assumption that we have identified
a set of elements which needs refinement (here: the diagonal elements) and
proceed to refine these using one of three strategies.
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(a) 1st refinement (b) 3rd refinement (c) 5th refinement

Figure 34: The Diagonal Refinement problem: Full span and structured
mesh refinement strategy using single knot lines and bicubic B-splines. Note
that in the special case of diagonal refinement, these strategies coincide
completely

As discussed already, every inserted mesh line must at least span the
support of at least one basis function. Thus it is in general not possible to
only insert a single cross through one element when refining. If the inserted
knot lines are limited to that element, then they will in general not be long
enough to traverse the entire support of a basis function.

Results

Several refinement strategies was tested to see their performance on this
benchmark test for local refinement. The setup was using p = 3 in each
parametric direction and trying to refine the elements along the diagonal.
No a priori knowledge on the problem was used as the input was just a given
set of elements to be refined on a general LR B-spline. The first strategy that
we tested was the full span strategy which for all tagged elements, chooses
to refine all B-splines with support on that element. To accomplish this, we
need a rather long mesh line in both ξ- and η-direction. Thus the charac-
teristic propagation effect is rather large as can be seen in Figure 34 where
several steps of the refinement process have been illustrated. Even if the
propagation is clearly apparent, the refinement is still very much contained
in a band along the diagonal and global refinement is avoided.

The diagonal test case is very exceptional in the sense that bad aspect ra-
tio elements that are characteristic of the full span refinement are all canceled
out by the next level on the diagonal. Thus the full span strategy produces
identical meshes as the structured mesh strategy. However, the differences
between these two strategies become apparent when they are used in an
adaptive refinement process as shown in the next two subsections.
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(a) 1st refinement (b) 3rd refinement (c) 5th refinement

Figure 35: The Diagonal Refinement problem: Minimum span refinement
strategy using single knot lines.

The final option is the minimum span refinement. Due to the fact that
this picks a random function we introduce stochastic effects in our refinement
strategy and things such as symmetry is in general lost. It does however turn
out to be more local than in the previous two cases. The results of a series
of iterations using this refinement strategy is plotted in Figure 35. Note
that after the first refinement, not a single line is added to the top left and
bottom right portion of the mesh. This is due to the interpolatory basis
functions at the edge which only span one element. Since the algorithm
compares meshline lengths, it will always favor crossing zero-span elements
such as the ones located at the edges.

Although the latter refinement strategy does indeed reduce the effect of
propagation, it is still apparent. Inspired by similar results for T-splines
[5], we now test duplicate knot lines. The effect of splitting the elements
using both double and triple knot lines is here shown in Figure 36 and 37.
The results are quite promising as the triple knot line insertion removes all
propagation into neighbouring elements. It is kept perfectly local and results
in a very good mesh. One thing to keep in mind though when inserting
duplicate knots is that each B-spline is splitted into more than two new B-
splines. This results in a larger growth of the total number of B-splines than
when using single knot lines. So even if the mesh seems tighter, or more
compact, Figure 37 contains more B-splines than the mesh in Figure 35.

The corresponding index mesh to Figure 36-37 is given in Figure 38-39.
Notice the high aspect ratio of some of the elements in Figure 35 and to
a lesser degree in 36. This is a side effect which happens when inserted
knot lines are traversing neighbouring elements and is not restricted to the
element being refined. Of course, it is possible to combat this effect by
recursively inserting more lines to compensate for this aspect ratio, but that
would be in contrast with what we are trying to achieve here, which is to
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(a) 1st refinement (b) 3rd refinement (c) 5th refinement

Figure 36: The Diagonal Refinement problem: Minimum span refinement
using double knot lines.

(a) 1st refinement (b) 3rd refinement (c) 5th refinement

Figure 37: The Diagonal Refinement problem: Minimum span refinement
using triple knot lines.

keep the refinement as local as possible.

Degrees of freedom versus elements

From the numerical experiments we observe that the number of basis func-
tions (i.e. dofs) versus number of elements varies significantly with the reg-
ularity. If we compare the mesh using single knot line refinement (C2-
refinement) in Figure 35 with the mesh using triple knot lines refinement
(or C0-refinement) in Figure 37 we get the numbers displayed in the Ta-
ble 5. The most refined C0-mesh is containing approximately 5 times as
many degrees of freedom and less than half the number of elements when
compared with the most refined C2-mesh.

We may take a deeper look into exactly how much this effect is apparent
by plotting the number of basis functions and elements for our diagonal
refinement case. We compare the minimum span refinement using single,
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(a) 1st refinement (b) 3rd refinement (c) 5th refinement

Figure 38: The Diagonal Refinement problem: Index domain for minimum
refinement using double knot lines.

(a) 1st refinement (b) 3rd refinement (c) 5th refinement

Figure 39: The Diagonal Refinement problem: Index domain for minimum
refinement using triple knot lines.

double and triple knot lines. The results are given in Table 5. We see a
clear tendency that the C0 refinement keeps above 7:1 ratio between the
number of degrees of freedom and the number of elements, whereas for the
C2-refinement the ratio is dropping below 1:1 for the most refined grid.

For any univariate Cr-regular B-spline basis we note that nel elements
gives

ndof = nel(p− r) + r − 1 (38)

where p is the polynomial order and the knot multiplicity is m = p − r.
For a tensor product spline with n2

el elements it is clear that this gives
n2
dof = ((p − r)nel)

2 + O(nel). For our particular (minimum span) case we
have p = 3 and r = 0, 1, 2 and it seems reasonable that ndof is approximately
8 times larger than nel for C0 and a factor 0.6 for C2 at the most refined
grid. We see that LR B-splines shows a somewhat similar growth of basis
function to elements as regular tensor product B-splines does. This is shown
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Table 4: The Diagonal Refinement problem: Number of elements vs degrees
of freedom using the full span strategy.

refinement C2- C2- C1- C1- C0- C0-
count elements DOFs elements DOFs elements DOFs

1 4 25 4 36 4 49
2 16 49 16 100 16 169
3 64 121 46 220 46 439
4 196 253 112 452 112 1009
5 496 505 250 908 250 2179
6 1132 997 532 1812 532 4549
7 2440 1969 1102 3612 1102 9319

Table 5: The Diagonal Refinement problem: Number of elements vs degrees
of freedom using the minimum span strategy.

refinement C2- C2- C1- C1- C0- C0-
count elements DOFs elements DOFs elements DOFs

1 4 25 4 36 4 49
2 10 31 10 60 10 103
3 26 47 26 124 22 199
4 66 87 66 248 46 379
5 198 191 150 484 94 727
6 506 364 325 956 190 1411
7 1215 747 682 1904 382 2767
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Figure 40: The Diagonal Refinement problem: Ratio of degrees of freedom
versus elements using both full span (squares) and minimum span (stars)
local refinement strategy. For tensor product bicubic splines, we have the
asymptotic limit of 9 for m = 3, 4 for m = 2 and 1 for m = 1, see Equa-
tion (38).

in Figure 40 where the tabulated values are plotted.
For the solution of stationary problems such as the ones considered in this
paper this doesn’t have too many implications. However, for the solution
of a time-dependent non-linear elasticity problem, where the global coeffi-
cient (stiffness) matrix must be assembled for each iteration, this might be
a drawback. The cost of numerical integration (by Gaussian quadrature)
is dominated by the number of Gaussian integration points and hence the
number of elements. Due to this huge discrepancy between the number of
dofs and the number of elements, one might argue that measuring conver-
gence rates and running time should no longer be plotted as a function of
dofs, but rather as a function of elements. For our purposes however we note
that the bottleneck is still the solution of the linear system of equations, and
hence we keep the convergence plots with dof along the x-axis.



78 Paper I: Isogeometric Analysis Using LR B-splines

(0,1)

(1,0)

(-1,-1) (1,-1)

(-1,1)

Ω∂ΩN

∂ΩN

∂ΩN

∂ΩN

∂ΩD

∂ΩD

(a) The domain Ω and the boundary condi-
tions

(b) The exact solution, see Equation (40)

Figure 41: The L-shape problem: A Poisson problem with a singularity
point on the boundary.

5.3 L-shape

Problem definition

The problem consist of solving the stationary heat equation, or Laplace equa-
tion ∇2u = 0 on a L-shaped domain Ω = [−1, 1]2 \ [0, 1]2 with appropriate
boundary conditions, see Figure 41.

∇2u = 0 in Ω
u = 0 on ∂ΩD

∂u
∂n = g on ∂ΩN

(39)

with g(x, y) given by the exact solution at the Neumann edge and n being
an outward unit normal. It can be shown that

uex(r, θ) = r2/3 sin

(
2θ + π

3

)
(40)

is a solution to the Laplace equation ∇2u = 0, and this is what we will
be using as our analytical solution. The generation of g is straightforward
from uex but is not given as a simple expression and the details are omitted
here. The homogeneous Dirichlet boundary condition is given at y = 0, x ∈
[0, 1] and x = 0, y ∈ [0, 1], while all other edges are given with Neumann
conditions (see Figure 41a). Note that the exact solution, which is pictured
in Figure 41b exhibit a singularity at the origin. The function has a sharp
edge at that point, and the derivative is not well defined there.
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In Figure 42 we see that the convergence for uniform mesh refinement is
limited by the strength of the singularity, i.e. the convergence rate is equal
to −q/2 = −1/3. For problems where the solution is not sufficiently smooth,
u /∈ Hp+1, as the L-shape with a singular point on its boundary, we do not
obtain optimal convergence. In particular, the use of high order polynomials
is then inefficient.

Results

In Figure 42 we show the results obtained by adaptive refinement using
LR B-splines. The results are displayed using different polynomial order
p = {2, 3, 4}, portion of refinement β = {5, 20}, multiplicity/regularity m =
{0, p− 1} and local refinement scheme.

The main observation is that we achieve optimal asymptotic convergence
rate (valid for (quasi) uniform element error distribution), i.e. −q/2 =
−p/2 = {−1,−3/2,−2} for p = {2, 3, 4}, respectively.

We clearly see that high regularity (i.e. low multiplicity) is efficient when
we compare relative error versus number of degrees of freedom. At first
glance this seems odd, as the L-shape is one of the benchmarks for demon-
strating the need for local refinement. Moreover, in the above example we
concluded that the "perfect" local refinement was the one which introduced
p−1 multiple knot lines as this did not propagate at all. However, introduc-
ing double knot lines will split each basis function into three new functions,
as opposed to inserting a single knot line for splitting it into two. For triple
knot lines this will of course split each function into four new ones. This
means that the multiple knot line insertion actually gives a faster growth of
the degrees of freedom. Furthermore, we see that the convergence results
are more sensitive to the tested variation of local refinement strategies for
higher polynomial order p and higher percentage of elements added in each
refinement β. Notice that for (p,m) = (4, 1) the structured mesh refinement
gives a higher error than for the full span refinement strategy. Furthermore,
from our experiments we saw that for β = 50 we did not always obtain
optimal convergence rate, i.e. the value of β should not be chosen too large.

The resulting grids are different for the different local refinement strate-
gies. This is illustrated in the Figures 43–45 where we have displayed the
effect on the refined grid using different local refinement strategies. As can
be seen in the two Figures 43 and 44 the full span method have more el-
ements with high aspect ratios than the structured mesh method, but the
latter one give a more widespread stepwise uniform refinement towards the
singularity point. However, when terminating at 3300 dofs, the two meth-
ods produce quite similar global energy error. In general, the two different
refinement strategies are both able to refine sharply around the origin where
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the singularity appears.
In Figure 46 we have displayed the root-mean square of the exact element

error (in % measuring the deviation from uniform error distribution) versus
ndof obtained for uniform refinement using B-splines and adaptive refinement
using LR B-splines. We see immediately that for the uniform refinement
using B-splines the root mean square for the error distribution increases
with number of uniform refinements. This is as expected as the error in
the vicinity of the singularity point will be more and more dominant with
uniform refinement. The highly non-uniform error distribution is consistent
with the observed reduced convergence order in Figure 42. For the adaptive
refined grids we see that for p = 2 the rms of the error distribution reduces
in the first refinement steps and than becomes more or less constant rms =
5 − 8 · 10−1. As discussed in the paragraph above the lack of sufficient
refinement around the singularity point prevent the rms to approach to
zero. However, the values obtained may be classified as quasi-uniform, i.e.
the rms is bounded when increasing ndof. For p = 3 we see that the rms-
values are a bit higher (around 1) and more differences between the different
local refinement strategies. The results for p = 4 is even more spread and
in particular for β = 20 we observe that the rms-values are slightly non-
decreasing. This is consistent with the observation made above, i.e. that
for p = 4 we get noticeable higher error for β = 20 than for β = 5, see
Figure 42 f). Notice that the local refinement strategy full span have the
lowest rms-value in all cases! Furthermore, that low multiplicity (i.e. m = 1)
gives lower rms-values for full span than for high multiplicity, but this is
not always the case for the structured mesh method.
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(c) p = 3, β = 5
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(d) p = 3, β = 20
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(e) p = 4, β = 5
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Figure 42: The L-shape problem: Relative global errors (in %) (measured
in the a-norm) versus ndof obtained for uniform refinement using B-splines
and adaptive refinements using LR B-splines. The dotted lines are the sub-
optimal convergence rate O(n

−1/3
dof ) valid for (quasi) uniform refinement and

the optimal asymptotic convergence rates (valid for (quasi) uniform element
error distribution) O(n−1

dof), O(n
−3/2
dof ), O(n−2

dof) for p = {2, 3, 4}, respectively.
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(a) (pmsb) = (2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) = (3,1,0,5) (d) (pmsb) = (3,1,2,5)

(e) (pmsb) = (4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 43: The L-shape problem: The 3rd adaptively refined grid M3 ob-
tained by using LR B-splines with different polynomial degrees p = {2, 3, 4}
and local refinement strategies, but same multiplicity m = 1 and β = 5
(notice that β is denoted b in the subfigure captions).
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(a) (pmsb) = (2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) = (3,1,0,5) (d) (pmsb) = (3,1,2,5)

(e) (pmsb) = (4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 44: The L-shape problem: The 12th adaptively refined grid M12 ob-
tained by using LR B-splines with different polynomial degrees p = {2, 3, 4}
and local refinement strategies, but same multiplicity m = 1 and β = 5
(notice that β is denoted b in the subfigure captions).
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(a) (pmsb) = (2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) = (3,1,0,5) (d) (pmsb) = (3,1,2,5)

(e) (pmsb) = (4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 45: The L-shape problem: The final adaptively refined grid Mn ob-
tained by using LR B-splines with different polynomial degrees p = {2, 3, 4}
and local refinement strategies, but same multiplicity m = 1 and β = 5
(notice that β is denoted b in the subfigure captions).
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(b) p = 2, β = 20

10
2

10
3

10
4

10
0

10
1

n

‖e
‖ R

M
S

Root�mean�square�error�vs�degrees�of�freedom

p=3, β=5%

 

 

Mult=1,Full span

Mult=3,Full span

Mult=1,Structured

Mult=3,Structured

Mult=1,Uniform

Mult=3,Uniform

(c) p = 3, β = 5
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(d) p = 3, β = 20
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(e) p = 4, β = 5
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(f) p = 4, β = 20

Figure 46: The L-shape problem: Root-mean square of exact element error
(in %) (measuring the deviation from uniform error distribution) versus ndof
obtained for uniform refinement using B-splines and adaptive refinement
using LR B-splines. Results displayed for p = {2, 3, 4} (from top to bottom)
and β = {5, 20} (left to right).
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5.4 Interior layer

Problem definition

The next test problem is a Poisson problem on a unit square with a sharp
interior layer due to a highly varying right hand side (volumetric forcing).
The problem is given as

∇2u = f(x, y) in Ω
u = uD(x, y) on ∂ΩD

∂u
∂n = g(x, y) on ∂ΩN

(41)

and has an exact solution given by

u(x, y) = arctan
(
S(

√
(x− 1.25)2 + (y + 0.25)2 − π

3
)
)
. (42)

Note that the right hand side f(x, y) is generated by taking the Laplacian
(∇2) of the analytical solution given in Equation (42) and similarly g(x, y)
is found by taking normal derivative, i.e. ∂u

∂n , of the analytical solution. The
analytical solution depicted in Figure 47b displays a "front"-type of behav-
ior where the solution is rapidly changing across a circular band through
the domain. This problem is mathematically smooth i.e. u ∈ Hp+1(Ω) for
any finite p. However, due to the highly varying right hand side we may
only expect optimal convergence order when the element size h is less than
a given threshold that depends on the sharpness/bandwith of the interior
layer. Hence, we may expect suboptimal convergence rate for uniform mesh
refinement when the mesh is not fine enough.

In Figure 48 we see that the convergence for uniform mesh refinement
is limited by the low regularity of the right hand side, i.e. the convergence
rate is equal to −q/2 = −1/2. However, we see that for refined grids with
small enough element size h � 1/40 (i.e. ndof � 1600) we obtain optimal
convergence order. Thus, our refinement goal is here to resolve the interior
layer as adequately as possible in order to obtain optimal convergence order,
in an adaptive grid refinement process towards a global solution of a certain
accuracy measured in the a-norm.

Results

In Figure 48 we show the results obtained by adaptive refinement using LR
B-splines. The results are displayed using different polynomial order p =
{2, 3, 4}, portion of refinement β = {5, 10, 20}, multiplicity m = {0, p − 1}
and local refinement strategy.

The main observation is that we achieve optimal convergence rate, after
some refinements, i.e. −q/2 = −p/2 = {−1,−3/2,−2} for p = {2, 3, 4},
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Ω

∂ΩN

∂ΩN

∂ΩD

∂ΩD

(1,1)

(0,0)

(a) The domain Ω and the boundary condi-
tions

(b) The exact solution, see Equation (42)

Figure 47: The Interior Layer problem: A Poisson problem with rough right
hand side.

respectively. However, we see that for high polynomial order (p = {3, 4})
we need more refinements than for low order to obtain optimal convergence
rate. Furthermore, for p = 4 we observe some “extra” refinement along the
Dirichlet boundary due to the fact that u /∈ Sh. Compared to uniform
refinement the errors for adaptive refined meshes using LR B-splines are
about 10 times lower. The sharper the interior layer, the more pronounced
this error difference will become.

We clearly see that high regularity (i.e. low multiplicity) is efficient when
we compare relative error versus number of degrees of freedom. Further-
more, we see that the convergence results are not sensitive to variation of β,
whereas local refinement strategies have some influence for high polynomial
order.

The resulting grids are different for the different local refinement strate-
gies. This is illustrated in the Figures 49–51 where we have displayed the
effect on the refined grid using different local refinement strategies. As seen,
the LR B-splines makes it possible to refine sharply in the vicinity of the
interior layer. Furthermore, we may see from the two Figures 49 and 50 that
the full span method have more elements with high aspect ratios than the
structured mesh method, whereas the latter one gives a more widespread
uniform refinement on subdomains along the interior layer. In particular,
the differences are pronounced at the M3 grid. However, at about ndof =
3000 the two methods produce quite similar global energy error. Notice,
that the final grid for p = 4 shows extra refinement along the Dirichlet part
of the boundary due to the fact that the inhomogeneous Dirichlet boundary
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conditions are approximated.
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(b) p = 2, β = 20
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(c) p = 3, β = 5
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(d) p = 3, β = 20
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(e) p = 4, β = 5
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(f) p = 4, β = 20

Figure 48: The Interior Layer problem: Relative global errors (in %) (mea-
sured in the a-norm) versus ndof obtained for uniform refinement using B-
splines and adaptive refinements using LR B-splines. The dotted lines are
the optimal asymptotic convergence rates (valid for (quasi) uniform element
error distribution) O(n−1

dof), O(n
−3/2
dof ), O(n−2

dof) for p = {2, 3, 4}, respectively.
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(a) (pmsb) = (2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) = (3,1,0,5) (d) (pmsb) = (3,1,2,5)

(e) (pmsb) = (4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 49: The Interior Layer problem: The 3rd adaptively refined grid
M3 obtained by using LR B-splines with different polynomial degrees p =
{2, 3, , 4} and local refinement strategies, but same multiplicity m = 1 and
β = 5 (β is denoted b in the subfigure captions).
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(a) (pmsb) = (2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) = (3,1,0,5) (d) (pmsb) = (3,1,2,5)

(e) (pmsb) = (4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 50: The Interior Layer problem: The 12th adaptively refined grid
M12 obtained by using LR B-splines with different polynomial degrees p =
{2, 3, 4} and local refinement strategies, but same multiplicity m = 1 and
β = 5 (β is denoted b in the subfigure captions).
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(a) (pmsb) = (2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) = (3,1,0,5) (d) (pmsb) = (3,1,2,5)

(e) (pmsb) = (4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 51: The Interior Layer problem: The final adaptively refined grid
Mn obtained by using LR B-splines with different polynomial degrees p =
{2, 3, 4} and local refinement strategies, but same multiplicity m = 1 and
β = 5 (β is denoted b in the subfigure captions).
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6 Conclusions

In this paper we have investigated adaptive refinement in isogeometric anal-
ysis using LR B-splines. Traditional tensor product B-splines lack the ability
of local refinement which is needed in order to achieve optimal convergence
order in real world applications. In particular, higher order isogeometric
methods based on tensor product B-splines are not able to exploit the full
potential offered by isogeometric analysis when applied to problems involv-
ing singularities or rough right hand sides.

Herein, the newly developed LR B-splines have been applied as adaptive
refinement in isogeometric analysis. Different local refinement strategies has
been proposed and implemented in the object oriented code IFEM .

We have performed an extensive set of numerical tests to investigate the
performance of using LR B-splines to achieve accurate results measured in
energy norm (a-norm) and optimal convergence rates for the classical bench-
mark tests L-shape and Interior Layer. The results are very good and we
achieved optimal convergence rates for both test cases, and the sensitivity
towards different choices of local refinement strategies and prescribed por-
tion of refinement was moderate. Furthermore, high regularity gives less
error versus degrees of freedoms compared to low regularity (for a given
polynomial order) in all cases.

We conjecture that the application of the full span and structured mesh
refinement strategies, both generates a subclass of LR B-splines that are
linearly independent, omitting the need for linear independence testing. No
linearly dependent mesh has been discovered while using these strategies.
The proof for this is left as a topic for future investigation.

We think the LR B-splines may serve well as a framework for adap-
tive isogeometric methods as they are both versatile and manageable with
regards to development of general purpose finite element software. The
framework open new vistas for interoperable CAD and FEA systems, and
more research and developments should be pursued to fully exploit these
possibilities.
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Abstract

Smooth spline functions such as B-splines and NURBS are already an es-
tablished technology in the field of computer-aided design (CAD) and have
in recent years been given a lot of attention from the computer-aided engi-
neering (CAE) community. The advantages of local refinement are obvious
for anyone working in either field, and as such, several approaches have been
proposed. Among others, we find the three strategies Classical Hierarchical
B-splines, Truncated Hierarchical B-splines and Locally Refined B-splines.
We will in this paper present these three frameworks and highlight similari-
ties and differences between them. In particular, we will look at the function
space they span and the support of the basis functions. We will then analyse
the corresponding stiffness and mass matrices in terms of sparsity patterns
and conditioning numbers. We show that the basis in general do not span
the same space, and that conditioning numbers are comparable. Moreover
we show that the weighting needed by the Classical Hierarchical basis to
maintain partition of unity has significant implications on the conditioning
numbers.

1 Introduction

1.1 Background

Computer Aided Design (CAD) and Finite Element Analysis (FEA) are
essential technologies in modern product development. However, the inter-
operability of these technologies is severely disturbed by differences in the
mathematical approaches used. The main reason for inconsistencies is that
the technologies evolved in different communities with the focus on improv-
ing disjoint stages in product development processes, and taking little heed
on relations to other stages. Efficient feedback from analysis to CAD and
refinement of the analysis model are essential for computer-based design op-
timization and virtual product development. The current lack of efficient
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interoperability of CAD and FEA makes refinement and adaptation of the
analysis model cumbersome, slow and expensive.

In any finite element analysis of real world problems, it is of great im-
portance that the quality of the computed solution may be determined.
Furthermore, numerical simulation of many industrial problems in civil, me-
chanical and naval industry often require large computational resources. It
is therefore of utmost importance that computational resources are used as
efficiently as possible to make new results readily available and to expand
the realm of which processes may be simulated. We thus identify reliability
and efficiency as two challenges in simulation based engineering.

These two challenges may be addressed by a posteriori error estimation
combined with adaptive refinements. A lot of research has been performed
on error estimation and adaptive mesh refinement, see e.g. (Ainsworth and
Oden, 2000 [1]) for an excellent overview. The senior author of the present
paper have been working with error estimation and adaptivity for more than
two decades (see e.g. [28], [35], [34], and [30]), and are well aware of the fact
that adaptive methods are not yet an industrial tool, partly because the
need for a link between the finite element program and traditional CAD-
system. Here, the use of an isogeometric analysis framework may facilitate
more widespread adoption of this technology in industry, as adaptive mesh
refinement does not require any further communication with the CAD sys-
tem.

The new paradigm of Isogeometric Analysis, which was introduced by
Hughes et al. [21] (see also [10]), demonstrates that for smooth (enough)
problems much is to be gained with respect to efficiency, quality and ac-
curacy in analysis by replacing traditional Finite Elements by volumetric
NURBS elements. However, a fundamental constraint of traditional NURBS
is that they are (global) tensor product and lack the potential for local refine-
ment. The need for local refinement has always been an issue, and several
proposed solutions to local refinement has been derived such as T-splines
[41],[40], Hierarichal B-splines [14],[26], Truncated Hierarichal B-splines [18]
and Locally Refined B-splines [12]. The use of these techniques in CAD al-
lows for more freedom since it is often enough that a forward mapping exist
and can be efficiently manipulated or evaluated, and some conversion algo-
rithms are available [48]. With their applications into isogeometric analysis
[2], [3], [13], [38], [4], [45], [44], [47], [33], [46], [5], [37], [22], [23], [27], and
[42] came new requirements of the basis. Linear independence [9], [8], [39],
[43], [29], [19], [7], stability [17] and partition of unity [18] became center
topics of research as isogeometric analysis is impractical or sometimes im-
possible without these properties. The research is ongoing for most of these
basis and the community has yet to settle on a single technology which
encompass every desired property without restrictions on the mesh.
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With many different technologies addressing the same problem of local
refinement, it is to be expected that there is overlap. We hope to shed some
light on this topic by presenting some of these spline families, highlighting
similarities and differences between them. In particular we will be looking
at the Classical Hierarchical, the Truncated Hierarchical and the Locally
Refined B-splines.

1.2 Aim and outline of the paper

The aim of this paper is to present several different local refinement strategies
that currently exist. We will emphasize differences in both their mathemat-
ical and numerical properties.

The paper is organized as follows:
In Section 2, we give a brief introduction to the approximation theory.

We describe the finite element method and least squares method with focus
on derivation of the two matrices we will be looking at: the stiffness matrix
A and the L2 projection matrix M .

In Section 3, we define Hierarichal B-splines, Truncated Hierarichal B-
splines and Locally Refined (LR) B-splines. Our aim is to provide a common
framework and notation to better highlight their particular properties.

Numerical experiments are performed in Section 4. As our main mea-
surement, we will be looking at conditioning number and sparsity pattern
of the system matrices over several illustrative meshes.

In Section 5 we present some interesting observations and preliminary
results for which more research is required.

We end this paper concluding upon our findings in Section 6.
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2 Finite Element Theory

In this section we give a very short introduction to the finite element the-
ory, with the only aim of presenting the quantities we will be using as our
performance indicators. A thorough explanation of the theory behind finite
elements can be found in many sources like [24, 36, 6, 20].

One of the first steps when applying a finite element method to a prob-
lem, is to derive its so called variational formulation and write the problem
in a structure like: Find u ∈ V such that

a(u, v) = l(v) ∀v ∈ V (1)

where V is a Hilber space, a(· , ·) is a continuous bilinear forms, and l(v)
is a continuous functional on the dual space of V . The problem is also
normally associated with some type of conditions, like boundary or initial
conditions. The existence and uniqueness of solutions is then guaranteed by
the Lax-Milgram theorem.

The Galerkin approach to this kind of problems consists of producing
a finite-dimensional approximation Vh of the infinite-dimensional function
space V , and search for solutions uh ∈ Vh. Specifically, we have Vh ⊂ V , and
the problem reads: Find uh ∈ Vh such that

a(uh, vh) = l(vh) ∀vh ∈ Vh . (2)

The space Vh is defined to be the span of selected basis functions {ϕ1, ϕ2, . . . ϕn}.
In the Isogeometric setting, these functions are chosen to be spline functions,
for which we use the notation {B1, B2 . . . Bn}.

We now give some classical examples to introduce the stiffness and mass
matrices.

2.1 Poisson equation

Poisson equation is the classical model problem for Elliptic PDEs. It arises
in several engineering problems like elastic membranes or magnetic fields and
also appears as an important part of more complicated problems like Navier-
Stokes. Given a domain Ω ⊂ R2 and a continuous function f : Ω → R, we
want to find a function u : Ω → R such that

−∆u = f in Ω (3)

and satisfies certain prescribed conditions on the boundary of the domain
∂Ω. We typically have two types of boundary conditions, namely Dirichlet:

u = ū at ∂ΩD (4)
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and Neumann:
∂u

∂n
= t̄ at ∂ΩN (5)

Here ū is prescribed boundary value of the unknown u along ∂Ω, t̄ the
prescribed (Neumann) flux along ∂Ω and ∂u/∂n is the normal derivative of
u, i.e. the directional derivative respect to the outward normal vector n.
Furthermore, we assume ∂ΩD ∪ ∂ΩN = Ω and ∂ΩD ∩ ∂ΩN = ∅. In case of
pure Neumann problem we introduce the following notation: Γ = ∂ΩN = ∂Ω

We now multiply by a test function v ∈ V and integrate over the domain,
and write (3) as

∫

Ω
∆u v dA =

∫

Ω
f v dA ∀v ∈ V .

Using Green’s formula and pure Neumann boundary condition we can
rewrite the problem as: Find u ∈ V such that

∫

Ω
∇u∇v dA =

∫

Ω
f v dA+

∫

Γ
t̄ v dS ∀v ∈ V (6)

The problem written as in (6) is the variational formulation for the Poisson’s
equation.

We now apply Galerkin’s approach and choose Vh ⊂ V where Vh =
span{B1, B2, . . . Bn}. Any uh ∈ Vh can then be written as a linear combi-
nation of the basis functions

uh =

n∑
j=1

Bj uj

with uj ∈ R. Substituting this into (6) and systematically selecting v =
Bi, i = 1, . . . , n allows us to write

n∑
j=1

∫

Ω
∇Bi∇Bj dA uj =

∫

Ω
f Bi dA+

∫

Ω
t̄BidA ∀i = 1, . . . , n

which is simply a linear system of equation of the form

Au = b

where

Ai,j =

∫

Ω
∇Bi∇Bj dA (7)

u = [u1, u2, . . . un]
T

bi =

∫

Ω
f Bi dA+

∫

Γ
t̄ Bi dS . (8)
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Due to historical reasons, the matrix A is called Stiffness Matrix and the
vector b is called Load Vector, a nomenclature common in structural/solid
mechanics for which the Finite Element method was developed in the late
50’s.

2.2 Least Squares fitting

Performing a least-square fit of a surface is often encountered as a geomet-
rical problem. In this case, given a smooth continuous function f : Ω → R,
we are searching for a function uh ∈ Vh such that ‖uh − f‖L2 is as small as
possible. It is possible to show that the solution uh is the L2-projection of
f and

uh = argmin
u∈Vh

‖u− f‖L2 ⇐⇒
∫

Ω
uh vh dA =

∫

Ω
f vh dA ∀vh ∈ Vh .

Applying the same procedure as in the Poisson’s equation case, we can
write the problem as a solution of a linear system of equations

Mu = b

where now the matrix M is called Mass Matrix and is defined as

Mi,j =

∫

Ω
BiBj dA . (9)

The load vector b is given by

bi =

∫

Ω
f Bi dA .

2.3 Helmholtz equation

Helmholtz equation often arises in problems involving waves; in particular
it is the time-independent version of the wave equation and is written as

∆u+ k2 u = f . (10)

The solution u of Helmholtz equation represents the amplitude configuration
of the wave in space, and k is the wavenumber.

It is easy now to see that the first term in (10) is the Laplacian operator
we already encountered in the Poisson equation, while the second term is,
besides the constant k, the same as in the least-squares fitting problem.
Applying the same procedure as in the previous cases we are therefore able
to rewrite the problem as searching for solutions of the linear system of
equations

Au+ k2Mu = b ⇒
(
A+ k2M

)
u = b .
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As we have seen with the above examples, the matrices A and M play
an important role in the solution of partial differential equations using a
Galerkin approach. Simple elliptic problems may use only the stiffness ma-
trix A; simple geometrical problems may use only the mass matrix M ; while
more complex or time-dependant problems use both.

The space Vh can be defined using several different types of basis func-
tions. This choice is of great importance as it will dictate the properties
of the solution space. Different types of basis functions will yield different
system matrices and consequently this will affect the convergence rate of
the numerical methods for solving linear systems of algebraic equations. For
this reason, we will herein investigate the impact different classes of spline
bases functions (presented in Section 3 below) have on important properties
of these matrices as conditioning number, bandwidth, and sparsity.
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3 Spline functions

In this section we present the theory of the three classes of spline functions
considered in this paper: Classical Hierarchical, Truncated Hierarchical and
LR B-splines. An effort has been made in order to unify the different con-
cepts under a common framework of notations, to ease both the understand-
ing and the comparison of the different technologies. We have included only
the essentials and we refer the interested reader to the papers on which we
based our studies for an in-depth introduction and details [12, 18, 22, 46].

3.1 Notation and common definitions

The Hierarchical (both Classical and Truncated) and the LR B-splines method-
ologies use quite different points of view when considering meshes and refine-
ments. As such, different notations have been developed in the correspond-
ing publications. We will in this paper use the following notation when we
will need to address mesh-related quantities:

• ε for meshlines;

• Ω for domains, i.e. regions of the mesh (excluding mesh lines);

• V for full tensor product meshes;

• M for general meshes.

In particular, the Hierarchical setting focuses more on regions of the mesh
and their underlying full tensor product meshes. For these reasons, Ω and
V are often used in this context. The LR B-splines setting instead focuses
more on meshlines and meshes as a whole. To provide a formal description
of these different point of views we can write that a mesh M is seen as

M =
⋃
l

(Ωl ∩ V l) in the Hierarchical setting

M =
⋃
i

εi in the LR B-splines setting

where the index l denotes the Hierarchical level and i runs over all meshlines.
The notation we will use for basis functions is the following:

• N ∈ N for uniform (in the index domain) tensor product basis func-
tions.

• B ∈ B for tensor product basis functions (possibly non-uniform).

• H ∈ H for Classical Hierarchical basis functions.
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• T ∈ T for Truncated Hierarchical basis functions.

• L ∈ L for LR B-splines basis functions.

Of course, there exist cases where for some indices Ni = Bi = Hi = Ti =
Li, but we hope the different notation will ease the understanding of the
technologies.

We have from elementary spline theory that a knot vector is a nonde-
creasing sequence of coordinates in the parameter space of the form Ξ =
[ξ1, ξ2, . . . , ξn+p+1], where each ξi ∈ R is called a knot. If the knot values are
equidistant the knot vector is called uniform, and non-uniform otherwise. If
the first and last knots have multiplicity p+1, the knot vector is called open.
A knot vector comprising of n+p+1 knot values will generate n univariate
linearly independent basis functions of degree p. We will focus our analysis
on B-splines built from uniform, non-open knot vectors.

Corresponding to Ξ, we have the index domain I = [1, . . . , n+p+1]. The
index domain is useful for considering non-uniform knots and also determine
the support of functions. For uniform knot vectors Ξ we have Ξ = γI for
some scaling factor γ ∈ R, and this is what we will be working with in our
examples. We would however like to stress that it is possible to generalize the
same numerical tests using open or non-uniform knot vectors. For bivariate
meshes, we consider the index domain to be the finest level tensor mesh, i.e.
V M , see Figure 3 for an example.

Definition 1. Given a knot vector Ξ = [ξ1, ξ2, . . . , ξn+p+1] and a polyno-
mial degree p, the n univariate basis functions B1,p, . . . , Bn,p are recursively
defined in the following way:

p = 0:

Bi,0(ξ) =

{
1 for ξi � ξ < ξi+1

0 otherwise
(11)

p > 0:

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ) (12)

The above definition is known as the Cox-de Boor recursion formula.
From this definition it follows that each basis function depends only on p+2
knot values. For instance, for p = 2 the knot vectors Ξ = [0, 1, 2, 3, 4, 5]
will generate three basis functions corresponding to the local knot vectors
Ξ1 = [0, 1, 2, 3], Ξ2 = [1, 2, 3, 4], and Ξ3 = [2, 3, 4, 5]. Due to this, we will
often refer to the basis functions using their local knot vectors. The notation
will also be adjusted on a case-to-case basis depending on what we need to
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emphasize, and we will use Bi = BΞi to keep track of the local knot vector
on which the function is built.

From the univariate basis functions it is possible to define multivariate
functions using the tensor product structure of B-splines:

Definition 2. A d-variate B-spline B(ξ) of degrees p = [p1, p2, . . . , pd] is a
separable function B : Rd −→ R defined as:

BΞ(ξ) =

d∏
i=1

BΞi(ξi)

where Ξi ∈ Rpi+1 is the local knot vector for the univariate basis function
of degree pi along the i-th parametric dimension.

Note that the polynomial degree is implicitly defined by the number
of knots in the local knot vectors. In the bivariate setting, it is custom-
ary to denote the two parametric coordinates as ξ and η, and the corre-
sponding polynomial orders as p and q. We denote a tensor product basis
B = {B1, B2, . . . , Bn} as a basis of functions defined by taking a tensor prod-
uct of 1D basis functions.

In the following we will construct the mesh such that the actual domain
will be the unit square, i.e. the initial tensor product basis will form a
partition of unity on Ω0 = [0, 1] × [0, 1]. Since we will use uniform knot
vectors, we will need to extend the mesh beyond Ω0 trough the use of a
ghost domain G. In this way the full parametric domain will be given by
G ∪ Ω0.

We will represent bivariate basis functions on the same plot through the
use of anchors. A common choice for the coordinates of the anchor are the
Greville abscissae. The Greville abscissae (ξ̄, η̄) corresponding to a basis
function are defined as

ξ̄ =
1

p

p+1∑
j=2

ξj , η̄ =
1

q

q+1∑
j=2

ηj (13)

where ξj and ηj are the knot values in the local knot vector. One drawback
of Greville abscissae, however, is that they work nicely only if the function
under consideration has a rectangular support, like normal B-splines. As
we will see, it is very natural for Truncated Hierarchical B-splines to have
non-rectangular support. In this case we will use area-averaged coordinates
defined as

ξ̄ =

∑
i:Ei∈suppT

Ai ξ
c
i

∑
i:Ei∈suppT

Ai

, η̄ =

∑
i:Ei∈suppT

Ai η
c
i

∑
i:Ei∈suppT

Ai

(14)
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where the sum runs over all elements Ei in the support of the function,
(ξci , η

c
i ) are the coordinates of the centre of the element Ei and Ai is its area.

The weighting by the area ensures that each element contributes in the right
way to the resulting coordinate of the anchor. This method of calculating
the coordinates returns the same result as the normal Greville abscissae in
the case of rectangular support, while it allows to see the difference when
the support is non-rectangular.

3.2 Hierarchical B-Splines

The application of the Hierarchical framework in Isogeometric Analysis is
very well explained by Vuong et al. in [46], and Giannelli et al. in [18]. We
will look at how an admissible mesh is constructed, and how the construc-
tion procedure defines a sequence of nested bounded domains linked to the
different Hierarchical levels.

Introduction and general idea

The basic idea underlying Hierarchical B-splines is very simple, yet results
in a good and flexible method to locally refine the mesh. A one-dimensional
example for quadratic basis functions is illustrated in Figure 1: One portion
of the initial level 0 mesh is selected for refinement. The coarse basis func-
tions contained in that area are substituted by finer basis functions, and we
thus obtain the Hierarchical basis.

As we can see from Figure 1 this basis does not constitute a partition of
unity. This property is however easily recovered by weighting the functions
appropriately (see Figure 2). In this case it is important to note that the
region selected for refinement must contain at least the support of one coarse
basis function. If this condition is not met, the weights associated with the
finer basis functions will all be zero, and therefore no change will happen in
the basis [46].

Figure 3 presents the Hierarchical approach on a simple 2D example with
biquadratic basis functions. When a selected area of the mesh is refined, the
knot spans are halved in each direction and this introduces one new level in
the hierarchy. The basis functions from the previous level that are contained
in the refined region are then substituted by the corresponding finer basis
functions defined on the new knot spans. As in the univariate case, an
appropriate weighting of the functions can be used to recover the partition
of unity.

In the following we will focus mainly on the two dimensional case, and
several examples will be presented.
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(a) The coarse mesh with the initial basis (level
0)
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0
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1

(b) The fine-scale basis (level 1)

0 1 2 2.5 3 3.5 4 4.5 5 6 7 8
0

0.5

1

(c) The Hierarchical basis, constructed as a
suitable combination of the coarse and fine
scale basis functions

Figure 1: Hierarchical Basis: Construction of a univariate basis using
quadratic basis functions. The highlighted area is selected for refinement,
and the coarse functions contained therein are substituted by finer basis
functions.

0 1 2 2.5 3 3.5 4 4.5 5 6 7 8
0

0.5

1

Figure 2: Hierarchical Basis: Weighting the fine scale functions appropri-
ately ensures partition of unity for ξ ∈ [2, 6].
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Meshes

Tensor Product
Basis

Hierarchical
Basis

Figure 3: 2D Hierarchical Basis: Example using biquadratic basis func-
tions. Upper row: A two-step refinement is applied to the initial mesh
displaying Ω0,Ω1 and Ω2. Middle row: The tensor-product basis defined
on the finest knot span available showing the functions N l on the mesh V l

for all levels l = 0, 1, 2. From here we select the appropriate basis functions
to include in the Hierarchical basis. Lower row: The actual Hierarchical
basis defined on the refined mesh M above. At each step, the basis functions
from the previous level that are contained in the refined region are substi-
tuted by the finer ones, showing the Hierarchical basis H. The anchors are
positioned using Greville Abscissae.
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The Classical Hierarchical Basis

The construction of the mesh on which the Hierarchical basis is defined is
a direct application of the idea presented above: starting from an initial,
tensor product mesh V 0, some areas are selected for refinement. Once the
areas have been selected, several new meshlines are introduced, halving the
knot spans of the local knot vectors of all the functions contained therein.

A smart choice when it comes to substituting coarse basis functions with
finer ones is exploiting the subdivision property of B-splines. A univariate B-
spline NΞ defined on the knot vector Ξ = [ξ1, ξ2 . . . ξp+2] can be expressed as
a linear combination of scaled copies of itself through the following formula
[38, 49] :

NΞ(ξ) =

p+2∑
i=1

2−p

(
p+ 1

i− 1

)
NΞ(2ξ − ξi) (15)

Note that NΞ(2ξ−ξi) = NΞi where the new knot vector Ξi is constructed
from Ξ halving all the knot spans and taking p + 2 subsequent knots. For
example, for a quadratic basis function defined on Ξ = [0, 1, 2, 3] we would
have

Ξ1 = [0, 0.5, 1, 1.5] Ξ2 = [0.5, 1, 1.5, 2]

Ξ3 = [1, 1.5, 2, 2.5] Ξ4 = [1.5, 2, 2.5, 3]

The relation given in Equation (15) is at the core of the Hierarchical
refinement: It tells us which functions of level l + 1 we need to include in
the basis when removing functions from level l, thus ensuring the nestedness
of the Hierarchical spaces, and, if one wants to utilize the weighted basis,
also explicitly gives the correct coefficients needed to maintain the partition
of unity. Note that we will not use the weighted basis in the numerical
examples of Section 4; this is to be consistent with the definitions given in
the papers we used as references, [18, 22, 46].

Once an existing function is subdivided using Equation (15), we need to
check if any of the components is already present in the list of basis functions.
If a component is not present, we add it to the list; if it is then we move to
the next component and repeat the check. Note that if we want to utilize
the weighted basis and a component is present in the list of functions, we
would need to update its weight by adding the new coefficient.

The extension to the bivariate case is straightforward: Each bivariate
basis function is a tensor product of two univariate ones. We then apply
Equation (15) to each of them and then construct all the resulting bivariate
components via the usual tensor product.

Given the conditions for the selection of areas to refine stated above,
Equation (15) allows for a more intuitive understanding of how the Hier-
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archical refinement works: When we refine a certain region of the mesh of
level l, instead of considering the full tensor product basis of level l+ 1 and
selecting the correct functions from there, we can now see it as just substi-
tuting the old level l functions with their corresponding components in level
l + 1. This point of view is interesting because it shifts the attention from
refining elements to refining functions.

We are now ready to construct the Hierarchical basis:

Definition 3. The Hierarchical B-spline basis H is recursively constructed
as follows:

1. Initialization: H0 = {N ∈ N 0 : suppN �= ∅}

2. Recursive case: Hl+1 = Hl+1
A ∪Hl+1

B for l = 0, . . . ,M − 1, where

Hl+1
A = {N : N ∈ Hl, suppN � Ωl+1}

Hl+1
B = {N : N ∈ N l+1, suppN ⊆ Ωl+1}

3. H = HM

Note that the above definition does not include the weights. The recur-
sive definition ensures that we always select the correct functions to include
in the basis. The first step initializes the Hierarchical basis with all the
relevant functions of the underlying tensor product basis N 0. The recursive
procedure then updates the basis by removing the coarse functions contained
inside the refined region and including the finer ones substituting them.

Figure 4 presents some of the basis functions defined on the same mesh
used in Figure 3. In the Classical Hierarchical case, all the functions have
rectangular support since they are plain tensor product of univariate func-
tions.

As a result of the definition, the Classical Hierarchical B-spline basis and
the associated spaces have the following properties, as proved in [46]:

• The functions in H are linearly independent.

• The spaces spanned by the basis are nested, i.e. spanHl ⊆ spanHl+1.

Borrowing the terminology introduced for T-splines [41, 40], we classify
different hierarchical basis by the following definition

Definition 4. We denote a basis {Ni}

• standard if
∑

Ni = 1

• semi-standard if there exists a choice of weights wi > 0, such that∑
wiNi = 1
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Figure 4: Classical Hierarchical Basis: Some of the biquadratic basis
functions defined on the same mesh used in Figure 3. For each function, on
the left is presented a top view of the evaluation plot and on the right the
elements constituting its actual support.

• non-standard no choice of wi > 0 exist to ensure partition of unity

The general definition of Hierarchical B-splines allows for all three kinds
of basis. A tensor product mesh will yield a standard basis, but this will not
be the case for arbitrary meshes. We will define our set of admissible meshes
to be given as the following, which will ensure all basis to be semi-standard.

Definition 5. In the Hierarchical setting, we will call a mesh admissible if
at all levels the area selected for refinement Ωl is defined as the union of the
supports of previous-level basis functions N ∈ N l−1.

The set of admissible meshes as defined above is a subset of the Hier-
archical B-splines as it rules out among other, all non-standard basis. A
generalization, which is not considered in this paper is that domain bound-
aries may not coincide with previous levels. This is known as weak condition
on domain boundaries, and is illustrated in Figure 5. Another generaliza-
tion is small refinement regions in which finer level functions appear, but
coarser functions are not removed, see Figure 6. It is important to note here
that non-standard basis may be perfectly valid for computations as they
are linearly independent and well defined, but they form a different set of
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(a) Strong condition
on domain boundaries.
The boundary of Ωl+1

is aligned with the knot
lines of V l.

(b) Weak condition on
domain boundaries.
The boundary of Ωl+1

is aligned with the knot
lines of V l+1.

Figure 5: Hierarchical setting: Different conditions on the domain bound-
aries. Weak boundary condition may produce non-standard basis and is not
considered in this paper.

admissible meshes, which is not covered by LR B-splines and it is thus not
possible to construct a basis on the same mesh and do a comparison study.

We consider Definition 5 to be highly relevant for mesh refinement. This
is due to the fact that it is customary for iterative refinement to produce
an error measure and refine regions of large errors. For Hierarchical B-
splines, this error measure is often defined on an error per basis function
level, followed by refinement of the largest error functions [22], [18].
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Figure 6: Hierarchical setting: Small domain sizes, may not be large
enough to remove coarse level functions. This results in a non-standard basis
and will not be considered in this paper. For this particular example, neither
Ω1 nor Ω2 is large enough to remove any level 0 functions (for p > 1), but
they are both large enough to create level 1 and level 2 functions of degree
p = 2 or p = 3.

The Truncated Hierarchical Basis

While the Hierarchical B-splines presented above provide good flexibility
and allow for localized refinement, the number of overlapping basis functions
can increase very rapidly with the introduction of new levels. This happens
because the large support of the coarse basis functions may overlap with
the support of several fine-scale ones. See for example in Figure 4, where
the top-right function, defined at level 0, overlaps with all the fine-scale
functions in level 2.

This behaviour has a negative impact on the formation and solution of
linear system of algebraic equation associated to the solution of the discrete
(finite element) variational problem: A higher number of overlaps means we
need to perform more functions evaluations and add more elements in the
system matrices. This on one side increases the assembly time required to
build such matrices, and on the other side it affects the sparsity, spectrum,
and conditioning number of the matrices, with consequences on the perfor-
mance of iterative solvers. In order to address these problems, a new basis
for the Hierarchical space was proposed in [18]. The key idea is that we
can appropriately truncate the coarse basis functions, thus reducing their
support and significantly decreasing the number of overlaps.

The truncation of a basis function is defined as follows:

Definition 6. Let T be a basis function defined at level l, and let

T =
∑

j :Nj∈N l+1

αj Nj

be its representation respect to the fine-scale basis associated to level l + 1.
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The truncation of T respect to N l+1 and Ωl+1 is defined as

trunc l+1 T =
∑

j :Nj∈N l+1,

suppNj�Ωl+1

αj Nj (16)

It is clear that the coefficients αj depend not only on the component Nj

they refer to, but also on the function T considered. We omitted the explicit
dependance to ease the notation.

The Truncated Hierarchical basis is then defined as follows [18] :

Definition 7. The Truncated Hierarchical B-spline basis T is recursively
constructed as follows:

1. Initialization: T 0 = H0

2. Recursive case: T l+1 = T l+1
A ∪ T l+1

B for l = 0, . . . ,M − 1, where

T l+1
A = {trunc l+1 T : T ∈ T l ∧ suppT � Ωl+1}

T l+1
B = Hl+1

B

3. T = T M

Note that the representation of T in terms of next-level functions is eas-
ily obtained through Equation (15). The truncation mechanism removes all
those components of T that are explicitly included in the basis by the recur-
sive step of the definition. This procedure appropriately shrinks the support
of all functions that cross over multiple levels in the mesh, effectively re-
ducing the number of overlaps. Also note that the way of expressing the
truncation as given in Equation (16) is what we will call an additive repre-
sentation. It is also possible to use a subtractive representation, expressing
the truncation as

trunc l+1 T = T −
∑

j :Nj∈N l+1,

suppNj⊆Ωl+1

αj Nj (17)

Both these representations have advantages and disadvantages which are
discussed in Section 4.

Figure 7 shows the Truncated Hierarchical basis constructed on the same
mesh as in Figure 1. Note that no weights are needed to maintain the
partition of unity.

Figure 8 presents the same basis functions as in Figure 4 with the trun-
cation procedure applied. As we can see, the support of each Truncated
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Figure 7: Truncated Hierarchical Basis: The quadratic basis on the
same mesh as in Figure 1. Partition of unity is automatically achieved by
the truncation procedure.

Figure 8: 2D Truncated Hierarchical basis: The biquadratic basis con-
structed on the same mesh, and the corresponding functions, as in Figure 4.
For each function, on the left is presented a top view of the evaluation plot
and on the right the elements constituting its actual support.
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function is modified in order to reduce the number of overlaps with finer
levels. This, however, makes some functions lose the rectangular shape of
their support.

The Truncated Hierarchical basis naturally inherits the properties of the
Classical Hierarchical basis, and also adds some more. In particular:

• The functions in T are linearly independent.

• The spaces are nested, i.e. spanT l ⊆ spanT l+1.

• The basis maintains partition of unity.

In addition, if we consider the Classical Hierarchical basis H defined on the
same mesh as T , then:

• The cardinality of the basis is the same: |H| = |T |.

• The spaces spanned are the same: spanH = spanT .

Proofs for the above can be found in [18].

3.3 LR B-splines

LR B-splines were recently proposed by Dokken et al. in [12] and later
applied to Isogeometric Analysis by Johannessen et al. in [22]. We report
here some of the theory contained in those papers, while taking a different
approach that focuses on clarity and ease of understanding.

LR B-splines differentiate themselves from the Hierarchical cases in the
way the refinement is applied: while Hierarchical functions rely on the sub-
division rule given in Equation (15) and generate up to p+ 2 new functions
from each original B-spline, LR B-splines use the knot insertion procedure,
inserting one knot at a time and splitting old B-splines into 2 new ones.
The fact the the knots are inserted one at a time is crucial, especially in
the bivariate setting: We will show that even when inserting the same knot
values as produced by the subdivision rule, the resulting refined B-spline
basis may be different.

LR B-splines are locally refined in the same way the standard tensor-
product B-splines are. From basic spline theory we know that it is possible to
perform knot insertion to enrich the spline space while leaving the geometry
description unchanged. In the univariate case, if we want to insert the knot
ξ̂ between the knots ξi−1 and ξi we have

BΞ(ξ) = α1BΞ1(ξ) + α2BΞ2(ξ) (18)
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Figure 9: LR B-splines: Examples of knot insertion for ξ̂ = 3
2 . Dashed

lines: The original functions. Colors: The new functions resulting from the
splitting.

where

α1 =

{
ξ̂−ξ1

ξp+1−ξ1
ξ1 � ξ̂ � ξp+1

1 ξp+1 � ξ̂ � ξp+2
(19)

α2 =

{
1 ξ1 � ξ̂ � ξ2
ξp+2−ξ̂
ξp+2−ξ2

ξ2 � ξ̂ � ξp+2

and the knot vectors are

Ξ = [ξ1, ξ2 . . . ξi−1, ξi . . . ξp+1, ξp+2]

Ξ1 = [ξ1, ξ2 . . . ξi−1, ξ̂, ξi . . . ξp+1 ]

Ξ2 = [ ξ2 . . . ξi−1, ξ̂, ξi . . . ξp+1, ξp+2]

As we can see, inserting one knot splits the original B-spline into two
new B-splines described by the local knot vectors Ξ1 and Ξ2. The weights
α1 and α2 are needed to maintain partition of unity. Figure 9 shows some
examples of the application of Equation (18).

In the bivariate case, functions are refined one parametric direction at a
time. In this case we obtain:

BΞ(ξ, η) = BΞ(ξ)BΨ(η)

= (α1BΞ1(ξ) + α2BΞ2(ξ)) BΨ(η) (20)
= α1BΞ1(ξ, η) + α2BΞ2(ξ, η)

In the following we will call meshline extension all mesh-altering actions
like inserting a new meshline, prolonging existing meshlines (possibly con-
necting two existing ones) or increasing the multiplicity of meshlines. When
a new meshline extension is inserted, we need to know which basis functions
are affected by it. For this purpose, we give the following definition:

Definition 8. A meshline ε is said to traverse the support of a function
B[ξ1...ξp1+2;η1...ηp2+2] if
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(a) Line traversing
the interior of B

(b) Line traversing
the interior of B

(c) Line traversing
the edge of B

(d) Line neither
traversing the edge
nor the interior of
B

Figure 10: LR B-splines: Examples of lines traversing the support of a
basis function.

• ε is a horizontal line ε = [ξ∗1 , ξ
∗
2 ]× η∗ such that

ξ∗1 � ξ1, ξp1+2 � ξ∗2 , η1 � η∗ � ηp2+2

• ε is a vertical line ε = ξ∗ × [η∗1, η
∗
2] such that

ξ1 � ξ∗ � ξp1+2, η∗1 � η1, ηp2+2 � η∗2

In particular, a horizontal line is said to traverse the interior of B[ξ1...ξp1+2;η1...ηp2+2]

if η1 < η∗ < ηp2+2 and traverse the edge if η∗ = η1 or η∗ = ηp2+2. Similarly,
a vertical line is said to traverse the interior if ξ1 < ξ∗ < ξp1+2 and traverse
the edge if ξ∗ = ξ1 or ξ∗ = ξp1+2.

Figure 10 shows some examples of lines traversing the support of a basis
function.

When a meshline extension is applied, the refinement process is com-
posed of two steps:

1. Split any function which support is traversed by the new meshline.

2. For all new functions, check if their support is traversed by any existing
meshline, and split again if this happens.

In step 1 we test all current functions against one meshline. In step 2
we test all newly created functions against all existing meshlines. Note that
when the meshline extension is an actual elongation, possibly connecting two
separate existing meshlines, we will use the full length of the resulting line
to test the functions for splitting. When a function is flagged for splitting,
this is performed through the use of Equations (19) and (20).

In view of the above, we can give the following two definitions:
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Figure 11: LR B-splines: The basis constructed on the same mesh as in
figures 1, 2, and 7.

Definition 9. In the LR B-splines setting, an admissible mesh is any mesh
which can be obtained by a sequence of meshline extensions starting from an
initial tensor product mesh. Each extension must cause at least one basis
function to be split, and the meshlines must end at existing knot values
(they cannot stop at the centre of an element). All tensor product meshes
are admissible.

Definition 10. An LR B-spline is a function which results from the appli-
cation of the refinement scheme and Equations (18)-(19). All tensor product
B-splines are LR B-splines.

Figure 11 shows the 1D LR B-splines basis defined on the same mesh as
in the previous examples at Figures 1, 2, and 7. Note that in the univariate
setting the LR B-spline refinement coincide with the normal knot insertion.
In this case all the weights sum up to 1 and so the LR B-spline basis is
the normal B-splines basis originating from the non-uniform knot vector
Ξ = [0, 1, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8], and automatically maintains partition
of unity. Also note that in the general LR B-spline setting the notion of levels
is not as present as in the Hierarchical setting; we can however define the
level of an LR B-spline function using the maximum knotspan contained in
its local knot vector.

For a thorough example in the bivariate case we refer the reader to [22,
p. 481-483].

Given an initial tensor product mesh M0, a sequence of meshline exten-
sions {εi}ni=1 and corresponding admissible meshes Mi = {Mi−1 ∪ εi} and
LR B-splines Li, the following properties hold [12, 22]:

• The spaces are nested: spanLi ⊆ spanLi+1.

• The LR B-splines defined on a mesh are not affected by the order in
which the meshline extensions have been inserted, i.e. if M and M̂
are two identical LR B-splines meshes that differ only for the order in
which the meshlines extensions have been applied, then the resulting
LR B-splines functions are the same.

• The LR B-splines form a partition of unity.



Spline functions 123

Note that, in general LR B-splines may be linear dependent. This is
mostly due to the fact that the single-line insertion mechanism used in this
setting allows for several different types of refinement strategies, and the
particular choice naturally affects the spline space. However, there are sev-
eral ways to recover the linear independency as proposed in [12, 22]. The
linear independence of LR B-splines depending on the type of refinement
strategy used is currently object of research.

In all our examples we will use the Structured Mesh refinement presented
in [22]. This strategy focuses on refining functions, instead of elements.
The idea of refining elements is indeed a legacy from the classical Finite
Element methodology. Using the Structured Mesh approach, one instead
selects which basis functions to refine. This can be done through the use of
custom-built criteria, just as one would do in an adaptive refinement scheme.
The idea proposed in [22] is to compute the error pertaining to each basis
function as

‖e‖2suppBi
=

∑
K∈suppBi

‖e‖2K (21)

i.e. we define the B-spline error as the sum of the normal error ‖e‖ measured
in the energy norm over all elements in the support of Bi. Once the functions
to be refined are identified, we proceed to insert several knot lines in both
directions, halving the knot spans of the largest supported knot interval.
Note that the Structured Mesh strategy will yield the same results on the
mesh as the subdivision rule used in the Hierarchical setting. This means
that all meshes which are admissible in the Hierarchical setting, i.e. they
satisfy the conditions of Definition 5, are also admissible in the LR B-splines
setting and can be obtained using the Structured Mesh refinement. For this
reason we have always used this approach for our examples, as it provides a
better ground for comparison.
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Figure 12: LR B-splines: The biquadratic basis constructed on the same
mesh, and the corresponding functions, as in Figure 4 and 8. For each
function, on the left is presented a top view of the evaluation plot and on
the right the elements constituting its actual support.
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4 Results

We present here the results of our analysis on the different type of basis
functions outlined in Section 3. The Qualitative analysis sections collects
results regarding the mathematical properties of the various basis, many of
which were already briefly listed in the corresponding sections. The Quanti-
tative analysis section focuses on implementation and numerical quantities
and discusses the properties of the stiffness and mass matrices generated
using the different splines functions.

4.1 Qualitative analysis

We would like to start pointing out that, under normal mesh refinement
iterations (i.e. excluding special constructed cases), on the qualitative level
all the three classes of splines give comparable results. However, there are
some interesting distinctive features that are worth to be mentioned.

Different functions

With the notation introduced at page 106 we have that the general functions
H ∈ H, T ∈ T , and L ∈ L can be written as

H = N

T =
∑

αiNi

L = αB

for appropriate indices i and weights α

This can be seen as follows. Consider a set of nested domains Ω0 ⊃
Ω1 ⊃ . . . ⊃ ΩM , with corresponding tensor mesh V 0 ⊂ . . . ⊂ V M , where
V l = Ξl ⊗ Ψl, Ξl ⊂ Ξl+1 and Ψl ⊂ Ψl+1. The knot vectors of N l

i ∈ N l is
picked as connected subsets of Ξl and Ψl. These are uniform both in the
index domain of Ξl and ΞM . This is in contrast to how the LR B-splines are
constructed, as these are in general a unconnected subset of ΞM and ΨM

and hence non-uniform in the index domain.
For uniform starting meshes under dyadic refinement this becomes slightly

more apparent as every N will be comprised of uniform local knot vectors,
while any B will potentially be non-uniform. The Classical Hierarchical
functions (Definition 3) are then uniform B-splines; Truncated Hierarchical
functions (Definitions 6 and 7) are generally a linear combination of these
uniform B-splines; LR B-splines functions (Equation (18) and Definition 10)
are non-uniform B-splines.
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(c) LR B-splines

Figure 13: Qualitative analysis: The different quadratic bases constructed
using the same knot vector.

Figure 13 shows the Classical Hierarchical, Truncated Hierarchical and
LR B-splines basis for the knot vector Ξ = [0, 1, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8].
Note that on the uniform vector [0 : 8] all three families of functions would be
exactly the same. In the Classical Hierarchical case, partition of unity is not
preserved. In the Truncated Hierarchical case this is achieved automatically
by the truncation procedure, which removes some components from the old-
level functions. The LR B-splines are instead defined by non-uniform local
knot vectors, and also use weights to maintain partition of unity.

Figure 14 shows a comparison of the support for some of the basis func-
tions presented in the Figures 4, 8, and 12.

Different spaces

Perhaps the most important and interesting difference is that for some
meshes the Hierarchical basis and the LR B-splines set span different spaces.
One such example is given in figure 15.

The central function appearing in the Classical and Truncated Hierar-
chical setting corresponds to two distinct functions in the LR B-splines set.
This is due to the way the refinement works in the LR B-splines setting: As
we can see there is one new meshline which completely traverses the support
of the central function. When this meshline is inserted, it triggers the LR



Results 127

(a) Left Col-
umn: Classical
Hierarchical

(b) Centre Col-
umn: Truncated
Hierarchical

(c) Right Column:
LR B-splines

Figure 14: Qualitative analysis - Different Functions: The support of
corresponding biquadratic basis functions in the three spline families pre-
sented in the Figures 4, 8, and 12.
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(a) Classical Hierarchical (b) Truncated Hierarchical

(c) LR B-splines, first func-
tion

(d) LR B-splines, second
function

Figure 15: Qualitative analysis - Different spaces: An example of mesh
on which the biquadratic Hierarchical bases span different spaces than the
LR B-splines basis. The central level 0 function in the Hierarchical cases
corresponds to two distinct functions in the LR B-splines basis. Both the
Hierarchical bases are constituted of 55 functions; the LR B-splines basis
contains 56 functions. The highlighted area is the support of the selected
function, represented with a square as anchor symbol. The anchors are
placed as described at page 108.
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B-splines refinement algorithm which splits the original B-spline into two
new ones as expected. This does not happen in the Hierarchical framework,
which leaves the function unchanged in the Classical case or appropriately
reduces its support in the Truncated case.

Mourrain [32] presented a formula for the maximum dimension of the
space of piecewise polynomials with given continuity on a mesh: given a
planar mesh with F faces (the elements), εH horizontal and εV vertical in-
ternal edges and P vertices, the maximum dimension of the space of bivariate
piecewise polynomials of degrees (p, q) with continuity (k, l) along element
edges is given by

S = (p+1) (q+1)F−(p+1) (l+1) εH−(q+1) (k+1) εV +(k+1) (l+1)P+h
(22)

where h is the homology factor of the mesh, which is equal to zero for
all the refinement schemes used here. For Hierarchical B-splines, as well
as Truncated Hierarchical, it is possible to add constraints on the mesh
topology to ensure spanning the entire space [31], [19]. For LR B-splines
one may assure this by the so called "hand in hand" process [12], which
again puts restrictions on mesh topologies. For meshes under Definition 5,
this however cannot be guaranteed.

Different refinement strategies

Hierarchical functions rely on Equation (15) to apply the refinement. This
procedure halves the local knot vectors of the function and replaces the
original B-spline with up to p + 2 new functions in the univariate case, or
(p+ 2)(q + 2) in the bivariate case.

LR B-splines use the knot insertion given in Equation (18), which intro-
duces two new B-splines functions. This procedure allows for more flexibility
in the refinement approach as there are no prescriptions on the number or
positions of the new knots. In addition to the Structured Mesh strategy, al-
ready presented in Section 3, in [22] two other different refinement strategies
are proposed: Minimum Span and Full Span. While all these strategies in-
sert the meshlines so that they halve the knotspans, this is not a requirement
as the use of non-uniform knot vectors is already built-in in the definitions
of LR B-splines.

The Minimum Span strategy aim is to keep the refinement as localized
as possible. Once an element is marked for refinement, a cross is inserted
through its centre and the meshlines are made to be as short as possible,
while still splitting at least one function.

In the Full Span strategy the idea is to split all B-splines with support on
a selected element. This is done inserting two meshlines in a cross through
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Figure 16: Qualitative analysis: Different types of refinement strategies
using LR B-splines.

the centre of the element. The new meshlines will have to span from the
minimum to the maximum knot values of all functions with support on the
marked element in both parametric direction. This strategy makes sure that
all B-splines with support on the marked element are treated equally, but
on the other hand this results in an extension of the refinement away from
the selected element, in particular for high polynomial degrees.

A common drawback of both the Full and Minimum Span is that some
elements will be traversed by only one meshline and therefore will be split
into two rectangular elements, effectively doubling their aspect ratio.

While the possibility of applying other refinement strategies is allowed
by the definitions and the theory of LR B-splines, some may lead to linearly
dependant sets. The research in these cases is still ongoing and, as of today,
the Structured Mesh is the best candidate for a stable refinement algorithm.

Different admissible meshes

A direct consequence of the various refinement approaches available with
LR B-splines is that some meshes which are legal in a LR setting cannot
be reproduced using Hierarchical splines. On the other hand, LR B-splines
are not capable of achieving some configurations of the weak conditions on
domain boundaries available in the Hierarchical framework. For an example
see Figure 5b. In that case, the meshlines of Ω1 are stopping in the centre
of the elements, a behaviour that is disallowed by the LR definitions.

Another difference is that LR B-splines are currently defined starting
from a global tensor-product mesh, i.e. only on rectangular parametric do-
mains. Conversely, Hierarchical B-splines can be defined on non-rectangular
parametric domains.

Meshes that are defined on a rectangular domain and also satisfy the
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conditions of Definition 5 are admissible in both the Hierarchical and LR
B-splines framework.

4.2 Quantitative analysis

Here, we first discuss details related to different representation of Truncated
Hierarchical basis, and then present the numerical results obtained for dif-
ferent meshes and polynomial degrees,

Representation of Truncated functions

As we briefly mentioned earlier, Truncated Hierarchical B-splines can be
represented in an additive or subtractive fashion; we restate Equations (16)
and (17) for reading convenience:

trunc l+1 T =
∑

j :Nj∈N l+1,

suppNj�Ωl+1

αj Nj Additive representation (23)

trunc l+1 T = T −
∑

j :Nj∈N l+1,

suppNj⊆Ωl+1

αj Nj Subtractive representation (24)

where Nj are the components of T with respect to the finer level basis
functions and αj the corresponding weights as given by Equation (15).

When implementing the code we found that choosing one representation
over the other yield important consequences. In a typical finite element
code one has to deal with two important aspects: determining which basis
functions are active over a given element, and then evaluating such functions.

To address the former a convenient way to retrieve or store the support
of the functions is essential. In the case of B-splines this is generally easy
since the support is identified with the local knot vectors. When the B-spline
is a standard tensor product, and the support is therefore rectangular, this
becomes even easier since one only needs to check the starting and ending
points of the local knot vectors. As we have seen, however, Truncated Hi-
erarchical functions do not always have rectangular support, hence we need
a representation that allows for an easy way to retrieve it. The subtractive
representation (24) is unfortunately not very helpful in this sense: the fact
that a given component is subtracted does not automatically guarantee that
the function itself vanishes in that area. Given an element E ∈ suppT we
should check if all possible components on that element are removed in order
to know if truncT has support on E or not. The additive representation
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(23), on the other hand, is much more convenient: We can simply loop over
all components and check if any of them has support on E.

To address the latter point we need an efficient way to evaluate basis
functions. This is even more important in an Isogeometric setting: Since
the Cox-de Boor algorithm is a typical bottleneck of the code, we would like
to perform as few basis evaluations as possible. In this case the additive
representation (23) is not efficient. In a biquadratic case a representation
in terms of next-level basis functions comprises of 16 fine-scale functions.
This number clearly increases when increasing the polynomial degree: 25
for bicubic functions, 36 for biquartic etc. In addition, an additive repre-
sentation may require to store the function in terms of the finest-available
scale, which would greatly increase the amount of components needed; let’s
assume, for simplicity, that this is not the case. To give an example, look at
the biquadratic basis functions of Figure 8. For each of the Truncated Hier-
archical basis functions only 4 components are removed. This means that in
an additive representation we would still need to evaluate 12 fine-scale func-
tions in order to compute the value of the B-spline we are interested in. In a
subtractive representation we would need to evaluate only 5 functions: The
original tensor product B-spline and the 4 components we need to subtract.

To summarize, we have the following:

• An additive representation (23) is useful when determining the support
but not efficient in the function evaluation process;

• A subtractive representation (24) does not allow to easily identify the
support of the function but is more efficient in its evaluation.

The above discussions are overall considerations: The disadvantages of
the representations might be accounted for by programming the algorithm
in a smart efficient way. On the other hand, this is still something that
needs to be taken into consideration. For an in-depth discussion on the
implementation of Truncated Hierarchical B-splines we refer to [25].

1D examples

We now present the results obtained in various 1D examples. We performed
several experiments for polynomial degrees p = 2, 3, 4, and 5. In each case
we started from a uniform, non-open knot vector Ξ0 = [0, 1 . . . 5 p + 1] and
successively applied 6 refinement steps, always refining the central basis
function. Note that for odd polynomial degrees a central function always
exists, while for even-degree normally there are two functions near the knot
vector centre. In this case we chose to always refine the rightmost one.
Figure 17 shows as examples the first two refinement iterations for p = 2
and p = 3.
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Figure 17: 1D Central Refinement: The first three steps of the refinement
process in the cases p = 2 (above) and p = 3 (below). When two functions
are equally close to the centre, the rightmost one is selected for refinement.

p HB THB LR H/T H/LR
2 393 183 129 215% 305%
3 803 315 247 255% 325%
4 1257 629 403 200% 312%
5 1919 853 597 225% 321%

Table 1: 1D Central Refinement: Number of non-zero elements in the
stiffness matrix at the last (6th) refinement iteration. The last two columns
present the ratios, rounded to the nearest percentage point.

For each refinement iteration we constructed the stiffness matrix A and
the mass matrix M using the Classical Hierarchical, Truncated Hierarchical
and LR B-splines functions defined using the same knot vector. We then
analysed some important numerical properties of these matrices, namely
the sparsity pattern, the conditioning number, and the spectrum. Note that
in the univariate case the LR B-splines basis coincides with the standard
non-uniform B-splines generated via knot insertion.

Sparsity Figure 18 shows the sparsity patterns of the stiffness matrix at
the last refinement iteration after a reordering using the Cuthill-McKee Al-
gorithm [11] has been applied. The top row corresponds to p = 2, while to
bottom row corresponds to p = 5.

As expected the Classical Hierarchical basis functions produce the dens-
est stiffness matrices. This is normal since the support of coarse-level func-
tions remains unaffected by the refinement in neighbouring regions. The
values for all polynomial degrees are collected in Table 1.
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Figure 18: 1D Central Refinement: Examples of sparsity patterns of
the stiffness matrices at the last(6th) refinement iteration. The Cuthill-
McKee Algorithm has been applied to optimize the bandwidth. Top: p = 2.
Bottom: p = 5.
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Conditioning Numbers The conditioning number of the stiffness and
mass matrices can be significantly influenced by the way the boundary con-
ditions are imposed. In order to avoid any such effect we decided to look at
the “pure” conditioning numbers, i.e. before any imposition of the boundary
conditions. As is well known, with just pure Neumann boundary conditions
the stiffness matrix is singular; the conditioning number can then be defined
as the ratio between the largest eigenvalue and the smallest non-zero one.
This means that for either the stiffness matrix A or the mass matrix M ,
given the ordered set of their eigenvalues [λ1, λ2 . . . λn] we define

cond(A) =
λn

λ2

(25)
cond(M) =

λn

λ1

Figure 19 shows the plots for the conditioning numbers of both the stiff-
ness and mass matrices for each polynomial degree considered. While all
values are quite close to each other, and always remained in the same order
of magnitude for our experiments, it is interesting to note that the Truncated
Hierarchical and LR B-splines perform very similarly.

Looking at the plots for the stiffness matrix we can see that, with the
exception of the lowest degree, i.e. p = 2, the conditioning numbers are
ordered as

cond(AT ) < cond(ALR) < cond(AH)

while for the mass matrix we always have

cond(MLR) < cond(MT ) < cond(MH)

where the subscripts indicates the basis functions used.
We can also see that the conditioning numbers of the stiffness matrices

are increasing with each refinement iteration, while the conditioning numbers
for the mass matrices for p = 4 and 5 are bounded from above and below by
a constant. This behaviour was already presented by Gahalaut and Tomar
in [15] and Garoni et al. [16], although that result is proven for uniform
refinement only.

The Tables 2 and 3 present the numerical data for p = 2 and p = 3,
respectively.

Spectrum Figure 20 shows the spectra of the stiffness and mass matrices
for p = 2 at the sixth refinement iteration. The eigenvalues of the stiffness
matrix are spread over a large interval, while the eigenvalues of the mass
matrix are much more clustered. In all cases the eigenvalues tend to be
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Figure 19: 1D Central Refinement: Graphs of the conditioning numbers
of stiffness matrices (left column) and mass matrices (right column) from
p = 2 (top) to p = 5 (bottom).
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Stiffness Matrix

Iter. 0 1 2 3 4 5 6
HB 12.742 28.029 55.751 111.403 222.790 445.579 891.158
THB 12.742 25.825 52.050 105.316 213.368 432.490 876.362
LR 12.742 27.284 55.600 112.638 228.151 462.230 936.191

Mass Matrix
Iter. 0 1 2 3 4 5 6
HB 46.794 52.523 65.893 116.226 225.483 448.117 894.973
THB 46.794 41.516 42.670 45.683 88.248 176.373 352.715
LR 46.794 38.037 38.429 38.594 67.776 135.537 271.070

Table 2: 1D Central Refinement: The conditioning numbers for p =
2 throughout the mesh refinement. Stiffness Matrix above, Mass Matrix
below.

Stiffness Matrix

Iter. 0 1 2 3 4 5 6
HB 37.585 81.260 162.294 324.648 649.310 1298.622 2597.244
THB 37.585 74.052 148.15 296.333 592.685 1185.379 2370.764
LR 37.585 75.193 150.678 301.461 602.976 1205.979 2411.972

Mass Matrix
Iter. 0 1 2 3 4 5 6
HB 1405.22 1553.05 1585.28 1590.56 1591.56 2238.16 4476.30
THB 1405.22 1292.26 1296.80 1297.36 1297.47 1297.60 2201.90
LR 1405.22 1190.16 1191.54 1191.79 1191.81 1191.81 1191.81

Table 3: 1D Central Refinement: The conditioning numbers for p =
3 throughout the mesh refinement. Stiffness Matrix above, Mass Matrix
below.
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Figure 20: 1D Central Refinement: The eigenvalues of the Stiffness Ma-
trix (left) and Mass Matrix (right) for p = 2 at the last refinement iteration.
The plots are shown on a linear scale (top) and logarithmic scale (bottom).
The zero eigenvalue of the Stiffness Matrix is omitted.

denser near the origin, but there is no substantial difference between the
various basis functions.

Increasing the polynomial degree has different consequences on the eigen-
values of the stiffness and mass matrices: While the large eigenvalues of the
stiffness matrix are reduced, those of the mass matrix are increased. The
values of the smallest eigenvalues are instead reduced in all cases, as we
would expect by the increase in the conditioning numbers. We noted, how-
ever, that only a small number of outliers quickly approaches zero, while the
other smallest eigenvalues are still reduced but not as fast. In particular, for
the Classical and Truncated Hierarchical basis functions the smallest eigen-
values seems to decrease faster than those associated with LR B-splines.
Figure 21 shows the spectra of the stiffness and mass matrices produced
with basis functions of degree p = 5.



Results 139

0 10 20 30 40 50

LR

THB

HB

eig(A), P=5
0 0.2 0.4 0.6 0.8 1 1.2

LR

THB

HB

eig(M), P=5

10−4 10−3 10−2 10−1 100 101

LR

THB

HB

eig(A), P=5
10−6 10−5 10−4 10−3 10−2 10−1 100

LR

THB

HB

eig(M), P=5

Figure 21: 1D Central Refinement: The eigenvalues of the Stiffness Ma-
trix (left) and Mass Matrix (right) for p = 5 at the last refinement iteration.
The plots are shown on a linear scale (top) and logarithmic scale (bottom).
The zero eigenvalue of the Stiffness Matrix is omitted.

2D Example: Central Refinement

The first of the 2D examples we present is the natural extension of the 1D
cases considered above. Starting from a uniform tensor-product mesh, we
performed five refinement iterations where at each step the central basis
function was selected for refinement. Experiments were conducted for p =
2, 3, 4. As in the previous cases, for even polynomial degrees usually none of
the basis functions is perfectly in the centre of the mesh; when this happened
we chose to refine the lower-left function. Depending on the polynomial
degree we also adjusted the knot vectors to have a ghost domain such that
the initial tensor product basis constitutes a partition of unity in Ω0 =
[0, 1]× [0, 1]. Figure 22 shows the first three steps of the refinement process
for p = 2 and p = 3.

As in the previous examples, we constructed the stiffness and mass ma-
trices using Classical Hierarchical, Truncated Hierarchical and LR B-splines
basis functions on the same meshes, and compared their numerical proper-
ties.

Sparsity Figure 23 shows the sparsity pattern of the stiffness matrices
after the fifth refinement iteration for biquadratic and biquartic basis func-
tions. All results are reported in Table 4.

As expected the Classical Hierarchical basis produces significantly denser
matrices due to the higher number of overlaps. While it may seem that the
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Figure 22: 2D Central Refinement: The first three steps of the refinement
process in the cases p = 2 (above) and p = 3 (below). When four functions
are equally close to the centre, the lower-left one is selected for refinement.

p HB THB LR H/T H/LR
2 8403 6079 6711 138% 125%
3 23625 14909 18909 158% 125%
4 47913 36943 40839 130% 117%

Table 4: 2D Central Refinement: Number of non-zero elements in the
stiffness matrices at the last (5th) refinement iteration. The last two columns
present the ratios, rounded to the nearest percentage point.
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Figure 23: 2D Central Refinement: The sparsity patterns of the stiffness
matrices at the last (5th) refinement iteration. The Cuthill-McKee Algo-
rithm has been applied to optimize the bandwidth. Top: p = 2. Bottom:
p = 4.
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Stiffness Matrix

Iter. 0 1 2 3 4 5
HB 83.6793 125.4868 142.641 152.964 159.1009 162.9791
THB 83.6793 94.7517 99.6748 102.4115 103.8121 104.6173
LR 83.6793 91.0205 91.0144 91.0061 91.006 91.0105

Mass Matrix
Iter. 0 1 2 3 4 5
HB 2.241·103 2.245·103 2.245·103 2.245·103 5.808·103 2.323·104
THB 2.241·103 2.155·103 2.154·103 2.154·103 5.554·103 2.221·104
LR 2.241·103 2.153·103 2.152·103 5.981·103 3.245·104 1.757·105

Table 5: 2D Central Refinement: The conditioning numbers for p = 2
in the various iterations of the central refinement. Stiffness Matrix above,
Mass Matrix below.

improvement gained by using the Truncated basis is less than in the 1D case,
we have to take into consideration that the refined region is very small.

Conditioning Numbers Figure 24 shows the plots of the conditioning
numbers of the stiffness and mass matrices produced by the refinement pro-
cedure described above. As we can see, the conditioning numbers for the
mass matrices are bounded for the higher degrees.

Tables 5 and 6 contain the numerical values of the conditioning numbers
for p = 2 and 3, respectively.

Spectrum Figure 25 shows the spectra of the matrices obtained from the
last refinement iteration using biquadratic basis functions. While there is no
substantial difference in the eigenvalue distribution produced by the three
refinement methodologies, we can see how the smallest eigenvalue of the mass
matrix coming from LR B-splines functions is lower than its Hierarchical
counterparts. This explains the higher conditioning number for LR B-splines
than the Hierarchical refinement schemes.

Increasing the polynomial degree to p = 4 compacts the spectrum, re-
ducing the lower eigenvalues but also the higher ones. As in the univariate
case, the smallest eigenvalues are outliers and assume almost the exact same
value for all three families of splines; the difference in the magnitude of
the conditioning numbers is therefore dictated by the values of the greatest
eigenvalues.
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Figure 24: 2D Central Refinement: Graphs of the conditioning numbers
of stiffness matrices (left column) and mass matrices (right column) for the
bivariate central refinement. p = 2 (top), p = 3 (middle), and p = 4
(bottom).
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Stiffness Matrix

Iter. 0 1 2 3 4 5
HB 2.323·104 3.410·104 3.792·104 3.960·104 4.043·104 4.088·104
THB 2.323·104 2.714·104 2.977·104 3.112·104 3.186·104 3.231·104
LR 2.323·104 2.416·104 2.421·104 2.421·104 2.421·104 2.421·104

Mass Matrix
Iter. 0 1 2 3 4 5
HB 1.975·106 2.016·106 2.019·106 2.019·106 2.019·106 2.019·106
THB 1.975·106 1.837·106 1.837·106 1.837·106 1.837·106 1.837·106
LR 1.975·106 1.836·106 1.836·106 1.836·106 1.836·106 1.836·106

Table 6: 2D Central Refinement: The conditioning numbers for p = 3
in the various iterations of the central refinement. Stiffness Matrix above,
Mass Matrix below.
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Figure 25: 2D Central Refinement: The eigenvalues of the Stiffness Ma-
trix (left) and Mass Matrix (right) for p = 2 at the last (5th) iteration of
the central refinement, bivariate case. The plots are shown on a linear scale
(top) and logarithmic scale (bottom). The zero eigenvalue of the Stiffness
Matrix is omitted.
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Figure 26: 2D Central Refinement: The eigenvalues of the Stiffness Ma-
trix (left) and Mass Matrix (right) for p = 4 at the last iteration of the
central refinement, bivariate case. The plots are shown on a linear scale
(top) and logarithmic scale (bottom). The zero eigenvalue of the Stiffness
Matrix is omitted.

2D Example: Diagonal Refinement

We present here the results obtained applying a diagonal refinement. This
configuration is a classical benchmark often used in publications and, since
the refinement area is quite large, it provides a different point of view respect
to the central refinement illustrated before.

Starting from the usual uniform tensor product mesh, we applied four
refinement iterations where we refine at each step all the basis functions along
the diagonal. As in the centre refinement case, we considered the polynomial
degrees p = 2, 3, and 4. Again, the ghost domain was adjusted in order for
the first tensor product basis to constitutes a partition of unity in Ω0. Figure
27 shows the first three meshes in the biquadratic and bicubic cases. Note
that we refined also a portion of the ghost domain: This was done in order
to avoid having T-joints on the boundary of Ω0. The integration, however,
was carried out only for the elements inside Ω0, as in the previous cases.

Sparsity Due to the extension of the refinement region, and the number
of overlapping zones, we expected to see quite a difference in the sparsity
pattern of the matrices produced by the different spline technologies. Figure
28 presents the sparsity patterns for p = 2 and p = 4. The results are
presented in Table 7.

As we can see, due to the larger refined area the use of Truncated Hier-
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Figure 27: 2D Diagonal Refinement: The first three steps of the refine-
ment process in the cases p = 2 (above) and p = 3 (below).

p HB THB LR H/T H/LR
2 116366 61330 53558 190% 217%
3 304671 164039 140047 186% 218%
4 628862 356042 287594 177% 219%

Table 7: 2D Diagonal Refinement: Number of non-zero elements in the
stiffness matrices at the last refinement iteration of the bivariate diagonal
refinement. The last two columns present the ratios, rounded to the nearest
percent point.
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Figure 28: 2D Diagonal Refinement: The sparsity patterns of the stiff-
ness matrices at the last refinement iteration for the 2D diagonal refinement.
The Cuthill-McKee Algorithm has been applied to optimize the bandwidth.
Top: p = 2. Bottom: p = 4.
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Stiffness Matrix

Iter. 0 1 2 3 4
HB 83.6793 139.708 169.439 225.641 318.5089
THB 83.6793 97.8692 173.2625 371.711 772.2455
LR 83.6793 95.6921 163.0508 346.4521 716.4894

Mass Matrix
Iter. 0 1 2 3 4
HB 2.241·103 8.783·103 3.511·104 1.404·105 5.617·105
THB 2.241·103 8.187·103 3.275·104 1.310·105 5.240·105
LR 2.241·103 8.161·103 3.264·104 1.306·105 5.223·105

Table 8: 2D Diagonal Refinement: The conditioning numbers for p = 2
in the various iterations of the diagonal refinement. Stiffness Matrix above,
Mass Matrix below.

archical or LR B-splines basis functions has a huge impact on the sparsity
of the matrices: The Classical Hierarchical basis produces almost twice as
many non-zero elements as the Truncated basis, and more than twice those
of the LR B-splines basis. It also seems that increasing the polynomial de-
gree somewhat reduces the advantage of the Truncated basis, while the LR
B-splines basis maintains the same ratio.

Conditioning Numbers Figure 29 shows the conditioning numbers of
the stiffness and mass matrices obtained for this diagonal example. The
numerical values of the conditioning numbers for the stiffness and mass
matrices are presented in Table 8 for the biquadratic case, and Table 9 for
the bicubic case.

Spectrum Figures 30 and 31 present the spectrum of the stiffness and
mass matrices in the cases p = 2 and 4, respectively. As before, the mag-
nitude of the smallest eigenvalues is the same for all three types of basis
functions considered. The value of the conditioning numbers depends there-
fore from the values of the highest eigenvalues, which is typically greater for
the Classical Hierarchical functions.
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Figure 29: 2D Diagonal Refinement: Graphs of the conditioning numbers
of stiffness matrices (left column) and mass matrices (right column) for the
bivariate diagonal refinement. p = 2 (top), p = 3 (middle), and p = 4
(bottom).
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Stiffness Matrix

Iter. 0 1 2 3 4
HB 2.323·104 3.661·104 4.366·104 4.588·104 4.675·104
THB 2.323·104 2.666·104 2.840·104 2.927·104 2.977·104
LR 2.323·104 2.522·104 2.569·104 2.581·104 2.585·104

Mass Matrix
Iter. 0 1 2 3 4
HB 1.975·106 7.885·106 3.160·107 1.264·108 5.057·108
THB 1.975·106 6.876·106 2.750·107 1.100·108 4.400·108
LR 1.975·106 6.753·106 2.701·107 1.080·108 4.321·108

Table 9: 2D Diagonal Refinement: The conditioning numbers for p = 3
in the various iterations of the diagonal refinement. Stiffness Matrix above,
Mass Matrix below.
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Figure 30: 2D Diagonal Refinement: The eigenvalues of the Stiffness
Matrix (left) and Mass Matrix (right) for p = 2 at the last iteration of
the diagonal refinement. The plots are shown on a linear scale (top) and
logarithmic scale (bottom). The zero eigenvalue of the Stiffness Matrix is
omitted.
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Figure 31: 2D Diagonal Refinement: The eigenvalues of the Stiffness
Matrix (left) and Mass Matrix (right) for p = 4 at the last iteration of
the diagonal refinement. The plots are shown on a linear scale (top) and
logarithmic scale (bottom). The zero eigenvalue of the Stiffness Matrix is
omitted.

4.3 Additional Results

In this section we present some additional results. We feel it is unnecessary
to give the same level of detail as in the previous examples, hence only the
meshes and corresponding graphs of the conditioning numbers are shown.
We feel that this gives a solid base of different refinement types that may
appear in applications. Ranging from refinement around points, to curves
to areas.
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Figure 32: Half-Side Refinement: Refinement conducted only in the right
half of the mesh. Top: Final mesh and conditioning numbers for p = 2.
Bottom: Final mesh and conditioning numbers for p = 3.
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Figure 33: Triangle Refinement: Refinement along a triangular path.
Top: Final mesh and conditioning numbers for p = 2. Bottom: Final mesh
and conditioning numbers for p = 3.
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Figure 34: Logo Refinement: Refinement along a familiar logo. Top:
Final mesh and conditioning numbers for p = 2. Bottom: Final mesh and
conditioning numbers for p = 3.
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Figure 35: Curve Refinement: Refinement along a predefined curve. Top:
Final mesh and conditioning numbers for p = 2. Bottom: Final mesh and
conditioning numbers for p = 3.
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Figure 36: Circle Refinement: Refinement along a unit circle. Top: Fi-
nal mesh and conditioning numbers for p = 2. Bottom: Final mesh and
conditioning numbers for p = 3.
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5 Future work

One of the main drawbacks of the Classical Hierarchical basis described in
Definition (3) is that it does not preserve partition of unity. This is a very
important property of the basis functions used in Isogeometric Analysis as
it is linked to the stability of the basis, seen as a relationship between a
spline function f and its control points, [17]; moreover, it is also needed for
consistency i.e. the need to be able to represent a constant in order to cover
the nil space of the corresponding bilinear operator (the same as rigid body
translations in elasticity). Due to this, it is normally preferred to use basis
functions that maintain partition of unity at all stages of refinement.

As briefly stated in Section 3, one can easily recover the partition of unity
of the Hierarchical basis by weighting the functions appropriately through
the use of Equation (15). Doing this, however, led to some peculiar results
in our experiments. Figure 37 shows the same conditioning numbers as in
the last row of Figure 19, the 1D cases with central refinement where we
have included also the data of the Weighted Hierarchical basis. Figure 38
shows the corresponding spectrum for this case. Please note that the line
corresponding to the Classical Hierarchical basis is now light-blue, while the
deep-blue is the Weighted Hierarchical basis.

For a 2D example, Figure 39 shows the same data of the bivariate central
refinement presented in Figure 24 for the case p = 3. We have included also
the data for the weighted Hierarchical basis.

As we can see, the Weighted Hierarchical basis has a drastically different
behaviour respect to any of the other spline families considered in this paper,
and more research is likely needed.

Another point we would like to investigate more is the strange behaviour
we encountered in the numerical examples presented in Section 4 for the
polynomial degrees p = 2. In almost every case, the pattern which emerged
from the experiments is that Truncated Hierarchical and LR B-splines basis
are very similar in performance and in particular the general trend for the
conditioning number of a matrix X seems to be

cond(XLR) � cond(XT ) < cond(XH)

except for the p = 2 cases. We currently do not have a good argument as to
why this is happening; a more careful analysis is probably required.
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Figure 37: The same plot as in the last row of Figure 19, the 1D example
with centre refinement. Here we included also the data for the Weighted
Hierarchical basis, which preserves partition of unity.
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Figure 39: Conditioning numbers for the 2D central refinement example
presented in Figure 24, case p = 3. We have included also the data for the
Weighted Hierarchical Basis.
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6 Conclusions

In this paper we have analysed the Classical Hierarchical, Truncated Hier-
archical and LR B-splines basis on both a qualitative (more theoretical) and
quantitative (more numerical) level. Regarding the qualitative differences
we believe that the most important points are:

• The Classical Hierarchical basis does not constitute a partition of
unity;

• For some meshes, the basis generated by the Hierarchical B-splines
and the structured mesh LR B-spline refinement does indeed produce
different function spaces;

• The Hierarchical and LR B-splines frameworks have different admissi-
ble meshes;

• While LR B-splines allow for more flexibility regarding the choice of
refinement strategies, a formal proof for the linear independence of the
resulting set of functions is still lacking.

The difference in the functions spaces is perhaps the most important point.
Since both hierarchal and Truncated B-splines span the same space they
are both resulting in the same discrete finite element solution, meaning that
the differences in the basis functions are going to affect only the number of
operations required to get to a certain precision. For LR B-splines versus
Hierarchical B-splines, the situation becomes a bit more nuanced as the
discrete solution itself can be different.

For the quantitative case we presented several numerical examples which
have shown that there is a substantial difference between the three spline
families especially for what concerns the sparsity pattern of the matrices.
The Classical Hierarchical basis always produced the densest matrices, while
those produced by the Truncated Hierarchical and LR B-splines were much
more sparse. In particular, it seems that when the refinement region affects
only a small portion of the mesh, the Truncated basis yields the best results
regarding sparsity; if instead the refinement covers a large portion of the
mesh, then the LR B-splines basis produces the most sparse matrices.

When it comes to the conditioning numbers, no clear and defined pattern
emerged, and the results seemed very dependant on several factors: the di-
mension of the problem (1D vs 2D), the matrix considered (Stiffness Matrix
vs Mass Matrix) and the polynomial degree. In particular, in the univariate
setting we had, for the stiffness matrix,

cond(AT ) < cond(ALR) < cond(AH)
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while for the mass matrix we had

cond(MLR) < cond(MT ) < cond(MH)

In the bivariate setting things are not so definite, but there seem to be
a tendency of

cond(MLR) ≈ cond(MT ) < cond(MH)

for the mass matrix, while the stiffness matrix doesn’t seem to show as
prominent patterns. An interesting observation is that for low p, the Clas-
sical Hierarchical have conditioning numbers of A on par, or below that of
Truncated or LR, but for p > 2 this is no longer the case.

On a general level we can say that the Classical Hierarchical basis per-
formed worse than the Truncated or the LR one, while these last two frame-
works yielded very similar results. Therefore, we conclude that for any ap-
plication where sparsity or conditioning numbers are important quantities,
one of these two refinement schemes are to be preferred.
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Abstract

Isogeometric analysis (IGA) based on B-splines or Non-uniform rational B-
splines (NURBS) are structured tensor product meshes within each patch [36]
and facilitates superconvergence behavior. The recently developed Locally
Refined (LR) B-splines [28] and structured adaptive mesh refinement using
LR B-splines [39] are consider to be promising candidates to facilitate adap-
tive superconvergent gradient recovery as they produce local tensor product
meshes. The aim of the present article is to develop and verify the efficiency
of using superconvergent patch recovery and a posteriori error estimation
technique in adaptive isogeometric analysis.

We start out by addressing the existence of derivative superconvergence
points in the computed finite element solution based on B-splines and LR B-
splines for our elliptic model problem (1D and 2D Poisson). Then we present
a posteriori error estimate inspired by the idea proposed by Zienkiewicz-Zhu
[76] where the improved gradient obtained from presented recovery proce-
dures is used, and we also show that our Superconvergent Patch Recovery
(SPR) method for the improvement of derivatives fulfills the criteria set out
by Ainsworth and Craig in [1] for a Superconvergent Gradient Recovery Op-
erator.

The developed a posteriori based adaptive refinement methodology are
tested on classical elliptic benchmark problems. The focus is put on optimal
convergence rate obtained in the computed solution as well as the effectivity
of the proposed error estimators.

1 Introduction

Reliability and efficiency are two major challenges in simulation based en-
gineering. These two challenges may be addressed by error estimation com-
bined with adaptive refinements. A lot of research has been performed on
error estimation and adaptive mesh refinement. However, adaptive meth-
ods are not yet an industrial tool, partly because the need for a link to
traditional Computer Aided Design (CAD)-system makes this difficult in
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industrial practice. Here, the use of an isogeometric analysis framework in-
troduced by Professor Thomas J. R. Hughes (UT at Austin) and co-workers
[36] may facilitate more widespread adoption of this technology in industry,
as adaptive mesh refinement does not require any further communication
with the CAD system.

Isogeometric analysis (IGA) has been introduced in [36] as an innovative
numerical methodology for the discretization of Partial Differential Equa-
tions (PDEs), the main idea was to improve the interoperability between
CAD and PDE solvers, and to achieve this authors in [36] proposed to use
CAD mathematical primitives, i.e. splines and NURBS, also to represent
PDE unknowns. The smoothness of splines is useful in improving the ac-
curacy per degree of freedom and solving higher order PDEs via direct ap-
proximations. Isogeometric methods have been used and tested on a variety
of problems of engineering interests, see [36, 25] and references therein. The
development on mathematical front start with h-approximation properties
of NURBS in [15], and further studies for hpk-refinements in [66] and for
anisotropic approximation in [64]. The recently published review article in
Acta Numerica [65] is definitely an advantage in this direction.

Non-uniform rational B-splines (NURBS) are the dominant geometric
representation format for CAD. The construction of NURBS are based on
a tensor product structure and, as a consequence, knot insertion is a global
operation. To remedy this a local refinement can be achieved by breaking the
global tensor product structure of multivariate splines and NURBS. In the
current literature there are three different ways to achieve local refinements:
T-splines, LR splines and hierarchical splines. In this article, we will focus
on LR-splines, recently introduced in [28] and further studied in [21, 39].
The reader interested in T-splines and hierarchical are refer to the following
references: T-splines have been initially introduced in [59] and their use in
isogeometric analysis was first investigated in [17, 29] and later a special class
of analysis suitable T-spline is developed in [58]; hierarchical splines have
been first introduced in [41] and studied within the isogeometric analysis
in the papers [32, 68] and others. Recently, there has been much progress
on the topic of the generalization of splines construction which allow for
local refinement but an automatic reliable and efficient adaptive refinement
routine is still one of the key issues in isogeometric analysis. To achieve
a fully automatic refinement routine to solve PDEs problem in adaptive
isogeometric analysis the a posteriori error estimate is required. This is the
subject of current work.
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1.1 A posteriori error estimations: an overview

Since 1970s several strategies have been developed to estimate the discretiza-
tion error of Finite Element (FE) solution. A first posteriori error estimates
were introduced by Babuska and Rheinboldt in 1978, see [7, 6]. Since then
many different estimation procedures have been introduced. The existing
techniques to obtain an energy estimates may be classified into two main
categories:

• Residual based estimates : The approximate FE solution does not sat-
isfy the governing partial differential equation. This lack of fulfillment
is called the residual and the error can be estimated by solving local
problems where the load functions are given by the local residuals.

• Recovery-based estimates: These estimates employ a projection tech-
nique in order to recover a post-processed quantity (usually the stresses)
from the FE solution. The error is then estimated by taking the dif-
ference between the recovered solution and the FE solution.

The first category of estimates mimics the optimal bounds used to prove
the convergence of finite element discretization schemes. For example, an
explicit residual based estimates is very easy to implement but it include
interpolation constants that are problem dependent and difficult to obtain
in general. This makes them less popular among the engineers. While in the
implicit residual based approach, a finite element problem with a very fine
discretization is solved over each of the local subdomains (either individual
element [3, 45], patches of elements [7] or subdomains consists of an element
and its neighborhood elements [50]). Depending on how the local problem
is linked to the global FE solution different properties of the estimates can
be obtained. For instance, the equilibrated element approah, the flux free
approach and the constitute relation error, yield estimates that gives an up-
per bound on the error, while error estimates based on local problem with
Dirichlet boundary conditions gives the lower bound on the error [26]. A
more detailed discussion about this class of estimates can be found in [2, 3,
67].

The second category of recovery based approach consist of deriving sim-
ple smoothing technique that yields a solution field that converges faster
than the FE solution. A very popular prototype for such approaches is the
Zienkiwics-Zhu estimate (so called ZZ estimate). Initial reference to such
estimates can be found in [76], and further development with Superconver-
gent Patch Recovery (SPR) in [77, 78]. The success of this approach in
the engineering community relies on an intuitive mechanical definition and



174 Paper III: Superconvergent patch recovery and a posteriori error...

a certain ease of implementation compared to other class of available error
estimates, without sacrificing the numerical effectivity. Many contribution
also has been devoted to obtain the guaranteed upper bound on the error
that some residual based technique offered while retaining the simple imple-
mentation of the ZZ-estimates framework. The key idea was that when the
recovered stress field is exactly statically admissible, then the ZZ-estimate
coincides with the constitutive relation error, and gave the bound on the
energy error from above. By following this approach some methodology has
been presented in [27, 44, 49] and others, to obtain practical upper bound
of the error in energy norm using SPR recovery technique in finite element
literature. These smoothing technique were not limited to classical finite
element methods but have been extended to enriched approximations in [19,
20] and to smoothed finite elements (SFEM) in [33].

The use of a posteriori error estimator in isogeometric analysis is still in
its infancy. To the best of our knowledge only few work has been done in
this direction, see [22, 29, 37, 40, 57, 63, 68, 70, 72, 71]. The authors in [29]
used the idea of hierarchical bases with bubble functions approach of Bank
and Smith [14] to design a posteriori error estimator for T-splines, which
was also used in [22, 68]. But their performance was less satisfactory due
to the needed saturation assumption as noted on page 41 of [37]. Another
simple idea of explicit residual based error estimator has been explored in
[37, 63, 70, 72, 71]. They require the computation of constants in Clement-
type interpolation operators. Such constant are mesh (element) dependent
and often incomputable for general element shape. A global constant can
overestimates the local constants, and thus the exact error. Recently, a
functional-type a posteriori error estimate for isogeometric discretization is
presented in [40]. These type of error estimate, which was introduced in [51,
52] on functional grounds (including integral identity and functional analysis
arguments) are applicable for any conforming and non-conforming discretiza-
tions and known to provide a guaranteed and computable error bounds. But
the hindrance in their popularity is due to high cost of computations which
are based on solving a global minimization problem (Majorant minimization
problem) in H(div) spaces. In [40], authors made an attempt to to reduce
the cost of computations for tensorial spline spaces but the same idea of
cost reduction need further study in adaptive isogeometric analysis. In this
article we explore another approach to design a posteriori error estimate in
setting of Zienkiewicz-Zhu [76] where the improved gradient obtained from
recovery procedure is used instead of exact gradient of solution. The recov-
ery based estimators are very popular in engineering community because of
their simple implementation and as they provide good effectivity indices. In
an extensive study on the quality of different a posteriori error estimates



Introduction 175

belonging to first two categories above (residual based vs. recovery based),
Babuska and co-workers in [10, 9, 13]; conclude that the Superconvergent
Patch Recovery (SPR) technique developed by Zienkiewicz and Zhu [77, 78]
is the most robust estimator for the class of smooth solutions approximated
on patch-wise uniform grids of linear or quadratic elements. In this article,
we develop recovery based error estimates for isogeometric discretization and
verify their effectiveness for quadratic B-splines and quadratic LR B-splines
elements in adaptive isogeometric analysis.

We also address the problem of existence of derivative superconvergence
points in the context of B-splines and LR B-splines based Galerkin discretiza-
tion. The superconvergence in the finite element method (FEM) is a well
known phenomenon, where the order of convergence of the finite element
error, at certain special points in an element, is higher than the order of
convergence of the maximum of the finite element error over that element.
These special points are called natural superconvergence points. This phe-
nomena was first address in [48], and the term superconvergence was first
used in [30]. Superconvergence has been extensively studied since late 1970s
a few references are [4, 12, 11, 31, 42, 43, 46, 53, 54, 61, 62, 74, 73], and
several books has been written on superconvergence in the finite element
method, e.g., [3, 8, 23, 24, 69, 75]. A systematic computer based approach
was introduced in [11] for the analysis of superconvergence in the context of
the finite element method. It was shown that the existence of natural super-
convergence points was equivalent to the existence of roots of a system of
polynomial equations. Moreover, the superconvergence points are obtained
from these roots, which (the roots) are computed numerically. In special
situations, the system of equations can be written explicitly and roots can
be computed analytically, as shown in [74, 73]. In this article we follow
the main theme of computer based approach of [11], but in our approach we
involve the computation of local Neumann projection and the computer is
used to obtain the location of derivative superconvergence points. We hope
that the work presented in this article will initiate more activity on super-
convergence in isogeometric discretization and its application in engineering
interests.

1.2 Upper error bounds vs. Accurate error estimates

In this section we compare two simple error estimates; an explicit residual
based error estimate vs. SPR recovery based ZZ-estimate. The main focus
will be on the approximation of true error and quality of estimates measure
in term of effectivity index θ, which can be defined by the ratio of estimated
error by exact FE error.
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Let ηRes be an explicit residual based error estimate which can be ob-
tained from the Galerkin formulations (20) and (22) of our model problem
(17)-(19) after following the standard procedure, [3], and is given by

‖∇u−∇uh‖2L2(Ω) ≤ Cη2Res,

ηRes =
∑

∀K∈M

(
h2K‖r‖2L2(K) +

1

2
hK‖R‖2L2(∂K)

)
, (1)

where hK is the diameter of element K ∈ M, r = f + ∆uh defined the
interior residual and R defined the boundary residual R|γ = g − ∂uh

∂n for

γ ∈ ∂K ∩ ∂ΓN and the jump term R|γ = −1
2

[
∂uh
∂n

]
for γ ∈ ∂K. The contri-

bution of element jump discontinuity term becomes zeros for smooth spline
approximation spaces, which generally have at least C1-continuity across
the element boundaries. The error constant C is generally not known and
as a results the bound on the inequality (1) become very conservative. We
assume the value of constant C equal to one in the computation of results.

Now we define ηSPR := ‖∇uSPR
h −∇uh‖L2(Ω) the Superconvergent Patch

Recovery (SPR) based error estimate developed in the present article, where
∇uSPR

h is the recovered gradient of the computed FE solution ∇uh using the
SPR recovery procedure of Section 4.2. In Figure 1 we show the compari-
son between the exact error ‖∇u−∇uh‖L2(Ω), estimated errors ηRes, ηSPR

and the effectivity index θ obtained with the explicit residual based error
estimate ηRes and the SPR recovery based error estimate ηSPR for Sinus
problem defined by Example 2 of Section 7 using quadratic splines based
FE method with uniform h-refinements. The comparison of exact and esti-
mated errors for L-shaped domain problem with singularity at the corner
(0, 0) defined by Example 8 of Section 7 for both error estimates with adap-
tive refinements of LR B-splines are shown in Figure 2. Both examples show
the accurate estimation of the error in case of SPR recovery procedure in
comparison to the upper bound on the error achieved by the explicit residual
based error estimator. The SPR recovery based error estimator is known for
their h-asymptotic exactness behavior, that means, when the mesh is refined
the estimated error converges to the exact error and provide a very accurate
approximation of it. This is the main highlight in the present article.

1.3 Aim and outline of the article

The aim of this article is to develop efficient gradient recovery techniques and
a posteriori error estimation in adaptive isogeometric analysis. We present
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(a) Errors (b) Effectivity index θ

Figure 1: Sinus problem: Comparison of errors and effectivity index
between residual based error estimate (ηRes) and the present SPR recov-
ery based error estimate (ηSPR) using quadratic B-splines with uniform h-
refinement.

(a) Errors (b) Effectivity index θ

Figure 2: L-shaped domain problem: Comparison of errors and effec-
tivity index between residual based error estimate (ηRes) and the present
SPR recovery based error estimate (ηSPR) using quadratic LR B-splines with
adaptive h-refinement.
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a posteriori error estimates inspired by the idea introduced by Zienkiewicz-
Zhu [76] where the improved gradient obtained through developed recovery
procedures is used. We also address the existence of natural derivatives
superconvergence points in the approximate solution obtained from spline
based finite element method for a model elliptic problem. A computer based
proof in the theme of [11, 12] for the computation of these points for the
standard case of Poisson and Laplace equations are given. The developed a
posteriori based adaptive refinement methodology will be tested on classi-
cal elliptic benchmark problems. For the purpose of adaptive isogeometric
analysis we consider local h-refinement achieved using structured mesh re-
finement strategy developed in Johannessen et al. [39] based on idea of LR
B-splines presented by Dokken et al. [28]. The focus will be on optimal
convergence rate obtained in the computed solution as well as the effectivity
of the proposed error estimators.

The complete article is organized as follows:

In Section 2, the definitions of B-splines, NURBS and LR B-splines which
is necessary to built an approximation spaces in isogeometric analysis is
briefly introduced.

In Section 3, a model elliptic problem and its isogeometric FE approx-
imation together with a priori error estimates is introduced. We close the
section after developing the idea of a recovery based a posterior error esti-
mation and its asymptotic exactness.

In Section 4, different gradient recovery procedures are developed to
improved the derivatives of isogeometric FE solution field. The Supercon-
vergenet patch recovery procedure will be the main focus in this section.

In Section 5, the local behavior of spline based Galerkin discretization
is analyzed. The section start with the motivational study of natural su-
perconvergence for one dimensional elliptic problem based on elliptic Ritz
projection. Later a more general idea of local Neumann elliptic projection
is established, which is suitable for multi-dimensional problems, and based
on this we compute the location of true derivative superconvergence points
for our model elliptic problems, e.g., Poisson and Laplace equations.

In Section 6, we verify that the SPR recovery procedure of present ar-
ticle satisfy the Abstract Recovery Operator definition (or conditions) of
Ainsworth and Craig [1]. These conditions together with superconvergence
property of FE approximation is used to show the superconvergence results
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for the SPR recovery procedure.

Numerical experiments are performed in Section 7.

We end this article with concluding remarks and perspectives based on
our findings in Section 8.

2 Approximation spaces in isogeometric analysis

In order to introduce a notation and to provide an overview, we recall the
definition and some aspects of isogeometric analysis using B-splines, NURBS
and LR B-splines basis functions and their geometry mappings in this sec-
tion.

2.1 B-splines and NURBS

Given two positive integer p and n, we introduce the (ordered) knot vector

Ξ := {ξ1, ξ2, . . . , ξn+p+1} with ξi ≤ ξi+1 ∀i, (2)

where p is the degree of the B-spline and n is the number of basis functions
(and control points) necessary to describe it. Here we allow repetition of
knots, that is, ξi ≤ ξi+1 ∀i. The maximum multiplicity we allow is p+ 1. In
the following we will only work with open knot vectors, which means that
first and last knots in Ξ have multiplicity p+1. Given a knot vector Ξ, uni-
variate B-spline basis functions Bi,p(ξ), i = 1, . . . , n, are defined recursively
by the well known Cox-de Boor recursion formula:

Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,
0 otherwise.

(3)

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ) if ξi ≤ ξ < ξi+1,

(4)
where in (4), we adopt the convention 0/0 = 0.

Let Bi,p and Bj,q with i = 1, . . . , n and j = 1, . . . ,m, are the B-
spline basis functions of degree p and q defined by open knot vector Ξ =
{ξ1, ξ2 . . . , ξn+p+1} and Ψ = {ψ1, ψ2, . . . , ψm+q+1}, respectively. Then by
means of tensor products, a multi-dimensional B-splines can be constructed
as Bp,q

i,j (ξ,Ψ) = Bi,p(ξ) · Bj,q(ψ). In general, a rational B-spline in Rd is
the projection onto d-dimensional physical space of a polynomial B-spline
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defined in (d−1)-dimensional homogeneous co-ordinate space. Let Cij ∈ R2

be the control points and wij = (Cw
ij)3 are the positive weights given by

projective control points Cw
ij ∈ R3. Then NURBS basis function on two

dimensional parametric space Ω̂ = [0, 1]2 are defined as

Ri,j(ξ, ψ) =
Bi,p(ξ)Bj,q(ψ)wij

n∑

î=1

m∑

ĵ=1

Bî,p(ξ)Bĵ,q(ψ)wîĵ

(5)

Observe that the continuity and support of NURBS basis function are the
same as for B-splines. Furthermore, B-splines can be seen as a special case
of NURBS with all weights being equal to one.

2.2 Local h-refinement using LR B-splines

In the following, we present a class of Locally Refined (LR) B-splines space.
For a more detailed presentation of LR B-splines, including an overview of
corresponding refinement algorithm that results in a proper LR B-spline
space to perform structured adaptive refinement in this article, we refer to
our previous work in [39].

Local knot vectors

We have seen that a univariate spline basis function is constructed using a
recursive formula of (3) and (4) with the global knot vector Ξ. However the
support of a B-spline function, Bi,p, is contained in [ξi, ξi+p+1] and these
knots {ξi, ξi+1 . . . , ξi+p+1} only contribute to the definition of Bi,p. Thus we
do not need the global knot vector Ξ to define Bi,p, instead we consider a
local knot vector

Ξi = {ξi+j}p+1
j=0, for i = 1, . . . , n, (6)

and use it in conjunction with (3) and (4) to define Bi,p, without altering
the result in any way. We have illustrated the basis functions given by
Ξ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4] in Figure 3.

The concept of local knot vectors is important for LR B-splines as they
are used as the building blocks. Now we recall the concept of knot insertion,
that will be the focus of our investigation on LR B-splines, see also [39]. As
we are considering the same degree basis in multivariate case so we drop the
degree subscript p from the notation Bi,p.

Knot insertion
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Figure 3: All quadratic basis functions generated by the knot Ξ =
[0, 0, 0, 1, 2, 3, 3, 4, 4, 4]. Each individual basis function Bi,2 (represented by
different colors) can be described using a local knot vector Ξi of length 4
described in (6).

For local h-refinement, we again turn to existing spline theory. Tensor prod-
uct B-splines form a subset of the LR B-splines and they obey some of the
same core refinement ideas. From the tensor product B-spline theory we
know that one might insert extra knots to enrich the basis without changing
the geometric description. This comes from the fact that we have the avail-
able relation between B-splines in the old coarse spline space and in the new
enriched spline space. For instance if we want to insert the knot ξ̂ into the
knot vector Ξ between the knots ξi−1 and ξi, then the relation is defined by

BΞ(ξ) = α1BΞ1(ξ) + α2BΞ2(ξ), (7)

where

α1 =

{
1, ξp+1 ≤ ξ̂ ≤ ξp+2

ξ̂−ξ1
ξp+1−ξ1

, ξ1 ≤ ξ̂ ≤ ξp+1
(8)

α2 =

{
ξp+2−ξ̂
ξp+2−ξ2

, ξ2 ≤ ξ̂ ≤ ξp+2

1, ξ1 ≤ ξ̂ ≤ ξ2
(9)

and the knot vectors are Ξ1 = [ξ1, ξ2, ...ξi−1, ξ̂, ξi, ...ξp+1] and
Ξ2 = [ξ2, ...ξi−1, ξ̂, ξi, ...ξp+1, ξp+2].

Let us look at an example using this technique. Say we want to insert
ξ̂ = 3

2 into the B-spline Ξ = [0, 1, 2, 3]. This would give us α1 = α2 =
3
4 and

the three functions are plotted in Figure 4.

To refine the bivariate B-spline basis function BΞ,Ψ(ξ, ψ) = BΞ(ξ)·BΨ(ψ)
we consider the refinement of the basis function in one parametric direction
at a time. By using the splitting algorithm in (7) when splitting in ξ-
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Figure 4: Splitting a B-spline function via inserting the knot ξ = 3
2 in

Ξ = (0, 1, 2, 3).

direction, we obtain

BΞ,Ψ(ξ, ψ) = BΞ(ξ) ·BΨ(ψ)

= (α1BΞ1(ξ) + α2BΞ2(ξ)) ·BΨ(ψ)

= α1BΞ1,Ψ(ξ, ψ) + α2BΞ2,Ψ(ξ, ψ).

Now we define a weighted B-spline Bγ
Ξ,Ψ(ξ, ψ) := γBΞ,Ψ(ξ, ψ), where the

weight factor γ ∈ (0, 1]. This is to ensure that LR B-splines maintain the
partition of unity property, and it is noted that the weight factor γ is differ-
ent from the rational weight w which is common in NURB representation.
Refining a bivariate weighted B-splines becomes

Bγ
Ξ,Ψ(ξ, ψ) = γBΞ,Ψ(ξ, ψ) (10)

= γα1BΞ1,Ψ(ξ, ψ) + γα2BΞ2,Ψ(ξ, ψ)) (11)
= Bγ1

Ξ1,Ψ
(ξ, ψ) +Bγ2

Ξ2,Ψ
(ξ, ψ), (12)

where Bγ1
Ξ1,Ψ

and Bγ2
Ξ2,Ψ

are new weighted B-spline basis functions with
weights γ1 = γα1 and γ2 = γα2, respectively.

Local refinement algorithm

We now have the main ingredients to formulate the LR B-spline refinement
rules. This will be implemented by keeping track of the mesh M� at level �
and the spline space S�. For each B-spline basis Bγk

Ξk,Ψk
, where k is a single

running global index, we store the following:

• Ξk, Ψk-local knot vectors in the each parametric directions

• γk-scaling weights and Ck-control points.

Through the refinement we aim at two points: keeping the partition of
unity and leaving the geometric mapping unchanged, i.e.

∑
∀k
Bγ

Ξk,Ψk
(ξ, ψ) =
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1 and F(ξ, ψ) =
∑

∀k
Bγ

Ξk,Ψk
(ξ, ψ)Ck at all levels of refinements.

Assuming a meshline E is inserted, the refinement process is characterized
by two steps.

• Step 1: Split any B-spline which support is completely traversed by
the new meshline - update the weights and control points

• Step 2: For all new B-splines, check if their support is completely
traversed by any existing meshline.

On the basis of that the above characterization is fulfill at each refinement
level the following local refinement algorithm (Algorithm 1) is proposed
in [39] to construct the LR B-spline space. The "Update control points and
weight" step is described when a parent basis function Bi split into two
newly created B-spline functions B1 amd B2 results of splitting by Eq.(10).
If B1 is not present in LR B-spline list then we add it to the list and set
its weight and control points equal to its parent function, i.e., γnew1 = α1γi
and Cnew

1 = Ci. While if the newly created function is already exits in
our spline space then we just update its control points and weight such as
Cnew
1 := (C1γ1 + Ciγiα1)/(γ1 + γiα1) and γnew1 := γ1 + γiα1. Finally we

remove the old basis functions from the spline space.
We now define an LR spline as an application of the above refinement

algorithm.

Definition 1 (LR spline). An LR spline L consist of (M,S), where M is
an LR mesh and S is a set of LR B-splines defined on M, and

• At each refinement level, M�+1 := M�∪E�, where E� is a new meshline
extension.

• S� := {BΞk,Ψk
(ξ, ψ)}mk=1 is a set of all LR B-splines on M� as a results

of Algorithm 1.

In [39] , authors has illustrated two main isotropic h-refinement strategies
as shown in Figure 5. A full span refinement strategy split an element with
a knotline insertion which transverse through the support of every B-splines
on the marked elements. The idea of refining elements is a legacy from
the finite element method where every inserted vertex would correspond to
an additional degree of freedom. With LR B-splines this is not the case
as the required length of the inserted meshlines may vary from element to
element. Another way of refining LR B-splines is identifying the B-spline
which needs to be refined as opposed to which elements does, a structured
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Algorithm 5 Local refinement algorithm
1: Input parameters: Spline space (S), LR mesh(M), Meshline (E)
2: for every B-spline Bi ∈ S do
3: if E traverse support of Bi then
4: refine Bi according to Eq. (10)
5: Update control points C and weights γ
6: end if
7: end if
8: end for
9: Update S to Snew and M to Mnew

10: for every existing Bi ∈ Snew do
11: for every edges Ei ∈ Mnew do
12: if Ei traverse support of Bi then
13: refine Bi according to Eq. (10)
14: Update control points C and weights γ
15: (These steps may enlarge Snew space further)
16: end if
17: end if
18: end for
19: end for

mesh refinement strategy based on this approach is shown in Figure 5(b).

LR spline space properties

Consider an LR spline (M,S) defined above in Definition 1. Then the
following holds true

•
∑
∀k

Bγ
Ξk,Ψk

(ξ, ψ) = 1, i.e., LR B-splines form a partition of unity.

• (M�,S�) ⊂ (M�+1,S�+1), i.e., the LR spline is nested.

• If two meshline insertion sequence E and Ẽ results in LR spline meshes
M and M̃ which are equal then the spline spaces S and S̃ results on
these LR meshes will be equal. This shows LR spline refinement is
order independent.

• S := {BΞk,Ψk
}mk=1 does not in general form a linear independent set.

As it has been pointed out that it is not guarantee that an arbitary LR
mesh is producing a linear independent set of functions however there is
several way to ensure that the system of function is linearly independent,
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(a) Full span - split all
functions on one element,
here only two of all the nine
functions with support on
this element is depicted

(b) Structured Mesh - split
all knot spans on one B-
spline, notice that no bad
aspect ratio elements are
created

Figure 5: The ideas behind the different refinement strategies, here illus-
trated on a quadratic tensor product mesh. Notice the fundamental differ-
ence in that 5a is refining an element, while 5b is refining a B-spline.

see [28, 39]. For the LR spline space obtained as a results of structured mesh
refinement strategy of Figure 5b, the present authors in [38] has made an
attempt to provide a theoretical proof of linear independence on structured
LR meshes. The work in this article is based on the structured adaptive
refinement using LR B-splines presented in this section.

2.3 Geometry mappings

In particular, a single patch domain Ω is a NURBS region associated with
the control points Cij , and we introduce the geometrical map F : Ω̂ → Ω̄
given by

F(ξ, ψ) =
n∑

i=1

m∑
j=1

CijRi,j(ξ, ψ). (13)

The above equation gives a B-spline region in a special case with all weights
being equal to one. For our purpose we assume that the geometry mapping is
continuous and bijective which are natural assumption for CAD applications.

Following the isoparametric approach, the space of B-splines and NURBS
vector fields on the patch Ω is defined, component by component as the span
of the push-forward of their respective basis function, e.g., in case of NURBS

Vh = span{Ri,j ◦ F−1, with i = 1, . . . , n; j = 1, . . . ,m} (14)

For LR B-splines, these will instead be defined over a single running global
index k using the local knot vectors Ξk and Ψk (defined by a subsequences
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of global knot vectors Ξ and Ψ, respectively) by

F(ξ, ψ) =
Ndim∑
k=1

γkCkBΞk,Ψk
(ξ, ψ), (15)

where the local knot vectors based spline basis functions are defined by
BΞk,Ψk

(ξ, ψ) = BΞk
(ξ) · BΨk

(ψ) and γk is a weighting factor needed to
obtained partition of unity, as discussed in Section 2.2. The isoparametric
approach gives the space of LR B-splines vector fields on Ω by

Vh = span{BΞk,Ψk
(ξ, ψ) ◦ F−1, with k = 1, . . . , Ndim}. (16)

3 Error estimation

3.1 Model problem

The model problem is Poisson’s equation on a open bounded two dimensional
domain Ω ∈ R2 with Lipschitz boundary Γ = ΓD ∪ ΓN , where ΓD and ΓN

are the Dirichlet and Neumann boundaries, respectively. The strong form
of the boundary value problem: Find the displacement u : Ω̄ → R such that

−∆u = f on Ω; (17)
u = 0 on ΓD; (18)

n · ∇u = g on ΓN . (19)

The data are assumed to be sufficiently smooth, that is, f ∈ L2(Ω), g ∈
L2(ΓN ) and n is the unit outward normal vector to Γ. An equivalent formu-
lation of the boundary value problem is the variational formulation seeking
u ∈ V such that

a(u, v) = �(v) ∀ v ∈ V, (20)

where the trial and test space V is the usual Sobolev space of functions from
H1(Ω) whose trace vanishes on the Dirichlet part of the boundary and is
define by V := {v ∈ H1(Ω) : v = 0 on ΓD}.

The form a(u, v) is assumed to be a V -coercive bilinear form on V × V
and the linear functional l(v) is an element of the dual space V ′, given as

a(u, v) =

∫

Ω
∇u · ∇vdΩ and �(v) =

∫

Ω
fvdΩ+

∫

ΓN

gvds. (21)
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The existence and uniqueness of the solution to this continuous problem is
guaranteed by the Lax-Milgram theorem. The Galerkin finite element ap-
proximation to this variational problem may then be given as follow: Given
a finite-dimensional subspace Vh ⊂ V and � ∈ V ′, find uh ∈ Vh such that

a(uh, vh) = �(vh) ∀ vh ∈ Vh. (22)

In isogeometric setting, the discrete space Vh formed with B-splines/NURBS
and LR B-splines are given by (14) and (16), respectively. Let the discrete
solution uh is given by

uh =

Ndim∑
A=1

cARA (23)

with the corresponding basis function RA with respect to B-splines/NURBS
or LR B-splines in the physical domain Ω and the control variables cA. On
subsituting this leads to a linear system of equations of the form

KUh = f, (24)

where K is the stiffness matrix induced by the bilinear form a(·, ·), f is the
load vector, and Uh is the coefficient vector of the discrete solution uh.

Let u and uh be the exact solution and the isogeometric FE solution of
(17)-(19), respectively. The discretization errors are denoted by

e(x) = u(x)− uh(x), eσ(x) = ∇u(x)−∇uh(x), (25)

where e is the error in the displacement uh and eσ is the error in the gradient
∇uh. We now introduce the following error norms:

‖e‖L2(Ω) := ‖u− uh‖L2(Ω) =

(∫

Ω
(u− uh)

2dΩ

)1/2

(26)

‖eσ‖L2(Ω) := ‖∇u−∇uh‖L2(Ω) =

(∫

Ω
(∇u−∇uh)

T · (∇u−∇uh)dΩ

)1/2

(27)
The associated bilinear form define the the energy norm by

‖e‖E =
√
a(e, e) = |e|H1

0 (Ω) = ‖eσ‖L2(Ω), (28)

which is equivalent to the norm of error e on H1
0 (Ω) (or the norm of error

eσ on L2(Ω)).

While we consider here a model problem with a scalar solution, the con-
cepts given in the article are, of course, also applicable to the general linear
elasticity problem by using the appropriate vectors of solution variables and
the corresponding solution spaces.
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3.2 A priori error estimation

FEA

In classical Finite Element Analysis (FEA), the fundamental error estimate
for the elliptic boundary value problem, expressed as a bound on the dif-
ference between the exact solution, u, and the FEA solution, uh, takes the
form

‖u− uh‖m ≤ Chβ‖u‖r (29)

where ‖ · ‖k is the norm corresponding to the Sobolev space Hk(Ω), h is a
characteristic length scale related to the size of the element in the mesh and
β = min(p+1−m, r−m) where p is the polynomial degree of the basis, and
C is a constant that does not depend on u and h. The parameter r describe
the regularity of the exact solution u and 2m is the order of the differential
operator of the corresponding PDE.

B-splines and NURBS

In this section we review the basic idea to obtain a priori error estimate
results analogous to (29) for NURBS based isogeometric method. For the
technical details we encourage the reader to consult the original article [16].

Define a support extension Q̄ of an element Q of the mesh Qh in the
parametric domain Ω̂, as a union of the supports of basis functions whose
support intersect the element Q. Similarly, we define the physical support
extension K̄ of an element K = F(Q) of the physical mesh Mh, as the image
of Q̄ through the geometric mapping, i.e., K̄ = F(Q̄). Given a function v̂ ∈
L2(Ω̂), let ΠSh

: L2(Ω̂) → Sh be the projection operator (Quasi-interpolants)
on the B-spline space Sh and defined as (see [16]).

ΠSh
v̂ :=

Ndim∑
k=1

λk(v̂)Bk, (30)

where the linear functional λk ∈ L2(Ω̂)′ determine the dual basis of B-splines,
i.e., λk(Bj) := δk,j , ∀ k, j. The corresponding projector operator over the
NURBS space Nh in the the parametric domain Ω̂, say ΠNh

, is defined by
means of ΠSh

and the definition of the NURBS basis functions through the
weighting function w. In particular, ΠNh

: L2(Ω̂) → Nh reads:

ΠNh
v̂ :=

ΠSh
(wv̂)

w
, ∀ v̂ ∈ L2(Ω̂). (31)
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In this manner, the projection operator on Vh, the NURBS space in physical
domain Ω, is given by

ΠVh
: L2(Ω) → Vh, ΠVh

v := (ΠNh
(v̂)) ◦ F−1, ∀ v ∈ L2(Ω). (32)

By following the theoretical results from [16], we have the following interpo-
lation result on the physical domain Ω:

Lemma 1 (Bazilevs et al. [16], Theorem 3.2). For the projection operator
ΠVh

the following estimate holds for all v ∈ H�(Ω) with m and � integers
such that 0 ≤ m ≤ � ≤ p+ 1

∑
K∈Kh

|v−ΠVh
v|2Hm(K) ≤ Cshape

∑
K∈Kh

h
2(�−m)
k

�∑
i=0

‖∇F‖2(�−m)

L∞(Q̄)
|v|2Hi(K̄). (33)

The constant Cshape depends on p and the shape (but not the size) of
the domain Ω, as well as the shape regularity of the mesh.

Now assuming sufficient regularity (for the dual problem), a classical
convergence analysis and the duality argument (Aubin-Nitsche’s trick) easily
give the following result.

Theorem 1. Let u ∈ Hr(Ω) be the exact solution of the elliptic boundary
value problem and uh ∈ Vh be the approximate solution obtained with the
NURBS based isogeometric discretization (22). Then, the following a priori
error estimate holds for 0 ≤ m ≤ r ≤ p+ 1:

‖u− uh‖m ≤ Cshapeh
β‖u‖r, where β = min(p+ 1−m, r −m). (34)

For the uniform h-refinement, it is interesting to see from (29) and (34)
that the isogeometric solution obtained using Cp−1 NURBS of degree p can
converge at same rate as FEA polynomial of degree p while remaining more
efficient in term of degrees of freedom (DOF).

3.3 A posteriori error estimation

The standard a priori error estimate for the exact error given in previous sec-
tion tells us about the rate of convergence which we can anticipate but is of
limited use if we wish to find a numerical estimate of the accuracy. One way
in which we might get a realistic estimate or bound upon the discretization
error is to use the approximation solution uh itself in estimating ‖e‖E . The
idea of using uh to estimate the error is called a posteriori error estimation
and some variety of methods to use it have been seen in literature, see [3]
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and [67] for detailed survey on this topic.

The criterion of what constitutes a good method of using uh is quantified
by the condition of asymptotic exactness of the resulting a posteriori error
estimator, introduced by Babuska and Rheinboldt [5].

Definition 2. [Asymptotic Exactness] Let η be an a posteriori error
estimator, then if under reasonable regularity assumptions on u and the
data of the problems, and the family of meshes Mh, we have that

‖e‖E ≈ {1 +O(hγ)}η as h → 0, (35)

where γ > 0 is independent of h and the constant in the O(hγ) term depends
upon the data of problem only, then we say that η is an asymptotically exact
a posteriori error estimator.

This article is motivated from an error estimate procedure developed by
Zienkiewicz and Zhu [76] in clasical FE methods, where the Superconver-
gent Patch Recovery [77, 78] has proved to be effective and economical both
in evaluating errors and driving adaptive mesh refinement. We first design
and analyze the Superconvergent Patch Recovery procedure to improve the
gradient field σ∗

h := ∇u∗h for B-splines/NURBS based isogeometric FE meth-
ods. Then the improved gradient field ∇u∗ is used instead of exact solution
∇u in (27), in theme of Zienkiewicz and Zhu [76], to compute the estimated
error through

η = ‖∇u∗ −∇uh‖L2(Ω) =

(∫

Ω
(∇u∗ −∇uh)

T · (∇u∗ −∇uh)dΩ

)1/2

. (36)

Effectivity index (θ):

The quality of the error estimate η = ‖∇u∗ − ∇uh‖L2(Ω) is measured
by its effectivity index which is given by the ratio of the estimated error to
actual error, i.e.,

θ =
η

‖e‖E
=

‖∇u∗ −∇uh‖L2(Ω)

‖∇u−∇uh‖L2(Ω)
. (37)

In context to the Definition 2, the error estimator is said to be asymptitically
exact if θ approaches unity as the exact error ‖e‖E tends to zero (or as h →
0). Notice that the reliability of the estimator is dependent on the quality of
the recovered quantity ∇u∗h obtained through the recovery procedure. The
following result from [78] demonstrate how an asymptotically exact error
estimator can be achieved.
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Theorem 2. Suppose ‖e∗‖E = ‖∇u−∇u∗h‖L2(Ω) is the error in the recovered
solution, then the error estimator η is asymptotically exact if

‖e∗‖E
‖e‖E

→ 0 as ‖e‖E → 0. (38)

Thus the condition of asymptotic exactness of the error estimator can be
acheived if ‖e∗‖E converges at higher rate than ‖e‖E . It follow that if ‖e∗‖E
is superconvergent, i.e., ‖e∗‖E = O(hp+α) with α > 0, in comparison to the
discretization error ‖e‖E = O(hp), then asymptotic exactness is assured and
we also get

1−O(hα) ≤ θ ≤ 1 +O(hα). (39)

The recovery procedures developed in this article is claimed to be supercon-
vergent of order 1 in case of uniform refinements and of some order α ∈ (0, 1]
for structured LR meshes obtained via adaptive h-refinement algorithm of
LR B-splines as described in Section 2. We will show some numerical exam-
ples to illustrate their superconvergence behavior in Section 7.

It should be noted that while the higher rate of convergence ‖e∗‖E =
O(hp+α) with α > 0 is needed to show asymptotic exactness, the error esti-
mator will always be practically applicable providing the recovered value are
more accurate (through not necessary superconvergent) than those obtained
in the direct FE computation. If for instance consistently we have

‖e∗‖E
‖e‖E

≡ δ ≤ 0.2 (40)

then the effectivity index θ will be within its practical limits of [0.8, 1.2].

4 Gradient recovery techniques : Postprocessing

In this section we present different recovery procedures for the improvement
of computed gradient σh := ∇uh in NURBS (or B-splines, LR B-splines)
based isogeometric analysis. The gradient σh computed from direct FE
computation uh in (23) is used to improved the gradient value σ∗ = ∇u∗ in
two different ways, either through global projections over the whole domain
Ω or by local smoothing of each gradient components over small patches of
elements. We first explain two global recovery procedures termed as Con-
tinuous L2 projection (CL2P) and Discrete least square fitting (DLSF), the
computed gradient components of the solution is projected onto the same
NURBS (or B-splines, LR B-splines) space that was used for the computa-
tion of displacement uh in FE approximation (22).



192 Paper III: Superconvergent patch recovery and a posteriori error...

4.1 Global recovery procedures

It is possible to obtain more accurate gradient of FE solution by a projection
or variational recovery process. These approaches is originally due to Oden
and Brauchli [47] and Hinton and Campbell [35] and has been used used
to construct the error estimate in FE stresses [76]. We seek the improved
gradient field

σ∗ = Rĉσ (41)

where R is the matrix corresponding to the functions used in representation
of displacement field and ĉσ is the unknown global vector of required new
control variables.

Continuous L2-projection (CL2P)

The improved gradient field σ∗ defined by (41) is obtained by global L2-
projection, where the unknown control variables ĉσ are now determined by
forcing a least square fit of σ∗ to the computed gradient σh. That is, the
functional

J (ĉσ) =

∫

Ω
(σ∗ − σh)

T · (σ∗ − σh)dΩ (42)

is minimized with respect to ĉσ. The minimization of (42) is carried out by
letting

∂J
∂ĉσ

= 2

∫

Ω

(∂σ∗

∂ĉσ

)T · (σ∗ − σh)dΩ = 0

which yield a linear system
∫

Ω
RTRdΩĉσ =

∫

Ω
RTσhdΩ or Aĉσ = Bσ, (43)

where
A =

∫

Ω
RTRdΩ and Bσ =

∫

Ω
RTσhdΩ.

The above process is called global L2 projection because σ∗ is a field that
is obtained by projecting the computed gradient components σh onto the
same function space as used for the displacement uh.

The size of global smoothing matrix A depends on the number of control
variables and it has the sparsity pattern as defined by the support of basis
functions. In fact, it is much same as the mass matrix used in the problems
of dynamics. We use here the full Gauss-quadrature points to solve the
system (43) and the cost involving in it has therefore the same growth rate
as the original stiffness equation system. However the global projection here
still only a fraction of the total cost of the recomputed solution on some
refined mesh.
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Discrete least square fitting (DLSF)

The improved gradient field σ∗ defined by (41) is obtained by global discrete
least square fitting, where the unknown control variable ĉσ are now deter-
mined by ensuring a least square fit of (41) to the set of superconvergent
or at least high accuracy sampling points existing in each knot element of a
single patch domain considered. We define this procedure for a single patch
domain. The procedure for computational domain constructed of several
multi-patch domains can be defined for each patch separately. We minimize

H(ĉσ) =

Ntotal∑
k=1

(σ∗(xk)− σh(xk))
2 , (44)

where σh is the gradient component obtained from isogeometric discretiza-
tion and Ntotal is the total number of the optimal sampling points in each
single patch of computational domain. By substituting from (41) into (44)
it follows

H(ĉσ) =

Ntotal∑
k=1

(
RT

k ĉσ − σh(xk)
)2

. (45)

The minimization of (45) is carried out by letting

∂H
∂ĉσ

= 0 ⇒ Aĉσ = Bσ, (46)

with

A =

Ntotal∑
k=1

RT
k Rk, and Bσ =

Ntotal∑
i=1

RT
kσh(xk).

The above process is called discrete least square fitting of the computed gra-
dient components σh onto the same NURBS (or B-spline) function space as
used for the displacement uh.

Now having the new control variables of the improved gradient σ∗, the
related surface can be constructed and the same FE implementation rou-
tine can be used for the computation of smooth gradient field and the error
quantities.

It should be noted that the DLSF procedure in this article will be valid
only for spline or NURBS elements in isogeometric analysis, while in clas-
sical C0-Lagrange finite elements the present DLSF procedure can not be
defined because the total number of optimal sampling points Ntotal needed
to perform least square fitting (where either the reduced integration points
or Barlow points are chosen) will be less than the total degrees of freedom
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Ndim. In contrary, one can always define a local/global discrete least fitting
procedure which will be valid provided it has enough sampling points, in that
case the full (p + 1) × (p + 1) Gauss quadrature points has to be consider
in each elements, and such types of smoothing procedures are presented in
[35].

4.2 Superconvergent patch recovery (SPR)

This section is inspired by the original Superconvergent Patch Recovery(SPR)
procedure of [77] and its main idea of existence of some points with high
accuracy, i.e., derivatives superconvergent points. As the existence and lo-
cation of such superconvergent points in isogeometric analysis is not known
in literature so far. Thus we decide to use the term sampling points of high
accuracy instead of true derivatives superconvergence points for the SPR
recovery procedure in this section. In Section 5 we will discuss the existence
and location of true derivatives superconvergence points for one and two
dimensional elliptic model problem and finally the computation based on
these points are shown in Section 7.

The idea of original SPR procedure of [77] is to improve the gradient
value of the computed FE solution at nodal points. To improve the compo-
nent of the gradient at a node an element patch is defined, usually consisting
of all elements to which the nodes belongs. Now, a polynomial function is
defined globally consisting of the monomials used for the shape function of
the elements at stake. The coefficients of the polynomial are defined such
that the polynomial matches the component of the gradient as much as pos-
sible at the reduced integration (or superconvergence) points of the patch (in
a least squares sense). Finally, an improved gradient in the node is obtained
by evaluating this polynomial. This is done for all gradient components sep-
arately.

The SPR procedure in this article is explained in three main steps; (i)
Path recovery procedure, (ii) Element path configuration, and (iii) Global
recovered field representation. In the first step we consider a local least
square fitting procedure similar to the original SPR procedure of [77]. The
patch element configuration here will differ from the element patch in clas-
sical FEM, here we formed an element patch with respect to the support
of each basis functions of the B-spline/NURBS space, as the displacement
basis function in B-spline/NURBS based isogeometric analysis is not inter-
polatry in nature. The conjoining of polynomial expansion is consider to get
the global representation of recovered field in displacement spaces where a
weighting argument based on partition of unity of displacement basis func-
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tions is used.

Patch recovery procedure

We explain a local smoothing procedure for the improved gradient compo-
nent

σ∗
α = P(x)aα (47)

where P is a matrix of monomials, at least of same degree as displacement
space, in the Cartesian co-ordinates x on the patch of elements and aα is the
vector of unknown coefficients with the component α = x, y. The coefficients
aα are then determined from a least square fit of the field σ∗

α to the values of

computed σh
α at given sampling points {xi}

nelp
sp

i within each element patch,
i.e., we minimize the following

F(aα) =

nel
sp∑

i=1

(σ∗
α,i − σh

α,i)
T (σ∗

α,i − σh
α,i) (48)

The stationary condition for F(aα), gives

∂F
∂aα

= 0 ⇒ Daα = G ⇒ aα = D−1G, (49)

where

D =

nelp
sp∑

i=1

PT
i (xi)Pi(xi) and G =

nelp
sp∑

i=1

PT
i (xi)σ

h
α,i

Patch configurations

The patch configuration in isogeometric analysis is motivated from its defi-
nition in classical FEM. In FEM, the patch is a collection of elements sur-
rounding at nodal points [77]. In IGA, we consider a patch with respect
to each basis functions and it is defined by the support of that basis func-
tion. The general element patches formation with the support of quadratic
B-splines/NURBS are shown in Figure 6. Similar to FEM, here we also have
the concept of boundary element patches as shown in Figure 7 (first row),
which does not contain sufficient number of elements for the local discrete
least square fitting procedure. These special cases can be handle with the
concept of extended the domain of element patches or by considered the
inner patch to do the recovery procedure for that boundary basis functions.
We consider the approach of using the inner element patch to recovery the
value for the boundary basis function. The different cases along the bound-
ary are shown in Figure 7.
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(a) Index domain (b) Physical domain (c) Parametric domain

(d) Index domain (e) Physical domain (f) Parametric domain

Figure 6: Inner element patch: The element patch formation with re-
spect to the support of quadratic B-Spline/NURBS basis function first row
represents inner patch for tensor product case, second row represents in-
ner patches on general LR mesh (or unstructured mesh), in index domain,
physical domain and parametric domain, respectively (from left to right).
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(a) Index domain (b) Physical domain (c) Parametric domain

(d) Index domain (e) Physical domain (f) Parametric domain

Figure 7: Special cases: The element patch formation with respect to the
support of quadratic B-Spline/NURBS basis function first row represents
general boundary patch and second row represents extended patch along the
boundary of the domain, in index domain, physical domain and parametric
domain, respectively (from left to right).
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Global recovered gradient field

In SPR-procedure, the system (49) is established and solved for the unknown
aα on a local patch of the elements as illustrated in Figures 6-7. The re-
covered gradient may be computed by evaluating (47) at the desired points
within the patch. When the gradient recovery is used for error estimation,
we are normally interested in recovered values at the element-interior points
(full integration points). Since the specific element belongs to more than one
patch, the patch recovery does not provide a unique gradient value at such
points. In order to construct a global recovered gradient field, Blacker and
Belytschko [18] proposed to conjoin the polynomial expansions, σ∗ = Pa for
all the patches containing the actual element using displacement basis as a
weighting functions. Adopting this approach here, we propose to recovered
the gradient field at any point x through

σ∗(x) =
∑
∀A

σ∗
ARA(x) (50)

where RA is the B-splines/NURBS basis function and σ∗
A(x) is a local re-

covered gradient field in the form (47) corresponding to the element patch
formed with respect to the support of basis function RA. Here the parti-
tion of unity property of the shape functions is used to provide the proper
weighting functions in (50). Once we have more accurate gradient field value
at element patch level from (47) then one can also use some global method
like interpolation or L2 projection to get the global representation of the re-
covered gradient field in the displacement space via finding the new control
variable of the recovered field in displacement space. In the present work, we
are interested in error norm evaluation and thus the procedure of conjoining
described by (50) is considered as it is local and efficient.

5 Local behavior of spline based Galerkin discretiza-
tion

In this section we first present a motivational study for the existence of
natural superconvergence points for spline based Galerkin discretization of
Poisson problem in 1D. In this context we will follow the arguments given
in Chapter 1 from Wahlbin [69]. Later we present a general approach based
on local Neumann projection to compute these superconvergence points in
the computed FE solution based on B-splines and LR B-splines for one and
two-dimensional elliptic model problem.
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5.1 Motivational study for the existence of superconvergence
points

We consider the one-dimensional Poisson problem with Ω = (0, 1),

−d2u

dx2
= f(x), with bc’s u(0) = u(1) = 0. (51)

The weak formulation of (51) is to find: u ∈ H1
0 (Ω) such that

A(u, χ) ≡
∫

Ω

(
du

dx

)(
dχ

dx

)
dx =

∫

Ω
fχdx, ∀ χ ∈ H1

0 (Ω). (52)

We choose a splines space of degree of p with smoothness 0 ≤ µ ≤ p− 1 on
the discretized mesh ∆h defined by

Sp,µ
∆h,0

≡ {χ(x) : χ ∈ Cµ(Ω)∩C0(Ω), χ|Ωe ∈ Pp(Ωe), χ(0) = χ(1) = 0} ⊆ H1
0 (Ω).

The FE spline based approximation uh of u in Sp,µ
∆h,0

is given by: find
uh ∈ Sp,µ

∆h,0
such that

A(uh, χ) = (f, χ), ∀ χ ∈ Sp,µ
∆h,0

. (53)

Ritz Projection: We define another approximation ũh to u which is the
Ritz projection (or elliptic projection for present case) given by: find ũh ∈
Sp,µ
∆h,0

such that
(

d

dx
(u− ũh),

dχ

dx

)
= 0, ∀ χ ∈ Sp,µ

∆h,0
. (54)

Let Sp−1,µ−1
∆h

= {χ(x) : χ ∈ Cµ−1(Ω) ∩ C0(Ω), χ|Ωe ∈ Pp−1(Ωe)} be the
spline space of degree p − 1 with smoothness µ − 1 and Bi ∈ Sp−1,µ−1

∆h
be

a B-spline basis function Bi(x) > 0 with support in Ji = (xi, xi+kd), where
kd = [ p

p−µ ]
+ denote the smallest integer ≥ p

p−µ .

Now define ψi(x) such that

ψi(x) =

∫ x

0
Bi(y)ds− x

∫ 1

0
Bi(y)ds

which belongs to Sp,µ
∆h,0

. Then
∫

Ji

d

dx
(u−ũh)Bi =

(
d

dx
(u− ũh), (

dψi

dx
+

∫ 1

0
Bi)

)
=

(
d

dx
(u− ũh),

dψi

dx

)
= 0.

(55)
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Since Bi > 0 on Ji. There exists a point ηi ∈ Ji such that

d(u− ũh)

dx
(ηi) = 0. (56)

We conclude this result in the form of following theorem.

Theorem 3. Let kd = [ p
p−µ ]

+, and let Ji = (xi, xi+kd), for any i =

0, 1, . . . , N − kd. There exists a point ηi ∈ Ji such that d(u−ũh)
dx (ηi) = 0.

Similar to the above derivative result, a corresponding result for displace-
ment value is as follows:

Theorem 4. Let ku = [ p−1
p−2−max(−1,µ−2) ]

+ for p ≥ 2, and let Ji = (xi, xi+ku),
for any i = 0, 1, . . . , N − ku. There exists a point ηi ∈ Ji such that
(u− ũh)(ηi) = 0.

Proof. See Theorem 1.4.2 of Wahlbin [69].

From (52),(53) and (54), the uniqueness of Ritz projection gives that
uh = ũh. Thus the above two results hold for FE approximation uh itself.
These results does not give any information about the superconvergence
points but they tell us about the existence of such points in spline based
Galerkin discretization.

Now we consider a numerical example for problem (51) with given exact
solution u = x2− sinh 4x

sinh 4 and the spline based FE approximation uh obtained
by (53). In Figures 8-9, we present the graph of absolute value of exact dis-
placement error (u−uh)(x) for x ∈ Ω and the derivative error d

dx(u−uh)(x)
for x ∈ Ω. It is interesting to note that the absolute displacement error and
the derivative error has zeros at several points in the domain Ω = (0, 1).
For the sake of observation we also present the case of classical C0 Lagrange
elements as shown in right column of Figures 8-9 and there also we notice
that the absolute displacement error and the derivative error has zeros at
several points in the domain Ω = (0, 1).

In Chapter 1 of Wahlbin [69], the study based on Element Orthogonal-
ity Analysis (EOA), with certain restriction on the mesh distribution (e.g.
locally symmetry), is presented to compute the location of natural super-
convergence points. Table 1 summarize the superconvergence results for
aysmptotic h-Galerkin formulation (as h → 0 the superconvergent points
for the displacement and derivative error converges to the given values in
Table 1), see also page 21 of Wahlbin [69]. Here Lp(x) denotes the Legendre
polynomial of degree p and L′

p(x) be its first derivative. For the uniform



Local behavior of spline based Galerkin discretization 201

(a) C1 quadratic B-spline (b) C0 quadratic Lagrange

(c) C2 cubic B-spline (d) C0 cubic Lagrange

(e) C3 quartic B-spline (f) C0 quartic Lagrange

(g) C4 quintic B-spline (h) C0 quintic Lagrange

Figure 8: Absolute displacement error in Galerkin FE spline discretization
using Cr−1 smooth splines and C0 Lagrange spaces for degree p = 2, 3, 4, 5
with uniform mesh width h = 1/10.
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(a) C1 quadratic B-spline (b) C0 quadratic Lagrange

(c) C2 cubic B-spline (d) C0 cubic Lagrange

(e) C3 quartic B-spline (f) C0 quartic Lagrange

(g) C4 quintic B-spline (h) C0 quintic Lagrange

Figure 9: Absolute derivative error in Galerkin FE spline discretization using
Cr−1 smooth splines and C0 Lagrange spaces for degree p = 2, 3, 4, 5 with
uniform mesh width h = 1/10.
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mesh distribution the location of these points can be confirmed from the
numerical results shown in Figures 8-9.

Sµ,p
∆h

- Mesh Function First
Spline restriction values derivative
space

µ = 0, Complete general meshes (i) O(h2p) at meshpoints O(hp+1) at zeros of Lp(x)

p ≥ 1 (ii) O(hp+2) at zeros of L′
p(x)

µ = 1, Meshes uniform in O(hp+2) at mesh- and midpoints O(hp+1) at zeros of Lp(x)
p: Even C1h ln 1/h and at zeros of L′

p(x)

neighborhood of point
(similarly away from ∂Ω)

µ = 1, O(hp+2) at p − 1 zeros of O(hp+1) at mesh-

p: Odd as above Q(x) = Lp−1(x) −
L′
p−1(x)

L′
p+1

(x)
Lp+1(x) and midpoints, also at

p − 3 zeros of Q′(x)
µ = 2, O(hp+2) at two points, zeros of O(hp+1) mesh and midpoints

p = 3 as above Q(x) = Lp−1(x) −
L′
p−1(x)

L′
p+1

(x)
Lp+1(x)

µ ≥ 1, General meshes, O(hp+1) at mesh points
p : Odd symmetry about the point

in C1h ln 1/h
neighborhood of point

(similarly away from ∂Ω)

µ ≥ 1, as above O(hp+2) at mesh points
p : Even

Table 1: Summary of the superconvergence results for the aysmptotic h-
Galerkin formulation, see also page 21 of Wahlbin [69]

The results summarized in the Table 1 is valid for uniform mesh distribu-
tion (and away from the boundary for certain cases) and also for the physical
spline space results after linear transformation mappings. Using the tensor
product argument the results also follow for 2D spline spaces with the same
restriction of uniform mesh distribution (and away from the boundary) and
the results can be confirmed for physical spline spaces results after bilinear
transformation mappings.

Now we will present a general approach for analyzing the local behavior
of spline based Galerkin discretization. This approach is motivated from
setting of computer based proof of existence of superconvergence points of
Babuška et al. [12], [11], [8], and can be used to analyze the superconvergence
in spline based finite element methods in any dimension. To be consistent
with the earlier work on superconvergence of Babuška and his co-workers
we consider the similar notations as described in [8]. We first explain the
main idea of superconvergence in one dimensional setting for the function
space satisfies some assumptions are described below. We also present some
numerical results to illustrate the role of this methodology to compute these
points in one and two dimensional cases.
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5.2 Spline spaces in 1D

To make this approach more understandable we first present this in simple
one dimensional spline space setting. Below, we will give the assumptions
on which the analysis is based. Denote an interval (or subdomain) of size H
centered at the point x̄ by

K(x̄, H) :=

(
x̄− 1

2
H, x̄+

1

2
H

)
. (57)

We will first consider the case of interior mesh elements and assume that:

Assumption 1. Define K(x̄, H0) and K(x̄, H1) be two mesh intervals with
H1 < H0 ≤ H coincide exactly with a patch of elements, namely

K(x̄, Hi) := ∪mi
j=ni

∆h,j , ∀ i = 0, 1, (58)

where ni and mi denotes the first and the last element from the mesh dis-
cretization ∆h which belong to K(x̄, Hi).

Assumption 2. Let the exact solution u satisfy∥∥∥∥
dp+2u

dxp+2

∥∥∥∥
L∞(K(x̄,H))

≤ C1 < ∞ (59)

and

0 < C2 ≤
∣∣∣∣
dp+1u(x̄)

dxp+1

∣∣∣∣ (60)

Assumption 3. (Pollution under control) The meshes ∆h are such that the
error E = u− uh satisfies

‖E‖L2(K(x̄,H)) ≤ Chβ
√
H or ‖E‖L∞(K(x̄,H)) ≤ Chβ (61)

with
β ≥ (p+ 1)− �, 0 < � < 1 (62)

and C depending only on C1.

Assumption 3 is a more general characterization of the case of negligible
pollution which has meaning for general meshes in higher dimensions, as
well as in simplest one dimensional setting.

Now we are going to prove series of some lemma which lead us to the
final result of this section. For this, let U

x̄,(p+1)
EX be the (p + 1)th degree

Taylor series expansion of u centered at x̄, defined by,

U
x̄,(p+1)
EX :=

p+1∑
k=0

1

k!

dk

dxk
(u)(x̄)(x− x̄)k. (63)
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Lemma 2. Let u satisfies the Assumption 2, and let U x̄,(p+1)
EX be the (p+1)th

degree Taylor series expansion of u centered at x̄, defined by (63). Then we
have ∥∥∥∥

dr

dxr
(u− U

x̄,(p+1)
EX )

∥∥∥∥
L∞(K(x̄,Hi))

≤ CHp+2−r
i (64)

for r = 0, 1, 2 with the constant depending on C1 and p.

Proof. The proof of this lemma can be easily obtained after using integral
form of reminder of Taylor expansion with the Assumption 2. See also proof
of Lemma 4.7.2 from Babuška and Strouboulis [8].

Neumann Projection in 1D: Define Sp
∆h

(K(x̄, H)) the restriction of the
spline space Sp

∆h
in the patch of elements which belong to K(x̄, H) as

Sp
∆h

(K(x̄, H)) :=
{
χ ∈ Cp−1(K(x̄, H)) ∩ Pp | ∃ w ∈ Sp

∆h
: χ ≡ w|K(x̄,H)

}
.

(65)
Let U x̄,H

Sp
∆h

be the Neumann A-projection of U
x̄,(p+1)
EX into the spline space

Sp
∆h

(K(x̄, H)) as the solution of following discrete problem: find U x̄,H
Sp
∆h

∈

Sp
∆h

(K(x̄, H)) such that

AS(x̄,H)(U
x̄,(p+1)
EX − U x̄,H

Sp
∆h

, χ) = 0 ∀ χ ∈ Sp
∆h

(K(x̄, H)), (66)

with ∫

S(x̄,H)
(U

x̄,(p+1)
EX − U x̄,H

Sp
∆h

) = 0, (67)

where the bilinear form is defined by AK(x̄,H)(u, v) =
∫
K(x̄,H)

(
du
dx

) (
dv
dx

)
.

Note that U x̄,H
Sp
∆h

exists, and is uniquely determined from (66)-(67). This lo-

cal Neumann projection is very important in analyse of error distribution
such as contribution of local and global error and also in obtaining the su-
perconvergence points. It also has a general significance as it can be simply
extended to higher dimension cases.

Let us denote the last term of Taylor expansion of (63) by Qx̄,p+1
EX , given

as

Qx̄,p+1
EX =

1

(p+ 1)!

d(p+1)

dx(p+1)
(u)(x̄)(x− x̄)(p+1). (68)
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and let Qx̄,H
Sp
∆h

∈ Sp
∆h

(K(x̄, H)) be its Neumann A-projection defined by

(66)-(67).

Lemma 3. Under the Assumption 2, we have
∥∥∥∥
d

dx
(U

x̄,(p+1)
EX − U x̄,H

Sp
∆h

)

∥∥∥∥
L2(K(x̄,H))

=

∥∥∥∥
d

dx
(Q

x̄,(p+1)
EX −Qx̄,H

Sp
∆h

)

∥∥∥∥
L2(K(x̄,H))

≤ Chp
√
H.

(69)
and
∥∥∥∥(U x̄,(p+1)

EX − U x̄,H
Sp
∆h

)

∥∥∥∥
L2(K(x̄,H))

=

∥∥∥∥(Qx̄,(p+1)
EX −Qx̄,H

Sp
∆h

)

∥∥∥∥
L2(K(x̄,H))

≤ Chp+1
√
H.

(70)

Proof. Note that U
x̄,(p)
EX ∈ Pp ⊆ Sp

∆h
, we get

U
x̄,(p+1)
EX − U x̄,H

Sp
∆h

≡ Q
x̄,(p+1)
EX −Qx̄,H

Sp
∆h

. (71)

By the construction of Neumann projection in (66)-(67), we obtain that
U x̄,H
Sp
∆h

satisfies the orthogonality condition

∫

K(x̄,H)

(
d

dx
(U

x̄,(p+1)
EX − U x̄,H

Sp
∆h

)

)(
dχ

dx

)
= 0 ∀ χ ∈ Sp

∆h
(K(x̄, H)). (72)

It follows that d
dx(U

x̄,H
Sp
∆h

) is the best approximation of d
dx(U

x̄,(p+1)
EX ) from

S(p−1)
∆ (S(x̄, H)) in the L2-norm, and hence
∥∥∥∥
d

dx
(U

x̄,(p+1)
EX − U x̄,H

Sp
∆h

)

∥∥∥∥
L2(K(x̄,H))

≤ Chp
∥∥∥∥
dp+1

dxp+1
(U

x̄,(p+1)
EX )

∥∥∥∥
L2(K(x̄,H))

(73)

≤ Chp
√
H

∥∥∥∥
dp+1

dxp+1
(U

x̄,(p+1)
EX )

∥∥∥∥
L∞(K(x̄,H))

.

After using Assumption 2 we obtained the required result (69).

Now after employing the standard Aubin and Nitsche trick we have
∥∥∥∥(U x̄,(p+1)

EX − U x̄,H
Sp
∆h

)

∥∥∥∥
L2(S(x̄,H))

≤ Ch
∥∥∥∥
d

dx
(U

x̄,(p+1)
EX − U x̄,H

Sp
∆h

)

∥∥∥∥
L2(S(x̄,H))

(74)

On combining the results from (69) and (74) we obtain the required result
(70).
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Next we aim to establish a relationship between the exact FE error
u−uh and the error in Neumann projection of its asymptotic expansion, i.e.,
U

x̄,(p+1)
EX − U x̄,H

Sp
∆h

on some interior elements patch K(x̄, γH), for 0 < γ < 1.

Assume that we have a basic FE approximation uh ∈ Sp
∆h

(K(x̄, H)) to
the function u which is sufficiently smooth in K(x̄, H), cf. Assumption 2,
such that

(
d

dx
(u− uh),

dχ

dx

)
= 0, ∀χ ∈ Sp,comp

∆ (K(x̄, H)), (75)

where Sp,comp
∆ (K(x̄, H)) denotes the restrictions of the functions in Sp

∆ with
compact support in the interior of K(x̄, H)Â.

Further, we can write

u− uh = U
x̄,(p+1)
EX − U x̄,H

Sp
∆h

+

(
(u− U

x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

)

)
. (76)

On differentiating (76), we get

d

dx
(u−uh) =

d

dx
(U

x̄,(p+1)
EX −U x̄,H

Sp
∆h

)+

(
d

dx
((u− U

x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

))

)
.

(77)
Now on the interval K(x̄, H1), where H1 < H0 ≤ H, we write

d

dx
(u− uh)(x) =

d

dx
(U

x̄,(p+1)
EX − U x̄,H

Sp
∆h

)(x)

︸ ︷︷ ︸
(I)

(78)

+
d

dx
((u− U

x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

))(x)

︸ ︷︷ ︸
(II)

,

for x ∈ K(x̄, H1).
To obtain the bound on the (II)-term of (78), from (66) and (75) we

have
(

d

dx
((u− U

x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

)),
dχ

dx

)
= 0, ∀χ ∈ Sp,comp

∆ (K(x̄, H)).

(79)
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For the problem (79), we apply the interior error estimate results from
Theorem 1.2 of Schatz and Wahlbin [55], here we consider this results as
a proposition by assuming that all the assumptions of Theorem 1.2 of [55]
will be satisfied and the results became true for the spline element case, to
obtain

‖(u− U
x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

)‖W 1
∞(K(x̄,H1)) ≤

C
∑

χ∈K(x̄,H)

(‖(u− U
x̄,(p+1)
EX )− χ‖W 1

∞(K(x̄,H))

+H−1‖(u− U
x̄,(p+1)
EX )− χ‖L∞(S(x̄,H)))

+CH−3/2‖(u− U
x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

)‖L2(K(x̄,H))

(80)

Using for χ the spline quasi-interpolant of u − U
x̄,(p+1)
EX into Sp

∆h
(K(x̄, H))

(Theorem 6.18, [56]), and Lemma 2, we get

‖(u− U
x̄,(p+1)
EX )− χ‖W 1

∞(K(x̄,H)) ≤ Chp‖u− U
x̄,(p+1)
EX ‖

W p+1
∞ (K̃(x̄,H))

≤ ChpH. (81)

Similarly, we get

H−1‖(u− U
x̄,(p+1)
EX )− χ‖L∞(K(x̄,H)) ≤ Chp+1 ≤ ChpH. (82)

Using (81) and (82) in (80), we get

‖(u− U
x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

)‖W 1
∞(K(x̄,H1)) ≤

ChpH + CH−3/2‖(u− U
x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

)‖L2(K(x̄,H)).

(83)
After using the Assumption 3 with the results of Lemma 3, we obtain

H−3/2‖(u− U
x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

)‖L2(K(x̄,H)) ≤

H−3/2

(
‖(u− uh)‖L2(K(x̄,H)) + ‖U x̄,(p+1)

EX − U x̄,H
Sp
∆h

‖L2(K(x̄,H))

)

≤ CH−1hp+1−�.
(84)

Now, It follows from (78), (80), (83) and (84) that
d

dx
(u− uh)(x) =

d

dx
(U

x̄,(p+1)
EX − U x̄,H

Sp
∆h

)(x) +R(x), for x ∈ K(x̄, H1). (85)

where R(x) = d
dx

(
(u− U

x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

)

)
(x) and satisfies

∥∥∥∥
d

dx

(
(u− U

x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

)

)∥∥∥∥
L∞(K(x̄,H1))

≤ C(hpH + hp+1−�H−1),

(86)
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with H = Chδ we get
∥∥∥∥
d

dx

(
(u− U

x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

)

)∥∥∥∥
L∞(K(x̄,H1))

≤ C(hp+δ + hp+1−�−δ)

≤ Chp+min{δ,1−�−δ}.(87)

Letting ϑ = min{δ, 1− �− δ}, where ϑ > 0 provided �+ δ < 1, this gives
∥∥∥∥
d

dx

(
(u− U

x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

)

)∥∥∥∥
L∞(K(x̄,γH))

≤ Chp+ϑ, (88)

i.e., the term R(x) in (85) is thus "superconvergent" for the exact first
derivative error.

Remark 5.1. Note that U x̄,(p)
EX ∈ Pp ⊆ Sp

∆h
gives

U
x̄,(p+1)
EX − U x̄,H

Sp
∆h

≡ Q
x̄,(p+1)
EX −Qx̄,H

Sp
∆h

. (89)

Thus to get the derivative superconvergence points from the results (85), we
need to find the zeros of

d

dx
(Q

x̄,(p+1)
EX −Qx̄,H

Sp
∆h

)(η) = 0, ∀ η ∈ K(x̄, H1), where H1 < H0 ≤ H. (90)

Further, the definition of Qx̄,(p+1)
EX in (68) reduce the problem (90) to find the

zero for a single monomial W (x) = (x− x̄)(p+1) for the spline approximation
space Sp

∆h
in 1D.

Now we present two cases to show how to compute the derivative super-
convergence points using the results of this section. We consider the one-
dimensional version of the model Poisson problem with Ω = (0, 1), where
the exact solution is u(x) = sin(πx/2) with Dirichlet boundary condition at
both the end.

Example with uniform mesh distribution

We denote uh the FE spline based approximation of u in Sp
∆h

, i.e. B-
splines of degree p on uniform mesh with h = 1/8. In Figure 10a, we
present the graph of d

dx(u − uh)(x) for x ∈ Ω̄. It is interesting to note
that d

dx(u − uh)(x) is zero at several points in the domain Ω. It is clear
from the results (85) with Remark 5.1 that, the superconvergence points
for d

dx(u − uh) in the interior domain K(x̄, H1) = (xj , xj+1) ⊂⊂ Ω are the
roots of d

dx(W −Wh) in K(x̄, H1), where Wh is the Neummann projection



210 Paper III: Superconvergent patch recovery and a posteriori error...

of monomial W = (x − x̄)3, with x̄ = (xj + xj+1)/2 on B-spline subspace
Sp
∆h

(K(x̄, H)) of Sp
∆h

as defined by (66)-(67). In Figure 10b, we present
the graph of | d

dx(u − uh)(x)| and | d
dx(W − Wh)(x)| for x ∈ (3/8, 4/8) us-

ing quadratic B-spline space on uniform mesh h = 1/8. We also show the
derivative superconvergence points x∗i s (red circle) where the derivative error
| d
dx(u − uh)(x

∗
i )|, i = 1, 2 is much smaller than the max∀x | d

dx(u − uh)| for
x ∈ (3/8, 4/8) (one interval view) in Figure 10c. From this case the compu-
tation shows that the two Gauss Legendre points will be the true derivative
superconvergence points on that element.

Example with non-uniform mesh distribution

Now to distinguish with the earlier case we consider a non-uniform mesh
∆h and compute the superconvergence points on a larger interior domain
than a single interval. We consider to compute the derivative supercon-
vergence points for d

dx(u − uh) on a larger interior domain K(x̄, H1) =

(xj−2, xj+1) ⊂⊂ Ω via finding the zeros of d
dx(W − Wh) in (xj−2, xj+1),

where Wh is the Neummann projection of monomial W = (x − x̄)3, with
x̄ = (xj−2 + xj+1)/2 on spline subspace Sp

∆h
(K(x̄, H)) of Sp

∆h
as defined

by (66)-(67). Here the domain Ω is discretized with non-uniform mesh with
width h1 = 1/16 and h2 = 1/8. In Figure 11, we present the graph of
d
dx(u − uh)(x) for x ∈ Ω and | d

dx(W − Wh)(x)| for x ∈ (6/16, 5/8) us-
ing quadratic B-spline space on given non-uniform mesh. We also show the
derivative superconvergence points x∗i s (red circle) where the exact derivative
error | d

dx(u− uh)(x
∗
i )|, i = 1, 2 is much smaller than the max∀x | d

dx(u− uh)|
for x ∈ (7/16, 1/2) (one interval view) in Figure 11c. This case shows that
the local mesh topology will play a role in exact location of these derivative
superconvergent points for spline spaces in 1D.

Extension up to the boundary

The results of this section was based on the assumption that K(x̄, H)
is an interior patch of elements; we will now generalize them for patches
K(x̄, H) which extend up to the boundary, see also [9, 8]. We consider the
case of left boundary of the domain and assume that all the Assumptions
1-3 hold for x̄ = xL the left boundary point of the domain Ω. We then have

d

dx
(u− uh)(x) =

d

dx
(U

x̄,(p+1)
EX − U x̄,H

Sp
∆h

)(x) + φxL,h + Chp+ϑ, (91)

where φxL,h ∈ Sp
∆h

(K(xL, H)) such that uh + φxL,h satisfies the boundary
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(a) d
dx

(u− uh)(x) for x ∈ Ω = (0, 1)

(b) | d
dx

(u−uh)(x)| for x ∈ (0, 1) and | d
dx

(W −Wh)(x)|
on x ∈ (3/8, 4/8)

(c) On Ω4 = (3/8, 4/8)

Figure 10: (a) Graph of d
dx(u−uh)(x) for x ∈ (0, 1) using quadratic B-spline

space on uniform mesh h = 1/8 (b) Graph of | d
dx(u − uh)(x)| for x ∈ (0, 1)

and | d
dx(W −Wh)(x)| for x ∈ (3/8, 4/8) using quadratic B-spline space on

uniform mesh h = 1/8 (c) the element view (3/8, 4/8).



212 Paper III: Superconvergent patch recovery and a posteriori error...

(a) d
dx

(u− uh)(x) for x ∈ Ω = (0, 1)

(b) | d
dx

(u − uh)(x)| (blue color) and | d
dx

(W − Wh)(x)|
on x ∈ Ωsub ≡ Ω7 ∪ Ω8 ∪ Ω8 = (6/16, 5/8) (red color)

(c) On Ω8 = (7/16, 1/2)

Figure 11: (a) Graph of d
dx(u − uh)(x) for x ∈ (0, 1) using quadratic B-

spline space on non-uniform mesh (b) Graph of | d
dx(u−uh)(x)| for x ∈ (0, 1)

and | d
dx(W −Wh)(x)| for x ∈ (6/16, 5/8) using quadratic B-spline space on

non-uniform mesh (c) the element view x ∈ (7/16, 1/2).
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conditions at x = xL, and

AK(xL,∞)(φ
xL,h, vh) = 0, ∀ vh ∈ Sp

∆h
(K(xL,∞)) (92)

and
lim
x→∞

d

dx
(φxL,h(x)) = 0. (93)

It is clear that φxL,h is the boundary layer correction and (93) as the de-
cay condition. In some special cases: (i) homogenous Dirichlet boundary
condition, u(xL) = 0, φxL,h must satisfy the Dirichlet boundary condition

φL,h(xL) = −(U
xL,(p+1)
EX − UxL,H

Sp
∆h

)(xL). (94)

(ii) homogenous Neumann boundary condition, du
dx(xL) = 0, φxL,h must

satisfy

AK(xL,∞)(φ
xL,h, φh

0) = −AK(xL,∞)(U
xL,(p+1)
EX − UxL,H

Sp
∆h

, φh
0) = 0, (95)

where φh
0 is the basis function for the node xh0 . The right hand side vanish

identically because of the definition of Neumann projection.

In both the above cases, we have

φxL,h ≡ constant. (96)

Hence there is no boundary layer correction term in case of the one-dimensional
model problem.

Remark 5.2. As we have seen above, in the considered model problem φxL,h

is constant, and the superconvergence points for the interior elements are
valid up to the boundary. However, this is not the case, in general, for
higher dimensions.

5.3 Spline spaces in 2D

Now we describe the methodology for two dimensional spline spaces. We will
make the following assumptions. Denote the subdomain of size H centered
at the point x̄ by

K(x̄, H) :=

(
x̄1 −

1

2
H, x̄1 +

1

2
H

)
×

(
x̄2 −

1

2
H, x̄2 +

1

2
H

)
. (97)

We will first consider the case of interior mesh elements and assume that:
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Assumption I. Define K(x̄, H0) and K(x̄, H1) be two subdomains with
H1 < H0 ≤ H coincide exactly with a patch of elements, namely

K(x̄, Hi) := ∪(ki,li)∈I∆h,(ki,li), ∀ i = 0, 1, (98)

where I is a set of indices which enumerates the cells which belongs in
K(x̄, Hi). Here we assume that H converges to zero with a slower rate than
h, namely

C1hδ ≤ H ≤ C2hδ, 0 < δ < 1. (99)

Assumption II. Let the exact solution u satisfy

max
0≤i,j≤p+2,i+j=p+2

∥∥∥∥∥
∂p+2u

∂xi1∂x
j
2

∥∥∥∥∥
L∞(K(x̄,H))

≤ C < ∞ (100)

and

0 < C0 ≤
∑

0≤i,j≤p+1,i+j=p+1

∣∣∣∣∣
∂p+2u

∂xi1∂x
j
2

(x̄)

∣∣∣∣∣ . (101)

Assumption III. (Pollution under control) The meshes ∆h are such that
the error E = u− uh satisfies

‖E‖L2(K(x̄,H)) ≤ Chβ
√
H or ‖E‖L∞(K(x̄,H)) ≤ Chβ (102)

with
β ≥ (p+ 1)− �, 0 < � < 1. (103)

Let us now described the two dimensional analogue of the approach pre-
sented in 1D case. We will employ the (p+ 1)th degree Taylor series expan-
sion of u at x̄, namely,

u = U x̄,p
EX +Q

x̄,(p+1)
EX +R

x̄,(p+1)
EX (104)

where

Qx̄,k
EX :=

∑
0≤i,j≤k,i+j=k

1

i!j!

∂ku

∂xi1∂x
j
2

(x̄)(x1 − x̄1)
i(x2 − x̄2)

j (105)

and

U x̄,p
EX :=

p∑
k=0

Qx̄,k
EX (106)

and R
x̄,(p+1)
EX is the remainder. We will also let

Q
x̄,(p+1)
(i,j) := (x1−x̄1)

i(x2−x̄2)
j , where 0 ≤ i, j ≤ p+1, i+j = p+1. (107)
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Neumann Projection in 2D: Define Sp
∆h

(K(x̄, H)) the restriction of the
spline space Sp

∆h
in the patch of elements which belong to K(x̄, H) as

Sp
∆(K(x̄, H)) :=

{
χ ∈ Cp−1,p−1(K(x̄, H)) ∩ Pp | ∃ w ∈ Sp

∆ : χ ≡ w|K(x̄,H)

}
.

(108)
Let U x̄,H

Sp
∆

be the Neumann A-projection of U
x̄,(p+1)
EX into the spline space

Sp
∆h

(K(x̄, H)) as the solution of following discrete problem: find U x̄,H
Sp
∆h

∈

Sp
∆h

(K(x̄, H)) such that

AS(x̄,H)((U
x̄,(p+1)
EX − U x̄,H

Sp
∆h

), χ) = 0 ∀ χ ∈ Sp
∆h

(K(x̄, H)), (109)

with ∫

K(x̄,H)
(U

x̄,(p+1)
EX − U x̄,H

Sp
∆h

) = 0, (110)

where the bilinear form is defined by AK(x̄,H)(u, v) =
∫
K(x̄,H)∇u · ∇v dΩ.

Note that U x̄,H
Sp
∆h

exists, and is uniquely determined from (109)-(110).

Now assume that we have a basic FE approximation uh ∈ Sp
∆h

(K(x̄, H))
to the function u which is sufficiently smooth in K(x̄, H), cf. Assumption
II, such that

(∇(u− uh),∇χ) = 0, ∀χ ∈ Sp,comp
∆ (K(x̄, H)), (111)

where Sp,comp
∆ (K(x̄, H)) denotes the restrictions of the functions in Sp

∆ with
compact support in the interior of K(x̄, H)Â.

Analogous to the 1D case, we can write

u− uh = U
x̄,(p+1)
EX − U x̄,H

Sp
∆h

+

(
(u− U

x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

)

)
. (112)

On differentiating (112), we get

∂

∂xi
(u−uh) =

∂

∂xi
(U

x̄,(p+1)
EX −U x̄,H

Sp
∆h

)+
∂

∂xi

(
(u− U

x̄,(p+1)
EX )− (uh − U x̄,H

Sp
∆h

)

)
,

(113)
for i = 1, 2. Now using (109),(110) and (111) with the similar arguments of
1D analysis, we can obtained an analogue results in 2D which is stated as
follows:

Theorem 5. Under the Assumptions I-III, there exists an δ ∈ (0, 1) such
that C1hδ ≤ H ≤ C2hδ, and

max
i=1,2

∥∥∥∥
∂

∂xi
(u− uh)−

∂

∂xi
(U

x̄,(p+1)
EX − U x̄,H

Sp
∆h

)

∥∥∥∥
L∞(K(x̄,γH))

≤ Chp+µ (114)
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where K(x̄, γH)) is an interior subdomain with 0 < γ < 1

Proof. The proof follows analogous steps as in 1D case.

The above result can also be written as, for each components i = 1, 2;

∂

∂xi
(u− uh)(η) =

∂

∂xi
(U

x̄,(p+1)
EX − U x̄,H

Sp
∆h

)(η) +Ri(η), for η ∈ K(x̄, γH).

(115)
where ‖Ri(x)‖L∞(K(x̄,γH)) ≤ Chp+µ.

In nonhomogenous case e.g. Poisson equation

Note that U
x̄,(p)
EX ∈ Pp ⊆ Sp

∆h
, i.e., the FE approximation is able to

reproduce exactly all polynomial of degree p, which is true in case of (bi-p)
tensor product space with quadrilaterals, gives

U
x̄,(p+1)
EX − U x̄,H

Sp
∆h

≡ Q
x̄,(p+1)
EX −Qx̄,H

Sp
∆h

. (116)

Thus to get the derivative superconvergence points from the results (115),
we need to find the common zeros of

∂

∂xi
(Q

x̄,(p+1)
EX −Qx̄,H

Sp
∆h

)(η) = 0, ∀ η ∈ K(x̄, γH), 0 < γ < 1, for i = 1, 2.

(117)
Further, for the tensor product spline approximation space Sp

∆h
in 2D,

the definition of Qx̄,(p+1)
EX in (105) reduce the problem (117) to find the zeros

only for the case of two monomials

Q1(x) = (x1 − x̄1)
(p+1) and Q2(x) = (x2 − x̄2)

(p+1).

For homogenous case e.g. the Laplace equation

The number of monomial to find the zeros in (115) is further reduce for
the case of Laplace equation, in this case f = 0, where it is known a priori
that u satisfies the isotropic Laplacian ∆u = 0. In this case we have,

Q
x̄,(p+1)
EX =

1

(p+ 1)!

∂p+1

∂xp+1
1

(u)(x̄)Qx̄,(p+1)
1,hom +B(u)(x̄)Qx̄,(p+1)

2,hom (118)

where

B(u)(x̄) =





1
(p+1)!

∂p+1u
∂xp

1∂x2
(x̄), if p is even

(−1)(p−1)/2 1
(p+1)!

∂p+1u

∂xp+1
2

(x̄), if p is odd
(119)
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and

Q
x̄,(p+1)
1,hom (x1, x2) = Re((z − z̄)k), Q

x̄,(p+1)
2,hom (x1, x2) = Im((z − z̄)k)

are the harmonic monomials of degree (p + 1) centered at x̄, where z =
x1 + ix2 and z̄ = x̄1 + ix̄2.

For p = 1, we obtain

Q
x̄,(2)
1,hom(x1, x2) = (x1 − x̄1)

2 − (x2 − x̄2)
2,

Q
x̄,(2)
2,hom(x1, x2) = (x1 − x̄1)(x2 − x̄2),

while p = 2,

Q
x̄,(3)
1,hom(x1, x2) = (x1 − x̄1)

3 − 3(x1 − x̄1)(x2 − x̄2)
2

Q
x̄,(3)
2,hom(x1, x2) = −(x2 − x̄2)

3 + 3(x1 − x̄1)
2(x2 − x̄2)

and p = 3 we obtain

Q
x̄,(4)
1,hom(x1, x2) = (x1 − x̄1)

4 + (x2 − x̄2)
4 − 6(x1 − x̄1)

2(x2 − x̄2)
2

Q
x̄,(4)
2,hom(x1, x2) = (x1 − x̄1)

3(x2 − x̄2)− (x1 − x̄1)(x2 − x̄2)
3.

Thus for the tensor product (bi-p) spline spaces in 2D the problem of find-
ing the zeros (117) will reduce only to these two polynomial Qx̄,(p+1)

i,hom , i = 1, 2.

Computation of derivative superconvergence points for tensor prod-
uct spline spaces in 2D

Uniform mesh partitions :

To find the derivative superconvergence points for Poisson problem in
2D, we first consider the case of tensor product spline approximation space
Sp
∆h

with uniform mesh distribution. The computed derivatives supercon-
vergence points are obtained by finding the common zeros of the derivatives
of the difference between the monomials {Q1, Q2} and its Neumann elliptic
projections, where the monomials are defined as

Q1(x) = (x1 − x̄1)
(p+1) and Q2(x) = (x2 − x̄2)

(p+1).

In Figure 12, we consider the case with respect to quadratic splines with
p = 2. The local subdomain K(ξ,H) to compute the Neumann projection
for each monomials and the element of interest K(ξ, h) to compute deriva-
tive superconvergence points are shown in Figure 12(a). The blue lines and
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(a) Computational do-
main

(b) Zeros of derivatives (c) Derivative Sup. pts.

Figure 12: Tensor product case with uniform mesh partition: (a) Compu-
tational domain for an element (K(ξ, h)) and subdomain K(ξ,H) for Neu-
mann projection with quadratic B-spline tensor product mesh with uniform
spacing h = 1/16; (b) Zeros of the derivatives for Q1(x) and Q2(x); (c)
Derivatives superconvergence points at element level: (2× 2)-Gauss Legen-
dre points.

red lines within the element of interest shown in Figure 12(b) are the Gauss-
lines and they represents the location of derivative zeros with respect to
Q1(x) and Q2(x) monomials, respectively. The common zeros of these lines,
as (2 × 2)-Gauss Legendre points, are shown in Figure 12(c) which will be
the derivative superconvergence points for tensor product quadratic spline
spaces. Similar to the quadratic case, in Figure 13 we compute the location
of computed derivative superconvergence points for tensor product cubic
spline spaces, which will be the (3 × 3)-Gauss Lobatto points. Using the
same methodology the derivative superconvergence points at the element
level for the case of C0-quadratic splines, C0-cubic splines and C1-cubic
splines are shown in Figure 14. The C0-quadratic splines represent the case
of classical Lagrange elements and (2×2)-Gauss points will be the derivatives
superconvergence points within each elements, while C1-cubic splines share
the same location of derivative superconvergence points within each elements
as does C2-cubic splines. For C0-cubic splines we obtain the (3× 3)-Gauss
Legendre points as derivative superconvergence points within each elements.

Non-uniform mesh partitions :

For the tensor product case in 2D, we can also compute the location of
derivative superconvergence points results after computing the location of
points from 1D analysis in each direction. In Figure 15(a) we consider a
case with respect to tensor product spline approximation space S2

∆h
in 2D

with non-uniform mesh distribution, here the mesh interface lines are shown
in dark black lines. We discuss different cases arises by enforcing the C0

or C1 continuity along mesh interface lines for C0 and C1 quadratic spline
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(a) Computational do-
main

(b) Zeros of derivatives (c) Derivative Sup. pts.

Figure 13: Tensor product case with uniform mesh partition: (a) Com-
putational domain for an element (K(ξ, h)) and subdomain K(ξ,H) for
Neumann projection with cubic B-spline tensor product mesh with uniform
spacing h = 1/16; (b) Zeros of the derivatives for Q1(x) and Q2(x); (c)
Derivatives superconvergence points at element level: (3×3)-Gauss Lobatto
points.

(a) C0-quadratic spline (b) C0-cubic spline (c) C1-cubic spline

Figure 14: Derivative superconvergence points for tensor product case with
uniform mesh partition: (a) C0-quadratic spline: (2 × 2)-Gauss Legendre
points; (b) C0-cubic spline: (3 × 3)-Gauss Legendre points; (c) C1-cubic
spline: (3× 3)-Gauss Lobatto points.
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spaces. In Figure 15(b) we show the location of computed derivative su-
perconvergence points for C0-quadratic splines using the Neumman elliptic
projection in 2D. We obtain the same results by using the Neumman el-
liptic projection for 1D case in each directions and then taking the tensor
product of those points. The results for C1-quadratic splines with C1 and
C0-continuity lines along mesh interface lineas are shown in Figures 15(c)
and 15(d), respectively. When there is C1 continuity along the interface
lines then there will be a shift towards the fine meshes while for the case
of C0 continuity along the interface the derivative superconvergence points
will remains at (2×2)-Gauss Legendre points as the case with C0-quadratic
splines. The results for tensor product spline approximation space Sp

∆h
of

degree three with non-uniform mesh distribution, with different cases arises
by enforcing the C0, C1 and C2 continuity along mesh interface lines for C0,
C1 and C2 cubic splines are shown in Figure 16. Due to the presence of C0

continuity lines along the mesh interfaces and C−1 lines along the boundary
for C2-cubic spline case as shown in Figure 16 (d), the derivative points in
immediate neighborhood of the reduced continuity interface line will shift at
the derivative superconvergent lines of their reduced continuity counterparts
while in other part of the domain they will be at (3×3)-Gauss Lobatto points.

Computation of derivative superconvergence points for LR B-spline
spaces in 2D

To find the derivative superconvergence points for Poisson problem on
adaptive structured mesh of LR B-splines of degree two, S2

∆h
, we consider an

example of LR mesh shown in Figure 17(a) with three domain of interests
Ki(ξ,Hi), for i = 1, 2, 3. The domain of interest K1(ξ,H1) is considered
within the fine mesh of two level of refinements, while the cases of K2(ξ,H2)
and K3(ξ,H3) represents different interface regions affected by one side and
both sides of refinements, respectively. The B-splines basis functions repre-
sentation on the LR mesh of 17(a) is shown 17(b). The green circle represents
the coarse basis functions and red circle represents the fine basis functions,
while the blue circle represents the coarse basis function whose supports was
affected via the local refinement. The computed derivatives are obtained by
finding the zeros of the derivatives of the difference between the monomials
{Q1, Q2} and its Neumann elliptic projections, where the monomials are
defined as

Q1(x) = (x1 − x̄1)
(p+1) and Q2(x) = (x2 − x̄2)

(p+1).

The zeros of derivatives components with respect to Q1(x) and Q2(x) is
represented by the blue and red lines in Figures 17(c),(e) and (g) for the
domain of interests K1(ξ,H1),K2(ξ,H2) and K3(ξ,H3), respectively. While
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(a) Non-uniform tensor mesh (b) C0-quadratic spline

(c) C1-quadratic spline (d) C1-quadratic spline with C0 in-
terface line

Figure 15: Derivative superconvergence points for quadratic tensor product
case with non-uniform mesh partition: (a) non-uniform mesh tensor mesh;
(b) C0-quadratic spline; (b) C1-quadratic spline; (d) C1-quadratic spline
with C0 interface line (in blue color).
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(a) C0-cubic spline (b) C1-cubic spline

(c) C2-cubic spline (d) C1-cubic spline with C0 interface
line (in blue color)

(e) C2-cubic spline with C1 interface
line (in blue color)

(f) C2-cubic spline with C0 interface
line (in blue color)

Figure 16: Derivative superconvergence points for cubic tensor product case
with non-uniform mesh partition: (a) C0-cubic spline; (b) C1-cubic spline;
(c) C1-cubic spline; (d) C1-cubic spline with C0 interface line (in blue color);
(e) C2-cubic spline with C1 interface line (in blue color); (f) C2-cubic spline
with C0 interface line (in blue color).
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the location of computed derivative superconvergence points for these cases
are given by the common zeros of the derivatives with respect to Q1(x) and
Q2(x) are shown in Figures 17(d),(f) and (h).

The computed derivative superconvergence points for the case of LR B-
spline mesh of C0-quadratic B-splines for the domain of interests Ki(ξ,Hi),
for i = 1, 2, 3 of Figure 18(a) are shown in Figures 18.

We also found that the location of derivative superconvergence points
for tensor product cases as discussed here will remain same for Poisson and
Laplace equations. So all the above results also hold for the case of Laplace
equation.
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(a) Adaptive structured LR mesh
with Ki(ξ,Hi)

′s for i = 1, 2, 3.
(b) Basis functions representation:
C1 quadratic LR B-splines

(c) Zeros lines of derivatives (d) Derivative Sup. pts.

(e) Zeros lines of derivatives (f) Derivative Sup. pts.

(g) Zeros lines of derivatives (h) Derivative Sup. pts.

Figure 17: C1 quadratic LR B-splines case: (a) Structured LR mesh with computational
domain of interests (Ki(ξ,Hi)), i=1,2,3; (b) C1-quadratic LR B-splines basis function repre-
sentation; (c) Zeros lines of the derivatives for Q1(x) and Q2(x) on K1(ξ,H1); (d) Derivatives
superconvergence points at K1(ξ,H1); (e) Zeros lines of the derivatives for Q1(x) and Q2(x) on
K2(ξ,H2); (f) Derivatives superconvergence points at K2(ξ,H2); (g) Zeros lines of the derivatives
for Q1(x) and Q2(x) on K3(ξ,H3); (h) Derivatives superconvergence points at K3(ξ,H3).
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(a) Adaptive structured LR mesh
with Ki(ξ,Hi)

′s for i = 1, 2, 3.
(b) Basis functions representation:
C0 quadratic LR B-splines

(c) Zeros lines of derivatives (d) Derivative Sup. pts.

(e) Zeros lines of derivatives (f) Derivative Sup. pts.

(g) Zeros lines of derivatives (h) Derivative Sup. pts.

Figure 18: C0 quadratic LR B-splines case: (a) Structured LR mesh with computational
domain of interests (Ki(ξ,Hi)), i=1,2,3; (b) C0-quadratic LR B-splines representation; (c) Zeros
lines of the derivatives for Q1(x) and Q2(x) on K1(ξ,H1); (d) Derivatives superconvergence points
at K1(ξ,H1); (e) Zeros lines of the derivatives for Q1(x) and Q2(x) on K2(ξ,H2); (f) Derivatives
superconvergence points at K2(ξ,H2); (g) Zeros lines of the derivatives for Q1(x) and Q2(x) on
K3(ξ,H3); (h) Derivatives superconvergence points at K3(ξ,H3).
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6 Abstract recovery operator Gh

In this section we define the abstract recovery operator Gh which act on
the FE approximation uh to give an approximation to the gradient ∇u. In
particular we will focus on the set of conditions proposed by Ainsworth and
Craig in [1] which constitutes a good approximation to the gradient in order
that the resulting estimator will be asymptotically exact. A gradient recov-
ery operator on Xh is a linear operator Gh : Xh → [Xh]

n that enjoy the
following properties:

(i) Consistency condition: Whenever u ∈ Pp+1(Ω)

Gh(Ihu) ≡ ∇u (120)

where Ih is the interpolation or projection operator.

(ii) Localizing condition: In order to ensure that the scheme is truly
local and the sub-domain Ω̂h

i := ∪j∈adj(i)Ω
h
j (or element patch) are small,

we shall make a restriction upon the cardinality of the indexing sets. Then
the localizing condition becomes: For any x∗ ∈ Ωh

i , Gh[v](x
∗) depends only

upon the values of ∇v on the domain Ω̂h
i . Further, i ∈ adj(i) and there

should exist a constant M , which is independent of h such that,

card[adj(i)] ≤ M, ∀i. (121)

(iii) Boundedness and linearity condition: There exists a constant C,
which is independent of h, such that

|Gh[v]|0,∞,Ωh
i
≤ C|v|1,∞,Ω̂h

i
. (122)

Now we will show that the SPR recovery operator presented in Section
4.2 will satisfy the above stated set of conditions. It can be seen easily that
the present SPR recovery operator will satisfy the localization condition (ii)
and boundedness and linearity conditions (iii) by following the standard
techniqe as shown in an example from [1]. Here we mainly focus to satisfy
the consistency condition (i) which will be in general expect to obtain an ap-
proximation consistent with the true gradient under favorable circumstances.

One dimensional case

In Figures 19(a)-19(b), we show that the consistency condition (i) is sat-
isfied by the SPR recovery operator, considered as Gh here, for quadratic
spline approximating space on uniform mesh using two Gauss Legendre
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points as the true superconvergence points. Here we consider the exact solu-
tion u(x) = x3 ∈ P3(Ω) and Ih as the Neumann projection operator defined
by (66)-(67). In general one can choose Ih as a interpolation operator in-
stead of local Neumann projection as considered here, but the local Neumann
projection has general significance and can be extend in multi-dimensional
cases. In Figure 19(a) we show the absolute error in the derivative of u and
the location of superconvergence points with dark black circle which coin-
cide with the two Gauss Legendre points on each mesh intervals. While in
Figure 19(b) we showed that the recovered gradient obtained using the SPR
recovery operator of Section 4.2 results in exact derivative du/dx and the
absolute error becomes zeros which is shown with the green curve. In Figure
19(d) we show that the consistency condition is not satisfied when we use
the two Gauss Legendre points instead of true superconvergence points on
a non-uniform mesh with quadratic spline space approximation. While in
Figure 19(f) the consistency conditions is again satisfied when we use the
true superconvergence points instead of two Gauss Legendre points in the
SPR recovery operator Gh on non-uniform mesh. It can also be noted from
Figure 19(d) that only near the interface mesh interval of the non-uniform
mesh the absolute consistency error will not be zero, although it has smaller
value than the error in Neumann projection, but at other part of the domain
the error in recovered derivative become zeros and the consistency condition
is satisfied.
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(a) Absolute error on domain Ω (b) Consistency of recovery operator
Gh

(c) Absolute error on domain Ω (d) Consistency of recovery operator
Gh

(e) Absolute error on domain Ω (f) Consistency of recovery operator
Gh

Figure 19: One dimensional case: The consistency of SPR recovery operator
considered as Gh here; first row satisfies the consistency condition on uni-
form mesh with two Gauss Legendre points as sampling point in the SPR
procedure, second row does not satisfies the consistency condition on a non-
uniform mesh with two Gauss Legendre points as sampling point in SPR pro-
cedure, third row satisfies the consistency condition on general non-uniform
mesh with computed true derivative superconvergence points as sampling
point in SPR procedure, where we have considered u = x3 ∈ P3(Ω) and Ih
a local Neumann projection of u in quadratic B-spline space.
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(a) ‖∇u−∇(Ihu)‖L2(Ω) :=
9.88e− 03

(b) LR mesh with super-
convergence points

(c) ‖∇u −
Gh(Ihu)‖L2(Ω) :=
4.17e− 15

Figure 20: Two dimensional case: The consistency of SPR recovery op-
erator considered as Gh here; The SPR recovery operator Gh satisfies
the consistency condition on uniform mesh with (2 × 2)-Gauss Legendre
points as sampling point in SPR procedure, where we have considered
u = (2x3 − 3x2) + (2y3 − 3y2) ∈ P3(Ω) and Ih a local Neumann projec-
tion of u in quadratic B-spline space.

Two dimensional case

In Figure 20, we show that the consistency condition (i) is satisfied by
the SPR recovery operator, considered as Gh here, for quadratic spline ap-
proximating space on uniform mesh using (2 × 2)-Gauss Legendre points
as the true superconvergence points. Here we consider the exact solution
u = (2x3 − 3x2) + (2y3 − 3y2) ∈ P3(Ω) and Ih as the Neumann projection
operator defined by (109)-(110). Figure 20(a) shows the L2-norm error in
the gradient of u and the location of superconvergence points which coincide
with the (2× 2)-Gauss Legendre points on each mesh elements is shown in
Figure 20(b). While in Figure 20(c) we show that the recovered gradient
obtained using the SPR recovery operator of Section 4.2 results in exact
gradient and the absolute error in the projected gradient becomes numer-
ically zero as shown in Figure 20(c). In Figure 21 we consider the case
with a general non-uniform mesh of quadratic LR B-spline. It can be seen
from Figure 21(b) that the consistency condition is not satisfied when we
use the (2× 2)-Gauss Legendre points on a general non-uniform mesh with
quadratic LR B-spline space approximation in our SPR procedure. While
in Figure 21(d) the consistency conditions is satisfied when we use the true
superconvergence points instead of (2×2)-Gauss Legendre points in our SPR
recovery operator Gh on a general non-uniform mesh. It can also be noticed
from Figure 21(b) that although the consistency condition is not satisfied
on a general non-uniform mesh using (2×2)-Gauss Legendre points still the
L2-norm of the projected error ‖∇u − Gh(Ihu)‖L2(Ω) has a smaller value
than the error in Neumann projection ‖∇u−∇(Ihu)‖L2(Ω).
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(a) ‖∇u−∇(Ihu)‖L2(Ω) := 6.45e−03 (b) Projected error (Gauss Pts.),
‖∇u−Gh(Ihu)‖L2(Ω) := 8.87e− 04

(c) Computed derivative supercon-
vergence points

(d) Projected error (Sup. Pts.),
‖∇u−Gh(Ihu)‖L2(Ω) := 1.42e− 13

Figure 21: Two dimensional case: The consistency of SPR recovery oper-
ator considered as Gh here; a L2-norm of the error between the gradient
of u and its projection Ihu, (b) SPR operator Gh with (2 × 2)-Gauss Leg-
endre points as sampling point on a general non-uniform LR mesh does
not satisfies the consistency condition, (c) computed derivative supercon-
vergence points using computer based algorithm (d) SPR operator Gh with
computed derivative superconvergence points as sampling point on a general
non-uniform LR mesh does satisfies the consistency condition. Here we have
considered u = (2x3 − 3x2) + (2y3 − 3y2) ∈ P3(Ω) and Ih a local Neumann
projection of u in quadratic LR B-spline space.
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The results of this section is useful in establishing the superconvergence
behavior of the SPR recovery procedure. Using the above consistency con-
dition with Bramble-Hilbert lemma we can obtain the following results.

Lemma 4. Let u ∈ Hp+2(Ω)∩H1
0 (Ω) be the given exact solution and Ihu be

its elliptic Neumann projection in Sp
∆h,0

. Suppose that Gh operator satisfies
(i)-(iii), then

‖∇u−Gh(Ihu)‖L2(Ω) ≤ Chp+1‖u‖Hp+2(Ω). (123)

Proposition 1. Let u ∈ Hp+2(Ω) ∩ H1
0 (Ω) be the exact solution of the

elliptic problem (17)-(19) and uh ∈ Sp
∆h,0

be the spline based FE solution
(22). Then

‖∇u−Gh(uh)‖L2(Ω) ≤ Chp+1‖u‖Hp+2(Ω) (124)

Proof. The proof is based on triangle inequality. It can be written as

‖∇u−Gh(uh)‖L2(Ω) ≤ ‖∇u−Gh(Ihu)‖L2(Ω) + ‖Gh(Ihu)−Gh(uh)‖L2(Ω).

Using the results of Lemma 4 and, the boundedness and linearity condition
(iii) with quasi-uniform mesh having an upper bound on Gh independent of
h, we obtain

‖∇u−Gh(uh)‖L2(Ω) ≤ Chp+1‖u‖Hp+2(Ω) + C‖∇Ihu−∇uh‖L2(Ω), (125)

where C is a constant independent of h.

Now assuming the superconvergence property in FE solution uh, which
is true under certain regularity conditions regarding the partition ∆h, the
regularity of the true solution and the topology of the mesh, an estimate of
the following form holds:

‖∇uh −∇Ihu‖L2(Ω) ≤ C(u)hp+1, (126)

while a priori error estimates on the other hand gives ‖∇u − ∇uh‖L2(Ω) ≤
C(u)hp.

We can obtain the required result (124) by inserting (126) into (125).

Remark 6.1. The results of Proposition 1 shows the superconvergence in
the SPR recovery procedure of order 1 which can be obtained in very special
cases, e.g. with uniform mesh topology and with enough regularity of the
solution. In general, on practical quasi-uniform meshes, the results may
reduce to

‖∇u−Gh(uh)‖L2(Ω) ≤ C(u)hp+α, (127)
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where α ∈ (0, 1]. Then the SPR recovery procedure is superconvergent of
order α instead of order 1.

The proof of Proposition 1 was given under the assumption of the super-
convergence property of FE solution (126), which is definitely a subject of
further research for isogeometric discretization. But in the numerical results
of Section 7 we verify the result of Proposition 1 for problems with smooth
solution.

7 Numerical results

In this section we report some numerical studies to demonstrate the accuracy
of the recovered derivatives achieved by the proposed recovery procedures
and their rates of convergence. The main focus will be to study the supercon-
vergence behavior of recovery procedures and the performance of recovery
based error estimators developed in this article. We have divided numerical
results section into three main parts where we will study the followings:

• Superconvergence behavior of gradient recovery procedures under uni-
form h-refinement.

• Superconvergence behavior of gradient recovery procedures under adap-
tive meshes obtained through Structured mesh refinement strategy of
LR B-splines.

• Adaptive isogeometric analysis using a posteriori error estimators pro-
posed in this article.

We consider several numerical examples for model elliptic problems with
available exact solution. The main study involve the computation of the
exact energy error

‖e‖E = ‖∇u−∇uh‖L2(Ω), (128)

the error in recovered gradient field

‖e∗‖E = ‖∇u−∇u∗h‖L2(Ω), (129)

with the error estimator and element indicator defined by

η∗ =

(
Nel∑
el=1

(η∗el)
2

)1/2

where η∗el = ‖∇u∗h −∇uh‖L2(Ωel). (130)

We also consider the global and local effecitivity indices to measure the
quality of recovered solution field, which are defined by

θ∗ =
η∗

‖∇u−∇uh‖L2(Ω)
and θ∗local =

‖∇u∗h −∇uh‖L2(Ωel)

‖∇u−∇uh‖L2(Ωel)
. (131)
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Here the superscript ∗ represents the recovery procedures and will be re-
placed appropriately by ∗ = CL2P, DLSF, SPR in the article.

Marking strategy

The marking strategy, that is, the method of how to choose the basis
functions for refinement in structured mesh refinement is taken from [39],
where once we have the value of estimated error at element level given by
Eq. (130), then we sum the element error on all elements within the support
of each basis function. In the refinement strategies we always choose to re-
fine some percentages of basis functions which contributed the most error in
FEM computation. In [39], it was demonstrated that for a fixed percentage
say β = 5, 10, 20 one always achieved a proper adaptive refinement process
resulting in optimal convergence rates. For the implementation in this arti-
cle we always consider β = 5 of the basis function to refine in each adaptive
refinement steps as this choice doesn’t give over-refinements.

7.1 Superconvergent gradient recovery under uniform h-refinement

We consider three test examples with given smooth solution. As we have
mentioned above the aim here is to show the superconvergent behavior of
gradient recovery procedures under uniform h-refinement. For this we per-
formed the FE computation using quadratic B-spline spaces under uniform
h-refinement. The location of optimal sampling points, i.e., the derivative
superconvergence points at (2× 2) Gauss Legendre points for this case has
been explored in Section 5. Thus we considered (2 × 2)-Gauss Legendre
points as the sampling points in our recovery procedure of DLSF and SPR
defined in Section 4.

Example 1. (One dimensional problem)

We consider the following one dimensional problem

−d2u

dx2
= f on I = (0, 1), with u(0) = 0, and u(1) = 0. (132)

The function f is chosen so that the exact solution is of the form

u = x2 − sinh 4x

sinh 4
. (133)

The error plots of exact error, projected error and estimated error for the re-
covery procedures ∗ =CL2P, DLSF, SPR are shown in Figures 22(a)-(c), re-
spectively. The performance of the effectivity index θ∗ for ∗ =CL2P, DLSF,
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(a) Continous L2 projection (CL2P) (b) Discrete least square fitting
(DLSF)

(c) Superconvergent path recovery
(SPR)

(d) Effectivity index θ∗

Figure 22: One dimensional problem: Errors and effectivity index results
obtained with different recovery procedures (CL2P, DLSF and SPR) using
quadratic B-spline space to approximate the solution uh with uniform h-
refinements.

SPR are shown in Figure 22(d). From the error plots it can be notice that the
projected error for CL2P recovery procedure is not superconvergent of order
one; although a more accurate result than exact error is achieved. While
the error plots shown in Figure 22(b)-(c) clearly shows the superconvergent
behavior of DLSF and SPR recovery procedures. This results in asymptotic
exactness of estimated error with respect to uniform h-refinement, where
DLSF and SPR recovery procedure are fastly approaching to the value 1.
Although the CL2P recovery procedure does not produce a superconver-
gent recovered gradient of one order higher convergence rate, it still gives a
fairly accurate error estimate. The reason being that the recovered gradi-
ent is accurate enough to give an estimated error in energy quite close to
the exact one. The numerical results also demonstrate that to achieve an
asymptotically exact a posteriori error estimator in the energy norm, the
recovered derivatives need not necessarily be superconvergent of order 1 at
every points. An example of global continuous L2 projection (CL2P) fits in
this category.
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Example 2. (Sinus problem)

Next we consider the following two dimensional problem

−∆u = f in Ω, (134)

with homogenous boundary conditions

u = 0 on ∂Ω. (135)

Here Ω = (0, 1)×(0, 1) is considered as a square domain and f is constructed
to correspond to the exact solution

u(x, y) = sin(2πx) sin(2πy). (136)

The error plots of exact error, projected error and estimated error for the
recovery procedures ∗ = CL2P, DLSF, SPR are shown in Figures 23(a)-
(c), respectively. While the performance of the effectivity index θ∗ for ∗ =
CL2P, DLSF, SPR are shown in Figure 23(d). From the error plots, similar
to 1D case, it can be noticed that the projected error for CL2P recovery
procedure is not superconvergent of order one; although a more accurate
result than exact error is achieved. While the error plots shown in Figures
23(b)-(c) clearly show the superconvergent behavior of DLSF and SPR re-
covery procedures. This results in asymptotic exactness of estimated error
with respect to uniform h-refinement, where DLSF and SPR recovery proce-
dure are rapidly approaching to the value 1. The CL2P recovery procedure
show similar behavior as for the One dimensional example, see the comment
given above regarding the effectivity index. The comparison of distribution
of exact error vs. estimated error (at element level) obtained by different
recovery procedures for quadratic B-splines approximate solution uh at step
2 of uniform refinements is shown in Figure 24, whereas the comparison of
deviation of local effectivity index |θ∗local − 1| obtained by different recov-
ery procedures at step 2 of uniform refinement is shown in Figure 25. The
results displayed in Figures 24-25 indicates that for smooth problems with
uniform h-refinement the DLSF recovery procedure gives better results in
comparison to the two other recovery procedures. The accuracy of the SPR
procedure is very good inside the domain. However, some disturbances may
be observed along the boundary. This is well known behavior of the SPR-
procedure and might be handled by introducing special recovery schemes
for the patches along the boundary (see e.g. [44] and [49]). Notice that the
global recovered gradient field using SPR (without special treatments of the
boundaries) is still superconvergent of order one.



236 Paper III: Superconvergent patch recovery and a posteriori error...

(a) Continous L2-projection (CL2P) (b) Discrete least square fitting
(DLSF)

(c) Superconvergent patch recovery
(SPR)

(d) Effectivity index θ∗

Figure 23: Sinus problem: Errors and effectivity index results obtained
with different recovery procedures (CL2P, DLSF and SPR) using quadratic
B-spline space to approximate the solution uh with uniform h-refinements.

In this example we also notice that the estimated error for the recovery
procedures is conservative and giving a bound on the exact error from above.
Herein we do not guarantee that our error estimates are bounding the exact
error (either from above or below). We focus instead on h-asymptotic exact-
ness. Guaranteed upper and lower bounds is a topic for future investigation
- see the discussion in the end of this article.

Example 3. (Smooth solution with non-homogeneous Dirichlet
Bc’s)

Now we consider the elliptic problem (134) on the square domain Ω = (0, 1)×
(0, 1) with non-homogenous boundary conditions

u = g on ∂Ω, (137)

f and g are constructed to correspond to the exact solution

u(x, y) = (x3 + y2) sin(xy). (138)
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(a) Exact error distribution (b) CL2P error estimator

(c) DLSF error estimator (d) SPR error estimator

Figure 24: Sinus problem: Comparison of distribution of exact error
vs. error estimator (at element level) obtained by Continous L2-projection
(CL2P), Discrete least square fitting (DLSF) and Superconvergent patch re-
covery (SPR) for quadratic B-splines approximate solution uh at step 2 of
uniform refinements.
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(a) |θCL2P
local − 1|

(b) |θDLSF
local − 1|

(c) |θSPR
local − 1|

Figure 25: Sinus problem: Comparison of deviation of local effectivity
index |θ∗local − 1| obtained by Continous L2-projection (CL2P), Discrete
least square fitting (DLSF) and Superconvergent patch recovery (SPR) for
quadratic B-splines approximate solution uh at step 2 of uniform refinements.
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The comparison of error plots, global effectivity index θ∗ and deviation of
local effectivity index |θ∗local − 1|, for ∗=SPR, DLSF, CL2P, recovery pro-
cedures are plotted in Figures 26-28. It can be observed that the global
effectivity index θ∗ converges to one rapidly for both the DSLF and SPR
procedures after the mesh has been refined two times. The effectivity index
for CL2P is also approaching one after some refinements, but with slightly
less rate.

Discussion of results obtained for smooth problems

The numerical results obtained in Example 1-3 all confirm that the recovered
gradient using DLSF and SPR are superconvergent of one order for smooth
problems, whereas CL2P recover gradients are definitely more accurate than
exact errors in computed FE solutions, and sometimes superconvergence
of order between zero and one (here close to one) is also observed. All
the recovery schemes are shown to be h-asymptotic exact for such smooth
problems. However, the deviation from unity of the local effectivity index
is pronounced along the boundary for SPR in all cases, whereas the DLSF
handles homogenous Dirichlet boundary conditions quite well but not non-
homogenous Dirichlet. We just remark that there exist remedies for handling
the issues of boundary conditions for SPR ([44, 49]).
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(a) Continous L2-projection (CL2P) (b) Discrete least square fitting
(DLSF)

(c) Superconvergent path recovery
(SPR)

(d) Effectivity index θ∗

Figure 26: Smooth problem with non-homogenous Bc’s: Errors and
effectivity index results obtained with different recovery procedures (CL2P,
DLSF and SPR) using quadratic B-spline space to approximate the solution
uh with uniform refinements.
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(a) Exact error distribution (b) CL2P error estimator

(c) DLSF error estimator (d) SPR error estimator

Figure 27: Smooth problem with non-homogenous Bc’s: Comparison
of distribution of exact error vs. error estimator (at element level) obtained
by Continous L2-projection (CL2P), Discrete least square fitting (DLSF)
and Superconvergent patch recovery (SPR) for quadratic B-splines approx-
imate solution uh at step 3 of uniform refinements.
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(a) |θCL2P
local − 1|

(b) |θDLSF
local − 1|

(c) |θSPR
local − 1|

Figure 28: Smooth problem with non-homogenous Bc’s: Compari-
son of deviation of local effectivity index |θ∗local − 1| obtained by Continous
L2-projection (CL2P), Discrete least square fitting (DLSF) and Supercon-
vergent patch recovery (SPR) for quadratic B-splines approximate solution
uh at step 3 of uniform refinements.
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(a) irrMesh 1, DOF 250 (b) irrMesh 2, DOF 612

(c) irrMesh 3, DOF 1173 (d) irrMesh 4, DOF 1785

Figure 29: A set of randomly generated irregular meshes for quadratic LR
B-spline elements.

7.2 Superconvergent gradient recovery under adaptive meshes

Example 4. (Smooth problem on irregular meshes)

To investigate the significance of using true superconvergent points compared
to classical Gauss integration points (i.e. (2×2) for p=2) we redo the Smooth
solution with non-homogenous BC’s using quadratic LR B-splines defined
on a set of arbitrary given irregular meshes as displayed in Figure 29. In
Tables 2-4, we report the obtained error norms as well as the effectivity
indices θ∗. When using the (2 × 2)-Gauss Legendre points the DLSF and
SPR gives results in the range 0.75 − 0.96 and 0.80 − 1.02, respectively.
Furthermore, we see that for all except second irregular mesh the effectivity
index for SPR using (2 × 2)-Gauss Legendre points is in the range 0.96 −
1.02. The corresponding results when using true superconvergent points are
0.96 − 1.04 and 0.98 − 1.02 for DLSF and SPR, respectively. Thus, using
true superconvergent points clearly improve the effectivity indices for both
DLSF and SPR for the given problem. However, in practice when the meshes
are refined in order to smooth the error distribution we might expect less
differences, and this issue will be investigated below. Finally we remark that
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CL2P in general gives the less reliable effectivity indices.
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Meshes Exact error Projected error Error estimate Effectivity index
‖∇u − ∇uh‖

L2(Ω)
‖∇u − ∇uCL2P

h ‖
L2(Ω)

‖∇uCL2P
h − ∇uh‖

L2(Ω)
θCL2P

irrMesh 1 1.56e-03 7.05e-04 1.41e-03 0.90
irrMesh 2 1.78e-03 1.27e-03 1.25e-03 0.70
irrMesh 3 9.17e-04 5.87e-04 7.09e-04 0.77
irrMesh 4 1.47e-03 4.66e-04 1.40e-03 0.95

Table 2: Smooth problem with non-homogenous Bc’s: Comparison
of errors and effectivity index θCL2P for Continous L2 projection (CL2P)
procedure on randomly generated irregular meshes of LR B-splines spaces.

Meshes Sampling Exact error Projected error Error estimate Effectivity
points ‖∇u − ∇uh‖

L2(Ω)
‖∇u − ∇uDLSF

h ‖
L2(Ω)

‖∇uDLSF
h − ∇uh‖

L2(Ω)
index θDLSF

irrMesh Gauss pts. 1.56e-03 5.59e-04 1.43e-03 0.92
1 Sup. pts. 3.02e-04 1.57e-03 1.01

irrMesh Gauss pts. 1.78e-03 8.74e-04 1.35e-03 0.75
2 Sup. pts. 2.44e-04 1.71e-03 0.96

irrMesh Gauss pts. 9.17e-04 4.89e-04 7.25e-04 0.79
3 Sup. pts. 2.88e-04 9.55e-04 1.04

irrMesh Gauss pts. 1.47e-03 4.12e-04 1.41e-03 0.95
4 Sup. pts. 3.40e-04 1.42e-03 0.96

Table 3: Smooth problem with non-homogenous Bc’s: Comparison of
errors and effectivity index θDLSF for Discrete least square fitting (DLSF)
procedure on randomly generated irregular meshes of LR B-splines spaces.

Meshes Sampling Exact error Projected error Error estimate Effectivity
points ‖∇u − ∇uh‖

L2(Ω)
‖∇u − ∇uSPR

h ‖
L2(Ω)

‖∇uSPR
h − ∇uh‖

L2(Ω)
index θSPR

irrMesh Gauss pts. 1.56e-03 5.48e-04 1.52e-03 0.97
1 Sup. pts. 4.21e-04 1.59e-03 1.01

irrMesh Gauss pts. 1.78e-03 9.45e-04 1.44e-03 0.80
2 Sup. pts. 2.77e-04 1.75e-03 0.98

irrMesh Gauss pts. 9.17e-04 2.92e-04 8.85e-04 0.96
3 Sup. pts. 9.61e-05 9.17e-04 1.00

irrMesh Gauss pts. 1.47e-03 3.84e-04 1.50e-03 1.02
4 Sup. pts. 3.07e-04 1.51e-03 1.02

Table 4: Smooth problem with non-homogenous Bc’s: Comparison of
errors and effectivity index θSPR for Superconvergent patch recovery (SPR)
procedure on randomly generated irregular meshes of LR B-splines spaces.
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Example 5. (Smooth problem on adaptive meshes)

To investigate the significance of using true superconvergent points com-
pared to classical Gauss integration points (i.e. (2× 2) for p=2) on realistic
adapted meshes based on exact error distribution (see Figure 30) we redo the
Smooth solution with non-homogenous BC’s using quadratic LR B-splines.
In Table 5 we report the obtained effectivity indices θ∗ for different recovery
procedures. When using the (2 × 2)-Gauss Legendre points the DLSF and
SPR gives results in the range 0.97− 1.00 and 0.99− 1.02, respectively. The
corresponding results when using true superconvergent points are 1.00−1.00
and 1.00 − 1.02 for DLSF and SPR, respectively. Thus, using true super-
convergent points again improve the effectivity indices for both DLSF and
SPR, but only marginally. However, as seen from Figure 31 the use of true
superconvergent points within DLSF and SPR slightly lower the error in
recovered gradients as well as make the error estimates slightly more conser-
vative. Finally, we remark that CL2P in general again gives the less reliable
effectivity indices (0.96− 0.99), but this time fairly close to one.

On comparing the results obtained on these practical meshes with the
results obtained on irregular set of meshes shown in Figure 29, we see that
the results especially with the choice of (2 × 2)-Gauss Legendre points in
our recovery procedures of DLSF and SPR improved a lot and the effectiv-
ity indices obtained on these practical meshes will always be close to unity
or approaching to unity in h-asymptotic sense. This results remind us the
smooth solution definition from [8] with respect to a given discrete mesh. A
given smooth solution on a particular irregular mesh can also behave like a
non-smooth solution; in contrary a given non-smooth solution on a proper
generated adapted meshes can behave like a smooth solution. Our experi-
ence is (see e.g. [44, 49]) that the reliability of the DLSF and SPR procedures
improves throughout an adaptive refined mesh-sequence based on proper a
posteriori error estimates. We believe that is the reason for why DLSF and
SPR performs better in all the adapted meshes in Figure 30 compared to
the irregular meshes displayed in Figure 29.

The above case was studied for the problem with smooth solution. Now
we consider the problem with rough right hand side which exhibits internal
layer behavior given by Example 6 below.

Example 6. (Circular wave front problem on adaptive meshes)

The governing equation of the problems is

−∆u = f in Ω, (139)
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Steps θCL2P θDLSF θDLSF θSPR θSPR

Gauss pts. Sup. pts. Gauss pts. Sup. pts.
1 0.99 1.00 1.00 1.02 1.02
3 0.99 0.99 1.00 1.01 1.02
5 0.96 0.97 1.00 0.99 1.00
7 0.99 0.99 1.00 1.00 1.01

Table 5: Smooth problem with non-homogenous Bc’s: Effectivity
index θ∗ for Continous L2-projection (CL2P) and, Discrete least square fit-
ting (DLSF) and Superconvergent patch recovery (SPR) procedures using
(2 × 2)-Gauss Legendre points and computed derivative superconvergence
points (Sup. pts.) on adaptive meshes of Figure 30.

(a) Step 1, DOF 100 (b) Step 3, DOF 294

(c) Step 5, DOF 716 (d) Step 7, DOF 1447

Figure 30: Smooth problem with non-homogenous Bc’s: Meshes ob-
tained by means of adaptive refinements based on exact error estimate and
the use of LR B-splines at different steps.
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(a) Continous L2-projection (CL2P) (b) Discrete least square fitting
(DLSF)

(c) Superconvergent patch recovery
(SPR)

(d) Effectivity index θ∗

Figure 31: Smooth problem with non-homogenous Bc’s: Comparison
of error plots and effectivity index by Continous L2-projection (CL2P) and,
Discrete least square fitting (DLSF) and Superconvergent patch recovery
(SPR) using (2 × 2)-Gauss Legendre points and computed derivative su-
perconvergence points in adaptive isogeometric analysis using quadratic LR
B-splines based of exact error estimator.
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Steps θCL2P θDLSF θDLSF θSPR θSPR

Gauss pts. Sup. pts. Gauss pts. Sup. pts.
1 1.63 1.67 1.67 2.24 2.24
3 0.98 1.00 1.06 1.28 1.35
7 0.96 0.99 1.00 1.04 1.05
10 0.98 0.99 1.00 1.01 1.01

Table 6: Circular wave front problem: Effectivity index θ∗ for Conti-
nous L2-projection (CL2P) and, Discrete least square fitting (DLSF) and
Superconvergent patch recovery (SPR) procedures using (2× 2)-Gauss Leg-
endre points and computed derivative superconvergence points (Sup. pts.)
on adaptive meshes of Figure 32.

with homogenous boundary conditions

u = g on ∂Ω. (140)

Here Ω = (0, 1)2 is a square domain and f , g are constructed to correspond
to the exact solution

u(x, y) = arctan(S(r − r0)), where r =
√
(x− 1/2)2 + (y − 1/2)2. (141)

with r0 = 1/16 is the distance from the wave front to the center of the circle,
and S = 20 gives a mild steepness of the wave front along the circular region
in the interior domain Ω.

The comparison of the performance of the error estimators on a set of
quasi-uniform meshes obtained via the adaptive refinement algorithm us-
ing exact error estimate with structured mesh refinement strategy of LR
B-splines of degree two are presented in Figures 32-33. The results with re-
spect to two choices of sampling points, i.e., (2× 2)-Gauss Legendre points
and computed derivative superconvergence points (Sup. pts.), for DLSF and
SPR recovery procedures are also given in Table 6. It can be seen from the
figures that both choices of sampling points in our recovery procedures gives
good effectivity index and provides h-asymptotic results as expected. How-
ever, the use of true (computed) derivative superconvergence points again
provides slightly better accuracy and convergence in the recovered gradient
field and slightly faster asymptotic exactness results.
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(a) Step 1, DOF 100 (b) Step 3, DOF 688

(c) Step 7, DOF 5880 (d) Step 10, DOF 16809

Figure 32: Circular wave front problem: Meshes obtained by means
of adaptive refinements based on exact error estimate and the use of LR
B-splines at different steps.
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(a) Continous L2-projection (CL2P) (b) Discrete least square fitting
(DLSF)

(c) Superconvergent patch recovery
(SPR)

(d) Effectivity index θ∗

Figure 33: Circular wave front problem: Comparison of error plots
and effectivity index by Continous L2-projection (CL2P) and, Discrete least
square fitting (DLSF) and Superconvergent patch recovery (SPR) using
Gauss points and computed derivative superconvergence points in adap-
tive isogeometric analysis using quadratic LR B-splines based of exact error
estimator.
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(a) Internal layer problem descrip-
tion

(b) Exact solution u

Figure 34: Internal layer problem: Problem description and Exact so-
lution u.

7.3 Adaptive isogeometric analysis using a posteriori error
estimators

The purpose of this section is to demonstrate the performance of devel-
oped recovery based error estimators in an adaptive isogeometric analysis,
in particular, we show that the developed SPR procedure does produce adap-
tive meshes on which the recovered gradient is indeed superconvergent. We
present the numerical results with respect to each developed recovery based
error estimator η∗ = ‖∇u∗h − ∇uh‖L2(Ω), with ∗ = CL2P, DLSF, SPR, us-
ing quadratic LR B-spline based structured mesh refinement algorithm. As
we have seen from the numerical results of presented above that the per-
formance of DLSF and SPR recovery procedure with the choice of (2 × 2)-
Gauss Legendre points as sampling points is very comparable to the case
when true computed derivative superconvergence points are used. The com-
puted derivative superconvergence points is is a bit cumbersome to use in
practice (complicates in some cases the choice of patches). For these reasons
we recommend to use the (2× 2)-Gauss Legendre points as sampling points
in DLSF and SPR recovery procedure for quadratic LR B-splines.

Example 7. (Internal layer problem)

The governing equation of internal layer problem is

−∆u = f in Ω := (0, 1)2, (142)

with the boundary conditions

u = ud on ΓD and
∂u

∂n
= g on ΓN , (143)
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Here the boundary data ud, g and f are constructed to correspond to the
exact solution

u(x, y) = arctan
(
S
(√

x2 + y2 − 0.60
))

. (144)

We consider the problem with S = 60 in the exact solution u, which exhibits
the curved internal layer of width O(1/60) in interior of the domain. The
set up of the problem with given boundary conditions and the exact solution
u are shown in Figure 34.

The comparison of error plots and effectivity index of different recovery
procedures using respective recovery based error estimators are shown Figure
35. The results obtained for the error in projected field is more comparable
between the recovery procedures. With SPR recovery we obtained higher
rate of convergence in projected error in comparison to other recovery proce-
dures, while the results for CL2P and DLSF is initially more accurate than
the SPR recovery. This problem exhibits an internal layer of width O(1/60)
due to the rough right hand side function f . In order to obtain optimal
convergence rate, i.e. O(hp+1), the internal layer has to be resolved. For
uniform refined meshes this means when h < 1/60. Starting with h = 1/8
it means 3 uniform mesh refinement steps resulting in h = 1/64 which is
about DOF = 662 = 4356 degrees of freedom. Using the developed a pos-
teriori error estimates we starts to resolve the internal layer after 6 adaptive
refinement steps where hmax = 1/8 and hmin = 1/64 with approximately
DOF = 800 degrees of freedom. That we start resolving the internal layer
after 6 refinement steps is seen from the fact that the effectivity indices are
starting approaching to 1 at this stage in the adaptive process, see Figure 36.
The observed behavior of the SPR-procedure for coarse meshes i.e. before
the internal layer is properly resolved complies well with other investigations,
see e.g. [78] and [44]. The SPR-procedure works well when we have smooth
error distribution throughout the mesh. Thus, for non-smooth problems
the SPR-procedure can only give good effectivity indices after some initial
refinement steps that get rid of any present pollution. All known experi-
ence from more than two decades of use of SPR-procedures has shown that
adaptive finite element methods based on SPR error estimates are able to
achieve smooth error distribution for non-smooth problems having singular-
ity points/lines or rough right hand sides.

The comparison of the deviation in local effectivity index for these recov-
ery procedures at various steps are presented in Figure 37. We observe that
not only gives the three different recovery procedures good global effectivity
indices but also the local effectivity index at element level is fairly close to
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(a) Continous L2-projection (CL2P) (b) Discrete least square fitting
(DLSF)

(c) Superconvergent patch recovery
(SPR)

(d) Effectivity index θ∗

Figure 35: Internal layer problem: Error plots and effectivity index for
different recovery based a posteriori error estimators in adaptive isogeometric
analysis using quadratic LR B-splines.

one. However, along the boundary the results for SPR are less accurate then
the other two methods -this complies with the observation done in earlier
examples described above. In any case all the recovery procedure capture
very well the location of the internal layer and the numerical solution based
on adaptive refinement using these error estimates all attain optimal rate of
convergence.
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(a) Step 1, DOF 100 (b) Step 1, DOF 100 (c) Step 1, DOF 100

(d) Step 6, DOF 591 (e) Step 6, DOF 583 (f) Step 6, DOF 601

(g) Step 12, DOF 3072 (h) Step 12, DOF 3094 (i) Step 12, DOF 2660

Figure 36: Internal layer problem: Adapted LR meshes obtained via
adaptive LR B-splines refinement algorithm using different recovery based
error estimators at different refinement steps for Internal layer problem. The
columns from left to right represents the cases with respect to Continous
L2-projection (CL2P), Discrete least square fitting (DLSF) and Supercon-
vergent patch recovery (SPR), respectively.
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(a) Step 1, DOF 100 (b) Step 1, DOF 100 (c) Step 1, DOF 100

(d) Step 6, DOF 591 (e) Step 6, DOF 583 (f) Step 6, DOF 601

(g) Step 12, DOF 3072 (h) Step 12, DOF 3094 (i) Step 12, DOF 2660

Figure 37: Internal layer problem: Comparison of absolute value of the
deviation effectivity index at element level |1−θ∗el| at LR meshes obtained via
adaptive LR B-splines refinement algorithm using different recovery based
error estimators at different refinement steps for Internal layer problem. The
columns from left to right represents the cases with respect to Continous
L2-projection (CL2P), Discrete least square fitting (DLSF) and Supercon-
vergent patch recovery (SPR), respectively.
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(a) L-shaped problem description (b) Exact solution u

Figure 38: L-shaped problem: Problem description and Exact solution u.

(a) First parametrization (b) Second parametrization

Figure 39: Parametrizations for L-shaped domain problem with coarse initial
meshes.

Example 8. (L-shaped domain problem)

The governing equation of L-shaped domain problem is

∆u = 0 in Ω, (145)

with the boundary conditions

u = 0 on ΓD and
∂u

∂n
= g on ΓN , (146)

Here Ω = (−1, 1)2 \ (0, 1)× (−1, 0) is a L-shape domain and g is constructed
to correspond to the exact solution

u(x, y) = r
2
3 sin

(
2θ

3

)
, with r = (x2 + y2)

1
2 , θ = tan−1

(y
x

)
. (147)

The set up of the problem with given boundary conditions and the exact
solution u are shown in Figure 38.
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For the given elliptic problem, re-entrant corner at (0, 0) in the domain
cause a singularity in the solution. It is known that the convergence for
uniform mesh refinement is limited by the strength of the singularity, i.e.,
the convergence rate (versus degrees of freedoms) is equal to −1/3. For
problems where the solution is not sufficiently smooth, u /∈ Hp+1(Ω), as is
the case for the L-shaped domain problem that has a singularity point at its
boundary, we do not obtain optimal convergence rate when we do uniform
mesh refinement. In particular, the use of high order polynomials is then
inefficient.

We consider two parametrizations to solve the L-shaped domain prob-
lem as shown in Figure 39. The first parametrization represent an identity
mapping F = Id and the geometry is constructed by inserting the addi-
tional C0 and C−1-continuity lines along x-axis and y-axis of the domain
and by chopping off the lower region. This is a unique feature with LR
B-splines based on multiple mesh lines insertion shown by dark black and
blue lines of C−1 and C0 continuity, respectively, in Figure 39(a). Our sec-
ond parametrization is based on bilinear mapping F using quadratic LR
B-splines and the coarse geometry is shown in Figure 39(b). The lighter
black lines in both parametrizations represent the C1-continuity lines for
quadratic LR B-splines space.

Using the first parametrization, shown in Figure 39(a), the error plots
and effectivity index of different recovery procedures using respective recov-
ery based error estimators are shown Figure 40. The results with respect to
all recovery procedures shows the superconvergence in projected error. This
problem is known for the singularity at re-entrant corner (0, 0) and all the
recovery procedure takes few step of initial refinement alogirthm to prop-
erly handle the problem caused by the pollution effect. It can be noticed
from the effectivity index plots given in Figure 40 that after few steps of the
refinement algorithm the projected error becomes more accurate than the
corresponding energy error of the finite element solution, and the effectivity
index starts converging to 1. We also notice that the effectivity index of the
SPR recovery is very close to 1 and converging to 1 in h-asymptotic exact-
ness sense better than global recovery methods. We observe from Figure42
that not only gives the three different recovery procedures good global ef-
fectivity indices but also the local effectivity index at element level is fairly
close to one. However, along the boundary the results for SPR are again less
accurate then the other two methods. In any case all the recovery procedure
capture very well the singularity in the solution at the re-entrant corner and
the numerical solution based on adaptive refinement using these error esti-
mates all attain optimal rate of convergence. The corresponding adaptive
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meshes obtained at different refinement steps are shown in Figure 41.

Now we consider the second parametrization, shown in Figure 39(b), to
solve the L-shaped domain problem. The error plots and effectivity index of
different recovery procedures using respective recovery based error estima-
tors are shown Figure 43. The results with respect to all the recovery pro-
cedures shows the superconvergence behavior in projected error on adapted
generated meshes. This parametrization seems to be more suited for the
global recovery methods than the previous one. The global recovery proce-
dures produce a more accurate recovered field than the SPR recovery at few
initial refinement steps. After few step of initial refinement the projected
error shows superconvergence behavior and at the end of the refinement
process the SPR recovery procedure have a slightly higher convergence rate
than the two other ones. The effectivity index plots given in Figure 43(d)
shows that the effectivity index value is converging to 1 for the SPR recovery
procedure. For the global recovery procedures the effectivity index value is
first converging to 1 from above and then attain a value close to but below 1.

Regarding the ability to capture the error distribution, i.e. the behavior
of the local element effectivity indices the results (see Figure 45) are the
same as for the other parametrization described above. Similarly, we again
achieve optimal convergence rates in the computed finite element solution,
see Figure 44.

Remark 7.1. We would like to underline the very high quality of the ob-
tained effectivity indices obtained herein for SPR compared to earlier expe-
rience with SPR and unstructured adaptive mesh refinement of linear finite
elements, see [44]. Figure 17b in [44] shows an effectivity index for the SPR-
procedure in the range of (0.65 − 0.8) for DOF < 1000, whereas we herein
achieve effectivity indices in the range (0.90−1.00) and (0.95−1.00) for the
first and second parametrization, correspondingly.

8 Conclusion and perspectives

Isogeometric analysis (IGA) based on B-splines or NURBS are structured
tensor product meshes within each patch [36] and facilitates superconver-
gence behavior. The recently developed LR B-splines [28] and structured
adaptive mesh refinement using LR B-splines [39] are consider to be promis-
ing candidates to facilitate adaptive superconvergent gradient recovery as
they produce local tensor product meshes.
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(a) Continous L2-projection (CL2P) (b) Discrete least square fitting
(DLSF)

(c) Superconvergent patch recovery
(SPR)

(d) Effectivity index θ∗

Figure 40: L-shaped domain problem on first parametrization: Error
plots and effectivity index for different recovery based a posteriori error
estimators in adaptive isogeometric analysis using quadratic LR B-splines.
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(a) Step 1, DOF 280 (b) Step 1, DOF 280 (c) Step 1, DOF 280

(d) Step 7, DOF 838 (e) Step 7, DOF 859 (f) Step 7, DOF 922

(g) Step 14, DOF 4743 (h) Step 14, DOF 4653 (i) Step 14, DOF 5364

Figure 41: L-shaped domain problem first parametrization: LR
meshes obtained via adaptive LR B-splines refinement algorithm using differ-
ent recovery based error estimators at different refinement steps for L-shaped
domain problem. The columns from left to right represents the cases with
respect to to Continous L2-projection (CL2P), Discrete least square fitting
(DLSF) and Superconvergent patch recovery (SPR), respectively.
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(a) Step 1, DOF 280 (b) Step 1, DOF 280 (c) Step 1, DOF 280

(d) Step 7, DOF 838 (e) Step 7, DOF 859 (f) Step 7, DOF 922

(g) Step 14, DOF 4743 (h) Step 14, DOF 4653 (i) Step 14, DOF 5364

Figure 42: L-shaped domain problem on first parametrization: Com-
parison of absolute value of the deviation effectivity index at element level
|1− θ∗el| at LR meshes obtained via adaptive LR B-splines refinement algo-
rithm using different recovery based error estimators at different refinement
steps for L-shaped domain problem. The columns from left to right repre-
sents the cases with respect to Continous L2-projection (CL2P), Discrete
least square fitting (DLSF) and Superconvergent patch recovery (SPR), re-
spectively.
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(a) Continous L2-projection (CL2P) (b) Discrete least square fitting
(DLSF)

(c) Superconvergent patch recovery
(SPR)

(d) Effectivity index θ∗

Figure 43: L-shaped domain problem on second parametrization:
Error plots and effectivity index for different recovery based a posteriori error
estimators in adaptive isogeometric analysis using quadratic LR B-splines.
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(a) Step 1, DOF 190 (b) Step 1, DOF 190 (c) Step 1, DOF 190

(d) Step 7, DOF 656 (e) Step 7, DOF 647 (f) Step 7, DOF 668

(g) Step 14, DOF 4563 (h) Step 14, DOF 4509 (i) Step 14, DOF 4357

Figure 44: L-shaped domain problem on second parametrization:
LR meshes obtained via adaptive LR B-splines refinement algorithm using
different recovery based error estimators at different refinement steps for
L-shaped domain problem. The columns from left to right represents the
cases with respect to Continous L2-projection (CL2P), Discrete least square
fitting (DLSF) and Superconvergent patch recovery (SPR), respectively.
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(a) Step 1, DOF 190 (b) Step 1, DOF 190 (c) Step 1, DOF 190

(d) Step 7, DOF 656 (e) Step 7, DOF 647 (f) Step 7, DOF 668

(g) Step 14, DOF 4563 (h) Step 14, DOF 4509 (i) Step 14, DOF 4357

Figure 45: L-shaped domain problem on second parametrization:
Comparison of absolute value of the deviation effectivity index at element
level |1 − θ∗el| at LR meshes obtained via adaptive LR B-splines refinement
algorithm using different recovery based error estimators at different refine-
ment steps for L-shaped domain problem. The columns from left to right
represents the cases with respect to Continous L2-projection (CL2P), Dis-
crete least square fitting (DLSF) and Superconvergent patch recovery (SPR),
respectively.
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We start out by addressing the existence of derivative superconvergence
points in the computed finite element solution based on B-splines and LR
B-splines for our elliptic model problem (1D and 2D Poisson). Inspired by
earlier theoretical work presented in Wahlbin [69] and computer based proof
of Babuska [8, 12, 11], we demonstrate that we are able to compute true
derivative superconvergence points by means of local Neumann projection
of a set of proper monomials for both uniform B-splines as well as for general
(non-uniform) adapted LR B-splines. For uniform B-splines the true deriva-
tive superconvergent points are located at different location than the case
of classical C0 Lagrange elements. Thus, the continuity of the underlying
finite element basis plays an important role for the location of true derivative
superconvergent points. For the case of quadratic C1 B-splines, on uniform
mesh partition, they share the same location given by the (2 × 2)-Gauss
Legendre points (or Barlow points) for classical quadratic C0 Lagrange el-
ements. While in case of cubic C2 and C1 B-spline spaces, on uniform
mesh partition, the derivative superconvergence points will be at (3 × 3)-
Gauss Lobatto points within each elements in contrary to the (3× 3)-Gauss
Legendre points (or Barlow points) for classical cubic C0 Lagrange elements.

The main part of the article focus on a study of three different gradient
recovery techniques for the purpose of enabling effective adaptive refinement
in isogeometric analysis: Continuous L2-projection (CL2P), Discrete least
square fitting (DLSF), and Superconvergent Patch Recovery (SPR).

The main findings are:

• The difference between using true superconvergent derivative points
and (2× 2)-Gauss Legendre points for p=2 is noticeable but not pro-
nounced for the accuracy of the recovered gradient field and the cor-
responding global effectivity indices.

• Adaptive refinement using all the three recovery based a posteriori
error estimates provides optimal convergence rate

• The obtained global effectivity indices are for all the three recovery
techniques remarkable close to one - This is in contrast with residual
based error estimates.

• The local elementwise effectivity indices for all the three recovery tech-
niques are close to one after some initial refinement steps to take care
of any possible pollution effect.

• The main difference between the three recovery methods is that for
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both CL2P and DLSF one have to solve a global (mass matrix) prob-
lem, whereas SPR only involve solution of a local problem.

The performance of global CL2P and DLSF recovery procedures pre-
sented in this article are very comparable in comparison to the local SPR
recovery procedure. Thus it can be worthy to developed a local version of
these recovery procedures and some work in this direction to design a local
projection has been recently presented in [34], [60]. It is worth to explore
this possibility based on Bezier extraction technique in adaptive isogeomet-
ric analysis.

The aim of the present study has been to develop adaptive recovery pro-
cedures that produce global (and local) effectivity indices close to one and
being h-asymptotic exact. A natural extension will be to provide guaranteed
upper and lower bounds and that will be pursued in an upcoming article.
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Abstract

To solve the incompressible flow problems using isogeometric analysis, the
div-compatible spline spaces was originally introduced by Buffa [8, 11], and
later developed by Evans [18]. In this paper, we construct div-compatible
spline spaces with local refinement capability using Locally Refined (LR) B-
splines. We argue that the splines spaces generated on locally refined meshes
will satisfy compatibility provided they span the entire function spaces as
governed by Mourrain [27] dimension formula. We show that the locally
structured refined LR B-splines, introduced by Johannessen et.al [23], fulfills
the necessary requirements for being div-compatible. Further, we consider
these div-compatible LR B-spline spaces to approximate the velocity and
pressure fields in mixed discretization for Stokes problem and a set of stan-
dard benchmark tests are performed to show the stability, efficiency and the
conservation properties of the discrete velocity fields in adaptive isogeometric
analysis.

1 Introduction

Isogeometric analysis (IGA) was introduced in [21] as an innovative nu-
merical methodology for the discretization of Partial Differential Equations
(PDEs), the main idea was to improve the interoperability between Com-
puter Aided Design (CAD) and PDE solvers, and to achieve this, the au-
thors in [21] proposed to use CAD mathematical primitives, i.e. splines and
NURBS, to also represent PDE unknowns. The smoothness of splines is a
new ingredient that yields several advantages: for example, it improves the
accuracy per degree of freedom and allows for the direct approximation of
higher order PDEs. Isogeometric methods have been used and tested on a
variety of problems of engineering interests, for flow simulations [1, 4, 5, 8,
12, 18, 15, 16], and for electromagnetic problems [9, 10, 30].
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In electromagnetic and incompressible fluids flow simulations, numerical
discretization have to preserve the geometric structure of underlying PDEs
in order to avoid spurious behaviors, instability or non-physical solution.
Thus the numerical discretizations have to be related with a discrete De
Rham complex. Compatible spaces for finite element approximations were
in general introduced by Arnold et al. [2], and more recently in isogeometric
analysis context, by Buffa et al. [8, 11]. High regularity of splines is advan-
tageous for constructing compatible spaces. Some initial work to show the
potential impact of compatible spline based methodology for electromagnetic
wave computations was presented in [9, 30] and recently using T-spline com-
plexes in [10]. For incompresible fluid flows, Buffa et al. [8] proposed the first
isogeometric Stokes solver based on three choices of discrete spline spaces to
approximate the mixed discretization for Stokes problem, which were seen as
a smooth extension of Taylor-Hood (TH), Nedelec (N) and Raviart-Thomas
(RT) pair of Finite Element (FE) spaces. One of their main finding was
the smooth Raviart-Thomas (RT) pair of spline based FE spaces provides
divergence-free discrete solutions. Later using the idea of div-compatible
spline spaces presented in the setting of discrete differential forms [11], a se-
ries of isogeometric divergence conforming spline discretizations were derived
to solve Stokes and Brinkman equations, steady and unsteady Navier-Stokes
equations in by Evans in [15], [16], and [17]. These initial developments show
that isogeometric analysis is a highly accurate and efficient methodology to
solve incompressible flow problems. In this paper our aim is to develop
div-comptaible spaces on locally refined meshes and explore the benefit of
adaptive refinement in solving incompressible flow problem in term of ef-
ficiency. The adaptivity (or local refinement) is required, if one wants to
capture the strong singularities, information about recirculation eddy in flu-
ids and achieve an optimal rate of convergence.

Non-uniform rational B-splines (NURBS) are the dominant geometric
representation format for CAD. The construction of NURBS are based on
a tensor product structure and, as a consequence, knot insertion is a global
operation. To remedy this a local refinement can be achieved by breaking the
global tensor product structure of multivariate splines and NURBS. Several
techniques have been proposed to address this, among others are T-splines
[34],[33], Hierarchical B-splines [19],[24], Truncated Hierarchical B-splines
[20] and Locally Refined (LR) B-splines [13]. While initially, most of the
references address the problem from a CAD point of view, later years have
seen them applied to isogeometric analysis. For T-splines consider [3, 14, 32,
36, 35], for Hierarchical B-splines consider [28, 37, 6, 31], and for LR-splines
see [23, 25].
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1.1 Aim and outline of the paper

The aim of this article is to present a class of compatible spline spaces with
local refinement capability which form a De Rham complex and provide a
stable, divergence-free discretization of the 2D Stokes problem.

The paper is organized as follows:

We start the Section 2 with our model Stokes problem which can be seen
as a prototype of viscous incompressible flows. The necessary conditions to
derive a divergence conforming spline discretization and the main results of
the paper are presented.

In Section 3, we introduce the basic concepts of splines over locally re-
fined Box-meshes (or T-meshes). We present the dimension formula as given
by Mourrain [27] which will be useful in proving the compatibility among the
splines spaces on locally refined meshes. Further we discuss the construction
of derivatives spaces on locally refined meshes.

In Section 4, we present three different complete De Rham complexes on
locally refined meshes. The complexes are characterized by their boundary
condition for the velocity space: (i) without boundary condition, (ii) with
no penetration boundary condition, and (iii) with no slip boundary condi-
tion.

To build a basis on the Box meshes we introduce the locally refined (LR)
B-splines in Section 5. We give a brief overview of their generality before
defining a subclass which we will use for the local refinement. This is the
structured mesh refinement as introduced in [23].

In Section 6, we present some numerical results for Stokes problems. The
numerical stability, convergence rates, efficiency and conservation properties
of the proposed LR B-spline discretization in adaptive isogeometric analysis
will be main focus.

Finally, some conclusions and perspectives are included in Section 7.
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2 Stokes problem and Divergence-conforming spline
discretization

To model a viscous incompressible flow, we consider the following Stokes
problem: find (u, p) such that

{
−µ∇2u +∇p = f in Ω

∇ · u = 0 in Ω
(1)

with suitable boundary conditions and µ is the constant viscosity term. We
consider f ∈ (L2(Ω))2 and Ω ⊂ R2 is a physical domain under a geomet-
rical mapping F on parametric domain Ω̂ = (0, 1)2, where the mapping is
assumed to be piecewise smooth and has piecewise smooth inverse.

We considered the mixed variational form of (1); find u ∈ H1(Ω) and
p ∈ L2(Ω) such that

{
a(u,v) + b(v, p) = f(v) ∀v ∈ H1(Ω)

b(q,u) = 0 ∀q ∈ L2(Ω)
(2)

where

a(u,v) =
∫

Ω
µ∇u : ∇v

b(v, q) = −
∫

Ω
q div v and f(v) =

∫

Ω
f · v.

The discrete mixed form of (2), in which an approximation of (uh, ph)
to the exact solution (u, p) of (1) is obtain by solving the problem: find
uh ∈ Vh ⊂ H1(Ω) and ph ∈ Qh ⊂ L2(Ω) such that

{
a(uh,vh) + b(vh, ph) = f(vh) ∀vh ∈ Vh

b(qh,uh) = 0 ∀qh ∈ Qh.
(3)

In order to guarantee the stability, we consider the choices of discrete
pair of approximation spaces {Vh, Qh} which satisfy the inf-sup stability
conditions, i.e.,

inf
qh∈Qh
qh �=0

sup
vh∈Vh
vh �=0

∫
Ω qhdiv vh

‖qh‖2L2(Ω)
‖vh‖H1(Ω)

≥ cis > 0 (4)

where cis is the inf-sup constant independent of h.
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The discrete velocity approximation uh of problem (1) is in general not
exactly divergence-free, i.e., div uh �= 0. A sufficient conditions that guar-
antees divergence-free velocities is

{div v : v ∈ Vh} ⊆ Qh, (5)

which will conflict with (4), unless the equality holds in (5).

The discretization techniques that produce an exactly divergence-free
velocity fields are of great practical interests and are not easy to devise in
the framework of classical finite elements. In the context of Isogeometric
Analysis, a few choices of spline based discrete pair of spaces (Vh, Qh) which
satisfy (4) have been presented in Buffa et al. [9]. These choices are seen as
spline generalization of well known FE spaces, namely Taylor-Hood (TH) el-
ements, Nédélec(N) elements of the second family and Raviart-Thomas (RT)
elements. Moreover, the spline generalization of Raviart-Thomas elements
introduced in [8] enjoys also the property (5) and thus provides divergence-
free discrete solutions.

On a parametric domain Ω̂ with the associated mesh M the choice of
spline spaces (Vh, Qh) for the Raviart-Thomas (RT) elements can be defined
as

V̂ RT
h = Sp+1,q

k+1,� (M)× Sp,q+1
k,�+1 (M); Q̂RT

h = Sp,q
k,� (M); (6)

(7)

where Sp,q
k,� (M) denotes the two dimensional spline space of degree (p, q) and

continuity (k, �) in both directions, respectively.

In the results of Theorem 3.1 of Buffa et al. [9], a characterization for the
range of the div operator in the situations of interest for the Raviart-Thomas
elements V̂h × Q̂h which ensure the stability and divergence free conforming
solutions were presented. In this paper, we extend their characterization
(results of Theorem 3.1) for the case of splines spaces with locally refinement
capability. The main result is given as follows:

Theorem 1. Let Sp+1,q+1(M) be a spline space over a general homology2

free box mesh M in parametric domain Ω̂, then the following pairs of spaces

2See discussion in Section 3
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are equal

{div(v) : v ∈ V̂h} = {q ∈ Q̂h}; (8)

{div(v) : v ∈ V̂h, v · n|∂Ω = 0} = {q ∈ Q̂h :

∫
q = 0}; (9)

{div(v) : v ∈ V̂h, v|∂Ω = 0} = {q ∈ Q̂h :

∫
q = 0 with, (10)

q(x̂i) = 0, i = 1...4};

with
V̂h = Sp+1,q × Sp,q+1 and Q̂h = Sp,q;

where Sp,q(M) denotes the two dimensional spline space of degree (p, q) in
both directions, respectively, and n denotes the outward unit normal to the
boundary of Ω̂ and x̂i, i = 1, ..., 4 denote its four corners.

Proof. The proof of this theorem is given in three steps, as the result of
Theorems 2-4 for the case of (8)-(10), respectively, see Section 4.

Although the results of Theorem 1 has a general significance for spline
spaces over a general box meshes, here we consider the structured LR B-
spline spaces, which is a subset of LR B-splines and constructed through
the structured local refinement algorithm of Johannessen et al. [23], as a
suitable candidate for div-compatible splines spaces with local refinement
capability.
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(a) Tensor mesh (b) Box mesh, not an LR
mesh

(c) LR mesh and box mesh

(d) Not an LR-mesh, nor a
box mesh

(e) LR mesh with multi-
plicities

(f) Alternative way of
drawing (e)

Figure 1: Note that there is no way to create the box mesh (b) from single
line insertions (starting at tensor mesh) where every intermediate state is
also a box mesh. This is a prerequisite for all LR meshes.

3 Spline spaces over planar box meshes

The aim of this section is to set the notations and briefly state the definitions
of several types of unstructured-meshes and present the dimension of spline
spaces over them. The dimension argument was first presented by Mourrain
[27] and later extended to multivariate case by Pettersen [29].

In the literature, one can classify several types of unstructured-meshes
as defined below.

Definition 1. A Box Mesh or T-mesh is a partitioning of a two-dimensional
rectangular domain [x0, xn] × [y0, yn] into smaller rectangles by horizontal
and vertical lines.

Definition 2. A Tensor Mesh is a box mesh where there are no T-joints,
i.e., all horizontal and vertical lines span the entire length [x0, xn] or [y0, yn].
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Definition 3. An LR-Mesh Mn is a box mesh which is the result from
a series of single line insertions {Ei}ni=1 starting from a tensor mesh M0,
i.e. Mn ⊃ Mn−1 ⊃ ... ⊃ M1 ⊃ M0 and each intermediate state Mi+1 =
{Mi ∪ Ei} is a also a box mesh.

In other words, it is be possible to create these meshes by inserting one
line at a time, where these lines never stop in the center of an element (knot
span). Figure 1 shows a different types of unstructured meshes.

Definition 4. A box mesh, Tensor Mesh or LR-Mesh with multiplicities
is a mesh M where each line segment has a corresponding integer value µ,
called the line multiplicity. Each multiplicity must satisfy 0 < µ ≤ s, where
s is the polynomial degree (in x-direction for vertical lines and in y-direction
for horizontal lines).

Now we define the spline space Sp,q(M) in term of piecewise polynomials
of a given box mesh M with multiplicities:

Sp,q(M) =
{
ϕ|F ∈ Pp,q ∧ ϕ|E ∈ Ck(E)

}
(11)

where Pp,q is polynomials of bi-degree (p, q) and M = {F ,EH ,EV ,V } is
the mesh defined by the collection of faces F , horizontal edges EH , vertical
edges EV and vertices V . A continuity k is assigned to each edge and is
given by the multiplicity µ(E) as

k(E) =

{
p− µ(E), for vertical edges EV

q − µ(E), for horizontal edges EH .
(12)

Note that it is also associated a horizontal and vertical continuity with each
vertex

k(V ) =

[
k1(V )
k2(V )

]
=

[
min{k(EV )}
min{k(EH)}

]
(13)

where EV is all vertical edges connected to this particular vertex, and like-
wise for horizontal edges.

Note that in the case of uniform mesh continuities (k, l), we write Sp,qk,l (M).
Even if the continuities are implicitly defined in the mesh M and hence it is
possible to drop the continuity subscripts, we feel that they emphasize some
key facts and it is illustrative to keep them whenever possible. However, all
results presented in this paper will hold true for mixed continuities Sp,q(M).
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Now using the result from Mourrain [27], it can be shown that the di-
mension of the spline space Sp,q(M) will be

dim (Sp,q(M)) =
∑

F∈F

(p+ 1)(q + 1)

−
∑

EV ∈EV

(p+ 1)(k(EV ) + 1) (14)

−
∑

EH∈EH

(q + 1)(k(EH) + 1)

+
∑

V ∈V

(k1(V ) + 1)(k2(V ) + 1)

+ Hp,q(M)

where Hp,q(M) denotes the homology term that depends on a given mesh
M and polynomial bi-degree (p, q). The homology is rather cumbersome to
handle, but we will see later that for all practical meshes considered in this
paper they have zero homology term. For uniform continuity (k, l) across
the entire mesh, and with Hp,q(M) = 0, the above (14) is simplified to

dim
(
Sp,qk,l (M)

)
= (p+ 1)(q + 1)#F

− (p+ 1)(l + 1)#EV

− (q + 1)(k + 1)#EH (15)
+ (k + 1)(l + 1)#V

where #F is the number of faces in the mesh, #EV and #EH is the number
of interior vertical and horizontal edges, respectively, and #V is the number
of interior vertices. In the later sections of the paper we shorten the notation
and simply write F for the number of faces #F and likewise for edges and
vertices.

Proposition 1. For an LR mesh M, a sufficient condition for the homology
term Hp,q(M) to be zero is that it is constructed of horizontal lines spanning
p+ 1 elements and vertical lines spanning q + 1 elements.

Proof. For this consult Pettersen [29].
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(a) Mesh description:
p = 3, q = 2
k = 1, l = 1
#F = 12, #V = 6
#EH = 8, #EV = 12
dim(Sp,q

k,l ) = 50 according
to (15)

(b) Mesh description:
p = 2, q = 3
k = 1, l = 2
#F = 174, #V = 171
#EH = 172, #EV = 172
dim(Sp,q

k,l ) = 190 according
to (15)

(c) Mesh description:
p = 2, q = 3,
mixed continuity
#F = 15, #V = 12
#EH = 12, #EV = 14
Hp,q(M) = 0 and
dim(Sp,q) = 38 according
to (14)

Figure 2: The dimension of different spline spaces Sp,q over box-meshes of
bi-degree (p, q) and varying smoothness.

3.1 Derivative spaces

The derivative spaces of Sp,q(M) defined as a piecewise polynomial space in
(11) over an arbitrary box mesh M can be defined as follows:

Definition 5. Let {ϕi}ni=1 be a basis for the space Sp,q(M) as defined in
(11). Then both components of the derivative spaces can be defined as

∂xSp,q(M) = span
{

∂

∂x
ϕi(x, y)

}n

i=1

(16)

∂ySp,q(M) = span
{

∂

∂y
ϕi(x, y)

}n

i=1

. (17)

We make the following observation about the derivative spaces of Definition
5.

Proposition 2. Let M be an arbitrary box mesh with multiplicities and
Sp,q(M) be a spline space over M. Then we obtain

∂xSp,q(M) ⊆ Sp−1,q(M) (18)
∂ySp,q(M) ⊆ Sp,q−1(M). (19)

Proof. For a given ϕ ∈ Sp,q(M), under the x-derivative operation, the poly-
nomial degree is reduced by one, i.e. ∂ϕ

∂x |F ∈ Pp−1,q, and the continuity
across vertical directions are also reduce by one, i.e. ∂ϕ

∂x |EV
∈ Ck(EV ), where
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(a) Mesh description of Sp,q
k,l (M) with

p = 2, q = 2, k = 1, l = 1
#F = 106, #V = 115
#EH = 110, #EV = 110
dim(Sp,q

k,l ) = 94 according to (15)

(b) Mesh description of Sp,q
k,l (M) with

p = 1, q = 2, k = 0, l = 1
#F = 106, #V = 115
#EH = 110, #EV = 110
dim(Sp,q

k,l ) = 96 according to (15)

Figure 3: Derivative spaces: A counter example: On this box mesh, It is
shown that the derivative space is not the space of all polynomials of one
less degree and continuity: ∂xSp,qk,l (M) �= Sp−1,q

k−1,l (M) since dim(Sp−1,q
k−1,l (M)) >

dim(Sp,qk,l (M)). The continuity colours are derived from the edge multiplici-
ties which are the same for both figures.

k(EV ) = p − 1 − µ(EV ) with the edge multiplicity µ(EV ). While the con-
tinuity across horizontal edges remain unchanged. Hence ∂ϕ

∂x ∈ Sp−1,q(M).
The proof of (19) is analoge.

Proposition 3. Let M be a tensor mesh with uniform multiplicities, i.e.
µ(EV ) = p − k, ∀EV and µ(EH) = q − l, ∀EH with (k, l) being global
continuities in each direction. Then

∂xSp,qk,l (M) = Sp−1,q
k−1,l (M) (20)

Proof. See [8] for the proof.

The results of Proposition 3 does not hold for general box meshes. For
a counter example see Figure 3, where we present an example to show this
case on a given box mesh.
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4 The spline complex over box meshes

We note that the results of this section will hold true for any properly defined
spline spaces over box meshes. We consider the dimensionality argument ap-
proach to prove the compatibility in the spline spaces, where the dimensional
formula’s of Mourrain [27] for box meshes is used as a main tool. Thus its
become a requirement that the spline spaces should span the full space of
piecewise smooth polynomials as given by (14).

Theorem 2. Let M be a given box mesh with multiplicities and Sp+1,q+1(M)
be a spline space as defined in (11). If the homology term Hp+1,q+1(M) = 0,
then the spline spaces X0

h, X
1
h and X2

h form a De Rham complex and the
following sequence is exact

R → X0
h

rot−−→ X1
h

div−−→ X2
h → 0 (21)

where

X0
h = Sp+1,q+1(M)

X1
h = Sp+1,q(M)× Sp,q+1(M)

X2
h = Sp,q(M).

Proof. The proof follows the same structure as outlined by Buffa el al. [10].
To prove (21), we need to show the following:

R = ker(rot) (22)
im(rot) = ker(div) (23)
im(div) = X2

h, (24)

where rot(ϕ) = [∂yϕ,−∂xϕ]
T and div(u) = ∂xu1 + ∂yu2.

The proof of (22) is straightforward. We observe that

ϕ ∈ X0
h : rot(ϕ) = [0, 0]T ⇔ ϕ = c ∈ R.

Hence R = ker(rot).

To prove (23), we first note that

im(rot) ⊆ ker(div) since ∀ϕ ∈ X0
h ⇒ div(rot(ϕ)) = 0.

While to show im(rot) ⊇ ker(div), assume div(u) = 0. Then there exists
an ϕ ∈ X0

h such that u = rot(ϕ) and ϕ is given as

ϕ(x, y) = −
∫ x

0
u2(t, 0) dt+

∫ y

0
u1(x, t) dt.
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The proof of (24) is based on dimensionality argument of the spline
spaces. First using Proposition 2 we obtain im(div) ⊆ X2

h. Now to establish
equality we need to show that the dimensions of both spaces are equal, i.e.,

dim(im(div)) = dim(X1
h)− dim(ker(div))

= dim(X1
h)− dim(im(rot))

= dim(X1
h)− dim(X0

h) + dim(ker(rot))
= dim(X1

h)− dim(X0
h) + 1. (25)

After assuming the uniform continuity over the mesh M we obtain from
(15):

dim(Sp+1,q+1
k+1,l+1 ) = (p+ 2)(q + 2)F − (p+ 2)(l + 2)EH − (q + 2)(k + 2)EV + (k + 2)(l + 2)V

dim(Sp+1,q
k+1,l ) = (p+ 2)(q + 1)F − (p+ 2)(l + 1)EH − (q + 1)(k + 2)EV + (k + 2)(l + 1)V

dim(Sp,q+1
k,l+1 ) = (p+ 1)(q + 2)F − (p+ 1)(l + 2)EH − (q + 2)(k + 1)EV + (k + 1)(l + 2)V

dim(Sp,q
k,l ) = (p+ 1)(q + 1)F − (p+ 1)(l + 1)EH − (q + 1)(k + 1)EV + (k + 1)(l + 1)V.

Using (25), the problem reduce to show only

dim(X2
h) = dim(X1

h)− dim(X0
h) + 1

dim(Sp,qk,l ) = dim(Sp+1,q
k+1,l ) + dim(Sp,q+1

k,l+1 )− dim(Sp+1,q+1
k+1,l+1 ) + 1

which can be done once we realize that the Euler characteristic of a planar
graph is 1, i.e.

F − EV − EH + V = 1.

Note that the assumption on the uniform continuity used here is not required
as it is possible to obtain the same conclusion by using (14) in (25).

The main aim of the paper is to show the use of locally refined div-
compatible spline spaces in mixed FE discretization to solve the incom-
pressible flow problems. Thus we now present the extension of a De Rhams
complex result of Theorem 2 after imposing the boundary conditions on
the velocity field. We consider two main cases of imposing the boundary
conditions.

4.1 No penetration boundary conditions

The No penetration boundary condition on the velocity is defined by u·n = 0
on the domain boundary. In order to produce an exact De Rham complex,
we need to impose corresponding boundary conditions for the other spaces.

Theorem 3. Let M be a given box mesh with multiplicities and Sp+1,q+1(M)
be a spline space as defined in (11). If the homology term Hp+1,q+1(M) = 0,
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then the spline spaces Y 0
h , Y

1
h and Y 2

h form a De Rham complex and the
following sequence is exact

0 → Y 0
h

rot−−→ Y 1
h

div−−→ Y 2
h

∫
−→ 0 (26)

where

Y 0
h = {ϕ ∈ Sp+1,q+1(M) : ϕ = 0 on Γ}

Y 1
h = {u ∈ Sp+1,q(M)× Sp,q+1(M) : u · n = 0 on Γ}

Y 2
h = {p ∈ Sp,q(M) :

∫
Ω p = 0}.

Here Γ is the boundary of our domain and n is the outward pointing unit
normal.

Proof. The proof follows the main structure of Theorem 2. The main dif-
ference in the proof is to show that im(div) = Y 2

h . For this, we need to
introduce the exterior edges and vertices along the boundary of our domain
to account for the lost degrees of freedom when imposing the constraints.
Let EE

H , EE
V , V

E
H and V E

V denote the number of horizontal edges (at the
top/bottom of our domain), vertical edges (left/right), horizontal vertices
(top/bottom) and vertical vertices (left/right), respectively. Here, we do
not count the four corner vertices among V E

V and V E
H as these do not con-

tribute to inter-element regularity. Then we obtain

dim(Y 0
h ) = dim(Sp+1,q+1

k+1,l+1 ) − (p+ 2)EE
H − (q + 2)EE

V + (k + 2)V E
H + (l + 2)V E

V +4

dim(Y 1,1
h ) = dim(Sp+1,q

k+1,l ) − (q + 1)EE
V + (l + 1)V E

V

dim(Y 1,2
h ) = dim(Sp,q+1

k,l+1 ) − (p+ 1)EE
H + (k + 1)V E

H

dim(Y 2
h ) = dim(Sp,q

k,l ) −1.

The term +4 in the first line is due to the four corners being constrained
twice in the four terms prior to this. Realizing that dim(ker(rot)) = 0, due
to the boundary conditions, we have to show the dimension equality

dim(Y 2
h ) = dim(Y 1

h )− dim(Y 0
h ).

Here we use the fact that splitting a boundary curve into edges and vertices,
we have the formula: EE

H−V E
H = 1, which is enough to prove the dimensions

match.

4.2 No slip boundary conditions

The No slip boundary condition on the velocity field is defined by u = 0 on
the boundary. Again, we will need to provide corresponding restraints on the
accompanying spaces (pressure and potential) to make the spline complex
exact.
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Theorem 4. Let M be a given box mesh with multiplicities and Sp+1,q+1(M)
be a spline space as defined in (11). If the homology term Hp+1,q+1(M) = 0,
then the spline spaces Z0

h, Z
1
h and Z2

h form a De Rham complex and the
following sequence is exact

0 → Z0
h

rot−−→ Z1
h

div−−→ Z2
h

∫
−→ 0 (27)

where

Z0
h = {ϕ ∈ Sp+1,q+1(M) : ϕ = 0 ∧ ∂ϕ

∂n = 0 on Γ}
Z1
h = {u ∈ Sp+1,q(M)× Sp,q+1(M) : u = 0 on Γ}

Z2
h = {p ∈ Sp,q(M) :

∫
Ω p = 0 ∧ p(xi) = 0 , i = {1...4}}

and M is a box mesh with multiplicities. Here Γ is the boundary of our
domain and n is the outward pointing unit normal while xi are the four
corner points.

Proof. The proof here follows a similar structure of the dimensionality ar-
gument as above and we obtain

dim(Z0
h) = dim(Sp+1,q+1

k+1,l+1 ) − 2(p+ 2)EE
H − 2(q + 2)EE

V + 2(k + 2)V E
H + 2(l + 2)V E

V +16

dim(Z1,1
h ) = dim(Sp+1,q

k+1,l ) − (p+ 2)EE
H − qEE

V + (k + 2)V E
H + lV E

V +4

dim(Z1,2
h ) = dim(Sp,q+1

k,l+1 ) − (p+ 1)EE
H − (q + 2)EE

V + (k + 1)V E
H + (l + 2)V E

V +4

dim(Z2
h) = dim(Sp,q

k,l ) −5

To impose both the function value, and its normal derivative, we count the
4 corners and their associated normals twice and hence we need to add 16
to compensate. Again, we have that dim(ker(rot)) = 0, and the dimension
equality

dim(Z2
h) = dim(Z1

h)− dim(Z0
h),

which can be verify by standard arithmetics.
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Figure 4: All quadratic basis functions generated by the knot Ξ =
[0, 0, 0, 1, 2, 3, 3, 4, 4, 4]. Each individual basis function can be described us-
ing a local knot vector of lenght 4.

5 LR-splines

In this section we will show how to construct a spline basis. We first in-
troduce the traditional tensor product B-splines as defined by the Cox-de
Boor recursion formula, and then continue by presenting locally refined (LR)
B-splines. While these allow for quite general meshes, our focus will be the
subclass arising from the refinement scheme and our adaptive solvers. These
are denoted “structured mesh refinement” and is discussed in the last part
of this section.

5.1 Univariate B-splines

Consider a knot vector of non-decreasing knots {xi}n+p+1
i=1 . By elementary

spline theory, we can construct a basis on the domain [xp+1, xn+1] by piece-
wise smooth polynomials using the Cox-de Boor recursion formula

Ni,p(x) =
x− xi

xi+p − xi
Ni,p−1(x) +

xi+p+1 − x

xi+p+1 − xi+1
Ni−1,p−1(x) (28)

Ni,0(x) =

{
1 if xi ≤ x < xi+1

0 else

where, by slight abuse of notation, we define that 0
0 := 0. It is customary

(but not required) that the knot vector is open, that is the first p+1 entires
are equal as well as the last p + 1 entires are equal. In Figure 4 we show
an example of a basis constructed on a uniform open knot vector. We will
in the following refer to the basis functions Ni,p(x) as B-splines. The knot
vector holds all the information of the basis constructed. In particular, the
following is true

• the B-splines Ni are polynomial and C∞ in between the knots
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• the B-splines are Cp−m at the knots, where m is the knot multiplicity

• each B-spline is dependent on exactly p+ 2 knots.

It is the last point, which will allow us to define a local knot vector cor-
responding to each B-spline, and this observation will be utilized below to
introduce LR B-splines.

Definition 6. A bivariate B-spline B(x, y) of bi-degree (p, q) is a separable
function B : R2 → R

BΞH ,ΞV (x, y) = NΞH (x)NΞV (y) (29)

defined by the nondecreasing local knot vectors ΞH ∈ Rp+2 and ΞV ∈ Rq+2,
where NΞH (x) and NΞV (y) are univariate B-spline functions defined by the
Cox-de Boor recursion formula (28).

We will often just denote a single B-spline by Bi where it is understood
that the local knot vectors ΞH and ΞV are constructed using the refinement
algorithm below.

5.2 Refinement of B-splines

At the core of the local refinement, i.e. knot insertion, rests the fact that a
single coarse B-spline may be described using a linear combination of two
finer B-splines, their relation given by

NΞ(x) = α1NΞ1(x) + α2NΞ2(x), (30)

where

α1 =

{
1, xp+1 ≤ x̂ ≤ xp+2

x̂−x1
xp+1−x1

, x1 ≤ x̂ ≤ xp+1

(31)

α2 =

{
xp+2−x̂
xp+2−x2

, x2 ≤ x̂ ≤ xp+2

1, x1 ≤ x̂ ≤ x2

and the knot vectors are

Ξ = [x1, x2, ...xi−1, xi, ...xp+1, xp+2]

Ξ1 = [x1, x2, ...xi−1, x̂, xi, ...xp+1 ]

Ξ2 = [ x2, ...xi−1, x̂, xi, ...xp+1, xp+2].

Note that the insertion of the knot x̂ into Ξ yields a knot vector of size
p+ 3, meaning that it is generating two B-splines. These two B-splines are
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Figure 5: Splitting the B-spline Ξ = [0, 1, 2, 3] into two separate B-splines
by inserting the knot 3

2 .

the one being described by the local knot vectors Ξ1 and Ξ2, both of size
p+ 2.

Let us look at an example using this technique. Say we want to insert
x̂ = 3

2 into the B-spline Ξ3 = [0, 1, 2, 3]. This would give us α1 = α2 = 3
4

and the three functions are plotted in Figure 5. If one were to insert the
knot x̂ = 3

2 into the set of B-splines in Figure 4, then this will require
two more functions to be split, namely the function Ξ2 = [0, 0, 1, 2] and
Ξ4 = [1, 2, 3, 3]. All the three splitting shown in Figure 5–6 will then take
place. This insertion will replace three old B-splines with four new linearly
independent B-splines (see the knot vectors in the figure legend to identify
the four distinctive new B-splines).

(a) Inserting x = 3
2

in Ξ = (0, 0, 1, 2). (b) Inserting x = 3
2

in Ξ = (1, 2, 3, 3).

Figure 6: Displaying function splitting in the case that x̂ is not at the
knotvector center.

Bivariate functions are refined in one parametric direction at a time.
Using the fact that they are separable we are able to reuse (30) to split one
direction and reassemble the bivariate functions after. This can be done as
follows
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(a) Line traversing
B

(b) Line traversing
B

(c) Line not travers-
ing B

Figure 7: Traversing the support of a basis function.

BΞ(x, y) = BΞH (x)BΞV (y)

=
(
α1BΞH

1
(x) + α2BΞH

2
(x)

)
BΞV (y) (32)

= α1BΞ1
(x, y) + α2BΞ2

(x, y).

5.3 Local refinement algorithm

When talking about LR B-splines, we usually distinguish between the mesh
M and the set of B-splines S. The mesh is limited to an LR mesh (see
Definition 3) and is represented by the set of all lines; vertical and horizontal.
The function space S is represented by the B-splines themselves, which are
uniquely determined by their local knot vectors. The refinement algorithm
is the interplay in between these two entities and is categorized by two
operations: traversing and splitting.

Definition 7. A line in the mesh M is said to traverse a B-spline Bi if it
passes through its support, and all of its support.

See Figure 7 for examples on traversing meshlines.

Definition 8. A knot-line is said to exist in a B-spline BΞH ,ΞV if its (con-
stant) knot value is represented in ΞH for vertical lines or ΞV for horizontal
lines.

Definition 9. A B-spline Bi can be split at the knot x (or y) by the
application of (32) producing two new B-splines B1 and B2. When inserting
the two new B-splines into the existing space S, we either update their
control points and weights (if any) if they exist already, or create a new
entry if they do not exist.

Note that the B-splines are uniquely determined by their local knot vec-
tor, and this is used to identify equal (existing) B-splines. Moreover we
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note the earlier remark on the weights and the control points. The first is
a simple multiplication of the B-spline by some scalar γ to maintain the
partition of unity, while the second are the control points, often used for
the representation of geometric mappings. The weights are optional, in the
sense that they offer nothing in terms of the span of the functions (they do
however affect numerical stability). The control points are optional if we
are not considering a geometric mapping, but rather is only working in the
parametric space.

Algorithm 6 Refinement algorithm
1: Insert new line E
2: for every B-spline Bi ∈ S do
3: if E traverse Bi and E does not exist in Bi then
4: split Bi

5: end if
6: end for
7: for every newly created B-spline Bj from line 4 or 10 do
8: for every existing line E ∈ M do
9: if E traverse Bj and E does not exist in Bj then

10: split Bj

11: end if
12: end for
13: end for

We have in this section deliberately simplified several points in the
presentation. For a more technical introduction (including details on the
weights and control points) we refer the reader to [13] or [23]. For our
discussion in this paper however, it is enough to consider the functions as
defined in the parametric domain and without weights.

A motivational factor for the use of LR B-splines with spline complexes
in Section 4 is their direct construction on the mesh. The integration mesh is
the same as the LR mesh where the edge multiplicities are used to construct
the reduced continuity lines. For implementation purposes this allows the
user to work on a common mesh M, and construct several sets of basis
functions Sp+1,q+1(M), Sp+1,q(M), Sp,q+1(M) and Sp,q(M). This not only
speeds up computation, but also reduce implementation complexity.

5.4 The LR B-spline complex

We will in this section present the structured mesh refinement as introduced
in [23]. It has been shown to provide optimal convergence rates under adap-
tive refinement for a number of problems containing singularities or rough
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3

Figure 8: Three iterations of an example B-spline refinement given in def-
inition 10. Notice that we at each iteration halve the largest supported
elements. A selection of LR B-splines over the mesh from iteration 3 is
depicted in Figure 9

right-hand sides and we consider it a good choice for our local refinement
strategy.

Definition 10. A B-spline refinement on an LR spline L = {M,S} is
a refinement scheme where one B-spline B ∈ S dictates a set of meshline
insertions such that the largest knotspan of the local knot vector in B is
halved.

See Figure 8 for an example B-spline refinement.

Definition 11. A Structured LR Mesh of degree (p, q) is a box mesh
resulting from a series of B-spline refinements on an LR spline.

We note that the structured LR B-splines and Hierarchical refined B-
splines may produce similar meshes. However, as shown in [22] they are in
general not identical, and they produce finite element matrices with different
sparsity patterns and conditioning numbers.

Proposition 4. Any structured LR mesh have homology term Hp,q(M)
equal to zero.

Proof. Since every B-spline knot in the local knot vector is appearing in the
mesh, and the knot vectors are composed of p+2 and q+2 knots respectively,
we know that each B-spline will span at least (p + 1) × (q + 1) elements.
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(a) (b)

Figure 9: Some example quadratic LR B-splines over the LR mesh from
Figure 8c

Every new line inserted into the mesh will span this length and hence the
homology term never increases. Since our initial mesh: a tensorial mesh,
have H = 0 the proof is complete.

Proposition 5. A structured LR mesh of degree (p, q) is also a structured
mesh of all degrees (p̂, q̂), where p̂ ≤ p and q̂ ≤ q.

Proof. We here note that the definition of structured LR mesh is linked to
the polynomial degree of the basis constructed on it. For tensor products,
we have that every lower order function is completely contained in the sup-
port of a function of larger polynomial degree; in both directions. Due to
Algorithm 1, when a larger B-spline split, we note that the lower order func-
tions will also be split. Any B-spline of bi-degree (p, q) is thus guaranteed
to contain enough functions of lower degree to span it’s own support.

The contrary is not the case. For a structured mesh of bi-degree (p, q),
it is not guaranteed that it will be for degree (p+ 1, q) or (p, q + 1).

We now are able to construct our spline complex which we will use to
discretize the Stokes equations. Consider the four LR splines given on the
same structured mesh M of degree (p+ 1, q + 1)

L0 = {M,Sp+1,q+1}
L1,1 = {M,Sp+1,q}
L1,2 = {M,Sp,q+1}
L2 = {M,Sp,q}.

In order to remain a structured mesh and satisfy a complete De Rham
complex, we let the highest degree dictate the B-spline refinements which
will drive our adaptive solvers. Where the velocity be given on L1,1×L1,2 and
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the pressure be given on L2. Setting the LR B-splines S as the compatible
spaces, we have

X0
h = Sp+1,q+1

X1
h = Sp+1,q × Sp,q+1

X2
h = Sp,q

without boundary conditions. Replace X with Y or Z for no-penetration or
no-slip boundary conditions, respectively. In Figure 10 we show an example
structured LR mesh with varying continuities. Figure 11 shows the corre-
sponding LR B-splines basis representation constructed on the same mesh.
By constructing them of different polynomial degrees, we ensure they form
a complete De Rham complex.
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(a) Box mesh M with multiplicities (b) Mesh for S3,3(M)

(c) Mesh for S3,2(M) (d) Mesh for S2,3(M)

(e) Mesh for S2,2(M)

Figure 10: Example spline spaces over a box mesh M with multiplicities.
Note that it is the same mesh which is used for all figures. The continuity
is derived from the polynomial degree of the basis as well as the knotline
multiplicity. To construct the spline complex we let X0

h be given over (b),
X1

h be given over (c) and (d), while X2
h is defined over (e). When solving

the Stokes problem, we let the velocity uh ∈ X1
h and the pressure ph ∈ X2

h.
The basis functions of X0

h is used for refinement purposes to ensure that the
De Rham diagram is exact and all meshes are legal.
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(a) LR B-spline basis S3,3

(b) LR B-spline basis S3,2 (c) LR B-spline basis S2,3

(d) LR B-spline basis S2,2

Figure 11: Example LR B-spline basis functions over a structured LR mesh
M. The functions are plotted at their Greville abscissa and colored accord-
ing to the following rules: No yellow functions have support outside the
finest elements, no teal functions have support on the largest elements and
the functions represented in red color are the only ones having support on
the largest elements.
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6 Numerical results

In this section we present some numerical results to illustrate the perfor-
mance of compatible LR B-splines discretization for solving the incompress-
ible Stokes problem. The main focus is to show the following:

• Numerical stability for compatible LR B-splines discretization

• Divergence-free computed FE solution

• Efficiency and optimal convergence rate achieved by adaptive analysis.

In the numerical computation we consider three different choices of dis-
crete spaces for the approximation of velocity and pressure fields in the
mixed discretization (3) for Stokes problem. These choices of spline spaces,
i.e,

(
Ṽh, Q̃h

)
, over a general box mesh M in parametric domain Ω̂ are de-

fined as:

Type I : Ṽh := V̂h; Q̃h := Q̂h; (33)
Type II : Ṽh := {div(v) : v ∈ V̂h, v · n|∂Ω = 0}; (34)

Q̃h := {q ∈ Q̂h :

∫
q = 0};

Type III : Ṽh := {div(v) : v ∈ V̂h, v|∂Ω = 0}; and (35)

Q̃h := {q ∈ Q̂h :

∫
q = 0 with q(x̂i) = 0, i = 1, . . . , 4}.

with
V̂h = Sp+1,q

k+1,� × Sp,q+1
k,�+1 and Q̂h = Sp,q

k,� ;

where Sp,q
k,� (M) denotes the two dimensional spline space of degree (p, q) and

continuity (k, �) in both directions, respectively, and n denotes the outward
unit normal to the boundary of Ω̂ and x̂i, i = 1, ..., 4 denote its four corners.
In the numerical results presented in this section we always consider the case
of equal degree approximation in both direction, i.e., p = q.

Error evaluation:

For our model Stokes problem, we distinguish between the velocity and
pressure errors. We compute the error in velocity using the H1 semi-norm
defined by

|u− uh|2H1(Ω) =

∫

Ω
∇ (u− uh) : ∇ (u− uh) dΩ, (36)
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and the pressure error in L2 norm;

‖p− ph‖2L2(Ω) =

∫

Ω
(p− ph)

T · (p− ph)dΩ. (37)

For smooth problems, a div-compatible B-spline discretization is expected
to satisfy:

|u− uh|H1 = O(hs)

‖p− ph‖L2 = O(hs+1) (38)

where s is the lowest polynomial degree in the approximation spaces pair
of (Vh, Qh), i.e., s = min(p, q), for the div-compatible LR discretization of
uh and ph, and h is the radius of smallest circle encompassing the largest
element in our discretization.

For locally refined adaptive meshes, we have a wide range of element sizes
and it becomes misleading to measure the errors in terms of element size. We
then reformulate the relations in (38) in terms of degrees-of-freedom ndof.
By observing that a uniform mesh in two dimensions has ndof = O(h−2), we
state that the optimal rate of convergence, as measured against degrees of
freedom is

|u− uh|H1 = O(n
−s/2
dof )

‖p− ph‖L2 = O(n
−(s+1)/2
dof ). (39)

Whenever the exact solution is available, we define the error estimate ηF
using energy norm at per element (or face) F as

η2F = µ|u− uh|2H1 + ‖p− ph‖2L2 (40)

and an error contribution to each B-spline basis function ηB as

η2B =
∑

F∈supp(B)

η2F . (41)

Marking strategy

The marking strategy, that is, the method of how to choose the basis
functions for refinement in structured mesh refinement is taken from [23],
where once we have the value of estimated error at element level given by
(41) (here elements is the same as face that we denote F), then we sum
the element error on all elements within the support of each basis function.
In the refinement strategies we always choose to refine some percentages of
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(a) Uniform mesh (b) Diagonal refinement (c) Center refinement

(d) Circular refinement (e) Random refinement (f) Mixed continuities

Figure 12: Stability tests on Structured LR meshes: LR meshes used
for evaluation of the inf-sup constant. Note that the refinements (e)-(f)
were computed randomly and as such differ between each simulation and
discretization. The other meshes were computed algorithmically, and only
depend on p.

basis functions which contributed the most error in FEM computation. In
[23], it was demonstrated that for a fixed percentage say β = 5, 10, 20 one
always achieved a proper adaptive refinement process resulting in optimal
convergence rates. For the implementation in this article we always consider
β = 10 of the basis function to refine in each adaptive refinement steps as this
choice doesn’t give over-refinements. In our refinement strategy, we always
refine the LR B-spline basis functions of the potential space Sp+1,q+1(M)
and then the construction of div-compatible LR B-spline spaces follows as
we discussed in Section 5.

6.1 Stability tests of Structured LR meshes

The performance of our methodology is based on the notion of Ladyženskaja-
Babuška-Brezzi(LBB) condition, or the discrete inf-sup condition, cf. (4).
The different choices of discrete spaces (Qh, Vh) as Type I, II, and III as
defined above is considered on a set of structured LR meshes as shown in
Figure 12. These meshes are constructed via some particular refinements
(see Figures 12(a)-(d)) or randomly generated meshes (see Figures 12(e)-
(f)), and represent the case of different compatible spline spaces of degrees
p. Tables 1-3 show the computed values of inf-sup constant cis with different
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p Uniform Diagonal Center Circle Random Mixed
1 0.9370 0.6535 0.6837 0.6802 0.5876 0.6606
2 0.9375 0.6098 0.6204 0.6459 0.6278 0.5873
3 0.8818 0.5378 0.8818 0.5295 0.5171 0.5401

Table 1: Stability tests on Structured LR meshes: : Computed inf-sup
constant cis for Type I discretization without boundary conditions.

p Uniform Diagonal Center Circle Random Mixed
1 0.9306 0.6534 0.6837 0.6802 0.5842 0.6222
2 0.8912 0.6097 0.6204 0.6458 0.6117 0.5680
3 0.8240 0.5378 0.8240 0.5293 0.5810 0.5524

Table 2: Stability tests on Structured LR meshes: : Computed inf-
sup constant cis for Type II discretization with no penetration boundary
conditions u · n = 0.

choices of discrete spaces of Type I-III, respectively. It is confirmed from
our computation in Tables 1- 3 that the inf-sup constant cis > 0 and has
large values.

p Uniform Diagonal Center Circle Random Mixed
1 0.4591 0.4243 0.4592 0.4108 0.3540 0.3481
2 0.4908 0.4534 0.4908 0.4761 0.4447 0.2338
3 0.4833 0.4561 0.4833 0.4708 0.1387 0.3095

Table 3: Stability tests on Structured LR meshes: : Computed inf-
sup constant cis for Type III discretization with no slip boundary conditions
u = 0.
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(a) Exact velocity x-
component

(b) Exact velocity y-
component

(c) Exact pressure

Figure 13: Stokes problem with smooth solution: The exact solution
of the Stokes problem given in (42).

(a) S4,3(M) for velocity x-
component

(b) S3,4(M) for velocity y-
component

(c) S3,3(M) for pressure

Figure 14: Stokes problem with smooth solution: Compatible LR B-
splines approximation spaces for the velocity and pressure fields on the ir-
regular LR mesh M with mixed continuities using LR B-splines.

(a) Computed velocity x-
component

(b) Computed velocity y-
component

(c) Divergence of computed
velocity

Figure 15: Stokes problem with smooth solution: Finite element solu-
tion of Stokes problem with smooth solution using LR B-spline compatible
spaces on a (randomly generated) irregular LR mesh, with no-slip bound-
ary conditions u = 0. The LR B-spline compatible discretization shows
pointwise divergence free solution up to machine precision of O(10−14).
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6.2 Divergence-free computed FE solution

Example 1: Stokes problem with smooth solution

We consider an example of Stokes problem with smooth solution on a
square domain Ω = (0, 1)2 with no-slip boundary conditions as presented in
Buffa et al. [8]. The viscosity term is taken as µ = 1 and f is constructed
based on the exact solution given as:

u =

[
2ex(x− 1)2x2(y2 − y)(2y − 1)

−ex(x− 1)x(−2 + x(x+ 3))(y − 1)2y2

]

p = (−424 + 156e+ (y2 − y)(−456 + ex(456 + x2(228− 5(y2 − y)) (42)
+2x(−228 + (y2 − y)) + 2x3(−36 + (y2 − y)) + x4(12 + (y2 − y)))).

These exact solutions are depicted in Figure 13. We consider the Type III
discretization to solve this problem with the choice of compatible LR B-
spline spaces defined on irregular randomly generated LR mesh in Figure
14. The computed FE solution using these compatible LR B-spline spaces
are shown in Figure 15. It can be observe from the divergence of com-
puted velocity field shown in Figure 15(c) that the LR B-spline compatible
discretization gives the pointwise divergence free solution up to machine
precision of O(10−14).

6.3 Optimal convergence rates

For the Type III choice of discrete spaces with tensor product B-splines, it
has been pointed out in [8] that the error in H1-seminorm of the velocity will
be of optimal order, i.e., O(hp), whereas the error in L2-norm of pressure is
limited to linear convergence, regardless the polynomial degree of approxi-
mation spaces used. The results in Figure 16 shows the same behavior in our
FE computations for compatible B-splines spaces with uniform h-refinement
for Stokes problem with smooth solution. The authors in [8] also proposed
two solutions based on either removal of corner degrees of freedom or using
a particular case of T-splines, and their results show that both choices gave
an optimal rate of convergence, i.e. O(hp+1), for the pressure.

In our computation we found that the choice of four constraints on dis-
crete pressure space Qh in Type III discrete space setting results in singu-
larities in the computed pressure solution and that is the main reason for
linear rate of convergence in pressure error, regardless the degree of approx-
imations. In literature, we have seen use of adaptive refinement algorithms
is very promising to resolve these kind of singularities in the computed FE
solution and providing an optimal rate of convergence. Here we consider
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Figure 16: Stokes problem with smooth solution: Convergence rates for
compatible spline discretization with the choice of Type III discrete spaces.
The error in L2-norm of pressure shows only linear convergence rates, re-
gardless of polynomial degree of discretization, while the error in velocity
achieve optimal rates.

to perform adaptive refinement using compatible LR B-spline discretization
with Type III space setting and the exact energy error estimate is used as
an refinement indicator. The error plots results presented in Figure 17 show
that an optimal rate of convergence is achieved via adaptive refinements, i.e.,
O(hp+1) for L2-norm of the pressure and O(hp) for the energy norm of the
solution. The LR meshes obtained at different steps of adaptive refinements
are given in Figure 18.

The singularities introduced here are however artificial. Observe that
the exact solution (42) does not have a pressure which vanish at the corners.
Strongly enforcing the pressure to the correct value will restore the optimal
convergence rates, but this is not possible to do in general when the pressure
solution is not known. The typical setup for no-slip (or prescribed slip)
problems from a physical point of view is to specify the velocity field at the
boundary and not know anything of the pressure. See Section 6.4 for an
example of this type of problem setup. When the pressure in the corners is
not known we will in this paper set it (wrongly) to zero.
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(a) Convergence in energy norm for p = 2 (b) Convergence in ph for p = 2

(c) Convergence in energy norm for p = 3 (d) Convergence in ph for p = 3

(e) Convergence in energy norm for p = 4 (f) Convergence in ph for p = 4

Figure 17: Stokes problem with smooth solution: Convergence rates
for adaptive compatible LR spline discretization with the choice of Type III
discrete spaces based on exact energy error. The error in energy norm and
error in L2-norm of pressure shows optimal rate of convergence.
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(a) 3rd iteration for p = 2 (b) 5th iteration for p = 2 (c) 9th iteration for p = 2

(d) 3rd iteration for p = 3 (e) 5th iteration for p = 3 (f) 9th iteration for p = 3

(g) 3rd iteration for p = 4 (h) 5th iteration for p = 4 (i) 9th iteration for p = 4

Figure 18: Stokes problem with smooth solution: The LR meshes ob-
tained via adaptive refinements using compatible LR B-splines with Type
III discrete setting. As the polynomial degree increases, the discrepancy be-
tween pressure error and velocity error for uniform meshes increases. Thus,
for higher polynomial degrees the error in the pressure is dominant, resulting
in more refinement at the corners.



Numerical results 313

6.4 The benchmark problem: Lid-driven cavity flow

In this section, we investigate the effectiveness of our methodology for a
benchmark case of incompressible flows: two dimensional lid driven cavity
problem. The problem setup with a square domain Ω = (0, 1)2 with fixed
no-slip boundary conditions on the left, right and bottom side of the domain,
with a prescribed velocity u = [1, 0] in positive horizontal direction (i.e. to
the right) on the top edge is illustrated in Figure 19. The viscosity term is
taken as µ = 1 and the forcing f is defined as zero. The problem setup is
known to induce failures in unstable formulations due to the pressure singu-
larities at both top corners of the domain, while in some particular region of
interests around both lower corners a infinite series of recirculation regions
appears.

The exact solution for the lid driven cavity problem is not known, so
we decide to locally refined the LR mesh at all the four corners by hand.
The local refinement at the two corners at the top is introduced to suppress
the pollution effect of the singularities in the pressure field at those points.
The refinement at the two lower corners are introduced to resolve the recir-
culation zone with high accuracy. The first four hand made locally refined
LR meshes are given in Figure 21. To solve the lid driven cavity problem,
we consider the Type III pair of discrete approximation spaces on these LR
meshes where a no-slip condition is imposed on all sides of the domain for
velocity field, with the exception of prescribed velocity at the top which is
enforced strongly; and zero average pressure with additional four constraints
to force the pressure value to zero at the corner. The computed FE solu-
tions, i.e., the component of velocity and pressure with the divergence of
computed velocity field, i.e., div(uh) are shown in Figure 22. The computed
solution display pointwise divergence-free solution (up to machine precision)
with no spurious oscillations in Figure 22, whereas the velocity profile across
the center (horizontal and vertical direction) are shown in Figure 22.

The streamlines plots of the computed velocity field uh are shown in
Figure 23a. Due to the presence of local refinement at the bottom corners
we observe three moffat eddies in our computed FE solution, even for rel-
atively low degrees of freedom. In our FE-discretization used to compute
the streamline plots displayed in Figure 23, we consider (p, q) = (1, 1) and
ndof = 3649 for the pressure field, and (p, q) = (1, 2) × (2, 1), ndof = 7332
for the velocity fields.

To illustrate the performance our methodology for the lid cavity driven
problem, we consider to compare the curl of our computed FE solution at
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Figure 19: Lid-driven cavity: Problem setup for the lid-driven cavity flow.

the point x = (1, 0.95) to available results in literature. The value of the
curl of our computed solution at (1, 0.95) using the compatible LR B-spline
discretization with uniform and adaptive refinement, along with two avail-
able reference solutions in literature, see [18],[7], are shown in Tables 4–7
for Type III pair of discrete spaces of degrees, p = 1, 2, 3, 4, respectively.
Since our formulation in this paper are based on strong enforcement of the
boundary conditions and in Type III pairing of spaces we enforced the pres-
sure at the top corner points to zero that causes the singularities in the
solution. This degrades the convergence in the pressure error and hence
produce worse result for uniform refinement than those tabulated in [18].
However, our adaptive methodology using local refinement is able to com-
pensate after some iterations. From the results presented in Tables 4–7 the
convergence in adaptive refinement can be noticed and as the value of p
increases the curl value of the computed solution quickly approach to the
reference value as given by using Pseduspectral method of [7]. While if we
compare our adaptive results with the uniform refinement results of Evans
[18] then the efficiency achieved by our adaptive methodology in term of
degrees of freedom is clearly noticeable. The difference in number of degrees
of freedom for the case of uniform refinement between the present study and
the one reported in [18] is due to strong and weak enforcement of of the
Dirichlet boundary conditions, respectively.
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Present method hmin hmax ndof ω

Uniform B-spline 1/16 1/16 764 -14.6690
Uniform B-spline 1/32 1/32 3 068 7.6529
Uniform B-spline 1/64 1/64 12 284 15.2317
Adaptive step #1 1/32 1/16 1 676 7.6529
Adaptive step #2 1/64 1/16 2 588 15.2310
Adaptive step #3 1/128 1/16 3 500 20.7713
Adaptive step #4 1/256 1/16 4 412 22.5232
Adaptive step #5 1/512 1/16 5 324 23.2820
Adaptive step #6 1/1024 1/16 6 236 23.6602
Adaptive step #7 1/2048 1/16 7 148 23.8492
Adaptive step #8 1/4096 1/16 8 060 23.9436

Spline disct.(Ref. [18]) 1/64 1/64 12 804 19.0446
Spline disct.(Ref. [18]) 1/256 1/256 198 660 25.3224

Pseudospectral (Ref. [7]) - - - 27.2790

Table 4: Lid-driven cavity flow: Computed values for ω = curl(uh) at
the point x = (1, 0.95) for p = 1.

Present method hmin hmax ndof ω

Uniform B-spline 1/16 1/16 863 -0.2911
Uniform B-spline 1/32 1/32 3 263 17.8810
Uniform B-spline 1/64 1/64 12 671 23.5541
Adaptive step #1 1/32 1/16 1 775 17.8810
Adaptive step #2 1/64 1/16 2 687 23.5540
Adaptive step #3 1/128 1/16 3 599 25.3342
Adaptive step #4 1/256 1/16 4 511 26.3943
Adaptive step #5 1/512 1/16 5 423 26.9274
Adaptive step #6 1/1024 1/16 6 335 27.1947
Adaptive step #7 1/2048 1/16 7 247 27.3283
Adaptive step #8 1/4096 1/16 8 159 27.3951

Spline disct.(Ref. [18]) 1/64 1/64 13 199 32.8197
Spline disct.(Ref. [18]) 1/256 1/256 200 207 27.3440

Pseudospectral (Ref. [7]) - - - 27.2790

Table 5: Lid-driven cavity flow: Computed values for ω = curl(uh) at
the point x = (1, 0.95) for p = 2.
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Present method hmin hmax ndof ω

Uniform B-spline 1/16 1/16 968 10.9593
Uniform B-spline 1/32 1/32 3 464 22.1396
Uniform B-spline 1/64 1/64 13 064 24.6936
Adaptive step #1 1/32 1/16 1 880 22.1396
Adaptive step #2 1/64 1/16 2 792 24.6937
Adaptive step #3 1/128 1/16 3 704 25.7774
Adaptive step #4 1/256 1/16 4 616 26.5183
Adaptive step #5 1/512 1/16 5 528 26.9092
Adaptive step #6 1/1024 1/16 6 440 27.1048
Adaptive step #7 1/2048 1/16 7 352 27.2025
Adaptive step #8 1/4096 1/16 8 264 27.2514

Spline disct.(Ref. [18]) 1/64 1/64 13 600 29.9294
Spline disct.(Ref. [18]) 1/256 1/256 201 760 27.5264

Pseudospectral (Ref. [7]) - - - 27.2790

Table 6: Lid-driven cavity flow: Computed values for ω = curl(uh) at
the point x = (1, 0.95) for p = 3.

Present method hmin hmax ndof ω

Uniform B-spline 1/16 1/16 1 079 17.9896
Uniform B-spline 1/32 1/32 3 671 22.1748
Uniform B-spline 1/64 1/64 13 463 23.7481
Adaptive step #1 1/32 1/16 1 991 22.1745
Adaptive step #2 1/64 1/16 2 903 23.7487
Adaptive step #3 1/128 1/16 3 815 26.5231
Adaptive step #4 1/256 1/16 4 727 26.6432
Adaptive step #5 1/512 1/16 5 639 26.9621
Adaptive step #6 1/1024 1/16 6 551 27.1183
Adaptive step #7 1/2048 1/16 7 463 27.1964
Adaptive step #8 1/4096 1/16 8 375 27.2354

Pseudospectral (Ref. [7]) - - - 27.2790

Table 7: Lid-driven cavity flow: Computed values for ω = curl(uh) at
the point x = (1, 0.95) for p = 4.
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(a) First component of the veloc-
ity uh

(b) Second component of the ve-
locity uh

(c) Pressure solution ph (d) div(uh)

Figure 20: Lid-driven cavity flow: FE solution plot of the compute veloc-
ity, pressure as well as the divergence of the computed solution. Integrating
the divergence over the entire domain gives ‖div(uh)‖L2 = 2.0 · 10−11.
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(a) First refinement (b) Second refinement

(c) Third refinement (d) Fourth refinement

Figure 21: Lid-driven cavity flow: The hand-made adaptive mesh refine-
ment used to solve the Lid-driven cavity problem. For each iteration, we
refine every B-spline completely contained within a 6.5 ·2−4−i radius of each
corner.

(a) Values of the first veloc-
ity component at a vertical line
through the center

(b) Values of the second velocity
component at a horizontal line
through the center

Figure 22: Lid-driven cavity flow: Velocity profiles across the center of
the domain.
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(a) Streamlines of solution uh (b) 10x magnify

(c) 100x magnify (d) 1000x magnify

Figure 23: Lid-driven cavity flow: Streamlines of the solution uh. We
achieve pointwise divergent-free solution (up to machine precision) using
Type III discrete spaces. By refining around the corners we observe three
moffatt eddies around the corners, even for relatively low degrees of freedom.
The discretization used shown here is (p, q) = (1, 1) and n = 3649 for the
pressure, and (p, q) = (1, 2)× (2, 1), n = 7332 for the velocity.
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7 Conclusions

The aim of this paper has been to take the first step in this direction by
extending the previous work on div-compatible spaces by Buffa et al. [8, 11]
and Evans [18] to be applicable for finite element analysis using LR B-splines.
Herein, we have developed the methodology for making div-compatible LR
B-spline spaces, i.e. which form complete De Rham complexes. These are
stable, pointwise divergent-free and facilitate local refinement capabilities.
The numerical tests demonstrate significant improvements in accuracy per
degrees of freedom when solving the Stokes problems.

No-slip discretizations are challanging as they require the pressure to
be specified in the corners. These will typically require special treatment
or we will loose convergence properties. We show that it is possible to set
the corner values of the pressure to zero and ”refine away“ any problems
arising from this making it possible to use the strong formulation for no-slip
problems. This methodology is conceptually simple and still produce a com-
patible pointwise divergent-free solution which show optimal convergence in
both pressure and velocity.

We have shown that the properties of compatible space discretization
carry over from tensor product analysis to locally refined meshes.
The authors consider the following topics suited for future work in this field

• Develop a closed expression for the pressure at the four corner points,
only dependent on a prescribed slip u = g on the boundary and the
source term f in the interior.

• Include divergence-conforming mappings to handle realistic physical
domains [8].

• Consider multiple patches or non-rectangular parametric domains for
more complex geometries.

• Enable the use of weakly enforced boundary conditions [18].

• Extend to 3D by the use of the dimensional formula of Pettersen [29].

• Develop suitable error estimates for Stokes and Navier-Stokes flows.

• Investigate the applications of this in electromagnetic differential equa-
tions [10].

• Show that the Hierarchical B-splines also satisfy the dimensional for-
mula [26] and can be applied in the same framework.
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Appendix A

Software

1 Open source

The software used in the preparation of this work has been made publicly
available as open source under GNU public licence v2. It can be downloaded
for free at

https://github.com/VikingScientist/LRsplines.

The primary development language is c++, but a matlab wrapper has also
been developed for convenience and is available at

https://github.com/VikingScientist/MatlabLR.

These two packages contain all software for LR B-spline refinement, evalua-
tion and manipulation. We will here give a very brief introduction on how
the code is structured. For complete technical documentation, we refer to
the website

http://www.lrbsplines.com/

where all details are available.
At the core of the package is the refinement algorithm. We reiterate it

here for reference.

2 Data structures

It is interesting to note that the refinement algorithm above only requires
two primitives: B-splines and Meshlines. The former is characterized by its
local knot vector Ξ and Ψ while the latter by its start- and end position in
the parametric space.
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Algorithm 7 Refinement algorithm
1: Insert new line E
2: for every B-spline Bi ∈ S do
3: if E traverse Bi and E does not exist in Bi then
4: split Bi

5: end if
6: end for
7: for every newly created B-spline Bj from line 4 or 10 do
8: for every existing line E ∈ M do
9: if E traverse Bj and E does not exist in Bj then

10: split Bj

11: end if
12: end for
13: end for

Figure 1: Data structures used to represent LR B-splines
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This is the absolute minimal implementation possible for LR B-splines.
Note that it is possible to derive the polynomial degree from the length of
the local knot vectors, and that it is implicitly defined that the meshlines
have multiplicity 1.

However it is customary to include additional information. We usually
include a scalar weight corresponding to each B-spline to maintain the par-
tition of unity. Moreover, in the case of a mapped geometry, we include
the control points. To allow for reduced continuity, we add the meshline
multiplicity.

This will generate a structure much like this

class BSpline {
vector<double> knot_xi; // local knot vectors
vector<double> knot_psi;
vector<double> controlpoint;// geometric mapping coefficients
double weight; // scalar weights for partition of unity

}

class Meshline {
double start[2]; // starting point in parametric space
double stop[2]; // ending point
int multiplicity; // higher mult. reduces continuity

}

class LRSplineSurface {
vector<Bspline> functions; // all functions in our space
vector<Meshline> lines; // all lines in our mesh

}

Listing : C++ class definitions: a general idea into how the code is built
up. Note that this is not the complete class definition as several containers
are not vector and additional convenience data is often stored, but irrelevant
to the global structure.

which is not far from the actual implementation. The containers used
above are here listed as std::vector, but this is not ideal due to the fact
that the refinement algorithm will quite frequently add or remove B-spline
objects. What is proposed is to create a unique hash code from the B-spline
knot vectors. This will serve as the B-spline signature and make it easy to
check if it exists already, and allows for both fast insertion and removal by
using a Hashset container instead of the vector. The exact nature of the
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hash function is based on heuristics.
When we are using this for finite element analysis, we quickly realize that

it is convenient, although not necessary, to include the class "element" or
knot span. We keep track of which B-splines have support on which element
and will later use this for assembly of system matrices. The element is
defined by its bounding box in the parametric space given by the lower left
and upper right corner.

class Element {
double lower_left[2]; // parametric bounding
double upper_right[2]; // box of this element

vector<Bspline> support; // we keep track of which functions
// have support on all elements

}

Listing : C++ class definitions: a general idea into how the code is built
up. Note that this is not the complete class definition as several containers
are not vector and additional convenience data is often stored, but irrelevant
to the global structure.

The element class may be organized in different ways and it is believed
that an oct-tree type container is advantageous, although at the time of
publishing this is not yet implemented. Oct-tree allows for quick searching
and also allows for fast updating when elements are split in two by new
meshline insertions.

The complete overview of the data structures used is given in Figure 1.
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Moving to 3D: Trivariate LR
B-splines

There is a substantially smaller set of literature on locally refined trivariate
splines than there is on bivariate and several questions remain unanswered.
For instance, the volumetric version of Mourrains dimension formula [27]
has not been generalized to higher dimensions in a peer-reviewed journal.
Nevertheless, the initial formulation of the LR B-splines by Dokken [13]
does include the trivariate extension. Moreover, the data structures above
is created in a "meshless" manner in the sense that topology information is
not stored. This allows for far easier extensions to higher dimension. The
trivariate LR B-splines are implemented in addition to the bivariate and
published as open source in the core library.

We note that the core of the refinement algorithm is rather simple. It
consists of multiple times checking if a line traverse a rectangle. The exten-
sion of this into higher dimensions is straightforward. We let our functions,
i.e. B-splines be defined by three local knot vectors Ξ,Ψ and Z and change
our meshlines to be planar mesh rectangles, now defined by the two cor-
ner points. The beauty of this is that we only need to redefine "traverse"
in algorithm 7 to work with mesh rectangles instead of meshlines. This is
similar to the bivariate case in the sense that a mesh rectangle needs to cut
the support, and all of the support, in order to provoke a splitting of the
B-splines.

What is even more convenient is the fact that most algorithms carry over
little to no changes. In particular the peeling algorithm which continuously
"peels" away B-splines which cannot participate in a linear dependence re-
lation, is only dependent on knowing which functions have support on any
given element. In short, the most fundamental changes from an algorithmic
point of view is the pre- and post-processing. That is retrieval of boundaries
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(a) Mesh rectangle traversing B (b) Mesh rectangle not traversing B

Figure 1: Traversing the support of a basis function in 3D. The refinement
algorithm simply checks the boxed support of the basis functions, and if
these are traversed by planar mesh rectangles.

(a) Viewed from inside the cube (b) Viewed from outside the cube

Figure 2: 3D Diagonal refinement of a cube using bicubic basis functions.
Here sliced at the plane x = y to show the interior refinement. The actual
geometry is the full cube.

for boundary conditions or visualizations.



Appendix C

On the potential function in
compatible space discretization

In Paper IV, we construct compatible spaces and show that they form a
complete de Rham complex. We collect these results in Theorem 2, 3 and
4. Seeing as these theorems are considered the main results of the paper, we
would like to elaborate on a specific part. During the proof, we say that

im(rot) = ker(div) (1)

for the sequence R → X0
h → X1

h → X2
h → 0, 0 → Y 0

h → Y 1
h → Y 2

h → 0 and
0 → Z0

h → Z1
h → Z2

h → 0.
This can be shown by proving that any potential field has a divergence-

free velocity, and any divergence-free velocity has a potential field. Written
more formally, we say that

∀ϕ ∈ X0
h ∃ u ∈ X1

h : rot(ϕ) = u ∧ div(u) = 0 (2)
∀u ∈ X1

h : div(u) = 0 ∃ ϕ ∈ X0
h : rot(ϕ) = u (3)

and likewise for the spaces with boundary conditions, i.e. Yh and Zh.

1 Proving im(rot)⊆ker(div)

First note that any potential field maps to a divergence-free space under the
rot operator

div(rot(ϕ)) = div

([
∂ϕ
∂y

−∂ϕ
∂x

])
=

∂2ϕ

∂x∂y
− ∂2ϕ

∂x∂y
= 0. (4)

rot(ϕ) =

[
∂ϕ
∂y

−∂ϕ
∂x

]
=

[
u1
u2

]
(5)
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By considering spaces of boundary conditions, we will also need to check if
these are satisfied under mapping. First consider a ϕ ∈ Y 0

h . As ϕ = 0 along
the edges, we have that the tangential derivative along the edge is zero. That
is ∂ϕ

∂x = −u2 = 0 on the top and bottom edge, while ∂ϕ
∂y = u1 = 0 on the

left and right edge. Hence rot(ϕ) ∈ Y 1
h .

For any ϕ ∈ Z0
h we have that both the normal and tangential derivative

along the edge is zero, i.e. ∂ϕ
∂x = ∂ϕ

∂y = 0 on all edges. Hence u = 0 on the
boundary and rot(ϕ) ∈ Z1

h.

2 Proving im(rot)⊇ker(div)

Assume we have u ∈ X0
h, such that div(u) = 0. We then want to construct

a potential field ϕ such that rot(ϕ) = u. This can be formalized as

∂ϕ

∂y
= u1(x, y) (6)

∂ϕ

∂x
= −u2(x, y). (7)

We integrate the first line to get

ϕ(x, y) =

∫ y

a
u1(x, t) dt+ C(x) (8)

which differentiated with x becomes

∂ϕ

∂x
=

∫ y

a
∂xu1(x, t) dt+ ∂xC(x). (9)

Setting in (7) yields

−u2(x, y) =

∫ y

a
∂xu1(x, t) dt+ ∂xC(x)

∂xC(x) = −u2(x, y)−
∫ y

a
∂xu1(x, t) dt

∂xC(x) = −u2(x, y)−
∫ y

a
∂xu1(x, t) + ∂yu2(x, t)− ∂yu2(x, t) dt

∂xC(x) = −u2(x, y) +

∫ y

a
∂yu2(x, t) dt

∂xC(x) = −u2(x, y) + u2(x, y)− u2(x, a)

∂xC(x) = −u2(x, a)

C(x) = −
∫ x

b
u2(y, a) dt+ c (10)
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where we have used that div(u(x, t)) = ∂xu1(x, t) + ∂yu2(x, t) = 0. By
setting the constants all to zero, i.e. a = b = c = 0 and combining (8) and
(10) we arrive at the potential field presented in the paper

ϕ(x, y) =

∫ y

0
u1(x, t) dt−

∫ x

0
u2(t, 0) dt (11)

and it can be checked that this satisfies rot(ϕ) = u.

2.1 The no penetration spaces Yh

The very same function will work under spaces with boundary conditions as
well, but may be simplified. Note that both Y 1

h and Z1
h consists of functions

which second component vanishes at the bottom edge, i.e. u2(t, 0) = 0. For
these spaces it is enough to consider the potential function

ϕ(x, y) =

∫ y

0
u1(x, t) dt. (12)

We show that this potential satisfies all boundary conditions, since we
have from the derivations above that rot(ϕ) = u. Assuming the unit domain
Ω = [0, 1]2 we have for any u ∈ Y 1

h

u1(0, y) = 0

u1(1, y) = 0

u2(x, 0) = 0

u2(x, 1) = 0

which in turn gives

ϕ(0, y) =

∫ y

0
u1(0, t) dt = 0

ϕ(1, y) =

∫ y

0
u1(1, t) dt = 0

ϕ(x, 0) =

∫ 0

0
u1(x, t) dt = 0

ϕ(x, 1) =

∫ 1

0
u1(x, t) dt.

The first two integrals equals to zero due to the boundary conditions on u,
while the third term is zero due to the integration range is zero. The final
term is also zero, but the reason is a little more subtle. For any given x,
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consider the closed line integral containing the subdomain D = [0, x]× [0, 1],
i.e.

∮
u · n̂ dS =

∫ 1

0
u1(x, t) dt+

∫ 0

x
u2(t, 1) dt+

∫ 0

1
−u1(0, t) dt+

∫ x

0
−u2(t, 0) dt.

Of the four right hand side integrals, only the first one does not immediately
vanish as the three other are along boundary curves and have zero contri-
bution due to u ∈ Y 0

h . By using the divergence theorem we have that the
left hand side integral is zero

∮
u · n̂ dS =

∫∫

D
div(u) dA = 0.

We are left with
∫ 1
0 u1(x, t) dt = 0 which proves that ϕ(x, y) = 0 on all edges

and hence ϕ ∈ Y 0
h .

2.2 The no slip spaces Zh

The no slip spaces are conceptually no different than the no penetration
spaces, but we include them here for completeness. The boundary conditions
on Z1

h state

u1(0, y) = u2(0, y) = 0

u1(1, y) = u2(1, y) = 0

u1(x, 0) = u2(x, 0) = 0

u1(x, 1) = u2(x, 1) = 0

and we need to show that the generated ϕ satisfies the boundary conditions
on Z0

h which states

ϕ(0, y) = ∂ϕ
∂x (0, y) = 0

ϕ(1, y) = ∂ϕ
∂x (1, y) = 0

ϕ(x, 0) = ∂ϕ
∂y (x, 0) = 0

ϕ(x, 1) = ∂ϕ
∂y (x, 1) = 0.
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The conditions that ϕ = 0 on the boundary is analog to the previous section,
and we now show that the normal derivative is also zero. We first remember
that ∂ϕ

∂x = −u2(x, y) and ∂ϕ
∂y = u1(x, y), which means

∂ϕ

∂x
(0, y) = −u2(0, y) = 0

∂ϕ

∂x
(1, y) = −u2(1, y) = 0

∂ϕ

∂y
(x, 0) = u1(x, 0) = 0

∂ϕ

∂y
(x, 1) = u1(x, 1) = 0.

We conclude that if we have a u ∈ Z1
h, we may create a ϕ ∈ Z0

h which will
satisfy all the boundary conditions in Z0

h, and also u = rot(ϕ).


