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a b s t r a c t

A new model for the simulation of large motions of porous tensile structures and
their interaction with the surrounding fluid is developed in this paper. The discrete
structure is represented by several non-linear elastic bars and knots connecting up to
four bars. An implicit system of equations is derived from the fundamental relations of
dynamics, kinematics and material and solved using an improved Newton’s method. The
Navier–Stokes equations are solved in a numerical domain to account for the interaction
with the fluid. The presence of the porous structure is respected in these equations
through an additional forcing term based on a modified Lagrangian–Eulerian coupling
algorithm. Here, the forces on the structure are distributed on multiple Lagrangian points
embedded in the fluid domain. Integration over a suitable Kernel function is applied to
distribute these forces on the surrounding fluid. The derived numerical model is suitable
for simulating the interaction of porous tensile structures of arbitrary geometry, non-
linear material and under large motion with fluids including complex free surfaces. This
is in contrast to existing models which either neglect important non-linearities, the
physical interaction with the fluid or rely on explicit time integration. The validation
process shows excellent agreement between the numerical simulations and existing
experimental data and demonstrates the applicability of the new methodology for a
wide range of applications.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Offshore aquaculture has seen growing interest recently because of increasing size of the sites and greater concern over
raditional aquaculture due to their environmental impact on coastal regions. The change of environment significantly
ncreases the importance of the accurate prediction of the expected loads and the structural response due to an increased
luid–structure interaction (FSI). A major part of the structure is covered by flexible membranes. These are characterised
s spatially intrinsically two-dimensional structures with tensile stress resistance but neglectable bending stiffness. In
he case of aquaculture cages, the membranes have high porosity and two dominant stress directions. In the past,
egregated approaches considered the motion of these nets without incorporating interaction with the fluid (Løland,
991) or assuming the validity of potential theory (Kristiansen and Faltinsen, 2015). These studies cannot be regarded
s appropriate for offshore conditions due to the non-linearly increasing importance of the FSI for the accurate prediction
f the structural and fluid dynamics. In contrast, numerical simulations using computational fluid dynamics (CFD) can be
pplied to understand the structural and environmental challenges by modelling the forces on and the fluid dynamics in
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nd around the cage. Amongst others, Lewandowski and Pichot (2007) simulated the flow around and inside a rigid net
sing the Reynolds-averaged Navier–Stokes equations without considering the net motion.
The significant length scale difference between the flow around the whole structure and the flow through each of

ts voids prevents the resolution of the complete porous structure within the discrete fluid domain. Therefore, a more
laborated approach separates the calculation of the structural and fluid dynamics while respecting their interaction by
n appropriate coupling algorithm. The most dominant coupling algorithm is based on a porous medium representation
f the porous sheet. For this purpose, a porous volume is defined around the membrane and the governing volume- and
eynolds-averaged Navier–Stokes equations are solved using a finite volume method (Bi et al., 2014a; Patursson et al.,
010; Zhao et al., 2014). Recently, Chen and Christensen (2016, 2017) improved the idea by utilising a less restricted
odel for the proper definition of the porous resistance coefficients. Martin et al. (2020) analysed this approach and

evealed several limitations which prevent the applicability of the porous volume analogy for arbitrary shapes and large
eformations. They overcame this issue by proposing a new coupling model based on Lagrangian–Eulerian considerations
hich are generally efficient and broadly applicable. The main idea is built on the developments of Ryzhakov and Oñat
2017) for closed membranes and Aquelet and Wang (2007) for air-parachute interaction. Here, disturbances from the
olid parts on the surrounding fluid are distributed using Lagrangian points. In comparison, the porosity of the structure
ed to several modifications of the original approach and the usage of the screen force model of Kristiansen and Faltinsen
2012) to approximate the hydrodynamic forces from the fluid on the porous membrane. The coupling model of Martin
t al. (2020) is improved and extended for dynamic problems within the presented work.
Several approaches for modelling the dynamics of tensile structures were presented in the past. Tsukrov et al. (2003)

stablished a finite element modelling using perpendicular one-dimensional two-node elements with three degrees of
reedom. Lader and Fredheim (2006) introduced the lumped mass method which represents the discrete structure as
assless bars connected by mass knots. The solution of the dynamics of the knots was found in terms of their acceleration

rom Newton’s second law, and Runge–Kutta time integration was applied to calculate the knot velocities and positions
rom the accelerations. The constitutive equations are not automatically satisfied as no iterations are performed which
an lead to stability issues and very small time steps in comparison to the fluid solver. The time step restriction is also
ecessary due to the explicit time integration. A minor modified version of the original approach was successfully coupled
o a porous medium model to simulate flexible porous sheets (Bi et al., 2014a) and cylinders (Bi et al., 2014b) in steady
low conditions. In order to overcome the issue of small time steps, implicit methods were proposed. The development of
n implicit quasi-static net model was presented in Martin et al. (2018). The missing time step restriction increases the
fficiency of the model, but the approach lacks justification for applications including large motions and snap loads. LeBris
nd Marichal (1998) introduced an implicit dynamic net model based on the satisfaction of the kinematic relation between
not position and bar length. The original approach was based on inelastic material which leads to very high condition
umbers due to missing elements on the main diagonal of the system matrix. Vincent (1999) successfully overcame this
rawback by including elastic material into the model. However, their derivation relied on a linear material assumption
nd linearised equations. This is a severe drawback considering the non-linearity of net material (Lader and Fredheim,
006). Thus, the need for an implicit non-linear dynamic net model arises to accurately model the motion of these distinct
ypes of porous tensile structures. In this paper, such an approach is presented by taking Newton’s second law as the
asis. The external forces due to gravity, inertia and drag are calculated by extending the idea of the screen force model.
non-linear system of equations for the unknown tension forces is derived using high-order finite differences. The system

s solved using an improved Newton’s method leading to convergence within three to ten iterations for the considered
alidation cases.
The emerging numerical FSI algorithm is coupled to a numerical wave tank modelling the transport of the interface

etween two phases. Hence, the model is suitable for simulating the interaction of porous tensile structures of arbitrary
eometry, non-linear material and under large motion with fluids including complex free surfaces. This is in contrast to
xisting models which either neglect important non-linearities, the physical interaction with the fluid or rely on explicit
ime integration.

The remaining paper is structured as follows. Section 2 presents the derivation of the new implicit non-linear structural
odel, whereas Section 3 provides details about the numerical fluid solver and the coupling algorithm. In Section 4, the
odel is verified, and Sections 5 and 6 are devoted to several validation cases of porous rigid and flexible sheets and
ages in varying wave and current conditions. A possible application of the proposed model is presented in Section 7.
onclusions arising from the previous sections are given in Section 8.

. Non-linear dynamic numerical model for tensile structures

The considered tensile structure is assumed to consists of a large number of square or rhombic meshes forming a
orous cylinder or sheet with two distinct stress directions. Thus, an appropriate discrete representation of the structure
onsists of multiple knots and connecting elastic bars in the principal directions of the meshes. The definition of so-called
acro elements is needed for the coupling to the fluid dynamic solution. Each macro element contains four knots and

our bars and, depending on the porosity of the structure, represents multiple physical meshes. Instead of the porosity,
he solidity S is considered below. The solidity of a porous sheet is defined as the ratio of solid front area to the total
2
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Fig. 1. Discrete structure representation: the thin lines show the physical structure; the structural (macro) elements are represented by black dots
onnected with thick black lines; the dashed lines present the discretisation into several screens. The red area is related to the red dot for the force
alculations.

Fig. 2. Illustration of the dynamic force equilibrium at the knots xi and xj showing only structural quantities.

rea and therefore, equals one minus the porosity. Using the information about the physical twine diameter dt and twine
ength lt , S is calculated from (Fredheim, 2005)

S =
2dt
lt

−

(
dt
lt

)2

. (1)

Each structural element is further split into four screens as shown in Fig. 1. Thus, each knot is related to up to four screens.
As the screens are not explicitly resolved in the fluid grid, an approximation of the forces on the structure is introduced.
Following the assumptions of Morison et al. (1950) for hydrodynamic transparent structures, the mass of the Si screens
is lumped at knot xi so that the total mass at that knot mi can be approximated from

mi =

Si∑
s=1

(mair + manx 0 0
0 mair + many 0
0 0 mair + manz

)
s

, (2)

ith mair,s the mass of the screen in air and ns the unit normal vector of the screen pointing in relative velocity direction.
The added mass ma,s is approximated as the mass of the water volume occupied by the screen under the assumption that
the net is a mesh of multiple cylinders only. Here, the added mass is only applied in the normal direction of the structure.

The dynamic equilibrium equations are formulated for each xi with Ni neighbouring knots under consideration of Fig. 2:

mi ai =

Ni∑
k=1

Tik + Gi + Hi. (3)

Here, Gi represents the sum of the static gravity and buoyancy force and Hi the external hydrodynamic forces consisting
f inertia forces Ii due to the fluid acceleration af ,

Ii =

Si∑(ma + manx 0 0
0 ma + many 0

)
af ,s, (4)
s=1 0 0 ma + manz s

3
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nd drag and lift forces Di whose calculation are described below. The tension force vectors Tij are defined as the unknown
ension force magnitude Tij times the unit vector bij of the corresponding bar

Tij = Tij bij = Tij ·
(

xj − xi
|xj − xi|

)
. (5)

Assuming non-linear material, a constitutive equation is formulated as

Tij = C1ε + C2ε
2

= C1

(
lij
l0,ij

− 1
)

+ C2

(
lij
l0,ij

− 1
)2

, (6)

ith lij the current length of the bar and l0,ij its original length. Lader and Fredheim (2006) found this relation to be valid
ith C1 = 1160 N and C2 = 37300 N for nylon nets with squared meshes, which is used in the validation section below.
q. (6) is reformulated for lij by eliminating the non-physical solution:

lij =
l0
2C2

·

(
−C1 + 2 C2 +

√
C2
1 + 4 C2 Tij

)
. (7)

At each new time step (n + 1), the unknown position of the knots is related to the unknown tension forces using the
inematic compatibility equation(

x(n+1)
j − x(n+1)

i

)2
=

(
l(n+1)
ij

)2
. (8)

Inserting the constitutive relation (7) in (8) yields(
x(n+1)
j − x(n+1)

i

)2
=

l20
4C2

2
·

(
−C1 + 2C2 +

√
C2
1 + 4C2T

(n+1)
ij

)2

. (9)

The fulfilment of the dynamic equilibria (3) is ensured by replacing x(n+1) in (9) with accelerations using high-order
backward finite differences in time. The weight of each point included in the approximation is found iteratively using the
algorithm of Fornberg (1998) because of variable time steps in the coupled simulations. In doing so, the first derivative
of x(n+1) is expressed as

dx(n+1)

dt
= v(n+1)

=

P∑
p=0

cpx(n+1−p), (10)

nd then reformulated for the position vector:

x(n+1)
=

1
c0

v(n+1)
−

P∑
p=1

cp
c0

x(n+1−p). (11)

he now arising unknown velocity vectors v(n+1) are approximated using the same procedure, so that

v(n+1)
=

1
c0

a(n+1)
−

P∑
p=1

cp
c0

v(n+1−p). (12)

n the scope of the paper, third-order accurate polynomials are chosen by setting P = 3. By inserting (12) in (11), the
eft-hand side in (9) is approximated as(

x(n+1)
j − x(n+1)

i

)2
=

⎡⎣
(
a(n+1)
j − a(n+1)

i

)
c20

−

P∑
p=1

cp
c20

(
v(n+1−p)
j − v(n+1−p)

i

)

−

P∑
p=1

cp
c0

(
x(n+1−p)
j − x(n+1−p)

i

)⎤⎦2

=
1
c40

[(
a(n+1)
j − a(n+1)

i

)
+ Vij + Xij

]2
, (13)

with the definitions

Xij = −c0
P∑

cp
(
x(n+1−p)
j − x(n+1−p)

i

)
, (14)
p=1

4
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Vij = −

P∑
p=1

cp
(
v(n+1−p)
j − v(n+1−p)

i

)
. (15)

Under consideration of definition (3), the substitution of (13) in (9) yields a non-linear function F for each bar bij:

Fij
(
T (n+1))

=

⎛⎝ Nj∑
k=1

m−1
j T(n+1)

jk −

Ni∑
k=1

m−1
i T(n+1)

ik + Aij + Vij + Xij

⎞⎠2

−
c40 l20
4 C2

2
·

(
−C1 + 2C2 +

√
C2
1 + 4C2T

(n+1)
ij

)2

= 0, (16)

ith T the global vector of tension force magnitudes and

Aij = m−1
j (G(n)

j + H(n)
j ) − m−1

i (G(n)
i + H(n)

i ). (17)

he solution for T is found from (16) using a Newton’s method. The improved iterative procedure

T (∗)
= T (n)

−
[
J
(
T (n))]−1

F
(
T (n)) ,

T (n+1)
= T (∗)

−
[
J
(
T (n))]−1

F
(
T (∗)) , (18)

s implemented for this purpose. Here, F represents the vector of the functions (16) and J is its Jacobian matrix. It is
hown by Chun (2005) that (18) converges with third-order. The derivatives of (16) are found separately for the joint
ar bij and its adjoint bars (see Appendix A for the expressions). An approximation of the solution has to be given as
nitial condition. It is proposed to perform the first time step with the linearised version of this model. The solution of
he arising linear system only depends on an approximation of the initial position of the structure. The derivation of
his model follows the developments of Marichal (2003) and can be found in Appendix B. The pre-processing consists
f preparing connectivity matrices and follows thereby the concept described previously (Martin et al., 2018). Once a
onverged result has been found for the tension forces, acceleration, velocity and position of the knots are found from
3), (11) and (12).

The description of the structural model is completed by providing details about the calculation of the velocity related
orces Di from the fluid using the screen force model (Kristiansen and Faltinsen, 2012). Considering the inertia system of
he fluid, this force can be split into a drag and a lift force component in normal (nd) and tangential (nl) direction of the
ocal relative velocity vector urel,s = us − vs:

Di =

Si∑
s=1

∫
∂As

ρ

2
u2
rel,s(cdnd + clnl)s dx. (19)

he surface integral is approximated by a second-order accurate quadrature rule using the geometrical centre as
ntegration point. The drag and lift force directions are defined as

nd,s =
urel,s

|urel,s|
, (20)

nl,s =
(urel,s × ns) × ns

|(urel,s × ns) × ns|
, (21)

ith ns the unit normal vector of the screen pointing in the relative velocity direction. The coefficients cd and cl are
calculated from a truncated Fourier series expanded for their dependency on the angle of attack α between fluid velocity
vector and normal vector of the screen

cd(α) = cd,0
∞∑
k=1

a2k−1 cos ((2k − 1)α) , (22)

cl(α) = cl, π
4

∞∑
k=1

b2k cos (2kα) . (23)

he definition of the constants cd,0 and cl, π
4
are given in Kristiansen and Faltinsen (2012). The determination of the Fourier

coefficients is based on non-linear fitting to experimental data as described by the authors in Martin et al. (2020).

3. Direct coupling of the structural response to the fluid solution

3.1. Numerical model for solving the fluid dynamics

The conservation of mass and momentum for incompressible fluids arises in convective form as

∇ · u = 0, (24)
5
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∂u
∂t

+ u · ∇u = −
1
ρ

∇p + ∇ ·
(
ν
[
∇u + ∇uT ])

+ g, (25)

ith u the velocity vector, g the gravity acceleration vector, p the pressure and ν the kinematic viscosity. The system
s solved numerically using finite differences on rectilinear grids. The convection term is discretised with the fifth-order
ccurate weighted essentially non-oscillatory (WENO) scheme of Jiang and Shu (1996) adapted to non-uniform point
istances, and the diffusion term is discretised using second-order accurate central differences. A staggered grid approach
s chosen to ensure a tight connection of the pressure and velocity field. The solution process follows the incremental
ressure-correction algorithm for incompressible flows as proposed by Timmermans et al. (1996). In the predictor step,
ontinuity violating velocities u(∗) are calculated using pressure gradients from the previous time step:

u(∗)
− u(n)

∆t
= −u(n)

· ∇u(n)
−

1
ρ

∇p(n) + ∇ ·
(
ν
[
∇u + ∇uT ])(∗)

+ g. (26)

he implicit handling of the diffusion term removes decisive restrictions from the CFL condition (Bihs et al., 2016). A
hird-order accurate total variation diminishing Runge–Kutta scheme (Shu and Osher, 1988) is applied to advance (26)
n time. Here, the time step is determined from the CFL condition. At each sub-step, the projection step solves a Poisson
quation for the pressure correction term pcorr

∇ ·

(
1
ρ

∇pcorr

)
=

1
∆t

∇ · u(∗). (27)

he total pressure is then found from the obtained pressure increment (Brown et al., 2001) using

p(n+1)
= p(n) + pcorr − ρν ∇ · u_i(∗). (28)

ubsequently, the predicted velocities are projected onto the space of divergence-free fields so that

u(n+1)
= u(∗)

−
∆t
ρ

∇p(n+1). (29)

he algorithm is implemented in the open-source CFD solver REEF3D (Bihs and Kamath, 2017; Bihs et al., 2016). Full
arallelisation of the model is provided through an n-halo domain decomposition strategy and the message passing
nterface (MPI) for inter-processor communication. The solver utilises the fully parallelised BiCGStab algorithm with
eometric multigrid preconditioning of the HYPRE library (van der Vorst, 1992) for solving the Poisson equation.
If a free surface is present, defined as the interface between water and air phase, the same set of equations is solved.

owever, the material properties become space and time dependent which is implicitly described by the zero level set
f a smooth signed distance function Φ (Osher and Sethian, 1988). The linear advection equation

∂Φ

∂t
+ u · ∇Φ = 0, (30)

s solved for propagating Φ in space and time. The fifth-order accurate HJ-WENO scheme of Jiang and Peng (2000) is
pplied for the spatial discretisation and the temporal discretisation is performed by a Runge–Kutta method. The level
et function has to be reinitialised regularly to keep its signed distance property. For this purpose, the reinitialisation
quation (Sussman et al., 1994)

∂Φ

∂τ
+ sign(Φ) (|∇Φ| − 1) = 0, (31)

s solved in pseudo time τ so that Φ converges to a valid solution of the Eikonal equation |∇φ| = 1.

.2. Lagrangian–EulerIan coupling algorithm

The development of a new coupling algorithm for the simulation of fluid dynamics around static porous structures
as the subject of previous research (Martin et al., 2020). Therefore, only the main concepts and modifications for
ynamic calculations are provided in this section. The main idea is built on a Lagrangian–Eulerian approach where the
ydrodynamic forces are calculated from interpolated fluid velocities, and the disturbances of the fluid through the solid
arts of the structure are incorporated using forcing terms in the Navier–Stokes equations. A flowchart of the complete
SI algorithm is shown in Fig. 3.
An example of the distribution of the Lagrangian points on the discrete structure is shown in Fig. 4. They are defined

o that the disturbances are nearly equally distributed over the area with distances similar to the surrounding cell sizes.
his is achieved by splitting the macro elements into triangles and refine these according to the stationary grid size in
heir vicinity. The Lagrangian points are then defined in the geometrical centres of each triangle.

A momentum loss vector F is defined at each fluid point xe = (xe, ye, ze) of the Eulerian grid and added to the predicted
elocity before solving the Poisson equation. In comparison to Martin et al. (2020), the vector is calculated using

F(xe) =

Le∑ f(xL)
∆x ∆y ∆z

D
(
xe − xL

∆x

)
D
(
ye − yL

∆y

)
D
(
ze − zL

∆z

)
, (32)
L=1 L L L

6
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Fig. 3. Flowchart of the proposed FSI solver for one time step n.

Fig. 4. Illustration of the algorithm for calculating Lagrangian points (green dots) of one half of a structural element (thick black lines and points)
n a Eulerian fluid domain (thin grey lines): the first triangulation loop results in the blue lines and dots, the second loop results in the red lines
nd dots.

ith f(xL) the hydrodynamic force vector on the screen corresponding to the Lagrangian point xL = (xL, yL, zL), Le the
umber of Lagrangian points within a defined Kernel around xe chosen as the interpolation kernel of Peskin (1977)

D(r) =

{ 1
4

(
1 + cos

(
πr
2

))
if |r| < 2.0

0.0 else.
(33)

he forces f(xL) are represented by the integral of the external forces from (3) over the triangle area AL

f(xL) =

[ρ

2
u2
rel · (cdnd + clnl) + ma

(
af + diag(nx, ny, nz) · (af − a)

)
+ G

]
L
· AL. (34)

he chosen definition (32) removes effectively the free parameter which arose previously due to the usage of an inverse
istance weighting.
A final remark applies to the necessity of correcting the fluid velocity around the structure within the determination

f cd and cl in (19). Based on experimental data, these coefficients are determined as a function of the inflow velocity u∞,
hereas the given velocity information at the structure in the numerical domain is influenced by the pressure jump ∆p
aused by the porosity. To overcome this mismatch, a virtual inflow velocity is approximated using Froude’s momentum
heory (Carlton, 2019), which is based on the momentum balance in front and behind an infinitesimally thin screen. This
7



T. Martin and H. Bihs Journal of Fluids and Structures 100 (2021) 103168

t

A
t

I

w

Fig. 5. Verification test of the non-linear material properties using the elongation of a sheet for different weights.

heory can be utilised to relate the velocity at the screen us to ∆p:

us = u∞ −
∆p

2ρu∞

. (35)

detailed derivation can be found in Martin et al. (2020). The pressure jump arises from the disturbances in (34) normal
o the screen and is defined as

∆p =
ρ

2
cd(u∞)u2

s . (36)

n combination with (35), u∞ can be approximated from us by solving the intrinsic equation

u∞ =
cd(u∞)

−1 +
√
1 + cd(u∞)

·
us

2
, (37)

ith a Newton–Raphson method and u∞ = us as initial value.

4. Verification of the FSI solver

First, the proper reproduction of the geometrical properties of the structural material is verified using the experimental
setup proposed in Lader and Fredheim (2006). A 68 meshes long and 4 meshes wide sheet with dt = 1.8 mm and
lt = 16 mm is stretched in longitudinal direction using attached weights. The steady state elongation is measured
over increasing forces, and the theoretical result is expected to follow (6). Fig. 5(a) exemplifies the convergence of the
elongation of the numerical structural model presented in Section 2. Under-relaxation techniques are used to accelerate
the convergence and damp the initial shock of the applied force. As can be seen in Fig. 5(b), the numerical model
follows the theoretical results as expected. Further, the chosen material coefficients show a good approximation of the
experimental results. Additionally, a linear material is tested and shown in the same figure. The results indicate proper
representation of the elongation for ε < 0.02 but large deviations from physics for ε > 0.08.

In a second step, the convergence of the numerical simulation for the validation case of Section 6.1 is shown in Fig. 6.
Here, a porous sheet is fixed at the top and deformed from a steady inflow of u∞ = 0.226 m/s. The global forces in x-
and z-direction, the velocity at three different locations behind the sheet and the centre line of the deformed sheet are
calculated. The convergence of the fluid solver is presented under usage of the finest possible sheet of N = 15 elements
in both principal directions. As can be seen in Figs. 6(a), 6(c) and 6(e), the numerical results converge fast after reaching
cell sizes smaller than 0.05 m. The convergence of the structural solver is then shown using ∆x = 0.02 m in Figs. 6(b),
6(d) and 6(f). Both, forces and velocities are changing insignificantly for the different element sizes.

The deformed centre line reaches a steady state if at least 9 × 9 elements are used. The reason for the observed fast
convergence is the coupling algorithm’s mechanism to distribute the screen forces to the fluid domain by splitting the
structural elements according to the cell size of the fluid grid. Hence, the chosen number of elements is mostly related
to the accuracy of the structural deformation but less influential for load and momentum loss calculations.

Similar studies were conducted to find appropriate grid and structural element sizes for the following validation,
showing only the converged results.

5. Validation of the fluid–structure coupling algorithm

As the first step of the validation process, the coupling algorithm of Section 3.2 is validated against measurements of

rigid porous sheets in steady current and waves. Hence, the structural solver is not used. The deviation ε between the

8
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e

Fig. 6. Convergence test for a porous sheet in steady current. The left column shows the convergence for changing grid sizes using N = 15 × 15
lements. The right column shows the convergence for changing number of structural elements N × N using ∆x = 0.02 m.
9
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D

5

∆

Fig. 7. Half of the computational domain for the simulation of a rigid sheet in steady current. The complete domain is twice as wide. The flow
direction is in positive x-direction. The colours show the velocity in x-direction for the case with u∞ = 0.5 m/s and α = 45◦ .

able 1
eviations [%] between the numerical results and experimental data of Patursson et al. (2010).
α[

◦
] u∞ [m/s]

0.125 0.25 0.5 0.75

FD FL uw FD FL uw FD FL uw FD FL uw

0 −6.83 – 4.59 8.91 – −1.31 8.89 – −1.82 7.52 – −0.24
30 1.32 9.61 1.94 −0.98 −19.2 −1.75 8.29 −1.49 −2.18 1.92 −13.9 −0.41
45 −4.49 −7.04 −0.01 1.07 8.06 −3.39 2.61 5.25 −2.94 −1.61 −17.3 −0.49
60 14.6 −14.81 −2.07 3.44 9.54 −4.18 0.49 9.92 −4.71 −7.35 8.30 −3.21

numerical result Φnum and the experimental result Φexp is calculated using

ε =
Φexp − Φnum

Φexp
· 100. (38)

.1. Rigid porous sheet in steady current flow

Following the experiments of Patursson et al. (2010), a rigid sheet of 1.0 m × 1.0 m with dt = 0.0028 m and
lt = 0.029 m is placed in a domain of 8.0 m × 3.66 m × 2.44 m. The domain is discretised using a uniform grid with
x = 0.06 m. As shown in Fig. 7, the top bar of the sheet is kept at (x, z) = (3, 0.81) m and different angles of attack α are

investigated by rotating the structure counter-clockwise. Four different angles of attack, i.e. α = 0◦, 30◦, 45◦, 60◦, and four
different inflow velocities of 0.125 m/s, 0.25 m/s, 0.5 m/s and 0.75 m/s are taken into account. For each configuration,
the global drag and lift forces are calculated using (19), and the velocity in the wake of the sheet is measured to validate
the velocity reduction.

The results are shown in Fig. 8. The drag forces increase with increasing inflow velocity and decreasing angle of attack,
whereas the lift forces increase with increasing inflow velocity and show a peak for α = 45◦. The velocity behind the sheet
decreases due to the presence of the structure. This effect increases with higher inflow velocity but is not influenced by
the angle of attack. The distributions of wake velocities in Fig. 8(c) show the correct behaviour for the numerical model.
The deviations between the simulation and the measurements are presented in Table 1. Most errors are well below 10%,
and the largest deviations are given for the predicted drag and lift forces at large inflow velocities and angles of attack.

5.2. Rigid porous sheet in regular waves

A similar experiment was conducted in Zhao et al. (2008) to investigate the drag forces on a rigid sheet in regular
waves. Here, two rigid sheets of 1.0 m × 0.5 m with dt = 0.002 m and lt = 0.03 m and lt = 0.06 m are placed in a wave
tank of 30.0 m × 2.0 m × 2.0 m with a water depth of 1 m. The centre of the sheet is at (x, y, z) = (10, 1.0, 0.6) m. Five
different waves with wave heights between H = 0.1 m and H = 0.2 m and a wave period of T = 1.4 s are investigated.
They are modelled using Stokes’ second-order theory. The computational domain is discretised using a uniform grid with
∆x = 0.05 m.

The time series of the numerically calculated global drag forces on the two sheets are presented in Fig. 9. For
comparison, the measured forces are indicated in red. Spectral analysis is conducted to quantify the period and amplitude
of the forces, and the results are shown in Table 2 in comparison to the experimental data. Here, the positive and negative
force amplitudes are considered separately due to the asymmetry of Stokes waves. In general, the forces increase with
increasing wave height due to larger particle velocities below the wave and increasing solidity due to a larger surface
passed by the fluid. A good agreement between simulation and experiment can be stated as the deviations are mostly well
below 10%. As the measured forces are just provided over two wave periods, increased uncertainties for the experimental
data have to be kept in mind.
10
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Fig. 8. Comparison of the numerical and experimental results for a rigid porous sheet in steady current flow.

. Validation of the complete FSI model

The previous section indicates the proper working of the fluid solver and the coupling algorithm for both, constant
nflow conditions and waves. In this section, the complexity of the fluid–structure problem is increased by adding
he structural solver and hence, the deformation of the structure. First, a single sheet and a cylindrical structure are
nvestigated in steady inflow conditions. Afterwards, the deformation of a porous sheet in waves is presented.

.1. Deformation of a porous sheet in steady current flow

The deformation of a porous sheet in steady current flow is presented following the experimental setup by Bi et al.
2014a). The sheet has a size of 0.3 m×0.3 m with solidity S = 0.243. It is numerically represented by 9 × 9 elements. The
op is fixed during the experiments and a steel bar with a mass of 73 g in air is attached to the bottom of the structure. In
he numerical model, the mass and inertia effects of the bar is added to the lowest row of structural elements. The inertia
11
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able 2
umerical and experimental results and deviations ε[%] for the rigid porous sheet in waves (Zhao et al., 2008).
H [m] lt [m] T [s] F+ [N] F− [N] Texp [s] F+

exp [N] F−
exp [N] εT εF+ εF−

0.10 0.03 1.420 1.157 1.240 1.4 1.247 1.241 −1.43 0.18 0.16
0.12 0.03 1.420 1.590 1.750 1.4 1.522 1.786 −1.43 4.43 2.01
0.15 0.03 1.420 2.260 2.480 1.4 2.460 2.679 −1.43 0.15 7.44
0.18 0.03 1.419 3.450 3.780 1.4 3.382 3.814 −1.42 1.98 0.89
0.20 0.03 1.414 4.200 4.960 1.4 3.893 5.214 −1.00 7.88 4.87
0.10 0.06 1.421 0.330 0.390 1.4 0.477 0.398 −1.50 0.81 2.17
0.12 0.06 1.421 0.501 0.588 1.4 0.467 0.695 −1.51 7.07 15.42
0.15 0.06 1.428 0.698 0.860 1.4 0.791 1.044 −2.00 1.78 17.67
0.18 0.06 1.419 1.068 1.364 1.4 1.180 1.497 −1.41 0.52 8.90
0.20 0.06 1.419 1.36 1.780 1.4 1.417 1.878 −1.41 0.04 5.26

Fig. 9. Comparison of the numerical and experimental time series of the drag forces on a rigid porous sheet in different regular waves with wave
height H and wave period T .

ffects are approximates as drag and added mass forces for a cylinder using Morison’s formula (Morison et al., 1950). This
rocedure also holds for the validation cases below. A slice of the computational domain is shown in Fig. 10. Following
he experiments, the domain is 3.8 m long, 0.4 m wide and 0.4 m high. It is numerically resolved using ∆x = 0.02 m. The
centre of the sheet is initially placed at (x, y, z) = (1.0, 0.2, 0.25) m. The inflow velocities u∞ are 0.056 m/s, 0.113 m/s,
0.17 m/s and 0.226 m/s. As the result, Fig. 11 shows the distribution of the centre line of the sheet, the global drag forces
and velocity distribution through the structure for different inflow velocities.
12
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Fig. 10. Slice through the centre of the computational domain for the simulation of a porous sheet in steady current incident from the left. The
deformed sheet is shown in yellow. The contours show the velocity in x-direction for the case with u∞ = 0.226 m/s.

able 3
umerical and experimental results and deviations ε[%] for the maximum deformation of a porous sheet in regular waves (Zhao et al., 2008).
H [m] T [s] A1,exp [cm] A2,exp [cm] A1 [cm] A2 [cm] ε1 ε2

0.10 1.4 4.52 3.78 4.94 3.56 9.25 −5.85
0.12 1.4 5.36 5.05 5.22 4.40 −2.61 −12.81
0.15 1.4 6.69 6.93 6.79 5.75 1.48 −16.98
0.18 1.4 7.71 8.23 8.16 6.76 5.81 −17.92
0.15 1.1 5.26 3.15 4.90 3.47 −6.79 10.16
0.15 1.2 5.48 4.16 4.95 4.26 −9.62 2.45
0.15 1.4 6.69 6.93 6.79 5.75 1.48 −16.98
0.15 1.5 8.02 8.35 7.73 7.64 −3.58 −8.50

The experimental results for the deformation are extracted from pictures of the whole structure presented in their
paper and therefore, prone to larger uncertainties. Based on that, the qualitative comparison in Fig. 11(c) shows a satisfying
performance of the numerical model. For larger velocities, the model tends to predict a larger curvature in the middle
part of the sheet. This also affects the calculated global drag forces shown in Fig. 11(a). Here, deviations below 10% are
shown for the lower range of investigated inflow velocities, but a 20% under-prediction is given for largest velocity. This
is probably linked to the slightly different deformation causing larger lift forces but smaller drag forces. Additionally,
Fig. 11(b) shows the distribution of the velocity through and behind the sheet for two inflow velocities. As the flow
passes the structure, a velocity drop is visible due to a loss of fluid momentum. The magnitude and position of the velocity
reduction are well presented by the proposed model irrespective of the inflow velocity.

6.2. Deformation of a porous sheet in regular waves

In the previously considered experiment of Zhao et al. (2008), additional measurements of the deformation of a porous
sheet in regular waves were presented. The sheet is 0.78 m wide, 0.6 m high and consists of squared meshes with
dt = 0.0018 m and lt = 0.06 m. The solidity ratio is approximated as 0.06. The numerical equivalent is modelled using

× 8 elements. The top is fixed during the experiments and an iron bar with a mass of 82 g in air is attached to the
ottom of the structure. The same wave tank of 30.0 m × 2.0 m × 2.0 m with a water depth of 1 m is used (see Fig. 12).
he centre of the sheet is at (x, y, z) = (10, 1.0, 0.6) m. The same waves as given above are investigated. Additionally,
esults for waves with wave height H = 0.15 m and wave periods between 1.1 s and 1.5 s are reported. All waves are
umerically modelled using second-order Stokes theory. The computational domain is discretised using a uniform grid
ith ∆x = 0.04 m.
Fig. 13 presents three time instances showing typical flow situations encountered by the sheet. If the structure is

nder a wave crest, as shown in Fig. 13(a), the flow pushes the structure in the positive x-direction. Here, the centre of
he sheet deforms first because of the increased inertia of the lower part of the sheet due to the additional weight and
igher velocities near the free surface. After the wave crest passes the structure, reduced velocities lead to a flattened
rofile rotated counter-clockwise. When the wave trough approaches as shown in Fig. 13(c), the structure is pulled back
nd starts to rotate clockwise.
The amplitude and speed of this cycling motion depend on both, wave height and period, as it can also be seen in Fig. 14.

t shows the maximum deformation of two probe points P1 = (10, 1, 0.3) m (bottom position) and P2 = (10, 1, 0.6) m
centre position) following the structural deformation. The deformation increases with the wave height. For both locations,
oubling of the amplitudes is given for almost doubling the wave height. Similarly, the increase of the wave period
ncreases the amplitude of the motion due to longer periods of almost unidirectional incident flow velocities. The
entre point generally moves less than the bottom point in the numerical model, whereas the measurements indicate
arger motion of the centre point for higher and longer waves. Table 3 provides the deviations between numerics and
xperiments for all considered cases. The motion of the lower part of the sheet is represented well as the error is below
0%. In contrast, the centre part deforms insufficient in the simulations for large waves showing under-predictions of up
o 18%. These deviations can be linked to the wave representation or the calculated forces on the structure. Unfortunately,
oth are not reported in Zhao et al. (2008) so that further analysis of the errors cannot be given.
13
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Fig. 11. Comparison of the numerical and experimental results for a porous sheet in steady current flow.

Fig. 12. Computational domain of the water phase for the simulation of a porous sheet in regular waves. The waves propagate from the left to the
right. The colours show the velocity in x-direction.

6.3. Deformation of a porous cylindrical structure in steady current flow

As a final validation case, the deformation of a porous cylinder in steady current flow is considered. The setup and
measurements are taken from Lader and Enerhaug (2005). The cylinder has a diameter of 1.435 m, a height of 1.44 m and
14
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Fig. 13. Deformation of the porous sheet (yellow) in different wave situations. The waves reach the sheet from the left. The green arrows indicate
the directions of the streamlines.

Fig. 14. Comparison of the numerical and experimental results for a porous sheet in regular waves.

onsists of meshes with dt = 0.0018 m and lt = 0.018 m, which corresponds to a solidity of S = 0.19. It is numerically
epresented by 17 × 10 structural elements. The top is fixed during the experiments and 16 cylindrical weights of 0.4, 0.6
and 0.8 kg each are attached to the bottom row of the cylinder. The computational domain together with the placement
of the centre top position of the cylinder is shown in Fig. 15. The domain is discretised using ∆x = 0.08 m. The inflow
velocity u∞ varies between 0.13 m/s and 0.56 m/s. As the results, Fig. 16 shows the global drag and lift forces and
volume and area reduction coefficients for the different inflow velocities and attached weights. The reduction coefficients
represent the ratio of the volume and area of the deformed structure to the initial structure and are calculated as proposed
in Lader and Enerhaug (2005) to be consistent with the experiments. Their accurate prediction demands a correct force
calculation and proper velocity reduction through the front part of the cylinder since both influence the deformed shape.

The global forces on the structure, shown in Figs. 16(a) and 16(b), increase with increasing inflow velocity, and the
influence of the changing weights is only of importance for velocities larger than 0.33 m/s. For smaller velocities, the
umerical model agrees well with the experiments due to consistent deviations below 10%. For the largest inflow velocity,
he lift force is under-predicted. Here, the simulations show consistent results as the lift forces with the largest additional
eight is generally the lowest due to the smallest deformation. In contrast, the experimental data shows the largest lift
15
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Fig. 15. Computational domain for the simulation of a porous cylinder in steady current flow. The current propagates in positive x-direction.

force for this configuration without providing a physical explanation for this phenomenon. The volume and area reduction
(Figs. 16(c) and 16(d)) is negligible for inflow velocities smaller than 0.2 m/s. For larger velocities, the numerical model
accords well with the experiments by predicting increasing volume and area reduction with increasing velocity. The largest
deviation is observed for the predicted area reduction coefficient for velocities between 0.23 m/s and 0.27 m/s. A possible
explanation is a slightly different deformation process of the numerical cage in comparison to the physical one. In the
experiment, the deformation at this velocity seems to be related to a bend of the cylinder, whereas the cage also deforms
through a reduced diameter numerically. However, a large uncertainty associated with accessing the area reduction by
tracking only three points has to be considered. As expected, the largest deformation of the cylinder is predicted for the
lowest additional weight.

7. Application to the simulation of fish cage arrays in current flow

A possible application of the proposed model is the investigation of complex fish cage arrays consisting of multiple
cylindrical nets defined as elastic porous sheets. In the following, the capabilities of the developed model are demonstrated
by taking the previous case as the basis. As shown in Fig. 17, six cylinders of the same dimensions and material as above
are placed in a 3 × 2 array. The distance between the top centre points is 2 m in longitudinal direction and d in lateral
direction. The distance d is chosen as 3 m and 1.5 m to study the influence of the cages on each other. Each cage has an
additional weight of 16 × 0.6 kg attached, and the considered inflow velocity is 0.33 m/s.

The time series of the forces on the left array of nets are shown in Fig. 18. The global forces in x- and z-direction
decrease for nets in the wake of another structure due to the momentum loss through the porous sheets in front. The
simulations indicate a slight increase of these forces of the nets in the back if d is reduced. However, they are less
influenced by d than the forces in the y-direction. For the bigger distance, no influence between the two arrays can
be stated as the forces in the y-direction are close to zero. The decrease of the distance results in an increase of lateral
forces due to the direct influence of the accelerated flow around the neighbouring structure.

The changing loading conditions also influence the deformation of the structures as can be seen from Fig. 19. As
expected, the reduction of velocity in the wake of the first structure results in less rotation of the nets behind. Further, the
deformation increases with decreasing distance between the rows due to the increase of forces. In accordance with these
observations, the distribution of the tension forces (Fig. 20) can be explained. The largest tension forces are to expected
near the clamping on the top, and the strain reduces for the structures in the back of the array. Generally, the strain is
larger on the frontside than on the backside due to the momentum loss of the fluid while passing the net.

8. Conclusions

In this paper, a new methodology for modelling the non-linear dynamics of porous tensile structures and their
interaction with the surrounding fluid was proposed.

An efficient structural model was derived for arbitrary deformations and non-linear material. It bases on solving
Newton’s second law for the unknown tension forces. A new approach for calculating the fluid loading on the structure
was proposed as the structure is not directly resolved in the fluid. Here, fluid properties were interpolated on the structural
domain using a Kernel function, and the hydrodynamic forces were approximated using a Morison-type approach. High-
order backward finite differences were included to approximate the structural motion. Finally, a single matrix–vector
problem arose which was solved using an accelerated Newton’s method. In contrast to existing explicit algorithms, the
16
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w

Fig. 16. Numerical and experimental results for the simulation of a porous cylinder in steady current flow. WM1 corresponds to 16×0.4 kg additional
eight, WM2 corresponds to 16 × 0.6 kg additional weight and WM3 corresponds to 16 × 0.8 kg additional weight.

Fig. 17. Computational domain for the simulation of fish cage arrays in current flow. The current propagates in positive x-direction.

implicit time and deformation handling increase stability and effectively remove strong time step restrictions from the

fluid solver.

17
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Fig. 18. Time series of the numerically predicted forces in x-, y- and z-direction for the simulation of fish cage arrays in current flow. The numbering
f the nets is indicated in Fig. 17. The results for d = 3 m (Orig) are shown in black, the results for d = 1.5 m (Narrow) in red.

Fig. 19. Deformation of the backside centre lines of the nets. The numbering of the nets is indicated in Fig. 17. The results for d = 3 m (Orig) are
hown in black, the results for d = 1.5 m (Narrow) in red.

Fig. 20. Tension force distribution [N] in the vertical twines of the different nets. The numbering of the nets is indicated in Fig. 17.
18
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Two-way coupling was provided by including the loss of fluid momentum, due to passing a porous sheet, in the Navier–
tokes equations as a source term. It was determined from a Kernel integration of the hydrodynamic and body forces
ver multiple Lagrangian points which follow the structural deformation. This represents an innovative extension of the
lassical forcing approach for porous and hydrodynamic transparent structures. Hence, its application to couple the fluid
ith slender elastic structures, such as mooring lines and floating beams, and deforming porous media like vegetation is
traightforward.
An extended verification and validation study was presented. The proposed model was validated against existing

xperiments for rigid and elastic porous sheets and cylinders with varying geometries and solidities in current and regular
aves. Deviation bands of less than 10% were regularly achieved which indicate a proper calculation of the loads, the wake
elocity field and the structural response. Hence, the chosen kernel for the distribution of the momentum loss vector
n the fluid domain is a valid alternative to the previous choice and removes effectively additional parameters from
he model. The application to the simulation of the flow around multiple elastic net cages delivers insight into possible
pplications. Here, the proposed numerical model provides the possibility to study fluid dynamics around and inside the
ages as well as the effects of waves and currents on the cage array deformations. The resulting fluid disturbances have not
een numerically resolved yet but can now be modelled using the proposed approach. Within future work, the framework
ill also be extended to floating cage systems with mooring systems attached.
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ppendix A. Analytical expressions for the derivatives of Fij

The derivatives of (16) have to be calculated separately for the bar bij between knot xi and xj and the adjoint bars bip
nd bjp:

• Derivative for the joint bar bij:

∂ Fij (T )

∂ Tij
=2

⎛⎝ Nj∑
k=1

Tjk

mj
−

Ni∑
k=1

Tik

mi
+ Aij + Vij + Xij

⎞⎠(bji

mj
−

bij

mi

)

− c41
l20
C2

·

⎛⎝−C1 + 2C2 +

√
C2
1 + 4C2Tij√

C2
1 + 4C2Tij

⎞⎠ (A.1)

• Derivative for the bars bip with i ̸= j:

∂ Fij (T )

∂ Tip
= −

2 bip

mi

⎛⎝ Nj∑
k=1

Tjk

mj
−

Ni∑
k=1

Tik

mi
+ Aij + Vij + Xij

⎞⎠ (A.2)

• Derivative for the bars bjp with j ̸= i:

∂ Fij (T )

∂ Tjp
=

2 bjp

mj

⎛⎝ Nj∑
k=1

Tjk

mj
−

Ni∑
k=1

Tik

mi
+ Aij + Vij + Xij

⎞⎠ (A.3)

he resulting Jacobian is inverted using the partially pivoted LU decomposition of the C++ library Eigen (Guennebaud
t al., 2010).
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ppendix B. Derivation of a linear system for solving the structural problem

The derivation of a linearised version of the proposed model is based on the kinematic relation(
x(n+1)
j − x(n+1)

i

)2
=

(
l(n+1)
ij

)2
. (B.1)

Under the assumption of linear elastic material, the length of the bar between knot xi and xj is written as

l2ij = l20,ij ·
(
1 + κ Tij

)2
, (B.2)

ith l0,ij the original length and κ the elasticity constant. In each time step, the tension force is subject to an incremental
ncrease so that T (n+1)

= T (n)
+ ∆T . Thus, the right-hand side of (B.1) can be linearised with the argument of small

lasticity (κ ≪ 1) and small tension fluctuations (∆T ≪ 1):(
l(n+1)
ij

)2
= l20,ij ·

(
1 + 2κ T (n)

ij

)
. (B.3)

he location and velocity of each knot is approximated using first-order backward finite differences in time. Inserting
hem into (B.1) and linearising the left-hand side by neglecting terms of higher-order, yields under consideration of (B.3)

l20,ij
2∆t

·

(
1 + 2κ T (n+1)

ij

)
−

(
x(n)j − x(n)i

)2
2∆t

=(
v(n)j − v(n)i + ∆t

(
a(n)j − a(n)i

))(
x(n)j − x(n)i

)
. (B.4)

hus, a linear system of equations arises for the tension forces at the new time step using (5) and proper rearrangement:⎛⎝ Nj∑
k=1

b(n)
jk T (n+1)

jk

mj
−

Ni∑
k=1

b(n)
ik T (n+1)
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∆t2

κ T (n+1)
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=
l20,ij
2∆t2

−

(
x(n)j − x(n)i

)2
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−

(
v(n)j − v(n)i

)(
x(n)j − x(n)i

)
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−

(
x(n)j − x(n)i

)
F(n)j

mj
+

(
x(n)j − x(n)i

)
F(n)i

mi
. (B.5)

he resulting system matrix is inverted using the partially pivoted LU decomposition of the C++ library Eigen (Guennebaud
t al., 2010).
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