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algorithm. Here, the forces on the structure are distributed on multiple Lagrangian points
embedded in the fluid domain. Integration over a suitable Kernel function is applied to
distribute these forces on the surrounding fluid. The derived numerical model is suitable
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1. Introduction

Offshore aquaculture has seen growing interest recently because of increasing size of the sites and greater concern over
traditional aquaculture due to their environmental impact on coastal regions. The change of environment significantly
increases the importance of the accurate prediction of the expected loads and the structural response due to an increased
fluid-structure interaction (FSI). A major part of the structure is covered by flexible membranes. These are characterised
as spatially intrinsically two-dimensional structures with tensile stress resistance but neglectable bending stiffness. In
the case of aquaculture cages, the membranes have high porosity and two dominant stress directions. In the past,
segregated approaches considered the motion of these nets without incorporating interaction with the fluid (Leland,
1991) or assuming the validity of potential theory (Kristiansen and Faltinsen, 2015). These studies cannot be regarded
as appropriate for offshore conditions due to the non-linearly increasing importance of the FSI for the accurate prediction
of the structural and fluid dynamics. In contrast, numerical simulations using computational fluid dynamics (CFD) can be
applied to understand the structural and environmental challenges by modelling the forces on and the fluid dynamics in
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and around the cage. Amongst others, Lewandowski and Pichot (2007) simulated the flow around and inside a rigid net
using the Reynolds-averaged Navier-Stokes equations without considering the net motion.

The significant length scale difference between the flow around the whole structure and the flow through each of
its voids prevents the resolution of the complete porous structure within the discrete fluid domain. Therefore, a more
elaborated approach separates the calculation of the structural and fluid dynamics while respecting their interaction by
an appropriate coupling algorithm. The most dominant coupling algorithm is based on a porous medium representation
of the porous sheet. For this purpose, a porous volume is defined around the membrane and the governing volume- and
Reynolds-averaged Navier-Stokes equations are solved using a finite volume method (Bi et al., 2014a; Patursson et al.,
2010; Zhao et al,, 2014). Recently, Chen and Christensen (2016, 2017) improved the idea by utilising a less restricted
model for the proper definition of the porous resistance coefficients. Martin et al. (2020) analysed this approach and
revealed several limitations which prevent the applicability of the porous volume analogy for arbitrary shapes and large
deformations. They overcame this issue by proposing a new coupling model based on Lagrangian-Eulerian considerations
which are generally efficient and broadly applicable. The main idea is built on the developments of Ryzhakov and Ofiat
(2017) for closed membranes and Aquelet and Wang (2007) for air-parachute interaction. Here, disturbances from the
solid parts on the surrounding fluid are distributed using Lagrangian points. In comparison, the porosity of the structure
led to several modifications of the original approach and the usage of the screen force model of Kristiansen and Faltinsen
(2012) to approximate the hydrodynamic forces from the fluid on the porous membrane. The coupling model of Martin
et al. (2020) is improved and extended for dynamic problems within the presented work.

Several approaches for modelling the dynamics of tensile structures were presented in the past. Tsukrov et al. (2003)
established a finite element modelling using perpendicular one-dimensional two-node elements with three degrees of
freedom. Lader and Fredheim (2006) introduced the lumped mass method which represents the discrete structure as
massless bars connected by mass knots. The solution of the dynamics of the knots was found in terms of their acceleration
from Newton’s second law, and Runge-Kutta time integration was applied to calculate the knot velocities and positions
from the accelerations. The constitutive equations are not automatically satisfied as no iterations are performed which
can lead to stability issues and very small time steps in comparison to the fluid solver. The time step restriction is also
necessary due to the explicit time integration. A minor modified version of the original approach was successfully coupled
to a porous medium model to simulate flexible porous sheets (Bi et al., 2014a) and cylinders (Bi et al., 2014b) in steady
flow conditions. In order to overcome the issue of small time steps, implicit methods were proposed. The development of
an implicit quasi-static net model was presented in Martin et al. (2018). The missing time step restriction increases the
efficiency of the model, but the approach lacks justification for applications including large motions and snap loads. LeBris
and Marichal (1998) introduced an implicit dynamic net model based on the satisfaction of the kinematic relation between
knot position and bar length. The original approach was based on inelastic material which leads to very high condition
numbers due to missing elements on the main diagonal of the system matrix. Vincent (1999) successfully overcame this
drawback by including elastic material into the model. However, their derivation relied on a linear material assumption
and linearised equations. This is a severe drawback considering the non-linearity of net material (Lader and Fredheim,
2006). Thus, the need for an implicit non-linear dynamic net model arises to accurately model the motion of these distinct
types of porous tensile structures. In this paper, such an approach is presented by taking Newton’s second law as the
basis. The external forces due to gravity, inertia and drag are calculated by extending the idea of the screen force model.
A non-linear system of equations for the unknown tension forces is derived using high-order finite differences. The system
is solved using an improved Newton’s method leading to convergence within three to ten iterations for the considered
validation cases.

The emerging numerical FSI algorithm is coupled to a numerical wave tank modelling the transport of the interface
between two phases. Hence, the model is suitable for simulating the interaction of porous tensile structures of arbitrary
geometry, non-linear material and under large motion with fluids including complex free surfaces. This is in contrast to
existing models which either neglect important non-linearities, the physical interaction with the fluid or rely on explicit
time integration.

The remaining paper is structured as follows. Section 2 presents the derivation of the new implicit non-linear structural
model, whereas Section 3 provides details about the numerical fluid solver and the coupling algorithm. In Section 4, the
model is verified, and Sections 5 and 6 are devoted to several validation cases of porous rigid and flexible sheets and
cages in varying wave and current conditions. A possible application of the proposed model is presented in Section 7.
Conclusions arising from the previous sections are given in Section 8.

2. Non-linear dynamic numerical model for tensile structures

The considered tensile structure is assumed to consists of a large number of square or rhombic meshes forming a
porous cylinder or sheet with two distinct stress directions. Thus, an appropriate discrete representation of the structure
consists of multiple knots and connecting elastic bars in the principal directions of the meshes. The definition of so-called
macro elements is needed for the coupling to the fluid dynamic solution. Each macro element contains four knots and
four bars and, depending on the porosity of the structure, represents multiple physical meshes. Instead of the porosity,
the solidity S is considered below. The solidity of a porous sheet is defined as the ratio of solid front area to the total
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Fig. 1. Discrete structure representation: the thin lines show the physical structure; the structural (macro) elements are represented by black dots
connected with thick black lines; the dashed lines present the discretisation into several screens. The red area is related to the red dot for the force
calculations.

Fig. 2. Illustration of the dynamic force equilibrium at the knots x; and x; showing only structural quantities.

area and therefore, equals one minus the porosity. Using the information about the physical twine diameter d; and twine
length I, S is calculated from (Fredheim, 2005)

2d do\?
s= (). (1)
lt l[

Each structural element is further split into four screens as shown in Fig. 1. Thus, each knot is related to up to four screens.
As the screens are not explicitly resolved in the fluid grid, an approximation of the forces on the structure is introduced.
Following the assumptions of Morison et al. (1950) for hydrodynamic transparent structures, the mass of the S; screens
is lumped at knot x; so that the total mass at that knot m; can be approximated from

Si /Mgy + myny 0 0
m; = Z 0 Mair + many, 0 s (2)
s=1 0 0 M,ir + Man,

S

with my;: s the mass of the screen in air and ng the unit normal vector of the screen pointing in relative velocity direction.

The added mass m, s is approximated as the mass of the water volume occupied by the screen under the assumption that

the net is a mesh of multiple cylinders only. Here, the added mass is only applied in the normal direction of the structure.
The dynamic equilibrium equations are formulated for each x; with N; neighbouring knots under consideration of Fig. 2:

Ni
m; a; = ) Ty + G +H. (3)
k=1
Here, G; represents the sum of the static gravity and buoyancy force and H; the external hydrodynamic forces consisting
of inertia forces I; due to the fluid acceleration ay,

Si /my + myny 0 0
I = Z 0 m, + Many 0 as s, (4)
s=1 0 0 m, + myn,

N
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and drag and lift forces D; whose calculation are described below. The tension force vectors Tj are defined as the unknown
tension force magnitude Tj; times the unit vector b of the corresponding bar

Ty =Tiby=T;- (D (5)
y— g Py — 1y |x] _ Xi| .
Assuming non-linear material, a constitutive equation is formulated as
2 L L ?
TU=C18+C28 =C[|— — +G (| — — s (6)
lo.j lo.j

with [;; the current length of the bar and Iy ; its original length. Lader and Fredheim (2006) found this relation to be valid
with C; = 1160 N and C, = 37300 N for nylon nets with squared meshes, which is used in the validation section below.
Eq. (6) is reformulated for [; by eliminating the non-physical solution:

l
11-]:2—22-<—cl+2c2+,/c]2+4c2 T,,-). (7)

At each new time step (n + 1), the unknown position of the knots is related to the unknown tension forces using the
kinematic compatibility equation
2

(xjgnﬂ) _ x§n+l)) _ (lgjyﬁul))z. ®)

Inserting the constitutive relation (7) in (8) yields

2 2 2
(x§n+1)_x§n+l)> _ 4C02'<_C1+2C2+ /C]2+4C2T,§.”H)> ) (9)
2

The fulfilment of the dynamic equilibria (3) is ensured by replacing X" in (9) with accelerations using high-order
backward finite differences in time. The weight of each point included in the approximation is found iteratively using the
algorithm of Fornberg (1998) because of variable time steps in the coupled simulations. In doing so, the first derivative
of X1 is expressed as

dxm+1)

P
— ynt1) (n+1-p)
=V = CpX , 10

and then reformulated for the position vector:

P

1 [«
X+ — Dyt 1) Z 2P x(n+1-p) (11)
Co 1 Co

The now arising unknown velocity vectors v("1) are approximated using the same procedure, so that

P

vt = Ly _ 3 ytrton), (12)
Co P Co

In the scope of the paper, third-order accurate polynomials are chosen by setting P = 3. By inserting (12) in (11), the
left-hand side in (9) is approximated as

J
(ajgn+1) _ a(n+1)

! ) S (n+1-p) _ (n+1-p)
= ) -2 3 ("j Vi )

Co p=1 0
2
"¢
_Z Cp (x](_n+l—p) _x5n+]7p))
Co
p=1
1 (n+1) (n+1) 2
= [ =) vy (13)

Co

with the definitions

P
+1- +1-
Xijz—Cosz (xj(.“ P X ”)), (14)
p=1
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P
V=D (4 ). "
p=1
Under consideration of definition (3), the substitution of (13) in (9) yields a non-linear function F for each bar by:
2

j (7)) = Z m T - Z m TS A+ VX

cA 2 2
- S8 (ccivac+ ™) <o (16)
2

with 7 the global vector of tension force magnitudes and
Aj=m (6" + H") — m; (6" + H{"), (17)
The solution for 7 is found from (16) using a Newton’s method. The improved iterative procedure
7 =7 =[5 (1] ' (7).
Fnt1) _ ) _ [ (7«:))]*1 f(ﬁ*)) , (18)

is implemented for this purpose. Here, F represents the vector of the functions (16) and 7 is its Jacobian matrix. It is
shown by Chun (2005) that (18) converges with third-order. The derivatives of (16) are found separately for the joint
bar b; and its adjoint bars (see Appendix A for the expressions). An approximation of the solution has to be given as
initial condition. It is proposed to perform the first time step with the linearised version of this model. The solution of
the arising linear system only depends on an approximation of the initial position of the structure. The derivation of
this model follows the developments of Marichal (2003) and can be found in Appendix B. The pre-processing consists
of preparing connectivity matrices and follows thereby the concept described previously (Martin et al., 2018). Once a
converged result has been found for the tension forces, acceleration, velocity and position of the knots are found from
(3),(11) and (12).

The description of the structural model is completed by providing details about the calculation of the velocity related
forces D; from the fluid using the screen force model (Kristiansen and Faltinsen, 2012). Considering the inertia system of
the fluid, this force can be split into a drag and a lift force component in normal (ny) and tangential (n;) direction of the
local relative velocity vector U s = us — V;:

._z/

The surface integral is approximated by a second-order accurate quadrature rule using the geometrical centre as
integration point. The drag and lift force directions are defined as

) rels (cgng + cny); dx. (19)

u

ngs =, (20)
|ure1,s|
u X ) XN

111,5= ( rel,s 5) s (21)

[(Wrer,s x Mg) X Mg '

with ng the unit normal vector of the screen pointing in the relative velocity direction. The coefficients ¢4 and ¢ are
calculated from a truncated Fourier series expanded for their dependency on the angle of attack o between fluid velocity
vector and normal vector of the screen

caler) = Ca0 Y a1 05 ((2k — ) , (22)
k=1

cla) = .z Z by, cos (2ka) . (23)
k=1

The definition of the constants ¢4 and ¢, z are given in Kristiansen and Faltinsen (2012). The determination of the Fourier
coefficients is based on non-linear flttmg to experimental data as described by the authors in Martin et al. (2020).

3. Direct coupling of the structural response to the fluid solution
3.1. Numerical model for solving the fluid dynamics

The conservation of mass and momentum for incompressible fluids arises in convective form as

V-u=0, (24)
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ou 1 T

E+u-Vu=—;Vp+V-(v[Vu+Vu ])+e. (25)
with u the velocity vector, g the gravity acceleration vector, p the pressure and v the kinematic viscosity. The system
is solved numerically using finite differences on rectilinear grids. The convection term is discretised with the fifth-order
accurate weighted essentially non-oscillatory (WENO) scheme of Jiang and Shu (1996) adapted to non-uniform point
distances, and the diffusion term is discretised using second-order accurate central differences. A staggered grid approach
is chosen to ensure a tight connection of the pressure and velocity field. The solution process follows the incremental
pressure-correction algorithm for incompressible flows as proposed by Timmermans et al. (1996). In the predictor step,
continuity violating velocities u®) are calculated using pressure gradients from the previous time step:

At
The implicit handling of the diffusion term removes decisive restrictions from the CFL condition (Bihs et al., 2016). A
third-order accurate total variation diminishing Runge-Kutta scheme (Shu and Osher, 1988) is applied to advance (26)

in time. Here, the time step is determined from the CFL condition. At each sub-step, the projection step solves a Poisson
equation for the pressure correction term peorr

= —u™ . vu®™ — %me) +V-(v[Vu+ VuT])(*) +g (26)

1 1
B <;Vpc0rr) = EV . ll(*). (27)

The total pressure is then found from the obtained pressure increment (Brown et al., 2001) using

P = p® o p oy Vi, (28)

Subsequently, the predicted velocities are projected onto the space of divergence-free fields so that

u D) = g _ ALy, (29)
0

The algorithm is implemented in the open-source CFD solver REEF3D (Bihs and Kamath, 2017; Bihs et al., 2016). Full
parallelisation of the model is provided through an n-halo domain decomposition strategy and the message passing
interface (MPI) for inter-processor communication. The solver utilises the fully parallelised BiCGStab algorithm with
geometric multigrid preconditioning of the HYPRE library (van der Vorst, 1992) for solving the Poisson equation.

If a free surface is present, defined as the interface between water and air phase, the same set of equations is solved.
However, the material properties become space and time dependent which is implicitly described by the zero level set
of a smooth signed distance function @ (Osher and Sethian, 1988). The linear advection equation

0P

—+u-Vo =0, (30)

at
is solved for propagating @ in space and time. The fifth-order accurate HJ-WENO scheme of Jiang and Peng (2000) is
applied for the spatial discretisation and the temporal discretisation is performed by a Runge-Kutta method. The level
set function has to be reinitialised regularly to keep its signed distance property. For this purpose, the reinitialisation
equation (Sussman et al., 1994)

0P
e + sign(®) (IVe| — 1) =0, (31)
T
is solved in pseudo time t so that & converges to a valid solution of the Eikonal equation |[V¢| = 1.
3.2. Lagrangian-Eulerlan coupling algorithm

The development of a new coupling algorithm for the simulation of fluid dynamics around static porous structures
was the subject of previous research (Martin et al., 2020). Therefore, only the main concepts and modifications for
dynamic calculations are provided in this section. The main idea is built on a Lagrangian-Eulerian approach where the
hydrodynamic forces are calculated from interpolated fluid velocities, and the disturbances of the fluid through the solid
parts of the structure are incorporated using forcing terms in the Navier-Stokes equations. A flowchart of the complete
FSI algorithm is shown in Fig. 3.

An example of the distribution of the Lagrangian points on the discrete structure is shown in Fig. 4. They are defined
so that the disturbances are nearly equally distributed over the area with distances similar to the surrounding cell sizes.
This is achieved by splitting the macro elements into triangles and refine these according to the stationary grid size in
their vicinity. The Lagrangian points are then defined in the geometrical centres of each triangle.

A momentum loss vector F is defined at each fluid point X, = (x,, Ve, z.) of the Eulerian grid and added to the predicted
velocity before solving the Poisson equation. In comparison to Martin et al. (2020), the vector is calculated using

Le

f(x;) Xe — XL Ye — V1L Ze — 7L
F(x,) = D D D 32
(%e) ZAXLAyLAzL ( Ax ) ( Ay ) ( Az ) (32)

L=1

6
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Advance and reinitialise free surface using (30) and (31)

|

Predictor step (26) for fluid velocities

l

Calculate coupling forces on net with (19)

|

Solve net dynamics

|

Determine Lagrangian point locations

|

Distribute disturbances on Eulerian grid using (32)

l

Solve (27) for pressure correction

l

Correct pressure and velocity field with (28) and (29)

n=n-+1

Fig. 3. Flowchart of the proposed FSI solver for one time step n.
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Fig. 4. lllustration of the algorithm for calculating Lagrangian points (green dots) of one half of a structural element (thick black lines and points)
in a Eulerian fluid domain (thin grey lines): the first triangulation loop results in the blue lines and dots, the second loop results in the red lines
and dots.

with f(x;) the hydrodynamic force vector on the screen corresponding to the Lagrangian point X; = (x;, yi, z1), L. the
number of Lagrangian points within a defined Kernel around X, chosen as the interpolation kernel of Peskin (1977)

1 T :
iy = | % (14 cos (%)) if r| <2.0 (33)
0.0 else.
The forces f(x;) are represented by the integral of the external forces from (3) over the triangle area A;
P .
fx,) = [Eufel - (camg + cimy) + mg (ag + diag(ny, ny, n;) - (ag — a)) + G]L AL (34)

The chosen definition (32) removes effectively the free parameter which arose previously due to the usage of an inverse
distance weighting.

A final remark applies to the necessity of correcting the fluid velocity around the structure within the determination
of ¢4 and ¢; in (19). Based on experimental data, these coefficients are determined as a function of the inflow velocity u.,
whereas the given velocity information at the structure in the numerical domain is influenced by the pressure jump Ap
caused by the porosity. To overcome this mismatch, a virtual inflow velocity is approximated using Froude’s momentum
theory (Carlton, 2019), which is based on the momentum balance in front and behind an infinitesimally thin screen. This

7
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Fig. 5. Verification test of the non-linear material properties using the elongation of a sheet for different weights.

theory can be utilised to relate the velocity at the screen u; to Ap:
Ap

T Uy

A detailed derivation can be found in Martin et al. (2020). The pressure jump arises from the disturbances in (34) normal

to the screen and is defined as

U =1u (35)

P
Ap = = iU (36)
In combination with (35), uy, can be approximated from ug by solving the intrinsic equation
Cd(uoo) Ug
Uso = - =, (37)
T 14+ 1+ Cia(lso)

with a Newton-Raphson method and u., = us as initial value.
4. Verification of the FSI solver

First, the proper reproduction of the geometrical properties of the structural material is verified using the experimental
setup proposed in Lader and Fredheim (2006). A 68 meshes long and 4 meshes wide sheet with d; = 1.8 mm and
I; = 16 mm is stretched in longitudinal direction using attached weights. The steady state elongation is measured
over increasing forces, and the theoretical result is expected to follow (6). Fig. 5(a) exemplifies the convergence of the
elongation of the numerical structural model presented in Section 2. Under-relaxation techniques are used to accelerate
the convergence and damp the initial shock of the applied force. As can be seen in Fig. 5(b), the numerical model
follows the theoretical results as expected. Further, the chosen material coefficients show a good approximation of the
experimental results. Additionally, a linear material is tested and shown in the same figure. The results indicate proper
representation of the elongation for ¢ < 0.02 but large deviations from physics for ¢ > 0.08.

In a second step, the convergence of the numerical simulation for the validation case of Section 6.1 is shown in Fig. 6.
Here, a porous sheet is fixed at the top and deformed from a steady inflow of u,, = 0.226 m/s. The global forces in x-
and z-direction, the velocity at three different locations behind the sheet and the centre line of the deformed sheet are
calculated. The convergence of the fluid solver is presented under usage of the finest possible sheet of N = 15 elements
in both principal directions. As can be seen in Figs. 6(a), 6(c) and 6(e), the numerical results converge fast after reaching
cell sizes smaller than 0.05 m. The convergence of the structural solver is then shown using Ax = 0.02 m in Figs. 6(b),
6(d) and 6(f). Both, forces and velocities are changing insignificantly for the different element sizes.

The deformed centre line reaches a steady state if at least 9 x 9 elements are used. The reason for the observed fast
convergence is the coupling algorithm’s mechanism to distribute the screen forces to the fluid domain by splitting the
structural elements according to the cell size of the fluid grid. Hence, the chosen number of elements is mostly related
to the accuracy of the structural deformation but less influential for load and momentum loss calculations.

Similar studies were conducted to find appropriate grid and structural element sizes for the following validation,
showing only the converged results.

5. Validation of the fluid-structure coupling algorithm

As the first step of the validation process, the coupling algorithm of Section 3.2 is validated against measurements of
rigid porous sheets in steady current and waves. Hence, the structural solver is not used. The deviation ¢ between the

8
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T. Martin and H. Bihs Journal of Fluids and Structures 100 (2021) 103168

QM

1.83 m

Fig. 7. Half of the computational domain for the simulation of a rigid sheet in steady current. The complete domain is twice as wide. The flow
direction is in positive x-direction. The colours show the velocity in x-direction for the case with u,, = 0.5 m/s and o = 45°.

Table 1
Deviations [%] between the numerical results and experimental data of Patursson et al. (2010).
al°] Uso [m/s]
0.125 0.25 0.5 0.75
FD FL Uy FD FL Uy FD FL Uy FD FL Uy
0 —6.83 - 459 8.91 - —-1.31 8.89 - —1.82 7.52 - —0.24
30 1.32 9.61 1.94 —0.98 —19.2 —-1.75 8.29 —1.49 —2.18 1.92 —13.9 —0.41
45 —4.49 —7.04 —0.01 1.07 8.06 —3.39 261 5.25 —2.94 —1.61 —-17.3 —0.49
60 14.6 —14.81 —2.07 3.44 9.54 —4.18 0.49 9.92 —4.71 —-7.35 8.30 —-3.21

numerical result @,y and the experimental result @., is calculated using
_ ¢exp - ¢num

-100. (38)
¢exp

5.1. Rigid porous sheet in steady current flow

Following the experiments of Patursson et al. (2010), a rigid sheet of 1.0 m x 1.0 m with d; = 0.0028 m and
I = 0.029 m is placed in a domain of 8.0 m x 3.66 m x 2.44 m. The domain is discretised using a uniform grid with
Ax = 0.06 m. As shown in Fig. 7, the top bar of the sheet is kept at (x, z) = (3, 0.81) m and different angles of attack « are
investigated by rotating the structure counter-clockwise. Four different angles of attack, i.e. « = 0°, 30°, 45°, 60°, and four
different inflow velocities of 0.125 m/s, 0.25 m/s, 0.5 m/s and 0.75 m/s are taken into account. For each configuration,
the global drag and lift forces are calculated using (19), and the velocity in the wake of the sheet is measured to validate
the velocity reduction.

The results are shown in Fig. 8. The drag forces increase with increasing inflow velocity and decreasing angle of attack,
whereas the lift forces increase with increasing inflow velocity and show a peak for « = 45°. The velocity behind the sheet
decreases due to the presence of the structure. This effect increases with higher inflow velocity but is not influenced by
the angle of attack. The distributions of wake velocities in Fig. 8(c) show the correct behaviour for the numerical model.
The deviations between the simulation and the measurements are presented in Table 1. Most errors are well below 10%,
and the largest deviations are given for the predicted drag and lift forces at large inflow velocities and angles of attack.

5.2. Rigid porous sheet in regular waves

A similar experiment was conducted in Zhao et al. (2008) to investigate the drag forces on a rigid sheet in regular
waves. Here, two rigid sheets of 1.0 m x 0.5 m with d; = 0.002 m and /; = 0.03 m and I; = 0.06 m are placed in a wave
tank of 30.0 m x 2.0 m x 2.0 m with a water depth of 1 m. The centre of the sheet is at (x, y, z) = (10, 1.0, 0.6) m. Five
different waves with wave heights between H = 0.1 m and H = 0.2 m and a wave period of T = 1.4 s are investigated.
They are modelled using Stokes’ second-order theory. The computational domain is discretised using a uniform grid with
Ax = 0.05 m.

The time series of the numerically calculated global drag forces on the two sheets are presented in Fig. 9. For
comparison, the measured forces are indicated in red. Spectral analysis is conducted to quantify the period and amplitude
of the forces, and the results are shown in Table 2 in comparison to the experimental data. Here, the positive and negative
force amplitudes are considered separately due to the asymmetry of Stokes waves. In general, the forces increase with
increasing wave height due to larger particle velocities below the wave and increasing solidity due to a larger surface
passed by the fluid. A good agreement between simulation and experiment can be stated as the deviations are mostly well
below 10%. As the measured forces are just provided over two wave periods, increased uncertainties for the experimental
data have to be kept in mind.
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Fig. 8. Comparison of the numerical and experimental results for a rigid porous sheet in steady current flow.

6. Validation of the complete FSI model

The previous section indicates the proper working of the fluid solver and the coupling algorithm for both, constant
inflow conditions and waves. In this section, the complexity of the fluid-structure problem is increased by adding
the structural solver and hence, the deformation of the structure. First, a single sheet and a cylindrical structure are
investigated in steady inflow conditions. Afterwards, the deformation of a porous sheet in waves is presented.

6.1. Deformation of a porous sheet in steady current flow

The deformation of a porous sheet in steady current flow is presented following the experimental setup by Bi et al.
(2014a). The sheet has a size of 0.3 m x 0.3 m with solidity S = 0.243. It is numerically represented by 9 x 9 elements. The
top is fixed during the experiments and a steel bar with a mass of 73 g in air is attached to the bottom of the structure. In
the numerical model, the mass and inertia effects of the bar is added to the lowest row of structural elements. The inertia

11



T. Martin and H. Bihs

Journal of Fluids and Structures 100 (2021) 103168

Table 2

Numerical and experimental results and deviations ¢[%] for the rigid porous sheet in waves (Zhao et al., 2008).
H [m] le [m] T [s] F* [N] F~ [N] Texp [s] Fgp [N] Feyp [N] er Ep+ EF-
0.10 0.03 1.420 1.157 1.240 14 1.247 1.241 —1.43 0.18 0.16
0.12 0.03 1.420 1.590 1.750 14 1.522 1.786 —1.43 443 2.01
0.15 0.03 1.420 2.260 2.480 14 2.460 2.679 —143 0.15 7.44
0.18 0.03 1419 3.450 3.780 14 3.382 3.814 —1.42 1.98 0.89
0.20 0.03 1414 4.200 4.960 14 3.893 5214 —1.00 7.88 4.87
0.10 0.06 1421 0.330 0.390 14 0.477 0.398 —1.50 0.81 2.17
0.12 0.06 1.421 0.501 0.588 14 0.467 0.695 —1.51 7.07 15.42
0.15 0.06 1.428 0.698 0.860 14 0.791 1.044 —2.00 1.78 17.67
0.18 0.06 1419 1.068 1.364 14 1.180 1.497 —1.41 0.52 8.90
0.20 0.06 1.419 1.36 1.780 14 1.417 1.878 —1.41 0.04 5.26
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Fig. 9. Comparison of the numerical and experimental time series of the drag forces on a rigid porous sheet in different regular waves with wave
height H and wave period T.

effects are approximates as drag and added mass forces for a cylinder using Morison’s formula (Morison et al., 1950). This
procedure also holds for the validation cases below. A slice of the computational domain is shown in Fig. 10. Following
the experiments, the domain is 3.8 m long, 0.4 m wide and 0.4 m high. It is numerically resolved using Ax = 0.02 m. The
centre of the sheet is initially placed at (x,y, z) = (1.0, 0.2, 0.25) m. The inflow velocities u,, are 0.056 m/s, 0.113 m/s,
0.17 m/s and 0.226 m/s. As the result, Fig. 11 shows the distribution of the centre line of the sheet, the global drag forces
and velocity distribution through the structure for different inflow velocities.
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Fig. 10. Slice through the centre of the computational domain for the simulation of a porous sheet in steady current incident from the left. The
deformed sheet is shown in yellow. The contours show the velocity in x-direction for the case with u., = 0.226 m/s.

Table 3

Numerical and experimental results and deviations ¢[%] for the maximum deformation of a porous sheet in regular waves (Zhao et al., 2008).
H [m] T [s] At,exp [cm] Az exp [cm] Ay [cm] A, [cm] &1 &
0.10 14 452 3.78 494 3.56 9.25 —5.85
0.12 14 5.36 5.05 5.22 4.40 —2.61 —12.81
0.15 14 6.69 6.93 6.79 5.75 1.48 —16.98
0.18 14 7.71 8.23 8.16 6.76 5.81 —17.92
0.15 1.1 5.26 3.15 4.90 3.47 —6.79 10.16
0.15 12 5.48 4.16 4.95 4.26 —9.62 2.45
0.15 14 6.69 6.93 6.79 5.75 1.48 —16.98
0.15 15 8.02 8.35 7.73 7.64 —3.58 —8.50

The experimental results for the deformation are extracted from pictures of the whole structure presented in their
paper and therefore, prone to larger uncertainties. Based on that, the qualitative comparison in Fig. 11(c) shows a satisfying
performance of the numerical model. For larger velocities, the model tends to predict a larger curvature in the middle
part of the sheet. This also affects the calculated global drag forces shown in Fig. 11(a). Here, deviations below 10% are
shown for the lower range of investigated inflow velocities, but a 20% under-prediction is given for largest velocity. This
is probably linked to the slightly different deformation causing larger lift forces but smaller drag forces. Additionally,
Fig. 11(b) shows the distribution of the velocity through and behind the sheet for two inflow velocities. As the flow
passes the structure, a velocity drop is visible due to a loss of fluid momentum. The magnitude and position of the velocity
reduction are well presented by the proposed model irrespective of the inflow velocity.

6.2. Deformation of a porous sheet in regular waves

In the previously considered experiment of Zhao et al. (2008), additional measurements of the deformation of a porous
sheet in regular waves were presented. The sheet is 0.78 m wide, 0.6 m high and consists of squared meshes with
d; = 0.0018 m and I = 0.06 m. The solidity ratio is approximated as 0.06. The numerical equivalent is modelled using
8 x 8 elements. The top is fixed during the experiments and an iron bar with a mass of 82 g in air is attached to the
bottom of the structure. The same wave tank of 30.0 m x 2.0 m x 2.0 m with a water depth of 1 m is used (see Fig. 12).
The centre of the sheet is at (x,y,z) = (10, 1.0, 0.6) m. The same waves as given above are investigated. Additionally,
results for waves with wave height H = 0.15 m and wave periods between 1.1 s and 1.5 s are reported. All waves are
numerically modelled using second-order Stokes theory. The computational domain is discretised using a uniform grid
with Ax = 0.04 m.

Fig. 13 presents three time instances showing typical flow situations encountered by the sheet. If the structure is
under a wave crest, as shown in Fig. 13(a), the flow pushes the structure in the positive x-direction. Here, the centre of
the sheet deforms first because of the increased inertia of the lower part of the sheet due to the additional weight and
higher velocities near the free surface. After the wave crest passes the structure, reduced velocities lead to a flattened
profile rotated counter-clockwise. When the wave trough approaches as shown in Fig. 13(c), the structure is pulled back
and starts to rotate clockwise.

The amplitude and speed of this cycling motion depend on both, wave height and period, as it can also be seen in Fig. 14.
It shows the maximum deformation of two probe points P; = (10, 1, 0.3) m (bottom position) and P, = (10, 1,0.6) m
(centre position) following the structural deformation. The deformation increases with the wave height. For both locations,
doubling of the amplitudes is given for almost doubling the wave height. Similarly, the increase of the wave period
increases the amplitude of the motion due to longer periods of almost unidirectional incident flow velocities. The
centre point generally moves less than the bottom point in the numerical model, whereas the measurements indicate
larger motion of the centre point for higher and longer waves. Table 3 provides the deviations between numerics and
experiments for all considered cases. The motion of the lower part of the sheet is represented well as the error is below
10%. In contrast, the centre part deforms insufficient in the simulations for large waves showing under-predictions of up
to 18%. These deviations can be linked to the wave representation or the calculated forces on the structure. Unfortunately,
both are not reported in Zhao et al. (2008) so that further analysis of the errors cannot be given.
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Fig. 11. Comparison of the numerical and experimental results for a porous sheet in steady current flow.

Fig. 12. Computational domain of the water phase for the simulation of a porous sheet in regular waves. The waves propagate from the left to the

right. The colours show the velocity in x-direction.

6.3. Deformation of a porous cylindrical structure in steady current flow

As a final validation case, the deformation of a porous cylinder in steady current flow is considered. The setup and
measurements are taken from Lader and Enerhaug (2005). The cylinder has a diameter of 1.435 m, a height of 1.44 m and

14



T. Martin and H. Bihs Journal of Fluids and Structures 100 (2021) 103168

(a) Wave crest situation. (b) Situation between crest and

trough.

(¢) Wave trough situation.

Fig. 13. Deformation of the porous sheet (yellow) in different wave situations. The waves reach the sheet from the left. The green arrows indicate
the directions of the streamlines.

10 10
8 < 8
— 6 /8/ z 6 / -
< 4 LS i < 4 S -~
2 & O Experiment Pl O C Experiment P2 ] 2 & O Experiment P1 C C© Experiment P2 ]
— Numerical P1 --- Numerical P2 —  Numerical P1 --- Numerical P2
I I T I I I I I
00.08 0.10 0.12 0.14 0.16 0.18 0.20 ?.0 1.1 1.2 1.3 1.4 1.5 1.6
H[m] T[s]

(a) Maximum deformation of the sheet for different (b) Maximum deformation of the sheet for different
wave heights and T'=1.4 s. wave periods and H = 0.15 m.

Fig. 14. Comparison of the numerical and experimental results for a porous sheet in regular waves.

consists of meshes with d; = 0.0018 m and I; = 0.018 m, which corresponds to a solidity of S = 0.19. It is numerically
represented by 17 x 10 structural elements. The top is fixed during the experiments and 16 cylindrical weights of 0.4, 0.6
and 0.8 kg each are attached to the bottom row of the cylinder. The computational domain together with the placement
of the centre top position of the cylinder is shown in Fig. 15. The domain is discretised using Ax = 0.08 m. The inflow
velocity u,, varies between 0.13 m/s and 0.56 m/s. As the results, Fig. 16 shows the global drag and lift forces and
volume and area reduction coefficients for the different inflow velocities and attached weights. The reduction coefficients
represent the ratio of the volume and area of the deformed structure to the initial structure and are calculated as proposed
in Lader and Enerhaug (2005) to be consistent with the experiments. Their accurate prediction demands a correct force
calculation and proper velocity reduction through the front part of the cylinder since both influence the deformed shape.

The global forces on the structure, shown in Figs. 16(a) and 16(b), increase with increasing inflow velocity, and the
influence of the changing weights is only of importance for velocities larger than 0.33 m/s. For smaller velocities, the
numerical model agrees well with the experiments due to consistent deviations below 10%. For the largest inflow velocity,
the lift force is under-predicted. Here, the simulations show consistent results as the lift forces with the largest additional
weight is generally the lowest due to the smallest deformation. In contrast, the experimental data shows the largest lift
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Fig. 15. Computational domain for the simulation of a porous cylinder in steady current flow. The current propagates in positive x-direction.

force for this configuration without providing a physical explanation for this phenomenon. The volume and area reduction
(Figs. 16(c) and 16(d)) is negligible for inflow velocities smaller than 0.2 m/s. For larger velocities, the numerical model
accords well with the experiments by predicting increasing volume and area reduction with increasing velocity. The largest
deviation is observed for the predicted area reduction coefficient for velocities between 0.23 m/s and 0.27 m/s. A possible
explanation is a slightly different deformation process of the numerical cage in comparison to the physical one. In the
experiment, the deformation at this velocity seems to be related to a bend of the cylinder, whereas the cage also deforms
through a reduced diameter numerically. However, a large uncertainty associated with accessing the area reduction by
tracking only three points has to be considered. As expected, the largest deformation of the cylinder is predicted for the
lowest additional weight.

7. Application to the simulation of fish cage arrays in current flow

A possible application of the proposed model is the investigation of complex fish cage arrays consisting of multiple
cylindrical nets defined as elastic porous sheets. In the following, the capabilities of the developed model are demonstrated
by taking the previous case as the basis. As shown in Fig. 17, six cylinders of the same dimensions and material as above
are placed in a 3 x 2 array. The distance between the top centre points is 2 m in longitudinal direction and d in lateral
direction. The distance d is chosen as 3 m and 1.5 m to study the influence of the cages on each other. Each cage has an
additional weight of 16 x 0.6 kg attached, and the considered inflow velocity is 0.33 m/s.

The time series of the forces on the left array of nets are shown in Fig. 18. The global forces in x- and z-direction
decrease for nets in the wake of another structure due to the momentum loss through the porous sheets in front. The
simulations indicate a slight increase of these forces of the nets in the back if d is reduced. However, they are less
influenced by d than the forces in the y-direction. For the bigger distance, no influence between the two arrays can
be stated as the forces in the y-direction are close to zero. The decrease of the distance results in an increase of lateral
forces due to the direct influence of the accelerated flow around the neighbouring structure.

The changing loading conditions also influence the deformation of the structures as can be seen from Fig. 19. As
expected, the reduction of velocity in the wake of the first structure results in less rotation of the nets behind. Further, the
deformation increases with decreasing distance between the rows due to the increase of forces. In accordance with these
observations, the distribution of the tension forces (Fig. 20) can be explained. The largest tension forces are to expected
near the clamping on the top, and the strain reduces for the structures in the back of the array. Generally, the strain is
larger on the frontside than on the backside due to the momentum loss of the fluid while passing the net.

8. Conclusions

In this paper, a new methodology for modelling the non-linear dynamics of porous tensile structures and their
interaction with the surrounding fluid was proposed.

An efficient structural model was derived for arbitrary deformations and non-linear material. It bases on solving
Newton'’s second law for the unknown tension forces. A new approach for calculating the fluid loading on the structure
was proposed as the structure is not directly resolved in the fluid. Here, fluid properties were interpolated on the structural
domain using a Kernel function, and the hydrodynamic forces were approximated using a Morison-type approach. High-
order backward finite differences were included to approximate the structural motion. Finally, a single matrix-vector
problem arose which was solved using an accelerated Newton’s method. In contrast to existing explicit algorithms, the
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Fig. 16. Numerical and experimental results for the simulation of a porous cylinder in steady current flow. WM1 corresponds to 16 x 0.4 kg additional
weight, WM2 corresponds to 16 x 0.6 kg additional weight and WM3 corresponds to 16 x 0.8 kg additional weight.

Fig. 17. Computational domain for the simulation of fish cage arrays in current flow. The current propagates in positive x-direction.

implicit time and deformation handling increase stability and effectively remove strong time step restrictions from the
fluid solver.
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Two-way coupling was provided by including the loss of fluid momentum, due to passing a porous sheet, in the Navier—
Stokes equations as a source term. It was determined from a Kernel integration of the hydrodynamic and body forces
over multiple Lagrangian points which follow the structural deformation. This represents an innovative extension of the
classical forcing approach for porous and hydrodynamic transparent structures. Hence, its application to couple the fluid
with slender elastic structures, such as mooring lines and floating beams, and deforming porous media like vegetation is
straightforward.

An extended verification and validation study was presented. The proposed model was validated against existing
experiments for rigid and elastic porous sheets and cylinders with varying geometries and solidities in current and regular
waves. Deviation bands of less than 10% were regularly achieved which indicate a proper calculation of the loads, the wake
velocity field and the structural response. Hence, the chosen kernel for the distribution of the momentum loss vector
on the fluid domain is a valid alternative to the previous choice and removes effectively additional parameters from
the model. The application to the simulation of the flow around multiple elastic net cages delivers insight into possible
applications. Here, the proposed numerical model provides the possibility to study fluid dynamics around and inside the
cages as well as the effects of waves and currents on the cage array deformations. The resulting fluid disturbances have not
been numerically resolved yet but can now be modelled using the proposed approach. Within future work, the framework
will also be extended to floating cage systems with mooring systems attached.
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Appendix A. Analytical expressions for the derivatives of F;;

The derivatives of (16) have to be calculated separately for the bar b;; between knot X; and X; and the adjoint bars by,
and bj,:

e Derivative for the joint bar by:

3 Fy (T T, T, b; by
KM _, Z s Z—”‘+A,,+v,]+x,, (i—l>

d 7;j m; m;
, B —C1 +2C +/C} + 4G Ty

—c = (A.1)
G 2
JC+4GT;

e Derivative for the bars by, with i # j:

Nv
OF;(T) 2 ik
T DR RO &

e Derivative for the bars bj, with j # i:

IF;(T) 2b T, Ty
ay’ﬁp o Z . ZLJFAUJFVUJFXU (A3)

The resulting Jacobian is inverted using the partially pivoted LU decomposition of the C++ library Eigen (Guennebaud
et al.,, 2010).
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Appendix B. Derivation of a linear system for solving the structural problem

The derivation of a linearised version of the proposed model is based on the kinematic relation

2 2
(x]gnm _ x§n+l)) _ (l?f*”) ) (B.1)
Under the assumption of linear elastic material, the length of the bar between knot X; and X; is written as
2
i =1lo; (1+xTy)" (B2)

with [y ; the original length and « the elasticity constant. In each time step, the tension force is subject to an incremental
increase so that T+ = T 4 AT. Thus, the right-hand side of (B.1) can be linearised with the argument of small
elasticity (x <« 1) and small tension fluctuations (AT « 1):

2
(lgj.“”) — 2, (1 + 2 T;."’) . (B.3)

The location and velocity of each knot is approximated using first-order backward finite differences in time. Inserting
them into (B.1) and linearising the left-hand side by neglecting terms of higher-order, yields under consideration of (B.3)

(m) (n))z

I3, 14 2, T <xf X
24t ( + 2Ty ) T 2
O m _ m ) m
(vj" —v;" + At (aj" —a" )) (xj" —x;" ) . (B.4)

Thus, a linear system of equations arises for the tension forces at the new time step using (5) and proper rearrangement:

N g (n)p(n+1) Ni o () (n+1) 2
)3 bie T~ X’: by, Ty (xgn) _ xgn)) _ by qmen
m; m; ! ' Atz
k=1 k=1
2
(1) (n) (1) (1) () (n)
B ) ) )
T 24t2 2At2 At
(xjgn) _ xgn)) F}(n) ()‘j(n) _ xgn)) an)
+ . (B.5)
m; m;

The resulting system matrix is inverted using the partially pivoted LU decomposition of the C++ library Eigen (Guennebaud
et al., 2010).
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